Skip to content
Permalink
3b31d243a1
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
1884 lines (1672 sloc) 64 KB
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "classfile/classLoader.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/moduleEntry.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "gc/shared/vmGCOperations.hpp"
#include "logging/log.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#ifdef ASSERT
#include "memory/guardedMemory.hpp"
#endif
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvm_misc.hpp"
#include "prims/privilegedStack.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/vm_version.hpp"
#include "services/attachListener.hpp"
#include "services/mallocTracker.hpp"
#include "services/memTracker.hpp"
#include "services/nmtCommon.hpp"
#include "services/threadService.hpp"
#include "utilities/align.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
# include <signal.h>
# include <errno.h>
OSThread* os::_starting_thread = NULL;
address os::_polling_page = NULL;
volatile int32_t* os::_mem_serialize_page = NULL;
uintptr_t os::_serialize_page_mask = 0;
volatile unsigned int os::_rand_seed = 1;
int os::_processor_count = 0;
int os::_initial_active_processor_count = 0;
size_t os::_page_sizes[os::page_sizes_max];
#ifndef PRODUCT
julong os::num_mallocs = 0; // # of calls to malloc/realloc
julong os::alloc_bytes = 0; // # of bytes allocated
julong os::num_frees = 0; // # of calls to free
julong os::free_bytes = 0; // # of bytes freed
#endif
static size_t cur_malloc_words = 0; // current size for MallocMaxTestWords
void os_init_globals() {
// Called from init_globals().
// See Threads::create_vm() in thread.cpp, and init.cpp.
os::init_globals();
}
static time_t get_timezone(const struct tm* time_struct) {
#if defined(_ALLBSD_SOURCE)
return time_struct->tm_gmtoff;
#elif defined(_WINDOWS)
long zone;
_get_timezone(&zone);
return static_cast<time_t>(zone);
#else
return timezone;
#endif
}
int os::snprintf(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = os::vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
// Fill in buffer with current local time as an ISO-8601 string.
// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
// Returns buffer, or NULL if it failed.
// This would mostly be a call to
// strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
// except that on Windows the %z behaves badly, so we do it ourselves.
// Also, people wanted milliseconds on there,
// and strftime doesn't do milliseconds.
char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
// Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
// 1 2
// 12345678901234567890123456789
// format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
static const size_t needed_buffer = 29;
// Sanity check the arguments
if (buffer == NULL) {
assert(false, "NULL buffer");
return NULL;
}
if (buffer_length < needed_buffer) {
assert(false, "buffer_length too small");
return NULL;
}
// Get the current time
jlong milliseconds_since_19700101 = javaTimeMillis();
const int milliseconds_per_microsecond = 1000;
const time_t seconds_since_19700101 =
milliseconds_since_19700101 / milliseconds_per_microsecond;
const int milliseconds_after_second =
milliseconds_since_19700101 % milliseconds_per_microsecond;
// Convert the time value to a tm and timezone variable
struct tm time_struct;
if (utc) {
if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
assert(false, "Failed gmtime_pd");
return NULL;
}
} else {
if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
assert(false, "Failed localtime_pd");
return NULL;
}
}
const time_t zone = get_timezone(&time_struct);
// If daylight savings time is in effect,
// we are 1 hour East of our time zone
const time_t seconds_per_minute = 60;
const time_t minutes_per_hour = 60;
const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
time_t UTC_to_local = zone;
if (time_struct.tm_isdst > 0) {
UTC_to_local = UTC_to_local - seconds_per_hour;
}
// No offset when dealing with UTC
if (utc) {
UTC_to_local = 0;
}
// Compute the time zone offset.
// localtime_pd() sets timezone to the difference (in seconds)
// between UTC and and local time.
// ISO 8601 says we need the difference between local time and UTC,
// we change the sign of the localtime_pd() result.
const time_t local_to_UTC = -(UTC_to_local);
// Then we have to figure out if if we are ahead (+) or behind (-) UTC.
char sign_local_to_UTC = '+';
time_t abs_local_to_UTC = local_to_UTC;
if (local_to_UTC < 0) {
sign_local_to_UTC = '-';
abs_local_to_UTC = -(abs_local_to_UTC);
}
// Convert time zone offset seconds to hours and minutes.
const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
const time_t zone_min =
((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
// Print an ISO 8601 date and time stamp into the buffer
const int year = 1900 + time_struct.tm_year;
const int month = 1 + time_struct.tm_mon;
const int printed = jio_snprintf(buffer, buffer_length,
"%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
year,
month,
time_struct.tm_mday,
time_struct.tm_hour,
time_struct.tm_min,
time_struct.tm_sec,
milliseconds_after_second,
sign_local_to_UTC,
zone_hours,
zone_min);
if (printed == 0) {
assert(false, "Failed jio_printf");
return NULL;
}
return buffer;
}
OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
debug_only(Thread::check_for_dangling_thread_pointer(thread);)
if ((p >= MinPriority && p <= MaxPriority) ||
(p == CriticalPriority && thread->is_ConcurrentGC_thread())) {
int priority = java_to_os_priority[p];
return set_native_priority(thread, priority);
} else {
assert(false, "Should not happen");
return OS_ERR;
}
}
// The mapping from OS priority back to Java priority may be inexact because
// Java priorities can map M:1 with native priorities. If you want the definite
// Java priority then use JavaThread::java_priority()
OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
int p;
int os_prio;
OSReturn ret = get_native_priority(thread, &os_prio);
if (ret != OS_OK) return ret;
if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
} else {
// niceness values are in reverse order
for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
}
priority = (ThreadPriority)p;
return OS_OK;
}
bool os::dll_build_name(char* buffer, size_t size, const char* fname) {
int n = jio_snprintf(buffer, size, "%s%s%s", JNI_LIB_PREFIX, fname, JNI_LIB_SUFFIX);
return (n != -1);
}
#if !defined(LINUX) && !defined(_WINDOWS)
bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
committed_start = start;
committed_size = size;
return true;
}
#endif
// Helper for dll_locate_lib.
// Pass buffer and printbuffer as we already printed the path to buffer
// when we called get_current_directory. This way we avoid another buffer
// of size MAX_PATH.
static bool conc_path_file_and_check(char *buffer, char *printbuffer, size_t printbuflen,
const char* pname, char lastchar, const char* fname) {
// Concatenate path and file name, but don't print double path separators.
const char *filesep = (WINDOWS_ONLY(lastchar == ':' ||) lastchar == os::file_separator()[0]) ?
