Skip to content

Conversation

@wolfv
Copy link
Member

@wolfv wolfv commented Oct 27, 2021

Checklist

  • Used a personal fork of the feedstock to propose changes
  • Bumped the build number (if the version is unchanged)
  • Reset the build number to 0 (if the version changed)
  • Re-rendered with the latest conda-smithy (Use the phrase @conda-forge-admin, please rerender in a comment in this PR for automated rerendering)
  • Ensured the license file is being packaged.

Open discussion issues:

@conda-forge-linter
Copy link

Hi! This is the friendly automated conda-forge-linting service.

I just wanted to let you know that I linted all conda-recipes in your PR (recipe) and found it was in an excellent condition.

@wolfv
Copy link
Member Author

wolfv commented Oct 27, 2021

@hmaarrfk sorry for dropping your commits, I just wanted to see what the CI says. I will try to make a proper history once this is passing (if it ever does! :)

@wolfv
Copy link
Member Author

wolfv commented Oct 27, 2021

Argh, fails locally with

ERROR: /home/conda/feedstock_root/build_artifacts/tensorflow-split_1635368983474/work/tensorflow/stream_executor/cuda/BUILD:431:11: Compiling tensorflow/stream_executor/cuda/curand_stub.cc failed: undeclared inclusion(s) in rule '//tensorflow/stream_executor/cuda:curand_stub':
this rule is missing dependency declarations for the following files included by 'tensorflow/stream_executor/cuda/curand_stub.cc':
  '/usr/local/cuda/include/cuda_runtime.h'
  '/usr/local/cuda/include/crt/host_config.h'
  '/usr/local/cuda/include/builtin_types.h'
  '/usr/local/cuda/include/device_types.h'
  '/usr/local/cuda/include/crt/host_defines.h'
  '/usr/local/cuda/include/driver_types.h'
  '/usr/local/cuda/include/vector_types.h'
  '/usr/local/cuda/include/surface_types.h'
  '/usr/local/cuda/include/texture_types.h'
  '/usr/local/cuda/include/library_types.h'
  '/usr/local/cuda/include/channel_descriptor.h'
  '/usr/local/cuda/include/cuda_runtime_api.h'
  '/usr/local/cuda/include/cuda_device_runtime_api.h'
  '/usr/local/cuda/include/driver_functions.h'
  '/usr/local/cuda/include/vector_functions.h'
  '/usr/local/cuda/include/vector_functions.hpp'
INFO: Elapsed time: 1106.944s, Critical Path: 72.16s
INFO: 10296 processes: 3360 internal, 6936 local.

@hmaarrfk
Copy link
Contributor

i definitely don't care about my commits. I'm more than happy to see a clean history.

@hmaarrfk
Copy link
Contributor

Where is CUDA_HOME defined? I think ti should be set to /usr/lib/cuda, not /usr/local for our builds.

@wolfv
Copy link
Member Author

wolfv commented Oct 27, 2021

I find all the CUDA stuff in /usr/local/cuda when running with build-locally.py:

[root@22e3fe5ffdb8 cuda]# pwd
/usr/local/cuda
[root@22e3fe5ffdb8 cuda]# ll
total 40
drwxr-xr-x 3 root root 4096 Sep 17 19:58 bin
drwxr-xr-x 2 root root 4096 Aug  4 04:04 compat
drwxr-xr-x 4 root root 4096 Sep 17 19:58 compute-sanitizer
drwxr-xr-x 4 root root 4096 Sep 17 19:58 extras
lrwxrwxrwx 1 root root   28 Sep 17 19:58 include -> targets/x86_64-linux/include
lrwxrwxrwx 1 root root   24 Sep 17 19:58 lib64 -> targets/x86_64-linux/lib
drwxr-xr-x 3 root root 4096 Sep 17 19:58 nvml
drwxr-xr-x 7 root root 4096 Sep 17 19:58 nvvm
drwxr-xr-x 7 root root 4096 Sep 17 19:58 nvvm-prev
drwxr-xr-x 3 root root 4096 Sep 17 19:58 share
drwxr-xr-x 2 root root 4096 Sep 17 19:58 src
drwxr-xr-x 1 root root 4096 Feb 15  2021 targets

@hmaarrfk
Copy link
Contributor

The meta file might need a bit of refreshing.

Do look through the deleted lines. Many of them are from a recent refresh when I figured i was hitting build issues.

You will also need the patch I recently added.

