Skip to content
main
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rulsif.ts

rulsif.ts implements relative unconstrained least squares importance fitting for the task of detecting change points in time series data. Below is a simple example of the use of this package.

series <- c(
    rnorm(50, mean = 0, sd = 0.3),
    rnorm(25, mean = 8, sd = 1),
    rnorm(75, mean = 3, sd = 0.6),
    rnorm(25, mean = 1, sd = 0.8),
    rnorm(100, mean = -5, sd = 1.5),
    rnorm(100, mean = -5, sd = 0.2),
    rnorm(50, mean = -2.5, sd = 0.4),
    rnorm(50, mean = 2, sd = 1.2)
)
d <- ts_detect(series, window_size = 3, step = 10, make_plot = TRUE)

Installation

You can install the the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("connorbrubaker/rulsif.ts")

References

  • Song Liu, et al. “Change-point detection in time-series data by relative density-ratio estimation”. In: Neural Networks 43 (2013), pp. 72-83. ISSN: 0893-6080. DOI: 10.1016/j.neunet.2013.01.012.

  • Masashi, et al. “Direct importance estimation for covariance shift adaptation.” In: Annals of the Institute of Statistical Mathematics 60.4 (2008), pp. 699-746. ISSN: 0020-3157. DOI: 10.1007/s10463-008-0197-x.

About

Relative unconstrained least squares importance fitting for change point detection in time series data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages