
Document Number: N4910
Date: 2022-08-05
Revises: N4901
Reply to: Thomas KöppeGoogle DeepMindcxxeditor@gmail.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad formatting.

© ISO/IEC N4910

Contents
1 Scope 1

2 Normative references 2

3 Terms and definitions 3

4 General principles 104.1 Implementation compliance . 104.2 Structure of this document . 114.3 Syntax notation . 11
5 Lexical conventions 135.1 Separate translation . 135.2 Phases of translation . 135.3 Character sets . 145.4 Preprocessing tokens . 165.5 Alternative tokens . 175.6 Tokens . 175.7 Comments . 175.8 Header names . 185.9 Preprocessing numbers . 185.10 Identifiers . 185.11 Keywords . 195.12 Operators and punctuators . 195.13 Literals . 20
6 Basics 306.1 Preamble . 306.2 Declarations and definitions . 316.3 One-definition rule . 326.4 Scope . 376.5 Name lookup . 426.6 Program and linkage . 546.7 Memory and objects . 586.8 Types . 716.9 Program execution . 77
7 Expressions 897.1 Preamble . 897.2 Properties of expressions . 897.3 Standard conversions . 927.4 Usual arithmetic conversions . 977.5 Primary expressions . 977.6 Compound expressions . 1157.7 Constant expressions . 145
8 Statements 1518.1 Preamble . 1518.2 Labeled statement . 1518.3 Expression statement . 1528.4 Compound statement or block . 1528.5 Selection statements . 1528.6 Iteration statements . 1548.7 Jump statements . 157
Contents ii

© ISO/IEC N4910

8.8 Declaration statement . 1588.9 Ambiguity resolution . 159
9 Declarations 1619.1 Preamble . 1619.2 Specifiers . 1639.3 Declarators . 1799.4 Initializers . 1969.5 Function definitions . 2129.6 Structured binding declarations . 2189.7 Enumerations . 2199.8 Namespaces . 2229.9 The using declaration . 2269.10 The asm declaration . 2319.11 Linkage specifications . 2319.12 Attributes . 233
10 Modules 24110.1 Module units and purviews . 24110.2 Export declaration . 24210.3 Import declaration . 24510.4 Global module fragment . 24610.5 Private module fragment . 24810.6 Instantiation context . 24910.7 Reachability . 250
11 Classes 25211.1 Preamble . 25211.2 Properties of classes . 25311.3 Class names . 25411.4 Class members . 25611.5 Unions . 27711.6 Local class declarations . 28011.7 Derived classes . 28011.8 Member access control . 28811.9 Initialization . 29811.10 Comparisons . 309
12 Overloading 31212.1 Preamble . 31212.2 Overload resolution . 31212.3 Address of an overload set . 33612.4 Overloaded operators . 33712.5 Built-in operators . 34012.6 User-defined literals . 342
13 Templates 34413.1 Preamble . 34413.2 Template parameters . 34513.3 Names of template specializations . 34913.4 Template arguments . 35213.5 Template constraints . 35713.6 Type equivalence . 36213.7 Template declarations . 36313.8 Name resolution . 38313.9 Template instantiation and specialization . 39713.10 Function template specializations . 409

Contents iii

© ISO/IEC N4910

14 Exception handling 42814.1 Preamble . 42814.2 Throwing an exception . 42914.3 Constructors and destructors . 43014.4 Handling an exception . 43114.5 Exception specifications . 43214.6 Special functions . 435
15 Preprocessing directives 43715.1 Preamble . 43715.2 Conditional inclusion . 43915.3 Source file inclusion . 44115.4 Module directive . 44215.5 Header unit importation . 44215.6 Macro replacement . 44415.7 Line control . 44915.8 Error directive . 44915.9 Pragma directive . 44915.10 Null directive . 45015.11 Predefined macro names . 45015.12 Pragma operator . 452
16 Library introduction 45316.1 General . 45316.2 The C standard library . 45416.3 Method of description . 45416.4 Library-wide requirements . 460
17 Language support library 48217.1 General . 48217.2 Common definitions . 48217.3 Implementation properties . 48617.4 Integer types . 49717.5 Startup and termination . 49817.6 Dynamic memory management . 50017.7 Type identification . 50617.8 Source location . 50817.9 Exception handling . 51017.10 Initializer lists . 51317.11 Comparisons . 51417.12 Coroutines . 52217.13 Other runtime support . 52717.14 C headers . 529
18 Concepts library 53118.1 General . 53118.2 Equality preservation . 53118.3 Header <concepts> synopsis . 53218.4 Language-related concepts . 53418.5 Comparison concepts . 53918.6 Object concepts . 54118.7 Callable concepts . 542
19 Diagnostics library 54419.1 General . 54419.2 Exception classes . 54419.3 Assertions . 54719.4 Error numbers . 54719.5 System error support . 549

Contents iv

© ISO/IEC N4910

19.6 Stacktrace . 557
20 Memory management library 56420.1 General . 56420.2 Memory . 56420.3 Smart pointers . 58020.4 Memory resources . 60720.5 Class template scoped_allocator_adaptor . 615
21 Metaprogramming library 62021.1 General . 62021.2 Compile-time integer sequences . 62021.3 Metaprogramming and type traits . 62021.4 Compile-time rational arithmetic . 644
22 General utilities library 64722.1 General . 64722.2 Utility components . 64722.3 Pairs . 65322.4 Tuples . 65822.5 Optional objects . 67022.6 Variants . 68322.7 Storage for any type . 69422.8 Expected objects . 69922.9 Bitsets . 71522.10 Function objects . 72122.11 Class type_index . 74822.12 Execution policies . 74922.13 Primitive numeric conversions . 75122.14 Formatting . 75422.15 Bit manipulation . 771
23 Strings library 77523.1 General . 77523.2 Character traits . 77523.3 String view classes . 78023.4 String classes . 79023.5 Null-terminated sequence utilities . 817
24 Containers library 82324.1 General . 82324.2 Requirements . 82324.3 Sequence containers . 85824.4 Associative containers . 88724.5 Unordered associative containers . 90624.6 Container adaptors . 93024.7 Views . 941
25 Iterators library 94825.1 General . 94825.2 Header <iterator> synopsis . 94825.3 Iterator requirements . 95525.4 Iterator primitives . 97525.5 Iterator adaptors . 97925.6 Stream iterators . 100025.7 Range access . 1005

Contents v

© ISO/IEC N4910

26 Ranges library 100826.1 General . 100826.2 Header <ranges> synopsis . 100826.3 Range access . 101526.4 Range requirements . 101926.5 Range utilities . 102226.6 Range factories . 103026.7 Range adaptors . 1039
27 Algorithms library 112827.1 General . 112827.2 Algorithms requirements . 112827.3 Parallel algorithms . 113027.4 Header <algorithm> synopsis . 113327.5 Algorithm result types . 116927.6 Non-modifying sequence operations . 117127.7 Mutating sequence operations . 118427.8 Sorting and related operations . 120027.9 Header <numeric> synopsis . 122727.10 Generalized numeric operations . 123027.11 Specialized <memory> algorithms . 124027.12 C library algorithms . 1245
28 Numerics library 124728.1 General . 124728.2 Numeric type requirements . 124728.3 The floating-point environment . 124728.4 Complex numbers . 124828.5 Random number generation . 125628.6 Numeric arrays . 129828.7 Mathematical functions for floating-point types . 131628.8 Numbers . 1331
29 Time library 133329.1 General . 133329.2 Header <chrono> synopsis . 133329.3 Cpp17Clock requirements . 134729.4 Time-related traits . 134829.5 Class template duration . 134929.6 Class template time_point . 135629.7 Clocks . 135929.8 The civil calendar . 137029.9 Class template hh_mm_ss . 139929.10 12/24 hours functions . 140129.11 Time zones . 140229.12 Formatting . 141529.13 Parsing . 141829.14 Header <ctime> synopsis . 1422
30 Localization library 142430.1 General . 142430.2 Header <locale> synopsis . 142430.3 Locales . 142530.4 Standard locale categories . 143130.5 C library locales . 1462
31 Input/output library 146431.1 General . 146431.2 Iostreams requirements . 1464

Contents vi

© ISO/IEC N4910

31.3 Forward declarations . 146531.4 Standard iostream objects . 146731.5 Iostreams base classes . 146931.6 Stream buffers . 148431.7 Formatting and manipulators . 149231.8 String-based streams . 151531.9 Span-based streams . 152931.10 File-based streams . 153631.11 Synchronized output streams . 154831.12 File systems . 155331.13 C library files . 1597
32 Regular expressions library 160132.1 General . 160132.2 Requirements . 160132.3 Header <regex> synopsis . 160332.4 Namespace std::regex_constants . 160732.5 Class regex_error . 160932.6 Class template regex_traits . 161032.7 Class template basic_regex . 161232.8 Class template sub_match . 161632.9 Class template match_results . 161832.10 Regular expression algorithms . 162332.11 Regular expression iterators . 162732.12 Modified ECMAScript regular expression grammar . 1632
33 Concurrency support library 163533.1 General . 163533.2 Requirements . 163533.3 Stop tokens . 163833.4 Threads . 164333.5 Atomic operations . 165033.6 Mutual exclusion . 168333.7 Condition variables . 170033.8 Semaphore . 170833.9 Coordination types . 170933.10 Futures . 1713
Annex A Grammar summary 1727A.1 General . 1727A.2 Keywords . 1727A.3 Lexical conventions . 1727A.4 Basics . 1732A.5 Expressions . 1732A.6 Statements . 1736A.7 Declarations . 1737A.8 Modules . 1743A.9 Classes . 1743A.10 Overloading . 1745A.11 Templates . 1745A.12 Exception handling . 1746A.13 Preprocessing directives . 1746
Annex B Implementation quantities 1749

Annex C Compatibility 1751C.1 C++ and ISO C++ 2020 . 1751C.2 C++ and ISO C++ 2017 . 1752C.3 C++ and ISO C++ 2014 . 1759

Contents vii

© ISO/IEC N4910

C.4 C++ and ISO C++ 2011 . 1762C.5 C++ and ISO C++ 2003 . 1764C.6 C++ and ISO C . 1769C.7 C standard library . 1777
Annex D Compatibility features 1780D.1 General . 1780D.2 Arithmetic conversion on enumerations . 1780D.3 Implicit capture of *this by reference . 1780D.4 Array comparisons . 1780D.5 Deprecated volatile types . 1780D.6 Redeclaration of static constexpr data members . 1781D.7 Non-local use of TU-local entities . 1781D.8 Implicit declaration of copy functions . 1782D.9 template keyword before qualified names . 1782D.10 Requires paragraph . 1782D.11 Relational operators . 1782D.12 char* streams . 1782D.13 The default allocator . 1790D.14 Deprecated polymorphic_allocator member function . 1790D.15 Deprecated type traits . 1790D.16 Tuple . 1791D.17 Variant . 1792D.18 Deprecated iterator class template . 1792D.19 Deprecated move_iterator access . 1792D.20 Deprecated shared_ptr atomic access . 1793D.21 Deprecated basic_string capacity . 1795D.22 Deprecated standard code conversion facets . 1795D.23 Deprecated convenience conversion interfaces . 1796D.24 Deprecated locale category facets . 1800D.25 Deprecated filesystem path factory functions . 1800D.26 Deprecated atomic operations . 1801
Annex E Conformance with UAX #31 1803E.1 General . 1803E.2 R1 Default identifiers . 1803E.3 R2 Immutable identifiers . 1803E.4 R3 Pattern_White_Space and Pattern_Syntax characters . 1803E.5 R4 Equivalent normalized identifiers . 1804E.6 R5 Equivalent case-insensitive identifiers . 1804E.7 R6 Filtered normalized identifiers . 1804E.8 R7 Filtered case-insensitive identifiers . 1804E.9 R8 Hashtag identifiers . 1804
Bibliography 1805

Cross references 1806

Cross references from ISO C++ 2020 1832

Index 1833

Index of grammar productions 1865

Index of library headers 1870

Index of library names 1872

Index of library concepts 1950

Contents viii

© ISO/IEC N4910

Index of implementation-defined behavior 1953

Contents ix

© ISO/IEC N4910

1 Scope [intro.scope]
1 This document specifies requirements for implementations of the C++ programming language. The first such requirementis that they implement the language, so this document also defines C++. Other requirements and relaxations of the firstrequirement appear at various places within this document.
2 C++ is a general purpose programming language based on the C programming language as described in ISO/IEC9899:2018 Programming languages — C (hereinafter referred to as the C standard). C++ provides many facilitiesbeyond those provided by C, including additional data types, classes, templates, exceptions, namespaces, operatoroverloading, function name overloading, references, free store management operators, and additional library facilities.

Scope 1

© ISO/IEC N4910

2 Normative references [intro.refs]
1 The following documents are referred to in the text in such a way that some or all of their content constitutes requirementsof this document. For dated references, only the edition cited applies. For undated references, the latest edition of thereferenced document (including any amendments) applies.

—(1.1) ISO/IEC 2382, Information technology — Vocabulary
—(1.2) ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of datesand times
—(1.3) ISO/IEC 9899:2018, Programming languages — C
—(1.4) ISO/IEC/IEEE 9945:2009, Information Technology — Portable Operating System Interface (POSIX1)
—(1.5) ISO/IEC/IEEE 9945:2009/Cor 1:2013, Information Technology — Portable Operating System Interface (POSIX),Technical Corrigendum 1
—(1.6) ISO/IEC/IEEE 9945:2009/Cor 2:2017, Information Technology — Portable Operating System Interface (POSIX),Technical Corrigendum 2
—(1.7) ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)
—(1.8) ISO/IEC 10646:2003,2 Information technology — Universal Multiple-Octet Coded Character Set (UCS)
—(1.9) ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the naturalsciences and technology
—(1.10) Ecma International, ECMAScript3 Language Specification, Standard Ecma-262, third edition, 1999.
—(1.11) The Unicode Consortium. Unicode Standard Annex, UAX #44, Unicode Character Database. Edited by KenWhistler and Laurenţiu Iancu. Available from: http://www.unicode.org/reports/tr44/
—(1.12) The Unicode Consortium. The Unicode Standard, Derived Core Properties. Available from: https://www.

unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
2 The library described in ISO/IEC 9899:2018, Clause 7, is hereinafter called the C standard library.4
3 The operating system interface described in ISO/IEC 9945:2009 is hereinafter called POSIX.
4 The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.
5 [Note 1: References to ISO/IEC 10646:2003 are used only to support deprecated features (D.22). —end note]

1) POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc. This information is given for the convenience ofusers of this document and does not constitute an endorsement by ISO or IEC of this product.
2) Cancelled and replaced by ISO/IEC 10646:2017.
3) ECMAScript® is a registered trademark of Ecma International. This information is given for the convenience of users of this document anddoes not constitute an endorsement by ISO or IEC of this product.
4)With the qualifications noted in Clause 17 through Clause 33 and in C.7, the C standard library is a subset of the C++ standard library.

Normative references 2

http://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt

© ISO/IEC N4910

3 Terms and definitions [intro.defs]
1 For the purposes of this document, the terms and definitions given in ISO/IEC 2382, the terms, definitions, and symbolsgiven in ISO 80000-2:2009, and the following apply.
2 ISO and IEC maintain terminology databases for use in standardization at the following addresses:

—(2.1) ISO Online browsing platform: available at https://www.iso.org/obp
—(2.2) IEC Electropedia: available at http://www.electropedia.org

3 Terms that are used only in a small portion of this document are defined where they are used and italicized where theyare defined.
3.1 [defns.access]
access
〈execution-time action〉 read or modify the value of an object
[Note 1 to entry: Only glvalues of scalar type can be used to access objects. Reads of scalar objects are described in 7.3.2 andmodifications of scalar objects are described in 7.6.19, 7.6.1.6, and 7.6.2.3. Attempts to read or modify an object of class typetypically invoke a constructor (11.4.5) or assignment operator (11.4.6); such invocations do not themselves constitute accesses,although they may involve accesses of scalar subobjects. —end note]
3.2 [defns.arbitrary.stream]
arbitrary-positional stream
〈library〉 stream that can seek to any integral position within the length of the stream
[Note 1 to entry: Every arbitrary-positional stream is also a repositional stream (3.49). —end note]
3.3 [defns.argument]
argument
〈function call expression〉 expression in the comma-separated list bounded by the parentheses
3.4 [defns.argument.macro]
argument
〈function-like macro〉 sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
3.5 [defns.argument.throw]
argument
〈throw expression〉 operand of throw
3.6 [defns.argument.templ]
argument
〈template instantiation〉 constant-expression, type-id , or id-expression in the comma-separated list bounded by theangle brackets
3.7 [defns.block]
block
〈execution〉 wait for some condition (other than for the implementation to execute the execution steps of the thread ofexecution) to be satisfied before continuing execution past the blocking operation
3.8 [defns.block.stmt]
block
〈statement〉 compound statement
3.9 [defns.character]
character
〈library〉 object which, when treated sequentially, can represent text
[Note 1 to entry: The term does not mean only char, char8_t, char16_t, char32_t, and wchar_t objects (6.8.2), but any value thatcan be represented by a type that provides the definitions specified in Clause 23, Clause 30, Clause 31, or Clause 32. —end note]

§ 3.9 3

https://www.iso.org/obp
http://www.electropedia.org

© ISO/IEC N4910

3.10 [defns.character.container]
character container type
〈library〉 class or a type used to represent a character
[Note 1 to entry: It is used for one of the template parameters of the string, iostream, and regular expression class templates. —endnote]
3.11 [defns.regex.collating.element]
collating elementsequence of one or more characters within the current locale that collate as if they were a single character
3.12 [defns.component]
component
〈library〉 group of library entities directly related as members, parameters, or return types
[Note 1 to entry: For example, the class template basic_string and the non-member function templates that operate on strings arereferred to as the string component. —end note]
3.13 [defns.cond.supp]
conditionally-supportedprogram construct that an implementation is not required to support
[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not support. —end note]
3.14 [defns.const.subexpr]
constant subexpressionexpression whose evaluation as subexpression of a conditional-expression CE would not prevent CE from being a coreconstant expression
3.15 [defns.deadlock]
deadlock
〈library〉 situation wherein one or more threads are unable to continue execution because each is blocked waiting forone or more of the others to satisfy some condition
3.16 [defns.default.behavior.impl]
default behavior
〈library implementation〉 specific behavior provided by the implementation, within the scope of the required behavior
3.17 [defns.diagnostic]
diagnostic messagemessage belonging to an implementation-defined subset of the implementation’s output messages
3.18 [defns.direct.non.list.init]
direct-non-list-initializationdirect-initialization that is not list-initialization
3.19 [defns.dynamic.type]
dynamic type
〈glvalue〉 type of the most derived object to which the glvalue refers
[Example 1: If a pointer (9.3.4.2) p whose static type is “pointer to class B” is pointing to an object of class D, derived from B (11.7),the dynamic type of the expression *p is “D”. References (9.3.4.3) are treated similarly. —end example]
3.20 [defns.dynamic.type.prvalue]
dynamic type
〈prvalue〉 static type of the prvalue expression
3.21 [defns.expression.equivalent]
expression-equivalent
〈library〉 expressions that all have the same effects, either are all potentially-throwing or are all not potentially-throwing,and either are all constant subexpressions or are all not constant subexpressions
[Example 1: For a value x of type int and a function f that accepts integer arguments, the expressions f(x + 2), f(2 + x), and f(1
+ x + 1) are expression-equivalent. —end example]

§ 3.21 4

© ISO/IEC N4910

3.22 [defns.regex.finite.state.machine]
finite state machine
〈regular expression〉 unspecified data structure that is used to represent a regular expression, and which permits efficientmatches against the regular expression to be obtained
3.23 [defns.regex.format.specifier]
format specifier
〈regular expression〉 sequence of one or more characters that is to be replaced with some part of a regular expressionmatch
3.24 [defns.handler]
handler function
〈library〉 non-reserved function whose definition may be provided by a C++ program
[Note 1 to entry: A C++ program may designate a handler function at various points in its execution by supplying a pointer to thefunction when calling any of the library functions that install handler functions (Clause 17). —end note]
3.25 [defns.ill.formed]
ill-formed programprogram that is not well-formed (3.68)
3.26 [defns.impl.defined]
implementation-defined behaviorbehavior, for a well-formed program construct and correct data, that depends on the implementation and that eachimplementation documents
3.27 [defns.order.ptr]
implementation-defined strict total order over pointers
〈library〉 implementation-defined strict total ordering over all pointer values such that the ordering is consistent with thepartial order imposed by the builtin operators <, >, <=, >=, and <=>
3.28 [defns.impl.limits]
implementation limitsrestrictions imposed upon programs by the implementation
3.29 [defns.iostream.templates]
iostream class templates
〈library〉 templates that are declared in header <iosfwd> and take two template arguments
[Note 1 to entry: The arguments are named charT and traits. The argument charT is a character container class, and the argument
traits is a class which defines additional characteristics and functions of the character type represented by charT necessary toimplement the iostream class templates. —end note]
3.30 [defns.locale.specific]
locale-specific behaviorbehavior that depends on local conventions of nationality, culture, and language that each implementation documents
3.31 [defns.regex.matched]
matched
〈regular expression〉 condition when a sequence of zero or more characters correspond to a sequence of charactersdefined by the pattern
3.32 [defns.modifier]
modifier function
〈library〉 class member function other than a constructor, assignment operator, or destructor that alters the state of anobject of the class
3.33 [defns.move.assign]
move assignment
〈library〉 assignment of an rvalue of some object type to a modifiable lvalue of the same type

§ 3.33 5

© ISO/IEC N4910

3.34 [defns.move.constr]
move construction
〈library〉 direct-initialization of an object of some type with an rvalue of the same type
3.35 [defns.multibyte]
multibyte charactersequence of one or more bytes representing the code unit sequence for an encoded character of the execution characterset
3.36 [defns.nonconst.libcall]
non-constant library callinvocation of a library function that, as part of evaluating any expression E, prevents E from being a core constantexpression
3.37 [defns.ntcts]
NTCTS
〈library〉 sequence of values that have character type that precede the terminating null character type value charT()
3.38 [defns.observer]
observer function
〈library〉 class member function that accesses the state of an object of the class but does not alter that state
[Note 1 to entry: Observer functions are specified as const member functions. —end note]
3.39 [defns.parameter]
parameter
〈function or catch clause〉 object or reference declared as part of a function declaration or definition or in the catchclause of an exception handler that acquires a value on entry to the function or handler
3.40 [defns.parameter.macro]
parameter
〈function-like macro〉 identifier from the comma-separated list bounded by the parentheses immediately following themacro name
3.41 [defns.parameter.templ]
parameter
〈template〉 member of a template-parameter-list

3.42 [defns.regex.primary.equivalence.class]
primary equivalence class
〈regular expression〉 set of one or more characters which share the same primary sort key: that is the sort key weightingthat depends only upon character shape, and not accents, case, or locale specific tailorings
3.43 [defns.prog.def.spec]
program-defined specialization
〈library〉 explicit template specialization or partial specialization that is not part of the C++ standard library and notdefined by the implementation
3.44 [defns.prog.def.type]
program-defined type
〈library〉 non-closure class type or enumeration type that is not part of the C++ standard library and not defined bythe implementation, or a closure type of a non-implementation-provided lambda expression, or an instantiation of aprogram-defined specialization
[Note 1 to entry: Types defined by the implementation include extensions (4.1) and internal types used by the library. —end note]

§ 3.44 6

© ISO/IEC N4910

3.45 [defns.projection]
projection
〈library〉 transformation that an algorithm applies before inspecting the values of elements
[Example 1:
std::pair<int, std::string_view> pairs[] = {{2, "foo"}, {1, "bar"}, {0, "baz"}};
std::ranges::sort(pairs, std::ranges::less{}, [](auto const& p) { return p.first; });

sorts the pairs in increasing order of their first members:
{{0, "baz"}, {1, "bar"}, {2, "foo"}}

—end example]
3.46 [defns.referenceable]
referenceable typetype that is either an object type, a function type that does not have cv-qualifiers or a ref-qualifier , or a reference type
[Note 1 to entry: The term describes a type to which a reference can be created, including reference types. —end note]
3.47 [defns.regex.regular.expression]
regular expressionpattern that selects specific strings from a set of character strings
3.48 [defns.replacement]
replacement function
〈library〉 non-reserved function whose definition is provided by a C++ program
[Note 1 to entry: Only one definition for such a function is in effect for the duration of the program’s execution, as the result ofcreating the program (5.2) and resolving the definitions of all translation units (6.6). —end note]
3.49 [defns.repositional.stream]
repositional stream
〈library〉 stream that can seek to a position that was previously encountered
3.50 [defns.required.behavior]
required behavior
〈library〉 description of replacement function and handler function semantics applicable to both the behavior providedby the implementation and the behavior of any such function definition in the program
[Note 1 to entry: If such a function defined in a C++ program fails to meet the required behavior when it executes, the behavior isundefined. —end note]
3.51 [defns.reserved.function]
reserved function
〈library〉 function, specified as part of the C++ standard library, that is defined by the implementation
[Note 1 to entry: If a C++ program provides a definition for any reserved function, the results are undefined. —end note]
3.52 [defns.signature]
signature
〈function〉 name, parameter-type-list, and enclosing namespace
[Note 1 to entry: Signatures are used as a basis for name mangling and linking. —end note]
3.53 [defns.signature.friend]
signature
〈non-template friend function with trailing requires-clause〉 name, parameter-type-list, enclosing class, and trailing
requires-clause

3.54 [defns.signature.templ]
signature
〈function template〉 name, parameter-type-list, enclosing namespace, return type, template-head , and trailing requires-
clause (if any)

§ 3.54 7

© ISO/IEC N4910

3.55 [defns.signature.templ.friend]
signature
〈friend function template with constraint involving enclosing template parameters〉 name, parameter-type-list, returntype, enclosing class, template-head , and trailing requires-clause (if any)
3.56 [defns.signature.spec]
signature
〈function template specialization〉 signature of the template of which it is a specialization and its template arguments(whether explicitly specified or deduced)
3.57 [defns.signature.member]
signature
〈class member function〉 name, parameter-type-list, class of which the function is a member, cv-qualifiers (if any),
ref-qualifier (if any), and trailing requires-clause (if any)
3.58 [defns.signature.member.templ]
signature
〈class member function template〉 name, parameter-type-list, class of which the function is a member, cv-qualifiers (ifany), ref-qualifier (if any), return type (if any), template-head , and trailing requires-clause (if any)
3.59 [defns.signature.member.spec]
signature
〈class member function template specialization〉 signature of the member function template of which it is a specializationand its template arguments (whether explicitly specified or deduced)
3.60 [defns.stable]
stable algorithm
〈library〉 algorithm that preserves, as appropriate to the particular algorithm, the order of elements
[Note 1 to entry: Requirements for stable algorithms are given in 16.4.6.8. —end note]
3.61 [defns.static.type]
static typetype of an expression resulting from analysis of the program without considering execution semantics
[Note 1 to entry: The static type of an expression depends only on the form of the program in which the expression appears, and doesnot change while the program is executing. —end note]
3.62 [defns.regex.subexpression]
sub-expression
〈regular expression〉 subset of a regular expression that has been marked by parentheses
3.63 [defns.traits]
traits class
〈library〉 class that encapsulates a set of types and functions necessary for class templates and function templates tomanipulate objects of types for which they are instantiated
3.64 [defns.unblock]
unblocksatisfy a condition that one or more blocked threads of execution are waiting for
3.65 [defns.undefined]
undefined behaviorbehavior for which this document imposes no requirements
[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of behavior or when aprogram uses an erroneous construct or erroneous data. Permissible undefined behavior ranges from ignoring the situation completelywith unpredictable results, to behaving during translation or program execution in a documented manner characteristic of theenvironment (with or without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of adiagnostic message). Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.Evaluation of a constant expression (7.7) never exhibits behavior explicitly specified as undefined in Clause 4 through Clause 15.—end note]

§ 3.65 8

© ISO/IEC N4910

3.66 [defns.unspecified]
unspecified behaviorbehavior, for a well-formed program construct and correct data, that depends on the implementation
[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of possible behaviors is usuallydelineated by this document. —end note]
3.67 [defns.valid]
valid but unspecified state
〈library〉 value of an object that is not specified except that the object’s invariants are met and operations on the objectbehave as specified for its type
[Example 1: If an object x of type std::vector<int> is in a valid but unspecified state, x.empty() can be called unconditionally,and x.front() can be called only if x.empty() returns false. —end example]
3.68 [defns.well.formed]
well-formed programC++ program constructed according to the syntax and semantic rules

§ 3.68 9

© ISO/IEC N4910

4 General principles [intro]
4.1 Implementation compliance [intro.compliance]
4.1.1 General [intro.compliance.general]

1 The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those rules containingan explicit notation that “no diagnostic is required” or which are described as resulting in “undefined behavior”.
2 Although this document states only requirements on C++ implementations, those requirements are often easier tounderstand if they are phrased as requirements on programs, parts of programs, or execution of programs. Suchrequirements have the following meaning:

—(2.1) If a program contains no violations of the rules in Clause 5 through Clause 33 and Annex D, a conformingimplementation shall, within its resource limits as described in Annex B, accept and correctly execute5 thatprogram.
—(2.2) If a program contains a violation of any diagnosable rule or an occurrence of a construct described in thisdocument as “conditionally-supported” when the implementation does not support that construct, a conformingimplementation shall issue at least one diagnostic message.
—(2.3) If a program contains a violation of a rule for which no diagnostic is required, this document places no requirementon implementations with respect to that program.

