
OpenCms with Netbeans
Orchestrate OpenCms modules with NetBeans and nbDriva™

Revision 364
September 2015
nbDriva_documentation

Robert-Bosch-Straße 7
D-64293 Darmstadt

www.componio.net

Copyright, ©2015 componio GmbH, Robert-Bosch-Straße 7, D-64293,
Darmstadt, GERMANY

All rights reserved.

This work is licensed under a Creative Commons Attribution-NoDerivatives
4.0 International License. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd/4.0/.

componio, the componio logo, skinnDriva and the skinnDriva logo are
trademarks or registered trademarks of componio, GmbH in Germany, the U.S.
and other countries.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

THIS DOCUMENT AND HEREIN RELATED DOCUMENTS AND/OR
PRODUCTS AND/OR SERVICES OF COMPONIO GMBH MUST NOT
BE EXPORTED TO COUNTRIES AND/OR STATES THAT DO NOT
FOLLOW THE THE UNIVERSAL DECLARATION OF HUMAN
RIGHTS.

Please use opencms.support@componio.net to get in touch with us.

Please Recycle

Table of Content
1 Purpose...5
1.1 Plug-in to the rescue...5
1.2 A technical glimpse...6

2 Build the Plug-in..7
2.1 Requirements..7
2.2 Plug-in Structure...7
2.3 How to build the plugin?...8
2.4 How to install the plugin?..8
2.5 Project Template Modifications...8
2.6 Shell Extension Modifications..9
2.7 Context Menu Modifications...11

3 Cumbersome no more!..13
3.1 Create New Project..14
3.2 Initial configuration..15
3.3 How to use the plug-in?...17

CHAPTER 1

1 Purpose

Developing solutions for the open source content management system
OpenCms can become cumbersome. Sooner or later you will ask yourself:
How do I bridge the gap between the database driven virtual file system and the
real file system so that I can use my IDE of choice?

1.1 Plug-in to the rescue
We at componio are fond lovers of the NetBeans IDE. Thus we decided to
create a plug-in which enables us to develop for OpenCms in almost the same
way that we are developing pure web applications. Most notably to create,
update, import and reverse synchronize OpenCms modules.

In the following chapters you will learn how to configure and build this plug-in
as well as how to customize the plug-in to fit your build process and specific
needs.

We primarily offer a binary distribution of the plug-in which is ready to use out
of the box. The latest version of the installable plug-in can be found at
https://github.com/componio/nbDriva. You may skip directly to chapter 3.

 Purpose | 5

1.2 A technical glimpse
Since OpenCms stores everything in a database (aka. Virtual File System/VFS)
and the IDE accesses the file system from the operating system (aka. Real File
System/RFS) we need to access the data through the OpenCms APIs.

The often overlooked OpenCms CmsShell is our weapon of choice. It enables
the plug-in to execute actions originating in NetBeans in the context of the
OpenCms runtime environment and vice versa. Further the CmsShell bridges
the gap between the VFS and the RFS enabling the build environment to
integrate, annotate and package OpenCms resources automatically.

The diagram below outlines the principle modus operandi of the plug-in.

6 | Purpose

Fig. 1 1: Interaction Overview Diagram

CHAPTER 2

2 Build the Plug-in

In order to be able to leverage the full potential of the plug-in, we will guide
you through the build process. Further we will point out enhancements and
alternative settings where appropriate.

2.1 Requirements
• MySQL[1] Installation

• OpenCms[2],[3] Installation 8.5.x or higher

• NetBeans[4] 7.3.x (with Java EE Base plugin) or higher

• the plug-in sources from github[5][6]

2.2 Plug-in Structure
The plug-in consists of the following components:

• opencms.project.template, template used as the default project structure
and configuration

• net.componio.opencms.projectstructure.plugin, the NetBeans module
itself

• opencms.shell.extension[6], extended commands based on the CmsShell
for OpenCms 8.5.x or higher, (e.g. the synchronisation between RFS
and VFS, synchronization over CMIS interface is also possible)

 Build the Plug-in | 7

Please note that modifications to one component may have side-effects which
affect the correct functionality of the other components.

2.3 How to build the plugin?
1. Select (File -> Open Project ->

net.componio.opencms.projectstructure.plugin)

2. Right-click on Project -> Clean and Build

Note: To build the plug-in with Netbeans 7.4 following
workaround has to be proceeded!

