You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
first one of the remaining projected vectors as an approximation of
813
813
<spanclass="math notranslate nohighlight">\(q_2\)</span> and project it again from the rest.</p>
814
814
<p>We can translate this idea to matrices by defining <spanclass="math notranslate nohighlight">\(V^{(0)}\)</span> to be the
815
-
matrix with columns given by the set of initial <spanclass="math notranslate nohighlight">\(v`s. Then after `k\)</span>
815
+
matrix with columns given by the set of initial <spanclass="math notranslate nohighlight">\(v\)</span>s. Then after <spanclass="math notranslate nohighlight">\(k\)</span>
816
816
applications of <spanclass="math notranslate nohighlight">\(A\)</span>, we have <spanclass="math notranslate nohighlight">\(V^{(k)}=A^{k} V^{(0)}\)</span>. By the column space
817
817
interpretation of matrix-matrix multiplication, each column of <spanclass="math notranslate nohighlight">\(V^{(k)}\)</span>
818
818
is <spanclass="math notranslate nohighlight">\(A^{k}\)</span> multiplied by the corresponding column of <spanclass="math notranslate nohighlight">\(V^{(0)}\)</span>. To make the
@@ -962,12 +962,12 @@ <h2><span class="section-number">5.11. </span>Connections between power iteratio
962
962
<divclass="math notranslate nohighlight">
963
963
\[A^k = {Q'}^{(k)}{R'}^{(k)},\]</div>
964
964
<p>from the above theorem. (Remember that <spanclass="math notranslate nohighlight">\({Q'}^{(k)}\)</span> and <spanclass="math notranslate nohighlight">\({R'}^{(k)}\)</span>,
965
-
are different from <spanclass="math notranslate nohighlight">\({Q'}^{(k)}\)</span> and <spanclass="math notranslate nohighlight">\({R'}^{(k)}\)</span>.) In particular, the
966
-
first column of <spanclass="math notranslate nohighlight">\(R^{(k)}\)</span> is <spanclass="math notranslate nohighlight">\(e_1r_{11}^{(k)}\)</span> (because <spanclass="math notranslate nohighlight">\(R^{(k)}\)</span> is
965
+
are different from <spanclass="math notranslate nohighlight">\({Q}^{(k)}\)</span> and <spanclass="math notranslate nohighlight">\({R}^{(k)}\)</span>.) In particular, the
966
+
first column of <spanclass="math notranslate nohighlight">\({R'}^{(k)}\)</span> is <spanclass="math notranslate nohighlight">\(e_1r_{11}^{(k)}\)</span> (because <spanclass="math notranslate nohighlight">\({R'}^{(k)}\)</span> is
967
967
an upper triangular matrix), so the first column of <spanclass="math notranslate nohighlight">\(A^k\)</span> is</p>
968
968
<divclass="math notranslate nohighlight">
969
-
\[A^ke_1 = r_{11}^{(k)}Q^{(k)}e_1.\]</div>
970
-
<p>In other words, the first column of <spanclass="math notranslate nohighlight">\(Q^{(k)}\)</span> is the result of <spanclass="math notranslate nohighlight">\(k\)</span>
969
+
\[A^ke_1 = r_{11}^{(k)}{Q'}^{(k)}e_1.\]</div>
970
+
<p>In other words, the first column of <spanclass="math notranslate nohighlight">\({Q'}^{(k)}\)</span> is the result of <spanclass="math notranslate nohighlight">\(k\)</span>
971
971
iterations of power iteration starting at <spanclass="math notranslate nohighlight">\(e_1\)</span>. (We already knew this
972
972
from the previous theorem, but here we are introducing ways to look at
973
973
different components of <spanclass="math notranslate nohighlight">\({Q'}^{(k)}\)</span> and <spanclass="math notranslate nohighlight">\({R'}^{(k)}\)</span>). This means that
0 commit comments