diff --git a/docs/calc.html b/docs/calc.html index f1b95ed..1d86661 100644 --- a/docs/calc.html +++ b/docs/calc.html @@ -472,12 +472,18 @@

Colbyn’s Calculus Notes

+
  • Solutions + +
  • @@ -569,6 +575,10 @@

    Colbyn’s Calculus Notes

    name: 'Calculus - Definitions', path: 'calc/definitions.html' }, + { + name: 'Calculus - Solutions', + path: 'calc/solutions.html' + }, ]; let ul_node = document.querySelector("header#root > ul"); console.assert(ul_node); @@ -1007,7 +1017,51 @@

    Tangent

    -

    Intermediate Value Theorem

    +

    The Limit of a Function (§1.5)

    +
    +
    +
    Vertical Asymptote (Definition §1.5.6)
    +
    +

    The vertical line \(x = a\) is called the vertical asymptote of the curve \(y = f(x)\) if at least one of the following statements is true:

    +
    +
    +
    +\[\begin{equation} +\begin{split} + \lim_{x \to a} f(x) &= \infty \\ + \lim_{x \to a} f(x) &= -\infty \\ + \lim_{x \to a^{-}} f(x) &= \infty \\ + \lim_{x \to a^{-}} f(x) &= -\infty \\ + \lim_{x \to a^{+}} f(x) &= \infty \\ + \lim_{x \to a^{+}} f(x) &= -\infty +\end{split} +\end{equation}\] +
    +
    +
    +
    +
    +
    +

    Continuity (§1.5)

    +
    +
    +
    The Intermediate Value Theorem (IVT)
    +
    +

    Suppose that \(f\) is continuous on the closed interval \(\lbrack a, b \rbrack\), and let N be any number between \(f(a)\) and \(f(b)\), where \(f(a) \neq f(b)\), then there exists a number \(c\) in \((a, b)\) such that \(f(c) = N\).

    +
    +
    +

    Or alternatively, suppose \(f\) is a function that is continuous at every point in the interval \(\lbrack a, b \rbrack\):

    +
    +
    +
      +
    • +

      \(f\) will take on every value between \(f(a)\) and \(f(b)\) over the interval.

      +
    • +
    • +

      For any L between the values \(f(a)\) and \(f(b)\), there exists a number \(c\) in \(\lbrack a, b \rbrack\) for which \(f(c) = L\).

      +
    • +
    +
    @@ -1015,19 +1069,91 @@

    Note

    -
    +
    +
      +
    • The intermediate value theorem states that if a continuous function attains two values, it must also attain all values in between these two values.

      +
    • +
    • +

      The Intermediate Value Theorem states that a continuous function takes on every intermediate value between the function values \(f(a)\) and \(f(b)\).

      +
    • +
    • +

      The statement of the theorem has multiple requirements, all of which are necessary for the conclusion to hold.

      +
    • +
    +
    + + + + + +
    +
    Tip
    +
    -

    The statement of the theorem has multiple requirements, all of which are necessary for the conclusion to hold.

    +

    The IVT can be used to show that a root exists, if given some interval between \(a\) and \(b\):

    +
    +
    +
      +
    • +

      \(f(a)\) is negative

      +
    • +
    • +

      \(f(b)\) is positive

      +
    • +
    +
    +
    +

    or

    +
    +
    +
      +
    • +

      \(f(a)\) is positive

      +
    • +
    • +

      \(f(b)\) is negative

      +
    • +
    +
    +
    +

    then therefore, if the function is continuous, then there must be a value for which some \(x\) in \(f(x) = 0\) exists. I.e. that a root exists. Which should make sense.

    +
    +
    +

    More generally, this can be extended to any value between some interval. For instance, if:

    +
    +
    +
      +
    • +

      \(f(a) = 3\)

      +
    • +
    • +

      \(f(b) = 9\)

      +
    • +
    +
    +
    +

    Then there must exist some value of \(x\) for which:

    +
    +
    +
      +
    • +

      \(f(x) = 6\)

      +
    • +
    +
    +
    +
    +
    -

    Maximum and Minimum Values

    +

    Maximum and Minimum Values (§3.1)

    The extreme Value Theorem

    @@ -1080,9 +1206,6 @@

    Critica

    A critical number of a function \(f\) is a number \(c\) in the domain of \(f\) such that either \(f^\prime(c) = 0\) or \(f^\prime(c)\) does not exist.

