-
Notifications
You must be signed in to change notification settings - Fork 45
/
FTC.v
675 lines (591 loc) · 20.6 KB
/
FTC.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
(** printing [-S-] %\ensuremath{\int}% #∫# *)
Require Export CoRN.ftc.MoreIntegrals.
Require Export CoRN.ftc.CalculusTheorems.
Opaque Min.
Section Indefinite_Integral.
(**
* The Fundamental Theorem of Calculus
Finally we can prove the fundamental theorem of calculus and its most
important corollaries, which are the main tools to formalize most of
real analysis.
** Indefinite Integrals
We define the indefinite integral of a function in a proper interval
in the obvious way; we just need to state a first lemma so that the
continuity proofs become unnecessary.
%\begin{convention}% Let [I : interval], [F : PartIR] be continuous in [I]
and [a] be a point in [I].
%\end{convention}%
*)
Variable I : interval.
Variable F : PartIR.
Hypothesis contF : Continuous I F.
Variable a : IR.
Hypothesis Ha : I a.
Lemma prim_lemma : forall x : IR, I x -> Continuous_I (Min_leEq_Max a x) F.
Proof.
intros.
elim contF; intros incI contI.
Included.
Qed.
Lemma Fprim_strext : forall x y Hx Hy,
Integral (prim_lemma x Hx) [#] Integral (prim_lemma y Hy) -> x [#] y.
Proof.
intros x y Hx Hy H.
elim (Integral_strext' _ _ _ _ _ _ _ _ _ H).
intro; exfalso.
generalize a0; apply ap_irreflexive_unfolded.
auto.
Qed.
Definition Fprim : PartIR.
apply Build_PartFunct with (pfpfun := fun (x : IR) (Hx : I x) => Integral (prim_lemma x Hx)).
Proof.
apply iprop_wd.
exact Fprim_strext.
Defined.
End Indefinite_Integral.
Arguments Fprim [I F].
Notation "[-S-] F" := (Fprim F) (at level 20).
Section FTC.
(**
** The FTC
We can now prove our main theorem. We begin by remarking that the
primitive function is always continuous.
%\begin{convention}% Assume that [J : interval], [F : PartIR] is
continuous in [J] and [x0] is a point in [J]. Denote by [G] the
indefinite integral of [F] from [x0].
%\end{convention}%
*)
Variable J : interval.
Variable F : PartIR.
Hypothesis contF : Continuous J F.
Variable x0 : IR.
Hypothesis Hx0 : J x0.
(* begin hide *)
Let G := ( [-S-]contF) x0 Hx0.
(* end hide *)
Lemma Continuous_prim : Continuous J G.
Proof.
split.
Included.
intros a b Hab H. split.
Included.
intros e H0.
simpl in |- *; simpl in H.
exists (e[/] _[//] max_one_ap_zero (Norm_Funct (included_imp_Continuous _ _ contF _ _ _ H))).
apply div_resp_pos.
apply pos_max_one.
assumption.
intros x y H1 H2 Hx Hy H3.
cut (included (Compact (Min_leEq_Max y x)) (Compact Hab)).
intro Hinc.
cut (Continuous_I (Min_leEq_Max y x) F). intro H4.
apply leEq_wdl with (AbsIR (Integral H4)).
eapply leEq_transitive.
apply Integral_leEq_norm.
apply leEq_transitive with (Max (Norm_Funct (included_imp_Continuous _ _ contF _ _ _ H)) [1][*]
AbsIR (x[-]y)).
apply mult_resp_leEq_rht.
apply leEq_transitive with (Norm_Funct (included_imp_Continuous _ _ contF _ _ _ H)).
apply leEq_Norm_Funct.
intros.
apply norm_bnd_AbsIR.
apply Hinc; auto.
apply lft_leEq_Max.
apply AbsIR_nonneg.
eapply shift_mult_leEq'.
apply pos_max_one.
apply H3.
apply AbsIR_wd.
rstepl (Integral (prim_lemma J F contF x0 Hx0 y Hy) [+]Integral H4[-]
Integral (prim_lemma J F contF x0 Hx0 y Hy)).
apply cg_minus_wd.
apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 x y).
apply included_imp_Continuous with J; auto.
apply included3_interval; auto.
apply Integral_wd.
apply Feq_reflexive.
apply (included_trans _ (Compact (Min_leEq_Max x0 y)) J); Included.
apply included_imp_Continuous with J; auto.
