-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathMoreArcTan.v
631 lines (606 loc) · 19.2 KB
/
MoreArcTan.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
(*
Copyright © 2006 Russell O’Connor
Permission is hereby granted, free of charge, to any person obtaining a copy of
this proof and associated documentation files (the "Proof"), to deal in
the Proof without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Proof, and to permit persons to whom the Proof is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Proof.
THE PROOF IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE PROOF OR THE USE OR OTHER DEALINGS IN THE PROOF.
*)
Require Export CoRN.transc.InvTrigonom.
Require Import CoRN.tactics.CornTac.
(** Various properties of ArcTangent.*)
Lemma Dom_Tang_ArcTan : forall x, (Dom Tang (ArcTan x)).
Proof.
intros x.
apply Tang_Domain'.
apply ArcTan_range.
Qed.
Lemma ArcTan_zero : ArcTan [0][=][0].
Proof.
assert (Z:Dom Tang [0]).
apply Tang_Domain'.
split; auto with *.
stepl (ArcTan (Tan _ Z)).
apply ArcTan_Tan; auto with *.
apply pfwdef.
apply Tan_zero.
Qed.
Lemma ArcTan_one : ArcTan [1][=]Pi[/]FourNZ.
Proof.
assert (Z:Dom Tang (Pi[/]FourNZ)).
apply Tang_Domain'.
split; auto with *.
stepl (ArcTan (Tan _ Z)).
apply ArcTan_Tan; auto with *.
apply pfwdef.
apply Tan_QuarterPi.
Qed.
#[global]
Hint Resolve ArcTan_zero ArcTan_one: algebra.
Lemma ArcTan_inv : forall x, ArcTan [--]x[=][--](ArcTan x).
Proof.
intros x.
stepr (ArcTan [--](Tan (ArcTan x) (Dom_Tang_ArcTan x))).
apply ArcTan_wd.
apply un_op_wd_unfolded.
apply Tan_ArcTan.
assert (H:(olor ([--](Pi[/]TwoNZ)) (Pi[/]TwoNZ) [--](ArcTan x))).
destruct (ArcTan_range x).
split.
apply inv_resp_less; assumption.
rstepr ([--][--](Pi[/]TwoNZ)).
apply inv_resp_less; assumption.
stepr (ArcTan (Tan _ (Tang_Domain' _ H))).
apply ArcTan_wd.
apply eq_symmetric.
apply Tan_inv.
destruct H.
apply ArcTan_Tan; assumption.
Qed.
Lemma ArcTan_resp_less : forall x y, x[<]y -> ArcTan x[<]ArcTan y.
Proof.
intros x y H.
unfold ArcTan.
eapply (Derivative_imp_resp_less realline I).
apply Derivative_ArcTan.
assumption.
constructor.
constructor.
intros contF'.
set (F:={1/}([-C-][1]{+}FId{^}2):PartIR) in *.
assert (Hz0:forall z:IR, [0][<][1][+][1][*]z[*]z).
intros z.
apply less_leEq_trans with [1].
apply pos_one.
apply shift_leEq_plus'.
rstepl ([0]:IR).
rstepr (z[^]2).
apply sqr_nonneg.
assert (Hz:forall z, Dom F z).
intros z.
repeat constructor.
simpl.
intros _.
apply Greater_imp_ap.
apply Hz0.
set (z:=Max (AbsIR x) (AbsIR y)).
apply less_leEq_trans with (F z (Hz z)).
simpl.
apply shift_less_div.
apply Hz0.
rstepl ([0]:IR).
apply pos_one.
apply leEq_glb.
simpl.
intros a [Ha0 Ha1] H0.
apply recip_resp_leEq.
apply Hz0.
clear H0 contF' F Hz.
apply plus_resp_leEq_lft.
apply shift_leEq_rht.
rstepr ((z[-]a)[*](z[-][--]a)).
unfold z.
apply mult_resp_nonneg; apply shift_leEq_lft; eapply leEq_transitive.
apply Ha1.
apply Max_leEq; (eapply leEq_transitive;[apply leEq_AbsIR|]).
apply lft_leEq_Max.
apply rht_leEq_Max.
apply inv_resp_leEq.
apply Ha0.
unfold MIN, Min.
rstepl (Max [--]x [--]y).
apply Max_leEq; (eapply leEq_transitive;[apply inv_leEq_AbsIR|]).
apply lft_leEq_Max.
apply rht_leEq_Max.