@wolfv
Copy link
Member Author

wolfv commented Oct 27, 2021

thanks for the heads up! I will re-add all the red lines, for sure. Or feel free to push to this PR if you want.
I'll have to head to the bed right now :)

@hmaarrfk
Copy link
Contributor

seems to be working

@conda-forge-linter
Copy link

Hi! This is the friendly automated conda-forge-linting service.

I wanted to let you know that I linted all conda-recipes in your PR (recipe) and found some lint.

Here's what I've got...

For recipe:

  • There are 1 too many lines. There should be one empty line at the end of the file.

@wolfv
Copy link
Member Author

wolfv commented Oct 28, 2021

indeed, I discovered the need for patches/0005-remove_deprecated_use_of_error_message.patch with my last build :)
Reverted all red lines with latest commit & rebuilding now.

@wolfv wolfv mentioned this pull request Oct 28, 2021
12 tasks
@wolfv
Copy link
Member Author

wolfv commented Oct 28, 2021

So we got a working CUDA build with this!

@xhochy @hmaarrfk do you know which variants we should build out?! Do we need 11.1?

@wolfv
Copy link
Member Author

wolfv commented Oct 28, 2021

Also I am wondering about libtensorflow (do we need it compiled with cuda as well?) and wondering about if we need to add track_features to some of the variants??

Maybe I shall have a look at pytorch.

@conda-forge-linter
Copy link

Hi! This is the friendly automated conda-forge-linting service.

I just wanted to let you know that I linted all conda-recipes in your PR (recipe) and found it was in an excellent condition.

@hmaarrfk
Copy link
Contributor

It seems like:

  1. One CPU build passed.
  2. One CPU build will time out
  3. One CPU build ran out of compute resources.

@wolfv
Copy link
Member Author

wolfv commented Oct 31, 2021

Not much should have changed for the CPU builds, so I am not sure what's going on. My only hunch is that Azure's VMs are just different between the runs ... or they decreased the amount of available RAM?

@hmaarrfk
Copy link
Contributor

Nice it seems that 2 builds pass. All seems normal on the CPU side!

@hmaarrfk
Copy link
Contributor

Are you able to do the uploads to the conda-forge channel?

I believe you've addressed all the comments from others. The next step to me is to:

  1. Build OSX (or not, since we didn't do anything useful for OSX)
  2. Gather builds for linux
  3. Upload (needs a core member -- i am not one).

If you can upload, then we can likely move forward.

@wolfv
Copy link
Member Author

wolfv commented Oct 31, 2021

Argh, sorry, did this get lost again -.- :)

Yes, I can do both -- uploads to conda-forge channel (I am a core member) and gather builds for Linux.
I don't think we need to upload new macOS builds as we didn't do anything useful there and it's just a waste of time and resources (except it would be nice to have the tensorflow-cpu package there ... but maybe not a strong enough reason?! Or we can make the package another way (without recompiling all of tensorflow).

@hmaarrfk
Copy link
Contributor

hmm that is a good point. I'll let you decide what you want to do.

after this PR is done, we can work toward:
#144

@hmaarrfk
Copy link
Contributor

@wolfv would you be willing to work @183amir to test his CIs #144 (comment)

@wolfv
Copy link
Member Author

wolfv commented Oct 31, 2021

@hmaarrfk if we rebase #144 on this one we'll get tensorflow-cpu builds soon enough for osx. So I think we can stick to Linux for this one.

I'll prepare the builds tonight @conda-forge/tensorflow

@wolfv
Copy link
Member Author

wolfv commented Oct 31, 2021

@hmaarrfk I didn't get the last comment? What's the issue in @183amir CI runs? :) I just see that osx-arm64 cross-compilation builds are broken (like on our CI, too).

@wolfv
Copy link
Member Author

wolfv commented Oct 31, 2021

Builds are running! :)

@hmaarrfk
Copy link
Contributor

He has OSX-amd64 at least :/ Better than nothing.

@183amir
Copy link

183amir commented Nov 1, 2021

I am not running osx-arm64 cross compilation, it's running on a native machine and they fail: https://gitlab.idiap.ch/bob/conda/-/jobs/248772

conda.exceptions.ResolvePackageNotFound: 
  - bazel[version='3.*,>=4.2.1']

@wolfv
Copy link
Member Author

wolfv commented Nov 1, 2021

So, I've finished all the builds (details in the collapsed section below).
I've also uploaded the Ansible playbook that was used to create these builds (it's based on @xhochy script that he shared in another place on this feedstock). You can find the playbook here: https://github.com/mamba-org/build-locally-ansible
The ideas in this playbook should work with any "cloud"-provider. There are some rough edges (servers are not automatically deleted) and hardcoded values right now (especially in the get_uploads.py, but hopefully we can iron that out and we could use it in a generic fashion also for other feedstocks where we're running over the timeout limit.

