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A BAYESIAN APPROACH TO RETRANSFORMATION BIAS
IN TRANSFORMED REGRESSION
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Abstract. Ecological data analysis often involves fitting linear or nonlinear equations to
data after transforming either the response variable, the right side of the equation, or both, so
that the standard suite of regression assumptions are more closely met. However, inference is
usually done in the natural metric and it is well known that retransforming back to the original
metric provides a biased estimator for the mean of the response variable. For the normal linear
model, fit under a log-transformation, correction factors are available to reduce this bias, but
these factors may not be generally applicable to all model forms or other transformations. We
demonstrate that this problem is handled in a straightforward manner using a Bayesian
approach, which is general for linear and nonlinear models and other transformations and
model error structures. The Bayesian framework provides a predictive distribution for the
response variable so that inference can be made at the mean, or over the entire distribution to
incorporate the predictive uncertainty.

Key words: allometric relationship; Bayesian analysis; lognormal model; log-transformed regression;
Poisson regression; retransformation.

INTRODUCTION

It is common in simple linear regression analysis to
log-transform the response and sometimes the predictor

variable to estimate model parameter values. Log-
transformation can accomplish several things:
1) It can linearize the relationship between the

response and predictor variable.
2) It can stabilize the model error variance so that the

assumption of a constant variance is more closely met.
3) It can remove serial correlation among the

residuals.

4) It can make the assumption of conditional
normality more realistic for response variables that are
bounded, such as concentration data which cannot be

less than zero.
Typically, however, prediction and interpretation in

the natural metric are of primary interest and the simple
linear model that has been estimated under a log-
transformation as

logY ¼ âþ b̂ log X ð1Þ

is often retransformed (exponentiated) as

Y ¼ aXb̂ ð2Þ

where log Y is the response variable, log X is the
predictor variable, â and b̂ are the intercept and slope

parameter estimates [where a ‘‘hat’’ (^) symbol denotes

estimate], respectively, and a¼ exp(â). Previous authors
have pointed out that Eq. 2 is a biased estimator for the

mean of Y (Sprugel 1983, Koch and Smillie 1986,

Newman 1993) with a bias that is generally downward,

though prediction at X values that are well outside of the

calibration data set range can be positively biased (Cohn

et al. 1989). This bias results, largely, from ignoring the

model error term, e, when exponentiating Eq. 1. This

becomes clearer when Eq. 1 is written with the error

term explicitly included as

logY ¼ âþ b̂logX þ e: ð3Þ

Then exponentiation results in

Y ¼ aXb̂ee: ð4Þ

The problem occurs because, under standard regres-

sion assumptions, e represents a normal distribution

with mean¼ 0 and variance¼ r2, and the mean of ee 6¼
1, as might be expected. When e is exponentiated, the

entire distribution, not just the mean, is exponentiated.

Exponentiation of a normal distribution with mean¼ l
and variance ¼ r2 results in a lognormal distribution

with mean ¼ exp(l þ 0.5r2). Consequently, in Eq. 4, ee

represents a multiplicative error term that is lognormally

distributed with a mean ¼ exp(0 þ 0.5r2) ¼ exp(0.5r2).

Because the mean is an average of all possible values

weighted by their relative probabilities, it is not invariant

to nonlinear transformations, such as exponentiation.

Thus, the mean of a lognormal distribution is not

obtained by exponentiating the mean of the underlying

normal distribution (Crow and Shimizu 1988).
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A common approach to reduce the bias in estimating

Y is to multiply Eq. 1 by

expð0:5s2Þ ð5Þ

where s2 is a sample-based estimate for r2. This method

reduces the bias that results from ignoring the model

error term, but is generally recognized as having a slight

positive bias (Smith 1993). Cohn et al. (1989) refer to the

estimator represented by the correction factor in Eq. 5 as

a ‘‘quasi maximum likelihood estimator’’ (QMLE) and

also present a ‘‘minimum-variance-unbiased-estimator’’

(MVUE), based on a derivation by Bradu and Mundlak

(1970). However, the MVUE is relatively complex to

program and, because the bias of the QMLE is generally

small, the MVUE has not been widely employed.

