Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
149 lines (120 sloc) 5.38 KB
RNN Training code with Penn Treebank (ptb) dataset
from __future__ import print_function
import os
import sys
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training, iterators, serializers, optimizers
from import extensions
from RNN import RNN
from RNN2 import RNN2
from RNN3 import RNN3
from RNNForLM import RNNForLM
from parallel_sequential_iterator import ParallelSequentialIterator
from bptt_updater import BPTTUpdater
# Routine to rewrite the result dictionary of LogReport to add perplexity
# values
def compute_perplexity(result):
result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:
result['val_perplexity'] = np.exp(result['validation/main/loss'])
def main():
archs = {
'rnn': RNN,
'rnn2': RNN2,
'rnn3': RNN3,
'lstm': RNNForLM
parser = argparse.ArgumentParser(description='RNN example')
parser.add_argument('--arch', '-a', choices=archs.keys(),
default='rnn', help='Net architecture')
parser.add_argument('--unit', '-u', type=int, default=100,
help='Number of RNN units in each layer')
parser.add_argument('--bproplen', '-l', type=int, default=20,
help='Number of words in each mini-batch '
'(= length of truncated BPTT)')
parser.add_argument('--batchsize', '-b', type=int, default=10,
help='Number of images in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=10,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
args = parser.parse_args()
print('GPU: {}'.format(args.gpu))
print('# Architecture: {}'.format(args.arch))
print('# Minibatch-size: {}'.format(args.batchsize))
print('# epoch: {}'.format(args.epoch))
# 1. Load dataset: Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()
n_vocab = max(train) + 1 # train is just an array of integers
print('# vocab: {}'.format(n_vocab))
# 2. Setup model
model = archs[args.arch](n_vocab=n_vocab,
n_units=args.unit) # , activation=F.tanh
classifier_model = L.Classifier(model)
classifier_model.compute_accuracy = False # we only want the perplexity
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current
classifier_model.to_gpu() # Copy the model to the GPU
eval_classifier_model = classifier_model.copy() # Model with shared params and distinct states
eval_model = classifier_model.predictor
# 2. Setup an optimizer
optimizer = optimizers.Adam(alpha=0.001)
#optimizer = optimizers.MomentumSGD()
# 4. Setup an Iterator
train_iter =ParallelSequentialIterator(train, args.batchsize)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
test_iter = ParallelSequentialIterator(test, 1, repeat=False)
# 5. Setup an Updater
updater = BPTTUpdater(train_iter, optimizer, args.bproplen, args.gpu)
# 6. Setup a trainer (and extensions)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(val_iter, eval_classifier_model,
# Reset the RNN state at the beginning of each evaluation
eval_hook=lambda _: eval_model.reset_state())
trainer.extend(extensions.snapshot(), trigger=(1, 'epoch'))
interval = 500
trigger=(interval, 'iteration')))
['epoch', 'iteration', 'perplexity', 'val_perplexity', 'elapsed_time']
), trigger=(interval, 'iteration'))
['perplexity', 'val_perplexity'],
x_key='epoch', file_name='perplexity.png'))
# Resume from a snapshot
if args.resume:
serializers.load_npz(args.resume, trainer)
# Run the training
.format(args.out, args.arch), model)
# Evaluate the final model
evaluator = extensions.Evaluator(test_iter, eval_classifier_model, device=args.gpu)
result = evaluator()
print('test perplexity:', np.exp(float(result['main/loss'])))
if __name__ == '__main__':