
Tools for (better) computational biology
This manuscript (permalink) was automatically generated from computer-aided-biotech/better-cb@4048a87 on

September 29, 2021.

Authors

Daniela C. Soto *
 0000-0002-6292-655X · dcsoto · dcsoto_cl

Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, Davis, CA 95616,USA

Benjamín J. Sánchez *
 0000-0001-6093-4110 · BenjaSanchez · BenjaSanchez

Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

https://computer-aided-biotech.github.io/better-cb/v/4048a8723750f15071c7d088831a0e4737dc56b8/
https://github.com/computer-aided-biotech/better-cb/tree/4048a8723750f15071c7d088831a0e4737dc56b8
https://orcid.org/0000-0002-6292-655X
https://github.com/dcsoto
https://twitter.com/dcsoto_cl
https://orcid.org/0000-0001-6093-4110
https://github.com/BenjaSanchez
https://twitter.com/BenjaSanchez

Abstract

As biotechnological and biomedical research are increasingly fed by the insights arising from
computation, the conversation about good practices in computational biology becomes more and
more prominent. An increasing body of literature has addressed practices for shareable, reproducible,
and sustainable computational research, from high-level principles for data and software stewardship
to deep-dives into version control or software automation. However, the actual implementation of
good practices remains unaddressed. The latter relies on incorporating the right tools into our daily
routines, considering the type, scope and stage of the research project. Here we provide a
compendium of relevant tools for computational biology research, emphasizing their time and place
within a continuum that traverses personal practices, the collaborative practices of a team, and the
practices required to interact with a community at large. This compendium will serve as a starting
point and as a consulting guide to help navigate the ongoing in�ux of tools and how to best
incorporate them into a computational biologist’s working routine, enabling reproducible biomedical
and biotechnological research in the long term.

Introduction

Since Margaret Dayho� pioneered the �eld of bioinformatics back in the sixties, the application of
computational tools in the �eld of biology has vastly grown in scope and impact. Nowadays,
biotechnological and biomedical research are routinely fed by the insights arising from novel
computational approaches, machine learning algorithms and mathematical models. The ever
increasing amount of biological data and the exponential growth in computing power will amplify this
trend in the years to come.

The use of computing to address biological questions encompasses a wide array of applications
usually grouped under the terms of “computational biology” and “bioinformatics”. Although distinct
de�nitions have been delineated for each one [1,2], here we will consider both under the umbrella
term “computational biology”, alluding to any application that involves the intersection of computing
and biological data. As such, a computational biologist can be a data analyst, a data engineer, a
statistician, a mathematical modeler, a software developer, and many others. In praxis, the modern
computational biologist will be a “scientist of many hats”, taking on several of the duties listed above.
But �rst and foremost, we will consider a computational biologist as a scientist whose ultimate goal is
answering a biological question or addressing a need in the life sciences by means of computation.

Scienti�c computing requires following speci�c practices to enable shareable, reproducible and
sustainable outputs. Computing-heavy disciplines, such as software engineering and data science,
have adopted practices addressing the need for collaboration, visualization, project management, and
strengthening of online communities. However, as a highly interdisciplinary and evolving �eld,
computational biology has yet to acquire a set of universal “best practices”. Since most computational
biologists come from diverse backgrounds and rely on self-study rather than formal education [3], the
absence of guidelines may leave many computational biologists astray, engaging in unsustainable
practices that hinder reproducibility and collaboration, slowing down biomedical and biotechnological
research.

In recent years, this “guidelines gap” has been addressed by the de�nition of FAIR principles—
Findability, Accessibility, Interoperability, and Reusability—coined in 2016 [4]. Originally develop for
data stewardship, FAIR principles have been proposed as universal guidelines for all research objects
[5]. However, how to translate these high-level principles into day-to-day practices requires additional
nuances, based on the type of research object, the size and scope of the project, and the experience
of the researcher.

niso
Sticky Note
The abstract is doing really a good job in differentiating this paper from other "good practices" papers.

Over the last decade, several researchers have published advice on good practices for scienti�c
computing and computational biology. Recently, the framework ADVerTS (availability of software,
documenting software, version control, testing, and support) has been proposed as a set of “barely
su�cient” practices to address the need for FAIR scienti�c software [5]. Other advice includes reviews
introducing bench scientists new to computational biology to a wide range of topics ranging from
programming to project organization [6,7,8,9], deep-dives into the use and applications of one
powerful tool, such as the software development and version control cloud service GitHub [10] and
the web-application Jupyter Notebooks [11], or comprehensive reviews covering one speci�c need in
computational biology, such as work�ow automation [12] or software library development [13].

Although this advice proves immensely helpful, some aspects of the computational biology “journey”
remain uncovered. Indeed, guiding principles and general advice are key to establish a behavior
roadmap, but their actual implementation is enabled by incorporating the right tools into our daily
working routine. Tool selection has many components, from availability to suitability to personal
preference, and although the latter is left to the reader, here we will shed light over the �rst two. We
premise that good practices in computational biology lie within a continuum that traverses three
“levels”: the individual’s personal practices, the collaborative practices of a team, and the practices
that allow a broader scienti�c community to access and engage over time with the research (Figure 1).
Each one of these levels has a di�erent set of needs and challenges, as well as a speci�c set of tools
that can be used to address them. Here, we compiled a curated list of these tools, emphasizing their
time and place in a computational biology research project. Committed to practicality, we illustrated
the utility of these tools in case studies covering a wide spectrum of research topics that
computational biologists can use to model their own practices, modifying them to suit their own
needs and preferences.

Figure 1: The three “levels” of computational biology include your personal research, your group and collaborators, and
your scienti�c �eld.

Level 1: Personal Research

The computational biology “journey” begins with you—speci�cally, with the set of skills, tools and
practices that you have in place to conduct your personal research. Taking the time to optimally
establish these building blocks will have high payo�s later, when you �nd yourself in need to go back
to your previous analyses. Consider that your most important collaborator is your future self, either of
tomorrow or a couple of years from now. To consider all the aspects that comprise a solid ground for
any personal project, we devised a framework involving four main sequential steps (Table 1).

Table 1: Steps to conduct most computational biology projects.

Step Use case Common tools

Step 1: Choose your
programming languages

Interacting with a
Unix/Linux HPC • Shell/Bash [14]

Data analysis • Python [15], R [16]

Scripts and
programs

• Interpreted: Python [15], R [16], Perl [17]
• Compiled: C/C++ [18], Rust [19]

Step Use case Common tools

Work�ows

• Linux-based: Bash script, GNU Make [20]
• Work�ow management systems: Snakemake (Python) [21],
Next�ow (Groovy) [22],
• Wor�ow speci�cations: CWL [23], WDL [24]

Step 2: De�ne your project
structure

Project structure • Templates: Cookiecutter Data Science [25], rr-init [26]
• Work�ows: Snakemake recommendation [27]

Virtual environment
managers

• Language-speci�c: pipenv (Python) [28], virtualenv (Python)
[29], renv (R) [30]
• Language agnostic: Conda [31]

Package managers
• Language-speci�c: pip (Python) [32], BiocManager (R) [33], R
Studio package manager (R) [34]
• Language-agnostic: Conda [31]

Step 3: Choosing your
working set-up

Text editors
• Desktop applications: Atom [35], Sublime [36], Visual Studio
Code [37], Notepad++ [38]
• Command line: Vim[39], GNU Emacs[40]

IDEs
• For Python: JupyterLab [41], JetBrains/PyCharm [42],
Spyder [43]
• For R: R Studio [44]

Notebooks • Jupyter (Python, R) [41], R Markdown (R) [45]

Step 4: Follow good coding
practices

Coding style • Styling guides: PEP-8 (Python) [46], Google (Python, R) [47]
• Linters

Literate
programming

• Markdown [48]
• R Markdown [45]

Version control
• Version control system: Git [49]
• Code repositories: GitHub [50], GitLab [51], Bitbucket [52]
• Git GUIs: GitHub Desktop [53], GitKraken [54]

Step 1: Choose your programming languages

Di�erent programming languages serve distinctive purposes and have di�erent idiosyncrasies. As
such, choosing the right programming language for a project depends on your research goals and
personal preference or skill set. Additionally, communities usually favor the usage and training of
some programming languages over others; utilizing such languages may facilitate integrating your
work within the existing ecosystem.

As computational biology becomes a data intensive discipline, interacting with high-performance
computing (HPC) has become a hallmark of the �eld. HPC infrastructures commonly use Unix/Linux
distributions as their operating system. To interact with these platforms, you need to use a the
command line interpreter known as the “Unix shell”. There are multiple versions of Unix shells, being
Bash one of the most widely adopted. Besides providing a user interface, the shell is also a scripting
language that allows manipulating �les and executing programs through Shell scripts. Unix/Linux
operating systems have other interesting perks, such as powerful and fast commands for searching
and manipulating �les (e.g. sed , grep or join) as well as the language awk , that can perform
quick text processing and arithmetic operations.

One of the most common task of any computational biologist is data analysis, which usually involves
data cleaning, exploration, manipulation, and visualization. Currently, the most widely used
programming language for data analysis worldwide is Python [55,56]. Computational biology research
has followed this trend making Python one of the most popular languages among researchers,
tendency that will likely keep growing as machine learning and deep learning are more widely

niso
Sticky Note
Not sure one can conclude that based on the number of packages on modulecounts?

adopted in biological research. Python usage has been facilitated by the availability of packages for
biological data analysis accessible through package managers such as Pip or Conda. Likewise, R is
another prominent language in the �eld. Arguably, one of R main strengths is its wide array of tools
for statistical analysis. Of particular interest is the Bioconductor repository, where many gold-
standard tools for biological data analysis have been published. R usage in data science has deeply
bene�ted from the Tidyverse packages, increasing the readability of the R syntax for both data
manipulation via dplyr , and visualization via ggplot2 .

Oftentimes, computational biologists require coding their own sets of instructions for processing data
via scripts or programs. A script can be described as lightweight single-�le program developed to
tackle a narrow purpose. They are likely written in an interpreted programming language instead of a
compiled one. Interpreted programming languages execute the program directly, without previous
compilation, meaning each statement is run individually. They are quick to edit and can be run
interactively, at expense of computational performance. In computational biology, the current most
common multi-purpose scripting languages are Python and R. When working in a HPC, Shell/Bash
scripting is also widely used. Perl and Matlab are also popular languages among bioinformatics and
systems biology, respectively. A program, in the other hand, is a larger tool that usually combines
multiple scripts and works as a “black box” to the user. It is designed to tackle computationally
intensive problems; thus, a compiled language is preferred. Several tools designed for high-weight
biological data processing have been written in C/C++. In recent years, however, scientists have been
turning to Rust because of its speed, safety and active community [57]. If computational performance
is less of a concern, Python and R are suitable alternatives as coding programs.

Biological data processing is rarely a one-step process. To go from raw data to useful insights, several
steps need to be taken in a speci�c order, accompanied by a plethora of decisions regarding
parameters. Computational biologists have addressed this need by embracing work�ow management
systems to automate data analysis pipelines. A pipeline can be written as a Shell script where a
handful of commands are written one after another, using Shell variables and Shell scripting syntax
when needed. Although e�ective, this approach provides little control over the work�ow, and lacks
features to run isolated parts of the pipeline or track changes in input and output �les. To overcome
these limitations, a Bash script can be “upgraded” using the GNU Make program, which was originally
designed to automate compilation and installation of software, but that it is �exible enough for
building other types of work�ows. Nowadays, however, several dedicated bioinformatics work�ow
managers have been developed. Snakemake is a work�ow management system written in Python,
allowing to incorporate the syntax of the tool with standard Python code. Similarly, Next�ow was build
as an extension of Groovy—a programming language for the Java virtual machine—and can execute
Groovy code. These tools not only provide control over every single step of the pipeline, but also o�er
features like interacting with job schedulers, software environment managers, and cloud computing
support. Alternatively, there are available declarative standards to de�ne work�ows in a portable and
human-readable manner, such as the Common Work�ow Language (CWL) and Work�ow Description
Language (WDL, pronounced “widdle”). Although these are not executable, they can be run in CWL- or
DWL-enabled engines.

