Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

943 lines (844 sloc) 36.003 kb
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction
machine, Oct 2004 *)
(* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *)
open Util
open Names
open Cbytecodes
open Cemitcodes
open Term
open Declarations
open Pre_env
(* Compilation of variables + computing free variables *)
(* The virtual machine doesn't distinguish closures and their environment *)
(* Representation of function environments : *)
(* [clos_t | code | fv1 | fv2 | ... | fvn ] *)
(* ^ *)
(* The offset for accessing free variables is 1 (we must skip the code *)
(* pointer). *)
(* While compiling, free variables are stored in [in_env] in order *)
(* opposite to machine representation, so we can add new free variables *)
(* easily (i.e. without changing the position of previous variables) *)
(* Function arguments are on the stack in the same order as the *)
(* application : f arg1 ... argn *)
(* - the stack is then : *)
(* arg1 : ... argn : extra args : return addr : ... *)
(* In the function body [arg1] is represented by de Bruijn [n], and *)
(* [argn] by de Bruijn [1] *)
(* Representation of environments of mutual fixpoints : *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(* ^<----------offset---------> *)
(* type = [Ct1 | .... | Ctn] *)
(* Ci is the code pointer of the i-th body *)
(* At runtime, a fixpoint environment (which is the same as the fixpoint *)
(* itself) is a pointer to the field holding its code pointer. *)
(* In each fixpoint body, de Bruijn [nbr] represents the first fixpoint *)
(* and de Bruijn [1] the last one. *)
(* Access to these variables is performed by the [Koffsetclosure n] *)
(* instruction that shifts the environment pointer of [n] fields. *)
(* This allows representing mutual fixpoints in just one block. *)
(* [Ct1 | ... | Ctn] is an array holding code pointers of the fixpoint *)
(* types. They are used in conversion tests (which requires that *)
(* fixpoint types must be convertible). Their environment is the one of *)
(* the last fixpoint : *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(* ^ *)
(* Representation of mutual cofix : *)
(* a1 = [A_t | accumulate | [Cfx_t | fcofix1 ] ] *)
(* ... *)
(* anbr = [A_t | accumulate | [Cfx_t | fcofixnbr ] ] *)
(* *)
(* fcofix1 = [clos_t | code1 | a1 |...| anbr | fv1 |...| fvn | type] *)
(* ^ *)
(* ... *)
(* fcofixnbr = [clos_t | codenbr | a1 |...| anbr | fv1 |...| fvn | type] *)
(* ^ *)
(* The [ai] blocks are functions that accumulate their arguments: *)
(* ai arg1 argp ---> *)
(* ai' = [A_t | accumulate | [Cfx_t | fcofixi] | arg1 | ... | argp ] *)
(* If such a block is matched against, we have to force evaluation, *)
(* function [fcofixi] is then applied to [ai'] [arg1] ... [argp] *)
(* Once evaluation is completed [ai'] is updated with the result: *)
(* ai' <-- *)
(* [A_t | accumulate | [Cfxe_t |fcofixi|result] | arg1 | ... | argp ] *)
(* This representation is nice because the application of the cofix is *)
(* evaluated only once (it simulates a lazy evaluation) *)
(* Moreover, when cofix don't have arguments, it is possible to create *)
(* a cycle, e.g.: *)
(* cofix one := cons 1 one *)
(* a1 = [A_t | accumulate | [Cfx_t|fcofix1] ] *)
(* fcofix1 = [clos_t | code | a1] *)
(* The result of evaluating [a1] is [cons_t | 1 | a1]. *)
(* When [a1] is updated : *)
(* a1 = [A_t | accumulate | [Cfxe_t | fcofix1 | [cons_t | 1 | a1]] ] *)
(* The cycle is created ... *)
(* *)
(* In Cfxe_t accumulators, we need to store [fcofixi] for testing *)
(* conversion of cofixpoints (which is intentional). *)
let empty_fv = { size= 0; fv_rev = [] }
