Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Commits on Feb 2, 2015
  1. @ppedrot

    Removing dead code.

    ppedrot authored
Commits on Jan 12, 2015
  1. @maximedenes

    Update headers.

    maximedenes authored
Commits on Nov 20, 2014
  1. @ppedrot
Commits on May 6, 2014
  1. @mattam82

    - Fix bug preventing apply from unfolding Fixpoints.

    mattam82 authored
    - Remove Universe Polymorphism flags everywhere.
    - Properly infer, discharge template arities and fix substitution inside them
    (kernel code to check for correctness).
    - Fix tactics that were supposing universe polymorphic constants/inductives to
    be parametric on that status. Required to make interp_constr* return the whole evar
    universe context now.
    - Fix the univ/level/instance hashconsing to respect the fact that marshalling doesn't preserve sharing,
    sadly losing most of its benefits.
    Short-term solution is to add hashes to these for faster comparison, longer term requires rewriting
    all serialization code.
    
    Conflicts:
    	kernel/univ.ml
    	tactics/tactics.ml
    	theories/Logic/EqdepFacts.v
  2. @mattam82

    This commit adds full universe polymorphism and fast projections to Coq.

    mattam82 authored
    Add [Polymorphic] and [Monomorphic] local flag for definitions as well as
    [Set Universe Polymorphism] global flag to make all following definitions
    polymorphic. Mainly syntax for now.
    
    First part of the big changes to the kernel:
    - Const, Ind, Construct now come with a universe level instance
    - It is used for type inference in the kernel, which now also takes
    a graph as input: actually a set of local universe variables and their
    constraints. Type inference just checks that the constraints are enough
    to satisfy its own rules.
    - Remove polymorphic_arity and _knowing_parameters everywhere: we
    don't need full applications for polymorphism to apply anymore, as
    we generate fresh variables at each constant/inductive/constructor
    application. However knowing_parameters variants might be reinstated
    later for optimization.
    - New structures exported in univ.mli:
      - universe_list for universe level instances
      - universe_context(_set) for the local universe constraints, also
    recording which variables will be local and hence generalized after
    inference if defining a polymorphic ind/constant.
    - this patch makes coq stop compiling at indtypes.ml
    
    Adapt kernel, library, pretyping, tactics and toplevel to universe polymorphism.
    Various degrees of integration, places where I was not sure what to do or
    just postponed bigger reorganizations of the code are marked with FIXMEs.
    Main changes:
    - Kernel now checks constraints and does not infer them anymore.
    - The inference functions produce a context of constraints that were checked
    during inference, useful to do double-checking of the univ. poly. code
    but might be removed later.
    - Constant, Inductive entries now have a universe context (local variables
    and constraints) associated to them.
    - Printing, debugging functions for the new structures are also implemented.
    - Now stopping at Logic.v
    - Lots of new code in kernel/univ.ml that should be reviewed.
    - kernel/indtypes probably does not do what's right when inferring inductive
    type constraints.
    - Adapted evd to use the new universe context structure.
    - Did not deal with unification/evar_conv.
    
    - Add externalisation code for universe level instances.
    - Support for polymorphism in pretyping/command and proofs/proofview etc.
      Needed wrapping of [fresh_.._instance] through the evar_map, which
      contains the local state of universes during type-checking.
    - Correct the inductive scheme generation to support polymorphism as well.
    - Have to review kernel code for correctness, and especially rework the
      computation of universe constraints for inductives.
    Stops somewhat later in Logic.v
    
    - Fix naming of local/toplevel universes to be correctly done at typechecking time:
      local variables have no dirpath.
    - Add code to do substitution of universes in modules, not finished yet.
    - Move fresh_* functions out of kernel, it won't ever build a universe level again!
    - Adapt a lot of new_Type to use the correct dirpath and declare the new types in the evar_map
    so we keep track of them.
    - A bit of code factorization (evd_comb moved, pretype_global).
    
    - Refactor more code
    - Adapt plugins code (sometimes wrong, marked with FIXME)
    - Fix cases generating unneeded universe (not sure it's ok though)
    - Fix scheme generation for good, might have opportunity to cleanup
    the terms later.
    
    Init compiles now (which means rewrite, inversion, elim etc.. work as well).
    - Unsolved issue of pretyping to lower sorts properly (to Prop for example).
      This has to do with the (Retyping.get_type_of) giving algebraic universes that
      would appear on the right of constraints.
      This makes checking for dangling universes at the end of pretyping fail,
      hence the check in kernel/univ was removed. It should come back when we have
      a fix for this.
    - Correctly (?) compute the levels of inductive types.
      Removed old code pertaining to universe polymorphism. Note that we generate
      constraint variables for the conclusion of inductive types invariably.
    - Shrink constraints before going to the kernel, combine substitution of the
      smaller universe set with normalization of evars (maybe not done everywhere,
      only ordinary inductives, definitions and proofs)
    - More API reworks overall. tclPUSHCONTEXT can be used to add fresh universes
      to the proof goal (used in a few places to get the right instance.
    - Quick fix for auto that won't work in the long run. It should always have been
      restricted to take constant references as input, without any loss of generality
      over constrs.
    
    Fix some plugins and insertion of non-polymorphic constants in a module.
    Now stops in relation classes.
    
    Cleanup and move code from kernel to library and from pretyping to library too.
    Now there is a unique universe counter declared in library/universes.ml along
    with all the functions to generate new universes and get fresh constant/inductive
    terms.
    - Various function renamings
    - One important change in kernel/univ.ml: now [sup] can be applied to Prop.
    - Adapt records/classes to universe polymorphism
    - Now stops in EqDepFacts due to imprecise universe polymorphism.
    
    Forgot to git add those files.
    
    interp_constr returns the universe context
    
    The context is then pushed through the environment (or proof goal
    sigma).
    - Fix insertion of constants/inductives in env, pushing constraints to
    the global env for non-polymorphic ones.
    - Add Prop as a universe level to do proper type inference with sorts.
    It is allowed to take [sup] of [Prop] now.
    - New nf_evar based on new Evd.map(_undefined)
    - In proofs/logic.ml: conv_leq_goal might create some constraints that
    are now recorded.
    - Adapt Program code to universes.
    