Step 2: De�ne your project structure

After choosing your programming languages and before starting any coding, we advice you to come
up with a well-thought-out project structure. This design should be intentional and tailored to the
present and future needs of your project—remember to be kind to your future self. A computational
biology project requires, at the very least, a folder structure that supports code, data, and
documentation. Although tempting, cramming all kind of �les in a unique folder is unsustainable.
Instead, separate each one on di�erent folders and subfolders, if needed. To simplify this process,
you can base your project structure on research templates available o�-the-rack. For data science
projects, the Python package Cookiecutter Data Science cuts down the e�ort to the very minimum

niso
Sticky Note
Is Perl really a popular language still?

niso
Sticky Note
I don't think one can state that compiled languages are preferred for 'real' programs in general?

[25]. Running the package prompts a questionnaire in the terminal where you can input the project
name, authors, and other basic information. Then, the program generates a folder structure to store
data—raw and processed—separated from notebooks and source code, as well as pre-made �les for
documentation such as a “readme”, a docs folder, and a license. Similarly, the Reproducible Research
Project Initialization (rr-init) o�ers a template folder structure that can be cloned from a GitHub
repository and modi�ed by the user [26]. Although the latter is slightly simpler, both follow an akin
philosophy aimed at research correctness and reproducibility [58]. For work�ow automation projects,
we advice a similar folder structure. Snakemake recommends to store each work�ow in a dedicated
folder separated into work�ow-related �les—the Snake�le, rules and scripts—results, and
con�guration [27]. In all cases, the folder must be initialize as a git repo for version control (See Step
4).

The software and dependencies needed to execute a work�ow or program are also part of the project
structure itself. The intricacies of software installation and dependency management are not to be
underestimated. Fortunately, package and virtual environment managers signi�cantly reduce this
burden. A package manager is a system that automates the installation, upgrading, con�guration, and
removing of community-developed programs; a virtual environment manager, on the other hand, is a
tool that generates isolated “environments” containing programs and dependencies that are
functionally independent from other environments or the default operating system. Once a virtual
environment is activated, a package manager can be used to install third-party programs.

We believe that every computational biology project must start with its own virtual environment to
boost reproducibility: environments save the project’s dependencies and can restore them at will so
the code can be run in any other computer. There are multiple options for both package and virtual
environment management—some language-speci�c and some language-agnostic. If you are working
with Python, you can initialize a Python environment using virtualenv or pipenv (where di�erent
Python versions can be installed). Inside the environment, you can use the Python package manager
pip to import Python code from the Python Package Index (PyPI) repository, GitHub, or locally. For the
R language, R-speci�c environments can be created using renv, where packages can be installed via
install.packages function from the Comprehensive R Archive Network (CRAN) and CRAN-like

repositories. R also has BiocManager to install packages from the Bioconductor repository, which
contains relevant software for high-throughput genomic sequencing analysis. Additionally, RStudio
developed the RStudio Package Manager which works with third-party code available in CRAN,
Bioconductor, GitHub, or locally. A language-agnostic alternative is Conda—an increasingly popular
package and a virtual environment manager. It supports program installation from the Anaconda
repository, which contains the channel Bioconda speci�cally tailored to bioinformatics software. If
Python is installed, Python dependencies can be installed via pip in a Conda environment as well.
Conda is particularly helpful when working with third-party code in all sorts of languages—a common
predicament in computational biology. Conda package and environment manager is included in both
the Anaconda and Miniconda distributions. The latter is a minimal version of Anaconda, containing
only Conda, Python, and a few useful packages.

Step 3: Choose your working set-up

With the foundation in place, the next step is to start coding. However, a more practical question
needs to be answered �rst: Where to code? The simplest tools available for this purpose are text
editors. Since writing code is ultimately writing text, any tool where characters can be typed ful�lls this
purpose. However, coding can be streamlined by additional features as those found in code editors—
text editors especially developed for writing code. Crucial features to facilitate coding include syntax
highlight, indentation, and autocompletion. Commonly used desktop editors include Atom, Sublime,
Visual Studio Code, and Notepad++ (Windows only), all which o�er a myriad of plugins to enhance the
coding experience. Command line text editors are also suitable options for coding, being Vim and

niso
Sticky Note
see? (not capitalized)

niso
Sticky Note
Given that pipenv suck pretty badly https://news.ycombinator.com/item?id=18612590 (I don't think this has changed), I think it would be better to highlight just virtualenv and conda here. Maybe better to highlight https://github.com/jazzband/pip-tools as pipenv similar way of pinning dependencies?

Emacs the most powerful ones. All of these tools share the advantage of being language agnostic,
which is especially handy for the polyglot computational biologist.

In addition to text editors, integrated development environments (IDEs) are also popular options for
coding. At its essence, IDEs are supercharged text editors, i.e. with multiple other features that make
writing code easier. The main parts of an IDE are a code editor (with syntax highlight, indentation and
suggestions), a debugger, a folder structure, and a way to execute your code (a compiler or
interpreter). Most IDEs are not language agnostic, meaning that they only allow to code in one
language. The array of features also comes at a cost—IDEs usually use more memory and imply more
visual clutter, if that is a concern of yours. For Python, Jupyter Lab, Spyder, and PyCharm are popular
options, while for R, RStudio is the gold-standard. Notably, the di�erences between an IDE and a code
editor are somewhat blurry, especially when enough plugins have been added to a code editor.

In the latest years, notebooks have acquired relevance in computational biology research. A notebook
is an interactive application that combines live code (read-print-eval loop or REPL), narrative,
equations and visualizations. Common notebooks use an interpreted languages such as Python or R,
and narrative usually uses Markdown—a lightweight markup language. Data analysis greatly bene�ts
from using notebooks instead of plain text editors or even IDEs: the combination of visuals and texts
allows researcher to tell compelling stories about their data, and the interactivity of its code enables
quick testing of di�erent strategies. Jupyter notebook is a popular web-based interactive notebook
developed originally for Python coding, but that also accepts R and other programming languages
upon installation of their kernels—the computing engine that executes the notebook’s live code
“under the hood”. Jupyter notebook can also be executed in the cloud using platforms such as Google
CoLab and Amazon WebServices, taking advantage of the current trend of cloud computing. RStudio
also allows the generation of R-based notebooks known as R Markdown, which is especially well-
suited for generating data analysis reports.

Step 4: Follow good coding practices

After dealing with steps one through three, �nally comes writing code. Coding, however, requires
good practices to ensure correctness, sustainability, and reproducibility for you, your future self, your
collaborators (as we will discuss in Level 2) and the whole community (as we will discuss in Level 3).
First and foremost, you need to make sure your code works correctly. In computational biology,
correctness implies biological and statistical soundness. Both are big topics beyond the scope of this
manuscript. To achieve the former, however, a useful approach is to design positive and negative
controls in your program, analysis or work�ow. In scienti�c experimentation, a positive control is a
control group that is expected to produce results; a negative control is expected to produce no
results. The same approach can be applied to computation, using input data whose output is
previously known. Biological soundness can also be tested by quickly assessing expected orders of
magnitude in both, intermediate and �nal �les. All these checks can be packaged in unit testing, of
which we will talk about more in Level 2.

Beyond the correct functioning of your code, you will need to pay attention to the way your code
looks, also know as “coding style”. This includes a series of small and ubiquitous decisions regarding
where and how to add comments; indentation and white spaces usage; variable, function and class
naming; and overall code organization. It is true that, as in writing, there is a lot of your own
personality in the way you code. However, sticking to existing coding style rules facilitates
collaboration with your future self and others. Indeed, as we sometimes have trouble reading our own
handwriting, we can also struggle reading our own code if we overlook any guidelines. At the very
least, your code must display internal consistency. Even better, you can follow any of the multiple
coding style guides that have been published. A good place to start is by reading style guides from
software development teams. Google, for example, has published guidelines for Python, R, Shell, C++,
and HTML/CSS [47]. Also, a series of guidelines for the Python programming language have been

niso
Sticky Note
Most -> Some? There are many IDEs that are language agnostic

niso
Sticky Note
not clear to me what "former" refers to

published as part of the Python Enhancement Proposal (PEP), known as PEP 8 [46]. Tools called
“linters” can be added to most code editors and IDEs to aid �agging stylistic errors in your code based
on a given style guide.

In the matter of code styling, two topics merit additional attention: variable naming and comments.
Variable names should be descriptive enough to convey an idea about the variable, function or class
content and use. The goal is to produce “self-documented” code that reads close to plain English. To
do so, use multi-words variable names if necessary. In such cases, the most common conventions
include Camel Case, where the second and subsequent words are capitalized (camelCase); Pascal
Case, where all words are capitalized (PascalCase); and Snake Case, where words are separated by
underscores (snake_case). Notably, all these conventions can be used in a same coding style to
di�erentiate variables, functions and classes. For example, PEP-8 recommends Snake Case for
functions and variables, and Pascal Case for class names. In addition to master variable naming, code
comments—explanatory human-readable statements not evaluated by the program—are necessary
to enhance the code’s readability. No matter how beautiful and well-organized your code is, high-level
code decisions will not be obvious unless stated. As a corollary, code explanations that can be
deduced from the syntax itself should be omitted. Comments can span a single line or several ones,
forming a block, and can be found in three strategic parts: at the top of the program �le (“header
comment”), which describes what the code accomplishes and sometimes the code’s author/date;
above every function (“function header”), which contains the purpose and behavior of the function;
and in line, next to tricky code whose behavior is not obvious or warrants a remark.

Code styling rules also apply to data science notebooks. However, when writing notebooks you must
also engage in “literate programming”—a programming paradigm where the code is accompanied by
human-readable explanation of its logic and purpose. In other words, notebooks must tell a story
about the analysis, connecting the dots between the code, the results and the �gures. Human-
readable language is often written in Markdown when working in Jupyter, or R Markdown, when
working in R. Little has been written about good practices for literate programming, but we advice you
to explain the purpose of each chunk of code and provide some interpretation of its results.

When working with a sizable code base, an additional good practice is modular programming—the
practice of subdividing a computer program into independent and interchangeable sub-programs,
each one tackling a speci�c functionality. Modularity enhances code readability and reusability, and
expedites testing and maintenance (see Level 2). In practice, modularity can be implemented at
di�erent levels. A single �le script, for example, can be modularize using functions, while a program
by using di�erent �les. In Python, for example, subdivisions are de�ned as follow: modules are a
collection of functions and global variables, packages a collection of modules, libraries a collection of
packages, and frameworks a collection of libraries. Modules are simply �les with .py extension,
while packages are folders than contain several .py �les, including one called __init__.py , which
can be empty or not, and will allow the Python interpreter to recognize the presence of a package.

Finally, there is version control, one the most important personal practices. Version controls entails
the practice of tracking and managing changes in your code using a version control system, such as
Git. In Git, a folder needs to be initiated as a Git repository, after which changes to any of the �les
inside would be tracked. After a change has been made to one or more �les, the changed �les must
be “staged” (using git add) and then “committed” (using git commit). The commit will serve as a
screenshot of your project at that time and stage, that you can review or recover later (using git
checkout). Additionally, version control allows you to safely try new functionalities in “branches”
(using git branch and git checkout)—independent carbon copies of the main original branch
(known as “master” or “main”) that you can optionally merge back to the original one. Nowadays, there
are multiple hosting services that provide online storage of Git repositories, such as GitHub, GitLab or
Bitbucket, that can be navigated using the browser or via a graphic user interfaces (GUI) such as
GitHub Desktop or GitKraken. These platforms have the additional bene�t of backing up your code in

niso
Sticky Note
Maybe

niso
Sticky Note
Maybe a general comment, maybe all mentioned resources should consistently be annotated with references. Here for example GitHub etc. are just written but in the following section the URLs are provided?

the cloud, keeping your work safe and shareable, which is especially relevant for collaboration, as we
will discuss in Level 2.

Level 2: Collaboration

Collaboration is a key aspect of scienti�c research, but it is especially relevant in computational
biology, where interdisciplinary knowledge is often needed. Collaborators can take di�erent forms:
your boss or advisor, colleagues or lab mates, other laboratories, people from academia or industry,
or your future self (as discussed in Level 1). Although collaborators can have a wide range of
involvement with your project, here we will consider they all share a direct relationship with you and
your research (contrary to a community, which is an open group of a large number of people, as we
will discuss in Level 3). Each type of collaboration requires its own set of good practices, which we will
cover in the next paragraphs.

