Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 324 lines (253 sloc) 8.902 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)

Require Import OrderedType.
Require Import ZArith.
Require Import Omega.
Require Import NArith Ndec.
Require Import Compare_dec.

(** * Examples of Ordered Type structures. *)

(** First, a particular case of [OrderedType] where
the equality is the usual one of Coq. *)

Module Type UsualOrderedType.
 Parameter Inline t : Type.
 Definition eq := @eq t.
 Parameter Inline lt : t -> t -> Prop.
 Definition eq_refl := @refl_equal t.
 Definition eq_sym := @sym_eq t.
 Definition eq_trans := @trans_eq t.
 Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
 Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
 Parameter compare : forall x y : t, Compare lt eq x y.
 Parameter eq_dec : forall x y : t, { eq x y } + { ~ eq x y }.
End UsualOrderedType.

(** a [UsualOrderedType] is in particular an [OrderedType]. *)

Module UOT_to_OT (U:UsualOrderedType) <: OrderedType := U.

(** [nat] is an ordered type with respect to the usual order on natural numbers. *)

Module Nat_as_OT <: UsualOrderedType.

  Definition t := nat.

  Definition eq := @eq nat.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt := lt.

  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof. unfold lt; intros; apply lt_trans with y; auto. Qed.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof. unfold lt, eq; intros; omega. Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
    intros x y; destruct (nat_compare x y) as [ | | ]_eqn.
    apply EQ. apply nat_compare_eq; assumption.
    apply LT. apply nat_compare_Lt_lt; assumption.
    apply GT. apply nat_compare_Gt_gt; assumption.
  Defined.

  Definition eq_dec := eq_nat_dec.

End Nat_as_OT.


(** [Z] is an ordered type with respect to the usual order on integers. *)

Open Local Scope Z_scope.

Module Z_as_OT <: UsualOrderedType.

  Definition t := Z.
  Definition eq := @eq Z.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt (x y:Z) := (x<y).

  Lemma lt_trans : forall x y z, x<y -> y<z -> x<z.
  Proof. intros; omega. Qed.

  Lemma lt_not_eq : forall x y, x<y -> ~ x=y.
  Proof. intros; omega. Qed.

  Definition compare : forall x y, Compare lt eq x y.
  Proof.
    intros x y; destruct (x ?= y) as [ | | ]_eqn.
    apply EQ; apply Zcompare_Eq_eq; assumption.
    apply LT; assumption.
    apply GT; apply Zgt_lt; assumption.
  Defined.

  Definition eq_dec := Z_eq_dec.

End Z_as_OT.

(** [positive] is an ordered type with respect to the usual order on natural numbers. *)

Open Local Scope positive_scope.

Module Positive_as_OT <: UsualOrderedType.
  Definition t:=positive.
  Definition eq:=@eq positive.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt := Plt.

  Definition lt_trans := Plt_trans.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
  intros x y H. contradict H. rewrite H. apply Plt_irrefl.
  Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
  intros x y. destruct (x ?= y) as [ | | ]_eqn.
  apply EQ; apply Pcompare_Eq_eq; assumption.
  apply LT; assumption.
  apply GT; apply ZC1; assumption.
  Defined.

  Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
  Proof.
   intros; unfold eq; decide equality.
  Defined.

End Positive_as_OT.


(** [N] is an ordered type with respect to the usual order on natural numbers. *)

Open Local Scope positive_scope.

Module N_as_OT <: UsualOrderedType.
  Definition t:=N.
  Definition eq:=@eq N.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt:=Nlt.
  Definition lt_trans := Nlt_trans.
  Definition lt_not_eq := Nlt_not_eq.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
  intros x y. destruct (x ?= y)%N as [ | | ]_eqn.
  apply EQ; apply Ncompare_Eq_eq; assumption.
  apply LT; assumption.
  apply GT. apply Ngt_Nlt; assumption.
  Defined.

  Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
  Proof.
   intros. unfold eq. decide equality. apply Positive_as_OT.eq_dec.
  Defined.

End N_as_OT.


(** From two ordered types, we can build a new OrderedType
over their cartesian product, using the lexicographic order. *)

Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
 Module MO1:=OrderedTypeFacts(O1).
 Module MO2:=OrderedTypeFacts(O2).