    Merge with latest trunk + fixes
    
    -Use new constr_of_global from universes
    - fix eqschemes to use polymorphic universes
    - begin fixing cctac but f_equal still fails
    - fix [simpl] and rest of tacred
    - all the eq_constr with mkConst foo should be fixed as well, only
    partially done
    
    - Fix term hashing function to recognize equal terms up to universe instances.
    - Fix congruence closure to equate terms that differ only in universe instances,
    these will be resolved by constraints.
    
    Add a set of undefined universe variables to unification.
    Universe variables can now be declared rigid or flexible (unifiable).
    Flexible variables are resolved at the end of typechecking by instantiating
    them to their glb, adding upper bound constraints associated to them.
    Also:
    - Add polymorphic flag for inductives.
    - Fix cooking partially
    - Fix kernel/univ.ml to do normalization of universe expressions at
    the end of substitution.
    
    Correct classes/structures universe inference
    
    - Required a bit of extension in Univ to handle Max properly (sup u
    (u+1)) was returning (max(u,u+1)) for example.
    - Try a version where substitution of universe expressions for universe
    levels is allowed at the end of unification. By an invariant this
    should only instantiate with max() types that are morally "on the
    right" only.
    This is controlled using a rigidity attribute of universe variables,
    also allowing to properly do unification w.r.t. universes during
    typechecking/inference.
    - Currently fails in Vectors/Fin.v because case compilation generates
    "flexible" universes that actually appear in the term...
    
    Fix unification of universe variables.
    
    - Fix choice of canonical universe in presence of universe constraints,
    and do so by relying on a trichotomy for universe variables: rigid
    (won't be substituted), flexible (might be if not substituted by an
    algebraic) and flexible_alg (always substituted).
    - Fix romega code and a few more plugins, most of the standard library
    goes through now.
    - Had to define some inductives as Polymorphic explicitly to make
    proofs go through, more to come, and definitions should be polymorphic
    too, otherwise inconsistencies appear quickly (two uses of the same
    polymorphic ind through monomorphic functions (like nth on lists of
    Props and nats) will fix the monomorphic function's universe with eq
    constraints that are incompatible).
    - Correct universe polymorphism handling for fixpoint/cofixpoint
    definitions.
    
    - Fix romega to use the right universes for list constructors.
    - Fix internalization/externalization to deal properly with the
    implicit parsing of params.
    - Fix fourier tactic w.r.t. GRefs
    
    - Fix substitution saturation of universes.
    - Fix number syntax plugin.
    - Fix setoid_ring to take its coefficients in a Set rather
    than a Type, avoiding a large number of useless universe constraints.
    
    - Fix minor checker decl
    - Fix btauto w.r.t. GRef
    - Fix proofview to normalize universes in the original types as well.
    - Fix definitions of projections to not take two universes at the same level,
    but at different levels instead, avoiding unnecessary constraints that could
    lower the level of one component depending on the use of the other component.
    
    Fix simpl fst, snd to use @fst @snd as they have maximal implicits now.
    
    - More simpl snd, fst fixes.
    - Try to make the nth theory of lists polymorphic.
    
    Check with Enrico if this change is ok. Case appearing in RingMicromega's call
    to congruence l417, through a call to refine -> the_conv_x_leq.
    
    Compile everything.
    - "Fix" checker by deactivating code related to polymorphism, should
    be updated.
    - Make most of List.v polymorphic to help with following definitions.
    - When starting a lemma, normalize w.r.t. universes, so that the types
    get a fixed universe, not refinable later.
    - In record, don't assign a fully flexible universe variable to the record
    type if it is a definitional typeclass, as translate_constant doesn't expect
    an algebraic universe in the type of a constant. It certainly should though.
    - Fix micromega code.
    
    Fix after rebase.
    
    Update printing functions to print the polymorphic status of definitions
    and their universe context.
    
    Refine printing of universe contexts
    
    - Fix printer for universe constraints
    - Rework normalization of constraints to separate the Union-Find result
      from computation of lubs/glbs.
    
    Keep universe contexts of inductives/constants in entries for correct
    substitution inside modules. Abstract interface to get an instantiation
    of an inductive with its universe substitution in the kernel (no
    substitution if the inductive is not polymorphic, even if mind_universes
    is non-empty).
    
    Make fst and snd polymorphic, fix instances in RelationPairs to use
    different universes for the two elements of a pair.
    
    - Fix bug in nf_constraints: was removing Set <= constraints, but should
    remove Prop <= constraints only.
    - Make proj1_sig, projT1... polymorphic to avoid weird universe unifications,
    giving rise to universe inconsistenties.
    
    Adapt auto hints to polymorphic references.
    
    Really produce polymorphic hints... second try
    
    - Remove algebraic universes that can't appear in the goal when taking the
      type of a lemma to start.
    
    Proper handling of universe contexts in clenv and auto so that
    polymorphic hints are really refreshed at each application.
    
    Fix erroneous shadowing of sigma variable.
    
    - Make apparent the universe context used in pretyping, including information
    about flexibility of universe variables.
    - Fix induction to generate a fresh constant instance with flexible universe variables.
    
    Add function to do conversion w.r.t. an evar map and its local universes.
    
    - Fix define_evar_as_sort to not forget constraints coming from the refinement.
    - Do not nf_constraints while we don't have the whole term at hand to substitute in.
    
    - Move substitution of full universes to Universes
    - Normalize universes inside an evar_map when doing nf_evar_map_universes.
    - Normalize universes at each call to interp_ltac (potentially expensive)
    
    Do not normalize all evars at each call to interp_gen in tactics: rather
    incrementally normalize the terms at hand, supposing the normalization of universes
    will concern only those appearing in it (dangerous but much more efficient).
    
    Do not needlessly generate new universes constraints for projections of records.
    
    Correct polymorphic discharge of section variables.
    
    Fix autorewrite w.r.t. universes: polymorphic rewrite hints get fresh universe
    instances at each application.
    
    Fix r2l rewrite scheme to support universe polymorphism
    
    Fix a bug in l2r_forward scheme and fix congruence scheme to handle polymorphism correctly.
    
    Second try at fixing autorewrite, cannot do without pushing the constraints and the set of fresh
    universe variables into the proof context.
    