Qed.
Lemma ArcTan_resp_leEq : forall x y, x[<=]y -> ArcTan x[<=]ArcTan y.
Proof.
intros x y Hxy.
rewrite -> leEq_def.
intros H.
apply (leEq_less_or_equal _ _ _ Hxy).
intros H0.
generalize H; clear H.
change (Not (ArcTan y[<]ArcTan x)).
rewrite <- leEq_def.
destruct H0.
apply less_leEq.
apply ArcTan_resp_less.
assumption.
stepr (ArcTan x).
apply leEq_reflexive.
apply ArcTan_wd.
assumption.
Qed.
Lemma ArcTan_pos : forall x, [0][<]x -> [0][<]ArcTan x.
Proof.
intros x Hx.
csetoid_rewrite_rev ArcTan_zero.
apply ArcTan_resp_less.
assumption.
Qed.
Lemma ArcTan_recip : forall x Hx, [0][<]x -> ArcTan ([1][/]x[//]Hx)[=]Pi[/]TwoNZ[-](ArcTan x).
Proof.
intros x Hx Hx0.
assert (H0:olor [--](Pi [/]TwoNZ) (Pi [/]TwoNZ) ([--](ArcTan x)[+]Pi[/]TwoNZ)).
split.
apply shift_less_plus.
rstepl ([--]Pi).
apply inv_resp_less.
apply less_transitive_unfolded with (Pi[/]TwoNZ).
destruct (ArcTan_range x); assumption.
auto with *.
apply shift_plus_less.
rstepr ([--][0]:IR).
apply inv_resp_less.
apply ArcTan_pos.
assumption.
rstepr ([--](ArcTan x)[+]Pi[/]TwoNZ).
stepr (ArcTan (Tan _ (Tang_Domain' _ H0))); [| now destruct H0; apply ArcTan_Tan; assumption].
apply ArcTan_wd.
apply eq_symmetric.
assert (H1:Dom Tang ([--](ArcTan x))).
apply Tang_Domain'.
destruct (ArcTan_range x).
split.
apply inv_resp_less; assumption.
rstepr ([--][--](Pi[/]TwoNZ)).
apply inv_resp_less.
assumption.
assert (H2:(Tan [--](ArcTan x) H1)[#][0]).
stepl ([--](Tan (ArcTan x) (Dom_Tang_ArcTan x))); [| now apply eq_symmetric; apply Tan_inv].
rstepr ([--][0]:IR).
apply inv_resp_ap.
apply Greater_imp_ap.
csetoid_rewrite_rev (Tan_ArcTan x (Dom_Tang_ArcTan x)).
assumption.
eapply eq_transitive.
apply (Tan_plus_HalfPi _ (Tang_Domain' _ H0) H1 H2).
apply mult_cancel_lft with (Tan [--](ArcTan x) H1).
assumption.
apply mult_cancel_lft with x.
apply Greater_imp_ap; assumption.
rstepl ([--]x:IR).
rstepr (Tan [--](ArcTan x) H1).
stepr ([--](Tan (ArcTan x) (Dom_Tang_ArcTan x))).
apply un_op_wd_unfolded.
apply Tan_ArcTan.
apply eq_symmetric.
apply Tan_inv.
Qed.
Lemma ArcTan_plus_ArcTan : forall x y Hxy,
([--][1][<=]x) -> (x[<=][1]) -> ([--][1][<=]y) -> (y[<=][1]) ->
ArcTan x [+] ArcTan y [=] ArcTan ((x[+]y)[/]([1][-]x[*]y)[//]Hxy).