let fv r = !(r.in_env)
let empty_comp_env ()=
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 0;
in_env = ref empty_fv;
}
(*i Creation functions for comp_env *)
let rec add_param n sz l =
if Int.equal n 0 then l else add_param (n - 1) sz (n+sz::l)
let comp_env_fun arity =
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = 0;
pos_rec = [];
offset = 1;
in_env = ref empty_fv
}
let comp_env_fix_type rfv =
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 1;
in_env = rfv
}
let comp_env_fix ndef curr_pos arity rfv =
let prec = ref [] in
for i = ndef downto 1 do
prec := Koffsetclosure (2 * (ndef - curr_pos - i)) :: !prec
done;
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = ndef;
pos_rec = !prec;
offset = 2 * (ndef - curr_pos - 1)+1;
in_env = rfv
}
let comp_env_cofix_type ndef rfv =
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 1+ndef;
in_env = rfv
}
let comp_env_cofix ndef arity rfv =
let prec = ref [] in
for i = 1 to ndef do
prec := Kenvacc i :: !prec
done;
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = ndef;
pos_rec = !prec;
offset = ndef+1;
in_env = rfv
}
(* [push_param ] add function parameters on the stack *)
let push_param n sz r =
{ r with
nb_stack = r.nb_stack + n;
in_stack = add_param n sz r.in_stack }
(* [push_local sz r] add a new variable on the stack at position [sz] *)
let push_local sz r =
{ r with
nb_stack = r.nb_stack + 1;
in_stack = (sz + 1) :: r.in_stack }
(*i Compilation of variables *)
let find_at f l =
let rec aux n = function
| [] -> raise Not_found
| hd :: tl -> if f hd then n else aux (n + 1) tl
in aux 1 l
let pos_named id r =
let env = !(r.in_env) in
let cid = FVnamed id in
let f = function FVnamed id' -> Id.equal id id' | _ -> false in
try Kenvacc(r.offset + env.size - (find_at f env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = cid:: env.fv_rev};
Kenvacc (r.offset + pos)
let pos_rel i r sz =
if i <= r.nb_stack then
Kacc(sz - (List.nth r.in_stack (i-1)))
else
let i = i - r.nb_stack in
if i <= r.nb_rec then
try List.nth r.pos_rec (i-1)
with (Failure _|Invalid_argument _) -> assert false
else
let i = i - r.nb_rec in
let db = FVrel(i) in
let env = !(r.in_env) in
let f = function FVrel j -> Int.equal i j | _ -> false in
try Kenvacc(r.offset + env.size - (find_at f env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = db:: env.fv_rev};
Kenvacc(r.offset + pos)
(*i Examination of the continuation *)
(* Discard all instructions up to the next label. *)
(* This function is to be applied to the continuation before adding a *)
(* non-terminating instruction (branch, raise, return, appterm) *)
(* in front of it. *)
let discard_dead_code cont = cont
(*function
[] -> []
| (Klabel _ | Krestart ) :: _ as cont -> cont
| _ :: cont -> discard_dead_code cont
*)
(* Return a label to the beginning of the given continuation. *)
(* If the sequence starts with a branch, use the target of that branch *)
(* as the label, thus avoiding a jump to a jump. *)
let label_code = function
| Klabel lbl :: _ as cont -> (lbl, cont)
| Kbranch lbl :: _ as cont -> (lbl, cont)
| cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont)
(* Return a branch to the continuation. That is, an instruction that,
when executed, branches to the continuation or performs what the
continuation performs. We avoid generating branches to returns. *)
(* spiwack: make_branch was only used once. Changed it back to the ZAM
one to match the appropriate semantics (old one avoided the
introduction of an unconditional branch operation, which seemed
appropriate for the 31-bit integers' code). As a memory, I leave
the former version in this comment.
