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Background: Linear Regression nd Least Angle Regression « n LAR, Lasso and Boosting Extension

Least Square Problem

ming|ly —xBl[3
wherey € R" ,x € R"*P and B € R".

Pros and cons
m Closed-form solution B = (x'x)"!x"y when n > p;
m Easy to overfit;

m The solution is not well-defined when n < p.

Traditionally, forward stepwise variable selection is used
to overcome some difficulties.
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Background: Linear Regressic Lasso and S gle Regressio g nme AR, Lasso and Boosting Extension
oe

Lasso vs. Ridge

Lasso problem (Tibshirani, 1996) (In signal processing, it is
called Basis Pursuit. (Chen and Donoho, 1995))

min| |y — xB|[3 (1)
st||Bll1 <'s )

Ridge problem (Hoerl, 1962)

min|ly — xp|[3 ©)
st||Bll2 < s (4)
Lasso does variable selection while Ridge does not. However,

Ridge regression always has closed-form solution
B = (xTx+ AI)~IxTy.
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Lasso and Least Ang

[e] lele]e}

Prof. Bradley Efron

Figure: Prof. Bradley Efron: On May 29, 2007, he was awarded the
National Medal of Science, the highest scientific honor by the United
States, for his exceptional work in the field of Statistics (especially for
his inventing of the bootstrapping methodology)
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Lasso and Least Angle Regression
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Least Angle Regression (LAR) (Efron, 2004)

X2

Yo Y1 Ui=x1 Y1

Figure: Geometric interpretation of LAR
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Background: Linear Regression and Least Angle Regressic 3 ng nents on LAR, Lasso and Boosting Extension

Least Angle Regression (LAR)

Start with r =y — mean(y), B1,B2,- - , Bp = 0. Assume Xj
standardized

Find predictor x; most correlated with r (i.e.

j=arg max |x]r|).

Increase f; in the direction of sign(corr(r, x;)) until some
other competitor x; has as much correlation with current
residual as does x;.

Move (B;, Bx) in the joint least squares direction for (x;, xi)
until some other competitor x; has as much correlation
with the current residual.

Continue in this way until all predictors have been
entered. Stop when corr(r, x]-) = (0Vj, i.e. OLS solution.
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Diabetes Data: Lasso and LAR
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Figure: Diabetes Data: Lasso and LAR. They are very similar.

11/ 46



Background: Linear Regres E cas gle Regressio 3 g ments on LAR, Le a g Extension

€00000000
Connection between Lasso and LAR

Outline

Lasso and Least Angle Regression

m Connection between Lasso and LAR
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Connection between Lasso and

Why are Lasso and LAR so similar?

Consider Lasso problem

min|ly —xp||2
st.|[Bllr <s

Because the [; norm is the non-differentiable, we do the
following: Let B = B, — B_, Lasso problem becomes

n P P
ming, g g 3 (% — Bo— [} %) — Y xiB;])?
i=1 j=1 =1

P
st.B > 0,8 > Ov]';Zﬁ].+ +B; <s
j=1

©)
(6)

@)

8)
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Connection between Lasso and LAR

KKT conditions for Lasso

The Lagrangian is

n P p ) p p p
Y (i—Bo— [ xB — Y xB D +AY (B +B7)— YA B - YA B

i=1 j=1 j=1 j=1 j=1 j=1
)

The KKT conditions are:
—ijr +A— A]* = 0, (10)
Xr+A— AT =0, (11)
+ot+

ATBT =0, (12)
AB =0 (13)

wherer =y — Bl — [Zf:l "]':B;r - 2;11 xf'Bj_]
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Connection between Lasso and LAR

KKT conditions for Lasso

If A =0, then x].Tr = 0Vj, and the solution corresponds to
the unrestricted least-square fit.

B >0A>0. = Af=0 (14)
— xr=1>0 (15)
= /\]f >0 (16)
= p; =0 (17)

Likewise B, > 0,A > 0= ;" = 0. Hence 2 and 3 give
the intuitive result that only one of the pair (8;, ﬁ]-_)can be
positive at any time.

|x]-Tr| <A

+ Ty — £ p- o Tp —

If[S]- > O,thenxjr— Aorlfﬁj > 0, then xjr—/\.
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Lasso and Least Angle Regression
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Connection between Lasso and LAR

Diabetes Data: Lasso and LAR (revisited)

LASSO
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Connection between Lasso and L.

The characteristic of the Lasso path

Definition
m Lasso path is given by B(A), where B(A) satisfies the KKT
conditions.
m Define A be the active set,i.e. A = {j: ﬁ;r > 0||g; > 0}.

m B(Aop) and B(Aq) are two points on the lasso path for the
same A, and A; — A9 = 4, where ¢ is a small number.

We are going to show B(A1) — B(Ap) lies on the direction
(XiXa) XL r, where r = y — X4 B(A¢). (According to the KKT
conditions, Xgr = Apl.)
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Background: Linear Regressic nd Least Angle Regressios g nme AR, Lasso and Boosting Extension

Connection between Lasso and L.