    - tclPUSHCONTEXT allow to set the ctx universe variables as flexible or rigid
    - Fix bug in elimschemes, not taking the right sigma
    
    Wrong sigma used in leibniz_rewrite
    
    Avoid recomputation of bounds for equal universes in normalization of constraints,
    only the canonical one need to be computed.
    
    Make coercions work with universe polymorphic projections.
    
    Fix eronneous bound in universes constraint solving.
    
    Make kernel reduction and term comparison strictly aware of universe instances,
    with variants for relaxed comparison that output constraints.
    Otherwise some constraints that should appear during pretyping don't and we generate
    unnecessary constraints/universe variables.
    Have to adapt a few tactics to this new behavior by making them universe aware.
    
    - Fix elimschemes to minimize universe variables
    - Fix coercions to not forget the universe constraints generated by an application
    - Change universe substitutions to maps instead of assoc lists.
    - Fix absurd tactic to handle univs properly
    - Make length and app polymorphic in List, unification sets their levels otherwise.
    
    Move to modules for namespace management instead of long names in universe code.
    
    More putting things into modules.
    
    Change evar_map structure to support an incremental substitution of universes
    (populated from Eq constraints), allowing safe and fast inference of precise levels,
    without computing lubs.
    - Add many printers and reorganize code
    - Extend nf_evar to normalize universe variables according to the substitution.
    - Fix ChoiceFacts.v in Logic, no universe inconsistencies anymore. But Diaconescu
    still has one (something fixes a universe to Set).
    - Adapt omega, functional induction to the changes.
    
    Fix congruence, eq_constr implem, discharge of polymorphic inductives.
    
    Fix merge in auto.
    
    The [-parameters-matter] option (formerly relevant_equality).
    
    Add -parameters-matter to coqc
    
    Do compute the param levels at elaboration time if parameters_matter.
    
    - Fix generalize tactic
    - add ppuniverse_subst
    - Start fixing normalize_universe_context w.r.t. normalize_univ_variables.
    
    - Fix HUGE bug in Ltac interpretation not folding the sigma correctly if interpreting a tactic application
    to multiple arguments.
    - Fix bug in union of universe substitution.
    
    - rename parameters-matter to indices-matter
    - Fix computation of levels from indices not parameters.
    
    - Fixing parsing so that [Polymorphic] can be applied to gallina extensions.
    - When elaborating definitions, make the universes from the type rigid when
    checking the term: they should stay abstracted.
    - Fix typeclasses eauto's handling of universes for exact hints.
    
    Rework all the code for infering the levels of inductives and checking their
    allowed eliminations sorts.
    
    This is based on the computation of a natural level for an inductive type I.
    The natural level [nat] of [I : args -> sort := c1 : A1 -> I t1 .. cn : An -> I tn] is
    computed by taking the max of the levels of the args (if indices matter) and the
    levels of the constructor arguments.
    The declared level [decl] of I is [sort], which might be Prop, Set or some Type u (u fresh
    or not).
    If [decl >= nat && not (decl = Prop && n >= 2)], the level of the inductive is [decl],
    otherwise, _smashing_ occured.
    If [decl] is impredicative (Prop or Set when Set is impredicative), we accept the
    declared level, otherwise it's an error.
    
    To compute the allowed elimination sorts, we have the following situations:
    - No smashing occured: all sorts are allowed. (Recall props that are not
    smashed are Empty/Unitary props)
    - Some smashing occured:
     - if [decl] is Type, we allow all eliminations (above or below [decl],
       not sure why this is justified in general).
     - if [decl] is Set, we used smashing for impredicativity, so only
       small sorts are allowed (Prop, Set).
     - if [decl] is Prop, only logical sorts are allowed: I has either
       large universes inside it or more than 1 constructor.
       This does not treat the case where only a Set appeared in I which
       was previously accepted it seems.
    
    All the standard library works with these changes. Still have to cleanup
    kernel/indtypes.ml. It is a good time to have a whiskey with OJ.
    
    Thanks to Peter Lumsdaine for bug reporting:
    - fix externalisation of universe instances (still appearing when no Printing Universes)
    - add [convert] and [convert_leq] tactics that keep track of evars and universe constraints.
    - use them in [exact_check].
    
    Fix odd behavior in inductive type declarations allowing to silently lower a Type i parameter
    to Set for squashing a naturally Type i inductive to Set. Reinstate the LargeNonPropInductiveNotInType
    exception.
    
    Fix the is_small function not dealing properly with aliases of Prop/Set in Type.
    
    Add check_leq in Evd and use it to decide if we're trying to squash an
    inductive naturally in some Type to Set.
    
    - Fix handling of universe polymorphism in typeclasses Class/Instance declarations.
    - Don't allow lowering a rigid Type universe to Set silently.
    
    - Move Ring/Field back to Type. It was silently putting R in Set due to the definition of ring_morph.
    - Rework inference of universe levels for inductive definitions.
    - Make fold_left/right polymorphic on both levels A and B (the list's type). They don't have to be
    at the same level.
    
    Handle selective Polymorphic/Monomorphic flag right for records.
    
    Remove leftover command
    
    Fix after update with latest trunk.
    
    Backport patches on HoTT/coq to rebased version of universe polymorphism.
    
    - Fix autorewrite wrong handling of universe-polymorphic rewrite rules. Fixes part of issue #7.
    - Fix the [eq_constr_univs] and add an [leq_constr_univs] to avoid eager equation of universe
     levels that could just be inequal. Use it during kernel conversion. Fixes issue #6.
    - Fix a bug in unification that was failing too early if a choice in unification of universes
     raised an inconsistency.
    - While normalizing universes, remove Prop in the le part of Max expressions.
    - Stop rigidifying the universes on the right hand side of a : in definitions.
    - Now Hints can be declared polymorphic or not. In the first case they
     must be "refreshed" (undefined universes are renamed) at each application.
    - Have to refresh the set of universe variables associated to a hint
     when it can be used multiple times in a single proof to avoid fixing
     a level... A better & less expensive solution should exist.
    - Do not include the levels of let-ins as part of records levels.
    - Fix a NotConvertible uncaught exception to raise a more informative
     error message.
    - Better substitution of algebraics in algebraics (for universe variables that
     can be algebraics).
    - Fix issue #2, Context was not properly normalizing the universe context.
    - Fix issue with typeclasses that were not catching UniverseInconsistencies
      raised by unification, resulting in early failure of proof-search.
    - Let the result type of definitional classes be an algebraic.
    - Adapt coercions to universe polymorphic flag (Identity Coercion etc..)
    - Move away a dangerous call in autoinstance that added constraints for every
    polymorphic definitions once in the environment for no use.
    
