
Energy Densities of Photon Fields Subject to

Inverse Compton Scattering in Jetted AGN

Cosimo Nigro (cosimonigro2@gmail.com)

May 25, 2020

1 Introduction

In this document I compute the integrated energy densities u [erg cm−3] for
different photon fields available for Inverse Compton scattering in a jetted AGN.
The energy densities are computed both in a stationary reference frame whose
origin coincides with the galaxy Black Hole and in a reference frame comoving
with the Blob, which is streaming along the jet with velocity B and Lorentz
factor Γ.

2 Notation

Differential quantities are implicit, i.e. X(x1, x2; y) = ∂X
∂x1 ∂x2

(y), where after
the ; we specify parameters. We aim to calculate the integral energy density, of
a given photon field, i.e.

u(r) =

∫
dε

∫
dΩ u(ε,Ω; r), (1)

where u(ε,Ω; r) = ∂u
∂ε ∂Ω (r) is the differential energy density, ε = E/mec

2 is
the dimensionless energy of the photon (in units of the electron rest mass),
Ω = (µ, φ) is the solid angle and r specifies the distance of the blob along the
jet axis.

2.1 Transformations

Quantities specified in the Blob comoving frame are prime. We recall the fol-
lowing energy and cosine transformations, from the stationary to the comoving
frame:

ε′ = Γε(1− Bµ),

µ′ =
µ− B
1− Bµ ;

(2)
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and viceversa from the comoving to the stationary

ε = Γε′(1 + Bµ′),

µ =
µ′ + B
1 + Bµ′ .

(3)

It can be proved [DS02] that the quantity u(ε,Ω)/ε3 is a relativistic invariant,
from which it follows

u′(ε′,Ω′) =
u(ε,Ω)

Γ3(1 + Bµ′)3
. (4)

3 Energy Densities for Different Photon Fields

3.1 Isotropic Monochromatic

Let us consider an isotropic monochromatic (ε0) radiation field with energy
density u0 / erg cm−3,

u(ε,Ω) =
u0 δ(ε− ε0)

4π
(5)

3.1.1 Galaxy Frame

u =

∫ ∞
0

dε

∫ 2π

0

dφ

∫ 1

−1

dµ u(ε,Ω) = u0. (6)

3.1.2 Comoving Frame

u′ =

∫ ∞
0

dε′
∫ 2π

0

dφ′
∫ 1

−1

dµ′
u0 δ(ε− ε0)

4π

1

Γ3(1 + Bµ′)3

= 2π

∫ ∞
0

dε

Γ(1 + Bµ′)

∫ 1

−1

dµ′
u0 δ(ε− ε0)

4π

1

Γ3(1 + Bµ′)3

=
u0

2Γ4

∫ 1

−1

dµ′
1

(1 + Bµ′)4
=

u0

2Γ4

[
− 1

3B(1 + Bµ′)3

]1

−1

=
u0

2Γ4

[
(1 + B)3 − (1− B)3

3BΓ−6

]
= u0 Γ2

(
1 +
B3

3

)
.

(7)

And we have reobtained the result in Eq. 5 of [DS94] and Eq. 10 of [DS02].

3.2 Monochromatic Point Source Behind the Jet

Let us consider a source of luminosity L0 at a distance r from the jet,

u(ε,Ω; r) =
L0

4πr2c

δ(µ− 1)

2π
δ(ε− ε0) (8)

where we label u0 = L0

4πr2c for convenience.
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3.2.1 Galaxy Frame

u =

∫ ∞
0

dε

∫ 2π

0

dφ

∫ 1

−1

dµ u0
δ(µ− 1)

2π
δ(ε− ε0) = u0

(
=

L0

4πr2c

)
, (9)

where the normalisation 2π cancels out the result of the integration in dφ and
the delta in µ removes the integration in µ.

3.2.2 Comoving Frame

u′ =

∫ ∞
0

dε′
∫ 2π

0

dφ′
∫ 1

−1

dµ′ u0
δ(µ− 1)

2π
δ(ε− ε0)

1

Γ3(1 + Bµ′)3
, (10)

Now we convert the differentials in ε′ and µ′ in ε and, in order to simplify them
with the deltas, we note that from Eq. 2

dµ′

dµ
=

(1− Bµ) + (µ− B)B
(1− Bµ)2

⇒ dµ′ =
1

Γ2(1− Bµ)2
dµ, (11)

therefore

u′ = 2π

∫ ∞
0

dε

Γ(1 + Bµ′)

∫ 1

−1

dµ

Γ2(1− Bµ)2

u0

2π
δ(ε− ε0)δ(µ− 1)

1

Γ3(1 + Bµ′)3

=
u0

Γ6

∫ 1

−1

dµ

(1− Bµ)2(1 + Bµ′)4
δ(µ− 1)

=
u0

Γ6

1

(1− B)2(1 + B)4
=

u0

Γ2(1 + B)2
,

(12)

where in the penultimate equality we have used µ = 1⇒ µ′ = 1 from Eq. 2 and
the condition imposed by the dirac delta. We have reobtained Eq. 6 of [DS94].
Note we will use Eq. 9 and Eq. 12 as a crosscheck for the radiation fields of
more complicate objects (for distances much larger than their dimensions they
should appear as a point source behind the jet).