The characteristic of the Lasso path

Define B ,(A) to be the corresponding coefficients at A,
where A € [Ag, A1]. Deduction 5 of KKT conditions

— X4y —XaBa(A)) = A1 (18)
— X3 Xa(By(A1) — BA(Ao)) =61 (19)
= Bu(A1) — Ba(Ao) = 6(X5Xa) 11 (20)

Sincer =y — XaB,(Ao) and X};r = Agl,

BAGW) — Balho) = 1 (KX Xor (@)
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Connection between Lasso and L.

The characteristic of the Lasso path

Theorem

Let B° € R¥ be a point on the Lasso path in the expanded-variable
space (X = [x, —x|), and let A be the active set of variables achieving
the maximal correlation with the current residual r = y — X°.

The Lasso coefficients move in a direction given by the coefficients of
the least squares fit of X4 on r.

Only the coefficients in A change, and this fixed direction is pursued
until the first of the following events occurs:

a variable not in A attains the maximal correlation and joins A;

The coefficient of a variable in the active set reaches 0, at which
point it leaves A;

the residuals match those of the unrestricted least square fit.

when 1 or 2 occur, the direction is recomputed.
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n LAR, Lasso and Boosting Extension

Background: Linear Regression and Least Angle Regression B
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Connection between Lasso and LAR

Connection between Lasso and LAR

Lasso can be thought of as restricted versions of LAR.

KKT 5: If 8" > 0, then x/r = Aorif B; >0, then

—x]-Tr = A. (Lasso has this constrain while LAR does not.)

LARS—uses least squares directions in the active set of

variables;
Lasso—uses least square directions; if a variable crosses

zero, it is removed from the active set
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Boosting
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Background: Linear SSic SSi0! sti ments AR, Lasso and Boosting Extension

The basic of Boosting (Forward Stagewise

Boosting for linear regression (I) (Friedman, 2000)

Algorithm

Start with r =y — mean(y), B1, B2, ...Bp = 0;
Find the predictor x; most correlated with r (i.e.
j=arg max |x]r|);

{1 p}
Update B; < B, + d; , where d; = € - sign(corr(r,x;));
Set v « r — 6;x; and repeat steps 2 and 3 until no predictor has
any correlation with r.
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Background: Linear Regression on LAR, Lasso and Boosting Extension

The basic of Boosting (Forward S

Boosting for linear regression (II)

To get rid of sign, we can rewrite the algorithm in the
expanded space X = [x, —x].

Algorithm

Start with r =y — mean(y), B1, B2, ..-Bap = 0;
Find the predictor Xj most correlated with r (i.e.

i =arg max X!r);
J gi€{1,~-~,2p} iV

Update B; < B; +€;
Set v « 1 — €X; and repeat steps 2 and 3 until no predictor has
any correlation with r.
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Background: Linear Regression Lasso ¢ Least Angle Regressio n LAR, Lasso and Boosting

More on Boosting

What is Boosting doing?

X2

X2 4

Cad

'90 Y1 U1=x1

=lo

Figure: An illustration of Boosting based on LAR

m At each step, it selects the variable having largest correlation
with the residuals, and moves its coefficient by €.

m There may be a set A of variables competing for this maximal
correlation.

Extension
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Background: Linear AR, Lasso and Boosting Extension

More on Boosting

What are the natural constrains of Boosting?

Suppose there are successive N updates. For each j, it takes
Nj updates (i.e. };; N; = N). Define p; = N;/N and thus

Yicapj =1
The change of the coefficient of the variable X; in A is
eN; = eNpj, which must be positive Vj € A.

Decrease the residual sum-of-squares as fast as possible.

Consider the optimization problem

.1
mmPEHr — eXapyllPsitp; > 0; Y pi=1 (22)
jeA

where ¢ = Ne |
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More on Boosting

KKT condition for Boosting

The Lagrangian is
1
L(pr')’//\) = EHI‘—SXAPAHZ—Z’Y]’Pj-l'/\(ij—l) (23)
J J
with KKT conditions

—eXh(r—eXqps) —y+AL = 0 (24)
7 = 0 (25)
pj = 0 (26)
viejg = 0 (27)
=1 (28)

2.0
]

Note that pj = 00— v = 0. This shows that the
correlations with the residual remain equal. This also implies
the relationship between LAR and Boosting. .
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More on Boosting

Boosting and non-negative least square

1
minp§||r — X404]%s.£.6; > 0 (29)
Let 6" be the solution. Then p* = ”99:”1 solve the optimization

problem of Boosting;:

o1
ming||e — eXap,|Ps.t.0; > 0; ) pj =1 )
jeA

This can be done by checking the KKT conditions.

Boosting uses non-negative least squares directions in the
active set.
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More on Boosting

Boosting path

Theorem

Let B° € R? be a point on the Lasso path in the expanded-variable space
(X = [x, —x]), and let A be the active set of variables achieving the maximal
correlation with the current residual r =y — XB°.

The Boosting coefficients move in a direction given by the coefficients of the
non-negative least squares fit of X4 on r.