"" : os::file_separator();
int ret = jio_snprintf(printbuffer, printbuflen, "%s%s%s", pname, filesep, fname);
// Check whether file exists.
if (ret != -1) {
struct stat statbuf;
return os::stat(buffer, &statbuf) == 0;
}
return false;
}
bool os::dll_locate_lib(char *buffer, size_t buflen,
const char* pname, const char* fname) {
bool retval = false;
size_t fullfnamelen = strlen(JNI_LIB_PREFIX) + strlen(fname) + strlen(JNI_LIB_SUFFIX);
char* fullfname = (char*)NEW_C_HEAP_ARRAY(char, fullfnamelen + 1, mtInternal);
if (dll_build_name(fullfname, fullfnamelen + 1, fname)) {
const size_t pnamelen = pname ? strlen(pname) : 0;
if (pnamelen == 0) {
// If no path given, use current working directory.
const char* p = get_current_directory(buffer, buflen);
if (p != NULL) {
const size_t plen = strlen(buffer);
const char lastchar = buffer[plen - 1];
retval = conc_path_file_and_check(buffer, &buffer[plen], buflen - plen,
"", lastchar, fullfname);
}
} else if (strchr(pname, *os::path_separator()) != NULL) {
// A list of paths. Search for the path that contains the library.
int n;
char** pelements = split_path(pname, &n);
if (pelements != NULL) {
for (int i = 0; i < n; i++) {
char* path = pelements[i];
// Really shouldn't be NULL, but check can't hurt.
size_t plen = (path == NULL) ? 0 : strlen(path);
if (plen == 0) {
continue; // Skip the empty path values.
}
const char lastchar = path[plen - 1];
retval = conc_path_file_and_check(buffer, buffer, buflen, path, lastchar, fullfname);
if (retval) break;
}
// Release the storage allocated by split_path.
for (int i = 0; i < n; i++) {
if (pelements[i] != NULL) {
FREE_C_HEAP_ARRAY(char, pelements[i]);
}
}
FREE_C_HEAP_ARRAY(char*, pelements);
}
} else {
// A definite path.
const char lastchar = pname[pnamelen-1];
retval = conc_path_file_and_check(buffer, buffer, buflen, pname, lastchar, fullfname);
}
}
FREE_C_HEAP_ARRAY(char*, fullfname);
return retval;
}
// --------------------- sun.misc.Signal (optional) ---------------------
// SIGBREAK is sent by the keyboard to query the VM state
#ifndef SIGBREAK
#define SIGBREAK SIGQUIT
#endif
// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
static void signal_thread_entry(JavaThread* thread, TRAPS) {
os::set_priority(thread, NearMaxPriority);
while (true) {
int sig;
{
// FIXME : Currently we have not decided what should be the status
// for this java thread blocked here. Once we decide about
// that we should fix this.
sig = os::signal_wait();
}
if (sig == os::sigexitnum_pd()) {
// Terminate the signal thread
return;
}
switch (sig) {
case SIGBREAK: {
// Check if the signal is a trigger to start the Attach Listener - in that
// case don't print stack traces.
if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
continue;
}
// Print stack traces
// Any SIGBREAK operations added here should make sure to flush
// the output stream (e.g. tty->flush()) after output. See 4803766.
// Each module also prints an extra carriage return after its output.
VM_PrintThreads op;
VMThread::execute(&op);
VM_PrintJNI jni_op;
VMThread::execute(&jni_op);
VM_FindDeadlocks op1(tty);
VMThread::execute(&op1);
Universe::print_heap_at_SIGBREAK();
if (PrintClassHistogram) {
VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
VMThread::execute(&op1);
}
if (JvmtiExport::should_post_data_dump()) {
JvmtiExport::post_data_dump();
}
break;
}
default: {
// Dispatch the signal to java
HandleMark hm(THREAD);
Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
if (klass != NULL) {
JavaValue result(T_VOID);
JavaCallArguments args;
args.push_int(sig);
JavaCalls::call_static(
&result,
klass,
vmSymbols::dispatch_name(),
vmSymbols::int_void_signature(),
&args,
THREAD
);
}
if (HAS_PENDING_EXCEPTION) {
// tty is initialized early so we don't expect it to be null, but
// if it is we can't risk doing an initialization that might
// trigger additional out-of-memory conditions
if (tty != NULL) {
char klass_name[256];
char tmp_sig_name[16];
const char* sig_name = "UNKNOWN";
InstanceKlass::cast(PENDING_EXCEPTION->klass())->
name()->as_klass_external_name(klass_name, 256);
if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
sig_name = tmp_sig_name;
warning("Exception %s occurred dispatching signal %s to handler"
"- the VM may need to be forcibly terminated",
klass_name, sig_name );
}
CLEAR_PENDING_EXCEPTION;
}
}
}
}
}
void os::init_before_ergo() {
initialize_initial_active_processor_count();
// We need to initialize large page support here because ergonomics takes some
// decisions depending on large page support and the calculated large page size.
large_page_init();
// We need to adapt the configured number of stack protection pages given
// in 4K pages to the actual os page size. We must do this before setting
// up minimal stack sizes etc. in os::init_2().
JavaThread::set_stack_red_zone_size (align_up(StackRedPages * 4 * K, vm_page_size()));
JavaThread::set_stack_yellow_zone_size (align_up(StackYellowPages * 4 * K, vm_page_size()));
JavaThread::set_stack_reserved_zone_size(align_up(StackReservedPages * 4 * K, vm_page_size()));
JavaThread::set_stack_shadow_zone_size (align_up(StackShadowPages * 4 * K, vm_page_size()));
// VM version initialization identifies some characteristics of the
// platform that are used during ergonomic decisions.
VM_Version::init_before_ergo();
}
void os::initialize_jdk_signal_support(TRAPS) {
if (!ReduceSignalUsage) {
// Setup JavaThread for processing signals
const char thread_name[] = "Signal Dispatcher";
Handle string = java_lang_String::create_from_str(thread_name, CHECK);
// Initialize thread_oop to put it into the system threadGroup
Handle thread_group (THREAD, Universe::system_thread_group());
Handle thread_oop = JavaCalls::construct_new_instance(SystemDictionary::Thread_klass(),
vmSymbols::threadgroup_string_void_signature(),
thread_group,
string,
CHECK);
Klass* group = SystemDictionary::ThreadGroup_klass();
JavaValue result(T_VOID);
JavaCalls::call_special(&result,
thread_group,
group,
vmSymbols::add_method_name(),
vmSymbols::thread_void_signature(),
thread_oop,
CHECK);
{ MutexLocker mu(Threads_lock);
JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
// At this point it may be possible that no osthread was created for the
// JavaThread due to lack of memory. We would have to throw an exception
// in that case. However, since this must work and we do not allow
// exceptions anyway, check and abort if this fails.