[Note 1: During template argument deduction and substitution, certain constructs that in other contexts require a diagnostic aretreated differently; see 13.10.3. —end note]
3 For classes and class templates, the library Clauses specify partial definitions. Private members (11.8) are not specified,but each implementation shall supply them to complete the definitions according to the description in the library Clauses.
4 For functions, function templates, objects, and values, the library Clauses specify declarations. Implementations shallsupply definitions consistent with the descriptions in the library Clauses.
5 A C++ translation unit (5.2) obtains access to the names defined in the library by including the appropriate standardlibrary header or importing the appropriate standard library named header unit (16.4.3.2).
6 The templates, classes, functions, and objects in the library have external linkage (6.6). The implementation providesdefinitions for standard library entities, as necessary, while combining translation units to form a complete C++ program(5.2).
7 Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. For a hostedimplementation, this document defines the set of available libraries. A freestanding implementation is one in whichexecution may take place without the benefit of an operating system, and has an implementation-defined set of librariesthat includes certain language-support libraries (16.4.2.4).
8 A conforming implementation may have extensions (including additional library functions), provided they do not alterthe behavior of any well-formed program. Implementations are required to diagnose programs that use such extensionsthat are ill-formed according to this document. Having done so, however, they can compile and execute such programs.
9 Each implementation shall include documentation that identifies all conditionally-supported constructs that it does notsupport and defines all locale-specific characteristics.6
4.1.2 Abstract machine [intro.abstract]

1 The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This documentplaces no requirement on the structure of conforming implementations. In particular, they need not copy or emulate thestructure of the abstract machine. Rather, conforming implementations are required to emulate (only) the observablebehavior of the abstract machine as explained below.7

5) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 6.9.1.
6) This documentation also defines implementation-defined behavior; see 4.1.2.
7) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this document as long asthe result is as if the requirement had been obeyed, as far as can be determined from the observable behavior of the program. For instance, an actualimplementation need not evaluate part of an expression if it can deduce that its value is not used and that no side effects affecting the observablebehavior of the program are produced.

§ 4.1.2 10

© ISO/IEC N4910

2 Certain aspects and operations of the abstract machine are described in this document as implementation-defined (forexample, sizeof(int)). These constitute the parameters of the abstract machine. Each implementation shall includedocumentation describing its characteristics and behavior in these respects.8 Such documentation shall define theinstance of the abstract machine that corresponds to that implementation (referred to as the “corresponding instance”below).
3 Certain other aspects and operations of the abstract machine are described in this document as unspecified (for example,order of evaluation of arguments in a function call (7.6.1.3)). Where possible, this document defines a set of allowablebehaviors. These define the nondeterministic aspects of the abstract machine. An instance of the abstract machine canthus have more than one possible execution for a given program and a given input.
4 Certain other operations are described in this document as undefined (for example, the effect of attempting to modify aconst object).
[Note 1: This document imposes no requirements on the behavior of programs that contain undefined behavior. —end note]

5 A conforming implementation executing a well-formed program shall produce the same observable behavior as one ofthe possible executions of the corresponding instance of the abstract machine with the same program and the sameinput. However, if any such execution contains an undefined operation, this document places no requirement on theimplementation executing that program with that input (not even with regard to operations preceding the first undefinedoperation).
6 The least requirements on a conforming implementation are:

—(6.1) Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.
—(6.2) At program termination, all data written into files shall be identical to one of the possible results that execution ofthe program according to the abstract semantics would have produced.
—(6.3) The input and output dynamics of interactive devices shall take place in such a fashion that prompting output isactually delivered before a program waits for input. What constitutes an interactive device is implementation-defined.

These collectively are referred to as the observable behavior of the program.
[Note 2: More stringent correspondences between abstract and actual semantics can be defined by each implementation. —end note]
4.2 Structure of this document [intro.structure]

1 Clause 5 through Clause 15 describe the C++ programming language. That description includes detailed syntacticspecifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic specifications.
2 Clause 17 through Clause 33 and Annex D (the library clauses) describe the C++ standard library. That descriptionincludes detailed descriptions of the entities and macros that constitute the library, in a form described in Clause 16.
3 Annex B recommends lower bounds on the capacity of conforming implementations.
4 Annex C summarizes the evolution of C++ since its first published description, and explains in detail the differencesbetween C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D describes those features.
4.3 Syntax notation [syntax]

1 In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal words andcharacters in constant width type. Alternatives are listed on separate lines except in a few cases where a long setof alternatives is marked by the phrase “one of”. If the text of an alternative is too long to fit on a line, the text iscontinued on subsequent lines indented from the first one. An optional terminal or non-terminal symbol is indicated bythe subscript “opt”, so
{ expressionopt }

indicates an optional expression enclosed in braces.
2 Names for syntactic categories have generally been chosen according to the following rules:

—(2.1) X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
—(2.2) X-id is an identifier with no context-dependent meaning (e.g., qualified-id).
—(2.3) X-seq is one or more X ’s without intervening delimiters (e.g., declaration-seq is a sequence of declarations).

8) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.1.
§ 4.3 11

© ISO/IEC N4910

—(2.4) X-list is one or more X ’s separated by intervening commas (e.g., identifier-list is a sequence of identifiersseparated by commas).

§ 4.3 12

© ISO/IEC N4910

5 Lexical conventions [lex]
5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with all theheaders (16.4.2.3) and source files included (15.3) via the preprocessing directive #include, less any source linesskipped by any of the conditional inclusion (15.2) preprocessing directives, is called a translation unit.
[Note 1: A C++ program need not all be translated at the same time. —end note]

2 [Note 2: Previously translated translation units and instantiation units can be preserved individually or in libraries. The separatetranslation units of a program communicate (6.6) by (for example) calls to functions whose identifiers have external or modulelinkage, manipulation of objects whose identifiers have external or module linkage, or manipulation of data files. Translation unitscan be separately translated and then later linked to produce an executable program (6.6). —end note]
5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.9
1. Physical source file characters are mapped, in an implementation-defined manner, to the translation characterset (5.3) (introducing new-line characters for end-of-line indicators). The set of physical source file charactersaccepted is implementation-defined.
2. Each sequence of a backslash character (\) immediately followed by zero or more whitespace characters otherthan new-line followed by a new-line character is deleted, splicing physical source lines to form logical sourcelines. Only the last backslash on any physical source line shall be eligible for being part of such a splice. Exceptfor splices reverted in a raw string literal, if a splice results in a character sequence that matches the syntax ofa universal-character-name, the behavior is undefined. A source file that is not empty and that does not endin a new-line character, or that ends in a splice, shall be processed as if an additional new-line character wereappended to the file.
3. The source file is decomposed into preprocessing tokens (5.4) and sequences of whitespace characters (includingcomments). A source file shall not end in a partial preprocessing token or in a partial comment.10 Each commentis replaced by one space character. New-line characters are retained. Whether each nonempty sequence ofwhitespace characters other than new-line is retained or replaced by one space character is unspecified. Ascharacters from the source file are consumed to form the next preprocessing token (i.e., not being consumed aspart of a comment or other forms of whitespace), except when matching a c-char-sequence, s-char-sequence,

r-char-sequence, h-char-sequence, or q-char-sequence, universal-character-names are recognized and replacedby the designated element of the translation character set. The process of dividing a source file’s characters intopreprocessing tokens is context-dependent.
[Example 1: See the handling of < within a #include preprocessing directive. —end example]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator expressionsare executed. A #include preprocessing directive causes the named header or source file to be processed fromphase 1 through phase 4, recursively. All preprocessing directives are then deleted.
5. For a sequence of two or more adjacent string-literal tokens, a common encoding-prefix is determined as specifiedin 5.13.5. Each such string-literal token is then considered to have that common encoding-prefix .
6. Adjacent string-literal tokens are concatenated (5.13.5).
7. Whitespace characters separating tokens are no longer significant. Each preprocessing token is converted into atoken (5.6). The resulting tokens are syntactically and semantically analyzed and translated as a translation unit.
[Note 1: The process of analyzing and translating the tokens can occasionally result in one token being replaced by a sequenceof other tokens (13.3). —end note]
It is implementation-defined whether the sources for module units and header units on which the current translationunit has an interface dependency (10.1, 10.3) are required to be available.

9) Implementations behave as if these separate phases occur, although in practice different phases can be folded together.
10)A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a terminatingsequence of characters, such as a header-name that is missing the closing " or >. A partial comment would arise from a source file ending with anunclosed /* comment.
§ 5.2 13

© ISO/IEC N4910

[Note 2: Source files, translation units and translated translation units need not necessarily be stored as files, nor need there beany one-to-one correspondence between these entities and any external representation. The description is conceptual only,and does not specify any particular implementation. —end note]
8. Translated translation units and instantiation units are combined as follows:
[Note 3: Some or all of these can be supplied from a library. —end note]
Each translated translation unit is examined to produce a list of required instantiations.
[Note 4: This can include instantiations which have been explicitly requested (13.9.3). —end note]
The definitions of the required templates are located. It is implementation-defined whether the source of thetranslation units containing these definitions is required to be available.
[Note 5: An implementation can choose to encode sufficient information into the translated translation unit so as to ensure thesource is not required here. —end note]
All the required instantiations are performed to produce instantiation units.
[Note 6: These are similar to translated translation units, but contain no references to uninstantiated templates and no templatedefinitions. —end note]
The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references to entitiesnot defined in the current translation. All such translator output is collected into a program image which containsinformation needed for execution in its execution environment.
5.3 Character sets [lex.charset]

1 The translation character set consists of the following elements:
—(1.1) each character named by ISO/IEC 10646, as identified by its unique UCS scalar value, and
—(1.2) a distinct character for each UCS scalar value where no named character is assigned.

[Note 1: ISO/IEC 10646 code points are integers in the range [0, 10FFFF] (hexadecimal). A surrogate code point is a value in therange [D800,DFFF] (hexadecimal). A UCS scalar value is any code point that is not a surrogate code point. —end note]
2 The basic character set is a subset of the translation character set, consisting of 96 characters as specified in Table 1.
[Note 2: Unicode short names are given only as a means to identifying the character; the numerical value has no other meaning inthis context. —end note]

3 The universal-character-name construct provides a way to name other characters.
hex-quad :

hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name :
\u hex-quad
\U hex-quad hex-quad

A universal-character-name designates the character in the translation character set whose UCS scalar value is thehexadecimal number represented by the sequence of hexadecimal-digits in the universal-character-name. The programis ill-formed if that number is not a UCS scalar value. If a universal-character-name outside the c-char-sequence,
s-char-sequence, or r-char-sequence of a character-literal or string-literal (in either case, including within a user-
defined-literal) corresponds to a control character or to a character in the basic character set, the program is ill-formed.
[Note 3: A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a universal-
character-name. —end note]

4 The basic literal character set consists of all characters of the basic character set, plus the control characters specifiedin Table 2.
[Note 4: The alias bell for u+0007 shown in ISO 10646 is ambiguous with u+1f514 bell. —end note]

5 A code unit is an integer value of character type (6.8.2). Characters in a character-literal other than a multicharacter ornon-encodable character literal or in a string-literal are encoded as a sequence of one or more code units, as determinedby the encoding-prefix (5.13.3, 5.13.5); this is termed the respective literal encoding. The ordinary literal encoding isthe encoding applied to an ordinary character or string literal. The wide literal encoding is the encoding applied to awide character or string literal.

§ 5.3 14

© ISO/IEC N4910

Table 1: Basic character set [tab:lex.charset.basic]
character glyph

u+0009 character tabulationu+000b line tabulationu+000c form feedu+0020 spaceu+000a line feed new-lineu+0021 exclamation mark !u+0022 quotation mark "u+0023 number sign #u+0025 percent sign %u+0026 ampersand &u+0027 apostrophe ’u+0028 left parenthesis (u+0029 right parenthesis)u+002a asterisk *u+002b plus sign +u+002c comma ,u+002d hyphen-minus -u+002e full stop .u+002f solidus /u+0030 .. u+0039 digit zero .. nine 0 1 2 3 4 5 6 7 8 9u+003a colon :u+003b semicolon ;u+003c less-than sign <u+003d equals sign =u+003e greater-than sign >u+003f question mark ?u+0041 .. u+005a latin capital letter a .. z A B C D E F G H I J K L M
N O P Q R S T U V W X Y Zu+005b left square bracket [u+005c reverse solidus \u+005d right square bracket]u+005e circumflex accent ^u+005f low line _u+0061 .. u+007a latin small letter a .. z a b c d e f g h i j k l m
n o p q r s t u v w x y zu+007b left curly bracket {u+007c vertical line |u+007d right curly bracket }u+007e tilde ~

Table 2: Additional control characters in the basic literal character set [tab:lex.charset.literal]
character

u+0000 nullu+0007 alertu+0008 backspaceu+000d carriage return

§ 5.3 15

© ISO/IEC N4910

6 A literal encoding or a locale-specific encoding of one of the execution character sets (16.3.3.3.5) encodes each elementof the basic literal character set as a single code unit with non-negative value, distinct from the code unit for any othersuch element.
[Note 5: A character not in the basic literal character set can be encoded with more than one code unit; the value of such a code unitcan be the same as that of a code unit for an element of the basic literal character set. —end note]
The u+0000 null character is encoded as the value 0. No other element of the translation character set is encoded with acode unit of value 0. The code unit value of each decimal digit character after the digit 0 (u+0030) shall be one greaterthan the value of the previous. The ordinary and wide literal encodings are otherwise implementation-defined. For aUTF-8, UTF-16, or UTF-32 literal, the UCS scalar value corresponding to each character of the translation characterset is encoded as specified in ISO/IEC 10646 for the respective UCS encoding form.
5.4 Preprocessing tokens [lex.pptoken]

preprocessing-token :
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punceach non-whitespace character that cannot be one of the above

1 Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an identifier, aliteral, or an operator or punctuator.
2 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. In this document,glyphs are used to identify elements of the basic character set (5.3). The categories of preprocessing token are: headernames, placeholder tokens produced by preprocessing import and module directives (import-keyword ,module-keyword ,and export-keyword), identifiers, preprocessing numbers, character literals (including user-defined character literals),string literals (including user-defined string literals), preprocessing operators and punctuators, and single non-whitespacecharacters that do not lexically match the other preprocessing token categories. If a u+0027 apostrophe or a u+0022quotation mark character matches the last category, the behavior is undefined. If any character not in the basic characterset matches the last category, the program is ill-formed. Preprocessing tokens can be separated by whitespace; thisconsists of comments (5.7), or whitespace characters (u+0020 space, u+0009 character tabulation, new-line, u+000b linetabulation, and u+000c form feed), or both. As described in Clause 15, in certain circumstances during translation phase4, whitespace (or the absence thereof) serves as more than preprocessing token separation. Whitespace can appearwithin a preprocessing token only as part of a header name or between the quotation characters in a character literal orstring literal.
3 If the input stream has been parsed into preprocessing tokens up to a given character:

—(3.1) If the next character begins a sequence of characters that could be the prefix and initial double quote of a rawstring literal, such as R", the next preprocessing token shall be a raw string literal. Between the initial and finaldouble quote characters of the raw string, any transformations performed in phase 2 (line splicing) are reverted;this reversion shall apply before any d-char , r-char , or delimiting parenthesis is identified. The raw string literalis defined as the shortest sequence of characters that matches the raw-string pattern
encoding-prefixopt R raw-string

—(3.2) Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the < is treated as apreprocessing token by itself and not as the first character of the alternative token <:.
—(3.3) Otherwise, the next preprocessing token is the longest sequence of characters that could constitute a preprocessingtoken, even if that would cause further lexical analysis to fail, except that a header-name (5.8) is only formed

—(3.3.1) after the include or import preprocessing token in an #include (15.3) or import (15.5) directive, or
—(3.3.2) within a has-include-expression.

[Example 1:

§ 5.4 16

© ISO/IEC N4910

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

—end example]
4 The import-keyword is produced by processing an import directive (15.5), the module-keyword is produced bypreprocessing a module directive (15.4), and the export-keyword is produced by preprocessing either of the previoustwo directives.
[Note 1: None has any observable spelling. —end note]

5 [Example 2: The program fragment 0xe+foo is parsed as a preprocessing number token (one that is not a valid integer-literal or
floating-point-literal token), even though a parse as three preprocessing tokens 0xe, +, and foo can produce a valid expression (forexample, if foo is a macro defined as 1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one that is a valid
floating-point-literal token), whether or not E is a macro name. —end example]

6 [Example 3: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types, violates a constraint onincrement operators, even though the parse x ++ + ++ y can yield a correct expression. —end example]
5.5 Alternative tokens [lex.digraph]

1 Alternative token representations are provided for some operators and punctuators.11
2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token, except for itsspelling.12 The set of alternative tokens is defined in Table 3.

Table 3: Alternative tokens [tab:lex.digraph]
Alternative Primary Alternative Primary Alternative Primary

<% { and && and_eq &=
%> } bitor | or_eq |=
<: [or || xor_eq ^=
:>] xor ^ not !
%: # compl ~ not_eq !=
%:%: ## bitand &

5.6 Tokens [lex.token]
token :

identifier
keyword
literal
operator-or-punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,13 operators, and other separators. Blanks, horizontal andvertical tabs, newlines, formfeeds, and comments (collectively, “whitespace”), as described below, are ignored exceptas they serve to separate tokens.
[Note 1: Some whitespace is required to separate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokenscontaining alphabetic characters. —end note]
5.7 Comments [lex.comment]

1 The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters
// start a comment, which terminates immediately before the next new-line character. If there is a form-feed or avertical-tab character in such a comment, only whitespace characters shall appear between it and the new-line thatterminates the comment; no diagnostic is required.
[Note 1: The comment characters //, /*, and */ have no special meaning within a // comment and are treated just like othercharacters. Similarly, the comment characters // and /* have no special meaning within a /* comment. —end note]

11) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not perfectly descriptive,since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two characters. Nonetheless, those alternativetokens that aren’t lexical keywords are colloquially known as “digraphs”.
12) Thus the “stringized” values (15.6.3) of [and <: will be different, maintaining the source spelling, but the tokens can otherwise be freelyinterchanged.
13) Literals include strings and character and numeric literals.
§ 5.7 17

© ISO/IEC N4910

5.8 Header names [lex.header]
header-name :

< h-char-sequence >
" q-char-sequence "

h-char-sequence :
h-char
h-char-sequence h-char

h-char :any member of the translation character set except new-line and u+003e greater-than sign
q-char-sequence :

q-char
q-char-sequence q-char

q-char :any member of the translation character set except new-line and u+0022 quotation mark
1 [Note 1: Header name preprocessing tokens only appear within a #include preprocessing directive, a __has_include preprocessingexpression, or after certain occurrences of an import token (see 5.4). —end note]
The sequences in both forms of header-names are mapped in an implementation-defined manner to headers or toexternal source file names as specified in 15.3.

2 The appearance of either of the characters ’ or \ or of either of the character sequences /* or // in a q-char-sequenceor an h-char-sequence is conditionally-supported with implementation-defined semantics, as is the appearance of thecharacter " in an h-char-sequence.14
5.9 Preprocessing numbers [lex.ppnumber]

pp-number :
digit
. digit
pp-number identifier-continue
pp-number ’ digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

1 Preprocessing number tokens lexically include all integer-literal tokens (5.13.2) and all floating-point-literal tokens(5.13.4).
2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an integer-literaltoken or a floating-point-literal token.
5.10 Identifiers [lex.name]

identifier :
identifier-start
identifier identifier-continue

identifier-start :
nondigitan element of the translation character set of class XID_Start

identifier-continue :
digit
nondigitan element of the translation character set of class XID_Continue

14) Thus, a sequence of characters that resembles an escape sequence can result in an error, be interpreted as the character corresponding to theescape sequence, or have a completely different meaning, depending on the implementation.
§ 5.10 18

© ISO/IEC N4910

nondigit : one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit : one of
0 1 2 3 4 5 6 7 8 9

1 The character classes XID_Start and XID_Continue are Derived Core Properties as described by UAX #44.15 Theprogram is ill-formed if an identifier does not conform to Normalization Form C as specified in ISO/IEC 10646.
[Note 1: Identifiers are case-sensitive. —end note]
[Note 2: In translation phase 4, identifier also includes those preprocessing-tokens (5.4) differentiated as keywords (5.11) in thelater translation phase 7 (5.6). —end note]

2 The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to in the grammar,these identifiers are used explicitly rather than using the identifier grammar production. Unless otherwise specified, anyambiguity as to whether a given identifier has a special meaning is resolved to interpret the token as a regular identifier .
Table 4: Identifiers with special meaning [tab:lex.name.special]

final import module override

3 In addition, some identifiers are reserved for use by C++ implementations and shall not be used otherwise; no diagnosticis required.
—(3.1) Each identifier that contains a double underscore __ or begins with an underscore followed by an uppercase letteris reserved to the implementation for any use.
—(3.2) Each identifier that begins with an underscore is reserved to the implementation for use as a name in the globalnamespace.

5.11 Keywords [lex.key]
keyword :any identifier listed in Table 5

import-keyword
module-keyword
export-keyword

1 The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as keywordsin phase 7) except in an attribute-token (9.12.1).
[Note 1: The register keyword is unused but is reserved for future use. —end note]

2 Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.5) are reservedand shall not be used otherwise.
5.12 Operators and punctuators [lex.operators]

1 The lexical representation of C++ programs includes a number of preprocessing tokens that are used in the syntax of thepreprocessor or are converted into tokens for operators and punctuators:
preprocessing-op-or-punc :

preprocessing-operator
operator-or-punctuator

preprocessing-operator : one of
%: %:%:

15) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name can be used in forming validexternal identifiers. For example, some otherwise unused character or sequence of characters can be used to encode the \u in a universal-character–
name. Extended characters can produce a long external identifier, but C++ does not place a translation limit on significant characters for externalidentifiers.
§ 5.12 19

© ISO/IEC N4910

Table 5: Keywords [tab:lex.key]
alignas
alignof
asm
auto
bool
break
case
catch
char
char8_t
char16_t
char32_t
class
concept
const
consteval
constexpr

constinit
const_cast
continue
co_await
co_return
co_yield
decltype
default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern

false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new
noexcept
nullptr
operator
private
protected

public
register
reinterpret_cast
requires
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template
this
thread_local
throw

true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

Table 6: Alternative representations [tab:lex.key.digraph]
and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq

operator-or-punctuator : one of
{ } [] ()
<: :> <% %> ; : ...
? :: . .* -> ->* ~
! + - * / % ^ & |
= += -= *= /= %= ^= &= |=
== != < > <= >= <=> && ||
<< >> <<= >>= ++ -- ,
and or xor not bitand bitor compl
and_eq or_eq xor_eq not_eq

Each operator-or-punctuator is converted to a single token in translation phase 7 (5.2).
5.13 Literals [lex.literal]
5.13.1 Kinds of literals [lex.literal.kinds]

1 There are several kinds of literals.16
literal :

integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

5.13.2 Integer literals [lex.icon]
integer-literal :

binary-literal integer-suffixopt
octal-literal integer-suffixopt
decimal-literal integer-suffixopt
hexadecimal-literal integer-suffixopt

16) The term “literal” generally designates, in this document, those tokens that are called “constants” in ISO C.
§ 5.13.2 20

© ISO/IEC N4910

binary-literal :
0b binary-digit
0B binary-digit
binary-literal ’opt binary-digit

octal-literal :
0
octal-literal ’opt octal-digit

decimal-literal :
nonzero-digit
decimal-literal ’opt digit

hexadecimal-literal :
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit : one of
0 1

octal-digit : one of
0 1 2 3 4 5 6 7

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

hexadecimal-prefix : one of
0x 0X

hexadecimal-digit-sequence :
hexadecimal-digit
hexadecimal-digit-sequence ’opt hexadecimal-digit

hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix :
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffixopt
unsigned-suffix size-suffixopt
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
size-suffix unsigned-suffixopt

unsigned-suffix : one of
u U

long-suffix : one of
l L

long-long-suffix : one of
ll LL

size-suffix : one of
z Z

1 In an integer-literal , the sequence of binary-digits, octal-digits, digits, or hexadecimal-digits is interpreted as a base Ninteger as shown in table Table 7; the lexically first digit of the sequence of digits is the most significant.
[Note 1: The prefix and any optional separating single quotes are ignored when determining the value. —end note]

Table 7: Base of integer-literals [tab:lex.icon.base]
Kind of integer-literal base N
binary-literal 2
octal-literal 8
decimal-literal 10
hexadecimal-literal 16

2 The hexadecimal-digits a through f and A through F have decimal values ten through fifteen.
§ 5.13.2 21

© ISO/IEC N4910

[Example 1: The number twelve can be written 12, 014, 0XC, or 0b1100. The integer-literals 1048576, 1’048’576, 0X100000,
0x10’0000, and 0’004’000’000 all have the same value. —end example]

3 The type of an integer-literal is the first type in the list in Table 8 corresponding to its optional integer-suffix in whichits value can be represented. An integer-literal is a prvalue.
Table 8: Types of integer-literals [tab:lex.icon.type]

integer-suffix decimal-literal integer-literal other than decimal-literal
none int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long intBoth u or U unsigned long int unsigned long intand l or L unsigned long long int unsigned long long int

ll or LL long long int long long int
unsigned long long intBoth u or U unsigned long long int unsigned long long intand ll or LL

z or Z the signed integer type corresponding the signed integer typeto std::size_t (17.2.4) corresponding to std::size_t
std::size_tBoth u or U std::size_t std::size_tand z or Z

4 If an integer-literal cannot be represented by any type in its list and an extended integer type (6.8.2) can representits value, it may have that extended integer type. If all of the types in the list for the integer-literal are signed, theextended integer type shall be signed. If all of the types in the list for the integer-literal are unsigned, the extendedinteger type shall be unsigned. If the list contains both signed and unsigned types, the extended integer type may besigned or unsigned. A program is ill-formed if one of its translation units contains an integer-literal that cannot berepresented by any of the allowed types.
5.13.3 Character literals [lex.ccon]

character-literal :
encoding-prefixopt ’ c-char-sequence ’

encoding-prefix : one of
u8 u U L

c-char-sequence :
c-char
c-char-sequence c-char

c-char :
basic-c-char
escape-sequence
universal-character-name

basic-c-char :any member of the translation character set except the u+0027 apostrophe,u+005c reverse solidus, or new-line character

§ 5.13.3 22

© ISO/IEC N4910

escape-sequence :
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence :
\ simple-escape-sequence-char

simple-escape-sequence-char : one of
’ " ? \ a b f n r t v

numeric-escape-sequence :
octal-escape-sequence
hexadecimal-escape-sequence

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

conditional-escape-sequence :
\ conditional-escape-sequence-char

conditional-escape-sequence-char :any member of the basic character set that is not an octal-digit, a simple-escape-sequence-char, or the characters u, U,or x
1 A non-encodable character literal is a character-literal whose c-char-sequence consists of a single c-char that is nota numeric-escape-sequence and that specifies a character that either lacks representation in the literal’s associatedcharacter encoding or that cannot be encoded as a single code unit. A multicharacter literal is a character-literalwhose c-char-sequence consists of more than one c-char . The encoding-prefix of a non-encodable character literal or amulticharacter literal shall be absent or L. Such character-literals are conditionally-supported.
2 The kind of a character-literal , its type, and its associated character encoding are determined by its encoding-prefix andits c-char-sequence as defined by Table 9. The special cases for non-encodable character literals and multicharacterliterals take precedence over their respective base kinds.
[Note 1: The associated character encoding for ordinary and wide character literals determines encodability, but does not determinethe value of non-encodable ordinary or wide character literals or ordinary or wide multicharacter literals. The examples in Table 9for non-encodable ordinary and wide character literals assume that the specified character lacks representation in the ordinary literalencoding or wide literal encoding, respectively, or that encoding the character would require more than one code unit. —end note]

Table 9: Character literals [tab:lex.ccon.literal]
Encoding Kind Type Associated char- Exampleprefix acter encoding
none ordinary character literal char ordinary ’v’non-encodable ordinary character literal int literal ’\U0001F525’ordinary multicharacter literal int encoding ’abcd’
L wide character literal wchar_t wide L’w’non-encodable wide character literal wchar_t literal L’\U0001F32A’wide multicharacter literal wchar_t encoding L’abcd’
u8 UTF-8 character literal char8_t UTF-8 u8’x’
u UTF-16 character literal char16_t UTF-16 u’y’
U UTF-32 character literal char32_t UTF-32 U’z’

3 In translation phase 4, the value of a character-literal is determined using the range of representable values of the
character-literal’s type in translation phase 7. A non-encodable character literal or a multicharacter literal has animplementation-defined value. The value of any other kind of character-literal is determined as follows:
—(3.1) A character-literal with a c-char-sequence consisting of a single basic-c-char , simple-escape-sequence, or

universal-character-name is the code unit value of the specified character as encoded in the literal’s associatedcharacter encoding.
§ 5.13.3 23

© ISO/IEC N4910

[Note 2: If the specified character lacks representation in the literal’s associated character encoding or if it cannot be encodedas a single code unit, then the literal is a non-encodable character literal. —end note]
—(3.2) A character-literal with a c-char-sequence consisting of a single numeric-escape-sequence that specifies aninteger value v has a value as follows:

—(3.2.1) If v does not exceed the range of representable values of the character-literal ’s type, then the value is v.
—(3.2.2) Otherwise, if the character-literal’s encoding-prefix is absent or L, and v does not exceed the range ofrepresentable values of the corresponding unsigned type for the underlying type of the character-literal ’stype, then the value is the unique value of the character-literal ’s type T that is congruent to v modulo 2N ,where N is the width of T.
—(3.2.3) Otherwise, the character-literal is ill-formed.

