Skip to content

# coq/coq mirrored from https://gforge.inria.fr/git/coq/coq.git

Fixing some generic equalities in Micromega.

• Loading branch information...
1 parent b785d46 commit 19688fcd1b99dae377f908529d3fed3804e95068 ppedrot committed Mar 3, 2014
68 plugins/micromega/certificate.ml
 @@ -76,7 +76,7 @@ let dev_form n_spec p = let p = dev_form p in let n = C2Ml.n n in let rec pow n = - if n = 0 + if Int.equal n 0 then Poly.constant (n_spec.number_to_num n_spec.unit) else Poly.product p (pow (n-1)) in pow n in @@ -87,8 +87,8 @@ let monomial_to_polynomial mn = Monomial.fold (fun v i acc -> let v = Ml2C.positive v in - let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in - if acc = Mc.PEc (Mc.Zpos Mc.XH) + let mn = if Int.equal i 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in + if Pervasives.(=) acc (Mc.PEc (Mc.Zpos Mc.XH)) (** FIXME *) then mn else Mc.PEmul(mn,acc)) mn @@ -105,18 +105,18 @@ let list_to_polynomial vars l = | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l else let c = Mc.PEc (Ml2C.bigint (numerator c)) in let mn = - if c = Mc.PEc (Mc.Zpos Mc.XH) + if Pervasives.(=) c (Mc.PEc (Mc.Zpos Mc.XH)) then var i else Mc.PEmul (c,var i) in - let p' = if p = Mc.PEc Mc.Z0 then mn else + let p' = if Pervasives.(=) p (Mc.PEc Mc.Z0) then mn else Mc.PEadd (mn, p) in xtopoly p' (i+1) l in xtopoly (Mc.PEc Mc.Z0) 0 l let rec fixpoint f x = let y' = f x in - if y' = x then y' + if Pervasives.(=) y' x then y' else fixpoint f y' let rec_simpl_cone n_spec e = @@ -153,9 +153,9 @@ let factorise_linear_cone c = let factorise c1 c2 = match c1 , c2 with | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') -> - if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None + if Pervasives.(=) x x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') -> - if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None + if Pervasives.(=) x x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None | _ -> None in let rec rebuild_cone l pending = @@ -199,7 +199,7 @@ open Mfourier let constrain_monomial mn l = let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in - if mn = Monomial.const + if Pervasives.(=) mn Monomial.const then { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ; op = Eq ; @@ -305,11 +305,11 @@ let primal l = let vect_of_poly map p = Poly.fold (fun mn vl (map,vect) -> - if mn = Monomial.const + if Pervasives.(=) mn Monomial.const then (map,vect) else let (mn,m) = try (MonMap.find mn map,map) with Not_found -> let res = (!vr, MonMap.add mn !vr map) in incr vr ; res in - (m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in + (m,if Int.equal (sign_num vl) 0 then vect else (mn,vl)::vect)) p (map,[]) in let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in @@ -367,7 +367,7 @@ let linear_prover n_spec l = let build_system n_spec l = let li = List.combine l (interval 0 (List.length l -1)) in let (l1,l') = List.partition - (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in + (fun (x,_) -> if Pervasives.(=) (snd x) Mc.NonEqual then true else false) li in List.map (fun ((x,y),i) -> match y with Mc.NonEqual -> failwith "cannot happen" @@ -394,7 +394,7 @@ let make_linear_system l = let monomials = List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l' in let monomials = Poly.fold - (fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in + (fun mn _ l -> if Pervasives.