let make_branch cont =
match cont with
| (Kreturn _ as return) :: cont' -> return, cont'
| Klabel lbl as b :: _ -> b, cont
| _ -> let b = Klabel(Label.create()) in b,b::cont
*)
let rec make_branch_2 lbl n cont =
function
Kreturn m :: _ -> (Kreturn (n + m), cont)
| Klabel _ :: c -> make_branch_2 lbl n cont c
| Kpop m :: c -> make_branch_2 lbl (n + m) cont c
| _ ->
match lbl with
Some lbl -> (Kbranch lbl, cont)
| None -> let lbl = Label.create() in (Kbranch lbl, Klabel lbl :: cont)
let make_branch cont =
match cont with
(Kbranch _ as branch) :: _ -> (branch, cont)
| (Kreturn _ as return) :: _ -> (return, cont)
| Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
| _ -> make_branch_2 (None) 0 cont cont
(* Check if we're in tailcall position *)
let rec is_tailcall = function
| Kreturn k :: _ -> Some k
| Klabel _ :: c -> is_tailcall c
| _ -> None
(* Extention of the continuation *)
(* Add a Kpop n instruction in front of a continuation *)
let rec add_pop n = function
| Kpop m :: cont -> add_pop (n+m) cont
| Kreturn m:: cont -> Kreturn (n+m) ::cont
| cont -> if Int.equal n 0 then cont else Kpop n :: cont
let add_grab arity lbl cont =
if Int.equal arity 1 then Klabel lbl :: cont
else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont
let add_grabrec rec_arg arity lbl cont =
if Int.equal arity 1 && rec_arg < arity then
Klabel lbl :: Kgrabrec 0 :: Krestart :: cont
else
Krestart :: Klabel lbl :: Kgrabrec rec_arg ::
Krestart :: Kgrab (arity - 1) :: cont
(* continuation of a cofix *)
let cont_cofix arity =
(* accu = res *)
(* stk = ai::args::ra::... *)
(* ai = [At|accumulate|[Cfx_t|fcofix]|args] *)
[ Kpush;
Kpush; (* stk = res::res::ai::args::ra::... *)
Kacc 2;
Kfield 1;
Kfield 0;
Kmakeblock(2, cofix_evaluated_tag);
Kpush; (* stk = [Cfxe_t|fcofix|res]::res::ai::args::ra::...*)
Kacc 2;
Ksetfield 1; (* ai = [At|accumulate|[Cfxe_t|fcofix|res]|args] *)
(* stk = res::ai::args::ra::... *)
Kacc 0; (* accu = res *)
Kreturn (arity+2) ]
(*i Global environment *)
let global_env = ref empty_env
let set_global_env env = global_env := env
(* Code of closures *)
let fun_code = ref []
let init_fun_code () = fun_code := []
(* Compilation of constructors and inductive types *)
(* Limitation due to OCaml's representation of non-constant
constructors: limited to 245 + 1 (0 tag) cases. *)
exception TooLargeInductive of Id.t
let max_nb_const = 0x1000000
let max_nb_block = 0x1000000 + last_variant_tag - 1
let str_max_constructors =
Format.sprintf
" which has more than %i constant constructors or more than %i non-constant constructors" max_nb_const max_nb_block
let check_compilable ib =
if not (ib.mind_nb_args <= max_nb_block && ib.mind_nb_constant <= max_nb_const) then
raise (TooLargeInductive ib.mind_typename)
(* Inv: arity > 0 *)
let const_bn tag args =
if tag < last_variant_tag then Const_bn(tag, args)
else
Const_bn(last_variant_tag, Array.append [|Const_b0 (tag - last_variant_tag) |] args)
let code_makeblock arity tag cont =
if tag < last_variant_tag then
Kmakeblock(arity, tag) :: cont
else
Kpush :: Kconst (Const_b0 (tag - last_variant_tag)) ::
Kmakeblock(arity+1, last_variant_tag) :: cont
(* Inv : nparam + arity > 0 *)
let code_construct tag nparams arity cont =
let f_cont =
add_pop nparams
(if Int.equal arity 0 then
[Kconst (Const_b0 tag); Kreturn 0]
else if tag < last_variant_tag then
[Kacc 0; Kpop 1; Kmakeblock(arity, tag); Kreturn 0]
else
[Kconst (Const_b0 (tag - last_variant_tag));
Kmakeblock(arity+1, last_variant_tag); Kreturn 0])
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab (nparams+arity) lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
let get_strcst = function
| Bstrconst sc -> sc
| _ -> raise Not_found
let rec str_const c =
match kind_of_term c with
| Sort s -> Bstrconst (Const_sorts s)
| Cast(c,_,_) -> str_const c
| App(f,args) ->
begin
match kind_of_term f with
| Construct(((kn,j),i),u) ->
begin
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let () = check_compilable oip in
let tag,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if Int.equal (nparams + arity) (Array.length args) then
(* spiwack: *)
(* 1/ tries to compile the constructor in an optimal way,
it is supposed to work only if the arguments are
all fully constructed, fails with Cbytecodes.NotClosed.