—(3.3) A character-literal with a c-char-sequence consisting of a single conditional-escape-sequence is conditionally-supported and has an implementation-defined value.
4 The character specified by a simple-escape-sequence is specified in Table 10.
[Note 3: Using an escape sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C. —end note]

Table 10: Simple escape sequences [tab:lex.ccon.esc]
character simple-escape-sequence

u+000a line feed \nu+0009 character tabulation \tu+000b line tabulation \vu+0008 backspace \bu+000d carriage return \ru+000c form feed \fu+0007 alert \au+005c reverse solidus \\u+003f question mark \?u+0027 apostrohpe \’u+0022 quotation mark \"

5.13.4 Floating-point literals [lex.fcon]
floating-point-literal :

decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal :
fractional-constant exponent-partopt floating-point-suffixopt
digit-sequence exponent-part floating-point-suffixopt

hexadecimal-floating-point-literal :
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-point-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-suffixopt

fractional-constant :
digit-sequenceopt . digit-sequence
digit-sequence .

hexadecimal-fractional-constant :
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

exponent-part :
e signopt digit-sequence
E signopt digit-sequence

binary-exponent-part :
p signopt digit-sequence
P signopt digit-sequence

sign : one of
+ -

§ 5.13.4 24

© ISO/IEC N4910

digit-sequence :
digit
digit-sequence ’opt digit

floating-point-suffix : one of
f l F L

1 The type of a floating-point-literal is determined by its floating-point-suffix as specified in Table 11.
Table 11: Types of floating-point-literals [tab:lex.fcon.type]

floating-point-suffix type
none double
f or F float
l or L long double

2 The significand of a floating-point-literal is the fractional-constant or digit-sequence of a decimal-floating-point-literalor the hexadecimal-fractional-constant or hexadecimal-digit-sequence of a hexadecimal-floating-point-literal . In thesignificand, the sequence of digits or hexadecimal-digits and optional period are interpreted as a base N real number s,where N is 10 for a decimal-floating-point-literal and 16 for a hexadecimal-floating-point-literal .
[Note 1: Any optional separating single quotes are ignored when determining the value. —end note]
If an exponent-part or binary-exponent-part is present, the exponent e of the floating-point-literal is the result ofinterpreting the sequence of an optional sign and the digits as a base 10 integer. Otherwise, the exponent e is 0. The scaledvalue of the literal is s× 10e for a decimal-floating-point-literal and s× 2e for a hexadecimal-floating-point-literal .
[Example 1: The floating-point-literals 49.625 and 0xC.68p+2 have the same value. The floating-point-literals 1.602’176’565e-19and 1.602176565e-19 have the same value. —end example]

3 If the scaled value is not in the range of representable values for its type, the program is ill-formed. Otherwise, thevalue of a floating-point-literal is the scaled value if representable, else the larger or smaller representable value nearestthe scaled value, chosen in an implementation-defined manner.
5.13.5 String literals [lex.string]

string-literal :
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence :
s-char
s-char-sequence s-char

s-char :
basic-s-char
escape-sequence
universal-character-name

basic-s-char :any member of the translation character set except the u+0022 quotation mark,u+005c reverse solidus, or new-line character
raw-string :

" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence :
r-char
r-char-sequence r-char

r-char :any member of the translation character set, except a u+0029 right parenthesis followed bythe initial d-char-sequence (which may be empty) followed by a u+0022 quotation mark
d-char-sequence :

d-char
d-char-sequence d-char

§ 5.13.5 25

© ISO/IEC N4910

d-char :any member of the basic character set except:u+0020 space, u+0028 left parenthesis, u+0029 right parenthesis, u+005c reverse solidus,u+0009 character tabulation, u+000b line tabulation, u+000c form feed, and new-line
1 The kind of a string-literal , its type, and its associated character encoding are determined by its encoding prefix andsequence of s-chars or r-chars as defined by Table 12 where n is the number of encoded code units as described below.

Table 12: String literals [tab:lex.string.literal]
Encoding Kind Type Associated Examplesprefix characterencoding
none ordinary string literal array of n

const char
ordinary literalencoding "ordinary string"

R"(ordinary raw string)"
L wide string literal array of n

const wchar_t
wide literalencoding L"wide string"

LR"w(wide raw string)w"
u8 UTF-8 string literal array of n

const char8_t
UTF-8 u8"UTF-8 string"

u8R"x(UTF-8 raw string)x"
u UTF-16 string literal array of n

const char16_t
UTF-16 u"UTF-16 string"

uR"y(UTF-16 raw string)y"
U UTF-32 string literal array of n

const char32_t
UTF-32 U"UTF-32 string"

UR"z(UTF-32 raw string)z"

2 A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. Theterminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence. A
d-char-sequence shall consist of at most 16 characters.

3 [Note 1: The characters ’(’ and ’)’ are permitted in a raw-string . Thus, R"delimiter((a|b))delimiter" is equivalent to "(a|b)".—end note]
4 [Note 2: A source-file new-line in a raw string literal results in a new-line in the resulting execution string literal. Assuming nowhitespace at the beginning of lines in the following example, the assert will succeed:

const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

—end note]
5 [Example 1: The raw string

R"a(
)\
a"
)a"

is equivalent to "\n)\\\na\"\n". The raw string
R"(x = "\"y\"")"

is equivalent to "x = \"\\\"y\\\"\"". —end example]
6 Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals.
7 The common encoding-prefix for a sequence of adjacent string-literals is determined pairwise as follows: If two

string-literals have the same encoding-prefix , the common encoding-prefix is that encoding-prefix . If one string-literalhas no encoding-prefix , the common encoding-prefix is that of the other string-literal . Any other combinations areill-formed.
[Note 3: A string-literal ’s rawness has no effect on the determination of the common encoding-prefix . —end note]

8 In translation phase 6 (5.2), adjacent string-literals are concatenated. The lexical structure and grouping of the contentsof the individual string-literals is retained.
[Example 2:
"\xA" "B"

§ 5.13.5 26

© ISO/IEC N4910

represents the code unit ’\xA’ and the character ’B’ after concatenation (and not the single code unit ’\xAB’). Similarly,
R"(\u00)" "41"

represents six characters, starting with a backslash and ending with the digit 1 (and not the single character ’A’ specified by a
universal-character-name).
Table 13 has some examples of valid concatenations. —end example]

Table 13: String literal concatenations [tab:lex.string.concat]
Source Means Source Means Source Means

u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"
"a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

9 Evaluating a string-literal results in a string literal object with static storage duration (6.7.5). Whether all string-literalsare distinct (that is, are stored in nonoverlapping objects) and whether successive evaluations of a string-literal yieldthe same or a different object is unspecified.
[Note 4: The effect of attempting to modify a string literal object is undefined. —end note]

10 String literal objects are initialized with the sequence of code unit values corresponding to the string-literal ’s sequenceof s-chars (originally from non-raw string literals) and r-chars (originally from raw string literals), plus a terminatingu+0000 null character, in order as follows:
—(10.1) The sequence of characters denoted by each contiguous sequence of basic-s-chars, r-chars, simple-escape-

sequences (5.13.3), and universal-character-names (5.3) is encoded to a code unit sequence using the string-
literal ’s associated character encoding. If a character lacks representation in the associated character encoding,then the string-literal is conditionally-supported and an implementation-defined code unit sequence is encoded.
[Note 5: No character lacks representation in any of the UCS encoding forms. —end note]
When encoding a stateful character encoding, implementations should encode the first such sequence beginningwith the initial encoding state and encode subsequent sequences beginning with the final encoding state of theprior sequence.
[Note 6: The encoded code unit sequence can differ from the sequence of code units that would be obtained by encoding eachcharacter independently. —end note]

—(10.2) Each numeric-escape-sequence (5.13.3) that specifies an integer value v contributes a single code unit with avalue as follows:
—(10.2.1) If v does not exceed the range of representable values of the string-literal’s array element type, then thevalue is v.
—(10.2.2) Otherwise, if the string-literal’s encoding-prefix is absent or L, and v does not exceed the range of rep-resentable values of the corresponding unsigned type for the underlying type of the string-literal’s arrayelement type, then the value is the unique value of the string-literal ’s array element type T that is congruentto v modulo 2N , where N is the width of T.
—(10.2.3) Otherwise, the string-literal is ill-formed.
When encoding a stateful character encoding, these sequences should have no effect on encoding state.

—(10.3) Each conditional-escape-sequence (5.13.3) contributes an implementation-defined code unit sequence. Whenencoding a stateful character encoding, it is implementation-defined what effect these sequences have on encodingstate.
5.13.6 Boolean literals [lex.bool]

boolean-literal :
false
true

1 The Boolean literals are the keywords false and true. Such literals are prvalues and have type bool.
5.13.7 Pointer literals [lex.nullptr]

pointer-literal :
nullptr

§ 5.13.7 27

© ISO/IEC N4910

1 The pointer literal is the keyword nullptr. It is a prvalue of type std::nullptr_t.
[Note 1: std::nullptr_t is a distinct type that is neither a pointer type nor a pointer-to-member type; rather, a prvalue of this type isa null pointer constant and can be converted to a null pointer value or null member pointer value. See 7.3.12 and 7.3.13. —end note]
5.13.8 User-defined literals [lex.ext]

user-defined-literal :
user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal :
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal :
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal :
string-literal ud-suffix

user-defined-character-literal :
character-literal ud-suffix

ud-suffix :
identifier

1 If a token matches both user-defined-literal and another literal kind, it is treated as the latter.
[Example 1: 123_km is a user-defined-literal , but 12LL is an integer-literal . —end example]
The syntactic non-terminal preceding the ud-suffix in a user-defined-literal is taken to be the longest sequence ofcharacters that could match that non-terminal.

2 A user-defined-literal is treated as a call to a literal operator or literal operator template (12.6). To determine the formof this call for a given user-defined-literal L with ud-suffix X, first let S be the set of declarations found by unqualifiedlookup for the literal-operator-id whose literal suffix identifier is X (6.5.3). S shall not be empty.
3 If L is a user-defined-integer-literal , let n be the literal without its ud-suffix . If S contains a literal operator withparameter type unsigned long long, the literal L is treated as a call of the form

operator "" X(nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both. If S containsa raw literal operator, the literal L is treated as a call of the form
operator "" X("n")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator "" X<'c1', 'c2', ... 'ck'>()

where n is the source character sequence c1c2...ck.
[Note 1: The sequence c1c2...ck can only contain characters from the basic character set. —end note]

4 If L is a user-defined-floating-point-literal , let f be the literal without its ud-suffix . If S contains a literal operator withparameter type long double, the literal L is treated as a call of the form
operator "" X(fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both. If S containsa raw literal operator, the literal L is treated as a call of the form
operator "" X("f")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator "" X<'c1', 'c2', ... 'ck'>()

§ 5.13.8 28

© ISO/IEC N4910

where f is the source character sequence c1c2...ck.
[Note 2: The sequence c1c2...ck can only contain characters from the basic character set. —end note]

5 If L is a user-defined-string-literal , let str be the literal without its ud-suffix and let len be the number of code units instr (i.e., its length excluding the terminating null character). If S contains a literal operator template with a non-typetemplate parameter for which str is a well-formed template-argument, the literal L is treated as a call of the form
operator "" X<str>()

Otherwise, the literal L is treated as a call of the form
operator "" X(str, len)

6 If L is a user-defined-character-literal , let ch be the literal without its ud-suffix . S shall contain a literal operator (12.6)whose only parameter has the type of ch and the literal L is treated as a call of the form
operator "" X(ch)

7 [Example 2:
long double operator "" _w(long double);
std::string operator "" _w(const char16_t*, std::size_t);
unsigned operator "" _w(const char*);
int main() {

1.2_w; // calls operator "" _w(1.2L)
u"one"_w; // calls operator "" _w(u"one", 3)
12_w; // calls operator "" _w("12")
"two"_w; // error: no applicable literal operator

}

—end example]
8 In translation phase 6 (5.2), adjacent string-literals are concatenated and user-defined-string-literals are considered

string-literals for that purpose. During concatenation, ud-suffixes are removed and ignored and the concatenationprocess occurs as described in 5.13.5. At the end of phase 6, if a string-literal is the result of a concatenation involvingat least one user-defined-string-literal , all the participating user-defined-string-literals shall have the same ud-suffixand that suffix is applied to the result of the concatenation.
9 [Example 3:

int main() {
L"A" "B" "C"_x; // OK, same as L"ABC"_x
"P"_x "Q" "R"_y; // error: two different ud-suffixes

}

—end example]

§ 5.13.8 29

© ISO/IEC N4910

6 Basics [basic]
6.1 Preamble [basic.pre]

1 [Note 1: This Clause presents the basic concepts of the C++ language. It explains the difference between an object and a name andhow they relate to the value categories for expressions. It introduces the concepts of a declaration and a definition and presents C++’snotion of type, scope, linkage, and storage duration. The mechanisms for starting and terminating a program are discussed. Finally,this Clause presents the fundamental types of the language and lists the ways of constructing compound types from these. —endnote]
2 [Note 2: This Clause does not cover concepts that affect only a single part of the language. Such concepts are discussed in therelevant Clauses. —end note]
3 An entity is a value, object, reference, structured binding, function, enumerator, type, class member, bit-field, template,template specialization, namespace, or pack.
4 A name is an identifier (5.10), operator-function-id (12.4), literal-operator-id (12.6), or conversion-function-id(11.4.8.3).
5 Every name is introduced by a declaration, which is a

—(5.1) declaration, block-declaration, or member-declaration (9.1, 11.4),
—(5.2) init-declarator (9.3),
—(5.3) identifier in a structured binding declaration (9.6),
—(5.4) init-capture (7.5.5.3),
—(5.5) condition with a declarator (8.1),
—(5.6) member-declarator (11.4),
—(5.7) using-declarator (9.9),
—(5.8) parameter-declaration (9.3.4.6),
—(5.9) type-parameter (13.2),
—(5.10) elaborated-type-specifier that introduces a name (9.2.9.4),
—(5.11) class-specifier (11.1),
—(5.12) enum-specifier or enumerator-definition (9.7.1),
—(5.13) exception-declaration (14.1), or
—(5.14) implicit declaration of an injected-class-name (11.1).

[Note 3: The interpretation of a for-range-declaration produces one or more of the above (8.6.5). —end note]
An entity E is denoted by the name (if any) that is introduced by a declaration of E or by a typedef-name introducedby a declaration specifying E.

6 A variable is introduced by the declaration of a reference other than a non-static data member or of an object. Thevariable’s name, if any, denotes the reference or object.
7 A local entity is a variable with automatic storage duration (6.7.5.4), a structured binding (9.6) whose correspondingvariable is such an entity, or the *this object (7.5.2).
8 Some names denote types or templates. In general, whenever a name is encountered it is necessary to determinewhether that name denotes one of these entities before continuing to parse the program that contains it. The process thatdetermines this is called name lookup (6.5).
9 Two names are the same if

—(9.1) they are identifiers composed of the same character sequence, or
—(9.2) they are operator-function-ids formed with the same operator, or
—(9.3) they are conversion-function-ids formed with equivalent (13.7.7.2) types, or
—(9.4) they are literal-operator-ids (12.6) formed with the same literal suffix identifier.

§ 6.1 30

© ISO/IEC N4910

10 A name used in more than one translation unit can potentially refer to the same entity in these translation units dependingon the linkage (6.6) of the name specified in each translation unit.
6.2 Declarations and definitions [basic.def]

1 A declaration (Clause 9) may (re)introduce one or more names and/or entities into a translation unit. If so, the declarationspecifies the interpretation and semantic properties of these names. A declaration of an entity or typedef-name X is aredeclaration ofX if another declaration ofX is reachable from it (10.7). A declaration may also have effects including:
—(1.1) a static assertion (9.1),
—(1.2) controlling template instantiation (13.9.3),
—(1.3) guiding template argument deduction for constructors (13.7.2.3),
—(1.4) use of attributes (9.12), and
—(1.5) nothing (in the case of an empty-declaration).

2 Each entity declared by a declaration is also defined by that declaration unless:
—(2.1) it declares a function without specifying the function’s body (9.5),
—(2.2) it contains the extern specifier (9.2.2) or a linkage-specification17 (9.11) and neither an initializer nor a function-

body ,
—(2.3) it declares a non-inline static data member in a class definition (11.4, 11.4.9),
—(2.4) it declares a static data member outside a class definition and the variable was defined within the class with the

constexpr specifier (this usage is deprecated; see D.6),
—(2.5) it is an elaborated-type-specifier (11.3),
—(2.6) it is an opaque-enum-declaration (9.7.1),
—(2.7) it is a template-parameter (13.2),
—(2.8) it is a parameter-declaration (9.3.4.6) in a function declarator that is not the declarator of a function-definition,
—(2.9) it is a typedef declaration (9.2.4),
—(2.10) it is an alias-declaration (9.2.4),
—(2.11) it is a using-declaration (9.9),
—(2.12) it is a deduction-guide (13.7.2.3),
—(2.13) it is a static_assert-declaration (9.1),
—(2.14) it is an attribute-declaration (9.1),
—(2.15) it is an empty-declaration (9.1),
—(2.16) it is a using-directive (9.8.4),
—(2.17) it is a using-enum-declaration (9.7.2),
—(2.18) it is a template-declaration (13.1) whose template-head is not followed by either a concept-definition or a

declaration that defines a function, a class, a variable, or a static data member.
—(2.19) it is an explicit instantiation declaration (13.9.3), or
—(2.20) it is an explicit specialization (13.9.4) whose declaration is not a definition.

A declaration is said to be a definition of each entity that it defines.
[Example 1: All but one of the following are definitions:
int a; // defines a
extern const int c = 1; // defines c
int f(int x) { return x+a; } // defines f and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X

int x; // defines non-static data member x
static int y; // declares static data member y
X(): x(0) { } // defines a constructor of X

};

17) Appearing inside the brace-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a definition.
§ 6.2 31

© ISO/IEC N4910

int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N::d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:
extern int a; // declares a
extern const int c; // declares c
int f(int); // declares f
struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares d
—end example]

3 [Note 1: In some circumstances, C++ implementations implicitly define the default constructor (11.4.5.2), copy constructor, moveconstructor (11.4.5.3), copy assignment operator, move assignment operator (11.4.6), or destructor (11.4.7) member functions. —endnote]
[Example 2: Given
#include <string>

struct C {
std::string s; // std::string is the standard library class (23.4)

};

int main() {
C a;
C b = a;
b = a;

}

the implementation will implicitly define functions to make the definition of C equivalent to
struct C {

std::string s;
C() : s() { }
C(const C& x): s(x.s) { }
C(C&& x): s(static_cast<std::string&&>(x.s)) { }// : s(std::move(x.s)) { }
C& operator=(const C& x) { s = x.s; return *this; }
C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }// { s = std::move(x.s); return *this; }
~C() { }

};

—end example]
4 [Note 2: A class name can also be implicitly declared by an elaborated-type-specifier (9.2.9.4). —end note]
5 In the definition of an object, the type of that object shall not be an incomplete type (6.8.1), an abstract class type (11.7.4),or a (possibly multi-dimensional) array thereof.
6.3 One-definition rule [basic.def.odr]

1 Each of the following is termed a definable item:
—(1.1) a class type (Clause 11),
—(1.2) an enumeration type (9.7.1),
—(1.3) a function (9.3.4.6),
—(1.4) a variable (6.1),
—(1.5) a templated entity (13.1),
—(1.6) a default argument for a parameter (for a function in a given scope) (9.3.4.7), or
—(1.7) a default template argument (13.2).

§ 6.3 32

© ISO/IEC N4910

2 No translation unit shall contain more than one definition of any definable item.
3 An expression or conversion is potentially evaluated unless it is an unevaluated operand (7.2.3), a subexpression thereof,or a conversion in an initialization or conversion sequence in such a context. The set of potential results of an expression
E is defined as follows:
—(3.1) If E is an id-expression (7.5.4), the set contains only E.
—(3.2) If E is a subscripting operation (7.6.1.2) with an array operand, the set contains the potential results of thatoperand.
—(3.3) If E is a class member access expression (7.6.1.5) of the form E1 . templateopt E2 naming a non-static datamember, the set contains the potential results of E1.
—(3.4) If E is a class member access expression naming a static data member, the set contains the id-expressiondesignating the data member.
—(3.5) If E is a pointer-to-member expression (7.6.4) of the form E1 .* E2, the set contains the potential results of E1.
—(3.6) If E has the form (E1), the set contains the potential results of E1.
—(3.7) If E is a glvalue conditional expression (7.6.16), the set is the union of the sets of potential results of the secondand third operands.
—(3.8) If E is a comma expression (7.6.20), the set contains the potential results of the right operand.
—(3.9) Otherwise, the set is empty.

[Note 1: This set is a (possibly-empty) set of id-expressions, each of which is either E or a subexpression of E.
[Example 1: In the following example, the set of potential results of the initializer of n contains the first S::x subexpression, but notthe second S::x subexpression.
struct S { static const int x = 0; };
const int &f(const int &r);
int n = b ? (1, S::x) // S::x is not odr-used here

: f(S::x); // S::x is odr-used here, so a definition is required
—end example]
—end note]

4 A function is named by an expression or conversion as follows:
—(4.1) A function is named by an expression or conversion if it is the selected member of an overload set (6.5, 12.2,12.3) in an overload resolution performed as part of forming that expression or conversion, unless it is a purevirtual function and either the expression is not an id-expression naming the function with an explicitly qualifiedname or the expression forms a pointer to member (7.6.2.2).

[Note 2: This covers taking the address of functions (7.3.4, 7.6.2.2), calls to named functions (7.6.1.3), operator overloading(Clause 12), user-defined conversions (11.4.8.3), allocation functions for new-expressions (7.6.2.8), as well as non-defaultinitialization (9.4). A constructor selected to copy or move an object of class type is considered to be named by an expressionor conversion even if the call is actually elided by the implementation (11.9.6). —end note]
—(4.2) A deallocation function for a class is named by a new-expression if it is the single matching deallocation functionfor the allocation function selected by overload resolution, as specified in 7.6.2.8.
—(4.3) A deallocation function for a class is named by a delete-expression if it is the selected usual deallocation functionas specified in 7.6.2.9 and 11.4.11.

5 A variable is named by an expression if the expression is an id-expression that denotes it. A variable x whose nameappears as a potentially-evaluated expression E is odr-used by E unless
—(5.1) x is a reference that is usable in constant expressions (7.7), or
—(5.2) x is a variable of non-reference type that is usable in constant expressions and has no mutable subobjects, and Eis an element of the set of potential results of an expression of non-volatile-qualified non-class type to which thelvalue-to-rvalue conversion (7.3.2) is applied, or
—(5.3) x is a variable of non-reference type, and E is an element of the set of potential results of a discarded-valueexpression (7.2.3) to which the lvalue-to-rvalue conversion is not applied.

6 A structured binding is odr-used if it appears as a potentially-evaluated expression.
7 *this is odr-used if this appears as a potentially-evaluated expression (including as the result of the implicit transfor-mation in the body of a non-static member function (11.4.3)).
§ 6.3 33

© ISO/IEC N4910

8 A virtual member function is odr-used if it is not pure. A function is odr-used if it is named by a potentially-evaluatedexpression or conversion. A non-placement allocation or deallocation function for a class is odr-used by the definitionof a constructor of that class. A non-placement deallocation function for a class is odr-used by the definition of thedestructor of that class, or by being selected by the lookup at the point of definition of a virtual destructor (11.4.7).18
9 An assignment operator function in a class is odr-used by an implicitly-defined copy-assignment or move-assignmentfunction for another class as specified in 11.4.6. A constructor for a class is odr-used as specified in 9.4. A destructorfor a class is odr-used if it is potentially invoked (11.4.7).
10 A local entity (6.1) is odr-usable in a scope (6.4.1) if:

—(10.1) either the local entity is not *this, or an enclosing class or non-lambda function parameter scope exists and, ifthe innermost such scope is a function parameter scope, it corresponds to a non-static member function, and
—(10.2) for each intervening scope (6.4.1) between the point at which the entity is introduced and the scope (where *thisis considered to be introduced within the innermost enclosing class or non-lambda function definition scope),either:

—(10.2.1) the intervening scope is a block scope, or
—(10.2.2) the intervening scope is the function parameter scope of a lambda-expression that has a simple-capturenaming the entity or has a capture-default, and the block scope of the lambda-expression is also anintervening scope.

If a local entity is odr-used in a scope in which it is not odr-usable, the program is ill-formed.
[Example 2:
void f(int n) {

[] { n = 1; }; // error: n is not odr-usable due to intervening lambda-expression
struct A {
void f() { n = 2; } // error: n is not odr-usable due to intervening function definition scope

};
void g(int = n); // error: n is not odr-usable due to intervening function parameter scope
[=](int k = n) {}; // error: n is not odr-usable due to being// outside the block scope of the lambda-expression
[&] { [n]{ return n; }; }; // OK

}

—end example]
11 Every program shall contain at least one definition of every function or variable that is odr-used in that program outsideof a discarded statement (8.5.2); no diagnostic required. The definition can appear explicitly in the program, it can befound in the standard or a user-defined library, or (when appropriate) it is implicitly defined (see 11.4.5.2, 11.4.5.3,11.4.7, and 11.4.6).
[Example 3:
auto f() {

struct A {};
return A{};

}
decltype(f()) g();
auto x = g();

A program containing this translation unit is ill-formed because g is odr-used but not defined, and cannot be defined in any othertranslation unit because the local class A cannot be named outside this translation unit. —end example]
12 A definition domain is a private-module-fragment or the portion of a translation unit excluding its private-module-

fragment (if any). A definition of an inline function or variable shall be reachable from the end of every definitiondomain in which it is odr-used outside of a discarded statement.
13 A definition of a class shall be reachable in every context in which the class is used in a way that requires the class typeto be complete.
[Example 4: The following complete translation unit is well-formed, even though it never defines X:
struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
18) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however, this is a permissibleimplementation technique.
§ 6.3 34

© ISO/IEC N4910

X* x2; // use X in pointer formation
—end example]
[Note 3: The rules for declarations and expressions describe in which contexts complete class types are required. A class type T mustbe complete if:
—(13.1) an object of type T is defined (6.2), or
—(13.2) a non-static class data member of type T is declared (11.4), or
—(13.3) T is used as the allocated type or array element type in a new-expression (7.6.2.8), or
—(13.4) an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (7.3.2), or
—(13.5) an expression is converted (either implicitly or explicitly) to type T (7.3, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.3), or
—(13.6) an expression that is not a null pointer constant, and has type other than cv void*, is converted to the type pointer to T orreference to T using a standard conversion (7.3), a dynamic_cast (7.6.1.7) or a static_cast (7.6.1.9), or
—(13.7) a class member access operator is applied to an expression of type T (7.6.1.5), or
—(13.8) the typeid operator (7.6.1.8) or the sizeof operator (7.6.2.5) is applied to an operand of type T, or
—(13.9) a function with a return type or argument type of type T is defined (6.2) or called (7.6.1.3), or
—(13.10) a class with a base class of type T is defined (11.7), or
—(13.11) an lvalue of type T is assigned to (7.6.19), or
—(13.12) the type T is the subject of an alignof expression (7.6.2.6), or
—(13.13) an exception-declaration has type T, reference to T, or pointer to T (14.4).

—end note]
14 For any definable item D with definitions in multiple translation units,

—(14.1) if D is a non-inline non-templated function or variable, or
—(14.2) if the definitions in different translation units do not satisfy the following requirements,

the program is ill-formed; a diagnostic is required only if the definable item is attached to a named module and a priordefinition is reachable at the point where a later definition occurs. Given such an item, for all definitions of D, or, if
D is an unnamed enumeration, for all definitions of D that are reachable at any given program point, the followingrequirements shall be satisfied.
—(14.3) Each such definition shall not be attached to a named module (10.1).
—(14.4) Each such definition shall consist of the same sequence of tokens, where the definition of a closure type isconsidered to consist of the sequence of tokens of the corresponding lambda-expression.
—(14.5) In each such definition, corresponding names, looked up according to 6.5, shall refer to the same entity, afteroverload resolution (12.2) and after matching of partial template specialization (13.10.4), except that a name canrefer to

—(14.5.1) a non-volatile const object with internal or no linkage if the object
—(14.5.1.1) has the same literal type in all definitions of D,
—(14.5.1.2) is initialized with a constant expression (7.7),
—(14.5.1.3) is not odr-used in any definition of D, and
—(14.5.1.4) has the same value in all definitions of D,
or

—(14.5.2) a reference with internal or no linkage initialized with a constant expression such that the reference refers tothe same entity in all definitions of D.
—(14.6) In each such definition, except within the default arguments and default template arguments of D, corresponding

lambda-expressions shall have the same closure type (see below).
—(14.7) In each such definition, corresponding entities shall have the same language linkage.
—(14.8) In each such definition, the overloaded operators referred to, the implicit calls to conversion functions, constructors,operator new functions and operator delete functions, shall refer to the same function.
—(14.9) In each such definition, a default argument used by an (implicit or explicit) function call or a default templateargument used by an (implicit or explicit) template-id or simple-template-id is treated as if its token sequence

§ 6.3 35

© ISO/IEC N4910

were present in the definition of D; that is, the default argument or default template argument is subject to therequirements described in this paragraph (recursively).
—(14.10) If D is a class with an implicitly-declared constructor (11.4.5.2, 11.4.5.3), it is as if the constructor was implicitlydefined in every translation unit where it is odr-used, and the implicit definition in every translation unit shall callthe same constructor for a subobject of D.