3.3 Spherical Shell Broad Line Region

Let us consider the BLR as a monochromatic (εli) infinitesimally thin (Rli) shell,
as in [Fin16]

u(ε,Ω; r) =
ξliLdisk

(4π)2c
δ(ε− εli)

∫ 1

−1

dµre

x2
δ(µ− µ∗), (13)

where

µ2
∗ = 1−

(
Rli

x

)2

(1− µ2
re),

x2 = R2
li + r2 − 2rRliµre,

(14)

and the geometry of the reprocessing material is illustrated in Fig. 1.
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Figure 1: Geometry for inverse Compton scattering on reprocessing radiation
field.

3.3.1 Galaxy Frame

u =

∫ ∞
0

dε

∫ 2π

0

dφ

∫ 1

−1

dµ
ξliLdisk

(4π)2c
δ(ε− εli)

∫ 1

−1

dµre

x2
δ(µ− µ∗)

=
ξliLdisk

8πc

∫ 1

−1

dµre

x2
.

(15)

Let’s examine if for large distances (r � Rli) Eq. 15 → Eq. 9, i.e. if the BLR
appears as a point source behind the jet. Since x −−−−→

r�Rli

r, we have

u =
ξliLdisk

8πc

∫ 1

−1

dµre

r2
=
ξliLdisk

4πcr2
, (16)

which is Eq. 9, i.e. the energy density of a monochromatic point source behind
the jet, with u0 = ξliLdisk

4πcr2 (L0 = ξliLdisk).

3.3.2 Comoving Frame

u′ =

∫ ∞
0

dε′
∫ 2π

0

dφ′
∫ 1

−1

dµ′
ξliLdisk

(4π)2c
δ(ε− εli)

∫ 1

−1

dµre

x2
δ(µ− µ∗)

1

Γ3(1 + Bµ′)3

= 2π

∫ ∞
0

dε

Γ(1 + Bµ′)

∫ 1

−1

dµ

Γ2(1− Bµ)2

ξliLdisk

(4π)2c
δ(ε− εli)

∫ 1

−1

dµre

x2
δ(µ− µ∗)

1

Γ3(1 + Bµ′)3

=
ξliLdisk

8πc

∫ 1

−1

dµ

Γ2(1− Bµ)2Γ4(1 + Bµ′)4

∫ 1

−1

dµre

x2
δ(µ− µ∗),

(17)
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using the delta condition µ = µ∗ ⇒ µ′ = µ∗−B
1−B µ∗

. The latter in turns imply

1 + Bµ′ = 1
Γ2(1−Bµ∗) , therefore

u′ =
ξliLdisk

8πc

Γ8(1− Bµ∗)4

Γ6(1− Bµ∗)2

∫ 1

−1

dµre

x2

= Γ2(1− Bµ∗)2 ξliLdisk

8πc

∫ 1

−1

dµre

x2
.

(18)

If the calculation was done correctly, in the limit of large distances (r � Rli)
Eq. 18 → Eq. 12, i.e. the BLR should appears as a point source behind the jet
(also in the comoving frame). For r � Rli, x

2 → r2 and µ∗ → 1, so

u′ = Γ2(1− B)2 ξliLdisk

8πc

2

r2
=

Γ2(1− B2)2

(1 + B)2

ξliLdisk

4πcr2
=

1

Γ2(1 + B)2

ξliLdisk

4πcr2
. (19)

where in the penultimate equality we have multiplied and divided by (1 + B)2.
We have reobtained Eq. 12 with u0 = ξliLdisk

4πcr2 (L0 = ξliLdisk).

3.4 Ring Dust Torus

Following [Fin16],

u(ε,Ω; r) =
ξdtLdisk

(4π)2cx2
δ(µ− r/x)δ(ε− 2.7Θ), (20)

where now
x2 = R2

dt + r2 (21)

3.4.1 Galaxy Frame

u =

∫ ∞
0

dε

∫ 2π

0

dφ

∫ 1

−1

dµ
ξdtLdisk

(4π)2c
δ(µ− r/x)δ(ε− 2.7Θ)

=
ξdtLdisk

8πcx2

(22)

There must be a problem with the expression Eq. 20 as it is clear that Eq. 22
misses a factor 2 to reduce to Eq. 9 in the limit of large distances (r � Rdt).

3.4.2 Comoving Frame

u′ =

∫ ∞
0

dε′
∫ 2π

0

dφ′
∫ 1

−1

dµ′
ξdtLdisk

(4π)2cx2
δ(µ− r/x)δ(ε− 2.7Θ)

1

Γ3(1 + Bµ′)3

= 2π

∫ ∞
0

dε

Γ(1 + Bµ′)

∫ 1

−1

dµ

Γ2(1− Bµ)2

ξdtLdisk

(4π)2cx2
δ(µ− r/x)δ(ε− 2.7Θ)

1

Γ3(1 + Bµ′)3

=
ξdtLdisk

8πc

∫ 1

−1

dµ

Γ2(1− Bµ)2Γ4(1 + Bµ′)4
δ(µ− r/x),

(23)
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Julian
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as we have seen for the BLR case, using the delta condition µ = r/x ⇒ µ′ =
r/x−B

1−B r/x and it follows that 1 + Bµ′ = 1
Γ2(1−Br/x) . Follows that

u′ =
ξdtLdisk

8πc

Γ8(1− Br/x)4

Γ6(1− Br/x)2
= Γ2(1− Br/x)2 ξdtLdisk

8πc
. (24)

We notice that as for the Galaxy frame, this expression misses a factor 2 to
reduce to Eq. 12, the case of point source behind the jet, in the limit of large
distances. x→ r for r � Rdt, so

u′ = Γ2(1− B)2 ξdtLdisk

8πc
=

1

Γ2(1 + B)2

ξdtLdisk

8πcr2
. (25)
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