it can also raise Not_found when there is no special
treatment for this constructor
for instance: tries to to compile an integer of the
form I31 D1 D2 ... D31 to [D1D2...D31] as
a processor number (a caml number actually) *)
try
try
Bstrconst (Retroknowledge.get_vm_constant_static_info
(!global_env).retroknowledge
f args)
with NotClosed ->
(* 2/ if the arguments are not all closed (this is
expectingly (and it is currently the case) the only
reason why this exception is raised) tries to
give a clever, run-time behavior to the constructor.
Raises Not_found if there is no special treatment
for this integer.
this is done in a lazy fashion, using the constructor
Bspecial because it needs to know the continuation
and such, which can't be done at this time.
for instance, for int31: if one of the digit is
not closed, it's not impossible that the number
gets fully instanciated at run-time, thus to ensure
uniqueness of the representation in the vm
it is necessary to try and build a caml integer
during the execution *)
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
f),
b_args)
with Not_found ->
(* 3/ if no special behavior is available, then the compiler
falls back to the normal behavior *)
if Int.equal arity 0 then Bstrconst(Const_b0 tag)
else
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
try
let sc_args = Array.map get_strcst b_args in
Bstrconst(const_bn tag sc_args)
with Not_found ->
Bmakeblock(tag,b_args)
else
let b_args = Array.map str_const args in
(* spiwack: tries first to apply the run-time compilation
behavior of the constructor, as in 2/ above *)
try
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
f),
b_args)
with Not_found ->
Bconstruct_app(tag, nparams, arity, b_args)
end
| _ -> Bconstr c
end
| Ind ind -> Bstrconst (Const_ind ind)
| Construct (((kn,j),i),u) ->
begin
(* spiwack: tries first to apply the run-time compilation
behavior of the constructor, as in 2/ above *)
try
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
c),
[| |])
with Not_found ->
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let () = check_compilable oip in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if Int.equal (nparams + arity) 0 then Bstrconst(Const_b0 num)
else Bconstruct_app(num,nparams,arity,[||])
end
| _ -> Bconstr c
(* compiling application *)
let comp_args comp_expr reloc args sz cont =
let nargs_m_1 = Array.length args - 1 in
let c = ref (comp_expr reloc args.(0) (sz + nargs_m_1) cont) in
for i = 1 to nargs_m_1 do
c := comp_expr reloc args.(i) (sz + nargs_m_1 - i) (Kpush :: !c)
done;
!c
let comp_app comp_fun comp_arg reloc f args sz cont =
let nargs = Array.length args in
match is_tailcall cont with
| Some k ->
comp_args comp_arg reloc args sz
(Kpush ::
comp_fun reloc f (sz + nargs)
(Kappterm(nargs, k + nargs) :: (discard_dead_code cont)))
| None ->
if nargs < 4 then
comp_args comp_arg reloc args sz
(Kpush :: (comp_fun reloc f (sz+nargs) (Kapply nargs :: cont)))
else
let lbl,cont1 = label_code cont in
Kpush_retaddr lbl ::
(comp_args comp_arg reloc args (sz + 3)
(Kpush :: (comp_fun reloc f (sz+3+nargs) (Kapply nargs :: cont1))))
(* Compiling free variables *)
let compile_fv_elem reloc fv sz cont =
match fv with
| FVrel i -> pos_rel i reloc sz :: cont
| FVnamed id -> pos_named id reloc :: cont
let rec compile_fv reloc l sz cont =
match l with
| [] -> cont
| [fvn] -> compile_fv_elem reloc fvn sz cont
| fvn :: tl ->
compile_fv_elem reloc fvn sz
(Kpush :: compile_fv reloc tl (sz + 1) cont)