Recently, the United States Geological Survey has

incorporated the MVUE into a software package

specifically for the problem of estimating pollutant

loads in rivers and streams (Runkel et al. 2004).

For most linear regression problems either the QMLE

or the MVUE provide an adequate solution to the

problem of retransformation bias. However, these

estimators have not been shown to be applicable for

the analogous problem in a nonlinear context, or for

models with non-normal error structures such as

generalized linear models (McCullagh and Nelder

1989). With nonlinear models, it is still often useful to

log-transform either the response variable, the right side

of the equation, or both to stabilize the model error

variance and/or accommodate response variables that

are bounded at zero. In nonlinear models, the parameter

and predictive distributions are likely to have non-

standard forms, making the properties of generally

applicable correction factors difficult to derive in a

classical statistical framework. Additionally, depending

on the model form, it is possible that the degree of bias

may differ throughout the parameter and sample space.

Thus, a more general framework is useful to accom-

modate this problem. We describe the Bayesian ap-

proach to the problem of retransformation bias. The

Bayesian framework accommodates this problem quite

naturally because inference and prediction are based on

the posterior parameter distribution. Retransformation

back to the natural metric is done by exponentiating the

entire posterior distribution, resolving the bias problem

in a straightforward manner. The Bayesian approach is

applicable with log-transformed linear and nonlinear

models, models fit using other variable transformations

(Miller 1984), and models with alternative error

structures.

Bayesian inference begins with Bayes’ theorem:

pðhjyÞ ¼ pðhÞf ðyjhÞZ
h

pðhÞf ðyjhÞ dh
ð6Þ

where p(h j y) is the posterior probability of h (the

probability of the parameter vector, h, after observing

the new data, y), p(h) is the prior probability of h, (the
probability of h before observing y), and f (y j h) is the

likelihood function, which incorporates the statistical

relationships as well as the mechanistic or process

relationships among the predictor and response varia-

bles. Predictions for unobserved or future ys (denoted ~y )

are assessed over the entire posterior parameter distri-

bution as

pð~yjy; hÞ ¼
Z

h
f ð~yjhÞpðhjyÞ dh ð7Þ

referred to as predictive distribution.

For the log-transformed, simple linear model (Eq. 3),

under the assumption that e is distributed normally, the

likelihood function is

f ðyjhÞ ¼
Yn

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp

ðlogY � a� blogXÞ2

�2r2

" #
ð8Þ

where n is the number of observations, and y denotes

observations of the response variable, Y, and the

predictor variable, X. More generally, the likelihood

function, for a normally distributed error term, can be

expressed as

f ðyjhÞ ¼
Yn

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp

½logY � gðx; bÞ�2

�2r2

( )
ð9Þ

where g(x,b) is the functional form of the model. In

some applications, such as our nonlinear example, g(x,b)
may also be log transformed.

EXAMPLES

We demonstrate the Bayesian approach using three

examples: a simple linear regression model relating log

total phosphorus concentration (kg/m3) to log(river

flow) (m3/d), a nonlinear lake phosphorus model that

predicts in-lake phosphorus concentration (mg/L) from

average influent phosphorus concentration (mg/L) and

water residence time (yr), and a Poisson regression

(generalized linear model) relating species number to

area.. We programmed these examples into WinBUGS,

a free, downloadable software, for Bayesian analysis

(Gilks et al. 1994). WinBUGS uses Markov chain

Monte Carlo methods (McMC) to generate samples

from the posterior parameter distribution. For normal,

linear models numerical approximation is actually

unnecessary; analytical solutions are available using

appropriate prior distributions. However, WinBUGS is

straightforward to program (see Supplement), allows the

use of prior distributions for the normal linear model

that do not result in closed form solutions (if desired),

and it can accommodate model error structures in

addition to the standard normal form.

Simple linear example

Our simple linear regression model is based on 26

measurements of total phosphorus concentration and

concurrent daily average flow measurements collected
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by the North Carolina Department of Environment and

Natural Resources, and the U.S. Geological Survey,

respectively, from the Neuse River in North Carolina,

USA. We fit Eq. 3 with log(P concentration) and

log(flow) as the response and predictor variables,

respectively, using SAS 9.1 (SAS 2002) and WinBUGS.

