
Relationship between subjective
comfort perception and smartphone

sensor data

Roman Küpper1

January 3, 2016

Department of Informatics - Master Project Report

Département d’Informatique - Departement für Informatik • Université de Fribourg -
Universität Freiburg • Boulevard de Pérolles 90 • 1700 Fribourg • Switzerland

phone +41 (26) 300 84 65 fax +41 (26) 300 97 31 Diuf-secr-pe@unifr.ch http://diuf.unifr.ch

1romanrick.kuepper@unifr.ch, Human-IST, DIUF, University of Fribourg

Abstract

We evaluated if a smartphone based sensing application is able to collect comfort related
data and how the notification strategy influences its results. For this reason we built a hybrid
smartphone application that is able to access the microphone and the ambient light sensor
and collect user related information at the same time. The application is part of a system that
is able to notify the user of the application through push notifications and save the collected
data into a central database. The evaluation, of a two-day lasting experiment with twelve
participants, showed that the system is able to collect comfort related data with an adequate
quality. We could further show that there are significant quality differences depending on the
notification strategy.

Keywords: Master thesis report, Human-IST Research Institute, Human comfort

Acknowledgements

I would like to thank:

Prof. Dr. Denis Lalanne for giving me the opportunity to work on this project and his
helpful ideas.

Dr. Julien Nembrini for his technical advice, his motivation and thoughtful inputs in our
numerous meetings.

Léonard Stalder for the inspiring dialogues and his help with the server implementation.

My Family for their continuous support through my academic career and their motivation during
this project. Also my girlfriend and my close friends for listening and supporting me in the last
few month.

Table of Contents

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Motivation . 1
1.2 Project Goals . 1
1.3 Structure . 2

2 State of the Art 3
2.1 Human Comfort . 3

2.1.1 Thermal . 3
2.1.2 Visual . 4
2.1.3 Acoustic . 5
2.1.4 Hygienic . 6

2.2 Experience Sampling Methods . 7
2.2.1 Traditional . 7
2.2.2 mESM . 7
2.2.3 Strengths and Weaknesses . 8

2.3 Mobile Sensing . 10
2.3.1 Special Devices . 10
2.3.2 Smartphones . 10

2.4 Push Notifications . 12
2.4.1 Local and Remote Notifications . 12
2.4.2 Push Notification Strategies . 12

3 Concept Overview 14
3.1 Rationale . 14
3.2 Proof of Concept . 14
3.3 Parameters to Capture . 15

4 Project Overview 16
4.1 System Architecture . 16
4.2 Design Choices . 17

4.2.1 Interrupting the User . 17
4.2.2 Data Collection . 18
4.2.3 Data Storage and Utilization . 18

4.3 Evolution of the Interface . 20

5 Implementation: Mobile Device 21
5.1 Technologies . 21

5.1.1 Native . 21
5.1.2 Hybrid . 22

5.2 Apache Cordova . 23
5.2.1 Custom plugins . 24

5.3 Cordova Application . 26
5.3.1 JavaScript Implementation . 26
5.3.2 Data Visualization . 29
5.3.3 Data Transmission . 30

5.4 Native Plugin . 32
5.4.1 Noise Metering . 32
5.4.2 Illuminace Metering . 33

i

6 Implementation: Server-side 35
6.1 Overview . 35
6.2 MQTT-Protocol . 37
6.3 MySQL Database . 38
6.4 Push Notifications . 39

6.4.1 Apple Push Notification Service . 39
6.4.2 Push Notifications with Pushbots . 39

7 Evaluation 41
7.1 Test Scenario . 41
7.2 User Instructions . 42
7.3 Distribution . 42
7.4 Perception of the Users . 43

8 Quantitative Analysis 45
8.1 Overview . 45
8.2 Strategy and Answer Rate . 45
8.3 External Factors . 47
8.4 Quality of Sensor Values . 48
8.5 Strategy and Quality of Answers . 48

8.5.1 Regular Strategy . 49
8.5.2 Random Strategy . 51

9 Conclusion 53

10 Future Works 54

References 56

Appendices 60
Application: Implementation of the unique ID generator 61
R Script - Mann-Whitney U Test on the User Perception of Strategy 61
R Output - Detailed outputs for strategy and answer rate 62
R Output - Detailed outputs for the quality of the sensor-data 62
R Output - Detailed outputs for the quality of sensors for the regular strategy 63
R Output - Detailed outputs for the quality of sensors for the random strategy 63
Excel Table with User Information and the Exact Notification Date 63
Instructions on how to use the ComfortIST application 65
R Script: Regular Strategy and Quality of Answers . 66
R Script: Random Strategy and Quality of Answers . 68
Server: Implementation of the Eclipse Paho Python client 70
Application: Implementation of the Eclipse Paho Javascript client 71
Application: Save variable in local SQL database . 72
Server: Node.js script that notifies a user with a tag . 73

ii

List of Figures

1 Basic metrics of light. 4
2 Relationship between SPL, Frequency and Phon. Source: [11]. 6
3 The diagram shows the traditional ESM notification approach 7
4 The diagram shows a general mESM approach . 8
5 iOS menu with the different alert styles. 12
6 The overall system architecture . 16
7 Process overview . 17
8 Design of the push mechanism . 17
9 Collection of user and sensor data in the application 18
10 Transmission of the data . 19
11 Interface of the prototype . 19
12 Input form on a single page . 20
13 Apache Cordova Application Packaging Process. Source:[63] 23
14 The Cordova JavaScript interface. Source:[63] . 24
15 Structure of the Cordova application. 26
16 Flowchart of the first page of the application. 27
17 Data-visualization on the iPhone. 29
18 Message transfer for MQTT over WebSockets. 31
19 The AVFoundation framework. Source: [2] . 32
20 Different layers of Software on the Server. 35
21 MQTT Publish/Subscribe in our System. 37
22 Database entries in the MQTT data format. 38
23 Pushing a remote notification from a provider to a client app. Source: [5] 39
24 Sharing the device token. Source: [5] . 39
25 Push notification delivery with third party service. Source:[30] 40
26 Apple application signing process. 42
27 Answers per participant and day. 46
28 Number of answers to push strategy membership on day one and day two. 47
29 Number of answers to push strategy membership on both days. 47
30 User and Sensor values for the visual dimension. 49
31 User and Sensor values for the acoustic dimension. 49
32 Plot of user and sensor values for the acoustic dimension of the regular strategy. . 50
33 Plot of user and sensor values for the visual dimension of the regular strategy. . . . 50
34 Plot of user and sensor values for the acoustic dimension of the random strategy. . 51
35 Plot of user and sensor values for the visual dimension of the random strategy. . . 51
36 Possible application in an sensing framework with external sensors. 54

iii

List of Tables

1 ASHRAE Thermal Sensation Scale . 3
2 Activity scale by Fanger. Source: [19] . 4
3 Illuminating Engineering Society illuminance recommendations. Source: [65] 5
4 Comparison of different smartphone sensors. Source: [7], [54] 10
5 Parameters captured by the application. 15
6 Pros and Cons of native applications. 21
7 Advantages and disadvantages of the camera as an ambient light sensor 33
8 Excerpt of timetable with groups and exact time when the push notification gets sent 41
9 User survey on the question on the push strategies. 43
10 User perception of push strategies per user. 43
11 User survey on the usage of the system. 44
12 Received data per day. 45
13 Influence of the random strategy on the number of answers. 46
14 Results of the t-test for the regular and the random strategy 47
15 Results of the Wilcoxon rank sum test for the regular and the random strategy . . 48
16 Influence of the random strategy on the number of answers. 48
17 Influence of the regular strategy on the quality of answers. 50
18 Influence of the random strategy on the quality of answers. 52

iv

1 Introduction

1.1 Motivation

One of the key factors that determines human productivity and happiness is the personal level of
comfort[12][40]. A person that feels comfortable works more efficiently and is overall happier than
a person who is distressed[12]. But what causes someone to feel comfortable? Besides interpersonal
relations and health related issues, one of the most important factors is the surroundings. In de-
veloped countries, the surroundings mostly consist of private indoor environments and offices[21].
With the wider distribution of HVAC1 and lighting systems most of the factors that determine
human comfort can be regulated. The regulations are made based on standards like the ASHRAE
55[10] and statistical analysis[24]. But even the most advanced HVAC systems are only as good
as the information they get.

Sensing information about the surroundings is mostly done with the help of sensor boxes which
are distributed over the location of interest[32]. This has two major disadvantages. The first one
is the cost of this sensors. Producing or buying them at a large quantity is expensive. And the
second one is the location of these sensors inside a room. Especially in large office-buildings it
is difficult to place the sensors at the right spot[62]. A possible solution to both of this issues is
the usage of smartphones respectively their sensors. This approach has the advantage that nearly
all users already have their own personal sensor. At least in the industrialized countries, most of
the people already own smartphones. Also are smartphones much closer to the person of interest.
This could allow the HVAC system to gather much more precise information about the indoor
environments and therefore to alter the conditions in a more comfortable direction.

Better regulation not only helps the people living or working inside the building but also the
environment[17]. Studies have shown that in the United States 43 percent of the energy consumed
in commercial buildings is used for heating, cooling and ventilation[31]. Mobile phones and their
sensors could be used to build better sensing infrastructures at a larger scale and help to collect
much more data and thereby save energy through better regulation. With the technical progress
of modern mobile phones and their, sensors this approach of using smartphones as sensors could
become even more important in the next few years. Connecting the perceived comfort with the
subjective information gathered by a sensor could help to improve modern comfort prediction
models and our understanding of human comfort in general.

1.2 Project Goals

With this project we try to connect purely sensor-based data with user-specific preferences. Modern
smartphones come shipped with a lot of powerful sensors that could be used to gather subjective
information on the surroundings while the user can enter his objective comfort perception through
an graphical interface. The aim of this project is to investigate if there exists a relationship and if
user and smartphone data could be used to collect information on human comfort.

The project has two major goals. One is the investigation of possibilities and challenges of
a smartphone based sensing application. Here it should be examined how good the sensor data
represents the perceived level of comfort. The second goal is an analysis of different notification
approaches and their effect on the collected data and user satisfaction. This part of the project
more aims on the user side and tries to find strategies that enhance the information exchange with
the user.

To achieve this goals, we have built an application that is capable of collecting objective data
from the sensors together with subjective information entered by the user. The subjective data is
collected through a graphical user interface on a smartphone. The aim hereby was to get as much
information as possible without interrupting the user more than necessary.

1Heating, Ventilation and Air Conditioning

1

While collecting the information from the user, the application accesses the build-in sensors of
the smartphone. It was essential to collect data from the luminosity sensor and the noise sensor.
These two are the most important values in terms of comfort that a smartphone can sense.

The user- and sensordata should be sent to a server where it gets saved into a database. To
give the user an incentive to answer the survey, the data is directly visualized after it has been
entered. In the last iteration the application is then tested in a group of twelve participants over
two days. The test should give insights on the following variables:

• Quality of answers - correlation with sensor data

• Answer rate - depending on push strategy

• Quality of answers depending on the push strategy

• How disturbing is this kind of testing - survey evaluation

Furthermore the application should be able to work together with another project done by the
Human-IST, in which an Inclusive Sensor System was built to compute human comfort based on
the Predicted Mean Vote, the level of illumination, the noise rate scale and the CO2 level. The
data captured here should be compatible to the work of the other project and should enhance the
thereby collected data with subjective user given input.

1.3 Structure

The report is structured into three parts. It starts with a chapter that explains the state of the
art of the research on topics that are important for the framework of the project. It is itself di-
vided into the sections human comfort, the experience sampling method, mobile sensing and push
notifications. The section on human comfort explains the theory behind the four most important
factors that influence comfort. The sections on experience sampling and mobile sensing describe
how user and sensor related data can be collected with mobile devices and how the techniques
evolved. The last section of the first part then ends with a theoretical foundation on the push
notification approach.

The second part gives insights on how the whole system was built and designed. It starts with
the description of the techniques used to build the application itself and then explains how the
data is collected and stored.

In the last part, it is shown how we tested the system in an experiment and how we analyzed
the collected data. We also give suggestions on how the project can be used in combination with
external sensors to provide even more powerful solutions.

2

2 State of the Art

2.1 Human Comfort

Human comfort is a term that is widely used without having an adequate definition. The environ-
ment in which a human feels comfortable highly depends on factors that are fastly fluctuating and
hard to grasp. So the easiest way to define it is probably through its opposite:

”Comfort is best defined as the absence of discomfort. People feel uncomfortable when
they are too hot or too cold, or when the air is odorous and stale. Positive comfort con-
ditions are those that do not distract by causing unpleasant sensations of temperature,
drafts, humidity, or other aspects of the environment. Ideally, in a properly conditioned
space, people should not be aware of equipment noise, heat, or air motion.” - [14]

The quote also shows another aspect of human comfort. There isn’t such thing as com-
fort in general. To be able to properly talk about comfort, the term needs to be further di-
vided. Most of the studies on this matter divide it into thermal, visual, acoustic, and hygienic2

comfort[13][20][40][47]. These different dimensions of comfort will be further discussed in the fol-
lowing chapter.

2.1.1 Thermal

As shown by Frontczak, Andersen and Wargocki [20], for most individuals all of the above men-
tioned dimensions of comfort are almost equally important. Nevertheless thermal comfort has a
slightly higher importance than the others.

The thermal comfort range of humans is much narrower then the range of outside temperatures[13].
This makes it necessary for human beings to regulate the body heat through movement or tran-
spiration if the difference between environmental temperature and optimal internal temperature
gets too big. This disparity of temperature is perceived as uncomfortable.

Value Sensation
-3 Cold
-2 Cool
-1 Slightly cool
0 Neutral
1 Slightly warm
2 Warm
3 Hot

Table 1: ASHRAE Thermal Sensation Scale

Computing the perfect thermal environment is difficult, since it depends on several internal and
external factors. Surface temperature, relative humidity, metabolic rate, air velocity and clothing
level are only a few factors that determine if someone feels hot or cold. The factors that influence
human thermal comfort can be divided into personal and environmental factors. Metabolic rate and
clothing level belong to the personal factors while air temperature, mean radiant temperature, op-
erative temperature, air speed and relative humidity are counted among the environmental factors.

The most recognized model when it comes to discussing thermal comfort is the Predicted Mean
Vote(PMV) developed by Fanger[19] in 1970. It uses Air temperature, Mean radiant temperature,
Air speed, Humidity, Metabolic rate and Clothing level to predict the mean vote on comfort or
the percentage of discontent people[19]. To collect information on the metabolic rate, Fanger [19]

2Hygienic comfort mostly investigates the impacts of different air qualities.

3

used a seven-point activity scale as seen in figure 2.

The PMV model was developed through studies in which the researchers adjusted the thermal
conditions and simultaneously asked the participants how they felt[15]. To measure the subjective
comfort, the seven-point ASHRAE thermal sensation scale as in Table 1 has been developed.

Activity Met Wm−2

Lying down 0.8 47
Seated quietly 1.0 58

Sedentary activity(office, home, laboratory, school) 1.2 70
Standing, relaxed 1.2 70

Light activity, standing(shopping, laboratory, light industrie) 1.6 93
Medium activity, standing(shop assistant, domestic work, machine work) 2.0 116

High activity(heavy machine work, garage work) 3.0 175

Table 2: Activity scale by Fanger. Source: [19]

The PMV model by Fanger has a number of disadvantages and has been adapted multiple
times in the last decades. One of the major drawbacks is the fact that it has been designed only
for the application in fully controlled and purely ventilated buildings. Also it is not based on field
studies. Fanger used climate chambers to test different climatic states on a set of test subjects[25].

2.1.2 Visual

Visual comfort plays another important role in the field of human comfort. Of the diverse fields
covered by the term visual comfort, the one that interests us the most is lighting. Most indoor
locations are illuminated with artificial light and lighting in general accounts for large percentages
of the total energy consumption of buildings[41]. Also it can be measured with existing sensors in
contrast to visual comfort given by interior design for example.

Illumination can have different effects on the comfort and well-being of a person. Experiments
on the relationship between comfort and lighting have shown that illumination has a significant
influence on our productivity and mood[35]. Knez[37] has demonstrated that proper lighting of an
office space has a positive impact on the mood, an enhances the performance and leads to better
problem solving abilities.

Figure 1: Basic metrics of light.3

4

When it comes to illumination, it is important to exactly distinct different forms of light. A
light bulb with a certain number of Watts does not implicit a proper lighting of someones desk.
Figure 1 shows the relationship between luminance, illuminance and luminous intensity. Luminous
flux is the amount of light that a single lightsource produces and is measured in Watt or Lumen.
60 Watts equates to about 850 Lumens.