    Forgot one part of the last patch on coercions.
    
    - Adapt auto/eauto to polymorphic hints as well.
    - Factor out the function to refresh a clenv w.r.t. undefined universes.
    
    Use leq_univ_poly in evarconv to avoid fixing universes.
    
    Disallow polymorphic hints based on a constr as it is not possible to infer their universe
    context. Only global references can be made polymorphic. Fixes issue #8.
    
    Fix SearchAbout bug (issue #10).
    
    Fix program w.r.t. universes: the universe context of a definition changes
    according to the successive refinements due to typechecking obligations.
    This requires the Proof modules to return the generated universe substitution
    when finishing a proof, and this information is passed in the closing hook.
    The interface is not very clean, will certainly change in the future.
    
    - Better treatment of polymorphic hints in auto: terms can be polymorphic now, we refresh their
    context as well.
    - Needs a little change in test-pattern that seems breaks multiary uses of destruct in NZDiv.v, l495.
    FIX to do.
    
    Fix [make_pattern_test] to keep the universe information around and still
    allow tactics to take multiple patterns at once.
    
    - Fix printing of universe instances that should not be factorized blindly
    - Fix handling of the universe context in program definitions by allowing the
    hook at the end of an interactive proof to give back the refined universe context,
    before it is transformed in the kernel.
    - Fix a bug in evarconv where solve_evar_evar was not checking types of instances,
    resulting in a loss of constraints in unification of universes and a growing number
    of useless parametric universes.
    
    - Move from universe_level_subst to universe_subst everywhere.
    
    - Changed representation of universes for a canonical one
    - Adapt the code so that universe variables might be substituted by
    arbitrary universes (including algebraics). Not used yet except for
    polymorphic universe variables instances.
    
    - Adapt code to new constraint structure.
    - Fix setoid rewrite handling of evars that was forgetting the initial
    universe substitution !
    - Fix code that was just testing conversion instead of keeping the
    resulting universe constraints around in the proof engine.
    - Make a version of reduction/fconv that deals with the more general
    set of universe constraints.
    
    - [auto using] should use polymorphic versions of the constants.
    - When starting a proof, don't forget about the algebraic universes in
    the universe context.
    
    Rationalize substitution and normalization functions for universes.
    Also change back the structure of universes to avoid considering levels
    n+k as pure levels: they are universe expressions like max.
    Everything is factored out in the Universes and Univ modules now and
    the normalization functions can be efficient in the sense that they
    can cache the normalized universes incrementally.
    
    - Adapt normalize_context code to new normalization/substitution functions.
    - Set more things to be polymorphic, e.g. in Ring or SetoidList for the rest
    of the code to work properly while the constraint generation code is not adapted.
    And temporarily extend the universe constraint code in univ to solve max(is) = max(js)
    by first-order unification (these constraints should actually be implied not enforced).
    - Fix romega plugin to use the right universes for polymorphic lists.
    - Fix auto not refreshing the poly hints correctly.
    
    - Proper postponing of universe constraints during unification, avoid making
    arbitrary choices.
    - Fix nf_evars_and* to keep the substitution around for later normalizations.
    - Do add simplified universe constraints coming from unification during typechecking.
    - Fix solve_by_tac in obligations to handle universes right, and the corresponding
    substitution function.
    
    Test global universe equality early during simplication of constraints.
    
    Better hashconsing, but still not good on universe lists.
    
    - Add postponing of "lub" constraints that should not be checked early,
    they are implied by the others.
    - Fix constructor tactic to use a fresh constructor instance avoiding
    fixing universes.
    - Use [eq_constr_universes] instead of [eq_constr_univs] everywhere,
    this is the comparison function that doesn't care about the universe
    instances.
    - Almost all the library compiles in this new setting, but some more tactics
    need to be adapted.
    
    - Reinstate hconsing.
    - Keep Prop <= u constraints that can be used to set the level of a universe
    metavariable.
    
    Add better hashconsing and unionfind in normalisation of constraints.
    Fix a few problems in choose_canonical, normalization and substitution functions.
    
    Fix after merge
    
    Fixes after rebase with latest Coq trunk, everything compiles again,
    albeit slowly in some cases.
    - Fix module substitution and comparison of table keys in conversion
    using the wrong order (should always be UserOrd now)
    - Cleanup in universes, removing commented code.
    - Fix normalization of universe context which was assigning global
    levels to local ones. Should always be the other way!
    - Fix universe implementation to implement sorted cons of universes
    preserving order. Makes Univ.sup correct again, keeping universe in
    normalized form.
    - In evarconv.ml, allow again a Fix to appear as head of a weak-head normal
    form (due to partially applied fixpoints).
    - Catch anomalies of conversion as errors in reductionops.ml, sad but
    necessary as eta-expansion might build ill-typed stacks like FProd,
    [shift;app Rel 1], as it expands not only if the other side is rigid.
    - Fix module substitution bug in auto.ml
    
    - Fix case compilation: impossible cases compilation was generating useless universe
    levels. Use an IDProp constant instead of the polymorphic identity to not influence
    the level of the original type when building the case construct for the return type.
    - Simplify normalization of universe constraints.
    - Compute constructor levels of records correctly.
    
    Fall back to levels for universe instances, avoiding issues of unification.
    Add more to the test-suite for universe polymorphism.
    
    Fix after rebase with trunk
    
    Fix substitution of universes inside fields/params of records to be made
    after all normalization is done and the level of the record has been
    computed.
    
    Proper sharing of lower bounds with fixed universes.
    
    Conflicts:
    	library/universes.ml
    	library/universes.mli
    
    Constraints were not enforced in compilation of cases
    
    Fix after rebase with trunk
    
    - Canonical projections up to universes
    - Fix computation of class/record universe levels to allow
    squashing to Prop/Set in impredicative set mode.
    