I am happy to upload these builds to the conda-forge channel (@xhochy / @h-vetinari can you merge & give the go on that?)

@183amir happy to help in the other PR. I can also do some tests on a M1 to see what's going on. @hmaarrfk can you help with rebasing #144 once this one here is merged?!

All build outputs!

Variant: linux_64_cuda_compiler_version10.2cudnn7python3.7.____cpython

SHA256 sums

2ab74fad8d952a6ea91d868ab525d3bfb555ec029dca94701f6f81ea4cd7fb59  libtensorflow-2.6.0-cuda102hf451a2a_2.tar.bz2
7570cc3a36c0672e859ec21f85657204747124a5bcdbc26ff11e4bb55ef1e6b4  libtensorflow_cc-2.6.0-cuda102h43f717d_2.tar.bz2
4475d33912ade962ff73c84a26f7e6ae7130d9a2a76e0a56f417318598f49382  tensorflow-2.6.0-cuda102py37h4cd87c6_2.tar.bz2
454c7ca6331fd87c756ba3595da7e219ab0e2736e29f6fc84a1a4b9ecafe6c4e  tensorflow-base-2.6.0-cuda102py37hbd7ce69_2.tar.bz2
4bb99b1e77ef611264ad16bd1fe5725073c7c4a6a85aed2e32cbea641862cb0d  tensorflow-estimator-2.6.0-cuda102py37had2b028_2.tar.bz2
390662711368b1b4e56fc50b76f73606582187e73e98a9eac132741ae418c5b6  tensorflow-gpu-2.6.0-cuda102py37hf05f184_2.tar.bz2

Variant: linux_64_cuda_compiler_version10.2cudnn7python3.8.____cpython

SHA256 sums

afad83be7072715a090e2e2f04226aec72d98b9b45e5f400250c7a3f03997e97  libtensorflow-2.6.0-cuda102hf451a2a_2.tar.bz2
0b13e17d5f99637907249d55890587831059479c2c8e6ecd9834386f8eefc525  libtensorflow_cc-2.6.0-cuda102h43f717d_2.tar.bz2
4f882455d067c79f38327465acfa42ed45c8ee15c647f3362098345dbe73e5e2  tensorflow-2.6.0-cuda102py38hc567ca3_2.tar.bz2
38ab96be6e14fbde8cea09a7d8fa855bcd649c5687923eb9afd959b0e590f103  tensorflow-base-2.6.0-cuda102py38h3f41ba3_2.tar.bz2
7c5a2aca17ee314aee3cc83a31056312da1dc207253fbae0bc71e50b4a28f8b7  tensorflow-estimator-2.6.0-cuda102py38hb150450_2.tar.bz2
c8d59fd22a57df9c15fb2856f1a63ddc96d287c6b57998c241994f0e13dc0d5d  tensorflow-gpu-2.6.0-cuda102py38hf05f184_2.tar.bz2

Variant: linux_64_cuda_compiler_version10.2cudnn7python3.9.____cpython

SHA256 sums

d6f4fb66ace162e945678c05bcdb89d6da7bbf0ebbb2b6ed3e558bd81b199f60  libtensorflow-2.6.0-cuda102hf451a2a_2.tar.bz2
d4b89c8e537799afc1f78f18f65f05d8045422b2459b509861d124a0aaa48ea2  libtensorflow_cc-2.6.0-cuda102h43f717d_2.tar.bz2
aef976f0cc890842204312e5ce0ed3dbce8b1af3a660fe5a284bb848c00de719  tensorflow-2.6.0-cuda102py39hff8942c_2.tar.bz2
c424fb3e8ee1522d0484816af5a16809b601403f374060151ba5c92476361faf  tensorflow-base-2.6.0-cuda102py39h747ea68_2.tar.bz2
c0de1b05d0b3b56c71df5bb215fab05b0571a879657df7351dbc15baccfcc051  tensorflow-estimator-2.6.0-cuda102py39h3630aa2_2.tar.bz2
3d1441d664164bbbbb1be7e1c736812e1c8acd5f063e98c3b5ec2c017165fb18  tensorflow-gpu-2.6.0-cuda102py39hf05f184_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.0cudnn8python3.7.____cpython