if (signal_thread == NULL || signal_thread->osthread() == NULL) {
vm_exit_during_initialization("java.lang.OutOfMemoryError",
os::native_thread_creation_failed_msg());
}
java_lang_Thread::set_thread(thread_oop(), signal_thread);
java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
java_lang_Thread::set_daemon(thread_oop());
signal_thread->set_threadObj(thread_oop());
Threads::add(signal_thread);
Thread::start(signal_thread);
}
// Handle ^BREAK
os::signal(SIGBREAK, os::user_handler());
}
}
void os::terminate_signal_thread() {
if (!ReduceSignalUsage)
signal_notify(sigexitnum_pd());
}
// --------------------- loading libraries ---------------------
typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
extern struct JavaVM_ main_vm;
static void* _native_java_library = NULL;
void* os::native_java_library() {
if (_native_java_library == NULL) {
char buffer[JVM_MAXPATHLEN];
char ebuf[1024];
// Try to load verify dll first. In 1.3 java dll depends on it and is not
// always able to find it when the loading executable is outside the JDK.
// In order to keep working with 1.2 we ignore any loading errors.
if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
"verify")) {
dll_load(buffer, ebuf, sizeof(ebuf));
}
// Load java dll
if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
"java")) {
_native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
}
if (_native_java_library == NULL) {
vm_exit_during_initialization("Unable to load native library", ebuf);
}
#if defined(__OpenBSD__)
// Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
// ignore errors
if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
"net")) {
dll_load(buffer, ebuf, sizeof(ebuf));
}
#endif
}
return _native_java_library;
}
/*
* Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
* If check_lib == true then we are looking for an
* Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
* this library is statically linked into the image.
* If check_lib == false then we will look for the appropriate symbol in the
* executable if agent_lib->is_static_lib() == true or in the shared library
* referenced by 'handle'.
*/
void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
const char *syms[], size_t syms_len) {
assert(agent_lib != NULL, "sanity check");
const char *lib_name;
void *handle = agent_lib->os_lib();
void *entryName = NULL;
char *agent_function_name;
size_t i;
// If checking then use the agent name otherwise test is_static_lib() to
// see how to process this lookup
lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
for (i = 0; i < syms_len; i++) {
agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
if (agent_function_name == NULL) {
break;
}
entryName = dll_lookup(handle, agent_function_name);
FREE_C_HEAP_ARRAY(char, agent_function_name);
if (entryName != NULL) {
break;
}
}
return entryName;
}
// See if the passed in agent is statically linked into the VM image.
bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
size_t syms_len) {
void *ret;
void *proc_handle;
void *save_handle;
assert(agent_lib != NULL, "sanity check");
if (agent_lib->name() == NULL) {
return false;
}
proc_handle = get_default_process_handle();
// Check for Agent_OnLoad/Attach_lib_name function
save_handle = agent_lib->os_lib();
// We want to look in this process' symbol table.
agent_lib->set_os_lib(proc_handle);
ret = find_agent_function(agent_lib, true, syms, syms_len);
if (ret != NULL) {
// Found an entry point like Agent_OnLoad_lib_name so we have a static agent
agent_lib->set_valid();
agent_lib->set_static_lib(true);
return true;
}
agent_lib->set_os_lib(save_handle);
return false;
}
// --------------------- heap allocation utilities ---------------------
char *os::strdup(const char *str, MEMFLAGS flags) {
size_t size = strlen(str);
char *dup_str = (char *)malloc(size + 1, flags);
if (dup_str == NULL) return NULL;
strcpy(dup_str, str);
return dup_str;
}
char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
char* p = os::strdup(str, flags);
if (p == NULL) {
vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
}
return p;
}
#define paranoid 0 /* only set to 1 if you suspect checking code has bug */
#ifdef ASSERT
static void verify_memory(void* ptr) {
GuardedMemory guarded(ptr);
if (!guarded.verify_guards()) {
LogTarget(Warning, malloc, free) lt;
ResourceMark rm;
LogStream ls(lt);
ls.print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
ls.print_cr("## memory stomp:");
guarded.print_on(&ls);
fatal("memory stomping error");
}
}
#endif
//
// This function supports testing of the malloc out of memory
// condition without really running the system out of memory.
//
static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
if (MallocMaxTestWords > 0) {
size_t words = (alloc_size / BytesPerWord);
if ((cur_malloc_words + words) > MallocMaxTestWords) {
return true;
}
Atomic::add(words, &cur_malloc_words);
}
return false;
}
void* os::malloc(size_t size, MEMFLAGS flags) {
return os::malloc(size, flags, CALLER_PC);
}
void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
// Since os::malloc can be called when the libjvm.{dll,so} is
// first loaded and we don't have a thread yet we must accept NULL also here.
assert(!os::ThreadCrashProtection::is_crash_protected(Thread::current_or_null()),
"malloc() not allowed when crash protection is set");
if (size == 0) {
// return a valid pointer if size is zero
// if NULL is returned the calling functions assume out of memory.
size = 1;
}
// NMT support
NMT_TrackingLevel level = MemTracker::tracking_level();
size_t nmt_header_size = MemTracker::malloc_header_size(level);
#ifndef ASSERT
const size_t alloc_size = size + nmt_header_size;
#else
const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
if (size + nmt_header_size > alloc_size) { // Check for rollover.
return NULL;
}
#endif
// For the test flag -XX:MallocMaxTestWords
if (has_reached_max_malloc_test_peak(size)) {
return NULL;
}
u_char* ptr;
ptr = (u_char*)::malloc(alloc_size);
#ifdef ASSERT
if (ptr == NULL) {
return NULL;
}
// Wrap memory with guard
GuardedMemory guarded(ptr, size + nmt_header_size);
ptr = guarded.get_user_ptr();
#endif
if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
log_warning(malloc, free)("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
breakpoint();
}
debug_only(if (paranoid) verify_memory(ptr));
// we do not track guard memory
return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
}
void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
return os::realloc(memblock, size, flags, CALLER_PC);
}
void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
// For the test flag -XX:MallocMaxTestWords
if (has_reached_max_malloc_test_peak(size)) {
return NULL;
}
if (size == 0) {
// return a valid pointer if size is zero
// if NULL is returned the calling functions assume out of memory.