2.1 Share code

Sharing code is one of the most common practices in software development, where large teams work
together developing complex functions and scripts. Although computational biology projects are
usually not as big, proper ways of sharing code are still essential, as it is not desired to have �le
con�icts as soon as two di�erent researchers change the same piece of code. Hosting services such as
GitHub [50], GitLab [51] and Bitbucket [52] (Table 2) allow for having a Git repository stored online,
by creating a copy of the repository known as the “remote”, which becomes the o�cial version of the
repository. The key advantage of using a remote is that there will be no direct interaction between
di�erent local copies of the repository, also known as “clones”, but instead each clone will interact
with the remote exclusively, updating it only if no con�icts between the two exist. This way, if a
collaborator updated the remote repository, other collaborators will not be able to send their changes
until they make sure to update their local copy.

Table 2: Tools for collaborative research.

Goal Tools

Share code

• Hosting services: GitHub [50], GitLab [51], Bitbucket [52].
• Git branching strategies: GitHub �ow [59].
• Tests: correctness (e.g. pytest [60]), coverage (e.g. codecov [61]), automation (e.g. tox
[62], Travis CI [63], Github Actions [64]).
• Code reviews: Github [65], Crucible [66], Upsource [67].

Share data
• FAIR principles [4].
• Tidy data [68].
• Data version control [69].

Share data science
notebooks

• Static: GitHub, GitLab, NBviewer [70].
• Interactive: Binder [71], Google CoLab [72].
• Comparative: ReviewNB [73].

Share work�ows • General hosting services: GitHub, GitLab, Bitbucket
• Dedicated work�ow repositories: Work�owHub [74]

Share manuscripts

• General-purpose word processors: Google Docs [75], O�ce 365 [76].
• Scholarly word processors: Authorea [77].
• Online applications supporting Markup Languages: Overleaf (LaTeX) [78], Manubot
(Markdown + GitHub) [79].

To guarantee that di�erent collaborators can work simultaneously in the same repository, a good idea
is to implement some type of branching strategy in the repository (Table 2). In a small team of
collaborators, the most common strategy is to have a single main branch and generate from it

branches that each di�erent developer can work on. Then, whenever the developer is ready, they can
request to combine—or “merge”—the changes from their branch into the main branch, in a process
known as “pull request” or PR for short. Once a PR has been opened, collaborators can review it and
approve it, so that it can be merged into the main branch, which will now include the branch’s
commits as part of its history. This branching strategy is sometimes referred to as GitHub �ow [59]
and will su�ce for most projects. For more complex branching systems, see Level 3.

Using Git hosting services for collaboration has many additional bene�ts. The commit history not only
shows what was done at each point in time, but also which collaborator did it, so that if, for example,
a bug was introduced, commands such as git blame will show which collaborator caused it. To
ensure hunting down bugs is easy, descriptive commit messages that follow a standard [80,81] is
recommended. Collaborators can also create “forks”, i.e. full copies of repositories under their own
possession. Git hosting services can be accessed interactively online, or from the terminal with tools
such as GitHub CLI [82]. Finally, Git hosting services also allow collaborators to open issues [83] for
listing pending to-do’s and/or asking questions, acting as an open forum for development discussions,
which has the advantage of remaining accessible for the future (as opposed to closed e-mail
discussions). We will consider additional advantages of using Git hosting services, in terms of
interacting with a user base, in Section 3.3.

Another important concept to internalize when developing code, especially together with other
collaborators, is to develop unit tests (Table 2). Unit tests are scripts that will run to determine if
speci�c modules/functions work as intended within the codebase, so that if later the function grows in
scope, its proper basic functioning is ensured. For instance, if a function was de�ned for adding
numbers, a simple test would be to asses if the function outputs 13 when the inputs 6 and 7 are
provided. Tools such as pytest [60] for Python and testthat [84] for R exist to then detect said
scripts, and run all of them to display if any speci�c section is failing. It is a very good practice to
develop tests at the same time you develop code (at the personal research level), as adding tests a
posteriori is signi�cantly harder (although sometimes inevitable). It is even better practice to test
every single step of the code (from data loading to �gure plotting), a concept known in software
development as end-to-end testing [85].

Going beyond testing correctness, tools such as flake8 [86] will test styling preferences (for
complying with PEP8), safety [87] will test for vulnerabilities among the software’s dependencies,
and Codecov [61] will test coverage, or the percentage of the codebase tested (as a rule of thumb for
the latter, the more lines of code are tested, the more reliable the software will be). All these di�erent
types of tests can be funneled into a single testing pipeline that can run automatically whenever
desired. This process is known as Continuous Integration (CI), and can be tuned to run locally
whenever commits are made, or online whenever a pull request is opened and/or merged. When
running locally, an environment manager / command line tool such as tox [62] helps to ensure all
tests are executed under di�erent python versions. For setting up the CI cycle online, di�erent CI tools
such as Travis CI [63] or Circle CI [88] exist, and more recently GitHub actions [64] has been
introduced for running the integration directly from GitHub.

Having tests is a great way of ensuring our code ful�lls a certain level of correctness and styling.
However, it is no replacement for a human assessment to determine if the code is correct, necessary,
and useful. Therefore, code reviewing is essential whenever developing code in collaboration (Table
2). Tools such as Crucible [66] and Upsource [67] exist for making in-line reviews of each �le, but the
most common approach is to directly review using the online review tools from the hosting service. In
the case of GitHub [65], this not only allows the reviewer to open a comment in any line of the code
(which creates a thread for the original author to reply), but also to suggest changes that can be
approved or dismissed. When reviewing, there are a series of things to look for (from functionality to
documentation), and good practices to keep in mind (such as phrasing the comments in a

niso
Sticky Note
Should "forks" maybe be mentioned in the next section first since they can really facilitate contributions from outside a team/community?

niso
Sticky Note
I think it would be better to write "... is to develop tests ..." and then have a few sentences explaining different test types (i.e. unit tests, integration tests,...) https://www.geeksforgeeks.org/types-software-testing/ probably most relevant to academic projects would be smoke, unit, and integration tests.

constructive way), which are outside of the scope of this review but presented in detail elsewhere
[89,90].

2.2 Share data

The practices of sharing data stem from the same place as with sharing code: we should store our
dataset and any changes to it in a repository, and ensure it complies with standards by testing its
quality. However, due to data having a more consistent structure than code, as they are often
processed and outputted by machines in standard formats, there are additional criteria that should
be considered when we share it with collaborators (and later on with the community). The main set of
guidelines that represent these criteria were outlined a few years ago in what is known as the FAIR
principles [4]: data should be Findable, i.e. easy to �nd online; Accessible, i.e. easy to access once
found; Interoperable, i.e. easy to integrate with other data/applications/work�ows/etc.; and Reusable,
i.e. presented in a way that allows for others to use it for the same purpose or di�erent settings. For
assessing if data is or not FAIR, tools like FAIRshake [91] can be used to determine what is missing.

For making data �ndable, research repositories such as Zenodo [92] and Figshare [93] allow you to
assign a digital object identi�er (DOI) to any group of �les you upload, including data and/or code.
Alternatively, regular code repositories like GitHub can be used instead, as you can employ commits
and/or releases to identify speci�c versions of the data (see Section 3.1), in combination with
extensions for Large File Storage such as git LFS [94], in the case of data �les larger than 100 MB [95].
A �nal alternative is the Data Version Control (DVC) initiative [69], which is especially useful when
doing machine learning, as it can keep track of data, machine learning models, and even scoring
metrics.

For making data accessible, we encourage as much as possible to make your repositories open
access, but in cases in which you or your collaborators prefer some restrictions, you can create guest
accounts to provide access to private repositories. For making data interoperable, distinctions
between raw and clean data have been made [58], with raw data being the �les that came out of the
measuring device, and clean data the �les that are ready to be used for any computational analysis.
An important characteristic that clean data should have is to be “tidy”, which is reviewed in detail
elsewhere [68]. Finally, for making data reusable, thorough documentation of the data is required,
including experimental design, measurement units and sources of error.

2.3 Share data science notebooks

As we previously discussed, Jupyter Notebook have become a fundamental tool of data analysis.
Notebooks can be shared with collaborators using either static or interactive options. The former, as
the name indicates, shares computational notebooks as a rendered text, written internally in HTML.
Static notebooks are a good option when you want to avoid any modi�cations and can work as an
archive of past analyses, but interacting with its content is cumbersome—the �le must be
downloaded and run in a local Jupyter installation. Git-based code repositories, such as GitHub and
GitLab, automatically render notebooks that can be later shared using the GitHub repository URL. To
facilitate this process, the Project Jupyter provides a web application called NBviewer, where you can
paste a Jupyter Notebook’s URL, publicly hosted in GitHub or elsewhere, and renders the �le into a
static HTML web page with a stable link.

Interactive notebooks, in the other hand, not only render the �le but also allow collaborators to fully
interact with it, tinkering parameters or trying new input data—no installation required. The Binder
Projects (which is also part of the Project Jupyter) o�ers the Binder service, where any publicly hosted
Git-based repository can be open with a Jupyter Notebook interface. The user can fully interact with
any notebook within the repository, although changes will not be saved to the original �le. The

niso
Sticky Note
Maybe mention that Zenodo integrates with GitHub an you can automatically archive tags/versions made to repos?

niso
Sticky Note
Link to NBviewer? Actually I am not sure that service still exists?

platforms supports Python and R among other languages, and any additional packages required to
run the analysis need to be speci�ed in a con�guration �le within the repository. Similarly, Jupyter
Notebooks can be run interactively using Google CoLaboratory (CoLab), which is available to anyone
with a Google account. Notebooks can be updated locally, from any public GitHub repository, or from
Google Drive. In both cases, the machines provided by these services are comparable to a modern
laptop, hence these tools may not be suitable for computing-intensive tasks.

Sometimes computational biologists need to work and edit a notebook together. In those cases,
notebooks need to be treated as any other piece of code: updates from di�erent collaborators must
be managed with version control in a platform such as GitHub. The problem, however, is that Git-
based hosting services deal with notebooks as if they were HTML text, where changes between
versions are hard to visualize. To better compare these changes, there is NBreview, which renders
and display in parallel the old and new versions of a notebook for easy comparison. The tool can be
easily installed using your GitHub account.

2.4 Share computational work�ows

Computational biology projects often demands using multi-step analyses with dozens of third-party
software and dependencies. Although these steps can be shared as documentation, complex
work�ows are better shared as stand-alone code that can be easily run with minimal �le manipulation
from collaborators. Doing so can safeguard the reproducibility and replicability of the analysis, leading
to better science and less issues down the road.

The simplest way to share a pipeline is to generate a Bash script that receives input �les from the
command line, thus, allowing to run it with di�erent input data. However, Bash scripts o�er little
control over the overall work�ow and cannot re-run speci�c parts of the pipeline. To address these
issues, pipelines are better shared using a work�ow automation system. Theoretically, all the
instructions regarding the work�ow could be written in the main pipeline �le—in Snakemake, the
.smk �le (or Snake�le); in Next�ow, te .nf �le; in CWL, .cwl �le; and in WDL, .wdl . However, to

ensure reproducibility, it is a good practice to share complete pipelines, meaning folder structures,
additional �les and software speci�cation, as well all custom scripts developed for the analysis. These
�les can be shared using the same tools as other forms of code, namely GitHub or any other Git
hosting services. Alternatively, they can be uploaded to hosting services specialized in work�ows, like
Work�owHub [74], currently in beta.

When sharing work�ows, consider that sharing software versioning is necessary for your collaborators
to reproduce your pipeline using their own computing setup. Conda environments, for example, can
be easily created from an environment �le (in YAML language), which can be exported from an
existing environment. Notably, Snakemake and Nex�ow can be con�gured to automatically build
isolated environments for each rule or step, enabling running di�erent versions of a program within
the same pipeline (which is especially helpful when needing both Python 2 and 3 in the same pipeline,
for example). Besides sharing the speci�cations of an environment, it is possible to share the
environment itself via containers, using platforms like Docker and Singularity as we will discuss in
Level 3.