The intensity of the light is specified in Candelas and represents the amount of light that travels
in a certain direction in the three-dimensional space.

Illuminace specifies the light that falls onto a surface and is measured in Lux or in Foot-candles
in English speaking countries. When it comes to measuring visual comfort, this is the most common
unit. Table 3 shows recommendations made by the Illuminating Engineering Society for different
activities. This table gives an overview about which tasks require what amount of Lux[65].

Activity Lux

Public spaces with dark surroundings 20-30-50
Simple orientation for short temporary visits 50-75-100
Working spaces where visual tasks are only occasionally performed 100-150-200
Performance of visual tasks of high contrast or large size 200-300-500
Performance of visual tasks of medium contrast or small size 500-750-1000
Performance of visual tasks of low contrast or very sm size 1000-1500-2000
Performance of visual tasks of low contrast or very sm size over a prolonged period 2000-3000-5000
Performance of very prolonged and exacting visual tasks 5000-7500-10000
Performance of very special visual tasks of extremely low contrast 10000-15000-20000

Table 3: Illuminating Engineering Society illuminance recommendations. Source: [65]

2.1.3 Acoustic

When trying to build comfortable surroundings, office planners and building designers often seem
to forget the importance of acoustic comfort while concentrating on the visual appearance[47]. The
influence of the acoustical environment on productivity and happiness seems to be often overlooked
even for modern houses and office buildings.

Paradis [47] lists the following three items as the most common origins of noise problems:

• Too much noise outside the building entering the space

• Too much noise from adjacent spaces, and

• Lack of sound control in the space itself.

Too much noise from the outside is especially problematic in combination with badly ventilated
and cooled indoor spaces. When the inhabitants have to open the windows in order to get cool
and fresh air, the sound intensity even rises. But also noise from adjacent spaces is responsible
for people to feel uncomfortable. This could happen when the noise isolation between rooms is
bad. Another important reason is the lack of control. Lacking control is one of the most important
reasons for feeling uncomfortable in general. Having control over the own environment can be seen
as a factor as important as the physical environment itself[42].

But the right noise level also depends on the surroundings and should be adapted on the cur-
rent occupancy. The HVAC system’s noise level should be adapted to the surroundings. If the
sound level is too low, unwanted conversations and noises from the outside can influence a persons

3Source: http://sustainabilityworkshop.autodesk.com/buildings/measuring-light-levels

5

http://sustainabilityworkshop.autodesk.com/buildings/measuring-light-levels

productivity[47].

When speaking of noise we have to distinguish between the Sound Pressure Level(SPL), that
can be measured by technical devices and the experienced loudness by human beings. The SPL
can be measured in Decibel(dB) while the psychoacoustic loudness is measured in Phon. Figure
2 shows the relationship between sound pressure level, frequency and the perceived sound level in
Phon.

Figure 2: Relationship between SPL, Frequency and Phon. Source: [11].

Figure 2 shows that a noise with the same sound pressure level but with a different frequency
can be felt to have the same loudness. A surrounding with noises of a very low or high frequency
can be felt as really silent even though really high decibel values are measured[48]. But sound level
and sound level pressure are not the only factors that influence the perceived loudness of a noise
source. Also the difference between the current and the prior sound volume have an influence.
Even quite tones can be felt as really loud when coming from an absolute silent environment.
Certain noises like hammering or squeaking are perceived as louder than they actually are.

As a rule of thumb, it can be said that an increase or decrease of ten decibel results in a
perceived sound level that is double respectively half as high as before. But changes in the SPL
at a really high decibel value are perceived as much higher than in low ranges. Meaning that an
one decibel increase from 100 to 101 dB is felt as a much bigger increase than from ten decibel to
eleven.

2.1.4 Hygienic

Many studies have shown the importance of clean, temperate and healthy air[56]. Even though
human beings are not capable of sensing the air quality directly, it has a crucial effect on our level
of comfort. Working in a badly ventilated room for a longer period can lead to headaches and
sickness[61].

There exists no sensor to sense air quality or CO2 in modern phones nor is it planned to be
implemented by one of the major smartphone manufacturers. We do not sense hygienic factors
in our system. But due their important influence on comfort and they should be listed anyways.
Collecting of data on this matter could be possible through external sensors like shown in chapter
10.

6

2.2 Experience Sampling Methods

2.2.1 Traditional

Experience sampling method(ESM) is a research methodology that is used to study human behavior[49].
With it’s origins coming from Psychology, it is nowadays widely used among almost every field of
research. Thanks to modern technology, ESM-based studies are nowadays easier to conduct than
ever[55]. But even without the support of advanced hard- and software, ESM has interested vari-
ous researchers for decades although it has been costly, time-consuming and difficult to conduct[55].

Figure 3: The diagram shows the traditional ESM notification approach

Figure 3 displays how the notification process works in the traditional way. The researcher
decides when a signal is sent. He then triggers the signal which is sent to the participant and
signaled with a pager, mobile phone or similar. The participant then manually fills out a form[55].
This is uncomfortable for the researcher who has to set the timer, send the signal and evaluate the
form. And also for the participant who has to keep both - the timer and the form within reach.

ESM uses a technique of interrupting the participant in his daily routine and asking predefined
questions. The participant answers right away or at least as fast as possible. In the traditional
ESM approach, the notification of the participant happens via a pager, alarm clock or similar.
When notified, the user has to fill out a series of predefined questions or write down his feelings or
opinion on something. In recent years, even SMS were used as triggers[27].

2.2.2 mESM

The evolution of mobile-phones and the arise of smartphones made the execution of experience
sampling for researchers and participants much easier[55]. It was characteristic for early ESM
studies that they needed special devices[49]. Even the introduction to PDA’s made it necessary
for most of the participants to carry an additional device with them.

This situation rapidly changed with the introduction of the iPhone in 2007 and the rapid distri-
bution of smartphones since then and lead to huge changes in ESM. Study design, data collection,
notification and even the recruitment of participants changed in a radical way and can be summa-
rized under the term of mobile Experience Sampling Method(mESM)[49].

Mobile Experience Sampling allows the researcher to conduct the survey directly on the par-
ticipant’s smartphone. There is no more need for a signaling device or a paper-based form. This
has numerous advantages. Smartphones are already part of the normal life for most of the people.
So the burden of carrying a special device and using it in public becomes redundant[49].

The mESM process is shown in Figure 4. The diagram shows that the smartphone is now in
the center of the whole process. The researcher builds a mobile application on the computer and
distributes it to the users smartphone. This can happen via email, and application stores or adhoc.
The researcher can then send out the notifications via a computer at a given time or even send
them out depending on signals sensed by the sensors of the smartphone4. The participant then

4The so-called event-contingent sampling isn’t part of this paper

7

Figure 4: The diagram shows a general mESM approach

answers to the signals directly on his smartphone. This approach is known as signal-contingent
sampling[53]. The various built-in sensors in modern smartphones make it possible to perceive
information from the context of the user[49]. This leads to a whole new dimension of data.

The information collected by the smartphone is then sent, in intervals or at once, to a centralized
database which can directly be accessed by the researcher. The process of transliterating is already
done by the user.

2.2.3 Strengths and Weaknesses

Before conduction an ESM based studies, it is important to analyze its strengths and weaknesses.
The ESM technique offers some unique methodological advantages over other research methods
like questionnaires and interviews. In comparison to these retrospectively reported approaches,
ESM allows to study behavior right at the spot[53]. The person of interest doesn’t need to be in a
lab-like environment[49]. And compared to observation based studies, the researcher doesn’t need
to follow the person of interest. This is especially useful in longitudinal studies where participants
are surveyed over more than 24 hours.

Thanks to this comparatively direct method of observation, it is possible to gain deep insights
of the participant and his surroundings. Technical advances and especially the wide distribution
of smartphones made it possible that today, ESM studies can be conducted with comparatively
little effort[55].

Besides all its benefits, when it comes to experience sampling, it is important to also consider
the possible downsides. ESM requires the participants to actively take part in the surveying pro-
cess. The longer the study goes, the harder it gets for the participants to follow the instructions.
One of the pillars of this survey method is interrupting the user. And being interrupted multiple
times a day over a longer period is something that even the most motivated people cannot stand
very long. This could lead to an over- or under-representation of certain types of individuals[53].

Another possible issue is the fatigue-effect. Even if it takes only a minute to answer the survey,
the total amount of time spent with answering can quickly grow to a decent number[55]. This
could lead to a worsening of the quality of answers.

Finally, repeated measurement can cause reactivity effects[53]. This means that the fact that
you know you are surveyed, and in case of ESM even are constantly reminded of this, your per-
ception changes. In the framework of our experiment this could mean that participants start to
pay more attention to their surroundings and personal comfort. In case of the push notifications,
it is possible that they know when they usually get push notifications and start anticipating the
interruption.

8

The strengths and weaknesses shown in this chapter lead us to the following conclusions:

• Number of participants should be large enough

• Provide an incentive for users to take part

• Make the survey as fast and easy to answer as possible

• Unobtrusive way of interrupting the user

• Different push strategies

This helps us to conduct the survey and evaluate the project. The results can be found in
section 7.

9

2.3 Mobile Sensing

While Experience Sampling is more interested in the role of the user in the data mining process,
Mobile Sensing mainly deals with the technological aspects. Thanks to the huge progress in mobile
computing, it is easier than ever to collect large amounts of data with mobile sensing techniques.
This progress has an impact on various fields of research and economy.

Mobile phone sensing is an emerging area of interest for researchers as smart phones
are becoming the core communication device in peoples everyday lives. Sensor enabled
mobile phones or smart phones are hovering to be at the center of a next revolution
in social networks, green applications, global environmental monitoring, personal and
community healthcare, sensor augmented gaming, virtual reality and smart transporta-
tion systems. - [36]

Modern phones are shipped with a growing number of built-in sensors. Besides camera and
microphone, sensors to capture movement, the global position and even the air pressure are widely
spread among smartphones even in the low-cost segment. In recent years, most of the notable
manufacturers of these phones ship them with additional software. This software allows the user
to keep track of their position and even captures health related data and presents it in an under-
standable way[8] [23].

Collecting data just to track personal progress is known under the term ofpersonal sensing [39].
It differs from the so called community sensing approach where a large group of participants is
needed to collect meaningful information[39].

2.3.1 Special Devices

Prior to the introduction of the iPhone and smartphones in general, mobile sensing was done with
special devices that had to be carried around by the participants. Even studies conducted in 2008,
like the Mobile Sensing Platform project[18], proposed the development of external devices. These
devices were shipped with sensors that every state-of-the-art smartphone nowadays is equipped
with by default.

Lately, special devices have mainly been used to enhance the performance of the smartphone
in terms of its sensing capabilities or to provide supplementary data through additional sensors.
This allows to enhance the capabilities of the smartphone. Especially health related data often
needs additional hardware to make meaningful predictions.

2.3.2 Smartphones

Sensor iPhone 6S Galaxy S6
Camera(multiple) 3 3

Microphone(multiple) 3 3
Three-axis gyro 3 3
Accelerometer 3 3

GPS 3 3
Proximity sensor 3 3

Ambient light sensor 3 3
Barometer 3 3

Finger scanner 3 3
Magnometer 3 7
Heart Rate 7 3
Hall sensor 7 3

Table 4: Comparison of different smartphone sensors. Source: [7], [54]

10

When talking about mobile sensing, it i important to specify about what context we speak.
Since the mobile sensing we are interested in mostly takes place on smartphones, it is important
how the term ”smartphone” is exactly defined. The Oxford Dictionary defines it as:

”A mobile phone that performs many of the functions of a computer, typically having
a touchscreen interface, Internet access, and an operating system capable of running
downloaded apps.” - [16]

So modern smartphones are much more than enhanced mobile phones. They have a lot of
similarities to personal computers, but fit into a person’s pocket. This allows them to be carried
with to almost every location. But that’s not all. Besides their large touchscreens and fast access
to mobile internet, most of the modern smartphones have several built-in sensors. These sensors
allow the phone to be aware of its surroundings and computer scientists to access huge amounts
of data.

Table 4 shows a compilation of the built-in sensors for the Apple iPhone 6S and the Samsung
Galaxy S6. Both of them are the current ”flagship-models” of their manufacturers who are respec-
tively the most successful vendors of iOS and Android smartphones worldwide[29]. But not all of
these sensors can be accessed through public APIs. During our project we encountered that the
ambient light sensor of the Apple iPhone is not available in a public API. But at least for Apple
there exists no official documentation that states if a sensor is accessible through an API or not.

11

2.4 Push Notifications

In the following section, we are going to take a look at the Apple Push Notification Service(APNs).
Google offers a similar service for Android devices called Google Cloud Messaging[22] which we
won’t discuss in detail, since the general approach is the same for both. APNs allows developers
to send custom message to a certain phones. These messages are known under the term push
notification and are broadly used in all different kinds of applications.

2.4.1 Local and Remote Notifications

Notifications on a smartphone can be divided into local and remote. Even though there are a
number of similarities, the process of triggering the notification is fundamentally different. While
local notifications are scheduled and sent by the app itself, remote notification are sent by the
APNs and pushed to the device from the outside[3]. The term push notifications usually refers to
remote notifications. Both kinds of notifications are used to notify the user if a certain event has
occurred. This is necessary if the users has the phone locked or if another application is in the
foreground.

Figure 5: iOS menu with the different alert styles.

Figure 5 shows the different visual presentations of push notifications in iOS 7 and later. The
user can chose if and how he is going to be notified by each application. While the Banners
notification style is only shown for a few seconds and then disappears, the Alerts notification type
offers asks the user to make a choice - usually between opening the application and dismissing the
notification. To open a Banner, the user has to clock the notification before it disappears.

2.4.2 Push Notification Strategies

Research on push notifications is mostly done by private enterprises or blogs. We have not found
any research paper or scientific publication on the matter of push notification strategies. But the
recommendations found online mostly suggest that the notification strategy, at least for a commer-
cial application, highly depends on the branch. News or financial related applications can notify
the user a lot more often than applications from other sectors.

Most articles list four tips for using push notifications:

• Consider the user preferences and allow them to opt-out

• Find the right frequency and time

• Use Geodetection if possible

• Segment the audience

12

The first recommendation should prevent the user from deleting the application from his phone
in order to get rid of the notifications. For our application we decided to not include a opt-out
button. We feared that too much participants would use this option and lead to a much smaller
dataset when the application is only used for two days. The second tip advises to find out, not
only what a suitable amount of notifications is, but also when to send them. For some applications
it is more suitable to send notification on a Monday morning instead of a Sunday afternoon[51].

Other source suggest to notify the user depending on its location. Thanks to modern indoor-
location technologies it is possible to determine the user’s position even inside of buildings. The
last suggestion implies to use background information. This could mean to use data from a CRM
or to detect and store how a single user reacts on notifications and use this information to create
a custom strategy for each user.

13

3 Concept Overview

3.1 Rationale

The previous chapters have shown the importance of human comfort and what kind of sensing
techniques are nowadays used to capture comfort related information. The measurement of human
comfort is mainly based on two pillars. On the one hand, there is the gathering of objective data on
environmental factors like air temperature, relative humidity, illuminance and noise. On the other
hand, there are personal factors like light sensitivity, metabolic rate and clothing level but also
body shape and personal preferences. While environmental factors always should be measured by
sensors or technical devices, the personal factors are almost impossible to measure without human
interaction.

Purely sensor based data can be used to compute predictive models on human comfort like the
PMV or the PPD models by Fanger[19]. But it is important to realize that even though these
models allow to predict a comfort zone for an average person, the predicted comfort zone can vastly
differ from the comfort that a person experiences.

While research has investigated the single effect of thermal, visual and acoustic factors for the
last decades, studies that tried to measure the combined effects haven’t been made until recently.
Studies that combine these factors have shown that they seem to influence each other[59].

Large projects like the European HOPE project, which was conducted between 2010 and 2013,
have investigated the effects of various factors on perceived human comfort[12]. This project, which
collected questionnaires from 5732 participants in 59 office buildings all over Europe, showed that
perceived comfort is more than the addition of single comfort factors and deserves more and more
selective research[12]. It is also suggested to add physiological, psychological and social aspects to
the information collection process on human comfort[52].

3.2 Proof of Concept

The aim of this project evaluates if it is possible to collect human comfort related subjective and
objective data with a standard smartphone. The project should serve as a proof of concept on
how to interact with the user. This includes the design of a suitable interface as well as the right
amount of interaction with the possible users.