size = 1;
}
#ifndef ASSERT
NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
// NMT support
void* membase = MemTracker::record_free(memblock);
NMT_TrackingLevel level = MemTracker::tracking_level();
size_t nmt_header_size = MemTracker::malloc_header_size(level);
void* ptr = ::realloc(membase, size + nmt_header_size);
return MemTracker::record_malloc(ptr, size, memflags, stack, level);
#else
if (memblock == NULL) {
return os::malloc(size, memflags, stack);
}
if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
log_warning(malloc, free)("os::realloc caught " PTR_FORMAT, p2i(memblock));
breakpoint();
}
// NMT support
void* membase = MemTracker::malloc_base(memblock);
verify_memory(membase);
// always move the block
void* ptr = os::malloc(size, memflags, stack);
// Copy to new memory if malloc didn't fail
if (ptr != NULL ) {
GuardedMemory guarded(MemTracker::malloc_base(memblock));
// Guard's user data contains NMT header
size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
memcpy(ptr, memblock, MIN2(size, memblock_size));
if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
log_warning(malloc, free)("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
breakpoint();
}
os::free(memblock);
}
return ptr;
#endif
}
void os::free(void *memblock) {
NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
#ifdef ASSERT
if (memblock == NULL) return;
if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
log_warning(malloc, free)("os::free caught " PTR_FORMAT, p2i(memblock));
breakpoint();
}
void* membase = MemTracker::record_free(memblock);
verify_memory(membase);
GuardedMemory guarded(membase);
size_t size = guarded.get_user_size();
inc_stat_counter(&free_bytes, size);
membase = guarded.release_for_freeing();
::free(membase);
#else
void* membase = MemTracker::record_free(memblock);
::free(membase);
#endif
}
void os::init_random(unsigned int initval) {
_rand_seed = initval;
}
static int random_helper(unsigned int rand_seed) {
/* standard, well-known linear congruential random generator with
* next_rand = (16807*seed) mod (2**31-1)
* see
* (1) "Random Number Generators: Good Ones Are Hard to Find",
* S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
* (2) "Two Fast Implementations of the 'Minimal Standard' Random
* Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
*/
const unsigned int a = 16807;
const unsigned int m = 2147483647;
const int q = m / a; assert(q == 127773, "weird math");
const int r = m % a; assert(r == 2836, "weird math");
// compute az=2^31p+q
unsigned int lo = a * (rand_seed & 0xFFFF);
unsigned int hi = a * (rand_seed >> 16);
lo += (hi & 0x7FFF) << 16;
// if q overflowed, ignore the overflow and increment q
if (lo > m) {
lo &= m;
++lo;
}
lo += hi >> 15;
// if (p+q) overflowed, ignore the overflow and increment (p+q)
if (lo > m) {
lo &= m;
++lo;
}
return lo;
}
int os::random() {
// Make updating the random seed thread safe.
while (true) {
unsigned int seed = _rand_seed;
unsigned int rand = random_helper(seed);
if (Atomic::cmpxchg(rand, &_rand_seed, seed) == seed) {
return static_cast<int>(rand);
}
}
}
// The INITIALIZED state is distinguished from the SUSPENDED state because the
// conditions in which a thread is first started are different from those in which
// a suspension is resumed. These differences make it hard for us to apply the
// tougher checks when starting threads that we want to do when resuming them.
// However, when start_thread is called as a result of Thread.start, on a Java
// thread, the operation is synchronized on the Java Thread object. So there
// cannot be a race to start the thread and hence for the thread to exit while
// we are working on it. Non-Java threads that start Java threads either have
// to do so in a context in which races are impossible, or should do appropriate
// locking.
void os::start_thread(Thread* thread) {
// guard suspend/resume
MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
OSThread* osthread = thread->osthread();
osthread->set_state(RUNNABLE);
pd_start_thread(thread);
}
void os::abort(bool dump_core) {
abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
}
//---------------------------------------------------------------------------
// Helper functions for fatal error handler
void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
start = align_down(start, unitsize);
int cols = 0;
int cols_per_line = 0;
switch (unitsize) {
case 1: cols_per_line = 16; break;
case 2: cols_per_line = 8; break;
case 4: cols_per_line = 4; break;
case 8: cols_per_line = 2; break;
default: return;
}
address p = start;
st->print(PTR_FORMAT ": ", p2i(start));
while (p < end) {
if (is_readable_pointer(p)) {
switch (unitsize) {
case 1: st->print("%02x", *(u1*)p); break;
case 2: st->print("%04x", *(u2*)p); break;
case 4: st->print("%08x", *(u4*)p); break;
case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
}
} else {
st->print("%*.*s", 2*unitsize, 2*unitsize, "????????????????");
}
p += unitsize;
cols++;
if (cols >= cols_per_line && p < end) {
cols = 0;
st->cr();
st->print(PTR_FORMAT ": ", p2i(p));
} else {
st->print(" ");
}
}
st->cr();
}
void os::print_dhm(outputStream* st, const char* startStr, long sec) {
long days = sec/86400;
long hours = (sec/3600) - (days * 24);
long minutes = (sec/60) - (days * 1440) - (hours * 60);
if (startStr == NULL) startStr = "";
st->print_cr("%s %ld days %ld:%02ld hours", startStr, days, hours, minutes);
}
void os::print_instructions(outputStream* st, address pc, int unitsize) {
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
print_hex_dump(st, pc - 256, pc + 256, unitsize);
}
void os::print_environment_variables(outputStream* st, const char** env_list) {
if (env_list) {
st->print_cr("Environment Variables:");
for (int i = 0; env_list[i] != NULL; i++) {
char *envvar = ::getenv(env_list[i]);
if (envvar != NULL) {
st->print("%s", env_list[i]);
st->print("=");
st->print_cr("%s", envvar);
}
}
}
}
void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
// cpu
st->print("CPU:");
st->print("total %d", os::processor_count());
// It's not safe to query number of active processors after crash
// st->print("(active %d)", os::active_processor_count()); but we can
// print the initial number of active processors.
// We access the raw value here because the assert in the accessor will
// fail if the crash occurs before initialization of this value.
st->print(" (initial active %d)", _initial_active_processor_count);
st->print(" %s", VM_Version::features_string());
st->cr();
pd_print_cpu_info(st, buf, buflen);
}
// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
st->print("Host: ");
#ifndef PRODUCT
if (get_host_name(buf, buflen)) {
st->print("%s, ", buf);
}
#endif // PRODUCT
get_summary_cpu_info(buf, buflen);
st->print("%s, ", buf);
size_t mem = physical_memory()/G;
if (mem == 0) { // for low memory systems
mem = physical_memory()/M;
st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
} else {
st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
}
get_summary_os_info(buf, buflen);
st->print_raw(buf);
st->cr();
}
void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
const int secs_per_day = 86400;
const int secs_per_hour = 3600;
const int secs_per_min = 60;
time_t tloc;
(void)time(&tloc);
char* timestring = ctime(&tloc); // ctime adds newline.