2.5 Write manuscripts collaboratively

Writing articles is the main way we share our research with the scienti�c community at large.
However, in a highly interdisciplinary �eld as computational biology, writing manuscripts is also a
collaborative e�ort. The traditional computer tools for writing documents are not suitable for this type
of collaboration, resulting in �les with di�erent names, jumping from one e-mail inbox to another, and

niso
Sticky Note
Should mention nbdime as the official jupyter project solution for version control of notebooks. I think that sentence is also not quite correct. Maybe "The problem, however, is that git and other VCS use line based diffs per default that are not very well suited for the internal JSON representation of Jupyter notebooks. Extensions like nbdime and NBreview ..."

multiple and even contradictory �nal versions. Let’s avoid this by streamlining collaborative
manuscript writing with tools made for that purpose.

Big companies have become aware of the need for collaborative writing, developing online
applications that can be simultaneously edited by multiple people. Google’s Docs and Microsoft’s
O�ce 365 are well-known word processors designed for this purpose, where the text is displayed with
the exact appearance than in a printout (know as What-You-See-Is-What-You-Get , or WYSIWYG) and
the text can be formatted making use of the internal features of the application. The advantage of
these technologies is that they are extremely user-friendly and require no additional knowledge. They
are a good option when one or more of your collaborators seeks simplicity, but they are not
speci�cally tailored for the needs of scienti�c writing, such as adding references, equations and
�gures. Fortunately, third-party companies such as Paperpile and Zotero have developed plugins for
these applications to add references to your document. Companies like Authorea, on the other hand,
have developed their own online application speci�cally designed for writing manuscripts. Authorea,
in particular, o�ers templates for di�erent types of research projects and allows you to easily add
references using identi�ers (DOI, PubMed, etc.). Consider, nonetheless, that some collaborators may
not want to adopt a new tool exclusively for writing manuscripts.

In addition to word processors, text editors are a competitive option to write manuscripts when
combined with a markup language—a human-readable computer language that uses tags to delineate
formatting elements in a document that will be later rendered. Since the formatting process is
internally handled by the application, styling elements (headers, text formatting, equations) can be
easily written in text, even achieving greater consistency than word processors. Disciplines closely
related to computational biology, such as statistics and mathematics, have historically used the
markup language LaTeX for writing articles. This language has a speci�c syntax to write mathematics
constructs as simple text, making it a sound choice for papers with lots of equations. To aid
collaborative writing, platforms like Overleaf provide online LaTeX editors, supporting features like
real-time editing. In addition to LaTeX, an emerging trend in collaborative writing is to use the
lightweight markup language Markdown within the GitHub infrastructure. The software Manubot
provides a set of functionalities to write scholarly articles within a GitHub repository, leveraging all the
advantages of Git version control and the GitHub hosting platform [96]. For example, it provides cloud
storage, version control, and facilitates the maintainers’ work by managing updates via pull requests.
The GitHub user interface also allows o�-line discussions about the manuscript using issues" and task
assignment (See level 3 for tips on project management). Manubot, in particular, accepts citations
using manuscripts identi�ers and automatically renders the article in PDF and HTML formats. As a
drawback, it requires technical expertise in Git and familiarity with GitHub; as an upside, its reliable
infrastructure scales well to large and open collaborative projects. The document you are reading now
was fully written using Manubot!

Level 3: Community

The third and �nal step of this journey is when you want to present your research to the community.
This can already be done shortly after the start of your project, or towards the end, when you are
close to publish your results. Either way, the main goal when doing it should be to develop and
maintain an open and reproducible computational biology project, that can sustain community
engagement over time. Here, we will distinguish 3 sub-goals: Make your research (1) accessible, (2)
reproducible and (3) sustainable. The latter is especially relevant when part of the research involves
developing code that will be used by others in the future (e.g. a tool or work�ow), but we believe that
many of those ideas are still relevant to any computational biology project as well.

3.1. Make your research accessible

niso
Sticky Note
not sure I would simple text :-) but definitely simplers than fiddling with an equation editor

niso
Sticky Note
Maybe instead "This can be done at any point of time in the life cycle of a project. The main goal here should be to develop and maintain a ...

Making your research accessible is the �rst step towards open research. This include ensuring that
anyone (inside or outside of academia) can access your research, and that it stays available long after
your paper is published. It is extremely frustrating for any researcher to look for software or a set of
scripts from a paper published a few years ago, only to �nd a “404 error” where the code used to be
provided. Equally frustrating is whenever authors o�er code as “available on request”; this often leads
to an email from the supervisor of the project explaining that the developer of the code left years ago
and the code is not available anymore.

There are three main ways in which people publish accompanying code to publications: As
supplementary material in the publication it was used, via privately-owned domains, or via public
repositories. The �rst option (publishing the code as supplementary material) has low accessibility if
the paper is not open access, as only members of institutions that pay the journal membership will be
able to access it. Moreover, it is completely static and cannot ever be updated if a new feature wants
to be introduced, or a bug is found. The second option (privately-owned domains) lacks sustainability,
as it requires certain maintenance, and either the domain can expire or the website might migrate
somewhere else. Therefore, here we argue for the third option (public repositories) because of its
accessibility and sustainability over time, as owners can update the code (if necessary) in a git-
compliant way, and they don’t need to rely on maintaining a domain and/or servers by themselves. As
mentioned before (see Level 2: Collaboration), there are several hosting services for this purpose
[50,51,52] (Table 3), all equally valid depending on where people in your speci�c �eld usually publish
their tools. Here, several repository-speci�c tools will be exempli�ed with GitHub.

Table 3: Tools for making your research accessible.

Goal Tool options Additional remarks

Publish your code
• GitHub [50]
• GitLab [51]
• Bitbucket [52]

All three options allow you to host your repository
online for free. Choose whichever is more common in
your own �eld.

Introduce your
code

• README �le [97]: First �le that shows
up in a repository.
• Github Pages [98]: Separate website.

Provide a landing page to any repository with a short
overview of the code (installation, usage,
acknowledgments, etc).

Share your code • Several licensing options [99].
Indicate with a license �le what restrictions apply when
using your code. If you don’t include this, you will loose
many users.

Archive your code
• Github Releases [100]
• Zenodo [92]: Provides DOI.
• �gshare [93]: Provides DOI.

Share progressive stable versions of your code as you
develop it. Use semantic versioning [101] for
assigning standard identi�ers to your releases.

Publish a tool

• PyPI [102]: Python.
• CRAN [103]: R.
• Bioconductor [104]: R.
• Bioconda [105]: Language-agnostic.

Produce a package easy to install and use. Especially
useful if you think you could have a userbase that will
run the same analysis as you on other datasets and/or
conditions.

Publish an
interactive web
app

• Dash [106]: Python.
• R-Shiny [107]: R.

Provide easy and interactive data exploration to your
users. Especially useful if you have large datasets that
can be explored in di�erent ways.

When publishing any piece of code online, there are two �les that are fundamental to include: A
readme �le and a license. Including a readme �le [97] is about welcoming your users, and introducing
them to your code (Table 3): it should include a description about its main intended use, an overview
of the installation, the most common commands, a way to contact the developers if problems arise
(see 3.3. Make your research sustainable for more details on this), and acknowledgments (if
appropriate). We recommend to keep it short: You can include all the details in the documentation of
the tool, here we only need a quick overview. The readme �le, which can be written in di�erent
markup languages such as Markdown [108] or reStructuredText [109], will render automatically on

niso
Sticky Note
includes

niso
Sticky Note
Maybe "available upon reasonable request". This is actually used quite often (maybe because author guidelines even suggest it?) which has caused quite some outrage on Twitter recently.

niso
Sticky Note
I would add though that it doesn't hurt to include an archive of the specific version to published in the supplements in my opinion? it should just not be the only option. But I think it is also fine to leave the sentence as is.

niso
Sticky Note
lack

niso
Sticky Note
Maybe better "The second option, privately-owned domains, ..." ?

niso
Sticky Note
their

the repository’s landing page, below the repository �le structure. For improved clarity, you may
consider creating a separate landing page: it will unclutter the website’s look by only showing the
information of the readme �le. All hosting services o�er simple ways to do this; in the case of GitHub,
you can use GitHub pages [98].

Adding a license to a repository is also a crucial step (Table 3). Licenses indicate how the code can be
used: Is it free to use for any application? Can users modify the code as they please? Does it come with
a warranty that it will work? Can it be used for pro�t? If a license is not provided, many researchers
will choose not to use the code at all, as they won’t have an answer to these questions. For instance,
academic users will not know if they are entitled to modify the code for their own research, and users
from the industry will not know if the code can be used for pro�t. Many options exist for licensing
code [99], from permissive licenses that allow any kind of use with few or no conditions, like the
Unlicense and MIT licenses, to more restrictive licenses that enforce disclosing the source and even
requiring that any adaptation of the code uses the same license, like the GNU licenses. Our suggestion
is to choose whatever suits your research group best; consider that, as a rule of thumb, the more
requirements you add, the less potential users you will have, but the more credit you will receive
when users utilize your code for their own needs.

Working as a computational biologist, you will probably continue lines of work from scripts or
software you have already published. For instance, you could improve the performance of a given
function or add a new set of features entirely. Therefore, you should not only be interested in making
your code accessible, but also in having di�erent versions available. To keep di�erent versions of your
code organized as you develop it, it is important to create and archive succeeding releases of your
code (Table 3). A good way to do this is with GitHub releases [100], which requires minimal e�ort and
shows all versions you have created of your code. An even better way to do this is with research
repositories like Zenodo [92] or Figshare [93], which not only store your code and data, but also give
you a digital object identi�er (DOI) for each version, making them citable. This is especially useful
when the publication is not available yet, or enough time has passed so that the current version of the
code di�ers widely from what was published. These repositories can even be combined with code
repositories, e.g. GitHub has a Zenodo integration that will trigger a new archived version every time a
new release is made from GitHub. Regardless of the solution chosen, we recommend keeping some
logical order to the releases, using a standard such as semantic versioning [101].

In most cases, it is probably enough to provide your code as an organized set of scripts and/or
notebooks, for anyone to consult if they wish to reproduce and/or re-utilize it. However, if you believe
that your code would be partly or entirely used in a routine-fashion by other researchers, for instance
for studying other organisms or other experimental conditions, you could consider packaging your
code as a tool (Table 3). If you take this route, aim for using one of the main options for publishing
tools as packages: Bioconda [105] is a catch-all solution, but language-speci�c options also exist, such
as PyPI [102] if you work in Python, or CRAN [103] and Bioconductor [104] if you work in R. All of
these options will allow you to reach a bigger audience, as packages can be easily searched and
installed locally with minimal e�ort.

Another common situation in research projects is having data that can be analyzed in many ways. As
producing plots that display the data in every conceivable way is unreasonable, a good solution here
is to develop an interactive web app (Table 3), also referred to as a data dashboard, that lets users
interact with the data, by showing di�erent sets of variables or changing parameter settings (e.g. the
signi�cance of a statistical test). Common options for this goal are Dash [106] for Python and R Shiny
[107] for R.

3.2. Make your research reproducible

niso
Sticky Note
I think this needs to be formulated stronger. "If no license information is provider, researchers might assume that the code is free to use but copyright law in fact prohibits use without explicit permission by the copyright holder."

niso
Sticky Note
Maybe add a cautious warning here on determining who the copyright holder is of the code you wrote? As an academic researcher, in many cases and countries it will the be University that owns the copyright and thus is the entity that can grant a license. So it would be a general good idea to clarify what Open Source licenses your university supports to avoid legal troubles.

Having your code/data accessible to anyone is only the �rst step when sharing software with the
research community; you also need to make your research reproducible by anyone. We have already
discussed the importance of reproducibility in science when working in a personal project (see Level
1); however, when sharing your results with the academic community, this becomes even more
paramount, as anyone should be able to execute your code and obtain the same results. This is
especially relevant in science, as there is a constant number of people that are new to the �eld
(including undergraduates, postgraduates and senior researchers), many who come from very
di�erent backgrounds to try to understand how your code, developed for your own speci�c niche
research area, works.

