Absorption on dust torus and point source for a $\mu_{s} \neq 1$ case

February 23, 2021

1 Variables

- r - gamma ray starts at the height r above the BH
- $\mu_{s}=\cos \theta_{s}-\cos$ of the angle of the propagation of gamma ray to the z axis
- u - distance that the gamma ray moved along μ_{s} direction
- x-distance to the reprocessed material
- ϕ, μ - direction angles of the soft photon
- ϕ_{e} - azimuth angle of a piece of reprocessing material ($\phi_{e}=0$ corresponds to the direction of gamma ray movement projected on XY plane
- Ψ - angle between the gamma ray and the soft photon
- $R_{r e}$ - distance of the reprocessing material from BH
- ν - frequency of the gamma ray (in the reference frame of the BH)
- $L_{\text {disk }}$ - luminosity of the disk
- $\xi_{d t}$ - fraction of the luminosity reprocessed in DT

2 Dust Torus

The vector of the soft photon (from the reprocessing material to the gamma ray position) is:

$$
\vec{v}_{\epsilon}=\left[\begin{array}{c}
v_{\epsilon, x} \tag{1}\\
v_{\epsilon, y} \\
v_{\epsilon, z}
\end{array}\right]=\left[\begin{array}{c}
u \sin \theta_{s}-R_{r e} \cos \phi_{r e} \\
-R_{r e} \sin \phi_{r e} \\
r+u \mu_{s}
\end{array}\right]
$$

from which you can compute the distance

$$
\begin{equation*}
x=\left|\vec{v}_{\epsilon}\right|=\sqrt{u^{2}+R_{r e}^{2}+r^{2}-2 u R_{r e} \sin \theta_{s} \cos \phi_{r e}+2 r u \mu_{s}} \tag{2}
\end{equation*}
$$

and its direction angles:

$$
\begin{gather*}
\mu=v_{\epsilon, z} / x \tag{3}\\
\tan \phi=v_{\epsilon, y} / v_{\epsilon, x} \tag{4}
\end{gather*}
$$

In order to compute the optical depth at we need to have a similar integral like Eq 133 in Finke'16 paper

$$
\begin{equation*}
\tau(\nu)=\frac{L_{d i s k} \xi_{d t}}{8 \pi^{2} \epsilon_{d t} m_{e} c^{3}} \int_{0}^{\infty} d u \int_{0}^{2 \pi} d \phi_{r e} \sigma_{\gamma \gamma}(s) \frac{1-\cos \Psi}{x^{2}} \tag{5}
\end{equation*}
$$

where $s=\epsilon_{1} \epsilon_{d t}(1-\cos \Psi) / 2$, and Ψ is computed from Eq. 8 of Finke'16.

3 Point source

The calculations are the same as in Section 2. The distance is

$$
\begin{equation*}
x=\left|\vec{v}_{\epsilon}\right|=\sqrt{u^{2}+r^{2}+2 r u \mu_{s}} \tag{6}
\end{equation*}
$$

Because of the definition of the gamma ray moving in XZ plane, the ϕ angle of the soft photon will be 0 . The inclination angle to the Z axis can be computed as

$$
\begin{equation*}
\mu=\left(r+u \mu_{s}\right) / x \tag{7}
\end{equation*}
$$

The angle between the two photons Ψ can be again computed from Eq. 8 of Finke'16, or simply as $\Psi=\theta-\theta_{s}$.

The formula for the optical depth is: In order to compute the optical depth at we need to have a similar integral like Eq 133 in Finke'16 paper

$$
\begin{equation*}
\tau(\nu)=\frac{L_{0}}{4 \pi \epsilon_{0} m_{e} c^{3}} \int_{0}^{\infty} d u \sigma_{\gamma \gamma}(s) \frac{1-\cos \Psi}{x^{2}} \tag{8}
\end{equation*}
$$