To capture environmental data, the application should be able to collect reliable and com-
parable data from the outside. Therefore, mobile sensing techniques come to play. As shown
in subsection 2.3, modern smartphones are capable of sensing various variables from the outside
world. Sensors like an accelerometer, multiple microphones and a camera are standard equipment
in phones of almost every manufacturer.

Besides the mobile sensing approach, the application should cover aspects of mobile Experience
Sampling and collect subjective data at the same time. The user should be able to communicate
personal impressions on certain variable important to human comfort.

The utilization of smartphones comes in handy as they are widely spread among most of the
developed countries and allow to collect data with almost no restriction to physical space.

The project should also give insights on how to interact with the user. Different notification
strategies will be tested on a set of users to determine the best frequency. Furthermore it will be
analyzed how exact the data of the sensors represent the users impressions.

14

3.3 Parameters to Capture

The parameters we try to capture are shown in table 5. We focused on the variables with the
biggest influence on human comfort. Since not all of these factors can be sensed with the built-in
sensors, we could only gather objective data on the ones that have a corresponding sensor.

Objective Data Subjective Data
(Mobile Sensing) (Mobile Experience Sampling)

Sound volume Acoustic comfort
Illuminance Visual comfort

Thermal comfort
Current activity

Table 5: Parameters captured by the application.

This parameters are chosen because of their importance for human comfort together with the
technical limitations of the smartphone as a sensor. Visual and acoustic signals can be collected
directly with the built in sensors of a smartphone and can then be compared to the subjective
impression of the user. Besides these variables, thermal comfort and the current metabolic rate
are two of the most important factors that determine human comfort[20]. But depending on the
research background, other variables can be tracked.

The parameters captured can be easily extended with the utilization of external sensors as
shown in section 4.1. Without external sensors the smartphones capabilities are limited. To col-
lect objective information it needs to be exposed to the same conditions that the user experiences.
When placed inside the pocket or covered by something it is not possible to make assumptions on
the surroundings.

This is especially problematic for longitudinal studies since accessing the phone’s sensors over
a longer period can quickly drain it’s battery and make in therefore useless.

15

4 Project Overview

This chapter serves as an overview of the whole application and the corresponding back-end. The
first section shows the architecture of the application and back-end and explains the notification
sending routine. It shows the process from sending out a notification until the data is saved into
the corresponding database and how it can be interpreted.

The second sections shows what design choices were made in case of the application itself. It
also focuses on the collection of the data on the device and the user interaction that follows after
the push notification is received.

4.1 System Architecture

Figure 6 shows the architecture of the project from triggering a notification until the storing of the
received data into the database. To enhance the comprehensibility, some of the processes like the
registration for the APNs are simplified.

Figure 6: The overall system architecture

In a first step, the server automatically executes a script at a given time. The scheduling is
done by a CRON job to allow the exact timing of the notification for every single device. The
script then sends a message to the PushBots API. PushBots is a service that offers access to the
Apple Push Notification Service directly from a webbrowser or via an API.

Once the message reaches the PushBots servers, it gets transmitted to APNs. The process is
shown in more detail in chapter 5. APNs then sends a notification to the selected devices, where
the user gets notified and asked to fill out a form.

The form and the data collected by the sensors then gets transmitted to a server via the MQTT
protocol. The server is a SWITCH Machine running Ubuntu Linux and a Mosquitto[44] message
broker. Mosquitto is built upon the publish/subscribe model which is further discussed in section

16

6.2 and listens to the messages sent by each phone.

In a fifth step, another script listens to the Mosquitto message broker and subscribes to the
messages published by the smartphones. The messages then get saved into a Mysql database.

The system is highly extensible. Other services can easily subscribe to the message broker and
collect the data collected by the phones. Or the service presented in this project could gather
additional data through external sensors.

4.2 Design Choices

The design process of the application and the corresponding back-end can be divided into three
parts. The first one covers the sending and receiving of a signal and the selection of a specific user.
The second one treats the collection of data from the user and his sensors. And finally the storage
of the data and how it can be connected to other data sources and consumers. The whole process
is shown in the diagram in figure 7.

Figure 7: Process overview

The most important goal of the design process was to build an application that has a high us-
ability, is easy to understand and should cause the least possible disturbance of the user. Besides
that, the researcher should have a high flexibility on selecting the user and timing the experience
sampling process.

4.2.1 Interrupting the User

The user should be interrupted certain times a day and asked to fill out the survey. This part
resembles the signal in the traditional experience sampling process shown in figure 3.

Figure 8: Design of the push mechanism

Since the user already carries a smartphone and takes the survey on the smartphone, it is
obvious to use the smartphone as a signal device. When an application on a modern smartphone
is asking for attention, it is usual to send a push notification to the user as discussed in section

17

6.4.1. This process is shown in figure 8.

When a notification arrives at the user and the phone is locked, the notification stays on the
lock-screen until the user unlocks the device. He can directly access the device by selecting the
notification or dismiss it by unlocking the device directly. If multiple notifications have arrived
while the phone is locked, the user just has to answer once.

To make sure that every user answers the same way, the app has a built-in instructions page
as seen in section 7.2.

4.2.2 Data Collection

Once the user got a notification and opens the application, a single form is shown. The user can
select from multiple buttons what his or her perception of comfort is. The forms are assembled on
a single page of the application to let the user select his current state in the fastest possible way.
The interface is shown in section 4.3.

As soon as the user made a selection, the submit button collects the information of the form
and saves it on the device. During the selection of the states, the application has access to the
built-in sensors. This is shown in figure 9.

Figure 9: Collection of user and sensor data in the application

After selecting the states, a second screen is shown. This screen shows a graphical represen-
tation with the last recordings of the user and sensor data. This screen has two purposes - first
of all it is impossible to close an application from within an application in iOS. And since it is
impossible, the visualization of his data can serve as an incentive for the user to continue filling
out the questionnaire and submitting data to the researcher.

The data that is used for the visualization is saved locally in a SQL database on the phone.
This should minimize the amount of mobile data which the transmission of information from the
app to the server needs.

4.2.3 Data Storage and Utilization

Once the user has submitted the form and the sensors have collected the data on the environment,
the information has to be sent to a central server.

Since the data collection takes place on a mobile device, there is a good chance that the device
is connected to the internet via a cellular network. So, to provide a good experience and minimize
the costs, it is necessary to keep the amount of data sent and received as small as possible.

Besides the low data traffic, the system has to be seamlessly extensible. This should provide
the whole system to access to external sensors without major changes in the systems architecture.
The application, together with the data entered by the users, should also be able to serve as a
sensor itself in the context of a bigger system which gathers information on comfort.

18

Figure 10: Transmission of the data

To satisfy this needs, we chose to build the data transmission upon the publish-subscribe pat-
tern. This patterns is widely used for network communication in the context of the so called
internet of things[28].

We chose the Message Queue Telemetry Transport (MQTT) protocol to fulfill our needs. The
protocol is further explained in section 6.2. When implementing the transmission of the data to
the server, we tried to adapt the message oriented design pattern of modern machine to machine
communication. This means that a client publishes a single value on a certain topic.

Even though this is a great way of publishing information for the internet of things, it makes
the analysis of the data unnecessary complicated. The data produced by the application gets
saved into a database in a format shown in figure 22. When we tried to analyze this data later and
compare the values entered by the user with the corresponding sensor values, we quickly realized
that it is hard to combine the seven database entries into a single one. As you can see in figure
22, submitting the form leads to a unique combination of appID and time-stamp. But since the
transmission of the data takes time, it is possible that a single submission has two time-stamps or
that they get mixed up when two users submit the form at the same time. We also encountered
that a single submission is saved multiple times into the database.

Figure 11: Interface of the prototype

This fact makes the analysis of the data time-consuming. To prevent this, we propose to adapt
the messages on the purpose of the experiment. If it is only used for data analysis, a single entry
with multiple values would be easier to parse. This approach could also be used in combination
with the message oriented approach if needed. Further information on this matter can be found
in section 6.2.

19

4.3 Evolution of the Interface

The interface is designed to allow the user the fastest possible entry of his data. We have built
two fully functional prototypes and compared the ease of use of both. The interface of the first
prototype is seen in figure 11. It consists of three different views, each collects the users perception
of either temperature, lighting or noise. The views vary between forms with multiple buttons and
ones with a slider plus text input field.

We found out that this approach has a major disadvantage. The user is asked various times
during a day on his or her current perception of comfort. But even though it changes sometimes,
chances are high that during a normal workday only some of the variables change while others
stay the same. So it is useful to only alter the values that have changed. This is not handy with
a multiple-view-form. Furthermore, we wanted to reduce the cognitive load that is needed to fill
out the form. Both of this lead to the single-view interface seen in figure 12.

Figure 12: Input form on a single page

The form has four dimensions. Noise, Lighting, Temperature and Activities. The temperature
dimension is based on the ASHRAE seven-point thermal sensation scale. The scale can be found
in table 1. Since there does not exist a standard scale for measuring light and noise, we chose
a five point liker-like scale to get information on noise and lighting. The activities scale is built
upon usual office activities. There exist scales for different activity levels like the one proposed by
Fanger[19], which is used to estimate different metabolic rates. The activity scale by Fanger can
be seen in table 2. But since the Fanger scale doesn’t distinguish between different kinds of indoor
activities well enough, we decided to implement a customized activity scale with five different val-
ues to choose from. We chose values that would mean something to the user and cover the most
important activities during a workday.

By pressing the ”i” button on the lower right side of the interface, the user can get general
information about the application and on how to use it. This should ensure that every participant
has the same information on how to conduct the survey and that we can hereby reduce a possible
bias of information.

20

5 Implementation: Mobile Device

5.1 Technologies

The decision to build a smartphone application usually directly leads to the first question - which
mobile operating system/s (mobile OS) should be targeted. Android, iOS and Windows Phone
are only a few of the candidates a developer has to choose from. Each of these operating sys-
tems is based on another programming language or at least offers different API’s what leads to
a large amount of additional work to make an application capable of running on multiple mobile OS.

Some developers try to avoid this by building their applications directly on the web. But this
webapplications have a number of disadvantages. Even though HTML 5 together with local stor-
age and browser application caching made it possible for webapplications to run offline, there are
still a number of downsides on this approach. Purely web-based applications don’t have merely
the access to underlying APIs that native code offers[64]. Other downsides on this approach are
the lack of native feeling when interacting with application and the absence of push notifications5.

But in recent years projects like Apache Cordova[1] made it possible to build a single application
that is capable of running on different devices. This so-called hybrid applications bridge the gap
between native and web-applications. Built of web-technologies like HTML, CSS and JavaScript,
these applications run native on the mobile device and allow access to features that until then have
been exclusive for native applications.

Since one of the core features of our application is the access on the smartphone’s sensors, which
requires access to native APIs, only native and hybrid technologies could serve our purposes. This
section will therefore highlight the differences between native and hybrid applications and illustrate
the decision we made. It will further give insights on how hybrid applications work in detail and
what is important to remember in their development process.

5.1.1 Native

Native applications have several advantages over hybrid- and webapplications. The most important
one is the better performance. Native applications are compiled directly into machine code and
are thereby faster than hybrid applications which run in a webview. Especially for graphic-intense
applications, native code is surely the better choice.

Pros Cons
Performance Cost/Time

Platform specific design Maintainability
Native feeling Developer experience

App Store Regulations Code reusability
No limitations
Documentation

Debugging

Table 6: Pros and Cons of native applications.

A listing of the advantages and disadvantages can be found in table 6. The main arguments for
native applications besides the better performance are the native feeling and the platform specific
design. The design of menus can mostly be adopted directly from the operation system.

Besides that, native developed applications are more certain to be allowed in the corresponding
application stores. Apple for example states that applications that lack the iOS specific look and

5Even though Google offers solutions to use push notifications in Chrome, there is to this day no solution for
iOS.

21

feel can be rejected from the App Store[4] [60].

Another benefit is the better documentation, at least for the more popular operating systems
like iOS, Android and Windows Mobile. Documentation and support is really advanced compared
to hybrid application frameworks like Cordova and others.

Debugging is also a big advantage over hybrid apps. Xcode (Apple’s IDE for developing iOS
applications) for example has already quite advanced debuggers built in, which help the developer
to track down bugs. Debugging hybrid applications on the other hand has limitations and requires
additional development tools.

The most important factor to choose hybrid over native applications is the cost/time factor. To
reach a majority of users, multiple versions in different programming languages have to be built.
This is time and money consuming and leads to large code maintaining efforts. Developers need to
be experienced in multiple programming languages and have knowledge about different tools and
APIs.

5.1.2 Hybrid

The term hybrid application describes an approach to build ”[...]cross-platform mobile applica-
tions and [...] implement it as a combination of native and web application technologies.” [64].
With the development of a growing number of different mobile operating systems and their dif-
ferent programming languages, came the wish for an approach to develop software for multiple of
those OS with a single framework. Hybrid applications serve as a possible solution to this problem.

Hybrid application frameworks can be further divided into ones that translate their code into
the target’s native language or those who run them within a native application shell. An example
for a translating framework is Xamarin6, that translates source code written in C# into native
code for iOS, Android and Windows Mobile or Titanium7.

Examples for frameworks that run in a native application shell are Adobe PhoneGap8/Apache
Cordova9, Sencha Touch10 and Ionic11 12.

For this project we chose to use Apache Cordova. The main reasons were the comparatively
good documentation and the existing experiences with web technologies of the author. Other
important factors are the fact that the framework is open-source and its maturity(Version 5.4.0 to
this day).

6https://xamarin.com/
7http://www.appcelerator.com/
8http://phonegap.com/
9https://cordova.apache.org/

10https://www.sencha.com/
11http://ionicframework.com/
12Ionic started as a front-end framework but nowadays offers additional functionality.

22

https://xamarin.com/
http://www.appcelerator.com/
http://phonegap.com/
https://cordova.apache.org/
https://www.sencha.com/
http://ionicframework.com/

5.2 Apache Cordova

The development of Apache Cordova started in August 2008 under the name PhoneGap. It has
been developed by the company Nitobi which has been purchased by Adobe in 2011[45]. At the
same time, Nitobi announced that PhoneGap applied to become an open-source Apache project13

and would be called Apache Cordova. The version distributed by Adobe is called Adobe Phone-
Gap or just PhoneGap and is based on Apache Cordova but adds additional functionality like the
distribution platform PhoneGap Build14.

Cordova/PhoneGap uses an approach of running in a native application shell. As seen in figure
13. When a Cordova application is invoked, it opens a native web view with a specific starting
page, written with the earlier mentioned web technologies (HTML, CSS & JavaScript)[64].

With the web view in control, the user can interact with the underlying HTML and JavaScript
to navigate to other pages or load additional packages. A native web view takes care of the
rendering of web content - usually websites written in HTML[64]. Which web view is used depends
on the operating system. For Android it is android.webkit.WebView15, for iOS it is UIWebView16

(using System/Library/Frameworks/UIKit.framework)[64].

Figure 13: Apache Cordova Application Packaging Process. Source:[63]

At this point the application wouldn’t offer any additional functionality compared to a normal
web-application. What makes Cordova so powerful is its ability to connect to the native APIs of
the different mobile operating systems. A single JavaScript interface comes along with native code
libraries for a number of supported platforms[50]. Figure 14 gives an illustration of this process.

To this day, the Apache Foundation lists 796 Cordova specific plugins17. These plugins allow the
application to access the camera and microphone or more advanced features like barcode-scanners
and tracking of device motion. It is also possible to build and publish custom plugins as seen in
section 5.2.1. In fact, most of the plugins for Cordova are open-source and therefore accessible by
anybody.

13http://apache.org/
14https://build.phonegap.com/
15http://developer.android.com/reference/android/webkit/WebView.html
16https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
17http://cordova.apache.org/plugins/

23

http://apache.org/
https://build.phonegap.com/
http://developer.android.com/reference/android/webkit/WebView.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
http://cordova.apache.org/plugins/

But is has to be said that during our project we found out that not all of this plugins that
well-maintained and do not function the way it is expected. Some of the code repositories on
Github haven’t been updated for months and are not compatible to current mobile OS or Apache
Cordova versions. A negative example is the push-plugin with 74 open issues on Github18.

Figure 14: The Cordova JavaScript interface. Source:[63]

5.2.1 Custom plugins

As seen in the previous chapters, a Cordova plugin adds additional functionality to an application
through a bridge between the applications JavaScript and native platform specific code. These
plugins have to be built in a certain way and fulfill specifications given by the framework in order
to work well. A typical structure for a plugin with support for iOS and Android looks like this:

- plugin.xml

- README.md

- src/

- iOS/

- <Objective-C/Swift source code>

- Android/

- <Java source code>

- www/

- <JavaScript interface>

The plugin.xml contains information about the application itself like its name and description, un-
der which license it has been published and information on supported platforms and configuration
files.