SHA256 sums

f670963a5c20bf533a0138c0ea85bbfe2b1a25febd4903133c226f8e1e7f2064  libtensorflow-2.6.0-cuda110h8396c9d_2.tar.bz2
c9ef78fa7f49858d9cda3e72d39adeb9bc38d95cd48c19dc8126fa24d9bec67a  libtensorflow_cc-2.6.0-cuda110hb530883_2.tar.bz2
6d850eac2fe632e90e3633b88085bb220dcd4c5742974efd27d3fce80b513bd2  tensorflow-2.6.0-cuda110py37hba838d9_2.tar.bz2
88641ef47d6ce1e5d5cf6062092fdbc8b979cf5f1ff291d35dfc9814a02abda1  tensorflow-base-2.6.0-cuda110py37hb8f09f9_2.tar.bz2
05b911705a7aac7a853f2d7f52e4764b31e03ff79073c94693c7a39ba3c2fc63  tensorflow-estimator-2.6.0-cuda110py37hae89d79_2.tar.bz2
07c33ecfb5562c94e34d86d2800fff7322d988272182569e5a5c1f81ccde51e7  tensorflow-gpu-2.6.0-cuda110py37h5b0ac8e_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.0cudnn8python3.8.____cpython

SHA256 sums

89b4669ef4b81cfd9263d404c336e882d62ddaaf38ef439beafe1a874c136102  libtensorflow-2.6.0-cuda110h8396c9d_2.tar.bz2
ddd5222e343baa444cb97c2ca8ace0731179e2bbbc6c5dd303e0986745f9823c  libtensorflow_cc-2.6.0-cuda110hb530883_2.tar.bz2
a96ae4d0765cfdbdaa0b324376051e113c0835986d424437bffda8af39bb7565  tensorflow-2.6.0-cuda110py38hc4b1a70_2.tar.bz2
0766b569d5f3dbf478a5f1945585173ed9622d6bf35eea3ed670958c107c8c0e  tensorflow-base-2.6.0-cuda110py38h937a041_2.tar.bz2
54182828a05fa36a0adbed13819512081e2b162404c527cc764a719f9ee6db27  tensorflow-estimator-2.6.0-cuda110py38h5f2c3e6_2.tar.bz2
ed1d9b3c697f2a3ca5b0d61fb15b495bde9528eb17d624f82dcbac5f2c3645a1  tensorflow-gpu-2.6.0-cuda110py38h5b0ac8e_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.0cudnn8python3.9.____cpython

SHA256 sums

a5242e9849d9369cc28e14224c971086c4612147d29b75c7a72b65b77129221a  libtensorflow-2.6.0-cuda110h8396c9d_2.tar.bz2
60ae476773beb7a0e1fc2188737ed274d35214c9ba7ffaf3e69c8ba8a2cccd25  libtensorflow_cc-2.6.0-cuda110hb530883_2.tar.bz2
72e2cc6d788cc98e9ad713bb2cfce72b9fc4e56d385d79d83adaa70093df4be4  tensorflow-2.6.0-cuda110py39h22e3326_2.tar.bz2
1568595b03e0dcd0ad9c2fb09ac93c0dadb572a053bb0f16d82454252d8daa57  tensorflow-base-2.6.0-cuda110py39hd7afca0_2.tar.bz2
3eec5a26543a86e0c80a0f9b267ee13c757fb1f8ddf9b6d81da1414d3bdd566a  tensorflow-estimator-2.6.0-cuda110py39hf2ba822_2.tar.bz2
9861a5eaba249d1f33c473b6d4cc096f3d1406d514009f7f40627b975c376d50  tensorflow-gpu-2.6.0-cuda110py39h5b0ac8e_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.1cudnn8python3.7.____cpython

SHA256 sums

55ce1698c64a47370fff179ca30d5292b665ab35a20325a17f9ac69bb168d504  libtensorflow-2.6.0-cuda111h5e03956_2.tar.bz2
41334bf75cfea0016368034e4d4b79cfe25279a39f0f8c7c72c062246e4d1cd5  libtensorflow_cc-2.6.0-cuda111h67a8850_2.tar.bz2
8f26ea600904be1a9d53d5dbe01381dc620954e72218f6a03c577322ff579227  tensorflow-2.6.0-cuda111py37hc404611_2.tar.bz2
ba95059e26554f85ea41ba5aab96e3c62fd0577b6db392ef1ab0c839e9dcfb15  tensorflow-base-2.6.0-cuda111py37h95189bc_2.tar.bz2
11621a1294c8c659cc2fc874b6b449a85b48f0f815c36235b1b0ebb7f325be7a  tensorflow-estimator-2.6.0-cuda111py37hd477f92_2.tar.bz2
25b95574f08d61a2435db1b25e17aa1ac0cb390511b76f82be2e45362fb93b1a  tensorflow-gpu-2.6.0-cuda111py37h788eb59_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.1cudnn8python3.8.____cpython