(=) mn Monomial.const then l else mn::l) monomials [] in (List.map (fun (c,op) -> {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ; op = op ; @@ -415,7 +415,7 @@ let rec remove_assoc p x l = match l with [] -> [] | e::l -> if p x (fst e) then remove_assoc p x l else e::(remove_assoc p x l) -let eq x y = Vect.compare x y = 0 +let eq x y = Int.equal (Vect.compare x y) 0 let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l @@ -475,7 +475,7 @@ let rec scale_term t = let s1' = div_big_int s1 g in let s2' = div_big_int s2 g in let e = mult_big_int g (mult_big_int s1' s2') in - if (compare_big_int e unit_big_int) = 0 + if Int.equal (compare_big_int e unit_big_int) 0 then (unit_big_int, Add (y1,y2)) else e, Add (Mul(Const (Big_int s2'), y1), Mul (Const (Big_int s1'), y2)) @@ -497,7 +497,7 @@ let get_index_of_ith_match f i l = | [] -> failwith "bad index" | e::l -> if f e then - (if j = i then res else get (j+1) (res+1) l ) + (if Int.equal j i then res else get (j+1) (res+1) l ) else get j (res+1) l in get 0 0 l @@ -557,7 +557,7 @@ let q_cert_of_pos pos = | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i) | Monoid l -> product l | Rational_eq n | Rational_le n | Rational_lt n -> - if compare_num n (Int 0) = 0 then Mc.PsatzZ else + if Int.equal (compare_num n (Int 0)) 0 then Mc.PsatzZ else Mc.PsatzC (Ml2C.q n) | Square t -> Mc.PsatzSquare (term_to_q_pol t) | Eqmul (t, y) -> Mc.PsatzMulC(term_to_q_pol t, _cert_of_pos y) @@ -588,7 +588,7 @@ let z_cert_of_pos pos = | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i) | Monoid l -> product l | Rational_eq n | Rational_le n | Rational_lt n -> - if compare_num n (Int 0) = 0 then Mc.PsatzZ else + if Int.equal (compare_num n (Int 0)) 0 then Mc.PsatzZ else Mc.PsatzC (Ml2C.bigint (big_int_of_num n)) | Square t -> Mc.PsatzSquare (term_to_z_pol t) | Eqmul (t, y) -> @@ -629,7 +629,7 @@ struct let rec xid_of_hyp i l = match l with | [] -> failwith "id_of_hyp" - | hyp'::l -> if hyp = hyp' then i else xid_of_hyp (i+1) l in + | hyp'::l -> if Pervasives.(=) hyp hyp' then i else xid_of_hyp (i+1) l in xid_of_hyp 0 l end @@ -755,7 +755,7 @@ let check_sat (cstr,prf) = if eq_num gcd (Int 1) then Normalise(cstr,prf) else - if sign_num (mod_num cst gcd) = 0 + if Int.equal (sign_num (mod_num cst gcd)) 0 then (* We can really normalise *) begin assert (sign_num gcd >=1 ) ; @@ -795,18 +795,18 @@ let pivot v (c1,p1) (c2,p2) = match Vect.get v v1 , Vect.get v v2 with | None , _ | _ , None -> None | Some a , Some b -> - if (sign_num a) * (sign_num b) = -1 + if Int.equal ((sign_num a) * (sign_num b)) (-1) then let cv1 = abs_num b and cv2 = abs_num a in Some (xpivot cv1 cv2) else - if op1 = Eq + if op1 == Eq then let cv1 = minus_num (b */ (Int (sign_num a))) and cv2 = abs_num a in Some (xpivot cv1 cv2) - else if op2 = Eq + else if op2 == Eq then let cv1 = abs_num b and cv2 = minus_num (a */ (Int (sign_num b))) in @@ -829,7 +829,7 @@ let simpl_sys sys = Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm *) let rec ext_gcd a b = - if sign_big_int b = 0 + if Int.equal (sign_big_int b) 0 then (unit_big_int,zero_big_int) else let (q,r) = quomod_big_int a b in @@ -850,17 +850,17 @@ let pp_ext_gcd a b = exception Result of (int * (proof * cstr_compat)) let split_equations psys = - List.partition (fun (c,p) -> c.op = Eq) + List.partition (fun (c,p) -> c.op == Eq) let extract_coprime (c1,p1) (c2,p2) = let rec exist2 vect1 vect2 = match vect1 , vect2 with | _ , [] | [], _ -> None | (v1,n1)::vect1' , (v2, n2) :: vect2' -> - if v1 = v2 + if Pervasives.