The JavaScript part of the plugin serves as the front-facing interface[50]. This means that a
single call can be translated into various native methods depending on the underlying operating
system. Its syntax is shown in Listing 1. The first two parameters deal as success and error callback
functions. Service and action define the native class and their according method. The array at the
end of the function takes optional arguments.

18https://github.com/phonegap/phonegap-plugin-push/issues

24

https://github.com/phonegap/phonegap-plugin-push/issues

Listing 1: The front-facing JavaScript interface

1 cordova.exec(function(winParam) {},

2 function(error) {},

3 "service",

4 "action",

5 ["firstArgument", "secondArgument", 42, false]);

The native counterpart of the JavaScript interface is shown in listing 2. Once the JavaScript
fires off the plugin request on the native side, the appropriate method defined in the JavaScript
interface is fired. The native code gets executed and saves the resulting object into an object of
the type CDVPluginResult as seen in listing 2.

A result of CDVCommandStatus OK will cause the JavaScripts success callback function to be
executed or the error callback in case of an CDVCommandStatus ERROR object.

Listing 2: Native connection to the JavaScript interface

1

2 - (void)myMethod :(CDVInvokedUrlCommand*)command

3 {

4 CDVPluginResult* pluginResult = nil;

5 NSString* myarg = [command.arguments objectAtIndex :0];

6

7 if (myarg != nil) {

8 pluginResult = [CDVPluginResult resultWithStatus:CDVCommandStatus_

OK];

9 } else {

10 pluginResult = [CDVPluginResult resultWithStatus:CDVCommandStatus_

ERROR messageAsString:@"Arg was null"];

11 }

12 [self.commandDelegate sendPluginResult:pluginResult callbackId:command.

callbackId];

13 }

The native code in listing 2 for example saves a string with the message ”Arg was null” as seen
on line ten into the CDVPluginResult object in case the variable ”pluginResult” on line four is
”nil”. Otherwise an object with status okay is sent.

25

5.3 Cordova Application

Besides the reasons to build the application with Apach Cordova, mentioned in section 5.1.2, the
extensibility was an important factor. Applications built with Cordova can be easily extended in
their functionality trough additional plugins. To do this, the code base for interface and visualiza-
tion do not have to be changed. That approach allows a comparatively fast adaption to extended
project objectives.

Another reason to build the application with Cordova was that it should be compatible with
multiple smartphone operating systems. This goal had to be changed during the project due to
the lack of time to build a native implementation for Android and Windows Mobile. During the
process, we decided to concentrate on iOS. We ruled against Android because iOS is more popular
among the members of the Human-IST who served as beta-testers of our application and more
popular in Switzerland in general[9].

The following chapter gives insights on how the applications works. In a first section the
JavaScript implementation of the app, the part that also contains the logic, is explained in detail.
Section 5.4 then gives insights on the native plugin which was built to access the native sensors of
the phone. The last sections deal with the data visualization inside the application and how the
data is transmitted to the servers. The last chapter explains distinctive features of the debugging
process for hybrid applications.

5.3.1 JavaScript Implementation

The whole applications consists of a configuration file in XML, HTML, CSS and JavaScript files
and the according Objective-C classes in which the plugin is written. These files are then compiled
to a native iPhone application which happens through services like PhoneGap Build or through
the Command Line Interface(CLI) of Apach Cordova. The source three of our application is shown
in figure 15.

- config.xml

- www/

- index.html

- visualization.html

- css/

- index.css

- js/

- index.js

- dataviz.js

- jquery.js

- chart.js

- [...]

- Plugins/

- plugin.h

- plugin.m

Figure 15: Structure of the Cordova application.

The user accesses the application through a HTML form with the name index.html. The nav-

26

igation inside Cordova is similar to the navigation on a Website. So if the view redirects the user,
a different .html page is rendered.

The backbone of every Cordova application is its main JavaScript file. This files gets loaded
once the native code-base of Cordova is operational. It needs therefore to be packed inside a de-
viceready eventlistener that waits until the application is fully loaded. Besides the main index.js
JavaScript file, the application consists of additional libraries like jQuery and Chart.js.

Figure 16 shows the flowchart that represents the main form of the application and the corre-
sponding background processes.

Figure 16: Flowchart of the first page of the application.

If the application starts for the first time, a few additional processes are necessary to provide
the application with an unique Application Identifier(AppID) and a Tagname. The AppID is used
to distinguish the data that the different participants send to the server and gets generated by a
random ID generator.

This approach was chosen to make sure that even with a large number of participants, we
could still distinguish the data received by each of them. The generator is shown in appendix A.
The numbers and letters used in the IDlist together with an IDlength of eight characters lead to
(27+27+10)8 = 281474976710656 different possible IDs. Even though the Math.random methods’

27

don’t generate perfectly random numbers, it should make sure that with a sufficient probability,
no ID is allocated twice19.

The approach with the AppID generator is designed to distinguish different users without their
intervention. For the beta version, we chose to let each participant enter their Name through a
Popup at the first application launch. This allowed us to send push notifications to each partici-
pant independently. This approach was necessary since most of the participants that took part in
the first experiment were located in the same office. Notifying half of the them at once would lead
to a huge distraction. More information to this matter can be found in section 7.

In an experiment with more participants, instead of using a Tag entered by the user itself, it
would be possible to use a random generator once again. For an experiment with two different
groups, it therefore would be possible to tag them randomly with ones and zeros and then send
the them different push notifications.

After this step, the process continues as if the application had been started before. The Token
and the Tagname of the device are sent to the PushBots server. This happens even if the appli-
cation had been launched before due to the PushBots plugin architecture. It further allows the
future integration of a do-not-disturb button or similar.

Once the interface is fully loaded, the user can fill out the form shown in figure 12. We imple-
mented an event listener in JavaScript, that added the class active as soon as a button is clicked.
This is shown for the button with the Value=”Noisy” in listing 3.

As soon as the user presses the submit button, two things happen at once. The JavaScript part
of the applications parses the form and save the value of the field val into a variable. Since we
have four different values in one form, the JavaScript also stores the id of according parent class
which in this case is the id=”noise”. Simultaneously the JavaScript interface makes a call to the
native plugin shown in section 5.4.

The results are then saved into localStorage variables. This is necessary to make them avail-
able the next time the application is launched. Since the application lives inside a Web View,
all variables get reset after the application is closed. The localStorage variables are then used to
be sent to the server and to restore the form inputs as soon as the application gets opened up again.

The information captured is also saved into a local SQL database. This is necessary since the
visualization on the second page of the application needs to get information from more than one
point in time. The data-visualization on the smartphone is explained in more detail in section
5.3.2.

Listing 3: Extract of index.html

1 <div id="page1">

2 <div id="formScales">

3 <div class="formContent" id="noise">

4 <p>Noise </p>

5 <input type="button" id="nbtn1" value="Noisy" val="4" class="active"/

>

6 <input type="button" id="nbtn2" value="Medium noisy" val="3"/>

7 [...]

8 </div>

9 </div>

The val values of each input button get readout by a JavaScript function and saved into an
array as soon as the user clicks the Submit button on the application.

19https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

28

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

5.3.2 Data Visualization

The visualization directly on the phone is an important part of the application. It should give
the user an incentive to answer to the push notifications and let him see his own results in an
understandable form.

Figure 17: Data-visualization on the iPhone.

The visualization of the data of one specific user is shown in Figure 17. The view consists of
three different diagrams. We decided to display the data of both sensors and the corresponding
data entered by the user through the form. The temperature values are not shown. We decided
not to present them to the user at the current state, since there is no corresponding sensor to
which the data entered by the user could be compared to. The pie-chart on the bottom of the view
represents the activities.

The representation of the acoustic and visual information is done by curve charts. The num-
bers on the x-axis each represent a single form submission with the corresponding value on the
y-axis. We chose to show 26 datapoints, of which the first two are marked with a t, illustrating
that they are test values, used as an example when explaining the application to the test users of
our experiment. The number of 24 points is composed out of two sets of 12, which is the number
of push notifications we sent per day during our two-day experiment. So a participant can see his
progress.

Each chart shows a combination of user and sensor data. If the user clicks on one of the data-
points, a container with the exact data pops up as seen for the pie-chart in figure 17.

Storing information for a longer period on an application that is based on web-technologies is
not that simple. For the visualization of our data, we need to store a growing number of different
keys and values over multiple days. The normal approach would be the storage in an object of
the type localStorage. But localStorage only supports strings, which means that the array would
have to be converted into a string to be saved and later parsed to be used again. This approach is
computationally intensive, especially with a growing amount of data.

29

To enhance the performance of the application, we implemented a Web SQL database inside
the application. This database can be accessed in the regular SQL syntax as seen in listing 4 and
provides the perfect solution to our problem.

Listing 4: Creating the Web SQL database

1 var db = window.openDatabase("localDB", "1.0", "Local DB", 10000000);

2 db.transaction(runTransaction , errorDB , successDB);

3 [...]

4 function runTransaction(t){

5 t.executeSql(’CREATE TABLE IF NOT EXISTS comfort (id unique , noiseS , noiseU

, lightS , lightU , date)’);

6 t.executeSql("INSERT INTO comfort (noiseU , lightU , noiseS , lightS) VALUES (

"+noiseUdb+", "+lightUdb+", "+noiseSdb+", "+lightSdb+")");

7 }

8 function errorDB(err){

9 console.log(’Error creating tables: ’+err);

10 }

11 function successDB (){

12 console.log(’Successfully created tables ’);

13 window.location.href="question.html";

14 }

The visualization itself was done with the JavaScript library chart.js20. The charts were ren-
dered directly after the submission of the form.

5.3.3 Data Transmission

The transmission of the data takes place before the visualization of the charts inside the second
view. As soon as the data is saved into the Web SQL database, it is sent to the server as seen in
chapter 6.

We chose to send the data directly after the submission of the form. To submit the form, it is
therefore necessary to have access to the internet. Otherwise, an error message is sent.

The first prototype of the application used AJAX(short for asynchronous JavaScript and XML)
to transmit the data to the server. This approach used a POST request over HTTP to transport
the data from the device to the server. The reason for changing to the MQTT protocol are listed
in section 6.2.

To send MQTT messages from within a browser, it is recommended to use it inside the Web-
Socket protocol[26]. Websocket is supported by current versions of all major browsers including
Apple’s Safari, Google Chrome, Mozilla Firefox and Microsoft’s Internet Explorer and their corre-
sponding mobile web views.

The advantage of using WebSockets is the following: it has been in used for a longer time
by all major web-browser producers and can be seen as a solid technology. But the biggest sur-
plus is, that it is already implemented on all smartphone web browsers and hence Apache Cordova.

Figure 18 shows how the messages are sent and received with MQTT over WebSockets. Each
MQTT message is enveloped inside a WebSocket frame. As a client, we implemented the open-
source JavaScript client Eclipse Paho21. The Mosquitto MQTT Broker as well as the MQTT
protocol itself is explained in chapter 6.2.

Our application is designed in a way that each variable is sent as a single message. This allows
a bigger flexibility when subscribing to single variables. It could therefore be possible to only listen
to data from the noise sensor. Exemplary the composition of the message for the illuminance

20http://www.chartjs.org/
21https://www.eclipse.org/paho/

30

http://www.chartjs.org/
https://www.eclipse.org/paho/

Figure 18: Message transfer for MQTT over WebSockets.

sensor is shown in listing 5.

Listing 5: Creating a MQTT message in Paho

1 function sendLightS () {

2 // get value from globalData array

3 lightSValue = globalData.LightS;

4 message = new Paho.MQTT.Message(lightSValue);

5 message.destinationName = "iphone/" + window.localStorage.getItem(’appUID ’)

+ "/lightS";

6 client.send(message);

7 }

Every message contains the unique identifier appUID and the variable name lightS as a message
destination name as seen in line 5. The messages each get sent once the user submits the form.

31

5.4 Native Plugin

Even though the Apache Project lists 796 different plugins for the Cordova framework, there is no
working plugin that records values on noise and lighting.

Since the access to the values of the sensors is essential to our project, we decided to start with
the development of a plugin at ourselves. The plugin should be able to access the microphone to
measure external noise and the luminosity sensor to measure the illuminance.

5.4.1 Noise Metering

Several native decibel metering applications are available in Apple’s AppStore. Studies on the
quality of those applications made in 2014 showed that out of 130 iOS apps, only ten were classi-
fied as useful[34]. This shows that building a trustworthy decibel meter is a complex field. Also to
provide valid data, each sensor has to be calibrated. In addition, the hardware used in the differ-
ent versions of the iPhone differ from each other which makes it hard to develop reliable metering
application that is easy to use for the user.

Figure 19: The AVFoundation framework. Source: [2]

The quality of the native plugin will therefore be analyzed in chapter 8 and compared with the
inputs given by the users.

Accessing audiovisuel media on Apple’s iOS can be done through the AVFoundation framework.
This framework provides an Objective-C interface and allows the developer to, among other, cap-
ture information on the current audio-level[2].

The framework itself lies on top of the lower-level frameworks Core Audio, Core Media and
Core Animation as seen in figure 19. It is itself one of the lower-level frameworks of iOS and
provides a lot of functionality. The part of AV Foundation we are going to use is the part of the
Audio-only classes.

The plugin itself relies on the AVAudioRecorder class which is part of the AVFoundation frame-
work. Objects of this class can ”[...]obtain input audio-level data that you can use to provide level
metering”[6].

32

Listing 6 shows a small excerpt of the custom plugin. Line ten shows the conversion of the
originally negative decibel values into positive ones. The CDVPluginResult object in line 13 and
14 provides access to the according variables by the JavaScript interface.

Listing 6: Excerpt of the noise plugin

1 recorder = [[AVAudioRecorder alloc] initWithURL:url settings:settings error

:&error];

2 if (recorder) {

3 [recorder prepareToRecord];

4 recorder.meteringEnabled = YES;

5 [recorder record];

6

7 [recorder updateMeters];

8

9 float averageNS = [recorder averagePowerForChannel :0];

10 float averageNSPos = 120.0f + averageNS;

11 NSString *averageString = [NSString stringWithFormat:@"%f",

averageNSPos];

12

13 CDVPluginResult* result = [CDVPluginResult resultWithStatus:

CDVCommandStatus_OK messageAsString: averageString];

Apple provides several APIs and libraries to access its audiovisuel sensors. It is possible to di-
rectly collect information on the metered sound pressure level through the AV Foundation frame-
work. But to translate this results into the psychoactive loudness of human beings, as seen in
chapter 2.1.3, a deeper knowledge of acoustics would be needed.

5.4.2 Illuminace Metering

The best solution to measure illuminace with a smartphone is through its built-in ambient light
sensor. But this is not as easy as it seems. To this day, Apple does not provide a public API to
access any data from the ambient light sensor. Neither do they publish any documentation on the
matter at all. Besides this, Apple states in its App Store Review Guidelines that ”Apps that use
non-public APIs will be rejected”[4].

So since one of the goals of the project was to build an application that could be published
through the App Store, it is not possible to measure the illuminance through the ambient light
sensor directly.

To get information on the luminosity anyways, there are mainly two possible approaches. Ei-
ther accessing the phone’s camera and compute the brightness of the picture taken or access an
API that uses the ambient light sensor and try to approximate the illuminance from it. Both
approaches have different advantages and disadvantages. Table 7 shows them for the camera.

Pros Cons
Highly customizable Delay until camera is functional

Public API Imprecise data
Well documented Energy consumption

Camera needs to be placed in right angle
Privacy issues

Table 7: Advantages and disadvantages of the camera as an ambient light sensor

Accessing the phone’s camera takes time. Even on new smartphone models, it takes at least
two seconds until the camera is fully functional. If the picture is taken, it has to be processed,
which can be computationally intensive and therefore drain the battery if done often.

33

We chose to use the other option. It is possible through public APIs on the iPhone to access
the current brightness of the screen. If the Auto-Brightness feature of the phone is enabled, the
brightness is controlled directly through the ambient light sensor. Since this sensor is made for
exactly this task, it responds fast and gives reliable information about the ambient light. The
downsides are that this approach tends to give slightly too high values in average. This is due to
the Auto-Brightness feature, which does not dim the background light as fast as it enlightens it.
Also this approach can’t differ between very bright lighting. This comes due to the fact that upon
a certain point, the brightness of the display reaches a maximum. Despite these disadvantages, we
thought that this approach fits the need for a fast and least disruptive way to sense the ambient
light the best.