For the Bayesian estimation we used non-informative

prior distributions for a, b, and r2.

Nonlinear example

Our example nonlinear model is a simple ‘‘input–

output’’ or Vollenweider model (Vollenweider 1969).

Various forms of this model have been fit to regional

lake data bases (Canfield and Bachman 1981, Reckhow

1988) and incorporated into Eutromod (Reckhow et al.

1992, Hession et al. 1996), a spreadsheet-based lake

eutrophication model. We consider the following form:

log P ¼ log
Pin

1þ ksw
þ e ð10Þ

where P is the annual average in-lake phosphorus

concentration, Pin is the average influent concentration,

sw is water residence time, k is an empirical constant,

and e is the normally distributed model error with mean

¼ 0 and variance¼ r2. We fit this model to an example

data set of 29 Florida lakes (Stow and Reckhow 1996),

using nonlinear least squares (nls) as implemented in

SAS software using Proc NLIN and WinBUGS. The

WinBUGS estimation used non-informative priors for

the model parameters and 20 000 iterations (after a 1000

iteration ‘‘burn in’’).

Poisson (generalized linear model) example

Our linear and nonlinear examples are both based on

the assumption of a normal, additive, error structure. To

illustrate an alternative error structure we show results

from a Poisson regression using number of number of

butterfly species as the response variable and forest

patch size as the predictor variable, data of Lovejoy et

al. (1984) as presented by Ramsey and Schafer (2002).

Poisson regression can be applicable when the response

variable represents counts that are regarded as a linear

function of one or more predictor variables. This model

has the form

Ns ; PoissonðmuÞ ð11Þ

logðmuÞ ¼ b0 þ b1logðsizeÞ ð12Þ

where Ns ¼ species number and size ¼ forest fragment

size. We fit this model using Proc Genmod in SAS

software, and in WinBUGS with non-informative priors

for b0 and b1.

RESULTS

Simple linear example

The resultant simple linear model relating log concen-

tration to log(flow) (Fig. 1) has the following form:

logðTPÞ ¼ �0:60� 0:56ðflowÞ þ e e ;Nð0; 0:286Þ:
ð13Þ

The corresponding retransformation correction factor is

exp(0.286/2) ¼ 1.15. Before retransformation the 95%
predictive interval is evenly spaced about the regression

line (Fig. 1). After retransformation the upper bound of

the 95% predictive interval is further from the retrans-

formed regression line than the lower bound, reflecting

the asymmetry of the exponentiated error term (Fig. 1).

The retransformed regression line is less than the bias-

corrected mean, while the Bayesian mean is slightly

greater than the bias-corrected mean. The Bayesian

mean is slightly greater than the bias-corrected mean

because the Bayesian predictive distribution incorpo-

rates both the model error variance and the posterior

parameter variance.

Nonlinear example

The resultant parameter values are similar using each

method. Using nls, the optimum value for k was 2.38

with a 95% confidence interval of 1.50–3.26. With

WinBUGS, k had a mean of 2.38, a median of 2.36,

and a 95% credible region of 1.59–3.31. The model error

variance (mean squared error) obtained with nls was

0.269, while WinBUGS indicated a mean of 0.290, a

median of 0.276, and a 95% credible region of 0.170–

0.495 for the error variance parameter. Using the

correction factor applicable for log-transformed linear

models, exp(0.5s2), results in a value of 1.14, based on

nls mean squared error estimate.

To examine various regions of sample space we

predicted P at the nine combinations of Pin and sw
resulting from using the minimum (Pin¼ 0.035 mg/L, sw
¼ 0.027 yr), median (Pin ¼ 0.297 mg/L, sw ¼ 0.419 yr),

and maximum (Pin¼ 1.923 mg/L, sw¼ 3.4 yr) observed

values of each. Mean posterior P predictions are

consistently higher than results obtained by exponenti-

ating nls results (Fig. 2). The correction factor, obtained

by taking the ratio of the P posterior mean: nls estimate

differs within the sample space, always exceeding 1.14

mg/L, the value obtained using the linear model

correction factor. This last result is not necessarily

general for all nonlinear models, but occurs because the

variance of the Bayesian predictive distribution incor-

porates both the model error variance and the posterior

parameter variance, and the posterior parameter var-

iance may differ within the sample space.