    - Fix descend_in_conjunctions to properly instantiate projections with universes
    - Avoid Context-bound variables taking extra universes in their associated universe context.
    
    - Fix evar_define using the wrong direction when refreshing a universe under cumulativity
    - Do not instantiate a local universe with some lower bound to a global one just because
    they have the same local glb (they might not have the same one globally).
    
    - Was loosing some global constraints during normalization (brought again by the kernel), fixed now.
    - Proper [abstract] with polymorphic lemmas (polymorphic if the current proof is).
    - Fix silly bug in autorewrite: any hint after the first one was always monomorphic.
    
    - Fix fourier after rebase
    - Refresh universes when checking types of metas in unification (avoid (sup (sup univ))).
    - Speedup a script in FSetPositive.v
    
    Rework definitions in RelationClasses and Morphisms to share universe
    levels as much as possible. This factorizes many useless x <=
    RelationClasses.foo constraints in code that uses setoid rewriting.
    Slight incompatible change in the implicits for Reflexivity and
    Irreflexivity as well.
    
    - Share even more universes in Morphisms using a let.
    - Use splay_prod instead of splay_prod_assum which doesn't reduce let's
    to find a relation in setoid_rewrite
    - Fix [Declare Instance] not properly dealing with let's in typeclass contexts.
    
    Fixes in inductiveops, evarutil.
    
    Patch by Yves Bertot to allow naming universes in inductive definitions.
    
    Fixes in tacinterp not propagating evars correctly.
    
    Fix for issue #27: lowering a Type to Prop is allowed during
    inference (resulting in a Type (* Set *)) but kernel reduction
    was wrongly refusing the equation [Type (*Set*) = Set].
    
    Fix in interface of canonical structures: an instantiated polymorphic
    projection is not needed to lookup a structure, just the projection name
    is enough (reported by C. Cohen).
    
    Move from universe inference to universe checking in the kernel.
    
    All tactics have to be adapted so that they carry around their generated
    constraints (living in their sigma), which is mostly straightforward.
    The more important changes are when refering to Coq constants, the
    tactics code is adapted so that primitive eq, pairing and sigma types might
    be polymorphic.
    Fix another few places in tacinterp and evarconv/evarsolve where the sigma
    was not folded correctly.
    
    - Fix discharge adding spurious global constraints on polymorphic universe variables
    appearing in assumptions.
    - Fixes in inductiveops not taking into account universe polymorphic inductives.
    
    WIP on checked universe polymorphism, it is clearly incompatible
    with the previous usage of polymorphic inductives + non-polymorphic
    definitions on them as universe levels now appear in the inductive type,
    and add equality constraints between universes that were otherwise just
    in a cumulativity relation (not sure that was actually correct).
    
    Refined version of unification of universe instances for first-order unification,
    prefering unfolding to arbitrary identification of universes.
    
    Moved kernel to universe checking only.
    
    Adapt the code to properly infer constraints during typechecking and
    refinement (tactics) and only check constraints when adding
    constants/inductives to the environment. Exception made of module
    subtyping that needs inference of constraints...  The kernel conversion
    (fconv) has two modes: checking only and inference, the later being used
    by modules only. Evarconv/unification make use of a different strategy for
    conversion of constants that prefer unfolding to blind unification of
    rigid universes. Likewise, conversion checking backtracks on different universe
    instances (modulo the constraints).
    
    - adapt congruence/funind/ring plugins to this new mode, forcing them to
    declare their constraints.
    - To avoid big performance penalty with reification, make ring/field non-polymorphic
    (non-linear explosion in run time to be investigated further).
    - pattern and change tactics need special treatment: as they are not _reduction_
    but conversion functions, their operation requires to update an evar_map with
    new universe constraints.
    - Fix vm_compute to work better with universes. If the normal
    form is made only of constructors then the readback is correct. However a deeper change will
    be needed to treat substitution of universe instances when unfolding constants.
    
    Remove libtypes.ml
    
    Fix after merge.
    
    Fix after rebase with trunk.
    
    **** Add projections to the kernel, as optimized implementations of constants.
    
    - New constructor Proj expects a projection constant applied to its principal
    inductive argument.
    - Reduction machines shortcut the expansion to a case and directly project the
    right argument.
    - No need to keep parameters as part of the projection's arguments as they
    are inferable from the type of the principal argument.
    - ML code now compiles, debugging needed.
    
    Start debugging the implementation of projections. Externalisation should
    keep the information about projections.
    
    Internalization, pattern-matching, unification and reduction
    of projections.
    
    Fix some code that used to have _ for parameters that are no longer
    present in projections.
    
    Fixes in unification, reduction, term indexing, auto hints based on projections,
    add debug printers.
    
    Fix byte-compilation of projections, unification, congruence with projections.
    Adapt .v files using "@proj _ _ record" syntax, should come back on this later.
    Fix coercion insertion code to properly deal with projection coercions.
    Fix [simpl proj]... TODO [unfold proj], proj is not considered evaluable.
    
    - Fix whnf of projections, now respecting opacity information.
    - Fix conversion of projections to try first-order first and then
    incrementally unfold them.
    - Fix computation of implicit args for projections, simply dropping
    the information for parameters.
    - Fix a few scripts that relied on projections carrying their parameters (few at's,
    rewrites).
    - Fix unify_with_subterm to properly match under projections.
    - Fix bug in cooking of projections.
    - Add pattern PProj for projections.
    - A very strange bug appeared in BigZ.v, making coqtop segfault on the export
    of BigN... tofix
    
    Fixes after rebase with trunk. Everything compiles now, with efficient
    projections.
    
    Fixes after rebase with trunk (esp. reductionops).
    
    Remove warnings, backport patch from old univs+projs branch.
    
    Proper expansion of projections during unification.
    
    They are considered as maybe flexible keys in evarconv/unification. We
    try firstorder unification and otherwise expand them as necessary,
    completely mimicking the original behavior, when they were
    constants.  Fix head_constr_bound interface, the arguments are never
    needed (they're outside their environment actually).  [simpl] and
    [red]/[intro] should behave just like before now.
    
    Fix evarconv that was giving up on proj x = ?e problems too early.
    