[Example 5:
// translation unit 1:
struct X {
X(int, int);
X(int, int, int);

};
X::X(int, int = 0) { }
class D {
X x = 0;

};
D d1; // X(int, int) called by D()
// translation unit 2:
struct X {
X(int, int);
X(int, int, int);

};
X::X(int, int = 0, int = 0) { }
class D {
X x = 0;

};
D d2; // X(int, int, int) called by D();// D()’s implicit definition violates the ODR
—end example]

—(14.11) If D is a class with a defaulted three-way comparison operator function (11.10.3), it is as if the operator wasimplicitly defined in every translation unit where it is odr-used, and the implicit definition in every translationunit shall call the same comparison operators for each subobject of D.
15 If D is a template and is defined in more than one translation unit, then the preceding requirements shall apply both tonames from the template’s enclosing scope used in the template definition, and also to dependent names at the pointof instantiation (13.8.3). These requirements also apply to corresponding entities defined within each definition of D(including the closure types of lambda-expressions, but excluding entities defined within default arguments or defaulttemplate arguments of either D or an entity not defined within D). For each such entity and for D itself, the behavior is asif there is a single entity with a single definition, including in the application of these requirements to other entities.
[Note 4: The entity is still declared in multiple translation units, and 6.6 still applies to these declarations. In particular, lambda-
expressions (7.5.5) appearing in the type of D can result in the different declarations having distinct types, and lambda-expressionsappearing in a default argument of D might still denote different types in different translation units. —end note]

16 [Example 6:
inline void f(bool cond, void (*p)()) {

if (cond) f(false, []{});
}
inline void g(bool cond, void (*p)() = []{}) {

if (cond) g(false);
}
struct X {

void h(bool cond, void (*p)() = []{}) {
if (cond) h(false);

}
};

If the definition of f appears in multiple translation units, the behavior of the program is as if there is only one definition of f. If thedefinition of g appears in multiple translation units, the program is ill-formed (no diagnostic required) because each such definitionuses a default argument that refers to a distinct lambda-expression closure type. The definition of X can appear in multiple translationunits of a valid program; the lambda-expressions defined within the default argument of X::h within the definition of X denote thesame closure type in each translation unit. —end example]

§ 6.3 36

© ISO/IEC N4910

17 If, at any point in the program, there is more than one reachable unnamed enumeration definition in the same scopethat have the same first enumerator name and do not have typedef names for linkage purposes (9.7.1), those unnamedenumeration types shall be the same; no diagnostic required.
6.4 Scope [basic.scope]
6.4.1 General [basic.scope.scope]

1 The declarations in a program appear in a number of scopes that are in general discontiguous. The global scope containsthe entire program; every other scope S is introduced by a declaration, parameter-declaration-clause, statement, or
handler (as described in the following subclauses of 6.4) appearing in another scope which thereby contains S. Anenclosing scope at a program point is any scope that contains it; the smallest such scope is said to be the immediatescope at that point. A scope intervenes between a program point P and a scope S (that does not contain P) if it is orcontains S but does not contain P .

2 Unless otherwise specified:
—(2.1) The smallest scope that contains a scope S is the parent scope of S.
—(2.2) No two declarations (re)introduce the same entity.
—(2.3) A declaration inhabits the immediate scope at its locus (6.4.2).
—(2.4) A declaration’s target scope is the scope it inhabits.
—(2.5) Any names (re)introduced by a declaration are bound to it in its target scope.

An entity belongs to a scope S if S is the target scope of a declaration of the entity.
[Note 1: Special cases include that:
—(2.6) Template parameter scopes are parents only to other template parameter scopes (6.4.8).
—(2.7) Corresponding declarations with appropriate linkage declare the same entity (6.6).
—(2.8) The declaration in a template-declaration inhabits the same scope as the template-declaration.
—(2.9) Friend declarations and declarations of qualified names and template specializations do not bind names (9.3.4); those withqualified names target a specified scope, and other friend declarations and certain elaborated-type-specifiers (9.2.9.4) targeta larger enclosing scope.
—(2.10) Block-scope extern declarations target a larger enclosing scope but bind a name in their immediate scope.
—(2.11) The names of unscoped enumerators are bound in the two innermost enclosing scopes (9.7.1).
—(2.12) A class’s name is also bound in its own scope (11.1).
—(2.13) The names of the members of an anonymous union are bound in the union’s parent scope (11.5.2).

—end note]
3 Two non-static member functions have corresponding object parameters if:

—(3.1) exactly one is an implicit object member function with no ref-qualifier and the types of their object parameters(9.3.4.6), after removing top-level references, are the same, or
—(3.2) their object parameters have the same type.

Two non-static member function templates have corresponding object parameters if:
—(3.3) exactly one is an implicit object member function with no ref-qualifier and the types of their object parameters,after removing any references, are equivalent, or
—(3.4) the types of their object parameters are equivalent.

4 Two declarations correspond if they (re)introduce the same name, both declare constructors, or both declare destructors,unless
—(4.1) either is a using-declarator , or
—(4.2) one declares a type (not a typedef-name) and the other declares a variable, non-static data member other than ofan anonymous union (11.5.2), enumerator, function, or function template, or
—(4.3) each declares a function or function template, except when

§ 6.4.1 37

© ISO/IEC N4910

—(4.3.1) both declare functions with the same non-object-parameter-type-list,19 equivalent (13.7.7.2) trailing requires-
clauses (if any, except as specified in 13.7.5), and, if both are non-static members, they have correspondingobject parameters, or

—(4.3.2) both declare function templates with equivalent non-object-parameter-type-lists, return types (if any),
template-heads, and trailing requires-clauses (if any), and, if both are non-static members, they havecorresponding object parameters.

[Note 2: Declarations can correspond even if neither binds a name.
[Example 1:
struct A {
friend void f(); // #1
};
struct B {

friend void f() {} // corresponds to, and defines, #1
};

—end example]
—end note]
[Example 2:
typedef int Int;
enum E : int { a };
void f(int); // #1
void f(Int) {} // defines #1
void f(E) {} // OK, another overload
struct X {

static void f();
void f() const; // error: redeclaration
void g();
void g() const; // OK
void g() &; // error: redeclaration
void h(this X&, int);
void h(int) &&; // OK, another overload
void j(this const X&);
void j() const &; // error: redeclaration
void k();
void k(this X&); // error: redeclaration

};

—end example]
5 Two declarations potentially conflict if they correspond and cause their shared name to denote different entities (6.6).The program is ill-formed if, in any scope, a name is bound to two declarations that potentially conflict and one precedesthe other (6.5).
[Note 3: Overload resolution can consider potentially conflicting declarations found in multiple scopes (e.g. via using-directives orfor operator functions), in which case it is often ambiguous. —end note]
[Example 3:
void f() {

int x,y;
void x(); // error: different entity for x
int y; // error: redefinition

}
enum { f }; // error: different entity for ::f
namespace A {}
namespace B = A;
namespace B = A; // OK, no effect
namespace B = B; // OK, no effect
namespace A = B; // OK, no effect
namespace B {} // error: different entity for B
19) An implicit object parameter (12.2.2) is not part of the parameter-type-list.
§ 6.4.1 38

© ISO/IEC N4910

—end example]
6 A declaration is nominable in a class, class template, or namespace E at a point P if it precedes P , it does not inhabita block scope, and its target scope is the scope associated with E or, if E is a namespace, any element of the inlinenamespace set of E (9.8.2).
[Example 4:
namespace A {

void f() {void g();}
inline namespace B {
struct S {

friend void h();
static int i;

};
}

}

At the end of this example, the declarations of f, B, S, and h are nominable in A, but those of g and i are not. —end example]
7 When instantiating a templated entity (13.1), any scope S introduced by any part of the template definition is consideredto be introduced by the instantiated entity and to contain the instantiations of any declarations that inhabit S.
6.4.2 Point of declaration [basic.scope.pdecl]

1 The locus of a declaration (6.1) that is a declarator is immediately after the complete declarator (9.3).
[Example 1:
unsigned char x = 12;
{ unsigned char x = x; }

Here, the initialization of the second x has undefined behavior, because the initializer accesses the second x outside its lifetime (6.7.3).—end example]
2 [Note 1: A name from an outer scope remains visible up to the locus of the declaration that hides it.
[Example 2:
const int i = 2;
{ int i[i]; }

declares a block-scope array of two integers. —end example]
—end note]

3 The locus of a class-specifier is immediately after the identifier or simple-template-id (if any) in its class-head (11.1).The locus of an enum-specifier or opaque-enum-declaration is immediately after the identifier (if any) in it (9.7.1).The locus of an alias-declaration is immediately after it.
4 The locus of a using-declarator that does not name a constructor is immediately after the using-declarator (9.9).
5 The locus of an enumerator-definition is immediately after it.
[Example 3:
const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. —end example]
6 [Note 2: After the declaration of a class member, the member name can be found in the scope of its class even if the class is anincomplete class.
[Example 4:
struct X {

enum E { z = 16 };
int b[X::z]; // OK

};

—end example]
—end note]

7 The locus of an elaborated-type-specifier that is a declaration (9.2.9.4) is immediately after it.
8 The locus of an injected-class-name declaration (11.1) is immediately following the opening brace of the class definition.

§ 6.4.2 39

© ISO/IEC N4910

9 The locus of the implicit declaration of a function-local predefined variable (9.5.1) is immediately before the function-
body of its function’s definition.

10 The locus of the declaration of a structured binding (9.6) is immediately after the identifier-list of the structured bindingdeclaration.
11 The locus of a for-range-declaration of a range-based for statement (8.6.5) is immediately after the for-range-initializer .
12 The locus of a template-parameter is immediately after it.
[Example 5:
typedef unsigned char T;
template<class T

= T // lookup finds the typedef-name
, T // lookup finds the template parameter
N = 0> struct A { };

—end example]
13 The locus of a concept-definition is immediately after its concept-name (13.7.9).
[Note 3: The constraint-expression cannot use the concept-name. —end note]

14 The locus of a namespace-definition with an identifier is immediately after the identifier .
[Note 4: An identifier is invented for an unnamed-namespace-definition (9.8.2.2). —end note]

15 [Note 5: Friend declarations can introduce functions or classes that belong to the nearest enclosing namespace or block scope, butthey do not bind names anywhere (11.8.4). Function declarations at block scope and variable declarations with the extern specifierat block scope declare entities that belong to the nearest enclosing namespace, but they do not bind names in it. —end note]
16 [Note 6: For point of instantiation of a template, see 13.8.4.1. —end note]
6.4.3 Block scope [basic.scope.block]

1 Each
—(1.1) selection or iteration statement (8.5, 8.6),
—(1.2) substatement of such a statement,
—(1.3) handler (14.1), or
—(1.4) compound statement (8.4) that is not the compound-statement of a handler

introduces a block scope that includes that statement or handler .
[Note 1: A substatement that is also a block has only one scope. —end note]
A variable that belongs to a block scope is a block variable.
[Example 1:
int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

—end example]
2 If a declaration whose target scope is the block scope S of a

—(2.1) compound-statement of a lambda-expression, function-body , or function-try-block ,
—(2.2) substatement of a selection or iteration statement that is not itself a selection or iteration statement, or
—(2.3) handler of a function-try-block

potentially conflicts with a declaration whose target scope is the parent scope of S, the program is ill-formed.
[Example 2:
if (int x = f()) {

int x; // error: redeclaration of x
}

§ 6.4.3 40

© ISO/IEC N4910

else {
int x; // error: redeclaration of x

}

—end example]
6.4.4 Function parameter scope [basic.scope.param]

1 A parameter-declaration-clause P introduces a function parameter scope that includes P .
[Note 1: A function parameter cannot be used for its value within the parameter-declaration-clause (9.3.4.7). —end note]
—(1.1) If P is associated with a declarator and is preceded by a (possibly-parenthesized) noptr-declarator of the form

declarator-id attribute-specifier-seqopt , its scope extends to the end of the nearest enclosing init-declarator ,
member-declarator , declarator of a parameter-declaration or a nodeclspec-function-declaration, or function-
definition, but does not include the locus of the associated declarator .
[Note 2: In this case, P declares the parameters of a function (or a function or template parameter declared with functiontype). A member function’s parameter scope is nested within its class’s scope. —end note]

—(1.2) If P is associated with a lambda-declarator , its scope extends to the end of the compound-statement in the
lambda-expression.

—(1.3) If P is associated with a requirement-parameter-list, its scope extends to the end of the requirement-body of therequires-expression.
—(1.4) If P is associated with a deduction-guide, its scope extends to the end of the deduction-guide.

6.4.5 Namespace scope [basic.scope.namespace]
1 Any namespace-definition for a namespace N introduces a namespace scope that includes the namespace-body forevery namespace-definition for N . For each non-friend redeclaration or specialization whose target scope is or iscontained by the scope, the portion after the declarator-id , class-head-name, or enum-head-name is also included inthe scope. The global scope is the namespace scope of the global namespace (9.8).
[Example 1:
namespace Q {

namespace V { void f(); }
void V::f() { // in the scope of V
void h(); // declares Q::V::h

}
}

—end example]
6.4.6 Class scope [basic.scope.class]

1 Any declaration of a class or class template C introduces a class scope that includes the member-specification of the
class-specifier for C (if any). For each non-friend redeclaration or specialization whose target scope is or is containedby the scope, the portion after the declarator-id , class-head-name, or enum-head-name is also included in the scope.
[Note 1: Lookup from a program point before the class-specifier of a class will find no bindings in the class scope.
[Example 1:
template<class D>
struct B {

D::type x; // #1
};

struct A { using type = int; };
struct C : A, B<C> {}; // error at #1: C::type not found
—end example]
—end note]
6.4.7 Enumeration scope [basic.scope.enum]

1 Any declaration of an enumeration E introduces an enumeration scope that includes the enumerator-list of the enum-
specifier for E (if any).

§ 6.4.7 41

© ISO/IEC N4910

6.4.8 Template parameter scope [basic.scope.temp]
1 Each template template-parameter introduces a template parameter scope that includes the template-head of the

template-parameter .
2 Each template-declaration D introduces a template parameter scope that extends from the beginning of its template-

parameter-list to the end of the template-declaration. Any declaration outside the template-parameter-list that wouldinhabit that scope instead inhabits the same scope asD. The parent scope of any scope S that is not a template parameterscope is the smallest scope that contains S and is not a template parameter scope.
[Note 1: Therefore, only template parameters belong to a template parameter scope, and only template parameter scopes have atemplate parameter scope as a parent scope. —end note]
6.5 Name lookup [basic.lookup]
6.5.1 General [basic.lookup.general]

1 The name lookup rules apply uniformly to all names (including typedef-names (9.2.4), namespace-names (9.8), and
class-names (11.3)) wherever the grammar allows such names in the context discussed by a particular rule. Namelookup associates the use of a name with a set of declarations (6.2) of that name. Unless otherwise specified, theprogram is ill-formed if no declarations are found. If the declarations found by name lookup all denote functions orfunction templates, the declarations are said to form an overload set. Otherwise, if the declarations found by namelookup do not all denote the same entity, they are ambiguous and the program is ill-formed. Overload resolution (12.2,12.3) takes place after name lookup has succeeded. The access rules (11.8) are considered only once name lookup andfunction overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (ifapplicable) and access checking have succeeded are the semantic properties introduced by the declarations used infurther processing.

2 A program point P is said to follow any declaration in the same translation unit whose locus (6.4.2) is before P .
[Note 1: The declaration might appear in a scope that does not contain P . —end note]
A declaration X precedes a program point P in a translation unit L if P follows X , X inhabits a class scope and isreachable from P , or else X appears in a translation unit D and
—(2.1) P follows a module-import-declaration or module-declaration that imports D (directly or indirectly), and
—(2.2) X appears after the module-declaration in D (if any) and before the private-module-fragment in D (if any), and
—(2.3) either X is exported or else D and L are part of the same module and X does not inhabit a namespace withinternal linkage or declare a name with internal linkage.

[Note 2: Names declared by a using-declaration have no linkage. —end note]
[Note 3: A module-import-declaration imports both the named translation unit(s) and any modules named by exported module-
import-declarations within them, recursively.
[Example 1:
Translation unit #1:
export module Q;
export int sq(int i) { return i*i; }

Translation unit #2:
export module R;
export import Q;

Translation unit #3:
import R;
int main() { return sq(9); } // OK, sq from module Q
—end example]
—end note]

3 A single search in a scope S for a name N from a program point P finds all declarations that precede P to whichany name that is the same as N (6.1) is bound in S. If any such declaration is a using-declarator whose terminalname (7.5.4.2) is not dependent (13.8.3.2), it is replaced by the declarations named by the using-declarator (9.9).
4 In certain contexts, only certain kinds of declarations are included. After any such restriction, any declarations of classesor enumerations are discarded if any other declarations are found.

§ 6.5.1 42

© ISO/IEC N4910

[Note 4: A type (but not a typedef-name or template) is therefore hidden by any other entity in its scope. —end note]
However, if a lookup is type-only, only declarations of types and templates whose specializations are types are considered;furthermore, if declarations of a typedef-name and of the type to which it refers are found, the declaration of the
typedef-name is discarded instead of the type declaration.
6.5.2 Member name lookup [class.member.lookup]

1 A search in a scope X for a name N from a program point P is a single search in X for N from P unless X is thescope of a class or class template T , in which case the following steps define the result of the search.
[Note 1: The result differs only if N is a conversion-function-id or if the single search would find nothing. —end note]

2 The lookup set for N in C, called S(N,C), consists of two component sets: the declaration set, a set of membersnamed N ; and the subobject set, a set of subobjects where declarations of these members were found (possibly via
using-declarations). In the declaration set, type declarations (including injected-class-names) are replaced by the typesthey designate. S(N,C) is calculated as follows:

3 The declaration set is the result of a single search in the scope of C for N from immediately after the class-specifierof C if P is in a complete-class context of C or from P otherwise. If the resulting declaration set is not empty, thesubobject set contains C itself, and calculation is complete.
4 Otherwise (i.e., C does not contain a declaration of N or the resulting declaration set is empty), S(N,C) is initiallyempty. Calculate the lookup set for N in each direct non-dependent (13.8.3.2) base class subobject Bi, and merge eachsuch lookup set S(N,Bi) in turn into S(N,C).
[Note 2: If T is incomplete, only base classes whose base-specifier appears before P are considered. If T is an instantiated class, itsbase classes are not dependent. —end note]

5 The following steps define the result of merging lookup set S(N,Bi) into the intermediate S(N,C):
—(5.1) If each of the subobject members of S(N,Bi) is a base class subobject of at least one of the subobject membersof S(N,C), or if S(N,Bi) is empty, S(N,C) is unchanged and the merge is complete. Conversely, if each of thesubobject members of S(N,C) is a base class subobject of at least one of the subobject members of S(N,Bi),or if S(N,C) is empty, the new S(N,C) is a copy of S(N,Bi).
—(5.2) Otherwise, if the declaration sets of S(N,Bi) and S(N,C) differ, the merge is ambiguous: the new S(N,C) isa lookup set with an invalid declaration set and the union of the subobject sets. In subsequent merges, an invaliddeclaration set is considered different from any other.
—(5.3) Otherwise, the new S(N,C) is a lookup set with the shared set of declarations and the union of the subobjectsets.

6 The result of the search is the declaration set of S(N,T). If it is an invalid set, the program is ill-formed. If it differsfrom the result of a search in T for N from immediately after the class-specifier of T , the program is ill-formed, nodiagnostic required.
[Example 1:
struct A { int x; }; // S(x,A) = { { A::x }, { A } }
struct B { float x; }; // S(x,B) = { { B::x }, { B } }
struct C: public A, public B { }; // S(x,C) = { invalid, { A in C, B in C } }
struct D: public virtual C { }; // S(x,D) = S(x,C)
struct E: public virtual C { char x; }; // S(x,E) = { { E::x }, { E } }
struct F: public D, public E { }; // S(x,F) = S(x,E)
int main() {

F f;
f.x = 0; // OK, lookup finds E::x

}

S(x, F) is unambiguous because the A and B base class subobjects of D are also base class subobjects of E, so S(x, D) is discarded inthe first merge step. —end example]
7 If N is a non-dependent conversion-function-id , conversion function templates that are members of T are considered.For each such template F , the lookup set S(t, T) is constructed, considering a function template declaration to have thename t only if it corresponds to a declaration of F (6.4.1). The members of the declaration set of each such lookup set,which shall not be an invalid set, are included in the result.
[Note 3: Overload resolution will discard those that cannot convert to the type specified by N (13.10.4). —end note]

§ 6.5.2 43

© ISO/IEC N4910

8 [Note 4: A static member, a nested type or an enumerator defined in a base class T can unambiguously be found even if an object hasmore than one base class subobject of type T. Two base class subobjects share the non-static member subobjects of their commonvirtual base classes. —end note]
[Example 2:
struct V {

int v;
};
struct A {

int a;
static int s;
enum { e };

};
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void f(D* pd) {
pd->v++; // OK, only one v (virtual)
pd->s++; // OK, only one s (static)
int i = pd->e; // OK, only one e (enumerator)
pd->a++; // error: ambiguous: two as in D

}

—end example]
9 [Note 5: When virtual base classes are used, a hidden declaration can be reached along a path through the subobject lattice that doesnot pass through the hiding declaration. This is not an ambiguity. The identical use with non-virtual base classes is an ambiguity; inthat case there is no unique instance of the name that hides all the others. —end note]
[Example 3:
struct V { int f(); int x; };
struct W { int g(); int y; };
struct B : virtual V, W {

int f(); int x;
int g(); int y;

};
struct C : virtual V, W { };

struct D : B, C { void glorp(); };

W V W

B C

D

Figure 1: Name lookup [fig:class.lookup]
As illustrated in Figure 1, the names declared in V and the left-hand instance of W are hidden by those in B, but the names declared inthe right-hand instance of W are not hidden at all.
void D::glorp() {

x++; // OK, B::x hides V::x
f(); // OK, B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

—end example]
10 An explicit or implicit conversion from a pointer to or an expression designating an object of a derived class to a pointeror reference to one of its base classes shall unambiguously refer to a unique object representing the base class.
§ 6.5.2 44

© ISO/IEC N4910

[Example 4:
struct V { };
struct A { };
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void g() {
D d;
B* pb = &d;
A* pa = &d; // error: ambiguous: C’s A or B’s A?
V* pv = &d; // OK, only one V subobject

}

—end example]
11 [Note 6: Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might still be ambiguous (7.3.13,7.6.1.5, 11.8.3). —end note]
[Example 5:
struct B1 {

void f();
static void f(int);
int i;

};
struct B2 {

void f(double);
};
struct I1: B1 { };
struct I2: B1 { };

struct D: I1, I2, B2 {
using B1::f;
using B2::f;
void g() {
f(); // Ambiguous conversion of this
f(0); // Unambiguous (static)
f(0.0); // Unambiguous (only one B2)
int B1::* mpB1 = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}
};

—end example]
6.5.3 Unqualified name lookup [basic.lookup.unqual]

1 A using-directive is active in a scope S at a program point P if it precedes P and inhabits either S or the scope of anamespace nominated by a using-directive that is active in S at P .
[Note 1: A using-directive is exported if and only if it appears in a header unit. —end note]

2 An unqualified search in a scope S from a program point P includes the results of searches from P in
—(2.1) S, and
—(2.2) for any scope U that contains P and is or is contained by S, each namespace contained by S that is nominated bya using-directive that is active in U at P .

If no declarations are found, the results of the unqualified search are the results of an unqualified search in the parentscope of S, if any, from P .
[Note 2: When a class scope is searched, the scopes of its base classes are also searched (6.5.2). If it inherits from a single base, it isas if the scope of the base immediately contains the scope of the derived class. Template parameter scopes that are associated withone scope in the chain of parents are also considered (13.8.2). —end note]

3 Unqualified name lookup from a program point performs an unqualified search in its immediate scope.

§ 6.5.3 45

© ISO/IEC N4910

4 An unqualified name is a name that does not immediately follow a nested-name-specifier or the . or -> in a classmember access expression (7.6.1.5), possibly after a template keyword or ~. Unless otherwise specified, such a nameundergoes unqualified name lookup from the point where it appears.
5 An unqualified name that is a component name (7.5.4.2) of a type-specifier or ptr-operator of a conversion-type-idis looked up in the same fashion as the conversion-function-id in which it appears. If that lookup finds nothing, itundergoes unqualified name lookup; in each case, only names that denote types or templates whose specializations aretypes are considered.
[Example 1:
struct T1 { struct U { int i; }; };
struct T2 { };
struct U1 {};
struct U2 {};

struct B {
using T = T1;
using U = U1;
operator U1 T1::*();
operator U1 T2::*();
operator U2 T1::*();
operator U2 T2::*();

};

template<class X, class T>
int g() {

using U = U2;
X().operator U T::*(); // #1, searches for T in the scope of X first
X().operator U decltype(T())::*(); // #2
return 0;

}
int x = g<B, T2>(); // #1 calls B::operator U1 T1::*// #2 calls B::operator U1 T2::*

—end example]
6 In a friend declaration declarator whose declarator-id is a qualified-id whose lookup context (6.5.5) is a class ornamespace S, lookup for an unqualified name that appears after the declarator-id performs a search in the scopeassociated with S. If that lookup finds nothing, it undergoes unqualified name lookup.
[Example 2:
using I = int;
using D = double;
namespace A {

inline namespace N {using C = char; }
using F = float;
void f(I);
void f(D);
void f(C);
void f(F);

}
struct X0 {using F = float; };
struct W {

using D = void;
struct X : X0 {
void g(I);
void g(::D);
void g(F);

};
};
namespace B {

typedef short I, F;
class Y {
friend void A::f(I); // error: no void A::f(short)
friend void A::f(D); // OK

§ 6.5.3 46

© ISO/IEC N4910

friend void A::f(C); // error: A::N::C not found
friend void A::f(F); // OK
friend void W::X::g(I); // error: no void X::g(short)
friend void W::X::g(D); // OK
friend void W::X::g(F); // OK

};
}

—end example]
6.5.4 Argument-dependent name lookup [basic.lookup.argdep]

1 When the postfix-expression in a function call (7.6.1.3) is an unqualified-id , and unqualified lookup (6.5.3) for the namein the unqualified-id does not find any
—(1.1) declaration of a class member, or
—(1.2) function declaration inhabiting a block scope, or
—(1.3) declaration not of a function or function template

then lookup for the name also includes the result of argument-dependent lookup in a set of associated namespaces thatdepends on the types of the arguments (and for template template arguments, the namespace of the template argument),as specified below.
[Example 1:
namespace N {

struct S { };
void f(S);

}

void g() {
N::S s;
f(s); // OK, calls N::f
(f)(s); // error: N::f not considered; parentheses prevent argument-dependent lookup

}

—end example]
2 [Note 1: For purposes of determining (during parsing) whether an expression is a postfix-expression for a function call, the usualname lookup rules apply. In some cases a name followed by < is treated as a template-name even though name lookup did not find a

template-name (see 13.3). For example,
int h;
void g();
namespace N {

struct A {};
template <class T> int f(T);
template <class T> int g(T);
template <class T> int h(T);

}

int x = f<N::A>(N::A()); // OK, lookup of f finds nothing, f treated as template name
int y = g<N::A>(N::A()); // OK, lookup of g finds a function, g treated as template name
int z = h<N::A>(N::A()); // error: h< does not begin a template-id

The rules have no effect on the syntactic interpretation of an expression. For example,
typedef int f;
namespace N {

struct A {
friend void f(A &);
operator int();
void g(A a) {

int i = f(a); // f is the typedef, not the friend function: equivalent to int(a)
}

};
}

§ 6.5.4 47

© ISO/IEC N4910

Because the expression is not a function call, argument-dependent name lookup does not apply and the friend function f is not found.—end note]
3 For each argument type T in the function call, there is a set of zero or more associated entities to be considered. Theset of entities is determined entirely by the types of the function arguments (and any template template arguments).Any typedef-names and using-declarations used to specify the types do not contribute to this set. The set of entities isdetermined in the following way:

—(3.1) If T is a fundamental type, its associated set of entities is empty.
—(3.2) If T is a class type (including unions), its associated entities are: the class itself; the class of which it is a member,if any; and its direct and indirect base classes. Furthermore, if T is a class template specialization, its associatedentities also include: the entities associated with the types of the template arguments provided for template typeparameters; the templates used as template template arguments; and the classes of which any member templatesused as template template arguments are members.

[Note 2: Non-type template arguments do not contribute to the set of associated entities. —end note]
—(3.3) If T is an enumeration type, its associated entities are T and, if it is a class member, the member’s class.
—(3.4) If T is a pointer to U or an array of U, its associated entities are those associated with U.
—(3.5) If T is a function type, its associated entities are those associated with the function parameter types and thoseassociated with the return type.
—(3.6) If T is a pointer to a member function of a class X, its associated entities are those associated with the functionparameter types and return type, together with those associated with X.
—(3.7) If T is a pointer to a data member of class X, its associated entities are those associated with the member typetogether with those associated with X.