3. Right-click on Project -> Libraries -> Select Ant -> Remove

4. Right-click on Project -> Wrapped Jars -> Add Jar -> Select
<Netbeans 7.4 installation directory>/extide/modules/org-apache-
tools-ant-module.jar

5. Right-click on Project -> Clean and Build Project

2.4 How to install the plugin?
1. Right-click on Project -> Create NBM -> Select Tools -> Plugins ->

Select Downloaded -> Add Plugins -> Choose <project-
directory>/build/net-componio-opencms-projectstructure-plugin.nbm
and /build/org-apache-tools-ant-module-library-wrapper.nbm ->Click
Install

or

2. Right-click on Project -> Install/Reload in Development IDE

NOTE: After execution of “Install/Reload in Development IDE” the
plugin can be just deactivated but not uninstalled.

8 | Build the Plug-in

2.5 Project Template Modifications
Changes to opencms.project.template require the following steps to be taken:

1. Execute the target zipme in the build.xml of the template which
generates the zip file OpenCmsProjectStructureTemplateProject.zip in
return.

2. Replace the zip file in net.componio.opencms.projectstructure.plugin
with the previously generated zip file.

2.6 Shell Extension Modifications
The opencms.shell.extension[6](available as Maven project on github) utilises the
CmsShell and OpenCms API. In order to extend the functionality of the plug-
in with your own commands please follow along these steps:

 1 Create a new class, which implements the interface
I_CmsShellCommands and add your own methods to this class.
Additionally you can consult the OpenCms classes CmsShell and
CmsShellCommands from the OpenCms source code for OpenCms
8[2].

 2 You can build a jar and include it in your project or set up an own
Maven repository (for the case you want to use the jar in your Maven
projects)

To build your own Maven repository execute following steps:

 2.1 Install Maven

 2.2 Adapt the pom.xml of opencms.shell.extension and change the path
of the repository to your desired path.

 2.3 Open a command line and switch to the opencms.shell.extension
directory

 2.4 Execute mvn deploy

 2.5 Add the Maven repository as dependency to your pom.xml

NOTE: e.g. after you pushed your Maven repository to github you
need to modify additionaly the value in opencms.shell.extension-

 Build the Plug-in | 9

[version].pom.sha1(cause the expected and the computed values will
differ during execution like this:

...-0.1.pom: invalid sha1:
expected=7f1089041d63ce7eaa5d6a35ddda3aaa606042e3
computed=8a941ef40645d449b0740023624c2f8b67b84c59 (516ms))

So you have to replace the value in

opencms.shell.extension-[version].pom.sha1 with the computed one.

Beyond that you can check the ivy.xml and ivy-settings.xml in
opencms.project.template to see how the repository is added as
dependency in ivy.

 3 Create a new CmsShell script in the relative scripts folder from which
you are calling your defined method.

 4 Adapt the build.xml, individual.properties or default.properties and
buildModuleOperationsWithCmsShell.xml according to your needs.

E.g. in the snippet below the target prepare_createNewModule is used
to replace a row in the CmsShell script createModule.txt before
execution.

<target name="prepare_createNewModule">
 <replaceregexp file="$scriptDir}/createNewModule.txt"
 match="login .*"
 replace="login "

 ${username}" "
 ${password}""

 byline="true"/>

 <replaceregexp file="$scriptDir}/createNewModule.txt"
 match="createNewModule .*"
 replace="createNewModule "

 ${modulename}" "
 ${module.version}""

 byline="true"/>
</target>

 4.1 In the next screenshot the target run_createNewModule is shown in
which the class CmsShellMain is executed and the CmsShell script
and the class with the own CmsShell methods are passed to
CmsShellMain as arguments.

<target name="run_createNewModule"
depends="prepare_createNewModule">

 <java classname="main.CmsShellMain">
 <arg line="-webInf ${cmsWebInfDir} -script

 ${scriptDir}/createNewModule.txt

10 | Build the Plug-in

 -additional additionalcommands.ModuleCommands"/>
 <classpath path="build">
 <dirset dir="${build.classes.dir}">
 <include name="**/*.class"/>
 </dirset>
 <pathelement path="${java.class.path}"/>
 <pathelement path="${javac.classpath}"/>
 </classpath>

</java>
</target>

6. Execute target zipme in the build.xml of opencms.project.template

7. Replace the zip file in net.componio.opencms.projectstructure.plugin
with the generated zip file.

8. Add a new action for the context menu with the new functionality in
net.componio.opencms.projectstructure.plugin (see next section).