    -
    -

    To find an absolute maximum or minimum of a continuous function on a closed interval, we note that either it is local [in which case it occurs at a critical number by (7)] or it occurs at an endpoint of the interval, as we see from the examples in Figure 8. Thus the following three-step procedure always works. See The Closed Interval Method.

    -
    @@ -1090,13 +1213,23 @@

    Critica
    Note

    -
    +
    +
      +
    • +

      Critical numbers of \(f\) occur when \(f^\prime(c) = 0\), or when \(f^\prime(c) = \mathrm{undefined}\).

      +
    • +
    • Not every critical number gives rise to a maximum or a minimum.

      +
    • +
    +
    +

    To find an absolute maximum or minimum of a continuous function on a closed interval, we note that either it is local [in which case it occurs at a critical number by (7)] or it occurs at an endpoint of the interval, as we see from the examples in Figure 8. Thus the following three-step procedure always works. See The Closed Interval Method.

    +

    @@ -1154,7 +1287,7 @@

    -

    The Mean Value Theorem

    +

    The Mean Value Theorem (§3.2)

    • @@ -1308,7 +1441,7 @@

      Miscellaneous

      -
      Theorem (5)
      +
      Theorem (§3.2.5)

      If \(f^\prime(x) = 0\) for all x in an interval \((a, b)\), then f is constant on \((a, b)\).

      @@ -1316,7 +1449,7 @@

      Miscellaneo

      -
      Corollary (7)
      +
      Corollary (§3.2.7)

      if \(f^\prime(x) = g^\prime(x)\) for all \(x\) in an interval \((a, b)\), then \(f - g\) is constant on \((a, b)\); that is, \(f(x) = g(x) + c\) where \(c\) is a constant.

      @@ -1480,10 +1613,28 @@

      +

      Solutions

      +
      +
      +

      Derivative of Absolute Value Functions (\({\scriptscriptstyle \frac{\mathrm{d}}{\mathrm{d}x}}\; \lvert x \rvert\))

      +
      +
      +\[\begin{equation} +\begin{split} + \lvert x \rvert &= \sqrt{x^2} \neq x \\ + {\scriptscriptstyle \frac{\mathrm{d}}{\mathrm{d}x}}\; \lvert x \rvert &= \frac{x}{\lvert x \rvert} = \frac{\lvert x \rvert}{x} +\end{split} +\end{equation}\] +
      +
      +
      +
      +

      + +
      +
    +
    +

    Derivative of Absolute Value Functions (\({\scriptscriptstyle \frac{\mathrm{d}}{\mathrm{d}x}}\; \lvert x \rvert\))

    +
    +
    +
    +\[\begin{equation} +\begin{split} + \lvert x \rvert &= \sqrt{x^2} \neq x \\ + {\scriptscriptstyle \frac{\mathrm{d}}{\mathrm{d}x}}\; \lvert x \rvert &= \frac{x}{\lvert x \rvert} = \frac{\lvert x \rvert}{x} +\end{split} +\end{equation}\] +
    +
    +
    +
    +
    + + + + + \ No newline at end of file diff --git a/docs/index.html b/docs/index.html index a3e562e..1b269d7 100644 --- a/docs/index.html +++ b/docs/index.html @@ -547,6 +547,10 @@

    Colbyn’s Math Notes

    name: 'Calculus - Definitions', path: 'calc/definitions.html' }, + { + name: 'Calculus - Solutions', + path: 'calc/solutions.html' + }, ]; let ul_node = document.querySelector("header#root > ul"); console.assert(ul_node); diff --git a/docs/trig.html b/docs/trig.html index efdd2e0..07dda8e 100644 --- a/docs/trig.html +++ b/docs/trig.html @@ -562,6 +562,10 @@

    Colbyn’s Trigonometry Notes

    name: 'Calculus - Definitions', path: 'calc/definitions.html' }, + { + name: 'Calculus - Solutions', + path: 'calc/solutions.html' + }, ]; let ul_node = document.querySelector("header#root > ul"); console.assert(ul_node);