Included.
Included.
Qed.
(**
The derivative of [G] is simply [F].
*)
Hypothesis pJ : proper J.
Theorem FTC1 : Derivative J pJ G F.
Proof.
split; Included.
split; Included.
intros; apply Derivative_I_char.
Included.
inversion_clear contF.
Included.
intros.
red in contF.
inversion_clear contF.
elim (contin_prop _ _ _ _ (X2 _ _ _ X) e X0); intros d H3 H4.
exists d.
assumption.
intros x y X3 X4 Hx Hy Hx' H.
simpl in |- *.
rename Hab into Hab'.
set (Hab := less_leEq _ _ _ Hab') in *.
cut (included (Compact (Min_leEq_Max x y)) (Compact Hab)).
intro Hinc.
cut (Continuous_I (Min_leEq_Max x y) F).
2: apply included_imp_Continuous with J; auto.
intro H8.
apply leEq_wdl with (AbsIR (Integral H8[-]
Integral (Continuous_I_const _ _ (Min_leEq_Max x y) (F x Hx')))).
apply leEq_wdl with (AbsIR (Integral (Continuous_I_minus _ _ _ _ _ H8
(Continuous_I_const _ _ _ (F x Hx'))))).
eapply leEq_transitive.
apply Integral_leEq_norm.
apply mult_resp_leEq_rht.
2: apply AbsIR_nonneg.
apply leEq_Norm_Funct.
intros z Hz Hz1.
simpl in |- *.
apply leEq_wdl with (AbsIR (F z (X1 z (X z (Hinc z Hz))) [-]F x Hx')).
2: apply AbsIR_wd; algebra.
apply H4; auto.
eapply leEq_transitive.
2: apply H.
eapply leEq_wdr.
2: apply eq_symmetric_unfolded; apply Abs_Max.
eapply leEq_wdr.
2: apply AbsIR_eq_x; apply shift_leEq_minus.
2: astepl (Min x y); apply Min_leEq_Max.
apply compact_elements with (Min_leEq_Max x y); auto.
apply compact_Min_lft.
apply AbsIR_wd; apply Integral_minus.
apply AbsIR_wd; apply cg_minus_wd.
rstepl (Integral (prim_lemma _ _ contF x0 Hx0 _ Hx) [+]Integral H8[-]
Integral (prim_lemma _ _ contF x0 Hx0 _ Hx)).
apply cg_minus_wd.
apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 y x).
apply included_imp_Continuous with J; auto.
apply included3_interval; auto.
apply Integral_wd. apply Feq_reflexive.
apply (included_trans _ (Compact (Min_leEq_Max x0 x)) J); try apply included_interval; auto.
apply Integral_const.
Included.
Included.
Qed.
(**
Any other function [G0] with derivative [F] must differ from [G] by a constant.
*)
Variable G0 : PartIR.
Hypothesis derG0 : Derivative J pJ G0 F.
Theorem FTC2 : {c : IR | Feq J (G{-}G0) [-C-]c}.
Proof.
apply FConst_prop with pJ.
apply Derivative_wdr with (F{-}F).
FEQ.
apply Derivative_minus; auto.
apply FTC1.
Qed.
(**
The following is another statement of the Fundamental Theorem of Calculus, also known as Barrow's rule.
*)
(* begin hide *)
Let G0_inc := Derivative_imp_inc _ _ _ _ derG0.
(* end hide *)
End FTC.
Theorem Barrow : forall J F (contF : Continuous J F)
(pJ:proper J) G0 (derG0 : Derivative J pJ G0 F)
a b (H : Continuous_I (Min_leEq_Max a b) F) Ha Hb,
let Ha' := Derivative_imp_inc _ _ _ _ derG0 a Ha in let Hb' := Derivative_imp_inc _ _ _ _ derG0 b Hb in Integral H [=] G0 b Hb'[-]G0 a Ha'.
Proof.
(* begin hide *)
intros J F contF pJ G0 derG0 a b H1 Ha Hb; intros.
pose (x0:=a).
pose (Hx0:=Ha).
set (G := ( [-S-]contF) x0 Hx0).
elim (@FTC2 J F contF x0 Hx0 pJ G0 derG0); intros c Hc.
elim Hc; intros H2 H.
elim H; clear H Hc; intros H3 H0.