 Build the Plug-in | 11

2.7 Context Menu Modifications
To add a new context action (e.g. a new CmsShell command) you can use the
source code of the plugin as a reference. Additionally, you can check the
NetBeans Utilities API[7], the wiki page: “How do I create an Action that is
automatically enabled and disabled depending on the selection?“[8] and the
article with a similar topic on markiewb's blog[9].

12 | Build the Plug-in

CHAPTER 3

3 Cumbersome no more!

Now that we have configured and built our plug-in, the time-consuming
process of build, copy and hit the sync button are over for good.

Install the previously built net-componio-opencms-projectstructure-
plugin.nbm file with your NetBeans IDE (see Tools → Plugins), restart your
IDE and you are set to create your first project.

 Cumbersome no more! | 13

3.1 Create New Project
1. Select (File -> New Project) in the NetBeans menu bar

2. Choose "OpenCmsProjectStructureTemplate"

3. Click Next -> enter the project name, opencms version and the WEB-
INF path of the opencms installation-> click Finish

14 | Cumbersome no more!

Fig 3.1: Netbeans' New Project Dialogue

 Cumbersome no more! | 15

Fig 3.2:Netbeans' New Project Details

3.2 Initial configuration
1. Include the OpenCms libraries in the libraries section

◦ Option 1: Right-click on Project select Ivy Resolve →
Dependencies. Apache Ivy[10] will be downloaded, installed and
the dependencies described in the <project
directory>/ivy/ivy_opencms_[version].xml (according to the
selected opencms version) are resolved in conjunction with the
Maven repository (per default copied into relative lib directory
of the project). For now these are the required OpenCms and
MySQL libraries.

Note: The dependencies(version) described in the
ivy_opencms_[version].xml and the entry “opencms.version” in
<project directory>/default.properties for the OpenCms
system must match with your target OpenCms installation.

◦ Option 2: Include the required libraries from an OpenCms
installation manually. Additionally you need Apache Chemistry
libraries(client side) according to the supported Apache
Chemistry version by OpenCms.

2. Right-click on Project Properties Libraries Add Jar/Folder open → → → →
the relative lib/default folder select all jar files Open OK→ → →

16 | Cumbersome no more!Fig 3 1: NetBeans' Project Library Dialogue

3. Change project-name in build.xml manually

<project name="change_me" ...>

4. Change the values in individual.properties or default.properties
nbDriva.properties to meet your build environment. The values are
used in build.xml and buildModuleOperationsWithCmsShell.xml.

Note: Do not change buildModuleOperationsWithCmsShell.xml
unless you know how the file affects the plugin. Beyond that
configuration values in default.properties can be overriden with the
values in individual.properties.

5.

Properties in default.properties/individual.properties

◦ modulename, the name of the OpenCms module to be created

◦ opencms.version=9.5.2, the version of the selected OpenCms
System.

◦ modulepath=/system/modules, path to the OpenCms-modules
at the OpenCms-system

◦ username=Admin, login data for OpenCms, used in the
CmsShell-scripts

◦ password=admin, login data for OpenCms, used in the
CmsShell-scripts

◦ module.version=1.0, version of the module during creation and
export. (will be incremented by OpenCms during export)

◦ acPackage=${modulepath}/${modulename}, directory of the
actual module at the OpenCms-System

◦ cmsSync=../../cmsSync, Syncronization folder, used to
synchronize changes between the Remote File System and the
Virtual File System(OpenCms-System)

◦ includedSyncFolders= paths(separated with a “,”) of the Virtual
File System, which will be included in the synchronization (can
be used to avoid that other directories in the cmsSync path will
be deleted at the sync process)

◦ syncOverCMIS=false, flag to define if the synchronisation is

 Cumbersome no more! | 17

proceeded via CMIS(Apache Chemistry[11])

◦ cmsRepoURL=http://localhost:8080/opencms/cmisatom/,
URL to the CMIS repository

◦ cmsRepoId=cmis-offline, repository id of a CMIS repository

◦ scriptDir=./scripts, directory to the CmsShell scripts

NOTE: The scripts in this directory are changed dynamically
via Ant targets so the scripts in this folder shouldn't be changed
manually)

◦ packagePath=../package, relative package path of the project,
used to save the exported module (from VFS)

◦ cmsWebInfDir= <somepath>, path to the WEB-INF folder of
the OpenCms installation you want to work with

◦ moduleDir=${cmsWebInfDir}/packages/modules, path to the
OpenCms modules of the installed OpenCms System.