// edit out the newline
char* nl = strchr(timestring, '\n');
if (nl != NULL) {
*nl = '\0';
}
struct tm tz;
if (localtime_pd(&tloc, &tz) != NULL) {
::strftime(buf, buflen, "%Z", &tz);
st->print("Time: %s %s", timestring, buf);
} else {
st->print("Time: %s", timestring);
}
double t = os::elapsedTime();
// NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
// Linux. Must be a bug in glibc ? Workaround is to round "t" to int
// before printf. We lost some precision, but who cares?
int eltime = (int)t; // elapsed time in seconds
// print elapsed time in a human-readable format:
int eldays = eltime / secs_per_day;
int day_secs = eldays * secs_per_day;
int elhours = (eltime - day_secs) / secs_per_hour;
int hour_secs = elhours * secs_per_hour;
int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
int minute_secs = elmins * secs_per_min;
int elsecs = (eltime - day_secs - hour_secs - minute_secs);
st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
}
// Check if pointer can be read from (4-byte read access).
// Helps to prove validity of a not-NULL pointer.
// Returns true in very early stages of VM life when stub is not yet generated.
#define SAFEFETCH_DEFAULT true
bool os::is_readable_pointer(const void* p) {
if (!CanUseSafeFetch32()) {
return SAFEFETCH_DEFAULT;
}
int* const aligned = (int*) align_down((intptr_t)p, 4);
int cafebabe = 0xcafebabe; // tester value 1
int deadbeef = 0xdeadbeef; // tester value 2
return (SafeFetch32(aligned, cafebabe) != cafebabe) || (SafeFetch32(aligned, deadbeef) != deadbeef);
}
bool os::is_readable_range(const void* from, const void* to) {
if ((uintptr_t)from >= (uintptr_t)to) return false;
for (uintptr_t p = align_down((uintptr_t)from, min_page_size()); p < (uintptr_t)to; p += min_page_size()) {
if (!is_readable_pointer((const void*)p)) {
return false;
}
}
return true;
}
// moved from debug.cpp (used to be find()) but still called from there
// The verbose parameter is only set by the debug code in one case
void os::print_location(outputStream* st, intptr_t x, bool verbose) {
address addr = (address)x;
// Handle NULL first, so later checks don't need to protect against it.
if (addr == NULL) {
st->print_cr("0x0 is NULL");
return;
}
// Check if addr points into a code blob.
CodeBlob* b = CodeCache::find_blob_unsafe(addr);
if (b != NULL) {
b->dump_for_addr(addr, st, verbose);
return;
}
// Check if addr points into Java heap.
if (Universe::heap()->is_in(addr)) {
oop o = oopDesc::oop_or_null(addr);
if (o != NULL) {
if ((HeapWord*)o == (HeapWord*)addr) {
st->print(INTPTR_FORMAT " is an oop: ", p2i(addr));
} else {
st->print(INTPTR_FORMAT " is pointing into object: " , p2i(addr));
}
o->print_on(st);
return;
}
} else if (Universe::heap()->is_in_reserved(addr)) {
st->print_cr(INTPTR_FORMAT " is an unallocated location in the heap", p2i(addr));
return;
}
// Compressed oop needs to be decoded first.
#ifdef _LP64
if (UseCompressedOops && ((uintptr_t)addr &~ (uintptr_t)max_juint) == 0) {
narrowOop narrow_oop = (narrowOop)(uintptr_t)addr;
oop o = oopDesc::decode_oop_raw(narrow_oop);
if (oopDesc::is_valid(o)) {
st->print(UINT32_FORMAT " is a compressed pointer to object: ", narrow_oop);
o->print_on(st);
return;
}
}
#endif
bool accessible = is_readable_pointer(addr);
// Check if addr is a JNI handle.
if (align_down((intptr_t)addr, sizeof(intptr_t)) != 0 && accessible) {
if (JNIHandles::is_global_handle((jobject) addr)) {
st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
return;
}
if (JNIHandles::is_weak_global_handle((jobject) addr)) {
st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
return;
}
#ifndef PRODUCT
// we don't keep the block list in product mode
if (JNIHandles::is_local_handle((jobject) addr)) {
st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
return;
}
#endif
}
// Check if addr belongs to a Java thread.
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
// Check for privilege stack
if (thread->privileged_stack_top() != NULL &&
thread->privileged_stack_top()->contains(addr)) {
st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
"for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
if (verbose) thread->print_on(st);
return;
}
// If the addr is a java thread print information about that.
if (addr == (address)thread) {
if (verbose) {
thread->print_on(st);
} else {
st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
}
return;
}
// If the addr is in the stack region for this thread then report that
// and print thread info
if (thread->on_local_stack(addr)) {
st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
INTPTR_FORMAT, p2i(addr), p2i(thread));
if (verbose) thread->print_on(st);
return;
}
}
// Check if in metaspace and print types that have vptrs
if (Metaspace::contains(addr)) {
if (Klass::is_valid((Klass*)addr)) {
st->print_cr(INTPTR_FORMAT " is a pointer to class: ", p2i(addr));
((Klass*)addr)->print_on(st);
} else if (((const Method*)addr)->is_valid_method()) {
((Method*)addr)->print_value_on(st);
st->cr();
} else {
// Use addr->print() from the debugger instead (not here)
st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
}
return;
}
// Compressed klass needs to be decoded first.
#ifdef _LP64
if (UseCompressedClassPointers && ((uintptr_t)addr &~ (uintptr_t)max_juint) == 0) {
narrowKlass narrow_klass = (narrowKlass)(uintptr_t)addr;
Klass* k = Klass::decode_klass_raw(narrow_klass);
if (Klass::is_valid(k)) {
st->print_cr(UINT32_FORMAT " is a compressed pointer to class: " INTPTR_FORMAT, narrow_klass, p2i((HeapWord*)k));
k->print_on(st);
return;
}
}
#endif
// Try an OS specific find
if (os::find(addr, st)) {
return;
}
if (accessible) {
st->print(INTPTR_FORMAT " points into unknown readable memory:", p2i(addr));
for (address p = addr; p < align_up(addr + 1, sizeof(intptr_t)); ++p) {
st->print(" %02x", *(u1*)p);
}
st->cr();
return;
}
st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
}
// Looks like all platforms can use the same function to check if C
// stack is walkable beyond current frame. The check for fp() is not
// necessary on Sparc, but it's harmless.
bool os::is_first_C_frame(frame* fr) {
// Load up sp, fp, sender sp and sender fp, check for reasonable values.