34

6 Implementation: Server-side

6.1 Overview

To store the data sent by applications, we needed a server that is reliable and able to handle
multiple connections at once. The SWITCH foundation, which is a partner of the Swiss academic
community[58], currently offers the free usage of its SWITCHengines called cloud based virtual
machines. Since these machines fit our needs perfectly, we chose to use their services. To get
access to this service we had to contact their service team via email and describe our project.
Subsequently, we received access to a website where we could manage our virtual machines.

Figure 20: Different layers of Software on the Server.

We chose to install the Linux distribution Ubuntu 14.04.2 and connected to the system over
the Secure Shell protocol(SSH) from the Terminal. The main task of the server would be to run a
Mosquitto message broker and a MySQL database to store the incoming data. Also it should send
out the push notifications to specific devices automatically.

To allow the application to connect to the server, we had to manually manage the firewall
settings and open up the according ports. The TCP/IP ports 1883 and 8883 are currently reserved
for the usage of MQTT. But since we are using MQTT over WebSockets, it is important to also
open port 9001, which is the port associated with WebSockets.

Our machine is accessible under the IP 86.119.31.113 and is equipped with 4 gigabytes of RAM,
four virtual CPUs and 20 gigabytes of disk storage. In the three month the server was running,
we have not had a single downtime.

An overview of the different software-layers of the server is shown in figure 20. Inside a single
SWITCHengine, we are capable of running different virtual machines(VMs). Each VM can be
equipped with a custom operating system, which in our case is Ubuntu Linux. To handle the
incoming MQTT messages, we installed the open-source MQTT message broker Mosquitto22. The
task of the MQTT message broker is further explained in section 6.2.

22http://mosquitto.org/

35

http://mosquitto.org/

The incoming messages have to be stored into a database so that we can analyze them later. To
do so, we used the open-source Python MQTT client of the Eclipse Paho project23. The Python
script is shown in Appendix K.

To make sure that the Paho client and the MySQL database work reliable, we installed the
process control system Supervisor24. Supervisor makes sure that the Paho MQTT client and the
database are restarted if they are shut down or an error occurs. Also it logs every error message
into a logfile. The configuration file for the Paho client is shown in listing 7.

Listing 7: Supervisor: Paho script configuration

1 [program:databasePython]

2 command=python -u dataBaseScript.py

3 directory=/home/ubuntu

4 stdout_logfile=/home/ubuntu/databasePython_output.txt

5 redirect_stderr=true

6 autorestart=true

To send out the push notifications to each user, we made use of the PushBots Node.js library25.
PushBots is a library that integrates and manages push notifications in Apache Cordova. It helps
us to automate the notification sending process to each participant. The PushBots service is de-
scribed in section 6.4.2.

In the free version of PushBots, scheduling notifications is not possible. So we built our own
scheduling service base on the PushBots Node.js library. Messages can be sent through a single
JavaScript file. Appendix N shows such a script for a single user with the tag: ”User1”. We created
one script for every tag that is used in the survey.

To fire these scripts at a predefined time or interval, Unix systems are shipped with the CRON-
daemon. With CRON, multiple scripts can be scheduled to run at a certain date or be repeated
in intervals. The so called CRONjobs can be managed trough the CRONtab which is a file that
contains all schedules in a certain syntax. Listing 8 shows an exemplary CRONjob for ”User1”.

Listing 8: CRONjobs for User1 on the random strategy

1 #User1 Random

2 12 8 22 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

3 56 8 22 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

4 13 10 22 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

5 29 11 22 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

6 19 12 22 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

7 26 13 22 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

8 [...]

The CRONjob shown in listing 8 is only so long for the random strategy. CRON does an
excellent job in scheduling iterative commands. The same CRONjob for User1 with the regular
strategy can be seen in listing 9. The syntax for this scheduling is ”Minute Hour Day of the Month
Month of the Year Day of the Week”. So a command scheduled for ”5 8-19 21 10 ∗” is executed
every fifth minute of the hour on every hour between 8h and 19h on the 21th of the tenth month
of the year. This allows to easily schedule even complex intervals.

Listing 9: CRONjobs for User1 on the random strategy

1 #User1 Regular

2 5 8-19 21 10 * nodejs /home/ubuntu/pushbots/pushbots/user1.js

23https://www.eclipse.org/paho/
24http://supervisord.org/index.html
25https://pushbots.com/developer/docs/nodejs

36

https://www.eclipse.org/paho/
http://supervisord.org/index.html
https://pushbots.com/developer/docs/nodejs

6.2 MQTT-Protocol

The MQTT protocol has been developed by Andy Stanford-Clark and Arlen Nipper in 1999 as
an alternative to the existing protocols[33]. The protocol was designed from its beginnings as a
lightweight and fast protocol, making it the perfect fit for devices with limited bandwidth and com-
puting power or low energy consumption. It is described by the official MQTT 3.1.1 specifications
like this:

”MQTT is a Client Server publish/subscribe messaging transport protocol. It is light
weight, open, simple, and designed so as to be easy to implement. These characteristics
make it ideal for use in many situations, including constrained environments such as for
communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts
where a small code footprint is required and/or network bandwidth is at a premium.”
- [46]

MQTT has several differences compared to HTTP. It uses the publish/subscribe pattern instead
of request/response and is data-centric in contrast to the document-centric HTTP protocol. This
allows MQTT to have really small headers and minimal package sizes. Packages of only two bytes
are possible. Furthermore, is it a relatively simple protocol, having only a short list of message
types (Connect, Publish, Subscribe, Unsubscribe and Disconnect) compared to the many return
codes and messages in HTTP[38].

The properties that make it the perfect fit for Machine to Machine communication and the In-
ternet of Things are the same that make it so advantageous for mobile communication. Facebook
announced in 2012 to use MQTT for their mobile messenger because of its faster message delivery,
smaller bandwith usage and smaller impact on the phones battery life[33].

Figure 21: MQTT Publish/Subscribe in our System.

Figure 21 shows the publish/subscribe pattern used in MQTT for our system. A client can be
a producer or receiver of information at the same time. To publish a message, the publisher does
not have to know the receiver of the message. He just publishes a message with a certain topic to
a defined message broker, which in our case is the Mosquitto broker on our virtual machine. Other
clients can then subscribe to this topic on the message broker. In our system, this is the Python
Script on our virtual machine. As soon as a message arrives at the broker, it gets published to
every subscriber to this topic.

Listing 10: Most simple example of publish from the command line.

1 #Client1:

2 #publish

3 mosquitto_pub -t ’test/topic ’ -m ’Hello World!’

In the most simple case, this could look like the conversation in listings 10 and 11. The second
client subscribes to a certain topic as seen in 11 on line three. Then, the first client publishes the

37

message ”Hello World!” on the topic ”test/topic”. The second client, that subscribed to this topic,
then receives the message through the broker as seen on line four of listing 11.

Listing 11: Most simple example of a subscription from the command line.

1 #Client2:

2 #subscribe

3 mosquitto_sub -v -t ’test/topic ’

4 >Hello World!

6.3 MySQL Database

Since the system introduced in this project is scaled to process smaller numbers of participants,
a standard MySQL database is able to handle the data-storage with ease. Figure 21 shows how
the data is written into the database by the Paho Python client shown in Appendix K. Another
advantage of using a MySQL database is the ability to export it and use it with external programs
for statistical analysis like R26. This can be seen in Chapter 8.

Figure 22: Database entries in the MQTT data format.

The structure of the database can be seen in Figure 22. In the first column we can see
from which sensor the entry is. The data is structured in topics, which follows the data struc-
ture propositions given by MQTT. The Sensor column is therefore composed through entries like
”Phone Model/Application ID/Sensor”.

To select entries, we use SQL string queries as shown in listing 12. This approach is very similar
to the one proposed by the MQTT publish/subscribe pattern which is shown in listing 10.

Listing 12: Select entries with certain appID or Date.

1 #Select all entries of an iPhone with an appID of "jbYITDpF":

2 select * from Comfort where Sensor like "iphone/jbYITDpF/%";

3

4 #Select all entries from the 22th of October 2015:

5 select * from Comfort where Date like ’2015 -10 -22%’;

26https://www.r-project.org/

38

https://www.r-project.org/

6.4 Push Notifications

6.4.1 Apple Push Notification Service

The Apple Push Notification Service is responsible for transporting and routing a message from a
given provider to a given device[5]. A message always consists of a payload, which is usually the
message itself, and a device token, that specifies a particular device[5].

Figure 23: Pushing a remote notification from a provider to a client app. Source: [5]

The path of a notification from the provider to the client is shown in figure 23. It shows that
it is not possible to contact a phone or an application running on a phone directly. A provider can
only contact APNs, which then directs the message to an application with a certain device token.

Before an application can receive push notifications, it has to request the device token from
APNs. This process is shown in figure 24.

Figure 24: Sharing the device token. Source: [5]

The client device connects to APNs and receives a custom device token. This usually happens
when the applications is invoked for the first time. The token is then sent to the client application
which sends it to the provider. The provider then sends a notifications to the client application as
seen in figure 23.

6.4.2 Push Notifications with Pushbots

The Cordova project lists several open-source and free to use push notification plugin. At the
beginning we wanted to use one of these plugins in our application. But although these plugins are
backed by a lot of developers, they still have a large number of bugs and are not easy to handle. The
most famous plugin ”PushPlugin”27 lists 347 open issues to this day and the newer ”Phonegap-

27https://github.com/phonegap-build/PushPlugin

39

https://github.com/phonegap-build/PushPlugin

Plugin-Push”28 still has 78 open issues on GitHub. When testing the ”Phonegap-Plugin-Push”
plugin, we encountered so many bugs that we decided to use the free plan of a commercial solution
instead.

We decided to use PushBots29, a project with an integrated Apache Cordova plugin and a
Library for sending the messages with Node.js. Sending a push notification through a third party
service slightly differs from the approach shown in section 6.4.1 and is shown in Figure 25.

Figure 25: Push notification delivery with third party service. Source:[30]

The first step in Figure 25 is the following: The application sends a request to iOS to send a
push notification. iOS then sends a request to APNs after which APNs sends back the device token
to the application. Then the applications sends the device token to the PushBots server. After
this has happened, you can see the device listed in the PushBots online dashboard. PushBots then
is able to send a request (containing a message and a device token) to APNs, which then sends
the notification to the device with the specified device token.

In section 6.1 we explained how it is possible to send scheduled messages with PushBots over
their Node.js library. With the free plan it is possible to make one million API requests per
application and sending up to 1.5 million notifications. The number of supported devices is not
regulated.

28https://github.com/phonegap/phonegap-plugin-push
29https://pushbots.com/

40

https://github.com/phonegap/phonegap-plugin-push
https://pushbots.com/

7 Evaluation

7.1 Test Scenario

The testing of the system can be divided into two parts. One part evaluates how useful the con-
cept of mining comfort related data with a smartphone is. This part covers the quality of data
that is collected with the smartphone’s sensors but also how the users perceived the usage of the
application. The second part investigates in which way participants of mESM studies should be
notified. We therefore developed two different notification strategies and analyzed if the strategy
has an influence on the number and quality of answers.

We tested the application with twelve users mostly from the Human-IST department and friends
over two days. To prevent the results from being biased, it was important that the participants
did not know what we wanted to test. To ensure this, only people that weren’t involved in the
project were asked to join the experiment.

Most ESM and mESM studies use repeated measures as study design. This means that the
participants get notified multiple times, during a predefined time period, about a certain state.
In our experiment, we asked the user to give us information about his actual perception of comfort.

Due to the relatively small number of participants in the experiment, we chose to conduct a
crossover study. Like this, every participant will be tested with the same notification strategy.
This should reduce the influence of single users on the outcome of the experiment.

Since we imagined that some users might find the interruption annoying and submit less answers
on the second day of the experiment, we expected the experiment to have a high order effect. To
antagonize this problem, we used the counterbalancing technique. So half of the group started
with the first strategy and the other one with the second strategy on day one. On the second day
the strategy changed for each participant.

Name Group Push time

...
User 1 A Tue Oct 13 15:04
User 1 A Tue Oct 13 16:04
User 1 A Tue Oct 13 17:04
User 1 A Tue Oct 13 18:04
User 1 A Tue Oct 13 19:04
User 2 B Tue Oct 13 08:21
User 2 B Tue Oct 13 09:06
User 2 B Tue Oct 13 10:54
...

Table 8: Excerpt of timetable with groups and exact time when the push notification gets sent

Most of the researchers at the Human-IST work in a single bureau. If half the members would
be notified at the same time, this could lead to a big disturbance. To prevent this, we decided to
notify each user in the same frequency but shift the starting time of each user compared to the
others as seen in table 8. The resulting Excel sheet with the notification time for each participant
can be seen in figure G.

41

7.2 User Instructions

To make sure that all participants have the same knowledge about the experiment, it is important
that all of them get the exact same instructions. So prior to the execution, everybody will get an
email explaining how the experiment is conducted and what is important to remember. To prevent
the users from being biased, a false reason for the experiment is communicated.

The instructions are sent via email at the day before the experiment starts. There will be no
oral explanation to insure that the received information is the same. A shortened version of the
instructions will be available inside the application and accessible via a button. Before the first
push notification is sent, the participants are asked by the app if they have read and understood
the instructions and that they have familiarized themselves with the interface. The instructions
can be seen in Appendix H.

7.3 Distribution

The distribution of the application at a larger scale could be done through the Apple AppStore.
But for the experiment conducted in the context of this project, we decided that an AdHoc distri-
bution is sufficient. AdHoc describes the installation on a device that is in range of the developer.
But the application is built to be published through the AppStore. To solve this problem, we
passed on using unpublished APIs and designed the application according to Apples design guide-
lines.

Installing a custom application on an iOS device is not as straight-forward as it seems. Before
an application can be installed, the developer has to create and a provisioning profile and let apple
sign it. The process is shown in figure 26. The provisioning profile is coupled to a single application
and a development or production certificate which has to be signed by the developer and apple.
Also it contains a list of UDIDs for all applications on which the app will be installed. Each AppID
has a corresponding APNs SSL certificate which is used by APNs to identify the applications to
which a push notification is sent. In our case, we had to send the APNs certificate to PushBots
where they used it to contact APNs.

Figure 26: Apple application signing process.

After the provisioning profile is created and downloaded from Apple, the developer can build
the application in XCode. This signed application can then be installed on each device whose
UDID is specified in the provisioning profile. The transmission of the application can be done
through iTunes or XCode.

42

7.4 Perception of the Users

After the participants conducted the survey, we asked them to fill out a short online survey on
the experiment. Unfortunately, only seven of the twelve participants submitted an answer. The
results are shown in table 9, 10 and 11.

Very disturbing Disturbing Neutral Little disturbing Not disturbing Median
Likert value 5 4 3 2 1

Regular 1(1) 2 3 1 0 3.8
Random 0 0 2(1) 5 0 2.6

Table 9: User survey on the question on the push strategies.

One of the relationships we wanted to analyze in this project is if the push notification strategy
has an influence on the number of answers a user submits. But it is also important to measure
how comfortable the participation on the experiment is for the user. In our final survey, we asked
the participants which strategy was more disturbing. The results are shown in table 9. One of the
participants who had filled out the survey stated that he could not fill out the form often enough
to make general assumptions on which day is more disturbing than the other. The answers given
are shown in parenthesis and are not used in the statistical analysis of the survey.

We chose to use a Likert-scale with values ranging from ”Very disturbing” to ”Not disturbing”.
To interpret a Likert scale statistically, we assigned values ranging from five to one to the verbal
scale. To test if one of the strategies has a significant influence on the perception of the participants,
we chose to conduct the Mann-Whitney U test. The Mann-Whitney U test, which is also known
under the name Wilcoxon Rank sum test, should be chosen if the dependent variable is ordinal and
the populations do not form the normal distribution. Also the observations should be independent
and the independent variable should consist of two categorical, independent groups[57].

Listing 13: Results of the Exact Wilcoxon-Mann-Whitney Test.

1 data: v by g (Random , Regular)

2 Z = -0.44721 , p-value = 0.7619

3 alternative hypothesis: true mu is not equal to 0

The corresponding R-script can be found in Appendix B. Median values of 3.8 for the regu-
lar strategy and 2.6 for the Random strategy indicate that the random approach is slightly less
disturbing than the regular. But the results of the Wilcoxon Rank sum test, which are shown in
listing 13, show that this effect is not significant. The p-value of 0.7619 states that the results are
not statistically relevant or interpretable. The main reason for this is the small sample size of only
seven answers.

User 3 User 4 User 5 User 6 User 9 User 11 User 12
Regular (5) 4 3 3 4 3 2
Random (3) 2 2 2 2 3 2

Table 10: User perception of push strategies per user.