(* Allow G0a to be G0 of a.
Allow G0b to be G0 of b. *)
set (G0a := G0 a Ha') in *.
set (G0b := G0 b Hb') in *.
rstepr (G0b[+]c[-] (G0a[+]c)).
(* Allow Ga to be G of a.
Allow Gb to be G of b.*)
set (Ga := G a Ha) in *.
set (Gb := G b Hb) in *.
apply eq_transitive_unfolded with (Gb[-]Ga).
unfold Ga, Gb, G in |- *; simpl in |- *.
cut (forall x y z : IR, z [=] x[+]y -> y [=] z[-]x). intro H5.
apply H5.
apply Integral_plus_Integral with (Min3_leEq_Max3 x0 b a).
apply included_imp_Continuous with J.
auto.
apply included3_interval; auto.
intros; apply eq_symmetric_unfolded.
rstepr (x[+]y[-]x); algebra.
cut (forall x y z : IR, x[-]y [=] z -> x [=] y[+]z); intros.
fold G in H0.
apply cg_minus_wd; unfold Ga, Gb, G0a, G0b in |- *; apply H; auto.
simpl in H0.
apply eq_transitive_unfolded with ((G{-}G0) b (Hb, Hb')).
2: apply H0 with (Hx := (Hb, Hb')).
simpl.
apply cg_minus_wd.
apply Integral_wd.
apply Feq_reflexive.
destruct H1 as [H1 _].
apply H1.
algebra.
auto.
auto.
change c with ([-C-]c a I).
apply eq_transitive_unfolded with ((G{-}G0) a (Ha, Ha')).
2: apply H0 with (Hx := (Ha, Ha')).
simpl.
apply cg_minus_wd.
apply Integral_wd.
apply Feq_reflexive.
destruct H1 as [H1 _].
intros y Hy.
apply H1.
apply (compact_wd _ _ (Min_leEq_Max a b) a).
apply compact_Min_lft.
unfold compact, x0 in Hy.
destruct Hy.
apply leEq_imp_eq.
astepl (Min a a). assumption.
apply Min_id.
stepr(Max a a). assumption.
apply Max_id.
algebra.
auto.
rstepl (y[+] (x[-]y)).
algebra.
Qed.
(* end hide *)
#[global]
Hint Resolve Continuous_prim: continuous.
#[global]
Hint Resolve FTC1: derivate.
Section Limit_of_Integral_Seq.
(**
** Corollaries
With these tools in our hand, we can prove several useful results.
%\begin{convention}% From this point onwards:
- [J : interval];
- [f : nat->PartIR] is a sequence of continuous functions (in [J]);
- [F : PartIR] is continuous in [J].
%\end{convention}%
In the first place, if a sequence of continuous functions converges
then the sequence of their primitives also converges, and the limit
commutes with the indefinite integral.
*)
Variable J : interval.
Variable f : nat -> PartIR.
Variable F : PartIR.
Hypothesis contf : forall n : nat, Continuous J (f n).
Hypothesis contF : Continuous J F.
Section Compact.
(**
We need to prove this result first for compact intervals.
%\begin{convention}% Assume that [a, b, x0 : IR] with [(f n)] and [F]
continuous in [[a,b]], $x0\in[a,b]$#x0∈[a,b]#; denote by
[(g n)] and [G] the indefinite integrals respectively of [(f n)] and
[F] with origin [x0].
%\end{convention}%
*)
Variables a b : IR.
Hypothesis Hab : a [<=] b.
Hypothesis contIf : forall n : nat, Continuous_I Hab (f n).
Hypothesis contIF : Continuous_I Hab F.
(* begin show *)
Hypothesis convF : conv_fun_seq' a b Hab f F contIf contIF.
(* end show *)
Variable x0 : IR.
Hypothesis Hx0 : J x0.
Hypothesis Hx0' : Compact Hab x0.
(* begin hide *)
Let g (n : nat) := ( [-S-]contf n) x0 Hx0.
Let G := ( [-S-]contF) x0 Hx0.
(* end hide *)
(* begin show *)
Hypothesis contg : forall n : nat, Continuous_I Hab (g n).
Hypothesis contG : Continuous_I Hab G.