Poisson example

Parameter estimates were essentially identical using

classical and Bayesian approaches; the classical ap-

proach yielded estimates of 3.68 for b0 and 0.18 for b1
with standard errors of 0.05 and 0.14, respectively, and

similarly the Bayesian posterior means were 3.68 for b0
and 0.18 for b1 with respective standard deviations of

0.05 and 0.14. A comparison of predicted values in the

natural metric indicates that the Bayesian predictive
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mean slightly exceeds the retransformed value through-

out the observed sample space (Fig. 3).

CONCLUSION

Our main point in this brief report was to illustrate

that the Bayesian approach provides a general frame-

work for handling the problem of retransformation bias

which occurs when models are fit under transformation

then retransformed back to the original metric. This bias

occurs because the mean of a distribution is not

invariant to many nonlinear transformations. We

emphasize that the Bayesian approach should not be

regarded as an attempt to correct for bias. The mean of

the Bayesian predictive distribution will incorporate

both model error and posterior parameter variance, thus

it is not exactly analogous to classical bias-corrected

mean, which is based only on the model error variance,

though the results will often be similar (Fig. 1). Bias is a

long-term relative frequency concept applicable to

classical estimators, but is not generally regarded as a

relevant Bayesian concept because Bayesian inference is

conditioned on the observed data (Barnett 1982). We

also point out that a biased estimator can give results

that are less than, greater than, or equal to the ‘‘true’’

but unknown mean in any given sample; bias is a long-

term property of an estimator, it is not applicable to a

particular estimate. The real utility of the Bayesian

approach is that it provides an entire predictive

FIG. 1. Simple linear model relating log total phosphorus concentration in lakes to log(flow) before (top) and after (bottom)
retransformation. In both panels, observations are denoted as ‘‘þ’’ and dashed lines represent 95% prediction intervals. The solid
line in the top panel represents the mean before retransformation; in the bottom panel, the solid line represents the model
retransformed without bias correction (Eq. 2). The dotted line in the bottom panel represents the bias-corrected estimate (Eq. 5).
Circles in the bottom panel represent means of Bayesian predictive distribution (Eq. 7) for each observation.
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FIG. 2. Predictive distributions for total phosphorus (TP) using representative combinations of sw (water residence time) and
Pin (average influent concentration of P). Top row sw¼0.027, middle row sw¼0.419, bottom row sw¼3.4; first column Pin¼0.035,
middle column Pin¼ 0.297, and third column Pin¼ 1.923. The predictive mean is denoted by a solid vertical line; the exponentiated
value is denoted by dotted vertical line. The ratio of predictive mean : exponentiated value is indicated by the number in the upper
right quadrant.

FIG. 3. Results of Poisson regression relating species number to forest fragment size. The straight line depicts retransformed
model predictions; Bayesian predictive distributions are shown at fragment size values of 1, 10, 100, and 1000 ha. The solid vertical
line through each distribution depicts the predictive distribution mean. Circles depict individual observations. Values at the top of
the graph are the ratio of Bayesian predictive mean : retransformed value.
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distribution over which inference can be made, instead
of using only a point estimate such as the mean. The

predictive distribution incorporates an estimate of
prediction uncertainty which can be used for risk
evaluation in decision-making. While the implementa-

tion of Bayesian approaches was historically limited by
analytically intractable results, fast computers and
cleverly written algorithms now make precise numerical

approximations straightforward to generate.
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SUPPLEMENT

WinBUGS code for the examples shown in the main article (Ecological Archives E087-086-S1).

June 2006 1477BAYESIAN LOOK AT RETRANSFORMATION BIAS

S
T
A
T
I
S
T
I
C
A
L
R
E
P
O
R
T
S

View publication statsView publication stats

https://www.researchgate.net/publication/6917795