SHA256 sums

888b1ef8c13975b72b083eff1e2f5ae466a8d3287390100f42c4c75bf8cd0399  libtensorflow-2.6.0-cuda111h5e03956_2.tar.bz2
31377bb5a3faf57d2e3ebd0111a7b72b1283332724c630726edbaaecbb100dc4  libtensorflow_cc-2.6.0-cuda111h67a8850_2.tar.bz2
4c884465f9e0188de39373fa50e6921d33db841d7be2e4c4d3826fc4e97adbae  tensorflow-2.6.0-cuda111py38h48e9d96_2.tar.bz2
c38b490004f72ed46326cec6a68c8f0b8847968075e475886f03fbfc490030bb  tensorflow-base-2.6.0-cuda111py38h152c24c_2.tar.bz2
00f69875fbad3c18eb31731be690cc6b33cbe07267e01d85ab4766c22a046397  tensorflow-estimator-2.6.0-cuda111py38h7a887f1_2.tar.bz2
43c7a77e5ee8535e9679f90dcf470fce895aacd83ab31fb7a8581aabb3c7306a  tensorflow-gpu-2.6.0-cuda111py38h788eb59_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.1cudnn8python3.9.____cpython

SHA256 sums

29526f563198154faff7ffc94fc0e4b2dcfdcbaffa2cb133ffbad406f72db644  libtensorflow-2.6.0-cuda111h5e03956_2.tar.bz2
605dd353f13fa6120ad9ca2a58330f74cec5da75cc9b04d897ff141ba09643a9  libtensorflow_cc-2.6.0-cuda111h67a8850_2.tar.bz2
c22cead820f732cdd397cdb976810cdc1d41c9fefeadfbdb27b422d341e6fea5  tensorflow-2.6.0-cuda111py39h383fce0_2.tar.bz2
56b57a2e4e6ded6c53839c961031474002f2c91a43a622840d4fec6412bde277  tensorflow-base-2.6.0-cuda111py39he6e9a3f_2.tar.bz2
2d292953fff27414db25fb4cb637a44f84cb88160f182ee3d93eeeab8b28d946  tensorflow-estimator-2.6.0-cuda111py39hbdafef0_2.tar.bz2
447cddf7509af2b78ed1f773f0eda1b1cc424090d077216f9badac0e7fd0fbf6  tensorflow-gpu-2.6.0-cuda111py39h788eb59_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.2cudnn8python3.7.____cpython

SHA256 sums

86475210521b1b0c3309140801b9e030f8df860a13d20c80e3d46340d3ef5788  libtensorflow-2.6.0-cuda112hc822ecd_2.tar.bz2
d68107532832615ccb7377f606c0707f6b69d56406279cf2ef0946eacfe0c9bf  libtensorflow_cc-2.6.0-cuda112hd0dfdd8_2.tar.bz2
30c188e84d1947cc1caa24bc6838f0ffc6c1afd7dc0fd6b16d2cb3c0f8770592  tensorflow-2.6.0-cuda112py37h3e4f0e2_2.tar.bz2
ce5f14917307fd3341aae94c1f97f8dbc5bff26d2f3be609746a2fb6187e76df  tensorflow-base-2.6.0-cuda112py37hd5a5b6b_2.tar.bz2
8b68e874b58f9189bfea4fd7b605fcdcb21fca306f3a67d14cfb000926b8c556  tensorflow-estimator-2.6.0-cuda112py37h7d9f113_2.tar.bz2
f2f71995b28065daf7a75c488f4075d98972f787839e595acdd09f76413ef5c5  tensorflow-gpu-2.6.0-cuda112py37h0bbbad9_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.2cudnn8python3.8.____cpython

SHA256 sums

a7d39c7d144e7d4c1df78c7470378a84b0c1e3144fd6e32e54d63610067bdf40  libtensorflow-2.6.0-cuda112hc822ecd_2.tar.bz2
e7656d70935c425b9db08491db25bd9ab4321bdb222b9ec9a61c6badf86d5e89  libtensorflow_cc-2.6.0-cuda112hd0dfdd8_2.tar.bz2
68fe43d4e3259ffa8b5f295005dbdd50e8c17ac2c7b8c296d02c6d5ff238f7e9  tensorflow-2.6.0-cuda112py38hbe5352d_2.tar.bz2
434ab1a54360c29af89e115fec95f039b57207fb25d2df5e53532224190706a8  tensorflow-base-2.6.0-cuda112py38heae9c4c_2.tar.bz2
38ca566644c302f218ad75075e50195e5b959bfdcc8c2e81e6420de161d293b2  tensorflow-estimator-2.6.0-cuda112py38hb2194ef_2.tar.bz2
ab1ab3df362f58e0b2260038a44020361dce4bdb8e3680ef1bc62b3fae1ff993  tensorflow-gpu-2.6.0-cuda112py38h0bbbad9_2.tar.bz2