(* end show *)
Lemma fun_lim_seq_integral : conv_fun_seq' a b Hab g G contg contG.
Proof.
assert (H : conv_norm_fun_seq _ _ _ _ _ contIf contIF).
apply conv_fun_seq'_norm; assumption.
intros e H0.
elim (Archimedes (AbsIR (b[-]a) [/] _[//]pos_ap_zero _ _ H0)); intros k Hk.
elim (H k); intros N HN.
exists N; intros.
assert (H2 : included (Compact (Min_leEq_Max x0 x)) (Compact Hab)).
apply included2_compact; auto.
simpl in |- *.
apply leEq_wdl with (AbsIR (Integral (Continuous_I_minus _ _ _ _ _ (prim_lemma _ _ (contf n) x0 Hx0 _
(contin_imp_inc _ _ _ _ (contg n) _ Hx)) (prim_lemma _ _ contF x0 Hx0 _
(contin_imp_inc _ _ _ _ contG _ Hx))))).
2: apply AbsIR_wd; apply Integral_minus.
eapply leEq_transitive.
apply Integral_leEq_norm.
apply leEq_transitive with (one_div_succ k[*]AbsIR (b[-]a)).
apply mult_resp_leEq_both.
apply positive_norm.
apply AbsIR_nonneg.
eapply leEq_transitive.
2: apply (HN n H1).
apply leEq_Norm_Funct; intros.
apply norm_bnd_AbsIR.
apply H2; auto.
apply compact_elements with Hab; auto.
unfold one_div_succ, Snring in |- *.
rstepl (AbsIR (b[-]a) [/] _[//]nring_ap_zero _ _ (sym_not_eq (O_S k))).
apply shift_div_leEq.
apply pos_nring_S.
eapply shift_leEq_mult'.
assumption.
apply less_leEq; eapply leEq_less_trans.
apply Hk.
simpl in |- *.
apply less_plusOne.
Qed.
End Compact.
(**
And now we can generalize it step by step.
*)
Lemma limit_of_integral : conv_fun_seq'_IR J f F contf contF -> forall x y Hxy,
included (Compact Hxy) J -> forall Hf HF,
Cauchy_Lim_prop2 (fun n => integral x y Hxy (f n) (Hf n)) (integral x y Hxy F HF).
Proof.
intros H x y Hxy H0 Hf HF.
assert (Hx : J x). apply H0; apply compact_inc_lft.
assert (Hy : J y). apply H0; apply compact_inc_rht.
set (g := fun n : nat => ( [-S-]contf n) x Hx) in *.
set (G := ( [-S-]contF) x Hx) in *.
set (Hxg := fun n : nat => Hy) in *.
apply Lim_wd with (Part G y Hy).
simpl in |- *; apply Integral_integral.
apply Cauchy_Lim_prop2_wd with (fun n : nat => Part (g n) y (Hxg n)).
2: intro; simpl in |- *; apply Integral_integral.
cut (forall n : nat, Continuous_I Hxy (g n)). intro H1.
cut (Continuous_I Hxy G). intro H2.
apply fun_conv_imp_seq_conv with (contf := H1) (contF := H2).
set (H4 := fun n : nat => included_imp_Continuous _ _ (contf n) _ _ _ H0) in *.
set (H5 := included_imp_Continuous _ _ contF _ _ _ H0) in *.
unfold g, G in |- *.
apply fun_lim_seq_integral with H4 H5.
unfold H4, H5 in |- *.
apply H; auto.
apply compact_inc_lft.
apply compact_inc_rht.
unfold G in |- *; apply included_imp_Continuous with J; Contin.
intro; unfold g in |- *; apply included_imp_Continuous with J; Contin.
Qed.
Lemma limit_of_Integral : conv_fun_seq'_IR J f F contf contF -> forall x y,
included (Compact (Min_leEq_Max x y)) J -> forall Hxy Hf HF,
Cauchy_Lim_prop2 (fun n => Integral (a:=x) (b:=y) (Hab:=Hxy) (F:=f n) (Hf n))
(Integral (Hab:=Hxy) (F:=F) HF).