In addition, if the argument is an overload set or the address of such a set, its associated entities are the union of thoseassociated with each of the members of the set, i.e., the entities associated with its parameter types and return type.Additionally, if the aforementioned overload set is named with a template-id , its associated entities also include itstemplate template-arguments and those associated with its type template-arguments.
4 The associated namespaces for a call are the innermost enclosing non-inline namespaces for its associated entities aswell as every element of the inline namespace set (9.8.2) of those namespaces. Argument-dependent lookup finds alldeclarations of functions and function templates that

—(4.1) are found by a search of any associated namespace, or
—(4.2) are declared as a friend (11.8.4) of any class with a reachable definition in the set of associated entities, or
—(4.3) are exported, are attached to a named module M (10.2), do not appear in the translation unit containing the point ofthe lookup, and have the same innermost enclosing non-inline namespace scope as a declaration of an associatedentity attached to M (6.6).

If the lookup is for a dependent name (13.8.3, 13.8.4.2), the above lookup is also performed from each point in theinstantiation context (10.6) of the lookup, additionally ignoring any declaration that appears in another translation unit,is attached to the global module, and is either discarded (10.4) or has internal linkage.
5 [Example 2:
Translation unit #1:
export module M;
namespace R {

export struct X {};
export void f(X);

}
namespace S {

export void f(R::X, R::X);
}

Translation unit #2:
export module N;
import M;
export R::X make();
namespace R { static int g(X); }

§ 6.5.4 48

© ISO/IEC N4910

export template<typename T, typename U> void apply(T t, U u) {
f(t, u);
g(t);

}

Translation unit #3:
module Q;
import N;
namespace S {

struct Z { template<typename T> operator T(); };
}
void test() {

auto x = make(); // OK, decltype(x) is R::X in module M
R::f(x); // error: R and R::f are not visible here
f(x); // OK, calls R::f from interface of M
f(x, S::Z()); // error: S::f in module M not considered// even though S is an associated namespace
apply(x, S::Z()); // error: S::f is visible in instantiation context, but// R::g has internal linkage and cannot be used outside TU #2

}

—end example]
6 [Note 3: The associated namespace can include namespaces already considered by ordinary unqualified lookup. —end note]
[Example 3:
namespace NS {

class T { };
void f(T);
void g(T, int);

}
NS::T parm;
void g(NS::T, float);
int main() {

f(parm); // OK, calls NS::f
extern void g(NS::T, float);
g(parm, 1); // OK, calls g(NS::T, float)

}

—end example]
6.5.5 Qualified name lookup [basic.lookup.qual]
6.5.5.1 General [basic.lookup.qual.general]

1 Lookup of an identifier followed by a :: scope resolution operator considers only namespaces, types, and templateswhose specializations are types. If a name, template-id , or decltype-specifier is followed by a ::, it shall designate anamespace, class, enumeration, or dependent type, and the :: is never interpreted as a complete nested-name-specifier .
[Example 1:
class A {
public:

static int n;
};
int main() {

int A;
A::n = 42; // OK
A b; // error: A does not name a type

}
template<int> struct B : A {};
namespace N {

template<int> void B();
int f() {
return B<0>::n; // error: N::B<0> is not a type

}
}

§ 6.5.5.1 49

© ISO/IEC N4910

—end example]
2 A member-qualified name is the (unique) component name (7.5.4.2), if any, of

—(2.1) an unqualified-id or
—(2.2) a nested-name-specifier of the form type-name :: or namespace-name ::

in the id-expression of a class member access expression (7.6.1.5). A qualified name is
—(2.3) a member-qualified name or
—(2.4) the terminal name of

—(2.4.1) a qualified-id ,
—(2.4.2) a using-declarator ,
—(2.4.3) a typename-specifier ,
—(2.4.4) a qualified-namespace-specifier , or
—(2.4.5) a nested-name-specifier , elaborated-type-specifier , or class-or-decltype that has a nested-name-specifier(7.5.4.3).

The lookup context of a member-qualified name is the type of its associated object expression (considered dependentif the object expression is type-dependent). The lookup context of any other qualified name is the type, template, ornamespace nominated by the preceding nested-name-specifier .
[Note 1: When parsing a class member access, the name following the -> or . is a qualified name even though it is not yet known ofwhich kind. —end note]
[Example 2: In

N::C::m.Base::f()

Base is a member-qualified name; the other qualified names are C, m, and f. —end example]
3 Qualified name lookup in a class, namespace, or enumeration performs a search of the scope associated with it (6.5.2)except as specified below. Unless otherwise specified, a qualified name undergoes qualified name lookup in itslookup context from the point where it appears unless the lookup context either is dependent and is not the currentinstantiation (13.8.3.2) or is not a class or class template. If nothing is found by qualified lookup for a member-qualifiedname that is the terminal name (7.5.4.2) of a nested-name-specifier and is not dependent, it undergoes unqualifiedlookup.
[Note 2: During lookup for a template specialization, no names are dependent. —end note]
[Example 3:
int f();
struct A {

int B, C;
template<int> using D = void;
using T = void;
void f();

};
using B = A;
template<int> using C = A;
template<int> using D = A;
template<int> using X = A;

template<class T>
void g(T *p) { // as instantiated for g<A>:

p->X<0>::f(); // error: A::X not found in ((p->X) < 0) > ::f()
p->template X<0>::f(); // OK, ::X found in definition context
p->B::f(); // OK, non-type A::B ignored
p->template C<0>::f(); // error: A::C is not a template
p->template D<0>::f(); // error: A::D<0> is not a class type
p->T::f(); // error: A::T is not a class type

}
template void g(A*);

—end example]
4 If a qualified name Q follows a ~:
§ 6.5.5.1 50

© ISO/IEC N4910

—(4.1) If Q is a member-qualified name, it undergoes unqualified lookup as well as qualified lookup.
—(4.2) Otherwise, its nested-name-specifier N shall nominate a type. If N has another nested-name-specifier S, Q islooked up as if its lookup context were that nominated by S.
—(4.3) Otherwise, if the terminal name of N is a member-qualified nameM , Q is looked up as if ~Q appeared in placeofM (as above).
—(4.4) Otherwise, Q undergoes unqualified lookup.
—(4.5) Each lookup for Q considers only types (if Q is not followed by a <) and templates whose specializations aretypes. If it finds nothing or is ambiguous, it is discarded.
—(4.6) The type-name that is or contains Q shall refer to its (original) lookup context (ignoring cv-qualification) underthe interpretation established by at least one (successful) lookup performed.

[Example 4:
struct C {

typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;
void f() {

p->C::I::~I(); // I is looked up in the scope of C
q->I1::~I2(); // I2 is found by unqualified lookup

}
struct A {
~A();

};
typedef A AB;
int main() {

AB* p;
p->AB::~AB(); // explicitly calls the destructor for A

}

—end example]
6.5.5.2 Class members [class.qual]

1 In a lookup for a qualified name N whose lookup context is a class C in which function names are not ignored,20
—(1.1) if the search finds the injected-class-name of C (11.1), or
—(1.2) if N is dependent and is the terminal name of a using-declarator (9.9) that names a constructor,

N is instead considered to name the constructor of class C. Such a constructor name shall be used only in the declarator-idof a (friend) declaration of a constructor or in a using-declaration.
[Example 1:
struct A { A(); };
struct B: public A { B(); };

A::A() { }
B::B() { }

B::A ba; // object of type A
A::A a; // error: A::A is not a type name
struct A::A a2; // object of type A
—end example]
6.5.5.3 Namespace members [namespace.qual]

1 Qualified name lookup in a namespace N additionally searches every element of the inline namespace set of N (9.8.2).If nothing is found, the results of the lookup are the results of qualified name lookup in each namespace nominated by a
using-directive that precedes the point of the lookup and inhabits N or an element of N ’s inline namespace set.
20) Lookups in which function names are ignored include names appearing in a nested-name-specifier , an elaborated-type-specifier , or a

base-specifier .
§ 6.5.5.3 51

© ISO/IEC N4910

[Note 1: If a using-directive refers to a namespace that has already been considered, it does not affect the result. —end note]
[Example 1:
int x;
namespace Y {

void f(float);
void h(int);

}

namespace Z {
void h(double);

}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

void h()
{

AB::g(); // g is declared directly in AB, therefore S is {AB::g()} and AB::g() is chosen
AB::f(1); // f is not declared directly in AB so the rules are applied recursively to A and B;// namespace Y is not searched and Y::f(float) is not considered;// S is {A::f(int), B::f(char)} and overload resolution chooses A::f(int)
AB::f('c'); // as above but resolution chooses B::f(char)
AB::x++; // x is not declared directly in AB, and is not declared in A or B, so the rules// are applied recursively to Y and Z, S is {} so the program is ill-formed
AB::i++; // i is not declared directly in AB so the rules are applied recursively to A and B,// S is {A::i, B::i} so the use is ambiguous and the program is ill-formed
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules// are applied recursively to Y and Z, S is {Y::h(int), Z::h(double)} and// overload resolution chooses Z::h(double)

}

—end example]
2 [Note 2: The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
[Example 2:
namespace A {

int a;
}

namespace B {
using namespace A;

}

§ 6.5.5.3 52

© ISO/IEC N4910

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}

void f()
{

BC::a++; // OK, S is {A::a, A::a}
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}

void g()
{

BD::a++; // OK, S is {A::a, A::a}
}

—end example]
—end note]

3 [Example 3: Because each referenced namespace is searched at most once, the following is well-defined:
namespace B {

int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void f()
{

A::a++; // OK, a declared directly in A, S is {A::a}
B::a++; // OK, both A and B searched (once), S is {A::a}
A::b++; // OK, both A and B searched (once), S is {B::b}
B::b++; // OK, b declared directly in B, S is {B::b}

}

—end example]
4 [Note 3: Class and enumeration declarations are not discarded because of other declarations found in other searches. —end note]
[Example 4:
namespace A {

struct x { };
int x;
int y;

}

§ 6.5.5.3 53

© ISO/IEC N4910

namespace B {
struct y { };

}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y

}

—end example]
6.5.6 Elaborated type specifiers [basic.lookup.elab]

1 If the class-key or enum keyword in an elaborated-type-specifier is followed by an identifier that is not followed by ::,lookup for the identifier is type-only (6.5.1).
[Note 1: In general, the recognition of an elaborated-type-specifier depends on the following tokens. If the identifier is followed by
::, see 6.5.5. —end note]

2 If the terminal name of the elaborated-type-specifier is a qualified name, lookup for it is type-only. If the name lookupdoes not find a previously declared type-name, the elaborated-type-specifier is ill-formed.
3 [Example 1:

struct Node {
struct Node* Next; // OK, refers to injected-class-name Node
struct Data* Data; // OK, declares type Data at global scope and member Data

};

struct Data {
struct Node* Node; // OK, refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared, cannot introduce a qualified type (9.2.9.4)
friend struct Glob; // OK, refers to (as yet) undeclared Glob at global scope.
/* ... */

};

struct Base {
struct Data; // OK, declares nested Data
struct ::Data* thatData; // OK, refers to ::Data
struct Base::Data* thisData; // OK, refers to nested Data
friend class ::Data; // OK, global Data is a friend
friend class Data; // OK, nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data

};

struct Data; // OK, redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (9.2.9.4)
struct Base::Data; // error: cannot introduce a qualified type (9.2.9.4)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK, refers to nested Data
—end example]
6.5.7 Using-directives and namespace aliases [basic.lookup.udir]

1 In a using-directive or namespace-alias-definition, during the lookup for a namespace-name or for a name in a
nested-name-specifier only namespace names are considered.
6.6 Program and linkage [basic.link]

1 A program consists of one or more translation units (5.1) linked together. A translation unit consists of a sequence ofdeclarations.
translation-unit :

declaration-seqopt
global-module-fragmentopt module-declaration declaration-seqopt private-module-fragmentopt

§ 6.6 54

© ISO/IEC N4910

2 A name is said to have linkage when it can denote the same object, reference, function, type, template, namespace orvalue as a name introduced by a declaration in another scope:
—(2.1) When a name has external linkage, the entity it denotes can be referred to by names from scopes of othertranslation units or from other scopes of the same translation unit.
—(2.2) When a name has module linkage, the entity it denotes can be referred to by names from other scopes of the samemodule unit (10.1) or from scopes of other module units of that same module.
—(2.3) When a name has internal linkage, the entity it denotes can be referred to by names from other scopes in thesame translation unit.
—(2.4) When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.

3 The name of an entity that belongs to a namespace scope (6.4.5) has internal linkage if it is the name of
—(3.1) a variable, variable template, function, or function template that is explicitly declared static; or
—(3.2) a non-template variable of non-volatile const-qualified type, unless

—(3.2.1) it is explicitly declared extern, or
—(3.2.2) it is inline or exported, or
—(3.2.3) it was previously declared and the prior declaration did not have internal linkage; or

—(3.3) a data member of an anonymous union.
[Note 1: An instantiated variable template that has const-qualified type can have external or module linkage, even if not declared
extern. —end note]

4 An unnamed namespace or a namespace declared directly or indirectly within an unnamed namespace has internallinkage. All other namespaces have external linkage. The name of an entity that belongs to a namespace scope that hasnot been given internal linkage above and that is the name of
—(4.1) a variable; or
—(4.2) a function; or
—(4.3) a named class (11.1), or an unnamed class defined in a typedef declaration in which the class has the typedefname for linkage purposes (9.2.4); or
—(4.4) a named enumeration (9.7.1), or an unnamed enumeration defined in a typedef declaration in which the enumerationhas the typedef name for linkage purposes (9.2.4); or
—(4.5) an unnamed enumeration that has an enumerator as a name for linkage purposes (9.7.1); or
—(4.6) a template

has its linkage determined as follows:
—(4.7) if the enclosing namespace has internal linkage, the name has internal linkage;
—(4.8) otherwise, if the declaration of the name is attached to a named module (10.1) and is not exported (10.2), thename has module linkage;
—(4.9) otherwise, the name has external linkage.

5 In addition, a member function, a static data member, a named class or enumeration that inhabits a class scope, oran unnamed class or enumeration defined in a typedef declaration that inhabits a class scope such that the class orenumeration has the typedef name for linkage purposes (9.2.4), has the same linkage, if any, as the name of the class ofwhich it is a member.
6 [Example 1:

static void f();
extern "C" void h();
static int i = 0; // #1
void q() {

extern void f(); // internal linkage
extern void g(); // ::g, external linkage
extern void h(); // C language linkage
int i; // #2: i has no linkage
{

extern void f(); // internal linkage
extern int i; // #3: internal linkage

§ 6.6 55

© ISO/IEC N4910

}
}

Even though the declaration at line #2 hides the declaration at line #1, the declaration at line #3 still redeclares #1 and receivesinternal linkage. —end example]
7 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block scope (6.4.3)has no linkage.
8 Two declarations of entities declare the same entity if, considering declarations of unnamed types to introduce theirnames for linkage purposes, if any (9.2.4, 9.7.1), they correspond (6.4.1), have the same target scope that is not afunction or template parameter scope, and either

—(8.1) they appear in the same translation unit, or
—(8.2) they both declare names with module linkage and are attached to the same module, or
—(8.3) they both declare names with external linkage.

[Note 2: There are other circumstances in which declarations declare the same entity (9.11, 13.6, 13.7.6). —end note]
9 If a declaration H that declares a name with internal linkage precedes a declaration D in another translation unit U andwould declare the same entity as D if it appeared in U , the program is ill-formed.
[Note 3: Such anH can appear only in a header unit. —end note]

10 If two declarations of an entity are attached to different modules, the program is ill-formed; no diagnostic is required ifneither is reachable from the other.
[Example 2:
"decls.h":
int f(); // #1, attached to the global module
int g(); // #2, attached to the global module
Module interface of M:
module;
#include "decls.h"
export module M;
export using ::f; // OK, does not declare an entity, exports #1
int g(); // error: matches #2, but attached to M
export int h(); // #3
export int k(); // #4
Other translation unit:
import M;
static int h(); // error: matches #3
int k(); // error: matches #4
—end example]
As a consequence of these rules, all declarations of an entity are attached to the same module; the entity is said to beattached to that module.

11 For any two declarations of an entity E:
—(11.1) If one declares E to be a variable or function, the other shall declare E as one of the same type.
—(11.2) If one declares E to be an enumerator, the other shall do so.
—(11.3) If one declares E to be a namespace, the other shall do so.
—(11.4) If one declares E to be a type, the other shall declare E to be a type of the same kind (9.2.9.4).
—(11.5) If one declares E to be a class template, the other shall do so with the same kind and an equivalent template-

head (13.7.7.2).
[Note 4: The declarations can supply different default template arguments. —end note]

—(11.6) If one declares E to be a function template or a (partial specialization of a) variable template, the other shalldeclare E to be one with an equivalent template-head and type.
—(11.7) If one declares E to be an alias template, the other shall declare E to be one with an equivalent template-headand defining-type-id .

§ 6.6 56

© ISO/IEC N4910

—(11.8) If one declares E to be a concept, the other shall do so.
Types are compared after all adjustments of types (during which typedefs (9.2.4) are replaced by their definitions);declarations for an array object can specify array types that differ by the presence or absence of a major array bound(9.3.4.5). No diagnostic is required if neither declaration is reachable from the other.
[Example 3:
int f(int x, int x); // error: different entities for x
void g(); // #1
void g(int); // OK, different entity from #1
int g(); // error: same entity as #1 with different type
void h(); // #2
namespace h {} // error: same entity as #2, but not a function
—end example]

12 [Note 5: Linkage to non-C++ declarations can be achieved using a linkage-specification (9.11). —end note]
13 A declaration D names an entity E if

—(13.1) D contains a lambda-expression whose closure type is E,
—(13.2) E is not a function or function template and D contains an id-expression, type-specifier , nested-name-specifier ,

template-name, or concept-name denoting E, or
—(13.3) E is a function or function template and D contains an expression that names E (6.3) or an id-expression thatrefers to a set of overloads that contains E.

[Note 6: Non-dependent names in an instantiated declaration do not refer to a set of overloads (13.8). —end note]
14 A declaration is an exposure if it either names a TU-local entity (defined below), ignoring

—(14.1) the function-body for a non-inline function or function template (but not the deduced return type for a (possiblyinstantiated) definition of a function with a declared return type that uses a placeholder type (9.2.9.6)),
—(14.2) the initializer for a variable or variable template (but not the variable’s type),
—(14.3) friend declarations in a class definition, and
—(14.4) any reference to a non-volatile const object or reference with internal or no linkage initialized with a constantexpression that is not an odr-use (6.3),

or defines a constexpr variable initialized to a TU-local value (defined below).
[Note 7: An inline function template can be an exposure even though explicit specializations of it might be usable in other translationunits. —end note]

15 An entity is TU-local if it is
—(15.1) a type, function, variable, or template that

—(15.1.1) has a name with internal linkage, or
—(15.1.2) does not have a name with linkage and is declared, or introduced by a lambda-expression, within thedefinition of a TU-local entity,

—(15.2) a type with no name that is defined outside a class-specifier , function body, or initializer or is introduced by a
defining-type-specifier that is used to declare only TU-local entities,

—(15.3) a specialization of a TU-local template,
—(15.4) a specialization of a template with any TU-local template argument, or
—(15.5) a specialization of a template whose (possibly instantiated) declaration is an exposure.

[Note 8: A specialization can be produced by implicit or explicit instantiation. —end note]
16 A value or object is TU-local if either

—(16.1) it is, or is a pointer to, a TU-local function or the object associated with a TU-local variable, or
—(16.2) it is an object of class or array type and any of its subobjects or any of the objects or functions to which itsnon-static data members of reference type refer is TU-local and is usable in constant expressions.

17 If a (possibly instantiated) declaration of, or a deduction guide for, a non-TU-local entity in a module interface unit(outside the private-module-fragment, if any) or module partition (10.1) is an exposure, the program is ill-formed.Such a declaration in any other context is deprecated (D.7).
§ 6.6 57

© ISO/IEC N4910

18 If a declaration that appears in one translation unit names a TU-local entity declared in another translation unit that isnot a header unit, the program is ill-formed. A declaration instantiated for a template specialization (13.9) appears atthe point of instantiation of the specialization (13.8.4.1).
19 [Example 4:
Translation unit #1:
export module A;
static void f() {}
inline void it() { f(); } // error: is an exposure of f
static inline void its() { f(); } // OK
template<int> void g() { its(); } // OK
template void g<0>();

decltype(f) *fp; // error: f (though not its type) is TU-local
auto &fr = f; // OK
constexpr auto &fr2 = fr; // error: is an exposure of f
constexpr static auto fp2 = fr; // OK
struct S { void (&ref)(); } s{f}; // OK, value is TU-local
constexpr extern struct W { S &s; } wrap{s}; // OK, value is not TU-local
static auto x = []{f();}; // OK
auto x2 = x; // error: the closure type is TU-local
int y = ([]{f();}(),0); // error: the closure type is not TU-local
int y2 = (x,0); // OK
namespace N {

struct A {};
void adl(A);
static void adl(int);

}
void adl(double);

inline void h(auto x) { adl(x); } // OK, but a specialization might be an exposure
Translation unit #2:
module A;
void other() {

g<0>(); // OK, specialization is explicitly instantiated
g<1>(); // error: instantiation uses TU-local its
h(N::A{}); // error: overload set contains TU-local N::adl(int)
h(0); // OK, calls adl(double)
adl(N::A{}); // OK; N::adl(int) not found, calls N::adl(N::A)
fr(); // OK, calls f
constexpr auto ptr = fr; // error: fr is not usable in constant expressions here

}

—end example]
6.7 Memory and objects [basic.memobj]
6.7.1 Memory model [intro.memory]

1 The fundamental storage unit in the C++memory model is the byte. A byte is at least large enough to contain the ordinaryliteral encoding of any element of the basic literal character set (5.3) and the eight-bit code units of the Unicode21 UTF-8encoding form and is composed of a contiguous sequence of bits,22 the number of which is implementation-defined.The least significant bit is called the low-order bit; the most significant bit is called the high-order bit. The memoryavailable to a C++ program consists of one or more sequences of contiguous bytes. Every byte has a unique address.
2 [Note 1: The representation of types is described in 6.8.1. —end note]

21)Unicode® is a registered trademark of Unicode, Inc. This information is given for the convenience of users of this document and does notconstitute an endorsement by ISO or IEC of this product.
22) The number of bits in a byte is reported by the macro CHAR_BIT in the header <climits> (17.3.6).
§ 6.7.1 58

© ISO/IEC N4910

3 A memory location is either an object of scalar type that is not a bit-field or a maximal sequence of adjacent bit-fieldsall having nonzero width.
[Note 2: Various features of the language, such as references and virtual functions, might involve additional memory locations thatare not accessible to programs but are managed by the implementation. —end note]
Two or more threads of execution (6.9.2) can access separate memory locations without interfering with each other.

4 [Note 3: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be concurrently updated bytwo threads of execution without interference. The same applies to two bit-fields, if one is declared inside a nested struct declarationand the other is not, or if the two are separated by a zero-length bit-field declaration, or if they are separated by a non-bit-fielddeclaration. It is not safe to concurrently update two bit-fields in the same struct if all fields between them are also bit-fields ofnonzero width. —end note]
5 [Example 1: A class declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

}

contains four separate memory locations: The member a and bit-fields d and e.ee are each separate memory locations, and can bemodified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth memory location. Thebit-fields b and c cannot be concurrently modified, but b and a, for example, can be. —end example]
6.7.2 Object model [intro.object]

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is created bya definition (6.2), by a new-expression (7.6.2.8), by an operation that implicitly creates objects (see below), whenimplicitly changing the active member of a union (11.5), or when a temporary object is created (7.3.5, 6.7.7). An objectoccupies a region of storage in its period of construction (11.9.5), throughout its lifetime (6.7.3), and in its period ofdestruction (11.9.5).
[Note 1: A function is not an object, regardless of whether or not it occupies storage in the way that objects do. —end note]
The properties of an object are determined when the object is created. An object can have a name (6.1). An object has astorage duration (6.7.5) which influences its lifetime (6.7.3). An object has a type (6.8).
[Note 2: Some objects are polymorphic (11.7.3); the implementation generates information associated with each such object thatmakes it possible to determine that object’s type during program execution. —end note]

2 Objects can contain other objects, called subobjects. A subobject can be a member subobject (11.4), a base classsubobject (11.7), or an array element. An object that is not a subobject of any other object is called a complete object. Ifan object is created in storage associated with a member subobject or array element e (which may or may not be withinits lifetime), the created object is a subobject of e’s containing object if:
—(2.1) the lifetime of e’s containing object has begun and not ended, and
—(2.2) the storage for the new object exactly overlays the storage location associated with e, and
—(2.3) the new object is of the same type as e (ignoring cv-qualification).

3 If a complete object is created (7.6.2.8) in storage associated with another object e of type “array of N unsigned char”or of type “array of N std::byte” (17.2.1), that array provides storage for the created object if:
—(3.1) the lifetime of e has begun and not ended, and
—(3.2) the storage for the new object fits entirely within e, and
—(3.3) there is no array object that satisfies these constraints nested within e.

[Note 3: If that portion of the array previously provided storage for another object, the lifetime of that object ends because its storagewas reused (6.7.3). —end note]
[Example 1:
template<typename ...T>
struct AlignedUnion {

alignas(T...) unsigned char data[max(sizeof(T)...)];
};

§ 6.7.2 59

© ISO/IEC N4910

int f() {
AlignedUnion<int, char> au;
int *p = new (au.data) int; // OK, au.data provides storage
char *c = new (au.data) char(); // OK, ends lifetime of *p
char *d = new (au.data + 1) char();
return *c + *d; // OK

}

struct A { unsigned char a[32]; };
struct B { unsigned char b[16]; };
A a;
B *b = new (a.a + 8) B; // a.a provides storage for *b
int *p = new (b->b + 4) int; // b->b provides storage for *p// a.a does not provide storage for *p (directly),// but *p is nested within a (see below)
— end example]

4 An object a is nested within another object b if:
—(4.1) a is a subobject of b, or
—(4.2) b provides storage for a, or
—(4.3) there exists an object c where a is nested within c, and c is nested within b.

5 For every object x, there is some object called the complete object of x, determined as follows:
—(5.1) If x is a complete object, then the complete object of x is itself.
—(5.2) Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

6 If a complete object, a member subobject, or an array element is of class type, its type is considered the most derivedclass, to distinguish it from the class type of any base class subobject; an object of a most derived class type or of anon-class type is called a most derived object.
7 A potentially-overlapping subobject is either:

—(7.1) a base class subobject, or
—(7.2) a non-static data member declared with the no_unique_address attribute (9.12.10).

8 An object has nonzero size if it
—(8.1) is not a potentially-overlapping subobject, or
—(8.2) is not of class type, or
—(8.3) is of a class type with virtual member functions or virtual base classes, or
—(8.4) has subobjects of nonzero size or unnamed bit-fields of nonzero length.

Otherwise, if the object is a base class subobject of a standard-layout class type with no non-static data members, it haszero size. Otherwise, the circumstances under which the object has zero size are implementation-defined. Unless it is abit-field (11.4.10), an object with nonzero size shall occupy one or more bytes of storage, including every byte that isoccupied in full or in part by any of its subobjects. An object of trivially copyable or standard-layout type (6.8.1) shalloccupy contiguous bytes of storage.
9 Unless an object is a bit-field or a subobject of zero size, the address of that object is the address of the first byte itoccupies. Two objects with overlapping lifetimes that are not bit-fields may have the same address if one is nestedwithin the other, or if at least one is a subobject of zero size and they are of different types; otherwise, they have distinctaddresses and occupy disjoint bytes of storage.23
[Example 2:
static const char test1 = 'x';
static const char test2 = 'x';
const bool b = &test1 != &test2; // always true
—end example]

23) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an object at all if the programcannot observe the difference (6.9.1).
§ 6.7.2 60

© ISO/IEC N4910

The address of a non-bit-field subobject of zero size is the address of an unspecified byte of storage occupied by thecomplete object of that subobject.
10 Some operations are described as implicitly creating objects within a specified region of storage. For each operationthat is specified as implicitly creating objects, that operation implicitly creates and starts the lifetime of zero or moreobjects of implicit-lifetime types (6.8.1) in its specified region of storage if doing so would result in the program havingdefined behavior. If no such set of objects would give the program defined behavior, the behavior of the program isundefined. If multiple such sets of objects would give the program defined behavior, it is unspecified which such set ofobjects is created.
[Note 4: Such operations do not start the lifetimes of subobjects of such objects that are not themselves of implicit-lifetime types.—end note]

11 Further, after implicitly creating objects within a specified region of storage, some operations are described as producinga pointer to a suitable created object. These operations select one of the implicitly-created objects whose address is theaddress of the start of the region of storage, and produce a pointer value that points to that object, if that value wouldresult in the program having defined behavior. If no such pointer value would give the program defined behavior, thebehavior of the program is undefined. If multiple such pointer values would give the program defined behavior, it isunspecified which such pointer value is produced.
12 [Example 3:

#include <cstdlib>
struct X { int a, b; };
X *make_x() {// The call to std::malloc implicitly creates an object of type X// and its subobjects a and b, and returns a pointer to that X object// (or an object that is pointer-interconvertible (6.8.3) with it),// in order to give the subsequent class member access operations// defined behavior.
X *p = (X*)std::malloc(sizeof(struct X));
p->a = 1;
p->b = 2;
return p;

}

—end example]
13 An operation that begins the lifetime of an array of char, unsigned char, or std::byte implicitly creates objectswithin the region of storage occupied by the array.
[Note 5: The array object provides storage for these objects. —end note]
Any implicit or explicit invocation of a function named operator new or operator new[] implicitly creates objects inthe returned region of storage and returns a pointer to a suitable created object.
[Note 6: Some functions in the C++ standard library implicitly create objects (20.2.8.3, 20.2.11, 23.5.3, 22.15.3). —end note]
6.7.3 Lifetime [basic.life]

1 The lifetime of an object or reference is a runtime property of the object or reference. A variable is said to have vacuousinitialization if it is default-initialized and, if it is of class type or a (possibly multi-dimensional) array thereof, that classtype has a trivial default constructor. The lifetime of an object of type T begins when:
—(1.1) storage with the proper alignment and size for type T is obtained, and
—(1.2) its initialization (if any) is complete (including vacuous initialization) (9.4),

except that if the object is a union member or subobject thereof, its lifetime only begins if that union member is theinitialized member in the union (9.4.2, 11.9.3), or as described in 11.5 and 11.4.5.3, and except as described in 20.2.9.2.The lifetime of an object o of type T ends when:
—(1.3) if T is a non-class type, the object is destroyed, or
—(1.4) if T is a class type, the destructor call starts, or
—(1.5) the storage which the object occupies is released, or is reused by an object that is not nested within o (6.7.2).