// Check usp first, because if that's bad the other accessors may fault
// on some architectures. Ditto ufp second, etc.
uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
// sp on amd can be 32 bit aligned.
uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
uintptr_t usp = (uintptr_t)fr->sp();
if ((usp & sp_align_mask) != 0) return true;
uintptr_t ufp = (uintptr_t)fr->fp();
if ((ufp & fp_align_mask) != 0) return true;
uintptr_t old_sp = (uintptr_t)fr->sender_sp();
if ((old_sp & sp_align_mask) != 0) return true;
if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
uintptr_t old_fp = (uintptr_t)fr->link();
if ((old_fp & fp_align_mask) != 0) return true;
if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
// stack grows downwards; if old_fp is below current fp or if the stack
// frame is too large, either the stack is corrupted or fp is not saved
// on stack (i.e. on x86, ebp may be used as general register). The stack
// is not walkable beyond current frame.
if (old_fp < ufp) return true;
if (old_fp - ufp > 64 * K) return true;
return false;
}
// Set up the boot classpath.
char* os::format_boot_path(const char* format_string,
const char* home,
int home_len,
char fileSep,
char pathSep) {
assert((fileSep == '/' && pathSep == ':') ||
(fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
// Scan the format string to determine the length of the actual
// boot classpath, and handle platform dependencies as well.
int formatted_path_len = 0;
const char* p;
for (p = format_string; *p != 0; ++p) {
if (*p == '%') formatted_path_len += home_len - 1;
++formatted_path_len;
}
char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
if (formatted_path == NULL) {
return NULL;
}
// Create boot classpath from format, substituting separator chars and
// java home directory.
char* q = formatted_path;
for (p = format_string; *p != 0; ++p) {
switch (*p) {
case '%':
strcpy(q, home);
q += home_len;
break;
case '/':
*q++ = fileSep;
break;
case ':':
*q++ = pathSep;
break;
default:
*q++ = *p;
}
}
*q = '\0';
assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
return formatted_path;
}
// This function is a proxy to fopen, it tries to add a non standard flag ('e' or 'N')
// that ensures automatic closing of the file on exec. If it can not find support in
// the underlying c library, it will make an extra system call (fcntl) to ensure automatic
// closing of the file on exec.
FILE* os::fopen(const char* path, const char* mode) {
char modified_mode[20];
assert(strlen(mode) + 1 < sizeof(modified_mode), "mode chars plus one extra must fit in buffer");
sprintf(modified_mode, "%s" LINUX_ONLY("e") BSD_ONLY("e") WINDOWS_ONLY("N"), mode);
FILE* file = ::fopen(path, modified_mode);
#if !(defined LINUX || defined BSD || defined _WINDOWS)
// assume fcntl FD_CLOEXEC support as a backup solution when 'e' or 'N'
// is not supported as mode in fopen
if (file != NULL) {
int fd = fileno(file);
if (fd != -1) {
int fd_flags = fcntl(fd, F_GETFD);
if (fd_flags != -1) {
fcntl(fd, F_SETFD, fd_flags | FD_CLOEXEC);
}
}
}
#endif
return file;
}
bool os::set_boot_path(char fileSep, char pathSep) {
const char* home = Arguments::get_java_home();
int home_len = (int)strlen(home);
struct stat st;
// modular image if "modules" jimage exists
char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
if (jimage == NULL) return false;
bool has_jimage = (os::stat(jimage, &st) == 0);
if (has_jimage) {
Arguments::set_sysclasspath(jimage, true);
FREE_C_HEAP_ARRAY(char, jimage);
return true;
}
FREE_C_HEAP_ARRAY(char, jimage);
// check if developer build with exploded modules
char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
if (base_classes == NULL) return false;
if (os::stat(base_classes, &st) == 0) {
Arguments::set_sysclasspath(base_classes, false);
FREE_C_HEAP_ARRAY(char, base_classes);
return true;
}
FREE_C_HEAP_ARRAY(char, base_classes);
return false;
}
/*
* Splits a path, based on its separator, the number of
* elements is returned back in n.
* It is the callers responsibility to:
* a> check the value of n, and n may be 0.
* b> ignore any empty path elements
* c> free up the data.
*/
char** os::split_path(const char* path, int* n) {
*n = 0;
if (path == NULL || strlen(path) == 0) {
return NULL;
}
const char psepchar = *os::path_separator();
char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
if (inpath == NULL) {
return NULL;
}
strcpy(inpath, path);
int count = 1;
char* p = strchr(inpath, psepchar);
// Get a count of elements to allocate memory
while (p != NULL) {
count++;
p++;
p = strchr(p, psepchar);
}
char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
if (opath == NULL) {
return NULL;
}
// do the actual splitting
p = inpath;
for (int i = 0 ; i < count ; i++) {
size_t len = strcspn(p, os::path_separator());
if (len > JVM_MAXPATHLEN) {
return NULL;
}
// allocate the string and add terminator storage
char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
if (s == NULL) {
return NULL;
}
strncpy(s, p, len);
s[len] = '\0';
opath[i] = s;
p += len + 1;
}
FREE_C_HEAP_ARRAY(char, inpath);
*n = count;
return opath;
}
void os::set_memory_serialize_page(address page) {
int count = log2_intptr(sizeof(class JavaThread)) - log2_int(64);
_mem_serialize_page = (volatile int32_t *)page;
// We initialize the serialization page shift count here
// We assume a cache line size of 64 bytes
assert(SerializePageShiftCount == count, "JavaThread size changed; "
"SerializePageShiftCount constant should be %d", count);
set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
}
static volatile intptr_t SerializePageLock = 0;
// This method is called from signal handler when SIGSEGV occurs while the current
// thread tries to store to the "read-only" memory serialize page during state
// transition.
void os::block_on_serialize_page_trap() {
log_debug(safepoint)("Block until the serialize page permission restored");
// When VMThread is holding the SerializePageLock during modifying the
// access permission of the memory serialize page, the following call
// will block until the permission of that page is restored to rw.
// Generally, it is unsafe to manipulate locks in signal handlers, but in
// this case, it's OK as the signal is synchronous and we know precisely when
// it can occur.
Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
Thread::muxRelease(&SerializePageLock);
}
// Serialize all thread state variables
void os::serialize_thread_states() {
// On some platforms such as Solaris & Linux, the time duration of the page
// permission restoration is observed to be much longer than expected due to
// scheduler starvation problem etc. To avoid the long synchronization
// time and expensive page trap spinning, 'SerializePageLock' is used to block
// the mutator thread if such case is encountered. See bug 6546278 for details.
Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
os::protect_memory((char *)os::get_memory_serialize_page(),
os::vm_page_size(), MEM_PROT_READ);
os::protect_memory((char *)os::get_memory_serialize_page(),
os::vm_page_size(), MEM_PROT_RW);
Thread::muxRelease(&SerializePageLock);
}
// Returns true if the current stack pointer is above the stack shadow
// pages, false otherwise.
bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
if (!thread->is_Java_thread()) return false;
// Check if we have StackShadowPages above the yellow zone. This parameter
// is dependent on the depth of the maximum VM call stack possible from
// the handler for stack overflow. 'instanceof' in the stack overflow
// handler or a println uses at least 8k stack of VM and native code
// respectively.
const int framesize_in_bytes =
Interpreter::size_top_interpreter_activation(method()) * wordSize;
address limit = ((JavaThread*)thread)->stack_end() +
(JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
return sp > (limit + framesize_in_bytes);
}
size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
assert(min_pages > 0, "sanity");
if (UseLargePages) {
const size_t max_page_size = region_size / min_pages;
for (size_t i = 0; _page_sizes[i] != 0; ++i) {
const size_t page_size = _page_sizes[i];
if (page_size <= max_page_size) {
if (!must_be_aligned || is_aligned(region_size, page_size)) {
return page_size;
}
}
}
}
return vm_page_size();
}
size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
return page_size_for_region(region_size, min_pages, true);
}
size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
return page_size_for_region(region_size, min_pages, false);
}
static const char* errno_to_string (int e, bool short_text) {
#define ALL_SHARED_ENUMS(X) \
X(E2BIG, "Argument list too long") \
X(EACCES, "Permission denied") \
X(EADDRINUSE, "Address in use") \
X(EADDRNOTAVAIL, "Address not available") \
X(EAFNOSUPPORT, "Address family not supported") \
X(EAGAIN, "Resource unavailable, try again") \
X(EALREADY, "Connection already in progress") \
X(EBADF, "Bad file descriptor") \
X(EBADMSG, "Bad message") \
X(EBUSY, "Device or resource busy") \
X(ECANCELED, "Operation canceled") \
X(ECHILD, "No child processes") \
X(ECONNABORTED, "Connection aborted") \
X(ECONNREFUSED, "Connection refused") \
X(ECONNRESET, "Connection reset") \
X(EDEADLK, "Resource deadlock would occur") \
X(EDESTADDRREQ, "Destination address required") \
X(EDOM, "Mathematics argument out of domain of function") \
X(EEXIST, "File exists") \
X(EFAULT, "Bad address") \
X(EFBIG, "File too large") \
X(EHOSTUNREACH, "Host is unreachable") \
X(EIDRM, "Identifier removed") \
X(EILSEQ, "Illegal byte sequence") \
X(EINPROGRESS, "Operation in progress") \
X(EINTR, "Interrupted function") \
X(EINVAL, "Invalid argument") \
X(EIO, "I/O error") \
X(EISCONN, "Socket is connected") \
X(EISDIR, "Is a directory") \
X(ELOOP, "Too many levels of symbolic links") \
X(EMFILE, "Too many open files") \
X(EMLINK, "Too many links") \
X(EMSGSIZE, "Message too large") \
X(ENAMETOOLONG, "Filename too long") \
X(ENETDOWN, "Network is down") \
X(ENETRESET, "Connection aborted by network") \
X(ENETUNREACH, "Network unreachable") \
X(ENFILE, "Too many files open in system") \
X(ENOBUFS, "No buffer space available") \
X(ENODATA, "No message is available on the STREAM head read queue") \
X(ENODEV, "No such device") \
X(ENOENT, "No such file or directory") \
X(ENOEXEC, "Executable file format error") \
X(ENOLCK, "No locks available") \
X(ENOLINK, "Reserved") \
X(ENOMEM, "Not enough space") \
X(ENOMSG, "No message of the desired type") \
X(ENOPROTOOPT, "Protocol not available") \
X(ENOSPC, "No space left on device") \
X(ENOSR, "No STREAM resources") \
X(ENOSTR, "Not a STREAM") \
X(ENOSYS, "Function not supported") \
X(ENOTCONN, "The socket is not connected") \
X(ENOTDIR, "Not a directory") \
X(ENOTEMPTY, "Directory not empty") \
X(ENOTSOCK, "Not a socket") \
X(ENOTSUP, "Not supported") \
X(ENOTTY, "Inappropriate I/O control operation") \
X(ENXIO, "No such device or address") \
X(EOPNOTSUPP, "Operation not supported on socket") \
X(EOVERFLOW, "Value too large to be stored in data type") \
X(EPERM, "Operation not permitted") \
X(EPIPE, "Broken pipe") \
X(EPROTO, "Protocol error") \
X(EPROTONOSUPPORT, "Protocol not supported") \
X(EPROTOTYPE, "Protocol wrong type for socket") \
X(ERANGE, "Result too large") \
X(EROFS, "Read-only file system") \
X(ESPIPE, "Invalid seek") \
X(ESRCH, "No such process") \
X(ETIME, "Stream ioctl() timeout") \
X(ETIMEDOUT, "Connection timed out") \
X(ETXTBSY, "Text file busy") \
X(EWOULDBLOCK, "Operation would block") \
X(EXDEV, "Cross-device link")
#define DEFINE_ENTRY(e, text) { e, #e, text },
static const struct {
int v;
const char* short_text;
const char* long_text;
} table [] = {
ALL_SHARED_ENUMS(DEFINE_ENTRY)
// The following enums are not defined on all platforms.
#ifdef ESTALE
DEFINE_ENTRY(ESTALE, "Reserved")
#endif
#ifdef EDQUOT
DEFINE_ENTRY(EDQUOT, "Reserved")
#endif
#ifdef EMULTIHOP
DEFINE_ENTRY(EMULTIHOP, "Reserved")
#endif
// End marker.