Proof.
intros convF x y H.
set (x0 := Min x y) in *.
intros.
assert (Hx0 : J x0).
apply H; apply compact_inc_lft.
assert (Hx0' : Compact Hxy x0).
apply compact_inc_lft.
set (g := fun n : nat => ( [-S-]contf n) x0 Hx0) in *.
set (G := ( [-S-]contF) x0 Hx0) in *.
unfold Integral in |- *; fold x0 in |- *.
apply (Cauchy_Lim_minus (fun n : nat => integral _ _ _ _ (Integral_inc2 _ _ _ _ (Hf n)))
(fun n : nat => integral _ _ _ _ (Integral_inc1 _ _ _ _ (Hf n)))); fold x0 in |- *.
apply limit_of_integral with (Hf := fun n : nat => Integral_inc2 _ _ Hxy _ (Hf n)); auto.
apply included_trans with (Compact (Min_leEq_Max x y)); Included.
apply included_compact.
apply compact_inc_lft.
apply compact_Min_rht.
apply limit_of_integral with (Hf := fun n : nat => Integral_inc1 _ _ Hxy _ (Hf n)); auto.
apply included_trans with (Compact (Min_leEq_Max x y)); auto.
apply included_compact.
apply compact_inc_lft.
apply compact_Min_lft.
Qed.
Section General.
(**
Finally, with [x0, g, G] as before,
*)
(* begin show *)
Hypothesis convF : conv_fun_seq'_IR J f F contf contF.
(* end show *)
Variable x0 : IR.
Hypothesis Hx0 : J x0.
(* begin hide *)
Let g (n : nat) := ( [-S-]contf n) x0 Hx0.
Let G := ( [-S-]contF) x0 Hx0.
(* end hide *)
Hypothesis contg : forall n : nat, Continuous J (g n).
Hypothesis contG : Continuous J G.
Lemma fun_lim_seq_integral_IR : conv_fun_seq'_IR J g G contg contG.
Proof.
red in |- *; intros.
unfold g, G in |- *.
cut (J a). intro H.
set (h := fun n : nat => [-C-] (Integral (prim_lemma _ _ (contf n) x0 Hx0 a H))) in *.
set (g' := fun n : nat => h n{+} ( [-S-]contf n) a H) in *.
set (G' := [-C-] (Integral (prim_lemma _ _ contF x0 Hx0 a H)) {+} ( [-S-]contF) a H) in *.
assert (H0 : forall n : nat, Continuous_I Hab (h n)).
intro; unfold h in |- *; Contin.
cut (forall n : nat, Continuous_I Hab (( [-S-]contf n) a H)). intro H1.
assert (H2 : forall n : nat, Continuous_I Hab (g' n)).
intro; unfold g' in |- *; Contin.
cut (Continuous_I Hab (( [-S-]contF) a H)). intro H3.
assert (H4 : Continuous_I Hab G').
unfold G' in |- *; Contin.
apply conv_fun_seq'_wdl with g' H2 (included_imp_Continuous _ _ contG _ _ _ Hinc).
intro; FEQ.
simpl in |- *.
apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 x a).
apply included_imp_Continuous with J; Contin.
apply conv_fun_seq'_wdr with H2 G' H4.
FEQ.
simpl in |- *.
apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 x a).
apply included_imp_Continuous with J; Contin.
unfold g', G' in |- *.
apply conv_fun_seq'_wdl with (f := g')
(contf := fun n : nat => Continuous_I_plus _ _ _ _ _ (H0 n) (H1 n)) (contF := H4).
unfold g' in H2.
intro; apply Feq_reflexive; Included.
unfold g', G' in |- *.
apply (fun_Lim_seq_plus' _ _ Hab h (fun n : nat => ( [-S-]contf n) a H) H0 H1 _ _
(Continuous_I_const _ _ _ (Integral (prim_lemma _ _ contF x0 Hx0 a H))) H3).
unfold h in |- *.
apply seq_conv_imp_fun_conv
with (x := fun n : nat => Integral (prim_lemma _ _ (contf n) x0 Hx0 a H)).
apply limit_of_Integral with (Hf := fun n : nat => prim_lemma _ _ (contf n) x0 Hx0 a H); auto.
Included.
apply fun_lim_seq_integral with (fun n : nat => included_imp_Continuous _ _ (contf n) _ _ _ Hinc)
(included_imp_Continuous _ _ contF _ _ _ Hinc).
apply convF; auto.
apply compact_inc_lft.
apply included_imp_Continuous with J; Contin.
intro; apply included_imp_Continuous with J; Contin.
apply Hinc; apply compact_inc_lft.