(=) v1 v2 then - if compare_big_int (gcd_big_int (numerator n1) (numerator n2)) unit_big_int = 0 + if Int.equal (compare_big_int (gcd_big_int (numerator n1) (numerator n2)) unit_big_int) 0 then Some (v1,n1,n2) else exist2 vect1' vect2' @@ -869,7 +869,7 @@ let extract_coprime (c1,p1) (c2,p2) = then exist2 vect1' vect2 else exist2 vect1 vect2' in - if c1.op = Eq && c2.op = Eq + if c1.op == Eq && c2.op == Eq then exist2 c1.coeffs c2.coeffs else None @@ -926,7 +926,7 @@ let reduce_coprime psys = (** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *) let reduce_unary psys = let is_unary_equation (cstr,prf) = - if cstr.op = Eq + if cstr.op == Eq then try Some (fst (List.find (fun (_,n) -> n =/ (Int 1) || n=/ (Int (-1))) cstr.coeffs)) @@ -942,12 +942,12 @@ let reduce_unary psys = let reduce_non_lin_unary psys = let is_unary_equation (cstr,prf) = - if cstr.op = Eq + if cstr.op == Eq then try let x = fst (List.find (fun (x,n) -> (n =/ (Int 1) || n=/ (Int (-1))) && Monomial.is_var (LinPoly.MonT.retrieve x) ) cstr.coeffs) in let x' = LinPoly.MonT.retrieve x in - if List.for_all (fun (y,_) -> y = x || snd (Monomial.div (LinPoly.MonT.retrieve y) x') = 0) cstr.coeffs + if List.for_all (fun (y,_) -> Pervasives.(=) y x || Int.equal (snd (Monomial.div (LinPoly.MonT.retrieve y) x')) 0) cstr.coeffs then Some x else None with Not_found -> None @@ -974,7 +974,7 @@ let reduce_var_change psys = Some ((x,v),(x',numerator v')) with Not_found -> rel_prime vect in - let rel_prime (cstr,prf) = if cstr.op = Eq then rel_prime cstr.coeffs else None in + let rel_prime (cstr,prf) = if cstr.op == Eq then rel_prime cstr.coeffs else None in let (oeq,sys) = extract rel_prime psys in @@ -1005,7 +1005,7 @@ let reduce_var_change psys = let reduce_pivot psys = let is_equation (cstr,prf) = - if cstr.op = Eq + if cstr.op == Eq then try Some (fst (List.hd cstr.coeffs)) @@ -1065,7 +1065,7 @@ let reduce_var_change psys = (* For lia, there are no equations => these precautions are not needed *) (* For nlia, there are equations => do not enumerate over equations! *) let all_planes sys = - let (eq,ineq) = List.partition (fun c -> c.op = Eq) sys in + let (eq,ineq) = List.partition (fun c -> c.op == Eq) sys in match eq with | [] -> List.rev_map (fun c -> c.coeffs) ineq | _ ->
26 plugins/micromega/coq_micromega.ml
 @@ -623,7 +623,7 @@ struct let parse_q term = match Term.kind_of_term term with - | Term.App(c, args) -> if c = Lazy.force coq_Qmake then + | Term.App(c, args) -> if Constr.equal c (Lazy.force coq_Qmake) then {Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) } else raise ParseError | _ -> raise ParseError @@ -809,7 +809,7 @@ struct let assoc_const x l = try - snd (List.find (fun (x',y) -> x = Lazy.force x') l) + snd (List.find (fun (x',y) -> Constr.equal x (Lazy.force x')) l) with Not_found -> raise ParseError @@ -835,7 +835,7 @@ struct match kind_of_term op with | Const x -> (assoc_const op zop_table, args.(0) , args.