Variant: linux_64_cuda_compiler_version11.2cudnn8python3.9.____cpython

SHA256 sums

8b9d2dc94ea2ecea205ab00719c0b07eba3175d7e3debbbe65dfaa8e6533dfb4  libtensorflow-2.6.0-cuda112hc822ecd_2.tar.bz2
90e49051ce886b5cc0c95c24a759de0519891df3c3e5cc1fe63e8382e0a4b4fe  libtensorflow_cc-2.6.0-cuda112hd0dfdd8_2.tar.bz2
ec25706d539ae370c80a259d78cadc041f7e493552fa637a0d48df47665a9100  tensorflow-2.6.0-cuda112py39h9dc3950_2.tar.bz2
17371c42d913975f7445edd5c42daa82e0f43cc5a2907c0143270d843de764be  tensorflow-base-2.6.0-cuda112py39h0b4cdfd_2.tar.bz2
7f967c70532491663b6c2094e0ba6619c1a8a454b2caf0632d41779418732ce7  tensorflow-estimator-2.6.0-cuda112py39heacc632_2.tar.bz2
afa730deb8d4c79bd813ec051b37011ca28780e58ff31693051dfbba1383ddc4  tensorflow-gpu-2.6.0-cuda112py39h0bbbad9_2.tar.bz2

Variant: linux_64_cuda_compiler_versionNonecudnnundefinedpython3.7.____cpython

SHA256 sums

23a80b06199d11534d540c779c0f16eff8a72cb20a0dac4cc3113d231499f529  libtensorflow-2.6.0-cpu_hf74009c_2.tar.bz2
2b011eade2f5fe8eda1a487366a375a13308397d8b95f2d266651943870d0e67  libtensorflow_cc-2.6.0-cpu_hf74009c_2.tar.bz2
7cd316c08d4880dc45269a44998127411697c4be676a80e1a80c1b32491a4805  tensorflow-2.6.0-cpu_py37hc107814_2.tar.bz2
edd8533f5eb8044d54057adcc18d35212470bdf7007c64298c8502444f428352  tensorflow-base-2.6.0-cpu_py37hc5ef7b8_2.tar.bz2
c4e46b6c32959af57ec2596b799ac5211d91a0e4911e4d71d803f9ed8754244d  tensorflow-cpu-2.6.0-cpu_py37h718b53a_2.tar.bz2
1aabc8d1109811ea6580c63de806ce3a217c32989d624c6f84e37ef1d2b65929  tensorflow-estimator-2.6.0-cpu_py37h2b38087_2.tar.bz2

Variant: linux_64_cuda_compiler_versionNonecudnnundefinedpython3.8.____cpython

SHA256 sums

8acc6b5577bbe72e575942c1d59bd620b0fbbe4d33c473640f496e05ea8d5cc7  libtensorflow-2.6.0-cpu_hf74009c_2.tar.bz2
8eda827ce00a58833fa06a52c4c1724660ebefb3c0f555c5896e489f408ca52b  libtensorflow_cc-2.6.0-cpu_hf74009c_2.tar.bz2
9223a623c96e188857e3c248a258d57733b5a3f08e17d64992b183a9b780f332  tensorflow-2.6.0-cpu_py38h077e6c3_2.tar.bz2
42367a2b1c9704e932b9565ecf78b5b98eedfb24da1febd5f166d2c6a61a8216  tensorflow-base-2.6.0-cpu_py38h4611ba2_2.tar.bz2
3c73eaf9cc94399b1fa61ebd087468fc2565cf32d1ff6b66c74a17fced20347d  tensorflow-cpu-2.6.0-cpu_py38h718b53a_2.tar.bz2
cad1148c4bcd655e60e83dd8a507299f79e4e695c134c96e0aa57b51948de857  tensorflow-estimator-2.6.0-cpu_py38hbed0dc1_2.tar.bz2