Proof.
cut (forall x y Hxy, ([--][1][<=]x) -> (x[<=][1]) -> ([--][1][<=]y) -> (y[<][1]) ->
ArcTan x [+] ArcTan y [=] ArcTan ((x[+]y)[/]([1][-]x[*]y)[//]Hxy)).
intros G x y Hxy Hx0 Hx1 Hy0 Hy1.
apply (not_ap_imp_eq).
intros H.
apply (leEq_less_or_equal _ _ _ Hx1).
intros Hx1'.
apply (leEq_less_or_equal _ _ _ Hy1).
intros Hy1'.
generalize H; clear H.
apply (eq_imp_not_ap).
clear Hy1.
destruct Hy1' as [Hy1|Hy1].
apply G; assumption.
assert (Hxy':([1][-]y[*]x)[#][0]).
rstepl ([1][-]x[*]y).
assumption.
rstepl (ArcTan y[+]ArcTan x).
stepr (ArcTan ((y[+]x)[/]([1][-]y[*]x)[//]Hxy')); [| now apply ArcTan_wd; rational].
apply G; try assumption.
stepl ([1]:IR); [| now apply eq_symmetric; assumption].
apply leEq_reflexive.
destruct Hx1' as [c|c]; try assumption.
exfalso.
refine (eq_imp_not_ap _ _ _ _ Hxy').
unfold cg_minus.
csetoid_rewrite c.
csetoid_rewrite Hy1.
rstepl ([0]:IR).
apply eq_reflexive.
cut (forall x y Hxy, ([--][1][<=]x) -> (x[<=][1]) -> ([--][1][<]y) -> (y[<][1]) ->
ArcTan x [+] ArcTan y [=] ArcTan ((x[+]y)[/]([1][-]x[*]y)[//]Hxy)).
intros G x y Hxy Hx0 Hx1 Hy0 Hy1.
apply (not_ap_imp_eq).
intros H.
apply (leEq_less_or_equal _ _ _ Hx0).
intros Hx0'.
apply (leEq_less_or_equal _ _ _ Hx1).
intros Hx1'.
apply (leEq_less_or_equal _ _ _ Hy0).
intros Hy0'.
generalize H; clear H.
apply (eq_imp_not_ap).
clear Hy0.
destruct Hy0' as [Hy0|Hy0].
apply G; assumption.
assert (Hxy':([1][-]y[*]x)[#][0]).
rstepl ([1][-]x[*]y).
assumption.
destruct Hx0' as [Hx0'|Hx0']; destruct Hx1' as [Hx1'|Hx1'].
rstepl (ArcTan y[+]ArcTan x).
stepr (ArcTan ((y[+]x)[/]([1][-]y[*]x)[//]Hxy')); [| now apply ArcTan_wd; rational].
apply G; try assumption.
stepr ([--][1]:IR); [| easy ].
apply leEq_reflexive.
stepl ([--][1]:IR); [| easy ].
apply shift_zero_leEq_minus'.
rstepr (Two:IR).
apply less_leEq; apply pos_two.
csetoid_replace (ArcTan y) ([--](ArcTan x)).
rstepl ([0]:IR).
stepl (ArcTan [0]); [| now apply ArcTan_zero].
apply ArcTan_wd.
rstepl ([0][/]([1][-]x[*]y)[//]Hxy).
apply div_wd.
csetoid_rewrite Hx1'.
csetoid_rewrite_rev Hy0.
rational.
apply eq_reflexive.
stepl (ArcTan ([--]x)).
apply ArcTan_inv.
apply ArcTan_wd.
csetoid_rewrite Hx1'.
assumption.
exfalso.
refine (eq_imp_not_ap _ _ _ _ Hxy').
unfold cg_minus.
csetoid_rewrite_rev Hx0'.
csetoid_rewrite_rev Hy0.
rational.
exfalso.
refine (eq_imp_not_ap _ [--][1] [1] _ _).