(1)) | Ind(n,0) -> - if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_Z + if Constr.equal op (Lazy.force coq_Eq) && Constr.equal args.(0) (Lazy.force coq_Z) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" @@ -844,7 +844,7 @@ struct match kind_of_term op with | Const x -> (assoc_const op rop_table, args.(0) , args.(1)) | Ind(n,0) -> - if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_R + if Constr.equal op (Lazy.force coq_Eq) && Constr.equal args.(0) (Lazy.force coq_R) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" @@ -865,7 +865,7 @@ struct let assoc_ops x l = try - snd (List.find (fun (x',y) -> x = Lazy.force x') l) + snd (List.find (fun (x',y) -> Constr.equal x (Lazy.force x')) l) with Not_found -> Ukn "Oups" @@ -992,9 +992,9 @@ struct let rec rconstant term = match Term.kind_of_term term with | Const x -> - if term = Lazy.force coq_R0 + if Constr.equal term (Lazy.force coq_R0) then Mc.C0 - else if term = Lazy.force coq_R1 + else if Constr.equal term (Lazy.force coq_R1) then Mc.C1 else raise ParseError | App(op,args) -> @@ -1008,8 +1008,8 @@ struct with ParseError -> match op with - | op when op = Lazy.force coq_Rinv -> Mc.CInv(rconstant args.(0)) - | op when op = Lazy.force coq_IQR -> Mc.CQ (parse_q args.(0)) + | op when Constr.equal op (Lazy.force coq_Rinv) -> Mc.CInv(rconstant args.(0)) + | op when Constr.equal op (Lazy.force coq_IQR) -> Mc.CQ (parse_q args.(0)) (* | op when op = Lazy.force coq_IZR -> Mc.CZ (parse_z args.(0))*) | _ -> raise ParseError end @@ -1188,7 +1188,7 @@ let same_proof sg cl1 cl2 = match sg with | [] -> true | n::sg -> - (try List.nth cl1 n = List.nth cl2 n with Invalid_argument _ -> false) + (try Int.equal (List.nth cl1 n) (List.nth cl2 n) with Invalid_argument _ -> false) && (xsame_proof sg ) in xsame_proof sg @@ -1483,7 +1483,7 @@ let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) = let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let hyps_idx = prover.hyps prf in let hyps = selecti hyps_idx old_cl in - is_sublist hyps new_cl in + is_sublist Pervasives.(=) hyps new_cl in let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *) @@ -1745,7 +1745,7 @@ open Persistent_cache module Cache = PHashtable(struct type t = (provername * micromega_polys) - let equal = (=) + let equal = Pervasives.(=) let hash = Hashtbl.hash end) @@ -1939,7 +1939,7 @@ let non_linear_prover_Z str o = { module CacheZ = PHashtable(struct type t = (Mc.z Mc.pol * Mc.op1) list - let equal = (=) + let equal = Pervasives.(=) let hash = Hashtbl.hash end)
3 plugins/micromega/csdpcert.ml
 @@ -17,7 +17,6 @@ open Sos open Sos_types open Sos_lib - module Mc = Micromega module Ml2C = Mutils.CamlToCoq module C2Ml = Mutils.CoqToCaml @@ -158,7 +157,7 @@ let pure_sos l = I should nonetheless be able to try something - over Z > is equivalent to -1 >= *) try let l = List.combine l (interval 0 (List.length l -1)) in - let (lt,i) = try (List.find (fun (x,_) -> snd x = Mc.Strict) l) + let (lt,i) = try (List.find (fun (x,_) -> Pervasives.(=) (snd x) Mc.Strict) l) with Not_found -> List.hd l in let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *)
27 plugins/micromega/mfourier.ml