    - Port patch by Maxime Denes implementing fast projections in the native conversion.
    - Backport patch to add eta-expansion for records.
    
    Do not raise an exception but simply fails if trying to do eta on an inductive that is not a record.
    
    Fix projections detyping/matching and unification.ml not always
    recovering on first-order universe inequalities.
    
    Correct eta-expansion for records, and change strategy for conversion
    with projections to favor reduction over first-order unification a
    little more. Fix a bug in Ltac pattern matching on projections.
    
    Fix evars_reset_evd to not recheck existing constraints in case it is just an update
    (performance improvement for typeclass resolution).
    
    - Respect Global/Transparent oracle during unification. Opaque means
    _never_ unfolded there.
    - Add empty universes as well as the initial universes (having Prop < Set).
    - Better display of universe inconsistencies.
    
    - Add Beta Ziliani's patch to go fast avoiding imitation when possible.
    - Allow instantiation by lower bound even if there are universes above
    - (tentative) In refinement, avoid incremental refinement of terms
      containing no holes and do it in one step (much faster on big terms).
      Turned on only if not a checked command.
    
    Remove dead code in univ/universes.ml and cleanup setup of hashconsing,
    for a small speed and memory footprint improvement.
    
    - Fix bug in unification using cumulativity when conversion should have been used.
    - Fix unification of evars having type Type, no longer forcing them to be equal
    (potentially more constraints): algorithm is now complete w.r.t. cumulativity.
    - In clenvtac, use refine_nocheck as we are guaranteed to get well-typed terms
    from unification now, including sufficient universe constraints. Small general
    speedup.
    
    - Fix inference of universe levels of inductive types to avoid smashing
      inadvertently from Set to Prop.
    - Fix computation of discharged hypotheses forgetting the arity in inductives.
    
    - Fix wrong order in printing of universe inconsistency explanation
    - Allow coercions between two polymorphic instances of the same inductive/constant.
    - Do evar normalization and saturation by classes before trying to use program coercion
      during pretyping.
    - In unification, force equalities of universes when unifying the same rigid head constants.
    
    - Fix omission of projections in constr_leq
    - Fix [admit] tactic's handling of normalized universes.
    
    Fix typing of projections not properly normalizing w.r.t. evars, resulting in anomaly sometimes.
    
    Adapt rewrite to work with computational relations (in Type), while
    maintaining backward compatibility with Propositional rewriting.
    
    Introduce a [diff] function on evar maps and universe contexts to
    properly deal with clause environments. Local hints in auto now store
    just the extension of the evar map they rely on, so merging them becomes
    efficient. This fixes an important performance issue in auto and typeclass
    resolution in presence of a large number of universe constraints.
    
    Change FSetPositive and MSetPositive to put their [elt] and [t] universes in
    Type to avoid restricting global universes to [Set]. This is due to [flip]s
    polymorphic type being fixed in monomorphic instances of Morphisms.v,
    and rewriting hence forcing unification of levels that could be left unrelated.
    
    - Try a fast_typeops implementation of kernel type inference that
      allocates less by not rebuilding the term, shows a little performance
      improvement, and less allocation.
    - Build universe inconsistency explanations lazily, avoiding huge blowup
      (x5) in check_constraints/merge_constraints in time and space (these
      are stressed in universe polymorphic mode).
    - Hashcons universe instances.
    
    Add interface file for fast_typeops
    
    Use monomorphic comparisons, little optimizations of hashconsing and
    comparison in univ.ml.
    
    Fix huge slowdown due to building huge error messages. Lazy is not
    enough to tame this completely.
    
    Fix last performance issue, due to abstracts building huge terms abstracting on parts of the section
    context. Was due to wrong handling of Let... Qed.s in abstract. Performance is a tiny bit better than the
    trunk now.
    
    First step at compatibility layer for projections.
    
    Compatibility mode for projections. c.(p), p c use primitive projs,
    while @p refers to an expansion [λ params c, c.(p)]. Recovers almost
    entire source compatibility with trunk scripts, except when mixing
    @p and p and doing syntactic matching (they're unifiable though).
    
    Add a [Set Primitive Projections] flag to set/unset the use of primitive
    projections, selectively for each record. Adapt code to handle both the
    legacy encoding and the primitive projections. Library is almost
    source-to-source compatible, except for syntactic operations relying
    on the presence of parameters. In primitive projections mode, @p refers
    to an expansion [λ params r. p.(r)]. More information in CHANGES (to be
    reformated/moved to reference manual).
    
    Backport changes from HoTT/coq:
    
    - Fix anomaly on uncatched NotASort in retyping.
    - Better recognition of evars that are subject to typeclass resolution.
      Fixes bug reported by J. Gross on coq-club.
    - Print universe polymorphism information for parameters as well.
    
    Fix interface for unsatisfiable constraints error, now a type error.
    Try making ring polymorphic again, with a big slowdown, to be investigated.
    Fix evar/universe leak in setoid rewrite.
    
    - Add profiling flag
    - Move setoid_ring back to non-polymorphic mode to compare perfs with trunk
    - Change unification to allow using infer_conv more often (big perf culprit),
      but semantics of backtracking on unification of constants is not properly
      implemented there.
    - Fix is_empty/union_evar_universe_context forgetting about some assignments.
    - Performance is now very close to the trunk from june,
      with projections deactivated.
Commits on Feb 26, 2014
  1. New compilation mode -vi2vo

    Enrico Tassi authored
    To obtain a.vo one can now:
    1) coqtop -quick -compile a
    2) coqtop -vi2vo a.vi
    
    To make that possible the .vo structure has been complicated.  It is now
    made of 5 segments.
    
                   |  vo  | vi  | vi2vo | contents
     --------------+------+-----+-------+------------------------------------
     lib           | Yes  | Yes | Yes   | libstack (modules, notations,...)
     opauqe_univs  | No   | Yes | Yes   | constraints coming from opaque proofs
     discharge     | No   | Yes | No    | data needed to close sections
     tasks         | No   | Yes | No    | STM tasks to produce proof terms
     opaque_proofs | Yes  | Yes | Yes   | proof terms
     --------------+------+-----+-------+------------------------------------
    
    This means one can load only the strictly necessay parts.  Usually one
    does not load the tasks segment of a .vi nor the opaque_proof segment of
    a .vo, unless one is turning a .vi into a .vo, in which case he load
    all the segments.
    