{ -1, "Unknown errno", "Unknown error" }
};
#undef DEFINE_ENTRY
#undef ALL_FLAGS
int i = 0;
while (table[i].v != -1 && table[i].v != e) {
i ++;
}
return short_text ? table[i].short_text : table[i].long_text;
}
const char* os::strerror(int e) {
return errno_to_string(e, false);
}
const char* os::errno_name(int e) {
return errno_to_string(e, true);
}
void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
LogTarget(Info, pagesize) log;
if (log.is_enabled()) {
LogStream out(log);
out.print("%s: ", str);
for (int i = 0; i < count; ++i) {
out.print(" " SIZE_FORMAT, page_sizes[i]);
}
out.cr();
}
}
#define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
void os::trace_page_sizes(const char* str,
const size_t region_min_size,
const size_t region_max_size,
const size_t page_size,
const char* base,
const size_t size) {
log_info(pagesize)("%s: "
" min=" SIZE_FORMAT "%s"
" max=" SIZE_FORMAT "%s"
" base=" PTR_FORMAT
" page_size=" SIZE_FORMAT "%s"
" size=" SIZE_FORMAT "%s",
str,
trace_page_size_params(region_min_size),
trace_page_size_params(region_max_size),
p2i(base),
trace_page_size_params(page_size),
trace_page_size_params(size));
}
void os::trace_page_sizes_for_requested_size(const char* str,
const size_t requested_size,
const size_t page_size,
const size_t alignment,
const char* base,
const size_t size) {
log_info(pagesize)("%s:"
" req_size=" SIZE_FORMAT "%s"
" base=" PTR_FORMAT
" page_size=" SIZE_FORMAT "%s"
" alignment=" SIZE_FORMAT "%s"
" size=" SIZE_FORMAT "%s",
str,
trace_page_size_params(requested_size),
p2i(base),
trace_page_size_params(page_size),
trace_page_size_params(alignment),
trace_page_size_params(size));
}
// This is the working definition of a server class machine:
// >= 2 physical CPU's and >=2GB of memory, with some fuzz
// because the graphics memory (?) sometimes masks physical memory.
// If you want to change the definition of a server class machine
// on some OS or platform, e.g., >=4GB on Windows platforms,
// then you'll have to parameterize this method based on that state,
// as was done for logical processors here, or replicate and
// specialize this method for each platform. (Or fix os to have
// some inheritance structure and use subclassing. Sigh.)
// If you want some platform to always or never behave as a server
// class machine, change the setting of AlwaysActAsServerClassMachine
// and NeverActAsServerClassMachine in globals*.hpp.
bool os::is_server_class_machine() {
// First check for the early returns
if (NeverActAsServerClassMachine) {
return false;
}
if (AlwaysActAsServerClassMachine) {
return true;
}
// Then actually look at the machine
bool result = false;
const unsigned int server_processors = 2;
const julong server_memory = 2UL * G;
// We seem not to get our full complement of memory.
// We allow some part (1/8?) of the memory to be "missing",
// based on the sizes of DIMMs, and maybe graphics cards.
const julong missing_memory = 256UL * M;
/* Is this a server class machine? */
if ((os::active_processor_count() >= (int)server_processors) &&
(os::physical_memory() >= (server_memory - missing_memory))) {
const unsigned int logical_processors =
VM_Version::logical_processors_per_package();
if (logical_processors > 1) {
const unsigned int physical_packages =
os::active_processor_count() / logical_processors;
if (physical_packages >= server_processors) {
result = true;
}
} else {
result = true;
}
}
return result;
}
void os::initialize_initial_active_processor_count() {
assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
_initial_active_processor_count = active_processor_count();
log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
}
void os::SuspendedThreadTask::run() {
internal_do_task();
_done = true;
}
bool os::create_stack_guard_pages(char* addr, size_t bytes) {
return os::pd_create_stack_guard_pages(addr, bytes);
}
char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint, int file_desc) {
char* result = NULL;
if (file_desc != -1) {
// Could have called pd_reserve_memory() followed by replace_existing_mapping_with_file_mapping(),
// but AIX may use SHM in which case its more trouble to detach the segment and remap memory to the file.
result = os::map_memory_to_file(addr, bytes, file_desc);
if (result != NULL) {
MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
}
} else {
result = pd_reserve_memory(bytes, addr, alignment_hint);
if (result != NULL) {
MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
}
}
return result;
}
char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
MEMFLAGS flags) {
char* result = pd_reserve_memory(bytes, addr, alignment_hint);
if (result != NULL) {
MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
MemTracker::record_virtual_memory_type((address)result, flags);
}
return result;
}
char* os::attempt_reserve_memory_at(size_t bytes, char* addr, int file_desc) {
char* result = NULL;
if (file_desc != -1) {
result = pd_attempt_reserve_memory_at(bytes, addr, file_desc);
if (result != NULL) {
MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
}
} else {
result = pd_attempt_reserve_memory_at(bytes, addr);
if (result != NULL) {
MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
}
}
return result;
}
void os::split_reserved_memory(char *base, size_t size,
size_t split, bool realloc) {
pd_split_reserved_memory(base, size, split, realloc);
}
bool os::commit_memory(char* addr, size_t bytes, bool executable) {
bool res = pd_commit_memory(addr, bytes, executable);
if (res) {
MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
}
return res;
}
bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
bool executable) {
bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
if (res) {
MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
}
return res;
}
void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
const char* mesg) {
pd_commit_memory_or_exit(addr, bytes, executable, mesg);
MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
}
void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
bool executable, const char* mesg) {
os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
}
bool os::uncommit_memory(char* addr, size_t bytes) {
bool res;
if (MemTracker::tracking_level() > NMT_minimal) {
Tracker tkr(Tracker::uncommit);
res = pd_uncommit_memory(addr, bytes);
if (res) {
tkr.record((address)addr, bytes);
}
} else {
res = pd_uncommit_memory(addr, bytes);
}
return res;
}
bool os::release_memory(char* addr, size_t bytes) {
bool res;
if (MemTracker::tracking_level() > NMT_minimal) {
Tracker tkr(Tracker::release);
res = pd_release_memory(addr, bytes);
if (res) {
tkr.record((address)addr, bytes);
}
} else {
res = pd_release_memory(addr, bytes);
}
return res;
}
void os::pretouch_memory(void* start, void* end, size_t page_size) {
for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
*p = 0;
}
}
char* os::map_memory(int fd, const char* file_name, size_t file_offset,
char *addr, size_t bytes, bool read_only,
bool allow_exec) {
char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
if (result != NULL) {
MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
}
return result;
}
char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
char *addr, size_t bytes, bool read_only,
bool allow_exec) {
return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
read_only, allow_exec);
}
bool os::unmap_memory(char *addr, size_t bytes) {
bool result;
if (MemTracker::tracking_level() > NMT_minimal) {
Tracker tkr(Tracker::release);
result = pd_unmap_memory(addr, bytes);
if (result) {
tkr.record((address)addr, bytes);
}
} else {
result = pd_unmap_memory(addr, bytes);
}
return result;
}
void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
pd_free_memory(addr, bytes, alignment_hint);
}
void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
pd_realign_memory(addr, bytes, alignment_hint);
}
#ifndef _WINDOWS
/* try to switch state from state "from" to state "to"
* returns the state set after the method is complete
*/
os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
os::SuspendResume::State to)
{
os::SuspendResume::State result = Atomic::cmpxchg(to, &_state, from);
if (result == from) {
// success
return to;
}
return result;
}
#endif