 @@ -3,7 +3,6 @@ module Utils = Mutils open Polynomial open Vect - let map_option = Utils.map_option let from_option = Utils.from_option @@ -197,7 +196,7 @@ let pp_split_cstr o (vl,v,c,_) = let merge_cstr_info i1 i2 = let { pos = p1 ; neg = n1 ; bound = i1 ; prf = prf1 } = i1 and { pos = p2 ; neg = n2 ; bound = i2 ; prf = prf2 } = i2 in - assert (p1 = p2 && n1 = n2) ; + assert (Int.equal p1 p2 && Int.equal n1 n2) ; match inter i1 i2 with | None -> None (* Could directly raise a system contradiction exception *) | Some bnd -> @@ -209,7 +208,7 @@ let merge_cstr_info i1 i2 = *) let xadd_cstr vect cstr_info sys = - if debug && System.length sys mod 1000 = 0 then (print_string "*" ; flush stdout) ; + if debug && Int.equal (System.length sys mod 1000) 0 then (print_string "*" ; flush stdout) ; try let info = System.find sys vect in match merge_cstr_info cstr_info !info with @@ -237,7 +236,7 @@ let normalise_cstr vect cinfo = | (_,n)::_ -> Cstr( (if n <>/ Int 1 then List.map (fun (x,nx) -> (x,nx // n)) vect else vect), let divn x = x // n in - if sign_num n = 1 + if Int.equal (sign_num n) 1 then{cinfo with bound = (map_option divn l , map_option divn r) } else {cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (map_option divn r , map_option divn l)}) @@ -254,7 +253,7 @@ let count v = | [] -> (n,p) | (_,vl)::v -> let sg = sign_num vl in assert (sg <> 0) ; - if sg = 1 then count n (p+1) v else count (n+1) p v in + if Int.equal sg 1 then count n (p+1) v else count (n+1) p v in count 0 0 v @@ -306,7 +305,7 @@ let add (v1,c1) (v2,c2) = let rec xadd v1 v2 = match v1 , v2 with | (x1,n1)::v1' , (x2,n2)::v2' -> - if x1 = x2 + if Int.equal x1 x2 then let n' = (n1 // c1) +/ (n2 // c2) in if n' =/ Int 0 then xadd v1' v2' @@ -354,7 +353,7 @@ let split x (vect: vector) info (l,m,r) = | Some bnd -> (vl,vect,{info with bound = Some bnd,None})::lst in let lb,rb = info.bound in - if sign_num vl = 1 + if Int.equal (sign_num vl) 1 then (cons_bound l lb,m,cons_bound r rb) else (* sign_num vl = -1 *) (cons_bound l rb,m,cons_bound r lb) @@ -558,15 +557,15 @@ struct match l1 with | [] -> xpart rl (([],info)::ltl) n (info.neg+info.pos+z) p | (vr,vl)::rl1 -> - if v = vr + if Int.equal v vr then let cons_bound lst bd = match bd with | None -> lst | Some bnd -> info.neg+info.pos::lst in let lb,rb = info.bound in - if sign_num vl = 1 + if Int.equal (sign_num vl) 1 then xpart rl ((rl1,info)::ltl) (cons_bound n lb) z (cons_bound p rb) else xpart rl ((rl1,info)::ltl) (cons_bound n rb) z (cons_bound p lb) else @@ -617,7 +616,7 @@ struct let rec unroll_until v l = match l with | [] -> (false,[]) - | (i,_)::rl -> if i = v + | (i,_)::rl -> if Int.equal i v then (true,rl) else if i < v then unroll_until v rl else (false,l) @@ -648,7 +647,7 @@ struct | [] -> None | (i,_)::vect -> let nb_eq = is_primal_equation_var i in - if nb_eq = 2 + if Int.equal nb_eq 2 then Some i else find_var vect in let rec find_eq_var eqs = @@ -795,18 +794,18 @@ struct match Vect.get v v1 , Vect.get v v2 with | None , _ | _ , None -> None | Some a , Some b -> - if (sign_num a) * (sign_num b) = -1 + if Int.equal ((sign_num a) * (sign_num b)) (-1) then Some (add (p1,abs_num a) (p2,abs_num b) , {coeffs = add (v1,abs_num a) (v2,abs_num b) ; op = add_op op1 op2 ; cst = n1 // (abs_num a) +/ n2 // (abs_num b) }) - else if op1 = Eq + else if op1 == Eq then Some (add (p1,minus_num (a // b)) (p2,Int 1), {coeffs = add (v1,minus_num (a// b)) (v2 ,Int 1) ; op = add_op op1 op2; cst = n1 // (minus_num (a// b)) +/ n2 // (Int 1)}) - else if op2 = Eq + else if op2 == Eq then Some (add (p2,minus_num (b // a)) (p1,Int 1), {coeffs = add (v2,minus_num (b// a)) (v1 ,Int 1) ;