A cornerstone for reproducibility is to have a solid documentation: by explaining what your code does,
users can understand the intended use of each function, which will guide them on how to achieve
your same results. We can distinguish 4 di�erent levels of documentation [110]:

Tutorials: A group of lessons that teach the reader how to become a user of your code.
How-to guides: A set of documents that clarify to a user how to solve common problems/tasks.
Explanations: Discussions that clarify particular topics related to your code.
References: Technical descriptions of your code’s variables/classes/functions.

The extent of documentation you write will depend on how many users you expect to have, and
conversely will a�ect how many users you attract. If you foresee that your code has little usability
outside of your research, perhaps a solid documentation of each function using docstrings [111]
could be enough. However, you might also want to add a tutorial for a beginner, a couple of how-to
guides for frequently used routines, and even some explanations for clarifying the science behind
your code. The latter has the added bonus that it can be re-used for the eventual manuscript of your
publication. If you are not sure how many users you might get, air on the side of caution and prepare
good documentation anyways: you will be surprised to see how often other researchers contact you
for reproducing your results and/or using your code for other applications! Finally, to publish
comprehensive documentation online, consider using (1) a standard documentation language such as
reStructuredText [109] or Markdown [108], and (2) a documentation platform such as Readthedocs
[112], Gitbook [113] or Bookdown [114] (Table 4).

Table 4: Tools for making your research reproducible.

Goal Tool options Additional remarks

Document your
code

• Readthedocs [112]: Uses reStructuredText
[109].
• Gitbook [113]: Uses Markdown [108].
• Bookdown [114]: Uses R Markdown [45].

Comprehensive documentation: from
tutorials and how-to guides all the way
down to function documentation based on
all compiled docstrings [111].

Reproducible
environments

• Virtual environment managers: See Table 1.
• pip-tools [115]: Administer several
environments in a single project.

As a recommendation, try having the
minimum number of dependencies needed
to reproduce your results.

Reproducible
software

• Docker [116]
• Singularity [117]

Package your research as a container ready
to run in any computer.

Reproducible
commands • Make [20] Build a program by following a series of

steps in a single Make�le.

Reproducible
work�ows • Work�ow management systems: See Table 1. Run a pipeline of commands on NGS data

in a reproducible way.

Reproducible
notebooks • Interactive notebooks: See Table 2. Make your notebooks interactive and

reproducible.

niso
Sticky Note
Is anyone the right word (in the sense that maybe not a random stranger)? I don't have a better suggestion though.

niso
Sticky Note
(at least your future self will thank you in case you need to revisit the code)

A key aspect of code reproducibility is to share dependencies along with the code itself. As we discuss
in Level 1, virtual environment managers handle dependency tracking and facilitate software
installation for users. For Python, a tool worth using when de�ning environments is pip-tools [115],
which allows to de�ne di�erent environments for a single project, depending on who accesses the
project. For instance, you might want users to use a wider number of dependencies for increased
�exibility, but the CI tool to only have a minimal number of dependencies for improved e�ciency.

Beyond dependency trackers, you might also want to ensure your tool behaves in the same way
across computing environments, even between two di�erent operative systems (e.g. Mac and
Windows). The best solution for this is to use a container (Table 4), which is a standardized unit of
software that runs using an isolated �lesystem known as a container image. This image contains not
only the needed dependencies, but also any con�gurations, binary �les, environmental variables, etc.,
that the software needs for running, and can be built from a text �le with all the instructions. The two
main tools available for creating containers for free are Docker [116] and Singularity [117].

Sometimes it is necessary to ensure the user follows a series of sequential commands in a speci�c
order, for example, when setting up a speci�c con�guration. To automate this process, Linux systems
provide the tool Make (which is also used by containers). Additionally, complex work�ows, like a
pipeline for analyzing next-generation sequencing (NGS) data, are more reproducible when using
work�ow management systems (as mentioned in Level 1), while data science notebooks, in the other
hand, bene�t from being published in interactive applications that anyone can run from their own
setup (as mentioned in Level 2).

3.3. Make your research sustainable

Now that your research can be accessed and reproduced by anyone, the �nal step is to keep it like
that over time—also known as code maintenance. This is especially relevant if you carry the research
further by integrating new features requested by your users, which fosters a strong community over
time. However, even in the case in which your research is a self-contained project that will not be
continued, it is still important to ensure that your user community has ways to contact you, in case
bugs are discovered or parts of your code do not work anymore due to dependencies updates (a
common phenomenon part of the “software rot” phenomenon [118]). In the following section, we will
therefore review useful techniques for making your code/software/research sustainable over time.

Di�erent tools can be used as communication channels between you and your users depending on
the size of your user-base and the scope of the questions you receive (Table 5). For smaller projects,
where there are only questions once in a while, a single-channel solution like Gitter [119] is probably
enough, as it o�ers a simple way for anyone in the community to ask questions, and any of the
developers to answer in threads. For larger projects, however, it could become unmanageable to have
all discussions in the same channel, so multiple-channel solutions, i.e. forums, are better suited.
Google groups [120] is a good example that works well for large pieces of software, as it allows for
anyone to open separate threads for di�erent issues. As discussed in Level 2, GitHub allows to open
GitHub Issues where collaborators or users can inform about bugs or ask questions. Additionally,
GitHub recently introduced GitHub Discussions [121], also meant for keeping questions organized in
di�erent threads.

Table 5: Tools for making your research sustainable.

Goal Tool options Additional remarks

niso
Sticky Note
it is not just an isolated filesystem, it is virtualization on the OS level, you're basically packaging a whole operating system with your application/code/software

niso
Sticky Note
the -> that

Goal Tool options Additional remarks

Tell users how to
contact you

• Speci�c/shorter questions: Gitter
[119].
• Larger issues / how-to’s: Google
groups [120], GitHub Discussions
[121].

Provide ways for users to contact you for questions,
requests, etc. Remember to visit them periodically!

Track to-do’s in your
research • Github Issues [122] Detail speci�c pending to-do’s in your research / allow

others to request changes and/or highlight bugs.

Encourage user
contributions

• Contribution guidelines [123]:
How to open issues / contribute code.
• Github Wikis [124]: More speci�c
how-to guides.

Provide as much information as you can to guide your
users. You can also include administrator guidelines.

Foster a respectful
community

• Smaller projects: Contributor
Covenant [125].
• Larger projects: Citizen Code of
Conduct [126].

Essential when you would like researchers to
contribute code.

Branch your repo
sustainably • Git�ow [127]

Useful when several developers contribute code to
the project. Allows users to get access to stable
versions of your research in an ongoing project.

Keep track of your
issues

• Kanban �owcharts [128]: Github
Projects [129], GitKraken Boards
[130].
• Scrum practices [131]: Zenhub
[132], Jira [133].

Keep track of your pending tasks in di�erent projects
with Agile [134] software development practices.
Especially useful if your research is split in many
di�erent repositories, each with multiple
features/�xes to do.

Automate your repo
• bump2version [135]: Easier
releasing.
• Danger-CI [136]: Easier reviewing.

Do less, script more!

Now that your users know where to contact you, you should also tell them how to contact you. For
this, it is essential to have a �le with contribution guidelines [123] (Table 5), detailing how users
should (1) open issues and (2) contribute with their own code changes via PRs. These guidelines are
mainly intended for new users/contributors, so they should be written in the style of a how-to guide;
however, they may also include additional instructions for the main developers, or even the
administrator of the repository. Alternatively, those detailed guidelines can be included in a
supplemental wiki, which hosting services o�er as part of the repository [124]. Equally important as
the contribution guidelines is the code of conduct (Table 5), which includes guidelines on how to
behave when engaging with the community in the repository and what to do if someone does not
comply, promoting a respectful community. Several templates exist as code of conduct, such as the
Contributor Covenant [125] for smaller projects, and the Citizen Code of Conduct [126] for larger
projects.

Finally, ensuring sustainability of your project means not only allowing and encouraging users
contacting you, but also smarter ways to develop and maintain your software as it grows in scope and
number of users. This includes:

1. Branching System: When many developers are involved in a project, you want to ensure that users
can access functional versions of your code while you work on it. In this case, more advanced
branching methods such as GitFlow [127] might be preferable (Table 5). With GitFlow, an
additional development branch (often named as devel) is used as main branch for new branches
to be based on, leaving the master branch as a separate branch only for stable versions of the
code, and a merge from development to master always invoking a code release. This way, users
can directly access the master branch for tested releases, whereas the latest additions of the code,
perhaps not 100% tested, will be available for developers to further work on in the development

branch. Additional branches can be added depending on the scope of the project, such as speci�c
version branches in case further testing is needed, or hot�x branches, in case bugs are detected in
master and a quick solution is required.

2. Project Management: Although issues are fundamental for keeping track of what is there to do,
they can become hard to organize and prioritize as they grow in number. Several project
management tools exist to solve this (Table 5), all based on Agile [134] principles. The most simple
one is to have a Kanban board [128], where issues are organized in as many columns as necessary
to have a clear layout and �gure out what is the current state of a given task. Tools like GitHub
Projects [129] or GitKraken Boards [130] use this approach. For Larger projects with either several
collaborators and/or several repositories, a more structured approach such as a Scrum framework
[131] might be needed, as issues are more easily prioritized by setting milestones and estimating
di�culties. Both Zenhub [132] and Jira [133] are great options for this.

3. Additional Automation: As you develop your project, you will �nd that many aspects can be
automated to improve e�ciency. Want to make releasing faster to ensure all sections of your code
get updated with the new release? bump2version [135] might help. Want to make sure
contributors comply with certain standards in their pull requests, or even locally? Look into Danger-
CI [136] or git hooks [137]. Note here that we advice against implementing all of this from the start,
but instead adding di�erent tools as you realize you need them. If you �nd yourself performing a
task in a routinely fashion, ask yourself if you could automate it. More often than not the answer is
yes!

Case Studies

We will now exemplify the use of all the introduced tools by presenting three di�erent computational
biology projects from the literature, detailing which tools are bene�cial for those types of projects,
depending on their scope and magnitude (Figure 2) (two more cases are presented in Supplementary
Material). Note that this is a non-comprehensive list, but it is rather intended as a short overview of
how can projects in computational biology bene�t from robust computational tools and good
software development practices. Additionally, it will be quickly evident by reading these case studies
that there is a lot of repetition in the chosen tools. For instance, all projects include an environment
manager such as Conda, and a version control system like Git. This repetition is intentional, as it
denotes that some tools, especially the ones at the personal research level, are ubiquitous in
computational biology and can bene�t any project in the �eld.

Figure 2: Examples of computational biology projects and associated depending on the nature of the research and the
number of people involved.

Case study 1: Genomic variant detection in a large cohort

niso
Sticky Note
Don't necessarily want to add more work or make the manuscript even longer, but I think an important point would be the adoption of continuous integration (with GitHub actions this is now trivial to do) for the sake of running tests (did you already cover writing tests in the manuscript, don't remember) not just for the sake of making sure of not breaking the code when you introduce changes but also for just running regularly scheduled tests to discover when your tool/code breaks due to software rot/dependency issues. This is especially important if you no longer actively maintain a project.. I guess this is maybe more relevant for software than it is for research code though (if your research code contains funtions and classes etc. it is kind of software though)

Nowadays, the availability and a�ordability of NGS allows routine sequencing of dozens to even
thousands of individuals. These resequencing experiments enable discovery and genotyping of
genomic variation within large cohorts to answer key questions regarding population history and
susceptibility to disease. For this example, let’s consider a project including whole-genome Illumina
sequencing and variant calling in thousands of individuals such as [138]. In a project of this nature,
the challenge resides on applying a multi-step variant calling pipeline on a big sample size in a
reproducible manner.

In this particular project, the authors utilized the AnVil cloud computing platform, which uses WDL for
work�ow description. However, if you have access to an HPC, then a project of this nature can be
done using the work�ow automation tool Snakemake, using Python to parse sample names and
perform other data handling operations, and following Snakemake’s recommendation for folder
structure. A Conda environment can hold all necessary software since Bioconda contains a wide array
of software designed for genomics analyses. The actual coding of the work�ow can be done in any
text editor that o�ers easy integration with Git commands and Git hosting repository, such as Atom or
Visual Studio Code. Although there are no formal styling rules for Snake�les, embrace consisting
variable and rule naming, and comment your code when needed.