The results for the single users are shown individually in table 10. The comparison with the
total number of answers of the single participants, as seen in figure 27, does not give an insight
on a correlation of this two values. We suggest to repeat the experiment with a larger number of
participants to get statistically significant results.

The last question on the survey asked the participants about the usage of the system. Even
though most of them stated that the system is easy to use, most of them would not use the system

43

Strongly disagree Disagree Neutral Agree Strongly Agree
I would use the system frequently 2 2 0 3 0
I think the system is easy to use 0 1 1 1 4

Table 11: User survey on the usage of the system.

frequently. Some users reported that they have been highly interrupted in their daily routine. This
shows that the user has to have a higher incentive on using the application or that the number of
notifications should be reduced.

44

8 Quantitative Analysis

8.1 Overview

The two days of collecting data resulted in a dataset containing 1642 entries. An excerpt of the
data can be seen in figure 22. But this dataset also contains entries for every connection to the
server and some of them did not result in an actual submission of the form. Also entries for every
AppID have been saved into the database. A total of 12 people took part in the experiment.

Day 1 Day 2 Combined
Raw entries 991 651 1642

Entries without duplicates 968 640 1608
Statistical relevant 726 480 1206
Form submissions 121 80 201
Notifications sent 144 144 288

Submissions/N. sent 84,03% 55.56% 69,79%

Table 12: Received data per day.

Table 12 shows how the entries are composed. Each form submission resulted in eight database
entries as seen in section 6.2. Without duplicates, 1608 entries can be found. Since some of the
entries like the AppID or the connection of a user are redundant, this leads to 1005 statistically
relevant datasets or 201 submissions of the form, each with five corresponding entries. As statis-
tically relevant, we defined each of the four variables in form and the two variables sensed by the
ambient light sensor and the microphone.

Figure 27 shows how many times each participant has answered each day. As we can see, there
are large differences between single users. The person that answered the most, submitted the form
23 times in total, while the user with the least answers only filled out the form once.

Besides the gap between individual participants, there is a general gap between the first and
the second day. As we can see in table 12, there is a decline from 121 answers on day one to 80
answers on day two which comes up to a decrease of 44 percent.

The participants of the experiment have been split up into two groups as seen in section 7 with
different notification strategies for each group. The analysis of this different strategies is one of
the main goals of this chapter.

8.2 Strategy and Answer Rate

The first hypothesis we are going to examine is that the different push strategies have an influence
on the number of answers given by the user. Figure 28 shows the distribution of number of answers
and if the corresponding participant is notified by the random or the regular push strategy. If the
notification strategy is random, the value on the y-axis has a value of one, if it is regular, the y-axis
value is zero. The size of the dots represents the number of participants with the same amount
of answers and strategy. So on day two, three people that are notified with the regular strategy
answered ten times.

To examine if there is a correlation between the push strategy and the number of answers, we
decided to compute Spearman’s rank correlation coefficient or Spearman’s rho, which is an appro-
priate statistical method for computing the influence of a binary (strategy) variable on a metric
(number of answers) variable.

The result for the first day can be seen in the first row of table 12. Even though there seems to
be a small negative influence of the random strategy on the number of answers, the large p-value

45

Figure 27: Answers per participant and day.

implies that the significance of the correlation is really low.

The output in the second row of table 12 shows the Spearman rank correlation coefficient for
the second day. It suggests that there is a relatively strong negative correlation between the ran-
dom strategy and the number of answers. But again with a really low significance as the p-value
of 0.2088 implies.

The last row of table 12 lists the combination of both days. It shows a slighty negative corre-
lation between the random strategy and the number of answers. The p-value of 0.2086 is almost
the same as for the second day which shows that the significance of the correlation is low. The
findings can be seen in more detail in Appendix C.

Period Spearman’s rho P-value
Day 1 -0.048795 0.8803
Day 2 -0.391059 0.2088

Day 1 & Day 2 -0.2662416 0.2086

Table 13: Influence of the random strategy on the number of answers.

The findings in this section imply that there is a slightly negative correlation between sending
push notifications randomly and the answer rates of the participants. But it is possible that other
factors have an influence. Two of the participants stated that they were unable to answer to
the notifications because of external factors. This fact, together with the already relatively small
population, could lead to the big p-values and the associated little significance of the correlation
coefficient.

46

Figure 28: Number of answers to push strategy membership on day one and day two.

Figure 29: Number of answers to push strategy membership on both days.

8.3 External Factors

To examine if there exists an external influence on our dataset, we additionally performed tests to
analyze if there is a difference between the random and the regular strategy. T-test can be used
to make assumptions about how equal two given sets of data are. The results are shown in table
14. Since a regular t-test can only be performed on metric scaled data, the appropriate test for the
user entered ordinal scaled data is the Wilcoxon rank sum test[43]. The results for the Wilcoxon
test are shown in table 15.

Random mean Regular mean T-value P-value
Noise(Sensor) 75.19155 69.43483 0.34547 0.0097
Light(Sensor) 0.4367627 0.4033423 0.74979 0.4547
Answer Rate 5.666667 8.166667 -1.4576 0.1596

Table 14: Results of the t-test for the regular and the random strategy

The results shown in table 14 show that there is no significant difference between the means of

47

the results of the random and the regular strategy. Even though the p-value for the noise sensor
indicates a significant difference between the two means, the t-value of 0.34537 shows that this
difference can be neglected. For the other two variables, the the p-value shows that there is no
significant difference between the two means.

W-value P-value
Noise(User) 2330.0 0.6798
Light(User) 2281.5 0.8498

Table 15: Results of the Wilcoxon rank sum test for the regular and the random strategy

Table 15 shows the results of the Wilcoxon t-test for the data entered by the users. The ex-
tremely high p-values show that there is no significant difference between the two means of the data.

If the results in this section had shown a significant difference of population means, it would
have been an indicator that there has been an external influence on the collected data. Since the
data shows that there is no significant difference between the data collected with the random and
the regular strategy, the findings support the results shown in section 8.2 and 8.5.

8.4 Quality of Sensor Values

In this section, the data collected by the microphone and ambient light sensor will be compared
to the subjective information given by the users. Since we did not sense the temperature values or
the activities, these information won’t be evaluated in this project.

Dimension Spearman’s rho P-value
Visual 0.4504185 2.199e-11

Acoustic 0.4862721 2.19e-13

Table 16: Influence of the random strategy on the number of answers.

To compare an ordinal scale (user values) with a metric scale (sensor values) we can again use
Spearman’s rank correlation coefficient. The values for all users can be seen in figure 30 and 31
. The plot shows for both variables that most of the values are recorded in the middle of the
spectrum and besides a few outlier the sensors seem to reflect the users opinion quite well. This
corresponds to the according correlation coefficients shown in listing table 16. The corresponding
outputs are listed in appendix D.

With p-values of 2.199e-11 and 2.19e-13, both of them are highly significant and show a good
correlation between the sensor and the opinion of the user. This shows that the sensors can be
used to measure the human condition on these variables. Nevertheless, it has to be said that there
exist differences between the users. While for some, the sensors agreed with the impression of the
user, for others there was a bigger discrepancy. It is further possible, that the visualization of the
data leads to a bias for certain users. If a users tries to match the answers given through the form
with the sensor values or the other way around, it could have an influence on the findings.

8.5 Strategy and Quality of Answers

The second hypothesis to examine is whether or not the different strategies influence the quality
of answers. To do so, we decided to only choose participants that answered at least half of the
time in average. That meant that we did not include the answers given by the participants one,
two, five and ten, as seen in figure 27.

48

Figure 30: User and Sensor values for the visual dimension.

Figure 31: User and Sensor values for the acoustic dimension.

The answers of the remaining eight participants were divided into the groups Random and
Regular. Half of the group received notifications with the random strategy on the first day and the
other half on the second. This minimizes a possible bias of the order in which the two strategies
are tested. The corresponding R-scripts for the analysis of the regular and random strategies can
be found in Appendix I and J.

8.5.1 Regular Strategy

The distribution of answers for the regular strategy can be seen in figure 32 and figure 32. To
evaluate the quality, the correlation of the sensor values with the user’s impression will be evaluated.
Notified with the regular strategy, the participants gave 79 answers in total which equates to 39.3
percent of all answers given on both days.

The correlation coefficients can be seen in table 17. Both values are significant even though

49

Figure 32: Plot of user and sensor values for the acoustic dimension of the regular strategy.

Figure 33: Plot of user and sensor values for the visual dimension of the regular strategy.

the p-values are smaller than in chapter 8.4, which partly is the result of the smaller dataset. The
outputs are shown in Appendix E.

Strategy Spearman’s rho P-value
Acoustic 0.4096094 0.0001779
Visual 0.3414737 0.002071

Table 17: Influence of the regular strategy on the quality of answers.

While the correlation coefficient for the acoustic quality is almost the same, the differences
between the ambient light sensor and the participants perception of lighting are much bigger.

50

While looking at the data in detail, we found out that one of the users had a constant value for
the ambient light sensor. This leads to the conclusion that this particular user had forgotten to
turn on the automatic screen brightness feature. Without this user the rho equals 0.4054674.

8.5.2 Random Strategy

The plotting of the data is shown in figure 34 and figure 35. Compared to the the distribution of
values in figure 32 and 33, the plots already show a much better correlation.

Figure 34: Plot of user and sensor values for the acoustic dimension of the random strategy.

Figure 35: Plot of user and sensor values for the visual dimension of the random strategy.

The total amount of 64 answers for the random strategy is slightly smaller than for it’s regular
counterpart. This concurs with the findings in section 8.2.

The correlation coefficients with their according p-values are shown in table 18. Both correla-
tion coefficients are much smaller than the corresponding values found with the regular strategy.

51

Strategy Spearman’s rho P-value
Acoustic 0.7033729 9.105e-11
Visual 0.6023368 1.397e-07

Table 18: Influence of the random strategy on the quality of answers.

The p-values of 9.105e-11 and 1.397e-07, at the same time, show a much higher significance. With-
out the participant with the problematic display brightness setting, the correlation coefficient is
even higher with a value of 0.6688247. Detailed outputs are shown in Appendix F.

Although, further research is still needed, the findings in this chapter indicate that the notifi-
cation strategy has a significant influence on the quality of answers. It should be examined if the
difference occurs in a larger population of participants and with another indicator for quality to
make general assumptions.

52

9 Conclusion

The goal of the project was to examine if a smartphone application can be used to collect subjective
and objective data on human comfort. As stated in the introduction, we therefore reviewed the
current state of research on the topics human comfort, experience sampling and mobile sensing.
The groundwork of this part of the paper was then used to build a smartphone application with a
corresponding back-end by ourselves that was later tested in a two-days experiment. Besides this
proof-of-concept, the experiment should give insights on how to interact with the participants of
mobile surveys to get the best possible data.

The application and the corresponding back-end developed for this manner was tested without
complications over the whole experiment. The server and database were working without compli-
cations and none of the users reported difficulties while using the application. The architecture
of the system allows it to be scaled to serve large numbers of users and work together with other
external systems.

The analysis of the collected data showed that the built-in smartphone sensors are capable
of gathering information on lighting and noise. We expect that mobile sensing will playing an
increasing role in sensing human comfort. The growing number of built-in smartphone sensors
and people who use this devices, will help to make this approach even more powerful. This comes
especially into play when being combined with external sensing systems.

During our research, we found out that the influence of different notification strategies on the
quality and the amount of collected data is almost not investigated. We tried to explore the rela-
tionship between two different notification strategies and the quality and amount of answers given
by the user. We therefore conducted a two-days lasting experiment using the repeated measures
design. We chose the correlation between the information entered by the user and the sensor data
as an indicator of quality. The results indicate that the strategy has a significant influence on the
quality of answers but not on the amount. This findings could be used to gather better information
in various fields of research and economy, where mobile experience sampling is used.

At the end of the experiment, we conducted a survey to see if the users felt that one of the
strategies was more disturbing than the other, which could not be said with a satisfying significance.
We suggest to repeat the experiment with the same application and an enhanced usage of the build
in sensors together with a larger population of users.

53

10 Future Works

The project was designed as a proof-of-concept for a smartphone base comfort sensing applica-
tion. Additionally, it should give insights on the way a researcher can interact with a possible
user of the application. Future versions of the application could collect much more and more ac-
curate data. Especially in the field of Noise metering. Karadous and Shaw[34] have shown that
some sensing applications for iOS and Android are capable of sensing even smallest decibel changes.

When it comes to sensing of ambient light, the possibilities are more restricted through the
limited publication of API’s through the major smartphone manufacturers. But these libraries
exist and can be used. If the targeted group of participants is small, such an application could
be built without the goal of publishing it through an application store and the number of users is
smaller than one hundred.

Further we see great chances for the combination of the application with an external sensing
system. The advantages of these systems are that they can consist of a nearly endless number
and combination of sensors that go way beyond the capabilities of modern smartphones. Figure
36 shows a possible application together with the sensor boxes built by Léonard Stalder for the
Human-IST project ”Sensing Human Comfort: An Inclusive Implementation of Indoor Environ-
mental Data Collection”.

Figure 36: Possible application in an sensing framework with external sensors.

The architecture of the application presented in this project is widely build with a combination
of these systems in mind. The transmission of data is built upon the MQTT protocol which makes
it easy to combine the smartphone data with sensor data. Triggering the push notification can
easily be done through a webapplication that sends them to specific users based on predefined

54

conditions. The publish/subscribe pattern used by the application allows it to be used in multiple
systems at once without producing additional data traffic for the user.

The combination of these two systems could be used to enhance both systems. The sensor
systems could benefit from the smartphone application in multiple ways. If the users are able to
deliver their clothing level or current activity, the system in general could adapt the model and
make much more precise predictions on the users state of comfort. The close distance to the user
can further enhance the precision of the data inside a room.

The smartphone application on the other hand can profit from sensors that aren’t available on
the phone. The sensor box presented in the Human-IST project comes with eight different sensors
like humidity, wind and CO2 sensors.

A combination of both opens completely new ways of interaction. If the sensors are placed in
multiple rooms, they could send this information to the smartphone application which could then
lead the user to the room with the most convenient temperature, humidity, lighting and so on for
his own unique profile.

Other fields of application are democratic HVAC systems that could be regulated based on the
user input and sensor values combined or smart notification systems that notify the user before
he realized that he is outside it is comfort zone. The variables temperature and activity, that we
collected in this project, could be used in this matter.

The experiment we conducted with twelve participants showed a big influence of the notification
strategy on the quality of answers. This relationship should be further investigated and tested with
a larger number of users. If the correlation can be confirmed in larger experiments, this could lead
to profound changes in mobile experience sampling and mobile sensing.

55

References

[1] Apache. Apache cordova. https://cordova.apache.org/. Accessed: 2015-11-24.

[2] Apple. About avfoundation. https://developer.apple.com/library/prerelease/mac/

documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.

html#//apple_ref/doc/uid/TP40010188. Accessed: 2015-11-28.

[3] Apple. About local notifications and remote notifications. https://developer.

apple.com/library/ios/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Introduction.html. Accessed: 2015-11-22.

[4] Apple. App store review guidelines. https://developer.apple.com/app-store/review/

guidelines. Accessed: 2015-11-29.

[5] Apple. Apple push notification service. https://developer.apple.com/library/ios/

documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/

ApplePushService.html. Accessed: 2015-11-10.

[6] Apple. Avaudiorecorder class reference. https://developer.apple.com/library/

prerelease/mac/documentation/AVFoundation/Reference/AVAudioRecorder_

ClassReference/index.html#//apple_ref/occ/instm/AVAudioRecorder/

averagePowerForChannel:. Accessed: 2015-11-28.

[7] Apple. Compare iphone models. http://www.apple.com/iphone/compare/. Accessed: 2015-
11-09.

[8] Apple. Health - an innovative new way to use your health and fitness information. http:

//www.apple.com/ios/health/. Accessed: 2015-11-10.

[9] Areppim. Mobile os percent market share switzerland as of june 2015. http://stats.

areppim.com/stats/stats_mobiosxtime_ch.htm. Accessed: 2015-11-27.

[10] ASHRAE. Standard 55. Thermal Environmental Conditions for Human Occupancy, 2013.

[11] J. Blauert. Akustik 2. Lecture script at the Ruhr-Universität Bochum, 2005.

[12] Philomena M. Bluyssen, Myriam Aries, and Paula van Dommelen. Comfort of workers in
office buildings: The European HOPE project. Building and Environment, 2010.

[13] Michael Boduch and Warren Fincher. Standards of Human Comfort - Relative and Absolute.
Meadows Foundation Funded Projects, 2009.