2 The lifetime of a reference begins when its initialization is complete. The lifetime of a reference ends as if it were ascalar object requiring storage.
3 [Note 1: 11.9.3 describes the lifetime of base and member subobjects. —end note]

§ 6.7.3 61

© ISO/IEC N4910

4 The properties ascribed to objects and references throughout this document apply for a given object or reference onlyduring its lifetime.
[Note 2: In particular, before the lifetime of an object starts and after its lifetime ends there are significant restrictions on the use ofthe object, as described below, in 11.9.3, and in 11.9.5. Also, the behavior of an object under construction and destruction can differfrom the behavior of an object whose lifetime has started and not ended. 11.9.3 and 11.9.5 describe the behavior of an object duringits periods of construction and destruction. —end note]

5 A program may end the lifetime of an object of class type without invoking the destructor, by reusing or releasing thestorage as described above.
[Note 3: A delete-expression (7.6.2.9) invokes the destructor prior to releasing the storage. —end note]
In this case, the destructor is not implicitly invoked and any program that depends on the side effects produced by thedestructor has undefined behavior.

6 Before the lifetime of an object has started but after the storage which the object will occupy has been allocated24 or,after the lifetime of an object has ended and before the storage which the object occupied is reused or released, anypointer that represents the address of the storage location where the object will be or was located may be used but onlyin limited ways. For an object under construction or destruction, see 11.9.5. Otherwise, such a pointer refers to allocatedstorage (6.7.5.5.2), and using the pointer as if the pointer were of type void* is well-defined. Indirection through such apointer is permitted but the resulting lvalue may only be used in limited ways, as described below. The program hasundefined behavior if:
—(6.1) the object will be or was of a class type with a non-trivial destructor and the pointer is used as the operand of a

delete-expression,
—(6.2) the pointer is used to access a non-static data member or call a non-static member function of the object, or
—(6.3) the pointer is implicitly converted (7.3.12) to a pointer to a virtual base class, or
—(6.4) the pointer is used as the operand of a static_cast (7.6.1.9), except when the conversion is to pointer to cv void,or to pointer to cv void and subsequently to pointer to cv char, cv unsigned char, or cv std::byte (17.2.1), or
—(6.5) the pointer is used as the operand of a dynamic_cast (7.6.1.7).

[Example 1:
#include <cstdlib>

struct B {
virtual void f();
void mutate();
virtual ~B();

};

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {
new (this) D2; // reuses storage — ends the lifetime of *this
f(); // undefined behavior
... = this; // OK, this points to valid memory

}

void g() {
void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
*pb; // OK, pb points to valid memory
void* q = pb; // OK, pb points to valid memory
pb->f(); // undefined behavior: lifetime of *pb has ended

}

—end example]
7 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has been allocatedor, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, any

24) For example, before the dynamic initialization of an object with static storage duration (6.9.3.3).
§ 6.7.3 62

© ISO/IEC N4910

glvalue that refers to the original object may be used but only in limited ways. For an object under construction ordestruction, see 11.9.5. Otherwise, such a glvalue refers to allocated storage (6.7.5.5.2), and using the properties of theglvalue that do not depend on its value is well-defined. The program has undefined behavior if:
—(7.1) the glvalue is used to access the object, or
—(7.2) the glvalue is used to call a non-static member function of the object, or
—(7.3) the glvalue is bound to a reference to a virtual base class (9.4.4), or
—(7.4) the glvalue is used as the operand of a dynamic_cast (7.6.1.7) or as the operand of typeid.

8 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, a newobject is created at the storage location which the original object occupied, a pointer that pointed to the original object, areference that referred to the original object, or the name of the original object will automatically refer to the new objectand, once the lifetime of the new object has started, can be used to manipulate the new object, if the original object istransparently replaceable (see below) by the new object. An object o1 is transparently replaceable by an object o2 if:
—(8.1) the storage that o2 occupies exactly overlays the storage that o1 occupied, and
—(8.2) o1 and o2 are of the same type (ignoring the top-level cv-qualifiers), and
—(8.3) o1 is not a complete const object, and
—(8.4) neither o1 nor o2 is a potentially-overlapping subobject (6.7.2), and
—(8.5) either o1 and o2 are both complete objects, or o1 and o2 are direct subobjects of objects p1 and p2, respectively,and p1 is transparently replaceable by p2.

[Example 2:
struct C {

int i;
void f();
const C& operator=(const C&);

};

const C& C::operator=(const C& other) {
if (this != &other) {

this->~C(); // lifetime of *this ends
new (this) C(other); // new object of type C created
f(); // well-defined

}
return *this;

}

C c1;
C c2;
c1 = c2; // well-defined
c1.f(); // well-defined; c1 refers to a new object of type C
—end example]
[Note 4: If these conditions are not met, a pointer to the new object can be obtained from a pointer that represents the address of itsstorage by calling std::launder (17.6.5). —end note]

9 If a program ends the lifetime of an object of type T with static (6.7.5.2), thread (6.7.5.3), or automatic (6.7.5.4) storageduration and if T has a non-trivial destructor,25 and another object of the original type does not occupy that same storagelocation when the implicit destructor call takes place, the behavior of the program is undefined. This is true even if theblock is exited with an exception.
[Example 3:
class T { };
struct B {

~B();
};

25) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic storage duration, uponexit from the thread for an object with thread storage duration, or upon exit from the program for an object with static storage duration.
§ 6.7.3 63

© ISO/IEC N4910

void h() {
B b;
new (&b) T;

} // undefined behavior at block exit
— end example]

10 Creating a new object within the storage that a const complete object with static, thread, or automatic storage durationoccupies, or within the storage that such a const object used to occupy before its lifetime ended, results in undefinedbehavior.
[Example 4:
struct B {

B();
~B();

};

const B b;

void h() {
b.~B();
new (const_cast<B*>(&b)) const B; // undefined behavior

}

—end example]
11 In this subclause, “before” and “after” refer to the “happens before” relation (6.9.2).
[Note 5: Therefore, undefined behavior results if an object that is being constructed in one thread is referenced from another threadwithout adequate synchronization. —end note]
6.7.4 Indeterminate values [basic.indet]

1 When storage for an object with automatic or dynamic storage duration is obtained, the object has an indeterminatevalue, and if no initialization is performed for the object, that object retains an indeterminate value until that value isreplaced (7.6.19).
[Note 1: Objects with static or thread storage duration are zero-initialized, see 6.9.3.2. —end note]

2 If an indeterminate value is produced by an evaluation, the behavior is undefined except in the following cases:
—(2.1) If an indeterminate value of unsigned ordinary character type (6.8.2) or std::byte type (17.2.1) is produced bythe evaluation of:

—(2.1.1) the second or third operand of a conditional expression (7.6.16),
—(2.1.2) the right operand of a comma expression (7.6.20),
—(2.1.3) the operand of a cast or conversion (7.3.9, 7.6.1.4, 7.6.1.9, 7.6.3) to an unsigned ordinary character type or

std::byte type (17.2.1), or
—(2.1.4) a discarded-value expression (7.2.3),
then the result of the operation is an indeterminate value.

—(2.2) If an indeterminate value of unsigned ordinary character type or std::byte type is produced by the evaluation ofthe right operand of a simple assignment operator (7.6.19) whose first operand is an lvalue of unsigned ordinarycharacter type or std::byte type, an indeterminate value replaces the value of the object referred to by the leftoperand.
—(2.3) If an indeterminate value of unsigned ordinary character type is produced by the evaluation of the initializa-tion expression when initializing an object of unsigned ordinary character type, that object is initialized to anindeterminate value.
—(2.4) If an indeterminate value of unsigned ordinary character type or std::byte type is produced by the evaluationof the initialization expression when initializing an object of std::byte type, that object is initialized to anindeterminate value.

[Example 1:
int f(bool b) {

unsigned char c;
unsigned char d = c; // OK, d has an indeterminate value

§ 6.7.4 64

© ISO/IEC N4910

int e = d; // undefined behavior
return b ? d : 0; // undefined behavior if b is true

}

—end example]
6.7.5 Storage duration [basic.stc]
6.7.5.1 General [basic.stc.general]

1 The storage duration is the property of an object that defines the minimum potential lifetime of the storage containingthe object. The storage duration is determined by the construct used to create the object and is one of the following:
—(1.1) static storage duration
—(1.2) thread storage duration
—(1.3) automatic storage duration
—(1.4) dynamic storage duration

2 Static, thread, and automatic storage durations are associated with objects introduced by declarations (6.2) and implicitlycreated by the implementation (6.7.7). The dynamic storage duration is associated with objects created by a new-
expression (7.6.2.8).

3 The storage duration categories apply to references as well.
4 When the end of the duration of a region of storage is reached, the values of all pointers representing the address of anypart of that region of storage become invalid pointer values (6.8.3). Indirection through an invalid pointer value andpassing an invalid pointer value to a deallocation function have undefined behavior. Any other use of an invalid pointervalue has implementation-defined behavior.26
6.7.5.2 Static storage duration [basic.stc.static]

1 All variables which
—(1.1) do not have thread storage duration and
—(1.2) belong to a namespace scope (6.4.5) or are first declared with the static or extern keywords (9.2.2)

have static storage duration. The storage for these entities lasts for the duration of the program (6.9.3.2, 6.9.3.4).
2 If a variable with static storage duration has initialization or a destructor with side effects, it shall not be eliminatedeven if it appears to be unused, except that a class object or its copy/move may be eliminated as specified in 11.9.6.
3 [Note 1: The keyword static can be used to declare a block variable (6.4.3) with static storage duration; 8.8 and 6.9.3.4 describe theinitialization and destruction of such variables. The keyword static applied to a class data member in a class definition gives thedata member static storage duration (11.4.9.3). —end note]
6.7.5.3 Thread storage duration [basic.stc.thread]

1 All variables declared with the thread_local keyword have thread storage duration. The storage for these entitieslasts for the duration of the thread in which they are created. There is a distinct object or reference per thread, and useof the declared name refers to the entity associated with the current thread.
2 [Note 1: A variable with thread storage duration is initialized as specified in 6.9.3.2, 6.9.3.3, and 8.8 and, if constructed, is destroyedon thread exit (6.9.3.4). —end note]
6.7.5.4 Automatic storage duration [basic.stc.auto]

1 Variables that belong to a block or parameter scope and are not explicitly declared static, thread_local, or externhave automatic storage duration. The storage for these entities lasts until the block in which they are created exits.
2 [Note 1: These variables are initialized and destroyed as described in 8.8. —end note]
3 If a variable with automatic storage duration has initialization or a destructor with side effects, an implementation shallnot destroy it before the end of its block nor eliminate it as an optimization, even if it appears to be unused, except thata class object or its copy/move may be eliminated as specified in 11.9.6.

26) Some implementations might define that copying an invalid pointer value causes a system-generated runtime fault.
§ 6.7.5.4 65

© ISO/IEC N4910

6.7.5.5 Dynamic storage duration [basic.stc.dynamic]
6.7.5.5.1 General [basic.stc.dynamic.general]

1 Objects can be created dynamically during program execution (6.9.1), using new-expressions (7.6.2.8), and destroyedusing delete-expressions (7.6.2.9). A C++ implementation provides access to, and management of, dynamic storagevia the global allocation functions operator new and operator new[] and the global deallocation functions operator
delete and operator delete[].
[Note 1: The non-allocating forms described in 17.6.3.4 do not perform allocation or deallocation. —end note]

2 The library provides default definitions for the global allocation and deallocation functions. Some global allocation anddeallocation functions are replaceable (17.6.3). A C++ program shall provide at most one definition of a replaceableallocation or deallocation function. Any such function definition replaces the default version provided in the library(16.4.5.6). The following allocation and deallocation functions (17.6) are implicitly declared in global scope in eachtranslation unit of a program.
[[nodiscard]] void* operator new(std::size_t);
[[nodiscard]] void* operator new(std::size_t, std::align_val_t);

void operator delete(void*) noexcept;
void operator delete(void*, std::size_t) noexcept;
void operator delete(void*, std::align_val_t) noexcept;
void operator delete(void*, std::size_t, std::align_val_t) noexcept;

[[nodiscard]] void* operator new[](std::size_t);
[[nodiscard]] void* operator new[](std::size_t, std::align_val_t);

void operator delete[](void*) noexcept;
void operator delete[](void*, std::size_t) noexcept;
void operator delete[](void*, std::align_val_t) noexcept;
void operator delete[](void*, std::size_t, std::align_val_t) noexcept;

These implicit declarations introduce only the function names operator new, operator new[], operator delete, and
operator delete[].
[Note 2: The implicit declarations do not introduce the names std, std::size_t, std::align_val_t, or any other names thatthe library uses to declare these names. Thus, a new-expression, delete-expression, or function call that refers to one of thesefunctions without importing or including the header <new> (17.6.2) is well-formed. However, referring to std or std::size_t or
std::align_val_t is ill-formed unless the name has been declared by importing or including the appropriate header. —end note]
Allocation and/or deallocation functions may also be declared and defined for any class (11.4.11).

3 If the behavior of an allocation or deallocation function does not satisfy the semantic constraints specified in 6.7.5.5.2and 6.7.5.5.3, the behavior is undefined.
6.7.5.5.2 Allocation functions [basic.stc.dynamic.allocation]

1 An allocation function that is not a class member function shall belong to the global scope and not have a name withinternal linkage. The return type shall be void*. The first parameter shall have type std::size_t (17.2). The firstparameter shall not have an associated default argument (9.3.4.7). The value of the first parameter is interpreted as therequested size of the allocation. An allocation function can be a function template. Such a template shall declare itsreturn type and first parameter as specified above (that is, template parameter types shall not be used in the return typeand first parameter type). Allocation function templates shall have two or more parameters.
2 An allocation function attempts to allocate the requested amount of storage. If it is successful, it returns the addressof the start of a block of storage whose length in bytes is at least as large as the requested size. The order, contiguity,and initial value of storage allocated by successive calls to an allocation function are unspecified. Even if the size ofthe space requested is zero, the request can fail. If the request succeeds, the value returned by a replaceable allocationfunction is a non-null pointer value (6.8.3) p0 different from any previously returned value p1, unless that value p1 wassubsequently passed to a replaceable deallocation function. Furthermore, for the library allocation functions in 17.6.3.2and 17.6.3.3, p0 represents the address of a block of storage disjoint from the storage for any other object accessible tothe caller. The effect of indirecting through a pointer returned from a request for zero size is undefined.27
3 For an allocation function other than a reserved placement allocation function (17.6.3.4), the pointer returned on asuccessful call shall represent the address of storage that is aligned as follows:

27) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are substantially the same. C++differs from C in requiring a zero request to return a non-null pointer.
§ 6.7.5.5.2 66

© ISO/IEC N4910

—(3.1) If the allocation function takes an argument of type std::align_val_t, the storage will have the alignmentspecified by the value of this argument.
—(3.2) Otherwise, if the allocation function is named operator new[], the storage is aligned for any object that doesnot have new-extended alignment (6.7.6) and is no larger than the requested size.
—(3.3) Otherwise, the storage is aligned for any object that does not have new-extended alignment and is of the requestedsize.

4 An allocation function that fails to allocate storage can invoke the currently installed new-handler function (17.6.4.3), ifany.
[Note 1: A program-supplied allocation function can obtain the address of the currently installed new_handler using the std::get_-
new_handler function (17.6.4.5). —end note]
An allocation function that has a non-throwing exception specification (14.5) indicates failure by returning a nullpointer value. Any other allocation function never returns a null pointer value and indicates failure only by throwing anexception (14.2) of a type that would match a handler (14.4) of type std::bad_alloc (17.6.4.1).

5 A global allocation function is only called as the result of a new expression (7.6.2.8), or called directly using the functioncall syntax (7.6.1.3), or called indirectly to allocate storage for a coroutine state (9.5.4), or called indirectly throughcalls to the functions in the C++ standard library.
[Note 2: In particular, a global allocation function is not called to allocate storage for objects with static storage duration (6.7.5.2),for objects or references with thread storage duration (6.7.5.3), for objects of type std::type_info (7.6.1.8), or for an exceptionobject (14.2). —end note]
6.7.5.5.3 Deallocation functions [basic.stc.dynamic.deallocation]

1 A deallocation function that is not a class member function shall belong to the global scope and not have a name withinternal linkage.
2 A deallocation function is a destroying operator delete if it has at least two parameters and its second parameter isof type std::destroying_delete_t. A destroying operator delete shall be a class member function named operator

delete.
[Note 1: Array deletion cannot use a destroying operator delete. —end note]

3 Each deallocation function shall return void. If the function is a destroying operator delete declared in class type C, thetype of its first parameter shall be C*; otherwise, the type of its first parameter shall be void*. A deallocation functionmay have more than one parameter. A usual deallocation function is a deallocation function whose parameters after thefirst are
—(3.1) optionally, a parameter of type std::destroying_delete_t, then
—(3.2) optionally, a parameter of type std::size_t,28 then
—(3.3) optionally, a parameter of type std::align_val_t.

A destroying operator delete shall be a usual deallocation function. A deallocation function may be an instance of afunction template. Neither the first parameter nor the return type shall depend on a template parameter. A deallocationfunction template shall have two or more function parameters. A template instance is never a usual deallocation function,regardless of its signature.
4 If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the first argumentsupplied to a deallocation function may be a null pointer value; if so, and if the deallocation function is one supplied inthe standard library, the call has no effect.
5 If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer value (6.8.3),the deallocation function shall deallocate the storage referenced by the pointer, ending the duration of the region ofstorage.
6.7.5.6 Duration of subobjects [basic.stc.inherit]

1 The storage duration of subobjects and reference members is that of their complete object (6.7.2).

28) The global operator delete(void*, std::size_t) precludes use of an allocation function void operator new(std::size_t, std::size_-
t) as a placement allocation function (C.4.3).
§ 6.7.5.6 67

© ISO/IEC N4910

6.7.6 Alignment [basic.align]
1 Object types have alignment requirements (6.8.2, 6.8.3) which place restrictions on the addresses at which an objectof that type may be allocated. An alignment is an implementation-defined integer value representing the number ofbytes between successive addresses at which a given object can be allocated. An object type imposes an alignmentrequirement on every object of that type; stricter alignment can be requested using the alignment specifier (9.12.2).
2 A fundamental alignment is represented by an alignment less than or equal to the greatest alignment supported by theimplementation in all contexts, which is equal to alignof(std::max_align_t) (17.2). The alignment required for atype may be different when it is used as the type of a complete object and when it is used as the type of a subobject.
[Example 1:
struct B { long double d; };
struct D : virtual B { char c; };

When D is the type of a complete object, it will have a subobject of type B, so it must be aligned appropriately for a long double. If
D appears as a subobject of another object that also has B as a virtual base class, the B subobject might be part of a different subobject,reducing the alignment requirements on the D subobject. —end example]
The result of the alignof operator reflects the alignment requirement of the type in the complete-object case.

3 An extended alignment is represented by an alignment greater than alignof(std::max_align_t). It is implementation-defined whether any extended alignments are supported and the contexts in which they are supported (9.12.2). A typehaving an extended alignment requirement is an over-aligned type.
[Note 1: Every over-aligned type is or contains a class type to which extended alignment applies (possibly through a non-static datamember). —end note]
A new-extended alignment is represented by an alignment greater than __STDCPP_DEFAULT_NEW_ALIGNMENT__ (15.11).

4 Alignments are represented as values of the type std::size_t. Valid alignments include only those values returned byan alignof expression for the fundamental types plus an additional implementation-defined set of values, which maybe empty. Every alignment value shall be a non-negative integral power of two.
5 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger alignmentvalues. An address that satisfies an alignment requirement also satisfies any weaker valid alignment requirement.
6 The alignment requirement of a complete type can be queried using an alignof expression (7.6.2.6). Furthermore, thenarrow character types (6.8.2) shall have the weakest alignment requirement.
[Note 2: This enables the ordinary character types to be used as the underlying type for an aligned memory area (9.12.2). —end note]

7 Comparing alignments is meaningful and provides the obvious results:
—(7.1) Two alignments are equal when their numeric values are equal.
—(7.2) Two alignments are different when their numeric values are not equal.
—(7.3) When an alignment is larger than another it represents a stricter alignment.

8 [Note 3: The runtime pointer alignment function (20.2.5) can be used to obtain an aligned pointer within a buffer; the aligned-storagetemplates in the library (21.3.8.7) can be used to obtain aligned storage. —end note]
9 If a request for a specific extended alignment in a specific context is not supported by an implementation, the programis ill-formed.
6.7.7 Temporary objects [class.temporary]

1 Temporary objects are created
—(1.1) when a prvalue is converted to an xvalue (7.3.5),
—(1.2) when needed by the implementation to pass or return an object of trivially copyable type (see below), and
—(1.3) when throwing an exception (14.2).

[Note 1: The lifetime of exception objects is described in 14.2. —end note]
Even when the creation of the temporary object is unevaluated (7.2.3), all the semantic restrictions shall be respected asif the temporary object had been created and later destroyed.
[Note 2: This includes accessibility (11.8) and whether it is deleted, for the constructor selected and for the destructor. However, inthe special case of the operand of a decltype-specifier (9.2.9.5), no temporary is introduced, so the foregoing does not apply to sucha prvalue. —end note]

§ 6.7.7 68

© ISO/IEC N4910

2 The materialization of a temporary object is generally delayed as long as possible in order to avoid creating unnecessarytemporary objects.
[Note 3: Temporary objects are materialized:
—(2.1) when binding a reference to a prvalue (9.4.4, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.1.11, 7.6.3),
—(2.2) when performing member access on a class prvalue (7.6.1.5, 7.6.4),
—(2.3) when performing an array-to-pointer conversion or subscripting on an array prvalue (7.3.3, 7.6.1.2),
—(2.4) when initializing an object of type std::initializer_list<T> from a braced-init-list (9.4.5),
—(2.5) for certain unevaluated operands (7.6.1.8, 7.6.2.5), and
—(2.6) when a prvalue that has type other than cv void appears as a discarded-value expression (7.2.3).

—end note]
[Example 1: Consider the following code:
class X {
public:

X(int);
X(const X&);
X& operator=(const X&);
~X();

};

class Y {
public:

Y(int);
Y(Y&&);
~Y();

};

X f(X);
Y g(Y);

void h() {
X a(1);
X b = f(X(2));
Y c = g(Y(3));
a = f(a);

}

X(2) is constructed in the space used to hold f()’s argument and Y(3) is constructed in the space used to hold g()’s argument.Likewise, f()’s result is constructed directly in b and g()’s result is constructed directly in c. On the other hand, the expression a =
f(a) requires a temporary for the result of f(a), which is materialized so that the reference parameter of X::operator=(const X&)can bind to it. —end example]

3 When an object of class type X is passed to or returned from a function, if X has at least one eligible copy or moveconstructor (11.4.4), each such constructor is trivial, and the destructor of X is either trivial or deleted, implementationsare permitted to create a temporary object to hold the function parameter or result object. The temporary object isconstructed from the function argument or return value, respectively, and the function’s parameter or return object isinitialized as if by using the eligible trivial constructor to copy the temporary (even if that constructor is inaccessible orwould not be selected by overload resolution to perform a copy or move of the object).
[Note 4: This latitude is granted to allow objects of class type to be passed to or returned from functions in registers. —end note]

4 When an implementation introduces a temporary object of a class that has a non-trivial constructor (11.4.5.2, 11.4.5.3),it shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for atemporary with a non-trivial destructor (11.4.7). Temporary objects are destroyed as the last step in evaluating thefull-expression (6.9.1) that (lexically) contains the point where they were created. This is true even if that evaluationends in throwing an exception. The value computations and side effects of destroying a temporary object are associatedonly with the full-expression, not with any specific subexpression.
5 There are three contexts in which temporaries are destroyed at a different point than the end of the full-expression.The first context is when a default constructor is called to initialize an element of an array with no correspondinginitializer (9.4). The second context is when a copy constructor is called to copy an element of an array while the entire

§ 6.7.7 69

© ISO/IEC N4910

array is copied (7.5.5.3, 11.4.5.3). In either case, if the constructor has one or more default arguments, the destructionof every temporary created in a default argument is sequenced before the construction of the next array element, if any.
6 The third context is when a reference binds to a temporary object.29 The temporary object to which the reference isbound or the temporary object that is the complete object of a subobject to which the reference is bound persists for thelifetime of the reference if the glvalue to which the reference is bound was obtained through one of the following:

—(6.1) a temporary materialization conversion (7.3.5),
—(6.2) (expression), where expression is one of these expressions,
—(6.3) subscripting (7.6.1.2) of an array operand, where that operand is one of these expressions,
—(6.4) a class member access (7.6.1.5) using the . operator where the left operand is one of these expressions and theright operand designates a non-static data member of non-reference type,
—(6.5) a pointer-to-member operation (7.6.4) using the .* operator where the left operand is one of these expressionsand the right operand is a pointer to data member of non-reference type,
—(6.6) a

—(6.6.1) const_cast (7.6.1.11),
—(6.6.2) static_cast (7.6.1.9),
—(6.6.3) dynamic_cast (7.6.1.7), or
—(6.6.4) reinterpret_cast (7.6.1.10)
converting, without a user-defined conversion, a glvalue operand that is one of these expressions to a glvalue thatrefers to the object designated by the operand, or to its complete object or a subobject thereof,

—(6.7) a conditional expression (7.6.16) that is a glvalue where the second or third operand is one of these expressions,or
—(6.8) a comma expression (7.6.20) that is a glvalue where the right operand is one of these expressions.

[Example 2:
template<typename T> using id = T;

int i = 1;
int&& a = id<int[3]>{1, 2, 3}[i]; // temporary array has same lifetime as a
const int& b = static_cast<const int&>(0); // temporary int has same lifetime as b
int&& c = cond ? id<int[3]>{1, 2, 3}[i] : static_cast<int&&>(0);// exactly one of the two temporaries is lifetime-extended
—end example]
[Note 5: An explicit type conversion (7.6.1.4, 7.6.3) is interpreted as a sequence of elementary casts, covered above.
[Example 3:
const int& x = (const int&)1; // temporary for value 1 has same lifetime as x
— end example]
—end note]
[Note 6: If a temporary object has a reference member initialized by another temporary object, lifetime extension applies recursivelyto such a member’s initializer.
[Example 4:
struct S {

const int& m;
};
const S& s = S{1}; // both S and int temporaries have lifetime of s
—end example]
—end note]
The exceptions to this lifetime rule are:
—(6.9) A temporary object bound to a reference parameter in a function call (7.6.1.3) persists until the completion of thefull-expression containing the call.
29) The same rules apply to initialization of an initializer_list object (9.4.5) with its underlying temporary array.
§ 6.7.7 70

© ISO/IEC N4910

—(6.10) A temporary object bound to a reference element of an aggregate of class type initialized from a parenthesized
expression-list (9.4) persists until the completion of the full-expression containing the expression-list.

—(6.11) The lifetime of a temporary bound to the returned value in a function return statement (8.7.4) is not extended;the temporary is destroyed at the end of the full-expression in the return statement.
—(6.12) A temporary bound to a reference in a new-initializer (7.6.2.8) persists until the completion of the full-expressioncontaining the new-initializer .

