Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

729 lines (636 sloc) 15.811 kB
/*
* This file is covered by the Ruby license. See COPYING for more details.
*
* Copyright (C) 2007-2011, Apple Inc. All rights reserved.
* Copyright (C) 1993-2007 Yukihiro Matsumoto
*/
#include "macruby_internal.h"
#include <math.h>
#include <errno.h>
VALUE rb_mMath;
VALUE rb_eMathDomainError;
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
#define domain_error(msg) \
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg);
static VALUE
to_flo(VALUE x)
{
if (CLASS_OF(x) == rb_cFloat) {
return x;
}
if (!rb_obj_is_kind_of(x, rb_cNumeric)) {
rb_raise(rb_eTypeError, "can't convert %s into Float",
NIL_P(x) ? "nil" :
x == Qtrue ? "true" :
x == Qfalse ? "false" :
rb_obj_classname(x));
}
return rb_convert_type(x, T_FLOAT, "Float", "to_f");
}
#define Need_Float(x) do {if (TYPE(x) != T_FLOAT) {(x) = to_flo(x);}} while(0)
#define Need_Float2(x,y) do {\
Need_Float(x);\
Need_Float(y);\
} while (0)
/*
* call-seq:
* Math.atan2(y, x) => float
*
* Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
* -PI..PI.
*
*/
VALUE
math_atan2(VALUE obj, SEL sel, VALUE y, VALUE x)
{
double dx, dy;
Need_Float2(y, x);
dx = RFLOAT_VALUE(x);
dy = RFLOAT_VALUE(y);
if (dx == 0.0 && dy == 0.0) {
domain_error("atan2");
}
if (isinf(dx) && isinf(dy)) {
domain_error("atan2");
}
return DBL2NUM(atan2(dy, dx));
}
/*
* call-seq:
* Math.cos(x) => float
*
* Computes the cosine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/
VALUE
math_cos(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(cos(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.sin(x) => float
*
* Computes the sine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/
VALUE
math_sin(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(sin(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.tan(x) => float
*
* Returns the tangent of <i>x</i> (expressed in radians).
*/
static VALUE
math_tan(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(tan(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.acos(x) => float
*
* Computes the arc cosine of <i>x</i>. Returns 0..PI.
*/
static VALUE
math_acos(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < -1.0 || 1.0 < d0) {
domain_error("acos");
}
d = acos(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.asin(x) => float
*
* Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/
static VALUE
math_asin(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < -1.0 || 1.0 < d0) {
domain_error("asin");
}
d = asin(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.atan(x) => float
*
* Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/
static VALUE
math_atan(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(atan(RFLOAT_VALUE(x)));
}
#ifndef HAVE_COSH
double
cosh(double x)
{
return (exp(x) + exp(-x)) / 2;
}
#endif
/*
* call-seq:
* Math.cosh(x) => float
*
* Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
*/
VALUE
math_cosh(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(cosh(RFLOAT_VALUE(x)));
}
#ifndef HAVE_SINH
double
sinh(double x)
{
return (exp(x) - exp(-x)) / 2;
}
#endif
/*
* call-seq:
* Math.sinh(x) => float
*
* Computes the hyperbolic sine of <i>x</i> (expressed in
* radians).
*/
VALUE
math_sinh(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(sinh(RFLOAT_VALUE(x)));
}
#ifndef HAVE_TANH
double
tanh(double x)
{
return sinh(x) / cosh(x);
}
#endif
/*
* call-seq:
* Math.tanh() => float
*
* Computes the hyperbolic tangent of <i>x</i> (expressed in
* radians).
*/
static VALUE
math_tanh(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(tanh(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.acosh(x) => float
*
* Computes the inverse hyperbolic cosine of <i>x</i>.
*/
static VALUE
math_acosh(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 1.0) {
domain_error("acosh");
}
d = acosh(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.asinh(x) => float
*
* Computes the inverse hyperbolic sine of <i>x</i>.
*/
static VALUE
math_asinh(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(asinh(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.atanh(x) => float
*
* Computes the inverse hyperbolic tangent of <i>x</i>.
*/
static VALUE
math_atanh(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < -1.0 || +1.0 < d0) {
domain_error("atanh");
}
/* check for pole error */
if (d0 == -1.0) return DBL2NUM(-INFINITY);
if (d0 == +1.0) return DBL2NUM(+INFINITY);
d = atanh(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.exp(x) => float
*
* Returns e**x.
*/
VALUE
math_exp(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(exp(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.log(numeric) => float
* Math.log(num,base) => float
*
* Returns the natural logarithm of <i>numeric</i>.
