Computes the arithmetic mean.
JavaScript Makefile
Switch branches/tags
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
docs/img
examples
lib
test
.editorconfig
.gitattributes
.gitignore
.jshintignore
.jshintrc
.npmignore
.travis.yml
LICENSE
Makefile
README.md
TODO.md
package.json

README.md

Mean

NPM version Build Status Coverage Dependencies

Computes the arithmetic mean.

The arithmetic mean is defined as

Equation for the arithmetic mean.

where x_0, x_1,...,x_{N-1} are individual data values and N is the total number of values in the data set.

Installation

$ npm install compute-mean

Usage

var mean = require( 'compute-mean' );

mean( x[, opts] )

Computes the arithmetic mean. x may be either an array, typed array, or matrix.

var data, mu;

data = [ 2, 4, 5, 3, 8, 2 ];
mu = mean( data );
// returns 4

data = new Int8Array( data );
mu = mean( data );
// returns 4

For non-numeric arrays, provide an accessor function for accessing array values.

var data = [
	{'x':2},
	{'x':4},
	{'x':5},
	{'x':3},
	{'x':8},
	{'x':2}
];

function getValue( d, i ) {
	return d.x;
}

var mu = mean( data, {
	'accessor': getValue
});
// returns 4

If provided a matrix, the function accepts the following options:

  • dim: dimension along which to compute the arithmetic mean. Default: 2 (along the columns).
  • dtype: output matrix data type. Default: float64.

By default, the function computes the arithmetic mean along the columns (dim=2).

var matrix = require( 'dstructs-matrix' ),
	data,
	mat,
	mu,
	i;

data = new Int8Array( 25 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = i;
}
mat = matrix( data, [5,5], 'int8' );
/*
	[  0  1  2  3  4
	   5  6  7  8  9
	  10 11 12 13 14
	  15 16 17 18 19
	  20 21 22 23 24 ]
*/

mu = mean( mat );
/*
	[  2
	   7
	  12
	  17
	  22 ]
*/

To compute the arithmetic mean along the rows, set the dim option to 1.

mu = mean( mat, {
	'dim': 1
});
/*
	[ 10, 11, 12, 13, 14 ]
*/

By default, the output matrix data type is float64. To specify a different output data type, set the dtype option.

mu = mean( mat, {
	'dim': 1,
	'dtype': 'uint8'
});
/*
	[ 10, 11, 12, 13, 14 ]
*/

var dtype = mu.dtype;
// returns 'uint8'

If provided a matrix having either dimension equal to 1, the function treats the matrix as a typed array and returns a numeric value.

data = [ 2, 4, 5, 3, 8, 2 ];

// Row vector:
mat = matrix( new Int8Array( data ), [1,6], 'int8' );
mu = mean( mat );
// returns 4

// Column vector:
mat = matrix( new Int8Array( data ), [6,1], 'int8' );
mu = mean( mat );
// returns 4

If provided an empty array, typed array, or matrix, the function returns null.

mu = mean( [] );
// returns null

mu = mean( new Int8Array( [] ) );
// returns null

mu = mean( matrix( [0,0] ) );
// returns null

mu = mean( matrix( [0,10] ) );
// returns null

mu = mean( matrix( [10,0] ) );
// returns null

Examples

var matrix = require( 'dstructs-matrix' ),
	mean = require( 'compute-mean' );

var data,
	mat,
	mu,
	i;

// Plain arrays...
data = new Array( 1000 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = Math.random() * 100;
}
mu = mean( data );

// Object arrays (accessors)...
function getValue( d ) {
	return d.x;
}
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = { 'x': data[ i ] };
}
mu = mean( data, {
	'accessor': getValue
});

// Typed arrays...
data = new Int32Array( 1000 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = Math.random() * 100;
}
mu = mean( data );

// Matrices (along rows)...
mat = matrix( data, [100,10], 'int32' );
mu = mean( mat, {
	'dim': 1
});

// Matrices (along columns)...
mu = mean( mat, {
	'dim': 2
});

// Matrices (custom output data type)...
mu = mean( mat, {
	'dtype': 'uint8'
});

To run the example code from the top-level application directory,

$ node ./examples/index.js

Tests

Unit

Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:

$ make test

All new feature development should have corresponding unit tests to validate correct functionality.

Test Coverage

This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:

$ make test-cov

Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,

$ make view-cov

License

MIT license.

Copyright

Copyright © 2014-2015. The Compute.io Authors.