Variant: linux_64_cuda_compiler_versionNonecudnnundefinedpython3.9.____cpython

SHA256 sums

4d091a9961d3f1b25038a0fd1194a9e7f37c701da6f67a16b8419c79020308a0  libtensorflow-2.6.0-cpu_hf74009c_2.tar.bz2
572f387d1bcc8eab3c870d9079d99e75fd9ed39dddbec0c496edc46af1c1dfaf  libtensorflow_cc-2.6.0-cpu_hf74009c_2.tar.bz2
a716eea739d90477aad00c9b0c55da403336400b31f9d9a9363490440adcb37d  tensorflow-2.6.0-cpu_py39hcb7c6aa_2.tar.bz2
2add5821ad2254e3335415cdc317c047d7cf44ae89a1442bf6680fd60fd6be5a  tensorflow-base-2.6.0-cpu_py39h7e79a0b_2.tar.bz2
492382ca51edc810a5de9869580f6adf20436a47bab4c4901fc93cd9d98c27a0  tensorflow-cpu-2.6.0-cpu_py39h718b53a_2.tar.bz2
cba261ae8a2f3154d8ff776899092e5b6f13d1a09a62299c62aa3662501d3786  tensorflow-estimator-2.6.0-cpu_py39h1b7c303_2.tar.bz2

@h-vetinari
Copy link
Member

I am happy to upload these builds to the conda-forge channel (@xhochy / @h-vetinari can you merge & give the go on that?)

Thanks a lot for all the builds, and for pu(bli)shing the playbook!

I already LGTM'd the changes (aside from one open nit that I don't feel strongly about), but @xhochy still had an open review point (at least he hasn't responded to the comments since his original request), and I'm not sure if someone like @isuruf wants to chime in perhaps.

So I'll hold off from merging just yet and wait a bit more if there's gonna be more feedback.

@hmaarrfk
Copy link
Contributor

hmaarrfk commented Nov 1, 2021

I can rebase #144. I've tried to centralize the open issues in the top comment.

@h-vetinari
Copy link
Member

Tensorflow just released new versions of the 2.4/2.5/2.6 series containing a bunch of CVE fixes. Do we want to fold this into this PR, or just follow-up quickly in #144?

@h-vetinari
Copy link
Member

h-vetinari commented Nov 1, 2021

For the record, they seem to use a pretty broad definition of CVEs, including segfaults, crashes & null pointer exceptions. The descriptions of the CVEs don't seem to be public yet, nor their severity ratings. All in all I don't consider this a blocker, if we prepare #144 quickly after merging this.

@hmaarrfk
Copy link
Contributor

hmaarrfk commented Nov 1, 2021

Ok, I check that tensorflow is actually the last package for both the migrations in #144.

We should finish this, solve the CVEs in 144.

Otherwise we will be here for a while.

It is somewhat challenging to rebase, so I'm worried that we will lose progress if we try to bite off too much.

Copy link
Member

@xhochy xhochy left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We probably want CPU packages preferred over GPU ones as in other packages where we are using track_features.


cp cc_toolchain_config.bzl cc_toolchain_build_config.bzl
apply_cc_template cc_toolchain_config.bzl
apply_cc_template crosstool_wrapper_driver_is_not_gcc
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fine with merging here but we should follow up on this soon.


# weigh down cpu implementation and give cuda preference
track_features:
- tensorflow-cpu # [cuda_compiler_version == "None"]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We did do this the other way around normally, esp @isuruf pointed out that we should give CPU builds a higher priority.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am following pytorch here ... https://github.com/conda-forge/pytorch-cpu-feedstock/blob/b8824904342b8ea142d297668bf0aa32790091a6/recipe/meta.yaml#L148-L149

The pip package also gives the GPU version by default.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also you'd only get the GPU version if there is actually a working CUDA driver installation on the system (the __cuda virtual package is required by cudatoolkit). In that case I think we can argue that it's also desired to get the GPU version by default.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Makes sense, I would still like to have @isuruf chime in here.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

+1 for weighing down CPU, preferring GPU (where possible)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@xhochy, since the tensorflow builds are new and @wolfv says that the GPU package falls back to CPU if there's no GPU, it's okay to have GPU as a priority.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks!

@xhochy
Copy link
Member

xhochy commented Nov 3, 2021

@wolfv Feel free to merge and copy the builds to conda-forge!

@wolfv
Copy link
Member Author

wolfv commented Nov 4, 2021

I am uploading the GPU builds now, first to my own channel, then to conda-forge!