Only the coefficients in A change, and this fixed direction is pursued until
the first of the following events occurs:

a variable not in A attains the maximal correlation and joins A;

The coefficient of a variable in the active set reaches 0, at which point it
leaves A; This is only for Lasso. For Boosting, the coefficients should be
nondecreasing.

the residuals match those of the unrestricted least square fit.

when 1 occurs, the direction is recomputed.
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Background: Linear Regression [ 0 and Least Angle Regression n LAR, Lasso and Boosting Extension

Summary

summary: LAR, Lasso and Boosting

LAR wuses least squares directions in the active set of
variables.

Lasso uses least square directions; if a variable crosses
zero, it is removed from the active set.

Boosting uses non-negative least squares directions in the

active set.
From another perspective,
Boosting successive differences of §; agree in sign with the
. — T .
current correlation ¢; = X; I. (Step 3: Bj < Bj +¢;,
where 6; = € - sign(corr(r,x;)))
Lasso B;agrees in sign with ¢;. (KKT condition 5)
LAR no sign restrictions.
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Comparison

What are their performances ?
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Figure: For low dimensional problems, their performances are almost
the same (e.g., Diabetes data). How about high dimensional

problems?
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Figure: Lasso for Leukemia data: copy from Prof. Hastie’s talk
34 /46



yund: Linear Regression I ) and Least Angle S Boosting Comments on LAR, Lasso and Boosting Extension

[e]o]e] le]ele]ele]

Comparison
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Figure: LAR for Leukemia data: copy from Prof. Hastie’s talk
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Figure: Boosting for Leukemia data: copy from Prof. Hastie’s talk
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Figure: Lasso for Leukemia data: copy from Prof. Hastie’s talk
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Comparison

Comments

m The speed of Overfitting: LAR > Lasso > Boosting
m The smoothness of the Path: Boosting > Lasso and LAR

m The minimum CV error: They are almost the same.

Boosting is preferable to Lasso and LAR in the problems with
large numbers of correlated predictors because of its stability.

4

More examples which support this comment can be found in
the paper:

[ T. Hastie, Forward stagewise regression and the monotone
lasso. Electronic Journal of Statistics, 2007.

40/ 46



Background: Linear SSic ngle SSic ( ments AR, Lasso and Boosting Extension

Boosting with CART

Instead of linear predictors, CART can be used in Boosting.

Start with function F(x) = 0 and residual r =y
Fit a CART regression tree to r giving f(x)

Set F(x) < F(x) + €f(x),t < r — ¢f (x) and repeat step 2
many times
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Background: Linear SSic ngle SS ments AR, Lasso and Boosting Extension

Loss function

m Boosting is easily extended to some other convex loss
functions L(y, F(x)), e.g., Logistical loss function. The
residual r will be taken place by the negative gradient of
the loss function. This is so-called “gradient boosting”.

m Least square loss:
L=3 Y (i —f())? = — 3y = vi—f(x)
m Logistical loss:

L= 2L, (¥if (xi) —log(1 +f(x;))) =

T 1
Foa) ~ YT Trexp(a)
m Exponential loss, Poisson loss, - - -

m Lasso can be extended to some other convex loss functions
as well, and solved by convex optimization.
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¢ Extension

Incorporate disease models into Boosting

M1 M170
0 0 0 0 1 0
0 0 0 1 0 1
0 0 1 0 1 0

Figure: epistasis models

Take the place of CART by epistasis models.
Start with function F(x) = 0 and residualr =y
Fit a disease model to r giving f(x)
Set F(x) < F(x) + €f(x),r < r — ¢f (x) and repeat step 2

many times
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¢ Extension

The advantages of incorporate disease models into
boosting for the SNP problem

We will not worry about the marginal effects (i.e., main
effects) as in MegaSNPHunter. Of course we pay more
computation efforts to choose a disease model.

We can answer the question formally: Whether these
disease models are realistic?

We can handle heterogeneity in the data naturally since we
employ additive model in Boosting process. (Additive
models can approximate heterogeneity model well.)

It's computationally feasible for one chromosome (about
10,000 SNPs). There is no need for worrying about the
memory.

It overfits very slowly because of the nature of Boosting.
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Extension

A simple experiments

Cross Validation Error

I I L I I I I I I
100 200 300 400 500 600 700 800 900 1000

5 1 ——TrainLoss
145+ —e—TestLoss

I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
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Extension

References on the epistasis models:

@ Wen T. Li etal, A Complete Enumeration and Classification of Two-Locus Disease
Models. Human Heredity, 2000.

@ David M. Evans etal, Two-Stage Two-Locus Models in Genome-Wide
Association. PLOS Genetics. 2006, Sep.

Strongly recommended references on Lasso, LAR and
Boosting;:
@ R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society, Series B-Methodological, vol.58 no.1, pp.267-288, 1996.

@ J. Friedman. Additive Logistic Regression: A Statistical View of Boosting. Annals
of Statistics (With Discussion), vol. 28, no. 2, pp.337-407, 2000.

@ J. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.

@ B. Efron. Least Angle Regression. Annals of Statistics vol.32, no.2, pp. 407 - 499,
2004.

@ T. Hastie. The Elements of statistical learning, (2nd), 2009.
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