 Definition t := prod O1.t O2.t.

 Definition eq x y := O1.eq (fst x) (fst y) /\ O2.eq (snd x) (snd y).

 Definition lt x y :=
    O1.lt (fst x) (fst y) \/
    (O1.eq (fst x) (fst y) /\ O2.lt (snd x) (snd y)).

 Lemma eq_refl : forall x : t, eq x x.
 Proof.
 intros (x1,x2); red; simpl; auto.
 Qed.

 Lemma eq_sym : forall x y : t, eq x y -> eq y x.
 Proof.
 intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
 Qed.

 Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
 Proof.
 intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto.
 Qed.

 Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
 Proof.
 intros (x1,x2) (y1,y2) (z1,z2); unfold eq, lt; simpl; intuition.
 left; eauto.
 left; eapply MO1.lt_eq; eauto.
 left; eapply MO1.eq_lt; eauto.
 right; split; eauto.
 Qed.

 Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
 Proof.
 intros (x1,x2) (y1,y2); unfold eq, lt; simpl; intuition.
 apply (O1.lt_not_eq H0 H1).
 apply (O2.lt_not_eq H3 H2).
 Qed.

 Definition compare : forall x y : t, Compare lt eq x y.
 intros (x1,x2) (y1,y2).
 destruct (O1.compare x1 y1).
 apply LT; unfold lt; auto.
 destruct (O2.compare x2 y2).
 apply LT; unfold lt; auto.
 apply EQ; unfold eq; auto.
 apply GT; unfold lt; auto.
 apply GT; unfold lt; auto.
 Defined.

 Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
 Proof.
 intros; elim (compare x y); intro H; [ right | left | right ]; auto.
 auto using lt_not_eq.
 assert (~ eq y x); auto using lt_not_eq, eq_sym.
 Defined.

End PairOrderedType.


(** Even if [positive] can be seen as an ordered type with respect to the
usual order (see above), we can also use a lexicographic order over bits
(lower bits are considered first). This is more natural when using
[positive] as indexes for sets or maps (see FSetPositive and FMapPositive. *)

Module PositiveOrderedTypeBits <: UsualOrderedType.
  Definition t:=positive.
  Definition eq:=@eq positive.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Fixpoint bits_lt (p q:positive) : Prop :=
   match p, q with
   | xH, xI _ => True
   | xH, _ => False
   | xO p, xO q => bits_lt p q
   | xO _, _ => True
   | xI p, xI q => bits_lt p q
   | xI _, _ => False
   end.

  Definition lt:=bits_lt.

  Lemma bits_lt_trans :
    forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
  Proof.
  induction x.
  induction y; destruct z; simpl; eauto; intuition.
  induction y; destruct z; simpl; eauto; intuition.
  induction y; destruct z; simpl; eauto; intuition.
  Qed.

  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof.
  exact bits_lt_trans.
  Qed.

  Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
  Proof.
  induction x; simpl; auto.
  Qed.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
  intros; intro.
  rewrite <- H0 in H; clear H0 y.
  unfold lt in H.
  exact (bits_lt_antirefl x H).
  Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
  induction x; destruct y.
  (* I I *)
  destruct (IHx y).
  apply LT; auto.
  apply EQ; rewrite e; red; auto.
  apply GT; auto.
  (* I O *)
  apply GT; simpl; auto.
  (* I H *)
  apply GT; simpl; auto.
  (* O I *)
  apply LT; simpl; auto.
  (* O O *)
  destruct (IHx y).
  apply LT; auto.
  apply EQ; rewrite e; red; auto.
  apply GT; auto.
  (* O H *)
  apply LT; simpl; auto.
  (* H I *)
  apply LT; simpl; auto.
  (* H O *)
  apply GT; simpl; auto.
  (* H H *)
  apply EQ; red; auto.
  Qed.

  Lemma eq_dec (x y: positive): {x = y} + {x <> y}.
  Proof.
  intros. case_eq (x ?= y); intros.
  left. apply Pcompare_Eq_eq; auto.
  right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate.
  right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate.
  Qed.

End PositiveOrderedTypeBits.
Something went wrong with that request. Please try again.