
New Procedure: chorussell

Alexander Torgovitsky∗

August 23, 2020

This is a simple procedure that works off of the bootstrapped distribution of the output

of estbounds. The drawback is that its validity depends on some assumptions that may not

be satisfied in some applications.

• Let θ̂lb, θ̂ub denote the estimated lower and upper bounds from estbounds using the

original data.

• Let {θ̂blb}Bb=1 and {θ̂bub}Bb=1 denote the estimated lower and upper bounds from estbounds

using the bootstrapped samples b = 1, . . . , B. (Note that θ̂blb, θ̂
b
ub use the same boot-

strap sample b.)

• Let ∆ ≡ θ̂ub − θ̂lb denote the length of the estimated identified set.

• To construct a level 1− α confidence region, solve the following problem:

min
clb,cub

(clb + cub)

s.t.
1

B

B∑
b=1

1
[√

n
(
θ̂blb − θ̂lb

)
≤ clb and − cub ≤

√
n
(
θ̂bub − θ̂ub + ∆

)]
≥ 1− α

1

B

B∑
b=1

1
[√

n
(
θ̂blb − θ̂lb −∆

)
≤ clb and − cub ≤

√
n
(
θ̂bub − θ̂ub

)]
≥ 1− α

Call the solution clb(α), cub(α). Then [θ̂lb − clb(α)√
n
, θ̂ub + cub(α)√

n
] is a 1 − α confidence

interval.

• This is not a convex problem (unless I am missing something), so not something that

we can use Gurobi to solve. On the other hand, it should be possible to solve by “brute

∗Department of Economics, University of Chicago.

1



force”, since the indicator functions will be constant for many values of clb, cub. That is,

the only possible solutions for clb should be in {
√
n(θ̂blb−θ̂lb)}Bb=1∪{

√
n(θ̂blb−θ̂lb−∆))}Bb=1

and similarly for θ̂ub. So, in principle, we could try all possible (2B)2 combinations for

clb and cub, determine which ones satisfy the constraints, and then among those look

for the smallest value of clb + cub, then call those the solution clb(α), cub(α).

I would try this brute force approach first, since it is easiest to program.

• Here is a suggestion for a simple refinement of the brute force approach. Note that

1
[√

n
(
θ̂blb − θ̂lb

)
≤ clb

]
≥ 1

[√
n
(
θ̂blb − θ̂lb

)
≤ clb and − cub ≤

√
n
(
θ̂bub − θ̂ub + ∆

)]
.

Thus, if

1

B

B∑
b=1

1
[√

n
(
θ̂blb − θ̂lb

)
≤ clb

]
< 1− α, (1)

then it cannot be the case that the first constraint in the program is satisfied. So, start

by removing all values clb that satisfy (1). Analogously, for the upper bound we can

get rid of those values cub that satisfy

1

B

B∑
b=1

1
[
−cub ≤

√
n
(
θ̂bub − θ̂ub

)]
< 1− α.

Both of these procedures are quick, since they are just a matter of one-dimensional

sorting. Once we have removed these clb and cub values that cannot individually be

solutions of the optimization problem, then we do brute force on the combination of

all possible values that remain. This should be a much smaller number of values.

Check this against the full brute force approach to make sure that it obtains the same

answer.

• Unlike the other inference procedures we have in lpinfer, this one directly builds

confidence intervals, rather than testing a single point. This creates a bit of a conflict

with our design philosophy, which has been to write functions that test a single point,

then construct confidence intervals by inverting those tests using bisection. Here, we

want to do the opposite, which means we use the duality between confidence intervals

and testing in the opposite direction.

2



To keep the user interface stable, I would still have chorussell conduct a test and

return a p–value. This can be done through bisection, with the duality relationship

that a level α test rejects t ∈ [θlb, θub] if and only if t is not contained in a level 1− α
confidence region. Thus, suppose that we have a bracket α0 < α1 such that there

is rejection at α1 but not at α0. Then the p–value must lie between the two. So

build a confidence region at level (α1 + α0)/2 and try the midpoint, then adjust the

bracket accordingly depending on whether there is rejection here or not. Note that

the major computational work of the chorussell procedure is going to be computing

{θ̂blb, θ̂bub}Bb=1, and this does not need to be repeated when changing the level of the

confidence region.

In contrast, is the user wants a confidence interval with chorussell, then the above

procedure can be done directly, instead of doing our current bisection routine.

If you want to be fancy, you could think of an abstraction “do a bisection” that can

serve as a single function for both cases.

3


