(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

10

11

12

13

14

(14.1)
(14.2)
(14.3)

15

©ISO/IEC Dxxxx

— The expressions ++a, —-a, and &a shall be expression-equivalent to a += 1, a -= 1, and addressof (a),
respectively.

— For every unary-operator @ other than & for which the expression @x is well-formed, @a shall also be
well-formed and have the same value, effects, and value category as @x. If @x has type bool, so too
does @a; if @x has type B(I), then @a has type I.

— For every assignment operator @= for which ¢ @= x is well-formed, ¢ @= a shall also be well-formed
and shall have the same value and effects as ¢ @= x. The expression ¢ @= a shall be an lvalue referring
to c.

— For every assignment operator @= for which x @= y is well-formed, a @= b shall also be well-formed
and shall have the same effects as x @= y, except that the value that would be stored into x is stored
into a. The expression a @= b shall be an lvalue referring to a.

— For every non-assignment binary operator @ for which x @ y and y @ x are well-formed, a @ b and b
@ a shall also be well-formed and shall have the same value, effects, and value category as x @ y and y
@ x, respectively. If x @ y or y @ x has type B(I), thena @ bor b @ a, respectively, has type I; if x
@ yory @ x has type B(I2), thena @ borb @ a, respectively, has type I2;if x @ yory @ x has
any other type, then a @ b or b @ a, respectively, has that type.

An expression E of integer-class type I is contextually convertible to bool as if by bool(E !'= I(0)).
All integer-class types model regular (18.6) and three_way_comparable<strong_ordering> (17.11.4).
A value-initialized object of integer-class type has value 0.

For every (possibly cv-qualified) integer-class type I, numeric_limits<I> is specialized such that each static
data member m has the same value as numeric_limits<B(I)>: :m, and each static member function f returns
I(numeric_limits<B(I)>::f()).

For any two integer-like types I1 and I2, at least one of which is an integer-class type, common_type_t<I1,
12> denotes an integer-class type whose width is not less than that of I1 or I2. If both I1 and I2 are
signed-integer-like types, then common_type_t<I1, I2> is also a signed-integer-like type.

is-integer-like<I> is true if and only if I is an integer-like type. is-signed-integer-1like<I> is true
if and only if I is a signed-integer-like type.

Let i be an object of type I. When i is im the domain of both pre- and post-increment, i is said to be
incrementable. T models weakly_incrementable<I> only if

— The expressions ++1i and i++ have the same domain.
— If i is incrementable, then both ++i and i++ advance i to the next element.
— If i is incrementable, then addressof (++1i) is equal to addressof (i).

Recommended practice: The implementaton of an algorithm on a weakly incrementable type should never
attempt to pass through the same incrementable value twice; such an algorithm should be a single-pass
algorithm.

[Note 3: For weakly_incrementable types, a equals b does not imply that ++a equals ++b. (Equality does not
guarantee the substitution property or referential transparency.) Such algorithms can be used with istreams as the
source of the input data through the istream_iterator class template. — end note]

25.3.4.5 Concept incrementable [iterator.concept.inc]

The incrementable concept specifies requirements on types that can be incremented with the pre- and
post-increment operators. The increment operations are required to be equality-preserving, and the type is
required to be equality_comparable.

[Note 1: This supersedes the annotations on the increment expressions in the definition of weakly_incrementable.
— end note]

template<class I>
concept incrementable =
regular<I> &&
weakly_incrementable<I> &&
requires(I i) {
{ i++ } -> same_as<I>;

};

§25.3.4.5 1072