[Note 7: This might introduce a dangling reference. —end note]
[Example 5:
struct S { int mi; const std::pair<int,int>& mp; };
S a { 1, {2,3} };
S* p = new S{ 1, {2,3} }; // creates dangling reference
— end example]

7 The destruction of a temporary whose lifetime is not extended by being bound to a reference is sequenced before thedestruction of every temporary which is constructed earlier in the same full-expression. If the lifetime of two or moretemporaries to which references are bound ends at the same point, these temporaries are destroyed at that point in thereverse order of the completion of their construction. In addition, the destruction of temporaries bound to referencesshall take into account the ordering of destruction of objects with static, thread, or automatic storage duration (6.7.5.2,6.7.5.3, 6.7.5.4); that is, if obj1 is an object with the same storage duration as the temporary and created before thetemporary is created the temporary shall be destroyed before obj1 is destroyed; if obj2 is an object with the samestorage duration as the temporary and created after the temporary is created the temporary shall be destroyed after obj2is destroyed.
8 [Example 6:

struct S {
S();
S(int);
friend S operator+(const S&, const S&);
~S();

};
S obj1;
const S& cr = S(16)+S(23);
S obj2;

The expression S(16) + S(23) creates three temporaries: a first temporary T1 to hold the result of the expression S(16), a secondtemporary T2 to hold the result of the expression S(23), and a third temporary T3 to hold the result of the addition of thesetwo expressions. The temporary T3 is then bound to the reference cr. It is unspecified whether T1 or T2 is created first. On animplementation where T1 is created before T2, T2 shall be destroyed before T1. The temporaries T1 and T2 are bound to the referenceparameters of operator+; these temporaries are destroyed at the end of the full-expression containing the call to operator+. Thetemporary T3 bound to the reference cr is destroyed at the end of cr’s lifetime, that is, at the end of the program. In addition, theorder in which T3 is destroyed takes into account the destruction order of other objects with static storage duration. That is, because
obj1 is constructed before T3, and T3 is constructed before obj2, obj2 shall be destroyed before T3, and T3 shall be destroyed before
obj1. —end example]
6.8 Types [basic.types]
6.8.1 General [basic.types.general]

1 [Note 1: 6.8 and the subclauses thereof impose requirements on implementations regarding the representation of types. There are twokinds of types: fundamental types and compound types. Types describe objects (6.7.2), references (9.3.4.3), or functions (9.3.4.6).—end note]
2 For any object (other than a potentially-overlapping subobject) of trivially copyable type T, whether or not the objectholds a valid value of type T, the underlying bytes (6.7.1) making up the object can be copied into an array of char,

unsigned char, or std::byte (17.2.1).30 If the content of that array is copied back into the object, the object shallsubsequently hold its original value.
[Example 1:
constexpr std::size_t N = sizeof(T);
char buf[N];
T obj; // obj initialized to its original value
30) By using, for example, the library functions (16.4.2.3) std::memcpy or std::memmove.
§ 6.8.1 71

© ISO/IEC N4910

std::memcpy(buf, &obj, N); // between these two calls to std::memcpy, obj might be modified
std::memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type holds its original value
— end example]

3 For two distinct objects obj1 and obj2 of trivially copyable type T, where neither obj1 nor obj2 is a potentially-overlapping subobject, if the underlying bytes (6.7.1) making up obj1 are copied into obj2,31 obj2 shall subsequentlyhold the same value as obj1.
[Example 2:
T* t1p;
T* t2p;// provided that t2p points to an initialized object ...
std::memcpy(t1p, t2p, sizeof(T));// at this point, every subobject of trivially copyable type in *t1p contains// the same value as the corresponding subobject in *t2p
—end example]

4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by the object oftype T, where N equals sizeof(T). The value representation of an object of type T is the set of bits that participate inrepresenting a value of type T. Bits in the object representation that are not part of the value representation are paddingbits. For trivially copyable types, the value representation is a set of bits in the object representation that determines avalue, which is one discrete element of an implementation-defined set of values.32
5 A class that has been declared but not defined, an enumeration type in certain contexts (9.7.1), or an array of unknownbound or of incomplete element type, is an incompletely-defined object type.33 Incompletely-defined object types andcv void are incomplete types (6.8.2).
[Note 2: Objects cannot be defined to have an incomplete type (6.2). —end note]

6 A class type (such as “class X”) can be incomplete at one point in a translation unit and complete later on; the type“class X” is the same type at both points. The declared type of an array object can be an array of incomplete class typeand therefore incomplete; if the class type is completed later on in the translation unit, the array type becomes complete;the array type at those two points is the same type. The declared type of an array object can be an array of unknownbound and therefore be incomplete at one point in a translation unit and complete later on; the array types at those twopoints (“array of unknown bound of T” and “array of N T”) are different types. The type of a pointer to array of unknownbound, or of a type defined by a typedef declaration to be an array of unknown bound, cannot be completed.
[Example 3:
class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo() {
xp++; // error: X is incomplete
arrp++; // error: incomplete type
arrpp++; // OK, sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete
X x;
void bar() {

xp = &x; // OK; type is “pointer to X”
arrp = &arr; // OK; qualification conversion (7.3.6)
xp++; // OK, X is complete
arrp++; // error: UNKA can’t be completed

}

31) By using, for example, the library functions (16.4.2.3) std::memcpy or std::memmove.
32) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
33) The size and layout of an instance of an incompletely-defined object type is unknown.
§ 6.8.1 72

© ISO/IEC N4910

—end example]
7 [Note 3: The rules for declarations and expressions describe in which contexts incomplete types are prohibited. —end note]
8 An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not cv void.
9 Arithmetic types (6.8.2), enumeration types, pointer types, pointer-to-member types (6.8.3), std::nullptr_t, andcv-qualified (6.8.4) versions of these types are collectively called scalar types. Scalar types, trivially copyable classtypes (11.2), arrays of such types, and cv-qualified versions of these types are collectively called trivially copyable types.Scalar types, trivial class types (11.2), arrays of such types and cv-qualified versions of these types are collectivelycalled trivial types. Scalar types, standard-layout class types (11.2), arrays of such types and cv-qualified versions ofthese types are collectively called standard-layout types. Scalar types, implicit-lifetime class types (11.2), array types,and cv-qualified versions of these types are collectively called implicit-lifetime types.
10 A type is a literal type if it is:

—(10.1) cv void; or
—(10.2) a scalar type; or
—(10.3) a reference type; or
—(10.4) an array of literal type; or
—(10.5) a possibly cv-qualified class type (Clause 11) that has all of the following properties:

—(10.5.1) it has a constexpr destructor (9.2.6),
—(10.5.2) it is either a closure type (7.5.5.2), an aggregate type (9.4.2), or has at least one constexpr constructor orconstructor template (possibly inherited (9.9) from a base class) that is not a copy or move constructor,
—(10.5.3) if it is a union, at least one of its non-static data members is of non-volatile literal type, and
—(10.5.4) if it is not a union, all of its non-static data members and base classes are of non-volatile literal types.

[Note 4: A literal type is one for which it might be possible to create an object within a constant expression. It is not a guarantee thatit is possible to create such an object, nor is it a guarantee that any object of that type will be usable in a constant expression. —endnote]
11 Two types cv1 T1 and cv2 T2 are layout-compatible types if T1 and T2 are the same type, layout-compatible enumerations(9.7.1), or layout-compatible standard-layout class types (11.4).
6.8.2 Fundamental types [basic.fundamental]

1 There are five standard signed integer types: “signed char”, “short int”, “int”, “long int”, and “long long int”.In this list, each type provides at least as much storage as those preceding it in the list. There may also be implementation-defined extended signed integer types. The standard and extended signed integer types are collectively called signedinteger types. The range of representable values for a signed integer type is −2N−1 to 2N−1 − 1 (inclusive), where Nis called the width of the type.
[Note 1: Plain ints are intended to have the natural width suggested by the architecture of the execution environment; the othersigned integer types are provided to meet special needs. —end note]

2 For each of the standard signed integer types, there exists a corresponding (but different) standard unsigned integer type:“unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”, and “unsigned long long int”.Likewise, for each of the extended signed integer types, there exists a corresponding extended unsigned integer type.The standard and extended unsigned integer types are collectively called unsigned integer types. An unsigned integertype has the same width N as the corresponding signed integer type. The range of representable values for the unsignedtype is 0 to 2N − 1 (inclusive); arithmetic for the unsigned type is performed modulo 2N .
[Note 2: Unsigned arithmetic does not overflow. Overflow for signed arithmetic yields undefined behavior (7.1). —end note]

3 An unsigned integer type has the same object representation, value representation, and alignment requirements (6.7.6)as the corresponding signed integer type. For each value x of a signed integer type, the value of the correspondingunsigned integer type congruent to x modulo 2N has the same value of corresponding bits in its value representation.34
[Example 1: The value −1 of a signed integer type has the same representation as the largest value of the corresponding unsignedtype. —end example]

4 The width of each signed integer type shall not be less than the values specified in Table 14. The value representation ofa signed or unsigned integer type comprises N bits, where N is the respective width. Each set of values for any paddingbits (6.8.1) in the object representation are alternative representations of the value specified by the value representation.
34) This is also known as two’s complement representation.
§ 6.8.2 73

© ISO/IEC N4910

Table 14: Minimum width [tab:basic.fundamental.width]
Type Minimum width N

signed char 8
short int 16
int 16
long int 32
long long int 64

[Note 3: Padding bits have unspecified value, but cannot cause traps. In contrast, see ISO C 6.2.6.2. —end note]
[Note 4: The signed and unsigned integer types satisfy the constraints given in ISO C 5.2.4.2.1. —end note]
Except as specified above, the width of a signed or unsigned integer type is implementation-defined.

5 Each value x of an unsigned integer type with widthN has a unique representation x = x020+x121+ . . .+xN−12N−1,where each coefficient xi is either 0 or 1; this is called the base-2 representation of x. The base-2 representation of avalue of signed integer type is the base-2 representation of the congruent value of the corresponding unsigned integertype. The standard signed integer types and standard unsigned integer types are collectively called the standard integertypes, and the extended signed integer types and extended unsigned integer types are collectively called the extendedinteger types.
6 A fundamental type specified to have a signed or unsigned integer type as its underlying type has the same objectrepresentation, value representation, alignment requirements (6.7.6), and range of representable values as the underlyingtype. Further, each value has the same representation in both types.
7 Type char is a distinct type that has an implementation-defined choice of “signed char” or “unsigned char” as itsunderlying type. The three types char, signed char, and unsigned char are collectively called ordinary charactertypes. The ordinary character types and char8_t are collectively called narrow character types. For narrow charactertypes, each possible bit pattern of the object representation represents a distinct value.
[Note 5: This requirement does not hold for other types. —end note]
[Note 6: A bit-field of narrow character type whose width is larger than the width of that type has padding bits; see 6.8.1. —end note]

8 Type wchar_t is a distinct type that has an implementation-defined signed or unsigned integer type as its underlyingtype. The values of type wchar_t can represent distinct codes for all members of the largest extended character setspecified among the supported locales (30.3.1).
9 Type char8_t denotes a distinct type whose underlying type is unsigned char. Types char16_t and char32_t denotedistinct types whose underlying types are uint_least16_t and uint_least32_t, respectively, in <cstdint> (17.4.2).
10 Type bool is a distinct type that has the same object representation, value representation, and alignment requirements asan implementation-defined unsigned integer type. The values of type bool are true and false.
[Note 7: There are no signed, unsigned, short, or long bool types or values. —end note]

11 The types char, wchar_t, char8_t, char16_t, and char32_t are collectively called character types. The charactertypes, bool, the signed and unsigned integer types, and cv-qualified versions (6.8.4) thereof, are collectively termedintegral types. A synonym for integral type is integer type.
[Note 8: Enumerations (9.7.1) are not integral; however, unscoped enumerations can be promoted to integral types as specified in7.3.7. —end note]

12 The three distinct types float, double, and long double can represent floating-point numbers. The type doubleprovides at least as much precision as float, and the type long double provides at least as much precision as double.The set of values of the type float is a subset of the set of values of the type double; the set of values of the type doubleis a subset of the set of values of the type long double. The types float, double, and long double, and cv-qualifiedversions (6.8.4) thereof, are collectively termed floating-point types. The value representation of floating-point types isimplementation-defined.
[Note 9: This document imposes no requirements on the accuracy of floating-point operations; see also 17.3. —end note]

13 Integral and floating-point types are collectively termed arithmetic types.
[Note 10: Properties of the arithmetic types, such as their minimum and maximum representable value, can be queried using thefacilities in the standard library headers <limits> (17.3.3), <climits> (17.3.6), and <cfloat> (17.3.7). —end note]

§ 6.8.2 74

© ISO/IEC N4910

14 A type cv void is an incomplete type that cannot be completed; such a type has an empty set of values. It is used as thereturn type for functions that do not return a value. Any expression can be explicitly converted to type cv void (7.6.1.4,7.6.1.9, 7.6.3). An expression of type cv void shall be used only as an expression statement (8.3), as an operand ofa comma expression (7.6.20), as a second or third operand of ?: (7.6.16), as the operand of typeid, noexcept, or
decltype, as the expression in a return statement (8.7.4) for a function with the return type cv void, or as the operandof an explicit conversion to type cv void.

15 A value of type std::nullptr_t is a null pointer constant (7.3.12). Such values participate in the pointer and thepointer-to-member conversions (7.3.12, 7.3.13). sizeof(std::nullptr_t) shall be equal to sizeof(void*).
16 The types described in this subclause are called fundamental types.
[Note 11: Even if the implementation defines two or more fundamental types to have the same value representation, they arenevertheless different types. —end note]
6.8.3 Compound types [basic.compound]

1 Compound types can be constructed in the following ways:
—(1.1) arrays of objects of a given type, 9.3.4.5;
—(1.2) functions, which have parameters of given types and return void or references or objects of a given type, 9.3.4.6;
—(1.3) pointers to cv void or objects or functions (including static members of classes) of a given type, 9.3.4.2;
—(1.4) references to objects or functions of a given type, 9.3.4.3. There are two types of references:

—(1.4.1) lvalue reference
—(1.4.2) rvalue reference

—(1.5) classes containing a sequence of objects of various types (Clause 11), a set of types, enumerations and functionsfor manipulating these objects (11.4.2), and a set of restrictions on the access to these entities (11.8);
—(1.6) unions, which are classes capable of containing objects of different types at different times, 11.5;
—(1.7) enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a differentenumerated type, 9.7.1;
—(1.8) pointers to non-static class members,35 which identify members of a given type within objects of a given class,9.3.4.4. Pointers to data members and pointers to member functions are collectively called pointer-to-membertypes.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 9.3.4. Constructing atype such that the number of bytes in its object representation exceeds the maximum value representable in the type
std::size_t (17.2) is ill-formed.

3 The type of a pointer to cv void or a pointer to an object type is called an object pointer type.
[Note 1: A pointer to void does not have a pointer-to-object type, however, because void is not an object type. —end note]
The type of a pointer that can designate a function is called a function pointer type. A pointer to an object of type T isreferred to as a “pointer to T”.
[Example 1: A pointer to an object of type int is referred to as “pointer to int” and a pointer to an object of class X is called a“pointer to X”. —end example]
Except for pointers to static members, text referring to “pointers” does not apply to pointers to members. Pointers toincomplete types are allowed although there are restrictions on what can be done with them (6.7.6). Every value ofpointer type is one of the following:
—(3.1) a pointer to an object or function (the pointer is said to point to the object or function), or
—(3.2) a pointer past the end of an object (7.6.6), or
—(3.3) the null pointer value for that type, or
—(3.4) an invalid pointer value.

A value of a pointer type that is a pointer to or past the end of an object represents the address of the first byte inmemory (6.7.1) occupied by the object36 or the first byte in memory after the end of the storage occupied by the object,respectively.
35) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
36) For an object that is not within its lifetime, this is the first byte in memory that it will occupy or used to occupy.
§ 6.8.3 75

© ISO/IEC N4910

[Note 2: A pointer past the end of an object (7.6.6) is not considered to point to an unrelated object of the object’s type, even if theunrelated object is located at that address. A pointer value becomes invalid when the storage it denotes reaches the end of its storageduration; see 6.7.5. —end note]
For purposes of pointer arithmetic (7.6.6) and comparison (7.6.9, 7.6.10), a pointer past the end of the last elementof an array x of n elements is considered to be equivalent to a pointer to a hypothetical array element n of x and anobject of type T that is not an array element is considered to belong to an array with one element of type T. The valuerepresentation of pointer types is implementation-defined. Pointers to layout-compatible types shall have the samevalue representation and alignment requirements (6.7.6).
[Note 3: Pointers to over-aligned types (6.7.6) have no special representation, but their range of valid values is restricted by theextended alignment requirement. —end note]

4 Two objects a and b are pointer-interconvertible if:
—(4.1) they are the same object, or
—(4.2) one is a union object and the other is a non-static data member of that object (11.5), or
—(4.3) one is a standard-layout class object and the other is the first non-static data member of that object or any baseclass subobject of that object (11.4), or
—(4.4) there exists an object c such that a and c are pointer-interconvertible, and c and b are pointer-interconvertible.

If two objects are pointer-interconvertible, then they have the same address, and it is possible to obtain a pointer to onefrom a pointer to the other via a reinterpret_cast (7.6.1.10).
[Note 4: An array object and its first element are not pointer-interconvertible, even though they have the same address. —end note]

5 A pointer to cv void can be used to point to objects of unknown type. Such a pointer shall be able to hold any objectpointer. An object of type “pointer to cv void” shall have the same representation and alignment requirements as anobject of type “pointer to cv char”.
6.8.4 CV-qualifiers [basic.type.qualifier]

1 Each type other than a function or reference type is part of a group of four distinct, but related, types: a cv-unqualifiedversion, a const-qualified version, a volatile-qualified version, and a const-volatile-qualified version. The types in eachsuch group shall have the same representation and alignment requirements (6.7.6).37 A function or reference type isalways cv-unqualified.
—(1.1) A const object is an object of type const T or a non-mutable subobject of a const object.
—(1.2) A volatile object is an object of type volatile T or a subobject of a volatile object.
—(1.3) A const volatile object is an object of type const volatile T, a non-mutable subobject of a const volatile object,a const subobject of a volatile object, or a non-mutable volatile subobject of a const object.

[Note 1: The type of an object (6.7.2) includes the cv-qualifiers specified in the decl-specifier-seq (9.2), declarator (9.3), type-
id (9.3.2), or new-type-id (7.6.2.8) when the object is created. —end note]

2 Except for array types, a compound type (6.8.3) is not cv-qualified by the cv-qualifiers (if any) of the types from whichit is compounded.
3 An array type whose elements are cv-qualified is also considered to have the same cv-qualifications as its elements.
[Note 2: Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T”, where T is an array type,refers to an array whose elements are so-qualified (9.3.4.5). —end note]
[Example 1:
typedef char CA[5];
typedef const char CC;
CC arr1[5] = { 0 };
const CA arr2 = { 0 };

The type of both arr1 and arr2 is “array of 5 const char”, and the array type is considered to be const-qualified. —end example]
4 [Note 3: See 9.3.4.6 and 12.2.2 regarding function types that have cv-qualifiers. —end note]
5 There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another. Table 15shows the relations that constitute this ordering.

37) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values fromfunctions, and non-static data members of unions.
§ 6.8.4 76

© ISO/IEC N4910

Table 15: Relations on const and volatile [tab:basic.type.qualifier.rel]
no cv-qualifier < constno cv-qualifier < volatileno cv-qualifier < const volatile

const < const volatile
volatile < const volatile

6 In this document, the notation cv (or cv1, cv2, etc.), used in the description of types, represents an arbitrary set ofcv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set. For a type cv T, the top-levelcv-qualifiers of that type are those denoted by cv.
[Example 2: The type corresponding to the type-id const int& has no top-level cv-qualifiers. The type corresponding to the type-id
volatile int * const has the top-level cv-qualifier const. For a class type C, the type corresponding to the type-id void (C::*
volatile)(int) const has the top-level cv-qualifier volatile. —end example]
6.8.5 Integer conversion rank [conv.rank]

1 Every integer type has an integer conversion rank defined as follows:
—(1.1) No two signed integer types other than char and signed char (if char is signed) have the same rank, even ifthey have the same representation.
—(1.2) The rank of a signed integer type is greater than the rank of any signed integer type with a smaller width.
—(1.3) The rank of long long int is greater than the rank of long int, which is greater than the rank of int, which isgreater than the rank of short int, which is greater than the rank of signed char.
—(1.4) The rank of any unsigned integer type equals the rank of the corresponding signed integer type.
—(1.5) The rank of any standard integer type is greater than the rank of any extended integer type with the same width.
—(1.6) The rank of char equals the rank of signed char and unsigned char.
—(1.7) The rank of bool is less than the rank of all standard integer types.
—(1.8) The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of their underlying types (6.8.2).
—(1.9) The rank of any extended signed integer type relative to another extended signed integer type with the samewidth is implementation-defined, but still subject to the other rules for determining the integer conversion rank.
—(1.10) For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3, then T1 hasgreater rank than T3.

[Note 1: The integer conversion rank is used in the definition of the integral promotions (7.3.7) and the usual arithmetic conversions(7.4). —end note]
6.9 Program execution [basic.exec]
6.9.1 Sequential execution [intro.execution]

1 An instance of each object with automatic storage duration (6.7.5.4) is associated with each entry into its block. Suchan object exists and retains its last-stored value during the execution of the block and while the block is suspended (by acall of a function, suspension of a coroutine (7.6.2.4), or receipt of a signal).
2 A constituent expression is defined as follows:

—(2.1) The constituent expression of an expression is that expression.
—(2.2) The constituent expressions of a braced-init-list or of a (possibly parenthesized) expression-list are the constituentexpressions of the elements of the respective list.
—(2.3) The constituent expressions of a brace-or-equal-initializer of the form = initializer-clause are the constituentexpressions of the initializer-clause.

[Example 1:
struct A { int x; };
struct B { int y; struct A a; };
B b = { 5, { 1+1 } };

The constituent expressions of the initializer used for the initialization of b are 5 and 1+1. —end example]

§ 6.9.1 77

© ISO/IEC N4910

3 The immediate subexpressions of an expression E are
—(3.1) the constituent expressions of E’s operands (7.2),
—(3.2) any function call that E implicitly invokes,
—(3.3) if E is a lambda-expression (7.5.5), the initialization of the entities captured by copy and the constituentexpressions of the initializer of the init-captures,
—(3.4) if E is a function call (7.6.1.3) or implicitly invokes a function, the constituent expressions of each defaultargument (9.3.4.7) used in the call, or
—(3.5) if E creates an aggregate object (9.4.2), the constituent expressions of each default member initializer (11.4) usedin the initialization.

4 A subexpression of an expression E is an immediate subexpression of E or a subexpression of an immediate subexpres-sion of E.
[Note 1: Expressions appearing in the compound-statement of a lambda-expression are not subexpressions of the lambda-
expression. —end note]

5 A full-expression is
—(5.1) an unevaluated operand (7.2.3),
—(5.2) a constant-expression (7.7),
—(5.3) an immediate invocation (7.7),
—(5.4) an init-declarator (9.3) or a mem-initializer (11.9.3), including the constituent expressions of the initializer,
—(5.5) an invocation of a destructor generated at the end of the lifetime of an object other than a temporary object (6.7.7)whose lifetime has not been extended, or
—(5.6) an expression that is not a subexpression of another expression and that is not otherwise part of a full-expression.

If a language construct is defined to produce an implicit call of a function, a use of the language construct is consideredto be an expression for the purposes of this definition. Conversions applied to the result of an expression in order tosatisfy the requirements of the language construct in which the expression appears are also considered to be part ofthe full-expression. For an initializer, performing the initialization of the entity (including evaluating default memberinitializers of an aggregate) is also considered part of the full-expression.
[Example 2:
struct S {

S(int i): I(i) { } // full-expression is initialization of I
int& v() { return I; }
~S() noexcept(false) { }

private:
int I;

};

S s1(1); // full-expression comprises call of S::S(int)
void f() {

S s2 = 2; // full-expression comprises call of S::S(int)
if (S(3).v()) // full-expression includes lvalue-to-rvalue and int to bool conversions,// performed before temporary is deleted at end of full-expression
{ }
bool b = noexcept(S()); // exception specification of destructor of S considered for noexcept
// full-expression is destruction of s2 at end of block

}
struct B {

B(S = S(0));
};
B b[2] = { B(), B() }; // full-expression is the entire initialization// including the destruction of temporaries
— end example]

6 [Note 2: The evaluation of a full-expression can include the evaluation of subexpressions that are not lexically part of the full-expression. For example, subexpressions involved in evaluating default arguments (9.3.4.7) are considered to be created in theexpression that calls the function, not the expression that defines the default argument. —end note]
§ 6.9.1 78

© ISO/IEC N4910

7 Reading an object designated by a volatile glvalue (7.2.1), modifying an object, calling a library I/O function, orcalling a function that does any of those operations are all side effects, which are changes in the state of the executionenvironment. Evaluation of an expression (or a subexpression) in general includes both value computations (includingdetermining the identity of an object for glvalue evaluation and fetching a value previously assigned to an object forprvalue evaluation) and initiation of side effects. When a call to a library I/O function returns or an access through avolatile glvalue is evaluated the side effect is considered complete, even though some external actions implied by thecall (such as the I/O itself) or by the volatile access may not have completed yet.
8 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single thread (6.9.2),which induces a partial order among those evaluations. Given any two evaluations A and B, if A is sequenced before B(or, equivalently, B is sequenced after A), then the execution of A shall precede the execution of B. If A is not sequencedbefore B and B is not sequenced before A, then A and B are unsequenced.
[Note 3: The execution of unsequenced evaluations can overlap. —end note]
Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A,but it is unspecified which.
[Note 4: Indeterminately sequenced evaluations cannot overlap, but either can be executed first. —end note]
An expression X is said to be sequenced before an expression Y if every value computation and every side effectassociated with the expression X is sequenced before every value computation and every side effect associated with theexpression Y.

9 Every value computation and side effect associated with a full-expression is sequenced before every value computationand side effect associated with the next full-expression to be evaluated.38
10 Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressionsare unsequenced.
[Note 5: In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminatelysequenced evaluations of its subexpressions need not be performed consistently in different evaluations. —end note]
The value computations of the operands of an operator are sequenced before the value computation of the result of theoperator. If a side effect on a memory location (6.7.1) is unsequenced relative to either another side effect on the samememory location or a value computation using the value of any object in the same memory location, and they are notpotentially concurrent (6.9.2), the behavior is undefined.
[Note 6: The next subclause imposes similar, but more complex restrictions on potentially concurrent computations. —end note]
[Example 3:
void g(int i) {

i = 7, i++, i++; // i becomes 9
i = i++ + 1; // the value of i is incremented
i = i++ + i; // undefined behavior
i = i + 1; // the value of i is incremented

}

—end example]
11 When invoking a function (whether or not the function is inline), every argument expression and the postfix expressiondesignating the called function are sequenced before every expression or statement in the body of the called function.For each function invocation or evaluation of an await-expression F, each evaluation that does not occur within F but isevaluated on the same thread and as part of the same signal handler (if any) is either sequenced before all evaluationsthat occur within F or sequenced after all evaluations that occur within F;39 if F invokes or resumes a coroutine (7.6.2.4),only evaluations subsequent to the previous suspension (if any) and prior to the next suspension (if any) are consideredto occur within F.
Several contexts in C++ cause evaluation of a function call, even though no corresponding function call syntax appearsin the translation unit.
[Example 4: Evaluation of a new-expression invokes one or more allocation and constructor functions; see 7.6.2.8. For anotherexample, invocation of a conversion function (11.4.8.3) can arise in contexts in which no function call syntax appears. —endexample]

38) As specified in 6.7.7, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for temporary objectstakes place, usually in reverse order of the construction of each temporary object.
39) In other words, function executions do not interleave with each other.
§ 6.9.1 79

© ISO/IEC N4910

The sequencing constraints on the execution of the called function (as described above) are features of the functioncalls as evaluated, regardless of the syntax of the expression that calls the function.
12 If a signal handler is executed as a result of a call to the std::raise function, then the execution of the handler issequenced after the invocation of the std::raise function and before its return.

[Note 7: When a signal is received for another reason, the execution of the signal handler is usually unsequenced with respect to therest of the program. —end note]
6.9.2 Multi-threaded executions and data races [intro.multithread]
6.9.2.1 General [intro.multithread.general]

1 A thread of execution (also known as a thread) is a single flow of control within a program, including the initialinvocation of a specific top-level function, and recursively including every function invocation subsequently executedby the thread.
[Note 1: When one thread creates another, the initial call to the top-level function of the new thread is executed by the new thread,not by the creating thread. —end note]
Every thread in a program can potentially access every object and function in a program.40 Under a hosted implementa-tion, a C++ program can have more than one thread running concurrently. The execution of each thread proceeds asdefined by the remainder of this document. The execution of the entire program consists of an execution of all of itsthreads.
[Note 2: Usually the execution can be viewed as an interleaving of all its threads. However, some kinds of atomic operations, forexample, allow executions inconsistent with a simple interleaving, as described below. —end note]
Under a freestanding implementation, it is implementation-defined whether a program can have more than one threadof execution.

