Skip to content
Rasterio plugin to read mercator tiles from Cloud Optimized GeoTIFF dataset.
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.
.circleci update circle ci Feb 12, 2019
rio_tiler revert mask resampling May 14, 2019
tests revert mask resampling May 14, 2019
.gitignore update gitignore Mar 26, 2018
.pre-commit-config.yaml add pre-commit Jan 29, 2019
AUTHORS.txt init Oct 9, 2017
codecov.yml init Oct 9, 2017
tox.ini remove rio-pansharpen and use internal function for pansharpening Mar 27, 2019



Rasterio plugin to read mercator tiles from Cloud Optimized GeoTIFF dataset.

Additional support is provided for the following satellite missions hosted on AWS Public Dataset:

Rio-tiler supports Python 2.7 and 3.3-3.7.


You can install rio-tiler using pip

$ pip install -U pip
$ pip install rio-tiler

or install from source:

$ git clone
$ cd rio-tiler
$ pip install -U pip
$ pip install -e .


Create tiles using one of these rio_tiler modules: main, sentinel2, landsat8, cbers.

The main module can create mercator tiles from any raster source supported by Rasterio (i.e. local files, http, s3, gcs etc.). The mission specific modules make it easier to extract tiles from AWS S3 buckets (i.e. only a scene ID is required); They can also be used to return metadata.

Each tilling modules have a method to return image metadata (e.g bounds).


Read a tile from a file over the internet

from rio_tiler import main
tile, mask = main.tile(
> (3, 256, 256)

> (256, 256)

Create image from tile

from rio_tiler.utils import array_to_image
buffer = array_to_img(tile, mask=mask) # this returns a buffer (PNG by default)

Use creation options to match mapnik default

from rio_tiler.utils import array_to_image
from rio_tiler.profiles import img_profiles
options = img_profiles["webp"]

buffer = array_to_img(tile, mask=mask, img_format="webp", **options)

Write image to file

with open("my.png", "wb") as f:

Get a Sentinel2 tile and its nodata mask.

from rio_tiler import sentinel2
tile, mask = sentinel2.tile('S2A_tile_20170729_19UDP_0', 77, 89, 8)
> (3, 256, 256)

Get bounds for a Landsat scene (WGS84).

from rio_tiler import landsat8
> {'bounds': [-81.30836, 32.10539, -78.82045, 34.22818],
>  'sceneid': 'LC08_L1TP_016037_20170813_20170814_01_RT'}

Get metadata of a Landsat scene (i.e. percentiles (pc) min/max values, histograms, and bounds in WGS84) .

from rio_tiler import landsat8
landsat8.metadata('LC08_L1TP_016037_20170813_20170814_01_RT', pmin=5, pmax=95)
  'sceneid': 'LC08_L1TP_016037_20170813_20170814_01_RT',
  'bounds': {
    'value': (-81.30844102941015, 32.105321365706104,  -78.82036599673634, 34.22863519772504),
    'crs': '+init=EPSG:4326'
  'statistics': {
    '1': {
      'pc': [1251.297607421875, 5142.0126953125],
      'min': -1114.7020263671875,
      'max': 11930.634765625,
      'std': 1346.6463388957156,
      'histogram': [
        [1716, 257951, 174296, 36184, 20828, 11783, 6862, 2941, 635, 99],
        [-1114.7020263671875, 189.83164978027344, 1494.3653564453125, 2798.89892578125, 4103.4326171875, 5407.96630859375, 6712.5, 8017.03369140625, 9321.5673828125, 10626.1015625, 11930.634765625]
    '11': {
      'pc': [278.3393859863281, 293.4466247558594],
      'min': 147.27650451660156,
      'max': 297.4621276855469,
      'std': 7.660112832018338,
      'histogram': [
        [207, 201, 204, 271, 350, 944, 1268, 2383, 43085, 453084],
        [147.27650451660156, 162.29507446289062, 177.31362915039062, 192.33218383789062, 207.3507537841797, 222.36932373046875, 237.38787841796875, 252.40643310546875, 267.42498779296875, 282.4435729980469, 297.4621276855469]

The primary purpose for calculating minimum and maximum values of an image is to rescale pixel values from their original range (e.g. 0 to 65,535) to the range used by computer screens (i.e. 0 and 255) through a linear transformation. This will make images look good on display.

Partial reading on Cloud hosted dataset

Rio-tiler perform partial reading on local or distant dataset, which is why it will perform best on Cloud Optimized GeoTIFF (COG). It's important to note that Sentinel-2 scenes hosted on AWS are not in Cloud Optimized format but in JPEG2000. When performing partial reading of JPEG2000 dataset GDAL (rasterio backend library) will need to make a lot of GET requests and transfer a lot of data.

warning AWS Sentinel-2 bucket is in requester-pays mode which means that each user will pay for GET/LIST requests and data transfer. While this seems acceptable, using rio-tiler to access JPEG2000 dataset (as sentinel-2) can result in a huge AWS bill.


Contribution & Development

Issues and pull requests are more than welcome.

dev install

$ git clone
$ cd rio-tiler
$ pip install -e .[dev]

Python3.6 only

This repo is set to use pre-commit to run flake8, pydocstring and black ("uncompromising Python code formatter") when commiting new code.

$ pre-commit install


See LICENSE.txt.


The rio-tiler project was begun at Mapbox and has been transferred in January 2019.

See AUTHORS.txt for a listing of individual contributors.


See CHANGES.txt.

Create an AWS Lambda package

The easiest way to make sure the package will work on AWS is to use docker

FROM lambci/lambda:build-python3.6
RUN pip3 install rio-tiler --no-binary numpy -t /tmp/python -U
RUN cd /tmp/python && zip -r9q /tmp/ *


You can’t perform that action at this time.