◦ useExclusionFile=true, flag

◦ importModules=..., import files(separated with a “,”), the
importModules can be selected over a GUI dialog and
imported, so this property is changed dynamically over the
GUI.

◦ exclusionFile=${basedir}/exclusion/exclusion.patterns.txt,
Files and directories can be excluded from the sync process via
exclusion patterns and regular expressions, which are defined in
the exclusionFile.

◦ ivy.install.version=2.3.0, Apache Ivy version

◦ ivy.jar.dir=${basedir}/ivy, directory for the Apache Ivy
installation

◦ ivy.jar.file=${ivy.jar.dir}/ivy-${ivy.install.version}.jar

◦ ivy.resolved.libs.dir=${basedir}/lib, destination folder for the
resolved libraries over Apache Ivy

18 | Cumbersome no more!

http://localhost:8080/opencms/cmisatom/

3.3 How to use the plug-in?
Right-click on the project to call one of the following actions:

 Cumbersome no more! | 19

Fig 3.3: Available Actions

1. Create Module, the module will be created on the target OpenCms

2. Create Resource Type, creates a resource type over following GUI

3. Import Module, can be used to import OpenCms modules over
following GUI.

20 | Cumbersome no more!

Fig 3.4: resource_type_id has to be unique and a number, icon
offers the possibility to select an image as fileicon for the resource
type

4. Reverse Sync Module, exports the module from the target
OpenCms to <project-directory>/package

NOTE: OpenCms increments the version number of a module
during an export. So you have to define a lower version in your
individual.properties if you want to have a specific version
number for your exported module.

 Cumbersome no more! | 21

Fig 3.5: Import Modules Dialog

5. Reverse Sync (single files), right-click at a file in the following
directory structure

NOTE: selected files or directories will be overridden

6. Sync Module, two-way synchronisation between the
synchronisation folder(RFS) and the VFS of the target OpenCms
via the CmsShell or a one-way synchronisation with Apache
Chemistry over CMIS.

7. Module Properties, changes for entries in the individual.properties

22 | Cumbersome no more!

Fig 3.6: Folder
Structure with
Reverse Sync as
functionality

Annex A List of References

1: Oracle, MySQL Downloads, 2013, http://dev.mysql.com/downloads/

2: Alkacon, OpenCms download archive, 2013,
http://www.opencms.org/de/download/archive.html

3: Alkacon, Local Installation of OpenCms 8, 2013,
http://www.opencms.org/en/support/opencms-8-user-
manual/installation/index.html

4: Oracle, NetBeans IDE Download, 2013,
https://netbeans.org/downloads/index.html

5: componio GmbH, nbDriva - OpenCms with Netbeans, 2013,
http://www.github.com/componio/nbDriva

6: componio GmbH, ShellDriva, 2014, https://github.com/tpinky/shellDriva

7: Oracle, ContextAwareAction (Utilities API) - NetBeans, 2013,
http://bits.netbeans.org/dev/javadoc/org-openide-
util/org/openide/util/ContextAwareAction.html

8: Oracle, How do I create an Action that is automatically enabled and disabled
depending on the selection?, 2011,
http://wiki.netbeans.org/DevFaqActionContextSensitive

9: Markiewb, NetBeans: How to create a context aware action with an icon for
the context menu, 2012, http://benkiew.wordpress.com/2012/12/28/netbeans-
how-to-create-a-context-aware-action-with-an-icon-for-the-context-menu/

10: Apache, Download Ivy, 2013, http://ant.apache.org/ivy/download.cgi

11: The Apache Software Foundation, Welcome to OpenCMIS, 2013,
http://chemistry.apache.org/java/opencmis.html

Annex B List of Figures

Fig. 1 1: Interaction Overview Diagram..6
Fig 3 1: NetBeans' New Project Dialogue...14
Fig 3 2: NetBeans' Project Library Dialogue...15
Fig 3 3: Available Plug-In Actions...19
Fig 3 4: Import Modules Dialog...20

	OpenCms with Netbeans
	Orchestrate OpenCms modules with NetBeans and nbDriva™
	1 Purpose
	1.1 Plug-in to the rescue
	1.2 A technical glimpse

	2 Build the Plug-in
	2.1 Requirements
	2.2 Plug-in Structure
	2.3 How to build the plugin?
	2.4 How to install the plugin?
	2.5 Project Template Modifications
	2.6 Shell Extension Modifications
	2.7 Context Menu Modifications

	3 Cumbersome no more!
	3.1 Create New Project
	3.2 Initial configuration
	3.3 How to use the plug-in?