28 plugins/micromega/mutils.ml
 @@ -74,13 +74,13 @@ let rec map3 f l1 l2 l3 = | e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3) | _ -> invalid_arg "map3" -let rec is_sublist l1 l2 = +let rec is_sublist f l1 l2 = match l1 ,l2 with | [] ,_ -> true | e::l1', [] -> false | e::l1' , e'::l2' -> - if e = e' then is_sublist l1' l2' - else is_sublist l1 l2' + if f e e' then is_sublist f l1' l2' + else is_sublist f l1 l2' let list_try_find f = let rec try_find_f = function @@ -144,7 +144,7 @@ let rec rec_gcd_list c l = let gcd_list l = let res = rec_gcd_list zero_big_int l in - if compare_big_int res zero_big_int = 0 + if Int.equal (compare_big_int res zero_big_int) 0 then unit_big_int else res let rats_to_ints l = @@ -192,7 +192,7 @@ let select_pos lpos l = match l with | [] -> failwith "select_pos" | e::l -> - if i = j + if Int.equal i j then e:: (xselect (i+1) rpos l) else xselect (i+1) lpos l in xselect 0 lpos l @@ -269,28 +269,28 @@ struct let rec positive n = - if n=1 then XH - else if n land 1 = 1 then XI (positive (n lsr 1)) + if Int.equal n 1 then XH + else if Int.equal (n land 1) 1 then XI (positive (n lsr 1)) else XO (positive (n lsr 1)) let n nt = if nt < 0 then assert false - else if nt = 0 then N0 + else if Int.equal nt 0 then N0 else Npos (positive nt) let rec index n = - if n=1 then XH - else if n land 1 = 1 then XI (index (n lsr 1)) + if Int.equal n 1 then XH + else if Int.equal (n land 1) 1 then XI (index (n lsr 1)) else XO (index (n lsr 1)) let idx n = (*a.k.a path_of_int *) (* returns the list of digits of n in reverse order with initial 1 removed *) let rec digits_of_int n = - if n=1 then [] - else (n mod 2 = 1)::(digits_of_int (n lsr 1)) + if Int.equal n 1 then [] + else (Int.equal (n mod 2) 1)::(digits_of_int (n lsr 1)) in List.fold_right (fun b c -> (if b then XI c else XO c)) @@ -342,7 +342,7 @@ struct | [] -> 0 (* Equal *) | f::l -> let cmp = f () in - if cmp = 0 then compare_lexical l else cmp + if Int.equal cmp 0 then compare_lexical l else cmp let rec compare_list cmp l1 l2 = match l1 , l2 with @@ -351,7 +351,7 @@ struct | _ , [] -> 1 | e1::l1 , e2::l2 -> let c = cmp e1 e2 in - if c = 0 then compare_list cmp l1 l2 else c + if Int.equal c 0 then compare_list cmp l1 l2 else c (** * hash_list takes a hash function and a list, and computes an integer which
5 plugins/micromega/persistent_cache.ml
 @@ -12,7 +12,6 @@ (* *) (************************************************************************) - module type PHashtable = sig type 'a t @@ -172,7 +171,7 @@ let close t = let add t k e = let {outch = outch ; status = status ; htbl = tbl} = t in - if status = Closed + if status == Closed then raise UnboundTable else let fd = descr_of_out_channel outch in @@ -187,7 +186,7 @@ let add t k e = let find t k = let {outch = outch ; status = status ; htbl = tbl} = t in - if status = Closed + if status == Closed then raise UnboundTable else let res = Table.find tbl k in

#### 0 comments on commit `19688fc`

Please sign in to comment.
Something went wrong with that request. Please try again.