* If additional second argument is given, it will be the base
* of logarithm.
*/
VALUE
math_log(VALUE rcv, SEL sel, int argc, VALUE *argv)
{
VALUE x, base;
double d0, d;
rb_scan_args(argc, argv, "11", &x, &base);
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) {
domain_error("log");
}
/* check for pole error */
if (d0 == 0.0) {
return DBL2NUM(-INFINITY);
}
d = log(d0);
if (argc == 2) {
Need_Float(base);
d /= log(RFLOAT_VALUE(base));
}
return DBL2NUM(d);
}
#ifndef log2
#ifndef HAVE_LOG2
double
log2(double x)
{
return log10(x)/log10(2.0);
}
#else
extern double log2(double);
#endif
#endif
/*
* call-seq:
* Math.log2(numeric) => float
*
* Returns the base 2 logarithm of <i>numeric</i>.
*/
static VALUE
math_log2(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) {
domain_error("log2");
}
/* check for pole error */
if (d0 == 0.0) {
return DBL2NUM(-INFINITY);
}
d = log2(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.log10(numeric) => float
*
* Returns the base 10 logarithm of <i>numeric</i>.
*/
static VALUE
math_log10(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) {
domain_error("log10");
}
/* check for pole error */
if (d0 == 0.0) {
return DBL2NUM(-INFINITY);
}
d = log10(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.sqrt(numeric) => float
*
* Returns the non-negative square root of <i>numeric</i>.
*/
VALUE
math_sqrt(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) {
domain_error("sqrt");
}
if (d0 == 0.0) {
return DBL2NUM(0.0);
}
d = sqrt(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.cbrt(numeric) => float
*
* Returns the cube root of <i>numeric</i>.
*/
static VALUE
math_cbrt(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(cbrt(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.frexp(numeric) => [ fraction, exponent ]
*
* Returns a two-element array containing the normalized fraction (a
* <code>Float</code>) and exponent (a <code>Fixnum</code>) of
* <i>numeric</i>.
*
* fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
* fraction * 2**exponent #=> 1234.0
*/
static VALUE
math_frexp(VALUE obj, SEL sel, VALUE x)
{
double d;
int exp;
Need_Float(x);
d = frexp(RFLOAT_VALUE(x), &exp);
return rb_assoc_new(DOUBLE2NUM(d), INT2NUM(exp));
}
/*
* call-seq:
* Math.ldexp(flt, int) -> float
*
* Returns the value of <i>flt</i>*(2**<i>int</i>).
*
* fraction, exponent = Math.frexp(1234)
* Math.ldexp(fraction, exponent) #=> 1234.0
*/
static VALUE
math_ldexp(VALUE obj, SEL sel, VALUE x, VALUE n)
{
Need_Float(x);
return DOUBLE2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
}
/*
* call-seq:
* Math.hypot(x, y) => float
*
* Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
* with sides <i>x</i> and <i>y</i>.
*
* Math.hypot(3, 4) #=> 5.0
*/
VALUE
math_hypot(VALUE obj, SEL sel, VALUE x, VALUE y)
{
Need_Float2(x, y);
return DOUBLE2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
}
/*
* call-seq:
* Math.erf(x) => float
*
* Calculates the error function of x.
*/
static VALUE
math_erf(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(erf(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.erfc(x) => float
*
* Calculates the complementary error function of x.
*/
static VALUE
math_erfc(VALUE obj, SEL sel, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(erfc(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.gamma(x) => float
*
* Calculates the gamma function of x.
*
* Note that gamma(n) is same as fact(n-1) for integer n > 0.
* However gamma(n) returns float and can be an approximation.