    Optional segments are marshalled as None.  But for lib, all segments
    are Array.t of:
    
                   | type
     --------------+---------------------------------------------------------
     lib           | a list of Libobject.obj (n'importe quoi)
     opauqe_univs  | Univ.consraints Future.computation
     discharge     | what Cooking.cook_constr needs
     tasks         | Stm.tasks (a task is system_state * vernacexpr list)
     opaque_proofs | Term.constr Future.computation
     --------------+------+-----+-------+------------------------------------
    
    Invariant: all Future.computation in a vo file (obtained by a vi2vo
    compilation or not) have been terminated with Future.join (or
    Future.sink).  This means they are values (inside a box).
    This invariant does not hold for vi files.  E.g. opauqe_proofs can be
    dangling Future.computation (i.e. NotHere exception).  The vi2vo
    compilation step will replace them by true values.
    
    Rationale for opaque_univs: in the vi2vo transformation we want to reuse
    the lib segment.  Hence the missing pieces have to be put on the side,
    not inside.  Opaque proof terms are already in a separte segment.
    Universe constraints are not, hence the new opauqe_univs segment.  Such
    segment, if present in a .vo file, is always loaded, and
    Declare.open_constant will add to the environment the constraints stored
    there.  For regular constants this is not necessay since the constraints
    are already in their enclosing module (and also in the constant_body).
    With vi2vo the constraints coming from the proof are not in the
    constant_body (hence not in the enclosing module) but there and are
    added to the environment explicitly by Declare.open_constant.
    
    Rationale for discharge: vi2vo produces a proof term in its original
    context (in the middle of a section).  Then it has to discharge the
    object.  This segment contains the data that is needed in order to do
    so.  It is morally the input that Lib.close_section passes to Cooking
    (via the insane rewinding of libstack, GlobalRecipe, etc chain).
    
    Checksums: the checksum of .vi and a .vo obtain from it is the same.
    This means that if if b.vo has been compiled using a.vi, and then
    a.vi is compiled into a.vo, Require Import b works (and recursively
    loads a.vo).
Commits on Jan 5, 2014
  1. Proof_using: new syntax + suggestion

    Enrico Tassi authored
    Proof using can be followed by:
    - All : all variables
    - Type : all variables occurring in the type
    - expr:
        - (a b .. c) : set
        - expr + expr : set union
        - expr - expr : set difference
        - -expr : set complement (All - expr)
    Exceptions:
    - a singleton set can be written without parentheses. This also allows
      the implementation of named sets sharing the same name space of
      section hyps ans write
      - bla - x : where bla is defined as (a b .. x y) elsewhere.
    - if expr is just a set, then parentheses can be omitted
    
    This module also implements some AI to tell the user how he could
    decorate "Proof" with a "using BLA" clause.
    
    Finally, one can Set Default Proof Using "str" to any string that is
    used whenever the "using ..." part is missing.  The coding of this
    sucks a little since it is the parser that applies the default.
Commits on Aug 8, 2013
  1. State Transaction Machine

    gareuselesinge authored
    The process_transaction function adds a new edge to the Dag without
    executing the transaction (when possible).
    
    The observe id function runs the transactions necessary to reach to the
    state id.  Transaction being on a merged branch are not executed but
    stored into a future.
    
    The finish function calls observe on the tip of the current branch.
    
    Imperative modifications to the environment made by some tactics are
    now explicitly declared by the tactic and modeled as let-in/beta-redexes
    at the root of the proof term. An example is the abstract tactic.
    
    This is the work described in the Coq Workshop 2012 paper.
    
    Coq is compile with thread support from now on.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16674 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on May 9, 2013
  1. Use definition_entry to declare local definitions

    gareuselesinge authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16502 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Feb 27, 2013
  1. Minor cleanup around Term_typing

    letouzey authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16253 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Jan 22, 2013
  1. New implementation of the conversion test, using normalization by eva…

    mdenes authored
    …luation to
    
    native OCaml code.
    
    Warning: the "retroknowledge" mechanism has not been ported to the native
    compiler, because integers and persistent arrays will ultimately be defined as
    primitive constructions. Until then, computation on numbers may be faster using
    the VM, since it takes advantage of machine integers.
    
    
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16136 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Aug 8, 2012
  1. Updating headers.

    herbelin authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Dec 12, 2011
  1. Proof using ...

    gareuselesinge authored
    New vernacular "Proof using idlist" to declare the variables
    to be discharged at the end of the current proof. The system
    checks that the set of declared variables is a superset of
    the set of actually used variables.
    
    It can be combined in a single line with "Proof with":
    Proof with .. using ..
    Proof using .. with ..
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14789 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Apr 3, 2011
  1. Lazy loading of opaque proofs: fast as -dont-load-proofs without its …

    letouzey authored
    …drawbacks
    
     The recent experiment with -dont-load-proofs in the stdlib showed that
     this options isn't fully safe: some axioms were generated (Include ?
     functor application ? This is still to be fully understood).
    
     Instead, I've implemented an idea of Yann: only load opaque proofs when
     we need them. This is almost as fast as -dont-load-proofs (on the stdlib,
     we're now 15% faster than before instead of 20% faster with -dont-load-proofs),
     but fully compatible with Coq standard behavior.
    
     Technically, the const_body field of Declarations.constant_body now regroup
     const_body + const_opaque + const_inline in a ternary type. It is now either:
      - Undef : an axiom or parameter, with an inline info
      - Def : a transparent definition, with a constr_substituted
      - OpaqueDef : an opaque definition, with a lazy constr_substitued
     Accessing the lazy constr of an OpaqueDef might trigger the read on disk of
     the final section of a .vo, where opaque proofs are located.
    
     Some functions (body_of_constant, is_opaque, constant_has_body) emulate
     the behavior of the old fields. The rest of Coq (including the checker)
     has been adapted accordingly, either via direct access to the new const_body
     or via these new functions. Many places look nicer now (ok, subjective notion).
    
     There are now three options: -lazy-load-proofs (default), -force-load-proofs
     (earlier semantics), -dont-load-proofs. Note that -outputstate now implies
     -force-load-proofs (otherwise the marshaling fails on some delayed lazy).
    