[14] Vaughn Bradshaw. The building environment: Active and passive control systems. John
Wiley and Sons, 2006.

[15] K.E. Charles. Fanger’s thermal comfort and draught models. IRC Research Report, 2003.

[16] Oxford Dictionaries. Smartphone. http://www.oxforddictionaries.com/definition/

english/smartphone. Accessed: 2015-11-09.

[17] Anastasios Dounis and Christos Caraiscos. Advanced control systems engineering for energy
and comfort management in a building environment—a review. Renewable and Sustainable
Energy Reviews, 2008.

[18] Tanzeem Choudhury et al. The mobile sensing platform: An embedded activity recognition
system. IEEE Pervasive Computing, 2008.

[19] Poul O. Fanger. Thermal comfort. Analysis and applications in environmental engineering.,
1970.

56

https://cordova.apache.org/
https://developer.apple.com/library/prerelease/mac/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html#//apple_ref/doc/uid/TP40010188
https://developer.apple.com/library/prerelease/mac/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html#//apple_ref/doc/uid/TP40010188
https://developer.apple.com/library/prerelease/mac/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html#//apple_ref/doc/uid/TP40010188
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/app-store/review/guidelines
https://developer.apple.com/app-store/review/guidelines
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/prerelease/mac/documentation/AVFoundation/Reference/AVAudioRecorder_ClassReference/index.html#//apple_ref/occ/instm/AVAudioRecorder/averagePowerForChannel:
https://developer.apple.com/library/prerelease/mac/documentation/AVFoundation/Reference/AVAudioRecorder_ClassReference/index.html#//apple_ref/occ/instm/AVAudioRecorder/averagePowerForChannel:
https://developer.apple.com/library/prerelease/mac/documentation/AVFoundation/Reference/AVAudioRecorder_ClassReference/index.html#//apple_ref/occ/instm/AVAudioRecorder/averagePowerForChannel:
https://developer.apple.com/library/prerelease/mac/documentation/AVFoundation/Reference/AVAudioRecorder_ClassReference/index.html#//apple_ref/occ/instm/AVAudioRecorder/averagePowerForChannel:
http://www.apple.com/iphone/compare/
http://www.apple.com/ios/health/
http://www.apple.com/ios/health/
http://stats.areppim.com/stats/stats_mobiosxtime_ch.htm
http://stats.areppim.com/stats/stats_mobiosxtime_ch.htm
http://www.oxforddictionaries.com/definition/english/smartphone
http://www.oxforddictionaries.com/definition/english/smartphone

[20] Monika Frontczak, Rune Vinther Andersen, and Pawel Wargocki. Questionnaire survey on
factors influencing comfort with indoor environmental quality in danish housing. Building and
Environment, 2012.

[21] Monika Frontczak and Pawel Wargocki. Literature survey on how different factors influence
human comfort in indoor environments. Building and Environment, 2011.

[22] Google. Cloud messaging. https://developers.google.com/cloud-messaging/. Accessed:
2015-11-10.

[23] Google. Google fit. https://fit.google.com. Accessed: 2015-11-10.

[24] Frédéric Haldi and Darren Robinson. Modelling occupants’ personal characteristics for thermal
comfort prediction. International Journal of Biometeorology, 2010.

[25] Runa Tabea Hellwig. Unterschiede zwischen frei und mechanisch belufteten Burogebauden aus
Nutzersich. PhD thesis, Technische Universitaät München, 2005.

[26] HiveMQ. Mqtt over websockets with hivemq. http://www.hivemq.com/blog/

mqtt-over-websockets-with-hivemq. Accessed: 2015-11-29.

[27] Wilhelm Hofmann and Paresh Patel. Surveysignal: A convenient solution for experience
sampling research using participants’ own smartphones. Reports and Communications, 2015.

[28] Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, and
David Boyle. From Machine-to-Machine to the Internet of Things: Introduction to a New Age
of Intelligence. Elsevier, 2014.

[29] IDC. Smartphone vendor market share, 2015 q2. http://www.idc.com/prodserv/

smartphone-market-share.jsp. Accessed: 2015-11-10.

[30] Tomomi Imura. Sending ios push notifications via apns in javascript. https://www.pubnub.
com/blog/2014-12-22-sending-ios-push-notifications-via-apns-javascript-using/

apns-phonegap/. Accessed: 2015-12-04.

[31] Farrokh Jazizadeh, Ali Ghahramani, Burcin Becerik-Gerber, Tatiana Kichkaylo, and Michael
Orosz. Human-Building Interaction Framework for Personalized Thermal Comfort-Driven
Systems in Office Buildings. Journal of Computing in Civil Engineering, 2013.

[32] Jeongho Kang and Sekwang Park. Development of comfort sensing system for human envi-
ronment. Mechatronics, 1998.

[33] Christian Karasiewicz. Why facebook is using mqtt on mobile. The Mobile Frontier, 2013.

[34] Chucri A. Kardous and Peter B. Shaw. Evaluation of smartphone sound measurement appli-
cations. The Journal of the Acoustical Society of America, 2014.

[35] Van Den Wymelenberg Kevin G. Evaluating Human Visual Preference and Performance in an
Office Environment Using Luminance-based Metrics. PhD thesis, University of Washington,
2012.

[36] Wazir Zada Khan, Yang Xiang, Mohammed Y. Aalsalem, and Quratulain Arshad. Mobile
phone sensing systems: A survey. IEEE Communications Surveys and Tutorials, 2013.

[37] Igor Knez. Effects of indoor lighting on mood and cognition. Journal of Environmental
Psychology, 1995.

[38] Valerie Lampkin, Weng Tat Leong, Leonardo Olivera, Sweta Rawat, Nagesh Subrahmanyam,
and Rong Xiang. Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ
Telemetry. IBM Redbooks, 2012.

57

https://developers.google.com/cloud-messaging/
https://fit.google.com
http://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq
http://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq
http://www.idc.com/prodserv/smartphone-market-share.jsp
http://www.idc.com/prodserv/smartphone-market-share.jsp
https://www.pubnub.com/blog/2014-12-22-sending-ios-push-notifications-via-apns-javascript-using/apns-phonegap/
https://www.pubnub.com/blog/2014-12-22-sending-ios-push-notifications-via-apns-javascript-using/apns-phonegap/
https://www.pubnub.com/blog/2014-12-22-sending-ios-push-notifications-via-apns-javascript-using/apns-phonegap/

[39] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and
Andrew T. Campbell. A survey of mobile phone sensing. IEEE Communcations Magazine,
2010.

[40] Adrian Leaman. Dissatisfaction and office productivity. Facilities, 1995.

[41] Friedrich Linhart and Jean-Louis Scartezzini. Evening office lighting e visual comfort vs.
energy efficiency vs. performance? Building and Environment, 2011.

[42] Carol Lomonaco and Dennis Miller. Comfort and control in the workspace. ASHRAE Journal,
1997.

[43] Universität Zürich Methodenberatung. Datenanalyse: Zentrale tendenz. http://www.

methodenberatung.uzh.ch/datenanalyse/unterschiede/zentral.html#13. Accessed:
2016-01-02.

[44] Mosquitto. Mosquitto. http://mosquitto.org/. Accessed: 2015-11-23.

[45] Giorgio Natili. PhoneGap 3 Beginner’s Guide. Packt Publishing, 2013.

[46] Oasis open. Mqtt 3.1.1 specifications. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/

mqtt-v3.1.1.html. Accessed: 2015-12-04.

[47] Richard Paradis. Acoustic comfort. National Institute of Building Sciences: Whole Building
Design Guide, 2014.

[48] Willy Passchier-Vermeer and Wim F. Passchier. Noise exposure and public health. Environ-
mental Health Perspectives, 2000.

[49] Veljko Pejovic, Neal Lathia, Cecilia Mascolo, and Mirco Musolesi. Mobile-based experience
samping for behaviour research. Pre-print, 2015. arXiv:1508.03725.

[50] Adobe Phonegap. Plugin development guide. http://docs.phonegap.com/en/edge/guide_
hybrid_plugins_index.md.html#Plugin%20Development%20Guide. Accessed: 2015-11-25.

[51] Erin Pierce. Mobile push notification strategy: Tips for engaging and retain-
ing users. http://blogs.adobe.com/digitalmarketing/digital-marketing/

mobile-push-notification-strategy-tips-for-engaging-and-retaining-users/.
Accessed: 2015-11-02.

[52] Bluyssen PM, Fossati S, Mandin C, Cattaneo A, and Carrer P. Towards a new procedure for
identifying causes of health and comfort problems in office buildings. ISIAQ. 10th International
Conference on Healthy Buildings 2012. Proceedings of a meeting held 8–12 July 2012, 2012.

[53] Michaela Riediger. Experience sampling. German Data Forum, Building on Progress. Ex-
panding the research infrastructure for the social, economic, and behavioral sciences, 2010.

[54] Samsung. Galaxy s6. http://www.samsung.com/hk_en/consumer/mobile/smartphones/

smartphones/SM-G9250ZWATGY. Accessed: 2015-11-09.

[55] Christie N. Scollon, Chu Kim-Prieto, and Ed Diener. Experience sampling: Promises and
pitfalls, strenghts and weaknesses. Journal of Happiness Studies, 2003.

[56] C. J. Simonson, M. Salonvaara, and T. Ojanen. The effect of structures on indoor humidity
– possibility to improve comfort and perceived air quality. Indoor Air, 2002.

[57] Laerd Statistics. Mann-whitney u test using spss statistics. https://statistics.laerd.com/
spss-tutorials/mann-whitney-u-test-using-spss-statistics.php. Accessed: 2015-12-
05.

[58] SWITCH. About us. https://www.switch.ch/about/foundation/. Accessed: 2015-12-04.

58

http://www.methodenberatung.uzh.ch/datenanalyse/unterschiede/zentral.html#13
http://www.methodenberatung.uzh.ch/datenanalyse/unterschiede/zentral.html#13
http://mosquitto.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.phonegap.com/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://docs.phonegap.com/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://blogs.adobe.com/digitalmarketing/digital-marketing/mobile-push-notification-strategy-tips-for-engaging-and-retaining-users/
http://blogs.adobe.com/digitalmarketing/digital-marketing/mobile-push-notification-strategy-tips-for-engaging-and-retaining-users/
http://www.samsung.com/hk_en/consumer/mobile/smartphones/smartphones/SM-G9250ZWATGY
http://www.samsung.com/hk_en/consumer/mobile/smartphones/smartphones/SM-G9250ZWATGY
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://www.switch.ch/about/foundation/

[59] Dale Tiller, Lily M. Wang, Amy Musser, and Matthew Radik. Combined effects of noise and
temperature on human comfort and performance. Architectural Engineering, 2010.

[60] Andrew Trice. Phonegap advice on dealing with apple applica-
tion rejections. http://www.adobe.com/devnet/phonegap/articles/

apple-application-rejections-and-phonegap-advice.html. Accessed: 2015-11-25.

[61] Phillip J. Walsh, Charles S. Dudney, and Emily D. Copenhaver. Indoor Air Quality. CRC
Press, 1983.

[62] Danni Wang, Edward Arens annd Tom Webster, and Mingyu Shi. How the number and
placement of sensors controlling room air distribution systems affect energy use and comfort.
Energy Systems Laboratory, 2002.

[63] John M. Wargo. PhoneGap Essentials Building Cross-Platform Mobile Apps. Addison-Wesley,
2012.

[64] John M. Wargo. Apache Cordova 3 Programming. Addison-Wesley, 2013.

[65] Bill Williams. Footcandles and lux for architectural lighting - an introduction to illuminance.
http://www.mts.net/~william5/library/illum.htm. Accessed: 2015-11-02.

59

http://www.adobe.com/devnet/phonegap/articles/apple-application-rejections-and-phonegap-advice.html
http://www.adobe.com/devnet/phonegap/articles/apple-application-rejections-and-phonegap-advice.html
http://www.mts.net/~william5/library/illum.htm

Appendices
This part of the document contains code listings and tables that could not be placed inside the
main text or would disturb the normal reading flow. Also, additional information on the statistical
analysis and technical implementation of the application is shown.

60

A Application: Implementation of the unique ID generator

Listing 14: Implementation of the unique ID generator

1 var IDlist = ’0123456789

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ’;

2 var IDlength = 8;

3 var createID = function () {

4 var rtn = ’’;

5 for (var i = 0; i < IDlength; i++) {

6 rtn += IDlist.charAt(Math.floor(Math.random () * IDlist.length));

7 }

8 return rtn;

9 }

10 appID = createID ();

11 window.localStorage.setItem(’appUID ’, appID);

B R Script: Mann-Whitney U Test on the User Perception
of Strategy

Listing 15: Regular Strategy and Quality of Answers

1

2 #Which strategy is more disturbing?

3

4 #Very disturbing & Disturbing & Neutral & Little disturbing & Not disturbing

5 # 5 4 3 2 1

6

7 Regular = c(0,2,3,1,0)

8 Random = c(0,0,1,5,0)

9 wilcox.test(Regular ,Random)

10

11 #Refactor to deal with Ties

12 install.packages("coin")

13 library(coin)

14 g = factor(c(rep("Regular", length(Regular)), rep("Random", length(Random))))

15 v = c(Regular , Random)

16 wilcox_test(v ~ g, distribution="exact")

61

C R Output - Detailed outputs for strategy and answer rate

Listing 16: Spearman’s rho for strategy on the first day

1 data: AnswersDay1 and Day1Group

2 S = 299.96 , p-value = 0.8803

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 -0.048795

Listing 17: Spearman’s rho for strategy on the second day

1 data: AnswersDay2 and Day2Group

2 S = 397.84 , p-value = 0.2088

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 -0.391059

Listing 18: Spearman’s rho for strategy on both days combined

1 data: RegRand and BinaryRandom

2 S = 2912.4 , p-value = 0.2086

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 -0.2662416

D R Output - Detailed outputs for the quality of the sensor-
data

Listing 19: Spearman’s rho for visual quality

1 data: LightFrame$userL and LightFrame$sensorL

2 S = 732760 , p-value = 2.199e-11

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 0.4504185

Listing 20: Spearman’s rho for acoustic quality

1 data: NoiseFrame$userC and NoiseFrame$sensorC

2 S = 705710 , p-value = 2.19e-13

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 0.4862721

62

E R Output - Detailed outputs for the quality of sensors
for the regular strategy

Listing 21: Regular strategy: Acoustic quality

1 data: RegularDataframe2$RegularNoise2 and RegularDataframe2$RegularNoiseS2

2 S = 48506, p-value = 0.0001779

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 0.4096094

Listing 22: Regular strategy: Visual quality

1 data: RegularDataframe2$RegularLighting2 and RegularDataframe2$RegularLightS2

2 S = 54105, p-value = 0.002071

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 0.3414737

F R Output - Detailed outputs for the quality of sensors for
the random strategy

Listing 23: Random strategy: Acoustic quality

1 data: RandomDataframe$RandomNoise and RandomDataframe$RandomNoiseS

2 S = 12957, p-value = 9.105e-11

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 0.7033729

Listing 24: Random strategy: Visual quality

1 data: RandomDataframe$RandomLighting and RandomDataframe$RandomLightS

2 S = 17370, p-value = 1.397e-07

3 alternative hypothesis: true rho is not equal to 0

4 sample estimates:

5 rho

6 0.6023368

63

G Excel Table with User Information and the Exact Noti-
fication Date

64

H Instructions on how to use the ComfortIST application

The purpose of the survey is to find out if there is a relationship between objective data measured
by the built in smartphone sensors and the perceived comfort. To collect this data you are asked
several times a day to fill out a small form. This happens via push notifications on your smartphone.
If you take part in the survey please keep the following points in mind:

• It is important for the survey that you answer as fast as possible. If you have missed a
single notification please answer as soon as you can. If you have missed more than one
notification please only answer once.

• To gather objective information, the application needs to collect data from the built-in sen-
sors. Therefore, it accesses the luminosity sensor and the microphone. This information,
together with the data entered into the form, is sent to a server.

• Please enter your first name starting with a capital letter the first time you’ve opened the
application.

• To participate in the experiment it is important that you have turned on the Auto-Brightness
feature of your iPhone and that you have enabled Push Notifications. The app also needs
the permission to access the microphone. No audio files are saved or sent from the app.
The microphone only measures the sound pressure.

• As soon as you have pressed the submit button, you get prompted to a page with a small
visualization of the data you have entered so far. You can leave the app at any time by
pressing the home button.

• The application sends push notifications from 8 AM to 7 PM for two days. If you like
to leave the experiment, just delete the application from your device.