1: now stepr x.
apply ap_symmetric.
apply zero_minus_apart.
rstepl (Two:IR).
apply two_ap_zero.
intros x y Hxy Hx0 Hx1 Hy0 Hy1.
assert (X:olor [--](Pi [/]TwoNZ) (Pi [/]TwoNZ) (ArcTan x[+]ArcTan y)).
split.
rstepl ([--](Pi[/]FourNZ)[+][--](Pi[/]FourNZ)).
csetoid_rewrite_rev (ArcTan_one).
csetoid_replace ([--](ArcTan [1])) (ArcTan ([--][1])).
apply plus_resp_leEq_less.
apply ArcTan_resp_leEq; assumption.
apply ArcTan_resp_less; assumption.
apply eq_symmetric; apply ArcTan_inv.
rstepr ((Pi[/]FourNZ)[+](Pi[/]FourNZ)).
csetoid_rewrite_rev (ArcTan_one).
apply plus_resp_leEq_less.
apply ArcTan_resp_leEq; assumption.
apply ArcTan_resp_less; assumption.
elim X; intros X0 X1.
csetoid_rewrite_rev (ArcTan_Tan _ X0 X1 (Tang_Domain' _ X)).
apply ArcTan_wd.
assert (Y:([1][-]Tan _ (Dom_Tang_ArcTan x)[*]Tan _ (Dom_Tang_ArcTan y))[#][0]).
unfold cg_minus.
csetoid_rewrite_rev (Tan_ArcTan _ (Dom_Tang_ArcTan x)).
csetoid_rewrite_rev (Tan_ArcTan _ (Dom_Tang_ArcTan y)).
assumption.
stepr (Tan _ (Dom_Tang_ArcTan x)[+]Tan _ (Dom_Tang_ArcTan y)[/]_[//]Y).
apply Tan_plus.
apply div_wd; unfold cg_minus; csetoid_rewrite_rev (Tan_ArcTan _ (Dom_Tang_ArcTan x));
csetoid_rewrite_rev (Tan_ArcTan _ (Dom_Tang_ArcTan y)); apply eq_reflexive.
Qed.
Section ArcTan_Series.
(**
** ArcTan Series
In this section we show the convergence of ArcTan's power series.
First we show the convergence of the series for 1/(1+x^2)
*)
Lemma bellcurve_series_convergent_IR : fun_series_convergent_IR (olor ([--][1]) [1]) (fun (i:nat) => ([--][1])[^]i{**}Fid IR{^}(2*i)).
Proof.
apply fun_series_convergent_wd_IR with (fun i => Fid IR{^}i[o]({--}(Fid IR{^}2))).
intros n.
FEQ.
change ([--]([1][*]x[*]x)[^]n[=]([--][1])[^]n[*]x[^](2*n)).
rstepl (([--][1][*](x[*]x))[^]n).
stepl (([--][1])[^]n[*]((x[*]x)[^]n)); [| now apply eq_symmetric; apply mult_nexp].
apply mult_wdr.
replace (2*n)%nat with (n+n)%nat by auto with *.
eapply eq_transitive.
apply mult_nexp.
apply nexp_plus.
apply FSeries_Sum_comp_conv with (olor [--][1] [1]); [|Contin|apply fun_power_series_conv_IR].
intros a b Hab Hinc.
set (c:=Max (AbsIR a) (AbsIR b)).
exists ([--](c[^]2)).
exists (c[^]2).
assert (X:[--](c[^]2)[<=]c[^]2).
apply leEq_transitive with ([0]:IR).
rstepr ([--][0]:IR).
apply inv_resp_leEq.
apply sqr_nonneg.
apply sqr_nonneg.
exists X.
assert (A0:(c[^]2)[<][1]).
rstepr ([1][^]2:IR).
unfold c.
apply nexp_resp_less.
auto with *.
eapply leEq_transitive.
apply AbsIR_nonneg.
apply lft_leEq_Max.
apply Max_less; [destruct (Hinc _ (compact_inc_lft _ _ Hab))
|destruct (Hinc _ (compact_inc_rht _ _ Hab))]; apply AbsIR_less; assumption.
assert (A1:[--][1][<][--](c[^]2)).