(* Compiling constants *)
let rec get_allias env (kn,u as p) =
let cb = lookup_constant kn env in
let tps = cb.const_body_code in
match tps with
| None -> p
| Some tps ->
(match Cemitcodes.force tps with
| BCallias (kn',u') -> get_allias env (kn', Univ.subst_instance_instance u u')
| _ -> p)
(* Compiling expressions *)
let rec compile_constr reloc c sz cont =
match kind_of_term c with
| Meta _ -> invalid_arg "Cbytegen.compile_constr : Meta"
| Evar _ -> invalid_arg "Cbytegen.compile_constr : Evar"
| Proj (p,c) ->
(* compile_const reloc p [|c|] sz cont *)
let kn = Projection.constant p in
let cb = lookup_constant kn !global_env in
(* TODO: better representation of projections *)
let pb = Option.get cb.const_proj in
let args = Array.make pb.proj_npars mkProp in
compile_const reloc kn Univ.Instance.empty (Array.append args [|c|]) sz cont
| Cast(c,_,_) -> compile_constr reloc c sz cont
| Rel i -> pos_rel i reloc sz :: cont
| Var id -> pos_named id reloc :: cont
| Const (kn,u) -> compile_const reloc kn u [||] sz cont
| Sort _ | Ind _ | Construct _ ->
compile_str_cst reloc (str_const c) sz cont
| LetIn(_,xb,_,body) ->
compile_constr reloc xb sz
(Kpush ::
(compile_constr (push_local sz reloc) body (sz+1) (add_pop 1 cont)))
| Prod(id,dom,codom) ->
let cont1 =
Kpush :: compile_constr reloc dom (sz+1) (Kmakeprod :: cont) in
compile_constr reloc (mkLambda(id,dom,codom)) sz cont1
| Lambda _ ->
let params, body = decompose_lam c in
let arity = List.length params in
let r_fun = comp_env_fun arity in
let lbl_fun = Label.create() in
let cont_fun =
compile_constr r_fun body arity [Kreturn arity] in
fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)];
let fv = fv r_fun in
compile_fv reloc fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont)
| App(f,args) ->
begin
match kind_of_term f with
| Construct _ -> compile_str_cst reloc (str_const c) sz cont
| Const (kn,u) -> compile_const reloc kn u args sz cont
| _ -> comp_app compile_constr compile_constr reloc f args sz cont
end
| Fix ((rec_args,init),(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let rfv = ref empty_fv in
let lbl_types = Array.make ndef Label.no in
let lbl_bodies = Array.make ndef Label.no in
(* Compilation des types *)
let env_type = comp_env_fix_type rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr env_type type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compiling bodies *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let env_body = comp_env_fix ndef i arity rfv in
let cont1 =
compile_constr env_body body arity [Kreturn arity] in
let lbl = Label.create () in
lbl_bodies.(i) <- lbl;
let fcode = add_grabrec rec_args.(i) arity lbl cont1 in
fun_code := [Ksequence(fcode,!fun_code)]
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont)
| CoFix(init,(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let lbl_types = Array.make ndef Label.no in
let lbl_bodies = Array.make ndef Label.no in
(* Compiling types *)
let rfv = ref empty_fv in
let env_type = comp_env_cofix_type ndef rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr env_type type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compiling bodies *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let env_body = comp_env_cofix ndef arity rfv in
let lbl = Label.create () in
let cont1 =
compile_constr env_body body (arity+1) (cont_cofix arity) in
let cont2 =
add_grab (arity+1) lbl cont1 in
lbl_bodies.(i) <- lbl;
fun_code := [Ksequence(cont2,!fun_code)];
