
Response to Issue #104 (Updated)

Summary of the issue
In order to reproduce the problematic results, I use the bootstrap bounds that are obtained from the
chorussell procedure in the lpinfer package using the example code posted in issue #104.
library(lpinfer)
set.seed(5)
dgp <- mixedlogit_dgp()
df <- mixedlogit_draw(dgp, n = 4000)

lpm <- lpmodel(A.obs = mixedlogit_Aobs(dgp),
beta.obs = function(d) mixedlogit_betaobs(d, dgp),
A.shp = rep(1, nrow(dgp$vdist)),
beta.shp = 1,
A.tgt = mixedlogit_Atgt_dfelast(dgp, w2eval = 1, eeval = -1))

set.seed(5)
r <- chorussell(data = df, lpmodel = lpm, ci = TRUE, beta.tgt = .2,

progress = FALSE)
print(r)

95%-confidence interval: [0.63392, 0.88549]

The problems here are:

• The largest bootstrap estimate of the upper bound is smaller than the upper bound of the confidence
interval.

• More than half of the bootstrap estimates are smaller than the lower bound of the confidence interval.

The aim of this document is to go through the calculations I did in the chorussell function. For easy
reference, I am also referencing the implementation notes posted in issue #79. The line where I make a
reference to the implementation notes with a ? symbol.

Constructing the confidence interval
Step 1. Get the point estimates of the bounds

The point estimates of the bounds are obtained by estbounds procedure as follows:
estb.return <- estbounds(df, lpm)
lb <- estb.return$lb
ub <- estb.return$ub
print(estb.return)

Estimated bounds: [0.66418, 0.66468]

The default options of estbounds are used, i.e. setting kappa = 0 and using the 2-norm. The results here
match the point estimates from the chorussell procedure:
print(lb == r$lb)

1

[1] TRUE

print(ub == r$ub)

[1] TRUE

? The lb and ub objects correspond to θ̂lb and θ̂ub respectively in the first bullet point of the implementation
notes.

On the other hand, the length of the estimated identified set is stored as delta.
delta <- ub - lb
print(delta)

[1] 0.0005065283

? This corresponds to the third bullet point of the implementation notes.

Step 2. Get the bootstrap bounds

The bootstrap bounds are obtained by finding the estimated bounds on the bootstrap data. I am going to
extract them from the r object above and store them as follows:
lb.bs <- r$lb.bs
ub.bs <- r$ub.bs

? This corresponds to the second bullet point of the implementation notes.

Step 3. Get the list of candidates

The only possible solutions for clb should be inside the following set:

{
√
n(θ̂b

lb − θ̂lb)}B
b=1 ∪ {

√
n(θ̂b

lb − θ̂lb −∆)}B
b=1.

In this document (and in the code for chorussell), I denote the set of candidates {
√
n(θ̂b

lb − θ̂lb)}B
b=1 and

{
√
n(θ̂b

lb − θ̂lb −∆)}B
b=1 as lb.can1 and lb.can2 respectively:

n <- nrow(df)
lb.can1 <- sqrt(n) * (lb.bs - lb)
lb.can2 <- sqrt(n) * (lb.bs - lb - delta)
lb.can <- c(lb.can1, lb.can2)

Similarly, the only possible solutions for cub should be inside the following set:

{−
√
n(θ̂b

ub − θ̂ub)}B
b=1 ∪ {−

√
n(θ̂b

ub − θ̂ub + ∆)}B
b=1.

I denote the set of candidates {−
√
n(θ̂b

ub − θ̂ub)}B
b=1 and {−

√
n(θ̂b

ub − θ̂ub + ∆)}B
b=1 as ub.can1 and ub.can2

respectively:
ub.can1 <- sqrt(n) * (ub.bs - ub)
ub.can2 <- sqrt(n) * (ub.bs - ub + delta)
ub.can <- -c(ub.can1, ub.can2)

Step 4. Simplify the list of candidates

Since the first constraint of the optimization problem is

1
[√

n
(
θ̂b

lb − θ̂lb

)
≤ clb

]
≥ 1

[√
n
(
θ̂b

lb − θ̂lb

)
≤ clb and − cub ≤

√
n
(
θ̂b

ub − θ̂ub + ∆
)]
,

2

the list of candidates clb that satisfy

1
B

B∑
b=1

1
[√

n
(
θ̂b

lb − θ̂lb

)
≤ clb

]
< 1− α

cannot satisfy the first constraint of the minimization problem. Hence, they can be dropped from the
minimization problem. The list of clb that does not satisfy the above inequality are stored as lb.can.new.
alpha <- .05
lb.can.new <- NULL
for (x in lb.can) {

if (mean(lb.can1 <= x) >= 1 - alpha) {
lb.can.new <- c(lb.can.new, x)

}
}

The number of elements in this new list lb.can.new is 11. Similarly, the list of candidates cub that satisfy

1
B

B∑
b=1

1
[
−cub ≤

√
n
(
θ̂b

ub − θ̂ub

)]
< 1− α

cannot satisfy the second constraint of the minimization problem. Hence, they can be dropped from the
minimization problem. The list of cub that does not satisfy the above inequality are stored as ub.can.new.
ub.can.new <- NULL
for (x in ub.can) {

if (mean(-x <= ub.can1) >= 1 - alpha) {
ub.can.new <- c(ub.can.new, x)

}
}

The number of elements in this new list ub.can.new is 11.