apply inv_resp_less.
assumption.
split.
intros d [Hd0 Hd1].
split.
apply less_leEq_trans with ([--](c[^]2)); assumption.
apply leEq_less_trans with (c[^]2); assumption.
intros x Hx [Hx0 Hx1].
simpl.
cut (AbsSmall (c[^]2) ([--](x[^]2))).
intros [A B]; split; assumption.
apply inv_resp_AbsSmall.
rstepl (c[*]c).
rstepr (x[*]x).
cut (AbsSmall c x).
intros; apply mult_AbsSmall; assumption.
unfold c.
split.
rstepr ([--][--]x).
apply inv_resp_leEq.
eapply leEq_transitive;[|apply lft_leEq_Max].
eapply leEq_transitive;[|apply inv_leEq_AbsIR].
apply inv_resp_leEq.
assumption.
eapply leEq_transitive;[|apply rht_leEq_Max].
eapply leEq_transitive;[|apply leEq_AbsIR].
assumption.
Qed.
Lemma bellcurve_series
: forall (Hs:fun_series_convergent_IR (olor ([--][1]) [1]) (fun (i:nat) => ([--][1])[^]i{**}Fid IR{^}(2*i))),
Feq (olor ([--][1]) [1]) (FSeries_Sum Hs) ({1/}([-C-][1]{+}FId{^}2)).
Proof.
intros Hs.
split.
simpl.
apply included_refl.
split.
apply included_trans with realline.
intros x _; constructor.
apply Continuous_imp_inc.
apply ArcTan_def_lemma.
intros c [Hc0 Hc1] D0 D1.
assert (X:AbsIR ([--](c[^]2))[<][1]).
csetoid_rewrite_rev (AbsIR_inv (c[^]2)).
csetoid_rewrite (AbsIR_nexp_op 2 c).
rstepr ([1][^]2:IR).
apply nexp_resp_less.
auto with *.
apply AbsIR_nonneg.
apply AbsIR_less; assumption.
simpl.
generalize (ext2 (S:=IR) (P:=Conj (fun _ : IR => True) (fun _ : IR => True))
(R:=fun (x : IR) (_ : Conj (fun _ : IR => True) (fun _ : IR => True) x) =>
[1][+][1][*]x[*]x[#][0]) (x:=c) D1).
intros H.
assert (Y:[1][-]([--](c[^]2))[#][0]).
rstepl ([1][+][1][*]c[*]c).
assumption.
rstepr ([1][/]([1][-]([--](c[^]2)))[//]Y).
stepr (series_sum (power_series [--](c[^]2)) (power_series_conv [--](c[^]2) X)); [| now
apply (power_series_sum ([--](c[^]2)) X Y (power_series_conv _ X))].
apply series_sum_wd.
intros n.
simpl.
change ((([--][1])[^]n)[*]c[^](2*n)[=][--]([1][*]c[*]c)[^]n).
rstepr ((([--][1])[*]c[*]c)[^]n).
csetoid_rewrite_rev (nexp_mult _ c 2 n).
csetoid_rewrite_rev (mult_nexp _ ([--][1]) (c[^]2) n).
rational.
Qed.
(** Finally we show the convergence of the series for arctan.*)
(* Although the series converges on the closed interval [-1,1],
this proof only shows convergence on the open interval (-1,1).
*)
Lemma arctan_series_convergent_IR : fun_series_convergent_IR (olor ([--][1]) [1])
(fun (i:nat) => (([--][1])[^]i[/]nring (S (2*i))[//]nringS_ap_zero _ (2*i)){**}Fid IR{^}(2*i+1)).
Proof.
intros y z Hyz Hinc.
pose (C:=Max (AbsIR y) (AbsIR z)).
assert (C[<][1]).
unfold C.
destruct (Hinc _ (compact_inc_lft _ _ Hyz)).
destruct (Hinc _ (compact_inc_rht _ _ Hyz)).
apply Max_less; apply AbsIR_less; assumption.
assert ([0][<=]C).
unfold C.
eapply leEq_transitive.
apply AbsIR_nonneg.
apply lft_leEq_Max.
apply fun_ratio_test_conv.
intros n.