A project of this magnitude will usually imply collaborators from other research groups. The pipelines
and scripts can be shared using a GitHub repository. If privacy is a concern, the repository can be set
as private and made public in later stages of the project. To write the manuscript, a general-purpose
word processors such as Google Doc would su�ce, especially if not all your collaborators are
familiarized with Git and tools like Manubot. Considering that this type of data are a valuable resource
for the community, follow FAIR principles for data sharing. Besides uploading the raw data in a
repository like ENA or NCBI, we encourage you to openly share your code, analyses and other types of
data in either a GitHub repository or a dedicated research repository like Zenodo.

Case study 2: scRNA-seq data integration

Single-cell RNA-seq (scRNA-seq) is a rapidly evolving technology that has enable the study of cell
heterogeneity and developmental changes of a cell lineage, otherwise intractable with bulk RNA-seq.
Current scRNA-seq experiment deliver the transcriptomic pro�les of thousand to a million of cells
[139], making them a suitable target for machine or deep learning approaches. Among the many
challenges imposed by this technology, a key one is the integration of scRNA-seq datasets, especially
in case-control studies where cell types need to be functionally matched across dataset before
evaluating di�erences across conditions. For this case study, we will consider the development of an
unsupervised deep learning method for data integration as described in [140].

This kind of project often uses a combination of Python, R and Bash scripting depending on the task:
Python can be used to write and train deep learning models with TensorFlow and PyTorch libraries, R
enables straightforward data pre-processing with tools such as Seurat, and Bash can handle large
scale processing of raw data �les which cannot be loaded directly into RAM (often required by R and
Python applications). Additionally, we advice to use the Python’s reticulate library to incorporate
Python tools into the existing R ecosystem. To set up your working directory, we recommend a
structure like Cookiecutter Data Science, which includes separated folders for trained models and
other components of a deep learning project. To set up a software environment, Python virtual
environments like pipenv and virtualenv work well with Tensor�ow and PyTorch. The actual coding
can be done in any general purpose text editor, such as Atom or Visual Studio Code, where updates
can be easily pushed/pulled to/from GitHub. As a good practice, keep the code modular and properly
commented, and use detailed �lenames with data stamps and model parameters to facilitate
revisiting projects. Additionally, take advantage of tools such as TensorFlow’s TensorBoard to
diagnose, visualize, and experiment with your models.

When working with collaborators, the best way to share the code is through a Git hosting service like
GitHub. When multiple-users need to edit the code in real-time, then Google CoLab is an excellent
platform since it o�ers interactive coding and GPU access. In addition to the code repository, a
Manubot can be crated to write the manuscript collaboratively. To make your tool accessible to a
larger community, the code can be taken from an internal repository to a public GitHub, which must
include an overview of the tool and a license �le. Considering that most users in the �eld use R, you
can go one step further and share your code as a Bioconductor package, making sure your method
can be called directly in R and that interacts with standard data-structures in the �eld. For better
reproducibility, document your method including example tutorials in a platform like ReadTheDocs or
Gitbook, and share the software environment needed to deploy the models as a Docker container.
GitHub issues and Bioconductor forums are suitable platforms to promptly reply to users questions,
bugs reports, and enhancement opportunities.

Case study 3: Tool development for constraint-based modeling

The last case study we will present is related to constraint-based modeling, a common approach used
for simulating cellular metabolism. In this approach, the complete (or partial) metabolic network of a
given organism is inferred from its genome and/or literature, and converted to a matrix that contains
the reaction’s stoichiometry, hence referred to as a stoichiometric matrix. Using a few simple
assumptions, this matrix can then be used to perform simulations under di�erent experimental
conditions, to obtain additional insight into cellular physiology [141]. Several tools have been
developed for working with these type of models; here we will consider as example cobrapy [142], a
community tool for reading/writing constrained-based models and performing basic simulation
operations.

A tool of this nature is especially useful if developed in Python, as it should ideally be presented as a
package which can be easily installed with pip or similar. The use of an IDE is ideal for this case, as it
will provide additional features for testing changes in the tool. Practices that for other case studies
were useful now become pretty much essential, like complying with coding style and using version
control. This is because there will potentially be hundreds of people that will read your code, so it
needs to be easy to understand, and changes need to be clearly highlighted. Furthermore, the code
should be (1) available via a hosting service such as GitHub, (2) tested with a continuous development
tool such as GitHub Actions, (3) manually reviewed by collaborators to ensure correctness, (4)
released following semantic versioning standards, and (5) documented with a companion
documentation website, rich with tutorials and how-to guides. As a branching strategy, Git�ow is
probably the best suited, as it allows to have all changes in a development branch, and stable releases
in a main branch.

Finally, and due to the size of a project like this, additional considerations must be made for keeping a
healthy user-base. The �rst one is to o�er a place for users to raise their questions such as Gitter,
Google groups or GitHub Discussions, and to make sure to reply to new questions often. Additionally,
guidelines should be provided for everything: for how to open issues (ideally with issue templates), for
how to contribute (ideally with pull request templates), for how to communicate within the
community (with a code of conduct), and for any other routine task (with development guidelines
and/or wikis). Addressing issues is also essential in a project of this nature, as if not done routinely
they quickly pile up (and is an indicator that a project has gone stale). Additional tools such as a
Kanban �owchart with the help of GitHub projects will help prioritize issues, and if several repositories
have to be jointly coordinated, tools like Jira or Zenhub could be implemented instead.

Final words

Good practices in the computational biology �eld have gained the spotlight among researchers thanks
to the several guiding principles published in recent years, as well as the increasing usage of Git-based
repositories and work�ow managers. This review adds to the existing literature by introducing a
comprehensive list of good practices and associated tools that can be applied to any computational
biology project, regardless of the speci�c sub�eld or the experience of the researcher.

We are aware that the many tools and practices introduced in this study and their ever-changing
nature may seem overwhelming, especially for someone new to the �eld. To overcome this, we
encourage you to implement only a few practices and tools �rst, starting from your personal research,
and expand your repertoire over time. More importantly than any speci�c tools is keeping a mindset
of striving for reproducibility, regardless of the tools used. We are also aware that we may have left
many relevant tools behind and that, as time progresses, many new tools will be released. This means
that updated versions of reviews like this one will always be essential to help new computational
biologist enter the �eld as well as to keep experienced computational biologists up to date with the
latest trends.

In the midst of our work, under the many pressures of academic research, we can forget to keep good
computational practices in place. In such scenario, the consequences will not be seen immediately,
but they will be huge in the long run. As all scienti�c endeavors, computational biology heavily relies
on building new knowledge from previous one; as such, the good practices that we adopt will act as
building blocks for the overall reproducibility of the �eld, propelling novel and exciting discoveries.

Acknowledgments

We would like to thank Nelson Johansen for his insights on the scRNA-seq data integration case study.

niso
Sticky Note
Great job!!!

References

1. NIH working de�nition of bioinformatics and computational biology
Huerta Michael, Downing Gregory, Haseltine Florence, Seto Belinda, Liu Yuan
(2000-07-17)
https://www.kennedykrieger.org/sites/default/�les/library/documents/research/center-labs-
cores/bioinformatics/bioinformatics-def.pdf

2. What is bioinformatics? A proposed de�nition and overview of the �eld.
NM Luscombe, D Greenbaum, M Gerstein
Methods of information in medicine (2001) https://www.ncbi.nlm.nih.gov/pubmed/11552348
PMID: 11552348

3. How do scientists develop scienti�c software? An external replication
Gustavo Pinto, Igor Wiese, Luiz Felipe Dias
Institute of Electrical and Electronics Engineers (IEEE) (2018-03) https://doi.org/ggk6nc
DOI: 10.1109/saner.2018.8330263

4. The FAIR Guiding Principles for scienti�c data management and stewardship
Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, …
Barend Mons
Scienti�c Data (2016-03-15) https://doi.org/bdd4
DOI: 10.1038/sdata.2016.18 · PMID: 26978244 · PMCID: PMC4792175

5. Barely su�cient practices in scienti�c computing
Graham Lee, Sebastian Bacon, Ian Bush, Laura Fortunato, David Gavaghan, Thibault Lestang,
Caroline Morton, Martin Robinson, Philippe Rocca-Serra, Susanna-Assunta Sansone, Helena Webb
Patterns (2021-02) https://doi.org/gjpcb6
DOI: 10.1016/j.patter.2021.100206 · PMID: 33659915 · PMCID: PMC7892476

6. Good enough practices in scienti�c computing
Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, Tracy K. Teal
PLOS Computational Biology (2017-06-22) https://doi.org/gbkbwp
DOI: 10.1371/journal.pcbi.1005510 · PMID: 28640806 · PMCID: PMC5480810

7. Best Practices for Scienti�c Computing
Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy, Steven H.
D. Haddock, Kathryn D. Hu�, Ian M. Mitchell, Mark D. Plumbley, … Paul Wilson
PLoS Biology (2014-01-07) https://doi.org/qtt
DOI: 10.1371/journal.pbio.1001745 · PMID: 24415924 · PMCID: PMC3886731

8. Software engineering for scienti�c big data analysis
Björn A Grüning, Samuel Lampa, Marc Vaudel, Daniel Blankenberg
GigaScience (2019-05) https://doi.org/gf4f4m
DOI: 10.1093/gigascience/giz054 · PMID: 31121028 · PMCID: PMC6532757

9. So you want to be a computational biologist?
Nick Loman, Mick Watson
Nature Biotechnology (2013-11-01) https://doi.org/p3j
DOI: 10.1038/nbt.2740 · PMID: 24213777

https://www.kennedykrieger.org/sites/default/files/library/documents/research/center-labs-cores/bioinformatics/bioinformatics-def.pdf
https://www.ncbi.nlm.nih.gov/pubmed/11552348
https://www.ncbi.nlm.nih.gov/pubmed/11552348
https://doi.org/ggk6nc
https://doi.org/10.1109/saner.2018.8330263
https://doi.org/bdd4
https://doi.org/10.1038/sdata.2016.18
https://www.ncbi.nlm.nih.gov/pubmed/26978244
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175
https://doi.org/gjpcb6
https://doi.org/10.1016/j.patter.2021.100206
https://www.ncbi.nlm.nih.gov/pubmed/33659915
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892476
https://doi.org/gbkbwp
https://doi.org/10.1371/journal.pcbi.1005510
https://www.ncbi.nlm.nih.gov/pubmed/28640806
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480810
https://doi.org/qtt
https://doi.org/10.1371/journal.pbio.1001745
https://www.ncbi.nlm.nih.gov/pubmed/24415924
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886731
https://doi.org/gf4f4m
https://doi.org/10.1093/gigascience/giz054
https://www.ncbi.nlm.nih.gov/pubmed/31121028
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532757
https://doi.org/p3j
https://doi.org/10.1038/nbt.2740
https://www.ncbi.nlm.nih.gov/pubmed/24213777

10. Ten Simple Rules for Taking Advantage of Git and GitHub
Yasset Perez-Riverol, Laurent Gatto, Rui Wang, Timo Sachsenberg, Julian Uszkoreit, Felipe da Veiga
Leprevost, Christian Fufezan, Tobias Ternent, Stephen J. Eglen, Daniel S. Katz, … Juan Antonio
Vizcaíno
PLOS Computational Biology (2016-07-14) https://doi.org/gbrb39
DOI: 10.1371/journal.pcbi.1004947 · PMID: 27415786 · PMCID: PMC4945047

11. Ten Simple Rules for Reproducible Research in Jupyter Notebooks
Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng Huang, Rob Knight,
Niema Moshiri, Mai H. Nguyen, Sara Brin Rosenthal, Fernando Pérez, Peter W. Rose
arXiv (2018-10-13) https://arxiv.org/abs/1810.08055v1