*
* def fact(n) (1..n).inject(1) {|r,i| r*i } end
* 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
* #=> [1, 1.0, 1]
* # [2, 1.0, 1]
* # [3, 2.0, 2]
* # [4, 6.0, 6]
* # [5, 24.0, 24]
* # [6, 120.0, 120]
* # [7, 720.0, 720]
* # [8, 5040.0, 5040]
* # [9, 40320.0, 40320]
* # [10, 362880.0, 362880]
* # [11, 3628800.0, 3628800]
* # [12, 39916800.0, 39916800]
* # [13, 479001600.0, 479001600]
* # [14, 6227020800.0, 6227020800]
* # [15, 87178291200.0, 87178291200]
* # [16, 1307674368000.0, 1307674368000]
* # [17, 20922789888000.0, 20922789888000]
* # [18, 355687428096000.0, 355687428096000]
* # [19, 6.402373705728e+15, 6402373705728000]
* # [20, 1.21645100408832e+17, 121645100408832000]
* # [21, 2.43290200817664e+18, 2432902008176640000]
* # [22, 5.109094217170944e+19, 51090942171709440000]
* # [23, 1.1240007277776077e+21, 1124000727777607680000]
* # [24, 2.5852016738885062e+22, 25852016738884976640000]
* # [25, 6.204484017332391e+23, 620448401733239439360000]
* # [26, 1.5511210043330954e+25, 15511210043330985984000000]
*
*/
static VALUE
math_gamma(VALUE obj, SEL sel, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
double d0, d;
double intpart, fracpart;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (isinf(d0) && signbit(d0)) {
domain_error("gamma");
}
fracpart = modf(d0, &intpart);
if (fracpart == 0.0) {
if (intpart < 0) {
domain_error("gamma");
}
if (0 < intpart &&
intpart - 1 < (double)numberof(fact_table)) {
return DBL2NUM(fact_table[(int)intpart - 1]);
}
}
d = tgamma(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.lgamma(x) => [float, -1 or 1]
*
* Calculates the logarithmic gamma of x and
* the sign of gamma of x.
*
* Math.lgamma(x) is same as
* [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
* but avoid overflow by Math.gamma(x) for large x.
*/
#include "lgamma_r.c"
static VALUE
math_lgamma(VALUE obj, SEL sel, VALUE x)
{
double d0, d;
int sign = 1;
VALUE v;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (isinf(d0)) {
if (signbit(d0)) {
domain_error("lgamma");
}
return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
}
d = lgamma_r(d0, &sign);
v = DBL2NUM(d);
return rb_assoc_new(v, INT2FIX(sign));
}
/*
* The <code>Math</code> module contains module functions for basic
* trigonometric and transcendental functions. See class
* <code>Float</code> for a list of constants that
* define Ruby's floating point accuracy.
*/
void
Init_Math(void)
{
rb_mMath = rb_define_module("Math");
rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError);
#ifdef M_PI
rb_define_const(rb_mMath, "PI", DOUBLE2NUM(M_PI));
#else
rb_define_const(rb_mMath, "PI", DOUBLE2NUM(atan(1.0)*4.0));
#endif
#ifdef M_E
rb_define_const(rb_mMath, "E", DOUBLE2NUM(M_E));
#else
rb_define_const(rb_mMath, "E", DOUBLE2NUM(exp(1.0)));
#endif
rb_objc_define_module_function(rb_mMath, "atan2", math_atan2, 2);
rb_objc_define_module_function(rb_mMath, "cos", math_cos, 1);
rb_objc_define_module_function(rb_mMath, "sin", math_sin, 1);
rb_objc_define_module_function(rb_mMath, "tan", math_tan, 1);
rb_objc_define_module_function(rb_mMath, "acos", math_acos, 1);
rb_objc_define_module_function(rb_mMath, "asin", math_asin, 1);
rb_objc_define_module_function(rb_mMath, "atan", math_atan, 1);
rb_objc_define_module_function(rb_mMath, "cosh", math_cosh, 1);
rb_objc_define_module_function(rb_mMath, "sinh", math_sinh, 1);
rb_objc_define_module_function(rb_mMath, "tanh", math_tanh, 1);
rb_objc_define_module_function(rb_mMath, "acosh", math_acosh, 1);
rb_objc_define_module_function(rb_mMath, "asinh", math_asinh, 1);
rb_objc_define_module_function(rb_mMath, "atanh", math_atanh, 1);
rb_objc_define_module_function(rb_mMath, "exp", math_exp, 1);
rb_objc_define_module_function(rb_mMath, "log", math_log, -1);
rb_objc_define_module_function(rb_mMath, "log2", math_log2, 1);
rb_objc_define_module_function(rb_mMath, "log10", math_log10, 1);
rb_objc_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
rb_objc_define_module_function(rb_mMath, "cbrt", math_cbrt, 1);
rb_objc_define_module_function(rb_mMath, "frexp", math_frexp, 1);
rb_objc_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);
rb_objc_define_module_function(rb_mMath, "hypot", math_hypot, 2);
rb_objc_define_module_function(rb_mMath, "erf", math_erf, 1);
rb_objc_define_module_function(rb_mMath, "erfc", math_erfc, 1);
rb_objc_define_module_function(rb_mMath, "gamma", math_gamma, 1);
rb_objc_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
}
Jump to Line
Something went wrong with that request. Please try again.