Qed.
End General.
End Limit_of_Integral_Seq.
Section Limit_of_Derivative_Seq.
(**
Similar results hold for the sequence of derivatives of a converging sequence; this time the proof is easier, as we can do it directly for any kind of interval.
%\begin{convention}% Let [g] be the sequence of derivatives of [f] and [G] be the derivative of [F].
%\end{convention}%
*)
Variable J : interval.
Hypothesis pJ : proper J.
Variables f g : nat -> PartIR.
Variables F G : PartIR.
Hypothesis contf : forall n : nat, Continuous J (f n).
Hypothesis contF : Continuous J F.
Hypothesis convF : conv_fun_seq'_IR J f F contf contF.
Hypothesis contg : forall n : nat, Continuous J (g n).
Hypothesis contG : Continuous J G.
Hypothesis convG : conv_fun_seq'_IR J g G contg contG.
Hypothesis derf : forall n : nat, Derivative J pJ (f n) (g n).
Lemma fun_lim_seq_derivative : Derivative J pJ F G.
Proof.
elim (nonvoid_point _ (proper_nonvoid _ pJ)); intros a Ha.
set (h := fun n : nat => ( [-S-]contg n) a Ha) in *.
set (H := ( [-S-]contG) a Ha) in *.
assert (H0 : Derivative J pJ H G). unfold H in |- *; apply FTC1.
assert (H1 : forall n : nat, Derivative J pJ (h n) (g n)). intro; unfold h in |- *; apply FTC1.
assert (H2 : conv_fun_seq'_IR J _ _ (fun n : nat => Derivative_imp_Continuous _ _ _ _ (H1 n))
(Derivative_imp_Continuous _ _ _ _ H0)).
unfold h, H in |- *. eapply fun_lim_seq_integral_IR with (contf := contg); auto.
cut {c : IR | Feq J (F{-}H) [-C-]c}.
intro H3.
elim H3; clear H3; intros c Hc.
apply Derivative_wdl with (H{+} [-C-]c).
apply Feq_transitive with (H{+} (F{-}H)).
apply Feq_plus.
apply Feq_reflexive; Included.
apply Feq_symmetric; assumption.
clear Hc H2 H1; clearbody H.
FEQ.
apply Derivative_wdr with (G{+} [-C-][0]).
FEQ.
apply Derivative_plus; auto.
apply Derivative_const.
assert (H3 : forall n : nat, {c : IR | Feq J (f n{-}h n) [-C-]c}).
intro; apply FConst_prop with pJ.
apply Derivative_wdr with (g n{-}g n). FEQ. apply Derivative_minus; auto.
assert (contw : forall n : nat, Continuous J (f n{-}h n)). unfold h in |- *; Contin.
assert (contW : Continuous J (F{-}H)). unfold H in |- *; Contin.
apply fun_const_Lim with (fun n : nat => f n{-}h n) contw contW.
auto.
eapply fun_Lim_seq_minus'_IR.
apply convF.
apply H2.
assumption.
Qed.
End Limit_of_Derivative_Seq.
Section Derivative_Series.
(**
As a very important case of this result, we get a rule for deriving series.
*)
Variable J : interval.
Hypothesis pJ : proper J.
Variables f g : nat -> PartIR.
(* begin show *)
Hypothesis convF : fun_series_convergent_IR J f.
Hypothesis convG : fun_series_convergent_IR J g.
(* end show *)
Hypothesis derF : forall n : nat, Derivative J pJ (f n) (g n).
Lemma Derivative_FSeries : Derivative J pJ (FSeries_Sum convF) (FSeries_Sum convG).
Proof.
apply fun_lim_seq_derivative with (f := fun n : nat => FSum0 n f)
(contf := Continuous_Sum0 _ _ (convergent_imp_Continuous _ _ convF))
(contF := Continuous_FSeries_Sum _ _ convF) (g := fun n : nat => FSum0 n g)
(contg := Continuous_Sum0 _ _ (convergent_imp_Continuous _ _ convG))
(contG := Continuous_FSeries_Sum _ _ convG).
3: Deriv.
apply FSeries_conv.
apply FSeries_conv.
Qed.
End Derivative_Series.