12. Streamlining Data-Intensive Biology With Work�ow Systems
Taylor Reiter, Phillip T. Brooks, Luiz Irber, Shannon E. K. Joslin, Charles M. Reid, Camille Scott, C.
Titus Brown, N. Tessa Pierce
Cold Spring Harbor Laboratory (2020-11-16) https://doi.org/gg353v
DOI: 10.1101/2020.06.30.178673

13. A Padawan Programmer’s Guide to Developing Software Libraries
James T. Yurkovich, Benjamin J. Yurkovich, Andreas Dräger, Bernhard O. Palsson, Zachary A. King
Cell Systems (2017-11) https://doi.org/gg8tqz
DOI: 10.1016/j.cels.2017.08.003 · PMID: 28988801

14. Bash - GNU Project - Free Software Foundation https://www.gnu.org/software/bash/

15. Welcome to Python.org
Python.org
https://www.python.org/

16. R: The R Project for Statistical Computing https://www.r-project.org/

17. The Perl Programming Language - www.perl.org https://www.perl.org/

18. cplusplus.com - The C++ Resources Network https://www.cplusplus.com/

19. Rust Programming Language https://www.rust-lang.org/

20. Make - GNU Project - Free Software Foundation https://www.gnu.org/software/make/

21. Snakemake - A framework for reproducible data analysis https://snakemake.github.io/

22. Next�ow - A DSL for parallel and scalable computational pipelines https://www.next�ow.io/

23. Common Work�ow Language
Common Work�ow Language (CWL)
Common Work�ow Language (CWL) https://www.commonwl.org/

24. OpenWDL https://openwdl.org/

25. Home - Cookiecutter Data Science https://drivendata.github.io/cookiecutter-data-science/

26. GitHub - Reproducible-Science-Curriculum/rr-init: Research project initialization and
organization following reproducible research guidelines

https://doi.org/gbrb39
https://doi.org/10.1371/journal.pcbi.1004947
https://www.ncbi.nlm.nih.gov/pubmed/27415786
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945047
https://arxiv.org/abs/1810.08055v1
https://doi.org/gg353v
https://doi.org/10.1101/2020.06.30.178673
https://doi.org/gg8tqz
https://doi.org/10.1016/j.cels.2017.08.003
https://www.ncbi.nlm.nih.gov/pubmed/28988801
https://www.gnu.org/software/bash/
https://www.python.org/
https://www.r-project.org/
https://www.perl.org/
https://www.cplusplus.com/
https://www.rust-lang.org/
https://www.gnu.org/software/make/
https://snakemake.github.io/
https://www.nextflow.io/
https://www.commonwl.org/
https://openwdl.org/
https://drivendata.github.io/cookiecutter-data-science/

GitHub
https://github.com/Reproducible-Science-Curriculum/rr-init

27. Distribution and Reproducibility — Snakemake 6.9.0 documentation
https://snakemake.readthedocs.io/en/stable/snake�les/deployment.html

28. Pipenv: Python Dev Work�ow for Humans — pipenv 2021.5.29 documentation
https://pipenv.pypa.io/en/latest/

29. Virtualenv — virtualenv 20.8.2.dev2+g5d14665 documentation
https://virtualenv.pypa.io/en/latest/

30. Project Environments https://rstudio.github.io/renv/index.html

31. Conda — Conda documentation https://docs.conda.io/en/latest/

32. Home - pip documentation v21.2.4 https://pip.pypa.io/en/stable/

33. GitHub - Bioconductor/BiocManager: CRAN Package For Managing Bioconductor Packages
GitHub
https://github.com/Bioconductor/BiocManager

34. RStudio Package Manager https://rstudio.com/products/package-manager/

35. A hackable text editor for the 21st Century
Atom
https://atom.io/

36. Sublime Text - the sophisticated text editor for code, markup and prose
https://www.sublimetext.com/

37. Visual Studio Code - Code Editing. Rede�ned https://code.visualstudio.com/

38. Notepad++ https://notepad-plus-plus.org/

39. welcome home : vim online https://www.vim.org/

40. GNU Emacs - GNU Project https://www.gnu.org/software/emacs/

41. Project Jupyter https://www.jupyter.org

42. PyCharm: the Python IDE for Professional Developers by JetBrains
JetBrains
https://www.jetbrains.com/pycharm/

43. Home — Spyder IDE https://www.spyder-ide.org/

44. RStudio | Open source & professional software for data science teams https://rstudio.com/

45. R Markdown https://rmarkdown.rstudio.com/

https://github.com/Reproducible-Science-Curriculum/rr-init
https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html
https://pipenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://rstudio.github.io/renv/index.html
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://github.com/Bioconductor/BiocManager
https://rstudio.com/products/package-manager/
https://atom.io/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://notepad-plus-plus.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://www.jupyter.org/
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://rstudio.com/
https://rmarkdown.rstudio.com/

46. PEP 8 – Style Guide for Python Code
Python.org
https://www.python.org/dev/peps/pep-0008/

47. GitHub - google/styleguide: Style guides for Google-originated open-source projects
GitHub
https://github.com/google/styleguide

48. Markdown Guide https://www.markdownguide.org/

49. Git https://git-scm.com/

50. GitHub: Where the world builds software
GitHub
https://github.com/

51. Iterate faster, innovate together
GitLab
https://about.gitlab.com/

52. Bitbucket | The Git solution for professional teams
Atlassian
Bitbucket https://bitbucket.org/product

53. GitHub Desktop
GitHub Desktop
https://desktop.github.com/

54. Free Git GUI for Windows, Mac, Linux | GitKraken https://www.gitkraken.com

55. 2018 Kaggle Machine Learning & Data Science Survey https://kaggle.com/kaggle/kaggle-survey-
2018

56. Modulecounts http://www.modulecounts.com/

57. Why scientists are turning to Rust
Je�rey M. Perkel
Nature (2020-12-01) https://doi.org/ghqc7g
DOI: 10.1038/d41586-020-03382-2 · PMID: 33262490

58. A Quick Guide to Organizing Computational Biology Projects
William Sta�ord Noble
PLoS Computational Biology (2009-07-31) https://doi.org/fbbpkn
DOI: 10.1371/journal.pcbi.1000424 · PMID: 19649301 · PMCID: PMC2709440

59. Understanding the GitHub �ow · GitHub Guides https://guides.github.com/introduction/�ow/

60. pytest: helps you write better programs — pytest documentation
https://docs.pytest.org/en/stable/

61. Codecov - The Leading Code Coverage Solution
Codecov
https://about.codecov.io/

https://www.python.org/dev/peps/pep-0008/
https://github.com/google/styleguide
https://www.markdownguide.org/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/product
https://desktop.github.com/
https://www.gitkraken.com/
https://kaggle.com/kaggle/kaggle-survey-2018
http://www.modulecounts.com/
https://doi.org/ghqc7g
https://doi.org/10.1038/d41586-020-03382-2
https://www.ncbi.nlm.nih.gov/pubmed/33262490
https://doi.org/fbbpkn
https://doi.org/10.1371/journal.pcbi.1000424
https://www.ncbi.nlm.nih.gov/pubmed/19649301
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709440
https://guides.github.com/introduction/flow/
https://docs.pytest.org/en/stable/
https://about.codecov.io/

62. Welcome to the tox automation project — tox 3.24.5.dev4 documentation
https://tox.readthedocs.io/en/latest/

63. Travis CI | Test and Deploy With Con�dence https://www.travis-ci.com/

64. Features • GitHub Actions
GitHub
https://github.com/features/actions

65. Reviewing changes in pull requests
GitHub Docs
https://docs.github.com/en/github/collaborating-with-pull-requests/reviewing-changes-in-pull-
requests

66. Crucible Code Review Tool for Git, SVN, Perforce and More
Atlassian
Atlassian https://www.atlassian.com/software/crucible

67. Upsource: Code Review and Project Analytics by JetBrains
JetBrains
https://www.jetbrains.com/upsource/

68. Tidy Data
Hadley Wickham
Journal of Statistical Software (2014) https://doi.org/gdm3p7
DOI: 10.18637/jss.v059.i10

69. Data Version Control · DVC https://dvc.org/

70. nbviewer https://nbviewer.jupyter.org/

71. The Binder Project https://mybinder.org/

72. Google Colaboratory https://colab.research.google.com/

73. GitHub Di�s & Commenting for Jupyter Notebooks https://www.reviewnb.com/

74. The Work�owHub https://work�owhub.eu/

75. Google Docs: Free Online Documents for Personal Use https://www.google.com/docs/about/

76. Microsoft 365 with O�ce apps | Microsoft 365 https://www.microsoft.com/en-us/microsoft-365

77. Open Research Collaboration and Publishing - Authorea https://www.authorea.com/

78. Overleaf, Online LaTeX Editor https://www.overleaf.com

79. Manubot - Manuscripts, open and automated https://manubot.org

80. Semantic Commit Messages
Sparkbox
https://sparkbox.com/foundry/semantic_commit_messages

https://tox.readthedocs.io/en/latest/
https://www.travis-ci.com/
https://github.com/features/actions
https://docs.github.com/en/github/collaborating-with-pull-requests/reviewing-changes-in-pull-requests
https://www.atlassian.com/software/crucible
https://www.jetbrains.com/upsource/
https://doi.org/gdm3p7
https://doi.org/10.18637/jss.v059.i10
https://dvc.org/
https://nbviewer.jupyter.org/
https://mybinder.org/
https://colab.research.google.com/
https://www.reviewnb.com/
https://workflowhub.eu/
https://www.google.com/docs/about/
https://www.microsoft.com/en-us/microsoft-365
https://www.authorea.com/
https://www.overleaf.com/
https://manubot.org/
https://sparkbox.com/foundry/semantic_commit_messages

81. Conventional Commits
Conventional Commits
https://www.conventionalcommits.org/en/v1.0.0/

82. GitHub CLI
GitHub CLI
https://cli.github.com/

83. About issues
GitHub Docs
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues

84. Unit Testing for R https://testthat.r-lib.org/

85. What Is End-To-End Testing | Coverage At All Layers https://smartbear.com/solutions/end-to-
end-testing/

86. Flake8: Your Tool For Style Guide Enforcement — �ake8 3.9.2 documentation
https://�ake8.pycqa.org/en/latest/

87. Safety - Security for your Python dependencies https://pyup.io/safety/

88. Continuous Integration and Delivery
CircleCI
https://circleci.com/

89. How to do a code review
eng-practices
https://google.github.io/eng-practices/review/reviewer/

90. Code Review Guidelines for Humans
Philipp Hauer
Philipp Hauer’s Blog (2018-07-31) https://phauer.com/2018/code-review-guidelines/

91. FAIRshake https://fairshake.cloud/

92. Zenodo - Research. Shared. https://zenodo.org/

93. About https://�gshare.com/about

94. Git Large File Storage
Git Large File Storage
https://git-lfs.github.com/

95. About large �les on GitHub
GitHub Docs
https://docs.github.com/en/repositories/working-with-�les/managing-large-�les/about-large-�les-
on-github

96. Open collaborative writing with Manubot
Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey
S. Greene, Anthony Gitter

https://www.conventionalcommits.org/en/v1.0.0/
https://cli.github.com/
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://testthat.r-lib.org/
https://smartbear.com/solutions/end-to-end-testing/
https://flake8.pycqa.org/en/latest/
https://pyup.io/safety/
https://circleci.com/
https://google.github.io/eng-practices/review/reviewer/
https://phauer.com/2018/code-review-guidelines/
https://fairshake.cloud/
https://zenodo.org/
https://figshare.com/about
https://git-lfs.github.com/
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://doi.org/c7np

PLOS Computational Biology (2019-06-24) https://doi.org/c7np
DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653

97. Make a README
Make a README
https://www.makeareadme.com

98. GitHub Pages
GitHub Pages
https://pages.github.com/

99. Licenses
Choose a License
https://choosealicense.com/licenses/

100. Managing releases in a repository
GitHub Docs
https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-
repository

