Simulation Exercise for Issue #104
September 24, 2020

Suppose we set alpha = .1 and R = 10. Running the chorussell procedure gives:

library(1lpinfer)

set.seed(5)

dgp <- mixedlogit_dgp()

df <- mixedlogit_draw(dgp, n = 4000)
alpha <- .1

lpm <- lpmodel(A.obs = mixedlogit_Aobs(dgp),
beta.obs = function(d) mixedlogit_betaobs(d, dgp),
A.shp = rep(1, nrow(dgp$vdist)),
beta.shp = 1,
A.tgt = mixedlogit_Atgt_dfelast(dgp, w2eval = 1, eeval = -1))

set.seed(5)
r <- chorussell(data = df, lpmodel = lpm, ci = TRUE, R = 10, alpha = alpha)
print (r)

90%-confidence interval: [0.63716, 0.79291]

I am going to store the confidence interval as ci.

ci <- r$ci.df[1, 3:4]

Next, I construct the confidence interval by following the “six steps” as I did in the other document for the
ease of reference.

Step 1. Get the point estimates of the bounds

The point estimates of the bounds and the length of the estimated identified set are obtained as follows:

Point estimate of bounds
1b <- r$lb
ub <- r$ub

Length of the tidentified set
delta <- ub - 1b
print(delta)

[1] 0.0005065283

Step 2. Get the bootstrap bounds
The bootstrap bounds are obtained by finding the estimated bounds on the bootstrap data. I am going to
extract them from the r object above and store them as follows:

1b.bs <- r$lb.bs
ub.bs <- r$ub.bs

Again, the same problems exist:

print (max(ub.bs))

[1] 0.6915303
print (min(1lb.bs))

[1] 0.4426166
sum(1lb.bs <= r$lb)

[1] 9

Step 3. Get the list of candidates

Again, T denote the set of candidates {v/n(8%, — 0i)}2_, and {\/n (6%, — 0, — A)}2_, as 1b.cant and 1b.can2
respectively. 1b.can should contain all the possible candidates for ¢p,.

n <- nrow(df)

1b.canl <- sqrt(n) * (lb.bs - 1b)
1b.can2 <- sqrt(n) * (1b.bs - 1lb - delta)
lb.can <- c(lb.canl, 1lb.can2)

Similarly, I denote the set of candidates {f\/ﬁ(éﬁb - éub)}szl and {—/n(0%, — O, + A)}E_| as -ub.canil
and -ub.can?2 respectively. ub.can should contain all the possible candidates for cy.

ub.canl <- sqrt(n) * (ub.bs - ub)
ub.can2 <- sqrt(n) * (ub.bs - ub + delta)
ub.can <- -c(ub.canl, ub.can2)

Step 4 and 5. Solve the minimization problem

To better understand how the solution is obtained, I solve the minimization problem by looking at all possible
solutions in the two-dimensional grid instead of using the refinement method. The answer is obtained as:

df .grid <- data.frame(matrix(vector(), nrow = 0, ncol = 6))
colnames(df.grid) <- c("1b", "ub", "len", "consl", "cons2", "feasible")
Check the candidates through building a two-dimensional grid
for (x in 1b.can) {
for (y in ub.can) {
consl <- mean((lb.canl <= x) * (-y <= ub.can2))
cons2 <- mean((lb.can2 <= x) * (-y <= ub.canl))
df .grid[nrow(df.grid) + 1,] <- c(x,
e
X +y,
consl,
cons2,
((consl >= 1 - alpha) & (cons2 >= 1 - alpha)))

Choose the bounds that minimize the objective function
c.bd.grid <- filter(df.grid, feasible == 1) %>’ slice(which.min(len))

Step 6. Construct the confidence interval

The 90%-confidence interval can be obtained by:

bd <- c(1b - c.bd.grid$lb/sqrt(n), ub + c.bd.grid$ub/sqrt(n))
print (bd)

[1] 0.6371614 0.7929088

This matches with the output from the chorussell procedure of the 1pinfer package (also confirming that
the answers are the same in the brute force approach and in the refinement approach).

Some analysis

In this section, I visualize the bounds obtained from the sample and bootstrap data, as well as the upper and
lower bounds of the confidence intervals obtained from the candidates 1b.can and ub.can.

In the following plot, the blue line and the red line represent the lower and upper bound of the confidence
interval obtained from the chorussell procedure. The points on the two left columns show the sample and
bootstrap bounds obtained from the estbounds procedure, i.e. they represent 1b, ub, 1b.bs and ub.bs.

On the other hand, the third and fourth columns show the lower and upper bounds that are constructed from
all possible values of ¢y, and ¢,p, respectively. The purple dots refer to the ones that are feasible (i.e. they are
the bounds constructed from the points (cp,, cy) that satisfy the constraints of the minimization problem).

0.9-
[]
0.8- Py
[] [
[] L]
0.7-
8
5 ! !] |
o
m °
0.6-
0.5-
Lower anunds Upper anunds Candidates ;or the lower Candidates flor the upper
bounds of the CI bounds of the ClI
Categories
Bootstrap bounds ® Sample bounds Feasible bounds for the CI @ Infeasible bounds for the CI

From the plot, the chorussell procedure is picking the smallest possible lower and upper bounds in this
simulation exercise when minimizing ¢y, + ¢,p. This can also be seen in the following code:

df .grid$ci.lb <- 1b - df.grid$lb/sqrt(n)

df .grid$ci.ub <- ub + df.grid$ub/sqrt(n)

print(ci$lb == min(filter(df.grid, feasible == 1)$ci.1lb))
[1] TRUE
print(ci$ub == min(filter(df.grid, feasible == 1)$ci.ub))

[1] TRUE

	Step 1. Get the point estimates of the bounds
	Step 2. Get the bootstrap bounds
	Step 3. Get the list of candidates
	Step 4 and 5. Solve the minimization problem
	Step 6. Construct the confidence interval
	Some analysis