? This step corresponds to the sixth bullet point of the implementation notes.

Remarks.

• If none of the candidates for the upper (resp. lower) bound satisfy the constraints, then the corresponding
upper (resp. lower) bound of the (1− α)-confidence interval will be assigned as the logical upper (resp.
lower) bound.

• In addition, if the point estimate of the upper (resp. lower) bound is Inf (resp -Inf), then the upper
(resp. lower) bound of the (1− α)-confidence interval will be assigned as Inf (resp. -Inf).

Step 5. Solving the minimization problem

Based on the refined set of candidates obtained in step 4, we should choose (clb, cub) that solves the
minimization problem. This is done by choosing (clb, cub) such that

• they satisfy the two constraints, and
• they minimizes clb + cub.

This is done as follows:
df.feasible <- data.frame(matrix(vector(), nrow = 0, ncol = 3))
colnames(df.feasible) <- c("lb", "ub", "len")
Check which candidates satisfy the two constraints
for (x in lb.can.new) {

for (y in ub.can.new) {

3

cons1 <- mean((lb.can1 <= x) * (-y <= ub.can2))
cons2 <- mean((lb.can2 <= x) * (-y <= ub.can1))
if ((cons1 >= 1 - alpha) & (cons2 >= 1 - alpha)) {

df.feasible[nrow(df.feasible) + 1,] <- c(x, y, x + y)
}

}
}

Choose the bounds that minimize the objective function
c.bd <- df.feasible %>% slice(which.min(len))
c.lb <- c.bd$lb
c.ub <- c.bd$ub

? This step corresponds to the fifth bullet point of the implementation notes.

Step 6. Construct the confidence interval

Call the solution to the minimization problem as clb(α) and cub(α). The (1− α)-confidence interval is[
θ̂lb −

clb(α)√
n
, θ̂ub + cub(α)√

n

]
.

It is constructed by the following code:
bd <- c(lb - c.lb/sqrt(n), ub + c.ub/sqrt(n))
print(bd)

[1] 0.6339226 0.8854928

This matches with the output from the chorussell procedure of the lpinfer package:
print(r)

95%-confidence interval: [0.63392, 0.88549]

Back to the problem again

The bounds are different from the ones posted in issue #104 becaues I have made some changes to the code.
However, the same problem still appears where more than half of the bootstrap estimates of the lower bound
are smaller than the lower bound of the confidence interval:
mean(lb.bs < bd[1])

[1] 0.49

The largest bound obtained is also smaller than the upper bound of the confidence interval:
max(ub.bs)

[1] 0.7401446

Obtaining the confidence interval without step 4

The solution (clb(α), cub(α)) can be obtained without the step of simplifying the list of candidates by building
a two-dimensional grid. Recall that the list of all possible candidates for the upper and lower bounds are
stored in ub.can and lb.can respectively. Hence, the bounds can be constructed as follows:
df.feasible.grid <- data.frame(matrix(vector(), nrow = 0, ncol = 3))
colnames(df.feasible.grid) <- c("lb", "ub", "len")

4

Check the candidates through building a two-dimensional grid
for (x in lb.can) {

for (y in ub.can) {
cons1 <- mean((lb.can1 <= x) * (-y <= ub.can2))
cons2 <- mean((lb.can2 <= x) * (-y <= ub.can1))
if ((cons1 >= 1 - alpha) & (cons2 >= 1 - alpha)) {

df.feasible.grid[nrow(df.feasible.grid) + 1,] <- c(x, y, x + y)
}

}
}

Choose the bounds that minimize the objective function
c.bd.grid <- df.feasible.grid %>% slice(which.min(len))
c.lb.grid <- c.bd.grid$lb
c.ub.grid <- c.bd.grid$ub

Construct the confidence interval
bd.grid <- c(lb - c.lb.grid/sqrt(n), ub + c.ub.grid/sqrt(n))
print(bd.grid)

[1] 0.6339226 0.8854928

The results here matches what we get from step 6 above (and hence they are the same as the confidence
interval from the object r in the beginning).
print(bd.grid[1] == bd[1])

[1] TRUE

print(bd.grid[2] == bd[2])

[1] TRUE

Indeed, I have still kept the remove.const option in the chorussell so that it can compute the solution
without the refinement step (i.e. step 4 above) by setting remove.const = FALSE. The result can be obtained
as follows:
set.seed(5)
r.grid <- chorussell(data = df, lpmodel = lpm, ci = TRUE, beta.tgt = .2,

progress = FALSE, remove.const = FALSE)
print(r.grid)

95%-confidence interval: [0.63392, 0.88549]

The bounds here is the same as the ones in r:
print(r$ci.df == r.grid$ci.df)

alpha kappa lb ub
[1,] TRUE TRUE TRUE TRUE

Just to confirm again, the same problems still appear with the results from r.grid:
print(mean(lb.bs < r.grid$ci.df$lb))

[1] 0.49

print(max(r.grid$ub.bs))

[1] 0.7401446

5

	Summary of the issue
	Constructing the confidence interval
	Step 1. Get the point estimates of the bounds
	Step 2. Get the bootstrap bounds
	Step 3. Get the list of candidates
	Step 4. Simplify the list of candidates
	Step 5. Solving the minimization problem
	Step 6. Construct the confidence interval
	Back to the problem again
	Obtaining the confidence interval without step 4