Contin.
exists 0.
exists C.
assumption.
split.
assumption.
intros x Hx n _ Hx0 Hx1.
generalize (nringS_ap_zero IR (2 * S n)).
generalize (nringS_ap_zero IR (2 * n)).
intros Z0 Z1.
set (a := S (2 * S n)).
set (b := 2*S n + 1).
set (c:= S (2 * n)).
set (d:= 2*n + 1).
change (AbsIR (([--][1][^]S n[/]nring (R:=IR) a[//]Z1)[*]x[^]b)[<=]
C[*]AbsIR (([--][1][^]n[/]nring (R:=IR) c[//]Z0)[*]x[^]d)).
stepl (AbsIR (([--][1][^]S n[/]nring (R:=IR) a[//]Z1))[*]AbsIR (x[^]b)); [| now
apply eq_symmetric; apply AbsIR_resp_mult].
stepr (C[*](AbsIR (([--][1][^]n[/]nring (R:=IR) c[//]Z0))[*]AbsIR(x[^]d))); [| now
apply mult_wdr; apply eq_symmetric; apply AbsIR_resp_mult].
rstepr (AbsIR (([--][1][^]n[/]nring (R:=IR) c[//]Z0))[*](C[*]AbsIR(x[^]d))).
apply mult_resp_leEq_both; try apply AbsIR_nonneg.
stepl (AbsIR ([--][1][^]S n)[/]_[//](AbsIR_resp_ap_zero _ Z1)); [| now
apply eq_symmetric; apply AbsIR_division].
stepr ((AbsIR ([--][1][^]n)[/]_[//](AbsIR_resp_ap_zero _ Z0))); [| now
apply eq_symmetric; apply AbsIR_division].
assert (H0:forall n, AbsIR([--][1][^]n)[=][1]).
intros i.
csetoid_rewrite (AbsIR_nexp_op i ([--][1]:IR)).
csetoid_rewrite_rev (AbsIR_inv [1]).
stepl (([1]:IR)[^]i).
apply one_nexp.
apply nexp_wd.
apply eq_symmetric; apply AbsIR_eq_x.
apply less_leEq; apply pos_one.
stepl ([1][/]AbsIR (nring (R:=IR) (S (2 * S n)))[//]
AbsIR_resp_ap_zero (nring (R:=IR) (S (2 * S n))) Z1); [| now
apply div_wd; try apply eq_reflexive; apply eq_symmetric; apply H0].
stepr ([1][/]AbsIR (nring (R:=IR) (S (2 * n)))[//]
AbsIR_resp_ap_zero (nring (R:=IR) (S (2 * n))) Z0); [| now
apply div_wd; try apply eq_reflexive; apply eq_symmetric; apply H0].
apply recip_resp_leEq; try (apply AbsIR_pos; assumption).
eapply leEq_transitive;[|apply leEq_AbsIR].
apply AbsSmall_imp_AbsIR.
apply leEq_imp_AbsSmall.
apply nring_nonneg.
apply nring_leEq.
auto with *.
replace b with (2+d);[|unfold b, d; auto with *].
stepl (AbsIR x[^](2+d)); [| now apply eq_symmetric; apply AbsIR_nexp_op].
stepl (AbsIR x[^]2[*]AbsIR x[^]d); [| now apply nexp_plus].
stepr (C[*]AbsIR x[^]d); [| now apply mult_wdr; apply eq_symmetric; apply AbsIR_nexp_op].
apply mult_resp_leEq_rht; try (apply nexp_resp_nonneg; apply AbsIR_nonneg).
apply leEq_transitive with (C[^]2).
stepl (AbsIR(x[^]2)); [| now apply AbsIR_nexp_op].
stepl (x[^]2); [| now apply eq_symmetric; apply AbsIR_eq_x; apply sqr_nonneg].
apply shift_zero_leEq_minus'.
rstepr ((C[-]x)[*](C[-][--]x)).