101. Semantic Versioning 2.0.0
Tom Preston-Werner
Semantic Versioning https://semver.org/

102. PyPI · The Python Package Index
PyPI
https://pypi.org/

103. The Comprehensive R Archive Network https://cran.r-project.org/

104. Bioconductor - Home https://www.bioconductor.org/

105. News — Bioconda documentation https://bioconda.github.io/

106. Dash Overview https://plotly.com/dash

107. Shiny https://shiny.rstudio.com/

108. Daring Fireball: Markdown Syntax Documentation
https://daring�reball.net/projects/markdown/syntax

109. reStructuredText (2016-05-24) https://docutils.sourceforge.io/rst.html

110. The documentation system — Documentation system documentation
https://documentation.divio.com/

111. Python Docstrings
GeeksforGeeks
(2017-06-01) https://www.geeksforgeeks.org/python-docstrings/

112. Home | Read the Docs https://readthedocs.org/

113. GitBook - Where software teams break knowledge silos. https://www.gitbook.com/

https://doi.org/c7np
https://doi.org/10.1371/journal.pcbi.1007128
https://www.ncbi.nlm.nih.gov/pubmed/31233491
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611653
https://www.makeareadme.com/
https://pages.github.com/
https://choosealicense.com/licenses/
https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository
https://semver.org/
https://pypi.org/
https://cran.r-project.org/
https://www.bioconductor.org/
https://bioconda.github.io/
https://plotly.com/dash
https://shiny.rstudio.com/
https://daringfireball.net/projects/markdown/syntax
https://docutils.sourceforge.io/rst.html
https://documentation.divio.com/
https://www.geeksforgeeks.org/python-docstrings/
https://readthedocs.org/
https://www.gitbook.com/
https://bookdown.org/home/

114. Home | Bookdown https://bookdown.org/home/

115. GitHub - jazzband/pip-tools: A set of tools to keep your pinned Python dependencies fresh.
GitHub
https://github.com/jazzband/pip-tools

116. Empowering App Development for Developers | Docker https://www.docker.com/

117. Home
Sylabs.io
https://sylabs.io/

118. What is Software Rot? - De�nition from Techopedia
Techopedia.com
http://www.techopedia.com/de�nition/22202/software-rot

119. Gitter https://gitter.im/

120. Redirecting to Google Groups https://groups.google.com/forum/m

121. GitHub Discussions Documentation
GitHub Docs
https://docs.github.com/en/discussions

122. Mastering Issues · GitHub Guides https://guides.github.com/features/issues/

123. Setting guidelines for repository contributors
GitHub Docs
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-
contributions/setting-guidelines-for-repository-contributors

124. About wikis
GitHub Docs
https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis

125. Contributor Covenant: A Code of Conduct for Open Source and Other Digital Commons
Communities https://www.contributor-covenant.org/

126. policies/citizen_code_of_conduct.md at master · stumpsyn/policies
GitHub
https://github.com/stumpsyn/policies

127. A successful Git branching model
nvie.com
http://nvie.com/posts/a-successful-git-branching-model/

128. Kanban - A brief introduction
Atlassian
Atlassian https://www.atlassian.com/agile/kanban

129. GitHub Issues · Project planning for developers
GitHub
https://github.com/features/issues

https://bookdown.org/home/
https://github.com/jazzband/pip-tools
https://www.docker.com/
https://sylabs.io/
http://www.techopedia.com/definition/22202/software-rot
https://gitter.im/
https://groups.google.com/forum/m
https://docs.github.com/en/discussions
https://guides.github.com/features/issues/
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis
https://www.contributor-covenant.org/
https://github.com/stumpsyn/policies
http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/agile/kanban
https://github.com/features/issues
https://www.gitkraken.com/boards

130. Free Kanban Boards - Issue Tracker | GitKraken Boards https://www.gitkraken.com/boards

131. What is Scrum?
Scrum.org
https://www.scrum.org/resources/what-is-scrum

132. ZenHub - Agile Project Management for GitHub https://www.zenhub.com/

133. Jira | Issue & Project Tracking Software
Atlassian
Atlassian https://www.atlassian.com/software/jira

134. Manifesto for Agile Software Development https://agilemanifesto.org/

135. GitHub - c4urself/bump2version: Version-bump your software with a single command
GitHub
https://github.com/c4urself/bump2version

136. Danger - Stop Saying “You Forgot To…” in Code Review
Orta Therox
http://danger.systems/ruby/index.html

137. Git - Git Hooks https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

138. A complete reference genome improves analysis of human genetic variation
Sergey Aganezov, Stephanie M. Yan, Daniela C. Soto, Melanie Kirsche, Samantha Zarate, Pavel
Avdeyev, Dylan J. Taylor, Kishwar Sha�n, Alaina Shumate, Chunlin Xiao, … Michael C. Schatz
Cold Spring Harbor Laboratory (2021-07-13) https://doi.org/gk6dwc
DOI: 10.1101/2021.07.12.452063

139. Exponential scaling of single-cell RNA-seq in the past decade
Valentine Svensson, Roser Vento-Tormo, Sarah A Teichmann
Nature Protocols (2018-03-01) https://doi.org/gc5ndt
DOI: 10.1038/nprot.2017.149 · PMID: 29494575

140. scAlign: a tool for alignment, integration, and rare cell identi�cation from scRNA-seq data
Nelson Johansen, Gerald Quon
Genome Biology (2019-08-14) https://doi.org/gh5jhj
DOI: 10.1186/s13059-019-1766-4 · PMID: 31412909 · PMCID: PMC6693154

141. Constraint-based models predict metabolic and associated cellular functions
Aarash Bordbar, Jonathan M. Monk, Zachary A. King, Bernhard O. Palsson
Nature Reviews Genetics (2014-01-16) https://doi.org/f5sk8s
DOI: 10.1038/nrg3643 · PMID: 24430943

142. COBRApy: COnstraints-Based Reconstruction and Analysis for Python
Ali Ebrahim, Joshua A Lerman, Bernhard O Palsson, Daniel R Hyduke
BMC Systems Biology (2013-08-08) https://doi.org/gb3qmh
DOI: 10.1186/1752-0509-7-74 · PMID: 23927696 · PMCID: PMC3751080

143. RNA sequencing: the teenage years
Rory Stark, Marta Grzelak, James Had�eld

https://www.gitkraken.com/boards
https://www.scrum.org/resources/what-is-scrum
https://www.zenhub.com/
https://www.atlassian.com/software/jira
https://agilemanifesto.org/
https://github.com/c4urself/bump2version
http://danger.systems/ruby/index.html
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://doi.org/gk6dwc
https://doi.org/10.1101/2021.07.12.452063
https://doi.org/gc5ndt
https://doi.org/10.1038/nprot.2017.149
https://www.ncbi.nlm.nih.gov/pubmed/29494575
https://doi.org/gh5jhj
https://doi.org/10.1186/s13059-019-1766-4
https://www.ncbi.nlm.nih.gov/pubmed/31412909
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693154
https://doi.org/f5sk8s
https://doi.org/10.1038/nrg3643
https://www.ncbi.nlm.nih.gov/pubmed/24430943
https://doi.org/gb3qmh
https://doi.org/10.1186/1752-0509-7-74
https://www.ncbi.nlm.nih.gov/pubmed/23927696
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751080
https://doi.org/gf6vfx

Nature Reviews Genetics (2019-07-24) https://doi.org/gf6vfx
DOI: 10.1038/s41576-019-0150-2 · PMID: 31341269

144. Genome-scale metabolic modelling of P. thermoglucosidasius NCIMB 11955 reveals
metabolic bottlenecks in anaerobic metabolism.
Viviënne Mol, Martyn Bennett, Benjamín J. Sánchez, Beata K. Lisowska, Markus J. Herrgård, Alex
Toftgaard Nielsen, David J Leak, Nikolaus Sonnenschein
Cold Spring Harbor Laboratory (2021-02-01) https://doi.org/gh4s89
DOI: 10.1101/2021.02.01.429138

145. A systematic assessment of current genome-scale metabolic reconstruction tools
Sebastián N. Mendoza, Brett G. Olivier, Douwe Molenaar, Bas Teusink
Genome Biology (2019-08-07) https://doi.org/gh3pjm
DOI: 10.1186/s13059-019-1769-1 · PMID: 31391098 · PMCID: PMC6685185

146. MEMOTE for standardized genome-scale metabolic model testing
Christian Lieven, Moritz E. Beber, Brett G. Olivier, Frank T. Bergmann, Meric Ataman, Parizad
Babaei, Jennifer A. Bartell, Lars M. Blank, Siddharth Chauhan, Kevin Correia, … Cheng Zhang
Nature Biotechnology (2020-03-02) https://doi.org/gh4s88
DOI: 10.1038/s41587-020-0446-y · PMID: 32123384 · PMCID: PMC7082222

Supplementary Material

Additional case study 1: RNA-seq di�erential gene expression

Di�erential gene expression (DGE) analysis is a routine research tool in the �eld of functional
genomics. Its main goal is to determine quantitative changes in gene expression levels between
di�erent experimental conditions or di�erent populations. Nowadays, given the availability of NGS
technologies, most DGE analysis are based on RNA-seq data, being the primary application of the
technology [143]. Here, we will consider a study designed to gain insights regarding a speci�c
condition of interest, leading to interest genes that can be functionally characterized in animal models
afterwards. The experimental setup included a control group and an experimental group with the
condition of interest, both sequenced using RNA-seq. The experiment was conducted four times
independently to get four replicates per group.

In this example, the most relevant part is personal research. Following this work’s framework, the �rst
step is to decide which programming languages to use. Considering that the bioinformatics analysis
will include a �rst step performed in the command line—where read will be trimmed and aligned to a
reference transcriptome, and the number of reads per transcripts will be counted—followed by a
second step for data �ltering and statistical analysis, the programming languages to use will be Shell
and R. The folder structure must have separated spaces for raw data, results, documentation and
scripts used in the analysis. We recommend to clone the RR-init template into our HPC since a simple
structure will su�ce. For this project, the best option will be to use a Conda environment with R
installed, where we can download packages from Bioconductor and Bioconda. A bash script written in
Emacs will be a suitable option for the �rst step in the HPC, and R Studio for the second part of
analysis and visualization. We advice to follow literate programming, especially when writing R code,
and to track changes using Git.

Additional case study 2: Genome-scale metabolic model

A sub group of constraint-based models (Case Study 3) are genome-scale metabolic models, where
the model represents the complete metabolism of a cell, inferred from genome sequencing. These

https://doi.org/gf6vfx
https://doi.org/10.1038/s41576-019-0150-2
https://www.ncbi.nlm.nih.gov/pubmed/31341269
https://doi.org/gh4s89
https://doi.org/10.1101/2021.02.01.429138
https://doi.org/gh3pjm
https://doi.org/10.1186/s13059-019-1769-1
https://www.ncbi.nlm.nih.gov/pubmed/31391098
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685185
https://doi.org/gh4s88
https://doi.org/10.1038/s41587-020-0446-y
https://www.ncbi.nlm.nih.gov/pubmed/32123384
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082222

models are signi�cantly larger in size, making the model generation and curation steps hard to trace
back if we don’t use adequate tools. As a reference paper, consider the generation, curation and
validation of a genome-scale model for Parageobacillus thermoglucosidasius [144], a thermophilic
facultative anaerobic bacteria with promising traits for industrial metabolic engineering.

The �rst step in a project of this nature is to use one of the many reconstruction algorithms available
[145] to start from what is referred to as a draft reconstruction; therefore, the choice of programming
language for that section will depend on the selected algorithm. After that, there is a lengthy step of
model curation and gap �lling, in order to end up with a model that can produce all necessary building
blocks of the cell. For this step we recommend a basic setup of Python as programming language and
Conda as environment manager, due to their ease of use and the growing number of Python
packages being developed in the �eld. Additionally, we advice using Jupyter Notebook as main
working setup and Git for version control, as you can use di�erent notebooks (or di�erent versions of
a notebook) as logs of analysis performed on your working draft. When collaborating, tools that will be
especially useful while working on a genome-scale model are unit-testing, to ensure your model
maintains a certain quality as you and others develop it [146], and ReviewNB, to keep track of
changes in notebooks across commits and/or branches. Finally, when sharing the model within the
community, Zenodo is a great option for de�ning di�erent versions of the model, and any issue
tracker will make it possible for users to pinpoint mathematical or biological inconsistencies in the
network.