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurecofix(fv.size, init, lbl_types, lbl_bodies) :: cont)
| Case(ci,t,a,branchs) ->
let ind = ci.ci_ind in
let mib = lookup_mind (fst ind) !global_env in
let oib = mib.mind_packets.(snd ind) in
let () = check_compilable oib in
let tbl = oib.mind_reloc_tbl in
let lbl_consts = Array.make oib.mind_nb_constant Label.no in
let nallblock = oib.mind_nb_args + 1 in (* +1 : accumulate *)
let nblock = min nallblock (last_variant_tag + 1) in
let lbl_blocks = Array.make nblock Label.no in
let neblock = max 0 (nallblock - last_variant_tag) in
let lbl_eblocks = Array.make neblock Label.no in
let branch1,cont = make_branch cont in
(* Compiling return type *)
let lbl_typ,fcode =
label_code (compile_constr reloc t sz [Kpop sz; Kstop])
in fun_code := [Ksequence(fcode,!fun_code)];
(* Compiling branches *)
let lbl_sw = Label.create () in
let sz_b,branch,is_tailcall =
match branch1 with
| Kreturn k -> assert (Int.equal k sz); sz, branch1, true
| _ -> sz+3, Kjump, false
in
let annot = {ci = ci; rtbl = tbl; tailcall = is_tailcall} in
(* Compiling branch for accumulators *)
let lbl_accu, code_accu =
label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch::cont)
in
lbl_blocks.(0) <- lbl_accu;
let c = ref code_accu in
(* perform the extra match if needed (to many block constructors) *)
if neblock <> 0 then begin
let lbl_b, code_b =
label_code (
Kpush :: Kfield 0 :: Kswitch(lbl_eblocks, [||]) :: !c) in
lbl_blocks.(last_variant_tag) <- lbl_b;
c := code_b
end;
(* Compiling regular constructor branches *)
for i = 0 to Array.length tbl - 1 do
let tag, arity = tbl.(i) in
if Int.equal arity 0 then
let lbl_b,code_b =
label_code(compile_constr reloc branchs.(i) sz_b (branch :: !c)) in
lbl_consts.(tag) <- lbl_b;
c := code_b
else
let args, body = decompose_lam branchs.(i) in
let nargs = List.length args in
let code_b =
if Int.equal nargs arity then
compile_constr (push_param arity sz_b reloc)
body (sz_b+arity) (add_pop arity (branch :: !c))
else
let sz_appterm = if is_tailcall then sz_b + arity else arity in
compile_constr reloc branchs.(i) (sz_b+arity)
(Kappterm(arity,sz_appterm) :: !c) in
let code_b =
if tag < last_variant_tag then Kpushfields arity :: code_b
else Kacc 0::Kpop 1::Kpushfields(arity+1)::Kpop 1::code_b in
let lbl_b,code_b = label_code code_b in
if tag < last_variant_tag then lbl_blocks.(tag) <- lbl_b
else lbl_eblocks.(tag - last_variant_tag) <- lbl_b;
c := code_b
done;
c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: !c;
let code_sw =
match branch1 with
(* spiwack : branch1 can't be a lbl anymore it's a Branch instead
| Klabel lbl -> Kpush_retaddr lbl :: !c *)
| Kbranch lbl -> Kpush_retaddr lbl :: !c
| _ -> !c
in
compile_constr reloc a sz
(try
let entry = mkInd ind in
Retroknowledge.get_vm_before_match_info (!global_env).retroknowledge
entry code_sw
with Not_found ->
code_sw)
and compile_str_cst reloc sc sz cont =
match sc with
| Bconstr c -> compile_constr reloc c sz cont
| Bstrconst sc -> Kconst sc :: cont
| Bmakeblock(tag,args) ->
let nargs = Array.length args in
comp_args compile_str_cst reloc args sz (code_makeblock nargs tag cont)
| Bconstruct_app(tag,nparams,arity,args) ->
if Int.equal (Array.length args) 0 then
code_construct tag nparams arity cont
else
comp_app
(fun _ _ _ cont -> code_construct tag nparams arity cont)
compile_str_cst reloc () args sz cont
| Bspecial (comp_fx, args) -> comp_fx reloc args sz cont
(* spiwack : compilation of constants with their arguments.