• If you have any questions, please feel free to write an email to romanrick.kuepper@unifr.ch.

65

I R Script: Regular Strategy and Quality of Answers

Listing 25: Regular Strategy and Quality of Answers

1

2 library(RMySQL)

3 mydb = dbConnect(MySQL(), user=’root’, password=’Unifr2020!’, dbname=’newComfort

’, host=’localhost ’)

4 dbListFields(mydb , ’Comfort ’)

5

6 ############## Regular:

7 #agnes: h3B1vM8e

8 #pierre: wlhAlrPQ d2

9 #michelle: v0edBlns d2

10 #marie: ARnPZBbJ

11 #carlo: 5zie0j3s d2

12 #rudi: jbYITDpF

13 #florian: 5mZU0HWz

14 #benji: NuhKZFrx d2

15

16 pierreD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

wlhAlrPQ/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/wlhAlrPQ

/noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/wlhAlrPQ/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/wlhAlrPQ/

lightS ’ and Date like ’2015-10-22 %’;")

17 michelleD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

v0edBlns/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/v0edBlns

/noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/v0edBlns/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/v0edBlns/

lightS ’ and Date like ’2015-10-22 %’;")

18 carloD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/5

zie0j3s/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/5zie0j3s/

noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/5zie0j3s/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/5zie0j3s/

lightS ’ and Date like ’2015-10-22 %’;")

19 benjiD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

NuhKZFrx/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/NuhKZFrx

/noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/NuhKZFrx/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/NuhKZFrx/

lightS ’ and Date like ’2015-10-22 %’;")

20 marieD1 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

ARnPZBbJ/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/ARnPZBbJ

/noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/ARnPZBbJ/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/ARnPZBbJ/

lightS ’ and Date like ’2015-10-21 %’;")

21 rudiD1 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

jbYITDpF/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/jbYITDpF

/noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/jbYITDpF/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/jbYITDpF/

lightS ’ and Date like ’2015-10-21 %’;")

22 florianD1 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/5

mZU0HWz/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/5mZU0HWz/

noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/5mZU0HWz/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/5mZU0HWz/

lightS ’ and Date like ’2015-10-21 %’;")

23 agnesD1 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

h3B1vM8e/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/h3B1vM8e

/noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/h3B1vM8e/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/h3B1vM8e/

lightS ’ and Date like ’2015-10-21 %’;")

24

25 RegularCharacter2 = rbind(pierreD2 , michelleD2 , carloD2 , benjiD2 , marieD1 ,

rudiD1 , florianD1 , agnesD1)

26 RegularCharacter2

27 typeof(RegularCharacter2)

28

29 #Regular to data.frame

30 Regular2 <- transform(RegularCharacter2 , Value = as.numeric(Value))

31 Regular2

66

32 RegularValue2 <- Regular2$Value

33 RegularValue2

34

35 #### the data received at the 2015 -10 -21 12:14:03 is corrupted

36 #### delete corrupted data

37 RegularValue2 = RegularValue2 [-257]

38 RegularValue2 [257]

39 RegularValue2 = RegularValue2 [-257]

40 RegularValue2 [257]

41 RegularValue2 = RegularValue2 [-257]

42 RegularValue2 [257]

43 RegularValue2 = RegularValue2 [-257]

44 RegularValue2 [257]

45 RegularValue2 = RegularValue2 [-257]

46 RegularValue2 [257]

47 RegularValue2 = RegularValue2 [-257]

48 RegularValue2 [257]

49 RegularValue2 = RegularValue2 [-257]

50 RegularValue2 [257]

51 #####

52

53 RegularValue2

54 RegularValue2 [250:270]

55

56 length(RegularValue2)

57

58 RegularNoise2 <- RegularValue2[seq(1, length(RegularValue2), 4)]

59 RegularNoise2

60 RegularLighting2 <- RegularValue2[seq(2, length(RegularValue2)-1, 4)]

61 RegularLighting2

62 RegularNoiseS2 <- RegularValue2[seq(3, length(RegularValue2), 4)]

63 RegularNoiseS2

64 ##### Error correction

65 mean(RegularNoiseS2)

66 RegularNoiseS2 [55]

67 RegularNoiseS2 [55]= mean(RegularNoiseS2)

68 RegularNoiseS2

69 ######

70 RegularLightS2 <- RegularValue2[seq(4, length(RegularValue2), 4)]

71 RegularLightS2

72

73 length(RegularNoise2)

74 length(RegularLighting2)

75 length(RegularNoiseS2)

76 length(RegularLightS2)

77

78 RegularDataframe2 <- data.frame(RegularNoise2 ,RegularNoiseS2 , RegularLighting2 ,

RegularLightS2)

79 RegularDataframe2

80 #Boxplot Regular

81 plot(RegularDataframe2)

82

83 #correlation Regular

84 CorRegularNoise2 <- cor.test (RegularDataframe2$RegularNoise2 , RegularDataframe2

$RegularNoiseS2 , method = "spearman") #spearman with according p-value

85 CorRegularNoise2

86

87 CorRegularLight2 <- cor.test (RegularDataframe2$RegularLighting2 ,

RegularDataframe2$RegularLightS2 , method = "spearman") #spearman with

according p-value

88 CorRegularLight2

67

J R Script: Random Strategy and Quality of Answers

Listing 26: Random Strategy and Quality of Answers

1

2 library(RMySQL)

3 mydb = dbConnect(MySQL(), user=’root’, password=’Unifr2020!’, dbname=’newComfort

’, host=’localhost ’)

4 dbListFields(mydb , ’Comfort ’)

5

6 ############## Regular:

7 #agnes: h3B1vM8e

8 #pierre: wlhAlrPQ d2

9 #michelle: v0edBlns d2

10 #marie: ARnPZBbJ

11 #carlo: 5zie0j3s d2

12 #rudi: jbYITDpF

13 #florian: 5mZU0HWz

14 #benji: NuhKZFrx d2

15

16 pierre = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

wlhAlrPQ/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/wlhAlrPQ

/noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/wlhAlrPQ/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/wlhAlrPQ/

lightS ’ and Date like ’2015-10-21 %’;")

17 michelle = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

v0edBlns/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/v0edBlns

/noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/v0edBlns/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/v0edBlns/

lightS ’ and Date like ’2015-10-21 %’;")

18 carlo = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/5

zie0j3s/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/5zie0j3s/

noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/5zie0j3s/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/5zie0j3s/

lightS ’ and Date like ’2015-10-21 %’;")

19 benji = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

NuhKZFrx/noise ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/NuhKZFrx

/noiseS ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/NuhKZFrx/

lighting ’ and Date like ’2015-10-21 %’ or Sensor like ’iphone/NuhKZFrx/

lightS ’ and Date like ’2015-10-21 %’;")

20 marieD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

ARnPZBbJ/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/ARnPZBbJ

/noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/ARnPZBbJ/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/ARnPZBbJ/

lightS ’ and Date like ’2015-10-22 %’;")

21 rudiD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

jbYITDpF/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/jbYITDpF

/noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/jbYITDpF/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/jbYITDpF/

lightS ’ and Date like ’2015-10-22 %’;")

22 florianD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/5

mZU0HWz/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/5mZU0HWz/

noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/5mZU0HWz/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/5mZU0HWz/

lightS ’ and Date like ’2015-10-22 %’;")

23 agnesD2 = dbGetQuery(mydb , "select * from Comfort where Sensor like ’iphone/

h3B1vM8e/noise ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/h3B1vM8e

/noiseS ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/h3B1vM8e/

lighting ’ and Date like ’2015-10-22 %’ or Sensor like ’iphone/h3B1vM8e/

lightS ’ and Date like ’2015-10-22 %’;")

24

25 RandomCharacter = rbind(pierre , michelle , carlo , benji , marieD2 , rudiD2 ,

florianD2 , agnesD2)

26 RandomCharacter

27 typeof(RandomCharacter)

28

29 #Regular to data.frame

30 Random <- transform(RandomCharacter , Value = as.numeric(Value))

31 Random

68

32 RandomValue <- Random$Value

33 RandomValue

34

35 RandomNoise <- RandomValue[seq(1, length(RandomValue), 4)]

36 RandomNoise

37 RandomLighting <- RandomValue[seq(2, length(RandomValue)-1, 4)]

38 RandomLighting

39 RandomNoiseS <- RandomValue[seq(3, length(RandomValue), 4)]

40 RandomNoiseS

41 RandomLightS <- RandomValue[seq(4, length(RandomValue), 4)]

42 RandomLightS

43

44 length(RandomNoise)

45 length(RandomLighting)

46 length(RandomNoiseS)

47 length(RandomLightS)

48

49 RandomDataframe <- data.frame(RandomNoise ,RandomNoiseS , RandomLighting ,

RandomLightS)

50 RandomDataframe

51 #Boxplot Random

52 plot(RandomDataframe)

53

54 #correlation Random

55 CorRandomNoise <- cor.test (RandomDataframe$RandomNoise , RandomDataframe$

RandomNoiseS , method = "spearman") #spearman with according p-value

56 CorRandomNoise

57

58 CorRandomLight <- cor.test (RandomDataframe$RandomLighting , RandomDataframe$

RandomLightS , method = "spearman") #spearman with according p-value

59 CorRandomLight

69

K Server: Implementation of the Eclipse Paho Python client

Listing 27: Python Script that stores incoming MQTT messages into a MySQL database

1

2 import paho.mqtt.client as mqtt

3 import MySQLdb

4

5 con = MySQLdb.connect(host="localhost",

6 user="root",

7 passwd="Unifr2020!",

8 db="14 Sept15")

9

10 # The callback for when the client receives a CONNACK response from the server.

11 def on_connect(client , userdata , rc):

12 print("Connected with result code "+str(rc))

13 client.subscribe("#")

14

15 # The callback for when a PUBLISH message is received from the server.

16 def on_message(client , userdata , msg):

17 with con:

18 cur = con.cursor ();

19 cur.execute("insert into Comfort(Sensor , Value , Date) values(’"+msg.

topic+"’,’"+msg.payload+"’,CURRENT_TIMESTAMP);")

20 print(msg.topic+" "+str(msg.payload))

21

22 client = mqtt.Client ()

23 client.on_connect = on_connect

24 client.on_message = on_message

25 client.connect(host="86.119.31.113", port =1883)

26

27 # Blocking call that processes network traffic , dispatches callbacks and

28 # handles reconnecting.

29 # Other loop*() functions are available that give a threaded interface and a

30 # manual interface.

31 client.loop_forever ()

70

L Application: Implementation of the Eclipse Paho Javascript
client

Listing 28: Paho client inside the application that posts the data to the server

1 var wsbroker = "86.119.31.113";

2 var wsport = 9001;

3 var client = new Paho.MQTT.Client(wsbroker , wsport ,

4 "myclientid_" + parseInt(Math.random () * 100,

10));

5

6 client.onConnectionLost = function (responseObject) {

7 console.log("connection lost: " + responseObject.errorMessage);

8 };

9 client.onMessageArrived = function (message) {

10 console.log(message.destinationName , ’ -- ’, message.payloadString);

11 };

12

13 var options = {

14 timeout: 3,

15

16 onSuccess: function () {

17 console.log("mqtt connected");

18 // Connection succeeded; subscribe to our topic , you can add multile lines

of these

19 //client.subscribe(’/World’, {qos: 1});

20

21 // publish to a topic on connect

22 message = new Paho.MQTT.Message("New User connected: " + window.localStorage

.getItem(’appUID ’));

23 message.destinationName = "/Connected";

24 client.send(message);

25 },

26 onFailure: function (message) {

27 console.log("Connection failed: " + message.errorMessage);

28 }

29 };

30 function initClient () {

31 client.connect(options);

32 }

33

34 /*function sendJSON () {

35 console.log("sendJSON entered")

36 jsonString = JSON.stringify(globalData);

37 message = new Paho.MQTT.Message(jsonString);

38 message.destinationName = "/Data";

39 client.send(message);

40 window.location.href="question.html";

41 }*/

42

43 function sendActivity () {

44 console.log("sendActivity entered")

45 activityValue = globalData.activity;

46 message = new Paho.MQTT.Message(activityValue);

47 message.destinationName = "iphone/" + window.localStorage.getItem(’appUID ’)

+ "/activity";

48 client.send(message);

49 }

50

51 function sendNoise () {

52 console.log("sendNoise entered")

53 noiseValue = globalData.noise;

54 message = new Paho.MQTT.Message(noiseValue);

55 message.destinationName = "iphone/" + window.localStorage.getItem(’appUID ’)

+ "/noise";

56 client.send(message);

57 }

71

M Application: Save variable in local SQL database

Listing 29: Open and fill local SQL database

1

2 // *** start local database ***

3 function addGlobalToLocalDB () {

4 // *** start sql database ***

5 // create db with approx 10mb of storage

6 var db = window.openDatabase("localDB", "1.0", "Local DB",

10000000);

7 db.transaction(runTransaction , errorDB , successDB);

8

9 var noiseUdb = globalData.noise;

10 var lightUdb = globalData.lighting;

11 var noiseSdb = globalData.NoiseS;

12 var lightSdb = globalData.LightS;

13

14 function runTransaction(t){

15 t.executeSql(’CREATE TABLE IF NOT EXISTS comfort (id

unique , noiseS , noiseU , lightS , lightU , date)’)

;

16 t.executeSql("INSERT INTO comfort (noiseU , lightU ,

noiseS , lightS) VALUES ("+noiseUdb+", "+lightUdb

+", "+noiseSdb+", "+lightSdb+")");

17 }

18 function errorDB(err){

19 console.log(’Error creating tables: ’+err);

20 }

21 function successDB (){

22 console.log(’Successfully created tables ’);

23 window.location.href="question.html";

24 }

25 // *** end sql database ***

26 }

27 // *** end local database ***

72

N Server: Node.js script that notifies a user with a tag

Listing 30: PushBots Node.js script for User1

1 exports.api = require(’./api’);

2

3 var pushbots = require(’pushbots ’);

4 var Pushbots = new pushbots.api({

5 id:’5609620 b1779591b758b4567 ’,

6 secret:’70 efebad0128903db8f6e593a1bbdb08 ’

7 });

8 Pushbots.setMessage("How are you right now?" , [0]);

9 Pushbots.customNotificationTitle("comfortIST");

10

11 // push to user with certain tag

12 Pushbots.sendByTags (["User1"]);

13

14 //to push to all

15 Pushbots.push(function(response){

16 console.log(response);

17 });

73

	List of Figures
	List of Tables
	Introduction
	Motivation
	Project Goals
	Structure

	State of the Art
	Human Comfort
	Thermal
	Visual
	Acoustic
	Hygienic

	Experience Sampling Methods
	Traditional
	mESM
	Strengths and Weaknesses

	Mobile Sensing
	Special Devices
	Smartphones

	Push Notifications
	Local and Remote Notifications
	Push Notification Strategies

	Concept Overview
	Rationale
	Proof of Concept
	Parameters to Capture

	Project Overview
	System Architecture
	Design Choices
	Interrupting the User
	Data Collection
	Data Storage and Utilization

	Evolution of the Interface

	Implementation: Mobile Device
	Technologies
	Native
	Hybrid

	Apache Cordova
	Custom plugins

	Cordova Application
	JavaScript Implementation
	Data Visualization
	Data Transmission

	Native Plugin
	Noise Metering
	Illuminace Metering

	Implementation: Server-side
	Overview
	MQTT-Protocol
	MySQL Database
	Push Notifications
	Apple Push Notification Service
	Push Notifications with Pushbots

	Evaluation
	Test Scenario
	User Instructions
	Distribution
	Perception of the Users

	Quantitative Analysis
	Overview
	Strategy and Answer Rate
	External Factors
	Quality of Sensor Values
	Strategy and Quality of Answers
	Regular Strategy
	Random Strategy

	Conclusion
	Future Works
	References
	Appendices
	Application: Implementation of the unique ID generator
	R Script - Mann-Whitney U Test on the User Perception of Strategy
	R Output - Detailed outputs for strategy and answer rate
	R Output - Detailed outputs for the quality of the sensor-data
	R Output - Detailed outputs for the quality of sensors for the regular strategy
	R Output - Detailed outputs for the quality of sensors for the random strategy
	Excel Table with User Information and the Exact Notification Date
	Instructions on how to use the ComfortIST application
	R Script: Regular Strategy and Quality of Answers
	R Script: Random Strategy and Quality of Answers
	Server: Implementation of the Eclipse Paho Python client
	Application: Implementation of the Eclipse Paho Javascript client
	Application: Save variable in local SQL database
	Server: Node.js script that notifies a user with a tag