@wolfv
Copy link
Member Author

wolfv commented Nov 4, 2021

Builds are copied to the conda-forge channel:

(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/libtensorflow/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/libtensorflow-2.6.0-cpu_hf74009c_2.tar.bz2
Copied file: linux-64/libtensorflow-2.6.0-cuda102hf451a2a_2.tar.bz2
Copied file: linux-64/libtensorflow-2.6.0-cuda110h8396c9d_2.tar.bz2
Copied file: linux-64/libtensorflow-2.6.0-cuda111h5e03956_2.tar.bz2
Copied file: linux-64/libtensorflow-2.6.0-cuda112hc822ecd_2.tar.bz2
Copied 5 files!
(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/libtensorflow_cc/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/libtensorflow_cc-2.6.0-cpu_hf74009c_2.tar.bz2
Copied file: linux-64/libtensorflow_cc-2.6.0-cuda102h43f717d_2.tar.bz2
Copied file: linux-64/libtensorflow_cc-2.6.0-cuda110hb530883_2.tar.bz2
Copied file: linux-64/libtensorflow_cc-2.6.0-cuda111h67a8850_2.tar.bz2
Copied file: linux-64/libtensorflow_cc-2.6.0-cuda112hd0dfdd8_2.tar.bz2
Copied 5 files!
(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/tensorflow-base/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/tensorflow-base-2.6.0-cpu_py37hc5ef7b8_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cpu_py38h4611ba2_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cpu_py39h7e79a0b_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda102py37hbd7ce69_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda102py38h3f41ba3_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda102py39h747ea68_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda110py37hb8f09f9_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda110py38h937a041_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda110py39hd7afca0_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda111py37h95189bc_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda111py38h152c24c_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda111py39he6e9a3f_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda112py37hd5a5b6b_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda112py38heae9c4c_2.tar.bz2
Copied file: linux-64/tensorflow-base-2.6.0-cuda112py39h0b4cdfd_2.tar.bz2
Copied 15 files!
(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/tensorflow-cpu/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/tensorflow-cpu-2.6.0-cpu_py37h718b53a_2.tar.bz2
Copied file: linux-64/tensorflow-cpu-2.6.0-cpu_py38h718b53a_2.tar.bz2
Copied file: linux-64/tensorflow-cpu-2.6.0-cpu_py39h718b53a_2.tar.bz2
Copied 3 files!
(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/tensorflow-gpu/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda102py37hf05f184_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda102py38hf05f184_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda102py39hf05f184_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda110py37h5b0ac8e_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda110py38h5b0ac8e_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda110py39h5b0ac8e_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda111py37h788eb59_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda111py38h788eb59_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda111py39h788eb59_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda112py37h0bbbad9_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda112py38h0bbbad9_2.tar.bz2
Copied file: linux-64/tensorflow-gpu-2.6.0-cuda112py39h0bbbad9_2.tar.bz2
Copied 12 files!
(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/tensorflow-estimator/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/tensorflow-estimator-2.6.0-cpu_py37h2b38087_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cpu_py38hbed0dc1_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cpu_py39h1b7c303_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda102py37had2b028_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda102py38hb150450_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda102py39h3630aa2_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda110py37hae89d79_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda110py38h5f2c3e6_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda110py39hf2ba822_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda111py37hd477f92_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda111py38h7a887f1_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda111py39hbdafef0_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda112py37h7d9f113_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda112py38hb2194ef_2.tar.bz2
Copied file: linux-64/tensorflow-estimator-2.6.0-cuda112py39heacc632_2.tar.bz2
Copied 15 files!
(base) quant@q204:~/tfbuilds$ anaconda --token=$ANACONDA_TOKEN copy --to-owner conda-forge wolfv/tensorflow/2.6.0
Using Anaconda API: https://api.anaconda.org
Copied file: linux-64/tensorflow-2.6.0-cpu_py37hc107814_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cpu_py38h077e6c3_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cpu_py39hcb7c6aa_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda102py37h4cd87c6_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda102py38hc567ca3_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda102py39hff8942c_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda110py37hba838d9_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda110py38hc4b1a70_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda110py39h22e3326_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda111py37hc404611_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda111py38h48e9d96_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda111py39h383fce0_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda112py37h3e4f0e2_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda112py38hbe5352d_2.tar.bz2
Copied file: linux-64/tensorflow-2.6.0-cuda112py39h9dc3950_2.tar.bz2
Copied 15 files!

Thanks everyone!

@h-vetinari
Copy link
Member

I concur, thanks everyone! 🥳

@h-vetinari h-vetinari merged commit 31f9691 into conda-forge:master Nov 4, 2021
@h-vetinari h-vetinari mentioned this pull request Nov 4, 2021
6 tasks
@njzjz njzjz mentioned this pull request Nov 4, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.