Makes a special treatment with 31-bit integer addition *)
and compile_const =
fun reloc-> fun kn u -> fun args -> fun sz -> fun cont ->
let nargs = Array.length args in
(* spiwack: checks if there is a specific way to compile the constant
if there is not, Not_found is raised, and the function
falls back on its normal behavior *)
try
Retroknowledge.get_vm_compiling_info (!global_env).retroknowledge
(mkConstU (kn,u)) reloc args sz cont
with Not_found ->
if Int.equal nargs 0 then
Kgetglobal (get_allias !global_env (kn, u)) :: cont
else
comp_app (fun _ _ _ cont ->
Kgetglobal (get_allias !global_env (kn,u)) :: cont)
compile_constr reloc () args sz cont
let compile fail_on_error env c =
set_global_env env;
init_fun_code ();
Label.reset_label_counter ();
let reloc = empty_comp_env () in
try
let init_code = compile_constr reloc c 0 [Kstop] in
let fv = List.rev (!(reloc.in_env).fv_rev) in
(* draw_instr init_code;
draw_instr !fun_code;
Format.print_string "fv = ";
List.iter (fun v ->
match v with
| FVnamed id -> Format.print_string ((Id.to_string id)^"; ")
| FVrel i -> Format.print_string ((string_of_int i)^"; ")) fv; Format
.print_string "\n";
Format.print_flush(); *)
Some (init_code,!fun_code, Array.of_list fv)
with TooLargeInductive tname ->
let fn = if fail_on_error then Errors.errorlabstrm "compile" else Pp.msg_warning in
(Pp.(fn
(str "Cannot compile code for virtual machine as it uses inductive " ++
Id.print tname ++ str str_max_constructors));
None)
let compile_constant_body fail_on_error env = function
| Undef _ | OpaqueDef _ -> Some BCconstant
| Def sb ->
let body = Mod_subst.force_constr sb in
match kind_of_term body with
| Const (kn',u) ->
(* we use the canonical name of the constant*)
let con= constant_of_kn (canonical_con kn') in
Some (BCallias (get_allias env (con,u)))
| _ ->
let res = compile fail_on_error env body in
Option.map (fun x -> BCdefined (to_memory x)) res
(* Shortcut of the previous function used during module strengthening *)
let compile_alias (kn,u) = BCallias (constant_of_kn (canonical_con kn), u)
(* spiwack: additional function which allow different part of compilation of the
31-bit integers *)
let make_areconst n else_lbl cont =
if n <=0 then
cont
else
Kareconst (n, else_lbl)::cont
(* try to compile int31 as a const_b0. Succeed if all the arguments are closed
fails otherwise by raising NotClosed*)
let compile_structured_int31 fc args =
if not fc then raise Not_found else
Const_b0
(Array.fold_left
(fun temp_i -> fun t -> match kind_of_term t with
| Construct ((_,d),_) -> 2*temp_i+d-1
| _ -> raise NotClosed)
0 args
)
(* this function is used for the compilation of the constructor of
the int31, it is used when it appears not fully applied, or
applied to at least one non-closed digit *)
let dynamic_int31_compilation fc reloc args sz cont =
if not fc then raise Not_found else
let nargs = Array.length args in
if Int.equal nargs 31 then
let (escape,labeled_cont) = make_branch cont in
let else_lbl = Label.create() in
comp_args compile_str_cst reloc args sz
( Kisconst else_lbl::Kareconst(30,else_lbl)::Kcompint31::escape::Klabel else_lbl::Kmakeblock(31, 1)::labeled_cont)
else
let code_construct cont = (* spiwack: variant of the global code_construct
which handles dynamic compilation of
integers *)
let f_cont =
let else_lbl = Label.create () in
[Kacc 0; Kpop 1; Kisconst else_lbl; Kareconst(30,else_lbl);