     On the way, I fixed what looked like a bug : a module type
     (T with Definition x := c) was accepted even when x in T was opaque.
     I also tried to clarify Subtyping.check_constant.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13952 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Jan 31, 2011
  1. A fine-grain control of inlining at functor application via priority …

    letouzey authored
    …levels
    
      As said in CHANGES:
    
    <<
      The inlining done during application of functors can now be controlled
      more precisely. In addition to the "!F G" syntax preventing any inlining,
      we can now use a priority level to select parameters to inline :
      "<30>F G" means "only inline in F the parameters whose levels are <= 30".
      The level of a parameter can be fixed by "Parameter Inline(30) foo".
      When levels aren't given, the default value is 100. One can also use
      the flag "Set Inline Level ..." to set a level.
    >>
    
      Nota : the syntax "Parameter Inline(30) foo" is equivalent to
      "Set Inline Level 30. Parameter Inline foo.",
      and "Include <30>F G" is equivalent to "Set Inline Level 30. Include F G."
    
      For instance, in ZBinary, eq is @Logic.eq and should rather be inlined,
      while in BigZ, eq is (fun x y => [x]=[y]) and should rather not be inlined.
      We could achieve this behavior by setting a level such as 30 to the
      parameter eq, and then tweaking the current level when applying functors.
    
      This idea of levels might be too restrictive, we'll see, but at least
      the implementation of this change was quite simple. There might be
      situation where parameters cannot be linearly ordered according to their
      "inlinablility". For these cases, we would need to mention names to inline
      or not at a functor application, and this is a bit more tricky
      (and might be a pain to use if there are many names).
    
      No documentation for the moment, since this feature is experimental
      and might still evolve.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13807 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Jan 28, 2011
  1. Remove the "Boxed" syntaxes and the const_entry_boxed field

    letouzey authored
     According to B. Gregoire, this stuff is obsolete. Fine control
     on when to launch the VM in conversion problems is now provided
     by VMcast. We were already almost never boxing definitions anymore
     in stdlib files.
    
     "(Un)Boxed Definition foo" will now trigger a parsing error,
     same with Fixpoint. The option "(Un)Set Boxed Definitions"
     aren't there anymore, but tolerated (as no-ops), since unknown
     options raise a warning instead of an error by default.
    
     Some more cleaning could be done in the vm.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13806 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Jul 24, 2010
  1. Updated all headers for 8.3 and trunk

    herbelin authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13323 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Jun 22, 2010
  1. New script dev/tools/change-header to automatically update Coq files …

    herbelin authored
    …headers.
    
    Applied it to fix mli file headers.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13176 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on May 18, 2010
  1. @pirbo

    Applicative commutative cuts in Fixpoint guard condition

    pirbo authored
    In "(match ... with |... -> fun x -> t end) u", "x" has now the subterm
    property of "u" in the analysis of "t".
    
    Commutative cuts aren't compatible with typing so we need to ensure that
    term of "x"'s type and term of "u"'s have the same subterm_spec.
    Consequently,declaration.MRec argument has changed to the inductive name
    instead of only the number of the inductive in the mutual_inductive
    family.
    
    In subterm_specif and check_rec_call, arguments are stored in a stack.
    At each lambda, one element is popped to add in renv a smarter
    subterm_spec for the variable. subterm_spec of constructor's argument
    was added this way, the job is now done more often.
    
    Some eta contracted match branches are now accepted but enforcing
    eta-expansion of branches might be anyway a recommended invariant.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13012 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Apr 29, 2010
  1. Remove the svn-specific $Id$ annotations

    letouzey authored
     - Many of them were broken, some of them after Pierre B's rework
       of mli for ocamldoc, but not only (many bad annotation, many files
       with no svn property about Id, etc)
     - Useless for those of us that work with git-svn (and a fortiori
       in a forthcoming git-only setting)
     - Even in svn, they seem to be of little interest
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12972 85f007b7-540e-0410-9357-904b9bb8a0f7
  2. @pirbo

    Move from ocamlweb to ocamdoc to generate mli documentation

    pirbo authored
    dev/ocamlweb-doc has been erased. I hope no one still use the
    "new-parse" it generate.
    
    In dev/,
    make html will generate in dev/html/ "clickable version of mlis". (as
    the caml standard library)
    make coq.pdf will generate nearly the same awfull stuff that coq.ps was.
    make {kernel,lib,parsing,..}.{dot,png} will do the dependancy graph of
    the given directory.
    
    ocamldoc comment syntax is here :
    http://caml.inria.fr/pub/docs/manual-ocaml/manual029.html
    
    The possibility to put graphs in pdf/html seems to be lost.
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12969 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Sep 17, 2009
  1. Delete trailing whitespaces in all *.{v,ml*} files

    glondu authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Apr 25, 2007
  1. New keyword "Inline" for Parameters and Axioms for automatic

    soubiran authored
    delta-reduction at fonctor application.
    Example:
    
    Module Type S.
     Parameter Inline N : Set.
    End S.
    
    Module F (X:S).
     Definition t := X.N.
    End F.
    
    Module M.
     Definition N := nat.
    End M.
    
    Module G := F M.
    
    Print G.t.
    G.t = nat
         : Set
    
    
    
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9795 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Oct 28, 2006
  1. Extension du polymorphisme de sorte au cas des définitions dans Type.

    herbelin authored
    (suppression au passage d'un cast dans constant_entry_of_com - ce
    n'est pas normal qu'on force le type s'il n'est pas déjà présent mais
    en même temps il semble que ce cast serve pour rafraîchir les univers
    algébriques...)
    
    
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9310 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Oct 27, 2006
  1. changement des _sym par _comm dans setoid_ring

    bgregoir authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9299 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Oct 20, 2004
  1. COMMITED BYTECODE COMPILER

    barras authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@6245 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Jul 16, 2004
  1. Nouvelle en-tête

    herbelin authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5920 85f007b7-540e-0410-9357-904b9bb8a0f7
Commits on Aug 2, 2002
  1. Modules dans COQ\!\!\!\!

    coq authored
    git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2957 85f007b7-540e-0410-9357-904b9bb8a0f7
Something went wrong with that request. Please try again.