unfold C.
destruct Hx as [Y0 Y1].
apply mult_resp_nonneg; apply shift_zero_leEq_minus.
eapply leEq_transitive.
apply Y1.
eapply leEq_transitive.
apply leEq_AbsIR.
apply rht_leEq_Max.
eapply leEq_transitive.
apply inv_resp_leEq.
apply Y0.
eapply leEq_transitive.
apply inv_leEq_AbsIR.
apply lft_leEq_Max.
rstepl (C[*]C).
rstepr (C[*][1]).
apply mult_resp_leEq_lft.
apply less_leEq; assumption.
assumption.
Qed.
Lemma arctan_series : forall c : IR,
forall (Hs:fun_series_convergent_IR (olor ([--][1]) [1]) (fun (i:nat) => (([--][1])[^]i[/]nring (S (2*i))[//]nringS_ap_zero _ (2*i)){**}Fid IR{^}(2*i+1))) Hc,
FSeries_Sum Hs c Hc[=]ArcTan c.
Proof.
intros c Hs Hc.
set (J:=olor [--][1] [1]).
assert (HJ:proper J).
simpl.
apply shift_zero_less_minus'.
rstepr (Two:IR).
apply pos_nring_S.
assert (Y0 : included J realline).
intros a b; constructor.
assert (Y1 : J [0]).
split;[rstepr ([--][0]:IR);apply inv_resp_less|]; apply pos_one.
stepl (([-S-] Included_imp_Continuous realline {1/}([-C-][1]{+}FId{^}2)
ArcTan_def_lemma J Y0) [0] Y1 c Hc).
apply: Integral_wd.
apply Feq_reflexive.
intros d Hd.
eapply Continuous_imp_inc.
apply ArcTan_def_lemma.
constructor.
apply cg_inv_unique_2.
cut (Derivative J HJ (FSeries_Sum Hs) {1/}([-C-][1]{+}FId{^}2)).
intros X.
destruct (FTC2 J _ (Included_imp_Continuous _ _ ArcTan_def_lemma J Y0) [0] Y1 _ _ X) as [z Hz].
clear X.
apply eq_transitive with z.
eapply eq_transitive; [|apply (Feq_imp_eq _ _ _ Hz _ Hc (Hc, Hc) I)].
apply: bin_op_wd_unfolded;[|apply un_op_wd_unfolded]; apply pfwdef; apply eq_reflexive.
apply eq_symmetric.
eapply eq_transitive; [|apply (Feq_imp_eq _ _ _ Hz _ Y1 (Y1, Y1) I)].
rstepl ([0][-][0]:IR).
apply: cg_minus_wd.
stepr (ArcTan [0]).
assert (Z:Dom Tang [0]).
repeat split; try constructor.
intros [].
stepl ([1]:IR).
apply ring_non_triv.
apply eq_symmetric.
apply Cos_zero.
stepl (ArcTan (Tan _ Z)).
apply pfwdef.
apply Tan_zero.
apply ArcTan_Tan; [rstepr ([--][0]:IR); apply inv_resp_less|]; apply pos_HalfPi.
unfold ArcTan, ArcTang.
apply: Integral_wd.
apply Feq_reflexive.
intros d Hd.
eapply Continuous_imp_inc.
apply ArcTan_def_lemma.
constructor.
eapply eq_transitive.
apply eq_symmetric.
eapply (series_sum_zero conv_zero_series).
simpl; apply series_sum_wd.
intros n.
eapply eq_transitive.
apply eq_symmetric.
apply cring_mult_zero.
apply mult_wdr.
apply eq_symmetric.
apply (zero_nexp IR (2*n+1)).
auto with *.
clear -J.
eapply Derivative_wdr.
apply (bellcurve_series bellcurve_series_convergent_IR).
apply Derivative_FSeries.
intros n.
rewrite Nat.add_comm.
simpl.
Derivative_Help; [|apply Derivative_scal;apply Derivative_nth;Deriv..].
FEQ.
Qed.
End ArcTan_Series.