
Team CSJ - Writing 3

User Stories

As a student, I would like to sign up to use this platform, so that I can receive a textbook from
another student on campus.

As a student, I would like to enter my courses, so that I can be matched with textbooks based on
their ISBN.

As a student, I would like to donate my old textbooks on this platform, so that I can help another
student in need.

As a student, I would like to request a book after being matched, so that I am able to exchange
them.

As a student, I would like to set the dates, times, and places I am available to give my textbook
to another student.

As a student, I would like to agree on what dates, times, and locations I can pick up the textbooks
so that I am able to use them.

As a student, I would like to meet with another student after agreeing on a time, location, and
date, so that I can use my textbook.

As a product manager, I would like to see a student's course registration information, so that the
algorithm can match them with textbooks.

As a product manager, I would like to change the priority order so that I can adjust the system
policy.

As a product manager, I would like to update the course information (e.g., books linked to a
course) so that the right books will be matched to students.



Flow Diagram



Mockups/Wireframes: What are the visual artifacts of what the end user will see when using
your product/system? If you have a UI component that drives the user experience, this section
should be images of those UI screens. If you have an API component that drives the user
experience, this section should document the API UX: authentication setup (if applicable), list of
all the API endpoints, code examples, and details on how to use each endpoint.

● API authentication
○ Server side sessions
○ Store session data in memory on the server in a session table

■ Session ID -> session data
○ Store session IDs in cookies on the client's browser
○ Make sure the cookies are HTTP only and Same Site cookies to protect against

CSRF and possible XSS attacks
○ /api/register -> set cookie and implement session
○ /api/login -> check credentials and implement session

● Login/Signup

○
● Select meetup date



○
● Textbook Icon

○
● Create post icon



○
● Example textbook feed

○



Technical specifications:

Architecture/System Diagrams: How do all of the individual components of the project interact
with each other? Now that you have each described your respective components of the project,
this section should be the highest level view of how all of those components interact with each
other.

External APIs and Frameworks: This should be a list of all of the external APIs and
frameworks that you call on or use to build your project. Each item should have a detailed
description of why and how it is used in your project.

Name: React

Goal: Streamline the frontend development process to create a better UX

Description: React is a popular frontend framework that helps frontend developers create
interactive UI interfaces.

Name: Material UI

Goal: Utilize pre-built components to create a good-looking user interface.



Description: This framework/library will be used to establish frontend components such as a
navigation bar, containers, drop-down menus, selection components, and more.

Name: Heroku

Goal: Host our backend API and postgreSQL database

Description: Deploy our backend server to heroku so our frontend application can communicate
with it efficiently. Additionally, heroku can host our database so they our API can retrieve data

Name: Express

Goal: Serve our API endpoints.

Description: Develop routes for each API endpoint that serves data from our database.
Additionally, develop an authentication system using server side sessions where session data is
stored in memory on the server and the session id is stored in an HTTP only cookie on the
client’s browser

Name: Axios

Goal: Send requests to our API.

Description: Exchange data from the client to the server using HTTP requests.

Name: PostgreSQL

Goal: Store data in a relational database

Description: Store important user information and textbook data that can be ultimately used in
the application.

Name: TypeORM

Goal: Safely retrieve and store data in our postgreSQL database from our backend server

Description: Create and alter models from our Node.js backend to store and retrieve data for
users.



Algorithms

Matching algorithm

Goal: The goal of this algorithm is to match students with textbooks based on their financial need
given their course registration information.

● When demand is high but supply is low, users who are in financial need will be
prioritized to get books with higher costs from a list of books that they need—this is the
default setting.

● The system manager can adjust the priority order if the current system policy needs to be
modified.

● The success of running this algorithm means that a student in financial need will be
matched with a textbook based on their course registration information and mock
financial need status.

Description:
● Using mock data with the GW financial aid office, students will be able to enter their GW

id which then links with their financial aid to display them a priority score from 1-5 based
on their financial need.

● The system will create 5 ranges of financial need, with 5 being the most financial need,
so the algorithm will know who to prioritize.

● Given a list of factors to consider, which include prices of books, students’ financial need
status, number of books matched, number of books donated, and number of books
donated, the system manager can update the priority order. The default setting will
prioritize students who are in financial need the most.

● The system will create preference lists: a preference list of books for each student and a
preference list of students for each course subject (book). Both preference lists will be
sorted according to the current priority order.

○ For each student, the system will create an array object which stores the list of
books that a student needs. Using the default setting, an array will be ordered
according to prices of books.

○ The system will create a hashmap which stores a list of students who will be
taking a course for each course subject. The system will use appropriate query to
get a list of students, in which students are sorted in multiple levels based on the
priority order. Using the default setting, the system will use the following priority
order: students’ financial need status, the number of books exchanged, the number
of books matched, and the number of books donated.

● Once the system have preference lists, it will apply the Gale-Shapley Algorithm, an
algorithm for the stable marriage problem, as this algorithm is used to find a stable match
between two sets given certain preferences. Note that the time complexity of the
algorithm is O(N2).



○ The system will iterate through all the course subjects. For each course, it will
iterate through a list of sorted students who have not been matched with
associated textbooks and match students with available books. If some pair exists,
it will also check whether this textbook is more preferred over the previously
matched textbook or not. If so, the student will be rematched. The system will
repeat this process to find stable pairs for students and available textbooks.

● Through entering their GWid, students will be automatically matched with suitable
textbooks given their course information.