Kcompint31; Kreturn 0; Klabel else_lbl; Kmakeblock(31, 1); Kreturn 0]
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab 31 lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
in
if Int.equal nargs 0 then
code_construct cont
else
comp_app (fun _ _ _ cont -> code_construct cont)
compile_str_cst reloc () args sz cont
(*(* template compilation for 2ary operation, it probably possible
to make a generic such function with arity abstracted *)
let op2_compilation op =
let code_construct normal cont = (*kn cont =*)
let f_cont =
let else_lbl = Label.create () in
Kareconst(2, else_lbl):: Kacc 0:: Kpop 1::
op:: Kreturn 0:: Klabel else_lbl::
(* works as comp_app with nargs = 2 and tailcall cont [Kreturn 0]*)
(*Kgetglobal (get_allias !global_env kn):: *)
normal::
Kappterm(2, 2):: [] (* = discard_dead_code [Kreturn 0] *)
in
let lbl = Label.create () in
fun_code := [Ksequence (add_grab 2 lbl f_cont, !fun_code)];
Kclosure(lbl, 0)::cont
in
fun normal fc _ reloc args sz cont ->
if not fc then raise Not_found else
let nargs = Array.length args in
if nargs=2 then (*if it is a fully applied addition*)
let (escape, labeled_cont) = make_branch cont in
let else_lbl = Label.create () in
comp_args compile_constr reloc args sz
(Kisconst else_lbl::(make_areconst 1 else_lbl
(*Kaddint31::escape::Klabel else_lbl::Kpush::*)
(op::escape::Klabel else_lbl::Kpush::
(* works as comp_app with nargs = 2 and non-tailcall cont*)
(*Kgetglobal (get_allias !global_env kn):: *)
normal::
Kapply 2::labeled_cont)))
else if nargs=0 then
code_construct normal cont
else
comp_app (fun _ _ _ cont -> code_construct normal cont)
compile_constr reloc () args sz cont *)
(*template for n-ary operation, invariant: n>=1,
the operations does the following :
1/ checks if all the arguments are constants (i.e. non-block values)
2/ if they are, uses the "op" instruction to execute
3/ if at least one is not, branches to the normal behavior:
Kgetglobal (get_allias !global_env kn) *)
let op_compilation n op =
let code_construct kn cont =
let f_cont =
let else_lbl = Label.create () in
Kareconst(n, else_lbl):: Kacc 0:: Kpop 1::
op:: Kreturn 0:: Klabel else_lbl::
(* works as comp_app with nargs = n and tailcall cont [Kreturn 0]*)
Kgetglobal (get_allias !global_env kn)::
Kappterm(n, n):: [] (* = discard_dead_code [Kreturn 0] *)
in
let lbl = Label.create () in
fun_code := [Ksequence (add_grab n lbl f_cont, !fun_code)];
Kclosure(lbl, 0)::cont
in
fun kn fc reloc args sz cont ->
if not fc then raise Not_found else
let nargs = Array.length args in
if Int.equal nargs n then (*if it is a fully applied addition*)
let (escape, labeled_cont) = make_branch cont in
let else_lbl = Label.create () in
comp_args compile_constr reloc args sz
(Kisconst else_lbl::(make_areconst (n-1) else_lbl
(*Kaddint31::escape::Klabel else_lbl::Kpush::*)
(op::escape::Klabel else_lbl::Kpush::
(* works as comp_app with nargs = n and non-tailcall cont*)
Kgetglobal (get_allias !global_env kn)::
Kapply n::labeled_cont)))
else if Int.equal nargs 0 then
code_construct kn cont
else
comp_app (fun _ _ _ cont -> code_construct kn cont)
compile_constr reloc () args sz cont
let int31_escape_before_match fc cont =
if not fc then
raise Not_found
else
let escape_lbl, labeled_cont = label_code cont in
(Kisconst escape_lbl)::Kdecompint31::labeled_cont
Jump to Line
Something went wrong with that request. Please try again.