Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file not shown.
Binary file modified q01_Unique_users_subreddit/__pycache__/build.cpython-36.pyc
Binary file not shown.
15 changes: 14 additions & 1 deletion q01_Unique_users_subreddit/build.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,20 @@
# %load q01_Unique_users_subreddit/build.py
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split


def q01_Unique_users_subreddit():
def q01_Unique_users_subreddit(path):

df = pd.read_csv(path, compression='zip')
variable1 = len(df['username'].unique())
variable2 = len(df['subreddit'].unique())

return df,variable1, variable2


path = 'data/subreddit-interactions-for-25000-users.zip'
q01_Unique_users_subreddit(path)



Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file modified q02_top_subreddits_wordcloud/__pycache__/build.cpython-36.pyc
Binary file not shown.
26 changes: 25 additions & 1 deletion q02_top_subreddits_wordcloud/build.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,34 @@
# %load q02_top_subreddits_wordcloud/build.py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from sklearn.model_selection import train_test_split
from greyatomlib.recommendor_system_project.q01_Unique_users_subreddit.build import q01_Unique_users_subreddit

def q02_top_subreddits_wordcloud():
def q02_top_subreddits_wordcloud(path):

# importing data
df, u_user, u_subreddit = q01_Unique_users_subreddit(path)
# Generating a DataFrame that comprise count of each username by subreddit
df_count_subreddit = df.groupby('subreddit')['username'].count().reset_index().sort_values('username',ascending = False)
# setting subreddit name as index of dataframe
df_count_subreddit.index = df_count_subreddit['subreddit']
df_count_subreddit.drop('subreddit', inplace = True,axis = 1)
#creating dictionary of dataframe where key is subreddit name and value is frequency of particular subreddit
d = df_count_subreddit.to_dict()['username']
# creating object of wordCloud
wordcloud = WordCloud()
# generating wordcloud with frequencies store in dictionary
wordcloud.generate_from_frequencies(frequencies=d)
plt.figure()
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()


path = 'data/subreddit-interactions-for-25000-users.zip'
q02_top_subreddits_wordcloud(path)
ls


Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
12 changes: 11 additions & 1 deletion q03_plot_topK_subreddit_of_a_user/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,18 @@
# %load q03_plot_topK_subreddit_of_a_user/build.py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from greyatomlib.recommendor_system_project.q01_Unique_users_subreddit.build import q01_Unique_users_subreddit

def q03_plot_topK_subreddit_of_a_user():
def q03_plot_topK_subreddit_of_a_user(path, user='kabanossi', k= 14):

df, u_user, u_subreddit = q01_Unique_users_subreddit(path)
df1= df.groupby('subreddit')['username'].count().reset_index().sort_values('username',ascending=False)
df1['percentage'] = df1['username'].apply(lambda value: (float(value)/total_user)*100)
return df1[:k]

path = 'data/subreddit-interactions-for-25000-users.zip'
q03_plot_topK_subreddit_of_a_user(path, user='kabanossi', k= 14)


Binary file not shown.
Binary file not shown.
Binary file added q04_weightage/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file added q04_weightage/__pycache__/build.cpython-36.pyc
Binary file not shown.
20 changes: 19 additions & 1 deletion q04_weightage/build.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,24 @@
# %load q04_weightage/build.py
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from greyatomlib.recommendor_system_project.q01_Unique_users_subreddit.build import q01_Unique_users_subreddit

def q04_weightage():
def q04_weightage(path):

df, u_user, u_subreddit = q01_Unique_users_subreddit(path)
# minimum value in utc
mininum = min(df['utc'])
#maximum value in utc for normalization
maximum = max(df['utc'])

# creating weight column
df['weight'] = ((df['utc'] - mininum)+1)/maximum

return df


path = 'data/subreddit-interactions-for-25000-users.zip'
q04_weightage(path)


Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
12 changes: 11 additions & 1 deletion q05_groupby_users_subreddit/build.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,17 @@
# %load q05_groupby_users_subreddit/build.py
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from greyatomlib.recommendor_system_project.q04_weightage.build import q04_weightage

def q05_groupby_users_subreddit():
def q05_groupby_users_subreddit(path):

df = q04_weightage(path)
df1 = df.groupby(['username','subreddit'])['weights'].sum().reset_index()

return df1

path = 'data/subreddit-interactions-for-25000-users.zip'
q05_groupby_users_subreddit(path)


Binary file not shown.
Binary file not shown.
Binary file added q06_similarity/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file added q06_similarity/__pycache__/build.cpython-36.pyc
Binary file not shown.
6 changes: 5 additions & 1 deletion q06_similarity/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q06_similarity/build.py

import pandas as pd
import numpy as np
Expand All @@ -6,7 +7,7 @@
from greyatomlib.recommendor_system_project.q05_groupby_users_subreddit.build import q05_groupby_users_subreddit

def q06_similarity(path, kind='subreddit', similarity_function=cosine_similarity):
"write your solution here"
'write your solution here'
df = q05_groupby_users_subreddit(path)
df01 = df.iloc[:100,:]
matrix= df01.pivot_table(values='weights',columns='subreddit',index='username')
Expand All @@ -22,3 +23,6 @@ def q06_similarity(path, kind='subreddit', similarity_function=cosine_similarity

a = q06_similarity('data/subreddit-interactions-for-25000-users.zip')
print(a)



Binary file not shown.
Binary file not shown.
Binary file added q06_similarity/tests/test_sol.pkl
Binary file not shown.
Binary file added q06_similarity/tests/user_sol.pkl
Binary file not shown.
Binary file modified q07_recommendations/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q07_recommendations/__pycache__/build.cpython-36.pyc
Binary file not shown.
7 changes: 6 additions & 1 deletion q07_recommendations/build.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
# %load q07_recommendations/build.py
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics.pairwise import cosine_similarity
from greyatomlib.recommendor_system_project.q06_similarity.build import q06_similarity

def q07_recommendations(path, user='--ANUSTART-', similarity_function=cosine_similarity, kind='subreddit', number=5):
"write your solution here"
'write your solution here'
new_df, matrix = q06_similarity(path, kind='subreddit', similarity_function=cosine_similarity)
final_dict = dict()
sorted_sub = matrix.loc[user,:].sort_values(ascending=False).index
Expand All @@ -19,3 +20,7 @@ def q07_recommendations(path, user='--ANUSTART-', similarity_function=cosine_sim
final = [x[0] for x in sorted_dict]
recommend = [x for x in final if matrix.loc[user,x]==0.0]
return recommend[0:number]




Binary file modified q07_recommendations/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q07_recommendations/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.