2 For a signal handler that is not executed as a result of a call to the std::raise function, it is unspecified which threadof execution contains the signal handler invocation.
6.9.2.2 Data races [intro.races]

1 The value of an object visible to a thread T at a particular point is the initial value of the object, a value assigned to theobject by T , or a value assigned to the object by another thread, according to the rules below.
[Note 1: In some cases, there might instead be undefined behavior. Much of this subclause is motivated by the desire to supportatomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for morerestricted programs. —end note]

2 Two expression evaluations conflict if one of them modifies a memory location (6.7.1) and the other one reads ormodifies the same memory location.
3 The library defines a number of atomic operations (33.5) and operations on mutexes (Clause 33) that are speciallyidentified as synchronization operations. These operations play a special role in making assignments in one threadvisible to another. A synchronization operation on one or more memory locations is either a consume operation, anacquire operation, a release operation, or both an acquire and release operation. A synchronization operation withoutan associated memory location is a fence and can be either an acquire fence, a release fence, or both an acquire andrelease fence. In addition, there are relaxed atomic operations, which are not synchronization operations, and atomicread-modify-write operations, which have special characteristics.
[Note 2: For example, a call that acquires a mutex will perform an acquire operation on the locations comprising the mutex.Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally, performinga release operation on A forces prior side effects on other memory locations to become visible to other threads that later performa consume or an acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, likesynchronization operations, they cannot contribute to data races. —end note]

4 All modifications to a particular atomic objectM occur in some particular total order, called the modification order of
M .
[Note 3: There is a separate order for each atomic object. There is no requirement that these can be combined into a single total orderfor all objects. In general this will be impossible since different threads can observe modifications to different objects in inconsistentorders. —end note]

40) An object with automatic or thread storage duration (6.7.5) is associated with one specific thread, and can be accessed by a different thread onlyindirectly through a pointer or reference (6.8.3).
§ 6.9.2.2 80

© ISO/IEC N4910

5 A release sequence headed by a release operation A on an atomic objectM is a maximal contiguous sub-sequence ofside effects in the modification order ofM , where the first operation is A, and every subsequent operation is an atomicread-modify-write operation.
6 Certain library calls synchronize with other library calls performed by another thread. For example, an atomic store-release synchronizes with a load-acquire that takes its value from the store (33.5.4).
[Note 4: Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such arequirement would sometimes interfere with efficient implementation. —end note]
[Note 5: The specifications of the synchronization operations define when one reads the value written by another. For atomic objects,the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads the value written”by the last mutex release. —end note]

7 An evaluation A carries a dependency to an evaluation B if
—(7.1) the value of A is used as an operand of B, unless:

—(7.1.1) B is an invocation of any specialization of std::kill_dependency (33.5.4), or
—(7.1.2) A is the left operand of a built-in logical AND (&&, see 7.6.14) or logical OR (||, see 7.6.15) operator, or
—(7.1.3) A is the left operand of a conditional (?:, see 7.6.16) operator, or
—(7.1.4) A is the left operand of the built-in comma (,) operator (7.6.20);
or

—(7.2) A writes a scalar object or bit-fieldM , B reads the value written by A fromM , and A is sequenced before B, or
—(7.3) for some evaluation X , A carries a dependency to X , and X carries a dependency to B.

[Note 6: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread. —end note]
8 An evaluation A is dependency-ordered before an evaluation B if

—(8.1) A performs a release operation on an atomic objectM , and, in another thread, B performs a consume operationonM and reads the value written by A, or
—(8.2) for some evaluation X , A is dependency-ordered before X and X carries a dependency to B.

[Note 7: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/consume in place ofrelease/acquire. —end note]
9 An evaluation A inter-thread happens before an evaluation B if

—(9.1) A synchronizes with B, or
—(9.2) A is dependency-ordered before B, or
—(9.3) for some evaluation X

—(9.3.1) A synchronizes with X and X is sequenced before B, or
—(9.3.2) A is sequenced before X and X inter-thread happens before B, or
—(9.3.3) A inter-thread happens before X and X inter-thread happens before B.

[Note 8: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes with”and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is not permitted toend with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is that a consume operationparticipating in a “dependency-ordered before” relationship provides ordering only with respect to operations to which this consumeoperation actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation is that anysubsequent release operation will provide the required ordering for a prior consume operation. The second exception is that aconcatenation is not permitted to consist entirely of “sequenced before”. The reasons for this limitation are (1) to permit “inter-threadhappens before” to be transitively closed and (2) the “happens before” relation, defined below, provides for relationships consistingentirely of “sequenced before”. —end note]
10 An evaluation A happens before an evaluation B (or, equivalently, B happens after A) if:

—(10.1) A is sequenced before B, or
—(10.2) A inter-thread happens before B.

The implementation shall ensure that no program execution demonstrates a cycle in the “happens before” relation.
[Note 9: This cycle would otherwise be possible only through the use of consume operations. —end note]

11 An evaluation A simply happens before an evaluation B if either
§ 6.9.2.2 81

© ISO/IEC N4910

—(11.1) A is sequenced before B, or
—(11.2) A synchronizes with B, or
—(11.3) A simply happens before X and X simply happens before B.

[Note 10: In the absence of consume operations, the happens before and simply happens before relations are identical. —end note]
12 An evaluation A strongly happens before an evaluation D if, either

—(12.1) A is sequenced before D, or
—(12.2) A synchronizes with D, and both A and D are sequentially consistent atomic operations (33.5.4), or
—(12.3) there are evaluationsB andC such thatA is sequenced beforeB,B simply happens beforeC, andC is sequencedbefore D, or
—(12.4) there is an evaluation B such that A strongly happens before B, and B strongly happens before D.

[Note 11: Informally, if A strongly happens before B, then A appears to be evaluated before B in all contexts. Strongly happensbefore excludes consume operations. —end note]
13 A visible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies theconditions:

—(13.1) A happens before B and
—(13.2) there is no other side effect X toM such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-fieldM , as determined by evaluation B, shall be the value stored by thevisible side effect A.
[Note 12: If there is ambiguity about which side effect to a non-atomic object or bit-field is visible, then the behavior is eitherunspecified or undefined. —end note]
[Note 13: This states that operations on ordinary objects are not visibly reordered. This is not actually detectable without data races,but it is necessary to ensure that data races, as defined below, and with suitable restrictions on the use of atomics, correspond to dataraces in a simple interleaved (sequentially consistent) execution. —end note]

14 The value of an atomic objectM , as determined by evaluation B, shall be the value stored by some side effect A thatmodifiesM , where B does not happen before A.
[Note 14: The set of such side effects is also restricted by the rest of the rules described here, and in particular, by the coherencerequirements below. —end note]

15 If an operation A that modifies an atomic objectM happens before an operation B that modifiesM , then A shall beearlier than B in the modification order ofM .
[Note 15: This requirement is known as write-write coherence. —end note]

16 If a value computation A of an atomic objectM happens before a value computation B ofM , and A takes its valuefrom a side effectX onM , then the value computed by B shall either be the value stored byX or the value stored by aside effect Y onM , where Y follows X in the modification order ofM .
[Note 16: This requirement is known as read-read coherence. —end note]

17 If a value computation A of an atomic objectM happens before an operation B that modifiesM , then A shall take itsvalue from a side effect X onM , where X precedes B in the modification order ofM .
[Note 17: This requirement is known as read-write coherence. —end note]

18 If a side effectX on an atomic objectM happens before a value computation B ofM , then the evaluation B shall takeits value from X or from a side effect Y that follows X in the modification order ofM .
[Note 18: This requirement is known as write-read coherence. —end note]

19 [Note 19: The four preceding coherence requirements effectively disallow compiler reordering of atomic operations to a singleobject, even if both operations are relaxed loads. This effectively makes the cache coherence guarantee provided by most hardwareavailable to C++ atomic operations. —end note]
20 [Note 20: The value observed by a load of an atomic depends on the “happens before” relation, which depends on the values observedby loads of atomics. The intended reading is that there must exist an association of atomic loads with modifications they observe that,together with suitably chosen modification orders and the “happens before” relation derived as described above, satisfy the resultingconstraints as imposed here. —end note]
21 Two actions are potentially concurrent if

—(21.1) they are performed by different threads, or
§ 6.9.2.2 82

© ISO/IEC N4910

—(21.2) they are unsequenced, at least one is performed by a signal handler, and they are not both performed by the samesignal handler invocation.
The execution of a program contains a data race if it contains two potentially concurrent conflicting actions, at least oneof which is not atomic, and neither happens before the other, except for the special case for signal handlers describedbelow. Any such data race results in undefined behavior.
[Note 21: It can be shown that programs that correctly use mutexes and memory_order::seq_cst operations to prevent all data racesand use no other synchronization operations behave as if the operations executed by their constituent threads were simply interleaved,with each value computation of an object being taken from the last side effect on that object in that interleaving. This is normallyreferred to as “sequential consistency”. However, this applies only to data-race-free programs, and data-race-free programs cannotobserve most program transformations that do not change single-threaded program semantics. In fact, most single-threaded programtransformations continue to be allowed, since any program that behaves differently as a result has undefined behavior. —end note]

22 Two accesses to the same object of type volatile std::sig_atomic_t do not result in a data race if both occur in thesame thread, even if one or more occurs in a signal handler. For each signal handler invocation, evaluations performedby the thread invoking a signal handler can be divided into two groups A and B, such that no evaluations in B happenbefore evaluations in A, and the evaluations of such volatile std::sig_atomic_t objects take values as though allevaluations in A happened before the execution of the signal handler and the execution of the signal handler happenedbefore all evaluations in B.
23 [Note 22: Compiler transformations that introduce assignments to a potentially shared memory location that would not be modifiedby the abstract machine are generally precluded by this document, since such an assignment might overwrite another assignmentby a different thread in cases in which an abstract machine execution would not have encountered a data race. This includesimplementations of data member assignment that overwrite adjacent members in separate memory locations. Reordering of atomicloads in cases in which the atomics in question might alias is also generally precluded, since this could violate the coherence rules.—end note]
24 [Note 23: Transformations that introduce a speculative read of a potentially shared memory location might not preserve the semanticsof the C++ program as defined in this document, since they potentially introduce a data race. However, they are typically valid in thecontext of an optimizing compiler that targets a specific machine with well-defined semantics for data races. They would be invalidfor a hypothetical machine that is not tolerant of races or provides hardware race detection. —end note]
6.9.2.3 Forward progress [intro.progress]

1 The implementation may assume that any thread will eventually do one of the following:
—(1.1) terminate,
—(1.2) make a call to a library I/O function,
—(1.3) perform an access through a volatile glvalue, or
—(1.4) perform a synchronization operation or an atomic operation.

[Note 1: This is intended to allow compiler transformations such as removal of empty loops, even when termination cannot beproven. —end note]
2 Executions of atomic functions that are either defined to be lock-free (33.5.10) or indicated as lock-free (33.5.5) arelock-free executions.

—(2.1) If there is only one thread that is not blocked (3.7) in a standard library function, a lock-free execution in thatthread shall complete.
[Note 2: Concurrently executing threads might prevent progress of a lock-free execution. For example, this situation canoccur with load-locked store-conditional implementations. This property is sometimes termed obstruction-free. —end note]

—(2.2) When one or more lock-free executions run concurrently, at least one should complete.
[Note 3: It is difficult for some implementations to provide absolute guarantees to this effect, since repeated and particularlyinopportune interference from other threads could prevent forward progress, e.g., by repeatedly stealing a cache line for unre-lated purposes between load-locked and store-conditional instructions. For implementations that follow this recommendationand ensure that such effects cannot indefinitely delay progress under expected operating conditions, such anomalies cantherefore safely be ignored by programmers. Outside this document, this property is sometimes termed lock-free. —end note]

3 During the execution of a thread of execution, each of the following is termed an execution step:
—(3.1) termination of the thread of execution,
—(3.2) performing an access through a volatile glvalue, or
—(3.3) completion of a call to a library I/O function, a synchronization operation, or an atomic operation.

§ 6.9.2.3 83

© ISO/IEC N4910

4 An invocation of a standard library function that blocks (3.7) is considered to continuously execute execution stepswhile waiting for the condition that it blocks on to be satisfied.
[Example 1: A library I/O function that blocks until the I/O operation is complete can be considered to continuously check whetherthe operation is complete. Each such check consists of one or more execution steps, for example using observable behavior of theabstract machine. —end example]

5 [Note 4: Because of this and the preceding requirement regarding what threads of execution have to perform eventually, it followsthat no thread of execution can execute forever without an execution step occurring. —end note]
6 A thread of execution makes progress when an execution step occurs or a lock-free execution does not complete becausethere are other concurrent threads that are not blocked in a standard library function (see above).
7 For a thread of execution providing concurrent forward progress guarantees, the implementation ensures that the threadwill eventually make progress for as long as it has not terminated.
[Note 5: This is required regardless of whether or not other threads of executions (if any) have been or are making progress. Toeventually fulfill this requirement means that this will happen in an unspecified but finite amount of time. —end note]

8 It is implementation-defined whether the implementation-created thread of execution that executes main (6.9.3.1) and thethreads of execution created by std::thread (33.4.3) or std::jthread (33.4.4) provide concurrent forward progressguarantees. General-purpose implementations should provide these guarantees.
9 For a thread of execution providing parallel forward progress guarantees, the implementation is not required to ensurethat the thread will eventually make progress if it has not yet executed any execution step; once this thread has executeda step, it provides concurrent forward progress guarantees.
10 [Note 6: This does not specify a requirement for when to start this thread of execution, which will typically be specified by the entitythat creates this thread of execution. For example, a thread of execution that provides concurrent forward progress guarantees andexecutes tasks from a set of tasks in an arbitrary order, one after the other, satisfies the requirements of parallel forward progress forthese tasks. —end note]
11 For a thread of execution providing weakly parallel forward progress guarantees, the implementation does not ensurethat the thread will eventually make progress.
12 [Note 7: Threads of execution providing weakly parallel forward progress guarantees cannot be expected to make progress regardlessof whether other threads make progress or not; however, blocking with forward progress guarantee delegation, as defined below, canbe used to ensure that such threads of execution make progress eventually. —end note]
13 Concurrent forward progress guarantees are stronger than parallel forward progress guarantees, which in turn arestronger than weakly parallel forward progress guarantees.
[Note 8: For example, some kinds of synchronization between threads of execution might only make progress if the respectivethreads of execution provide parallel forward progress guarantees, but will fail to make progress under weakly parallel guarantees.—end note]

14 When a thread of execution P is specified to block with forward progress guarantee delegation on the completion ofa set S of threads of execution, then throughout the whole time of P being blocked on S, the implementation shallensure that the forward progress guarantees provided by at least one thread of execution in S is at least as strong as P ’sforward progress guarantees.
[Note 9: It is unspecified which thread or threads of execution in S are chosen and for which number of execution steps. Thestrengthening is not permanent and not necessarily in place for the rest of the lifetime of the affected thread of execution. As long as
P is blocked, the implementation has to eventually select and potentially strengthen a thread of execution in S. —end note]
Once a thread of execution in S terminates, it is removed from S. Once S is empty, P is unblocked.

15 [Note 10: A thread of execution B thus can temporarily provide an effectively stronger forward progress guarantee for a certainamount of time, due to a second thread of execution A being blocked on it with forward progress guarantee delegation. In turn,if B then blocks with forward progress guarantee delegation on C, this can also temporarily provide a stronger forward progressguarantee to C. —end note]
16 [Note 11: If all threads of execution in S finish executing (e.g., they terminate and do not use blocking synchronization incorrectly),then P ’s execution of the operation that blocks with forward progress guarantee delegation will not result in P ’s progress guaranteebeing effectively weakened. —end note]
17 [Note 12: This does not remove any constraints regarding blocking synchronization for threads of execution providing parallel orweakly parallel forward progress guarantees because the implementation is not required to strengthen a particular thread of executionwhose too-weak progress guarantee is preventing overall progress. —end note]
18 An implementation should ensure that the last value (in modification order) assigned by an atomic or synchronizationoperation will become visible to all other threads in a finite period of time.

§ 6.9.2.3 84

© ISO/IEC N4910

6.9.3 Start and termination [basic.start]
6.9.3.1 main function [basic.start.main]

1 A program shall contain exactly one function called main that belongs to the global scope. Executing a program starts amain thread of execution (6.9.2, 33.4) in which the main function is invoked. It is implementation-defined whether aprogram in a freestanding environment is required to define a main function.
[Note 1: In a freestanding environment, startup and termination is implementation-defined; startup contains the execution ofconstructors for non-local objects with static storage duration; termination contains the execution of destructors for objects withstatic storage duration. —end note]

2 An implementation shall not predefine the main function. Its type shall have C++ language linkage and it shall have adeclared return type of type int, but otherwise its type is implementation-defined. An implementation shall allow both
—(2.1) a function of () returning int and
—(2.2) a function of (int, pointer to pointer to char) returning int

as the type of main (9.3.4.6). In the latter form, for purposes of exposition, the first function parameter is called argcand the second function parameter is called argv, where argc shall be the number of arguments passed to the programfrom the environment in which the program is run. If argc is nonzero these arguments shall be supplied in argv[0]through argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (ntmbss) (16.3.3.3.5.3)and argv[0] shall be the pointer to the initial character of a ntmbs that represents the name used to invoke the programor "". The value of argc shall be non-negative. The value of argv[argc] shall be 0.
Recommended practice: Any further (optional) parameters should be added after argv.

3 The function main shall not be used within a program. The linkage (6.6) of main is implementation-defined. A programthat defines main as deleted or that declares main to be inline, static, constexpr, or consteval is ill-formed. Thefunction main shall not be a coroutine (9.5.4). The main function shall not be declared with a linkage-specification (9.11).A program that declares a variable main that belongs to the global scope, or that declares a function main that belongsto the global scope and is attached to a named module, or that declares an entity named main with C language linkage(in any namespace) is ill-formed. The name main is not otherwise reserved.
[Example 1: Member functions, classes, and enumerations can be called main, as can entities in other namespaces. —end example]

4 Terminating the program without leaving the current block (e.g., by calling the function std::exit(int) (17.5)) doesnot destroy any objects with automatic storage duration (11.4.7). If std::exit is invoked during the destruction of anobject with static or thread storage duration, the program has undefined behavior.
5 A return statement (8.7.4) in main has the effect of leaving the main function (destroying any objects with automaticstorage duration) and calling std::exit with the return value as the argument. If control flows off the end of the

compound-statement of main, the effect is equivalent to a return with operand 0 (see also 14.4).
6.9.3.2 Static initialization [basic.start.static]

1 Variables with static storage duration are initialized as a consequence of program initiation. Variables with thread storageduration are initialized as a consequence of thread execution. Within each of these phases of initiation, initializationoccurs as follows.
2 Constant initialization is performed if a variable or temporary object with static or thread storage duration is constant-initialized (7.7). If constant initialization is not performed, a variable with static storage duration (6.7.5.2) or threadstorage duration (6.7.5.3) is zero-initialized (9.4). Together, zero-initialization and constant initialization are called staticinitialization; all other initialization is dynamic initialization. All static initialization strongly happens before (6.9.2.2)any dynamic initialization.
[Note 1: The dynamic initialization of non-block variables is described in 6.9.3.3; that of static block variables is described in 8.8.—end note]

3 An implementation is permitted to perform the initialization of a variable with static or thread storage duration as astatic initialization even if such initialization is not required to be done statically, provided that
—(3.1) the dynamic version of the initialization does not change the value of any other object of static or thread storageduration prior to its initialization, and
—(3.2) the static version of the initialization produces the same value in the initialized variable as would be produced bythe dynamic initialization if all variables not required to be initialized statically were initialized dynamically.

[Note 2: As a consequence, if the initialization of an object obj1 refers to an object obj2 potentially requiring dynamic initializationand defined later in the same translation unit, it is unspecified whether the value of obj2 used will be the value of the fully initialized
obj2 (because obj2 was statically initialized) or will be the value of obj2 merely zero-initialized. For example,
§ 6.9.3.2 85

© ISO/IEC N4910

inline double fd() { return 1.0; }
extern double d1;
double d2 = d1; // unspecified:// either statically initialized to 0.0 or// dynamically initialized to 0.0 if d1 is// dynamically initialized, or 1.0 otherwise
double d1 = fd(); // either initialized statically or dynamically to 1.0
—end note]
6.9.3.3 Dynamic initialization of non-block variables [basic.start.dynamic]

1 Dynamic initialization of a non-block variable with static storage duration is unordered if the variable is an implicitly orexplicitly instantiated specialization, is partially-ordered if the variable is an inline variable that is not an implicitly orexplicitly instantiated specialization, and otherwise is ordered.
[Note 1: A non-inline explicit specialization of a templated variable has ordered initialization. —end note]

2 A declaration D is appearance-ordered before a declaration E if
—(2.1) D appears in the same translation unit as E, or
—(2.2) the translation unit containing E has an interface dependency on the translation unit containing D,

in either case prior to E.
3 Dynamic initialization of non-block variables V and W with static storage duration are ordered as follows:

—(3.1) If V and W have ordered initialization and the definition of V is appearance-ordered before the definition of W, or if
V has partially-ordered initialization, W does not have unordered initialization, and for every definition E of W thereexists a definition D of V such that D is appearance-ordered before E, then
—(3.1.1) if the program does not start a thread (6.9.2) other than the main thread (6.9.3.1) or V and W have orderedinitialization and they are defined in the same translation unit, the initialization of V is sequenced before theinitialization of W;
—(3.1.2) otherwise, the initialization of V strongly happens before the initialization of W.

—(3.2) Otherwise, if the program starts a thread other than the main thread before either V or W is initialized, it isunspecified in which threads the initializations of V and W occur; the initializations are unsequenced if they occurin the same thread.
—(3.3) Otherwise, the initializations of V and W are indeterminately sequenced.

[Note 2: This definition permits initialization of a sequence of ordered variables concurrently with another sequence. —end note]
4 A non-initialization odr-use is an odr-use (6.3) not caused directly or indirectly by the initialization of a non-blockstatic or thread storage duration variable.
5 It is implementation-defined whether the dynamic initialization of a non-block non-inline variable with static storageduration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly happens before anynon-initialization odr-use of any non-inline function or non-inline variable defined in the same translation unit as thevariable to be initialized.41 It is implementation-defined in which threads and at which points in the program suchdeferred dynamic initialization occurs.
Recommended practice: An implementation should choose such points in a way that allows the programmer to avoiddeadlocks.
[Example 1:
// - File 1 -
#include "a.h"
#include "b.h"
B b;
A::A() {

b.Use();
}

41) A non-block variable with static storage duration having initialization with side effects is initialized in this case, even if it is not itself odr-used (6.3,6.7.5.2).
§ 6.9.3.3 86

© ISO/IEC N4910

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the initializations are delayed until
a is first odr-used in main. In particular, if a is initialized before main is entered, it is not guaranteed that b will be initialized before itis odr-used by the initialization of a, that is, before A::A is called. If, however, a is initialized at some point after the first statementof main, b will be initialized prior to its use in A::A. —end example]

6 It is implementation-defined whether the dynamic initialization of a non-block inline variable with static storageduration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly happens before anynon-initialization odr-use of that variable. It is implementation-defined in which threads and at which points in theprogram such deferred dynamic initialization occurs.
7 It is implementation-defined whether the dynamic initialization of a non-block non-inline variable with thread storageduration is sequenced before the first statement of the initial function of a thread or is deferred. If it is deferred, theinitialization associated with the entity for thread t is sequenced before the first non-initialization odr-use by t of anynon-inline variable with thread storage duration defined in the same translation unit as the variable to be initialized. Itis implementation-defined in which threads and at which points in the program such deferred dynamic initializationoccurs.
8 If the initialization of a non-block variable with static or thread storage duration exits via an exception, the function

std::terminate is called (14.6.2).
6.9.3.4 Termination [basic.start.term]

1 Constructed objects (9.4) with static storage duration are destroyed and functions registered with std::atexit are calledas part of a call to std::exit (17.5). The call to std::exit is sequenced before the destructions and the registeredfunctions.
[Note 1: Returning from main invokes std::exit (6.9.3.1). —end note]

2 Constructed objects with thread storage duration within a given thread are destroyed as a result of returning fromthe initial function of that thread and as a result of that thread calling std::exit. The destruction of all constructedobjects with thread storage duration within that thread strongly happens before destroying any object with static storageduration.
3 If the completion of the constructor or dynamic initialization of an object with static storage duration strongly happensbefore that of another, the completion of the destructor of the second is sequenced before the initiation of the destructorof the first. If the completion of the constructor or dynamic initialization of an object with thread storage duration issequenced before that of another, the completion of the destructor of the second is sequenced before the initiation of thedestructor of the first. If an object is initialized statically, the object is destroyed in the same order as if the object wasdynamically initialized. For an object of array or class type, all subobjects of that object are destroyed before any blockvariable with static storage duration initialized during the construction of the subobjects is destroyed. If the destructionof an object with static or thread storage duration exits via an exception, the function std::terminate is called (14.6.2).
4 If a function contains a block variable of static or thread storage duration that has been destroyed and the function iscalled during the destruction of an object with static or thread storage duration, the program has undefined behavior ifthe flow of control passes through the definition of the previously destroyed block variable.
[Note 2: Likewise, the behavior is undefined if the block variable is used indirectly (e.g., through a pointer) after its destruction.—end note]

5 If the completion of the initialization of an object with static storage duration strongly happens before a call to
std::atexit (see <cstdlib>, 17.5), the call to the function passed to std::atexit is sequenced before the call tothe destructor for the object. If a call to std::atexit strongly happens before the completion of the initialization

§ 6.9.3.4 87

© ISO/IEC N4910

of an object with static storage duration, the call to the destructor for the object is sequenced before the call to thefunction passed to std::atexit. If a call to std::atexit strongly happens before another call to std::atexit, thecall to the function passed to the second std::atexit call is sequenced before the call to the function passed to the first
std::atexit call.

6 If there is a use of a standard library object or function not permitted within signal handlers (17.13) that does not happenbefore (6.9.2) completion of destruction of objects with static storage duration and execution of std::atexit registeredfunctions (17.5), the program has undefined behavior.
[Note 3: If there is a use of an object with static storage duration that does not happen before the object’s destruction, the programhas undefined behavior. Terminating every thread before a call to std::exit or the exit from main is sufficient, but not necessary, tosatisfy these requirements. These requirements permit thread managers as static-storage-duration objects. —end note]

7 Calling the function std::abort() declared in <cstdlib> (17.2.2) terminates the program without executing anydestructors and without calling the functions passed to std::atexit() or std::at_quick_exit().

§ 6.9.3.4 88

© ISO/IEC N4910

7 Expressions [expr]
7.1 Preamble [expr.pre]

1 [Note 1: Clause 7 defines the syntax, order of evaluation, and meaning of expressions.42 An expression is a sequence of operatorsand operands that specifies a computation. An expression can result in a value and can cause side effects. —end note]
2 [Note 2: Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause 11) or enumerationtype (9.7.1). Uses of overloaded operators are transformed into function calls as described in 12.4. Overloaded operators obey therules for syntax and evaluation order specified in 7.6, but the requirements of operand type and value category are replaced by therules for function call. Relations between operators, such as ++a meaning a+=1, are not guaranteed for overloaded operators (12.4).—end note]
3 Subclause 7.6 defines the effects of operators when applied to types for which they have not been overloaded. Operatoroverloading shall not modify the rules for the built-in operators, that is, for operators applied to types for which theyare defined by this Standard. However, these built-in operators participate in overload resolution, and as part of thatprocess user-defined conversions will be considered where necessary to convert the operands to types appropriate forthe built-in operator. If a built-in operator is selected, such conversions will be applied to the operands before theoperation is considered further according to the rules in subclause 7.6; see 12.2.2.3, 12.5.
4 If during the evaluation of an expression, the result is not mathematically defined or not in the range of representablevalues for its type, the behavior is undefined.
[Note 3: Treatment of division by zero, forming a remainder using a zero divisor, and all floating-point exceptions varies amongmachines, and is sometimes adjustable by a library function. —end note]

5 [Note 4: The implementation can regroup operators according to the usual mathematical rules only where the operators really areassociative or commutative.43 For example, in the following fragment
int a, b;
/* ... */
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and that resultis then added to 5 which results in the value assigned to a. On a machine in which overflows produce an exception and in which therange of values representable by an int is [-32768, +32767], the implementation cannot rewrite this expression as
a = ((a + b) + 32765);

since if the values for a and b were, respectively, −32754 and −15, the sum a + b would produce an exception while the originalexpression would not; nor can the expression be rewritten as either
a = ((a + 32765) + b);

or
a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and −8 or −17 and 12. However on a machine in which overflows donot produce an exception and in which the results of overflows are reversible, the above expression statement can be rewritten by theimplementation in any of the above ways because the same result will occur. —end note]
6 The values of the floating-point operands and the results of floating-point expressions may be represented in greaterprecision and range than that required by the type; the types are not changed thereby.44
7.2 Properties of expressions [expr.prop]
7.2.1 Value category [basic.lval]

1 Expressions are categorized according to the taxonomy in Figure 2.
—(1.1) A glvalue is an expression whose evaluation determines the identity of an object or function.

42) The precedence of operators is not directly specified, but it can be derived from the syntax.
43) Overloaded operators are never assumed to be associative or commutative.
44) The cast and assignment operators must still perform their specific conversions as described in 7.6.1.4, 7.6.3, 7.6.1.9 and 7.6.19.
§ 7.2.1 89

© ISO/IEC N4910

expression

glvalue rvalue

lvalue xvalue prvalue

Figure 2: Expression category taxonomy [fig:basic.lval]

—(1.2) A prvalue is an expression whose evaluation initializes an object or computes the value of an operand of anoperator, as specified by the context in which it appears, or an expression that has type cv void.
—(1.3) An xvalue is a glvalue that denotes an object whose resources can be reused (usually because it is near the end ofits lifetime).
—(1.4) An lvalue is a glvalue that is not an xvalue.
—(1.5) An rvalue is a prvalue or an xvalue.

2 Every expression belongs to exactly one of the fundamental classifications in this taxonomy: lvalue, xvalue, or prvalue.This property of an expression is called its value category.
[Note 1: The discussion of each built-in operator in 7.6 indicates the category of the value it yields and the value categories of theoperands it expects. For example, the built-in assignment operators expect that the left operand is an lvalue and that the right operandis a prvalue and yield an lvalue as the result. User-defined operators are functions, and the categories of values they expect and yieldare determined by their parameter and return types. —end note]

3 [Note 2: Historically, lvalues and rvalues were so-called because they could appear on the left- and right-hand side of an assignment(although this is no longer generally true); glvalues are “generalized” lvalues, prvalues are “pure” rvalues, and xvalues are “eXpiring”lvalues. Despite their names, these terms classify expressions, not values. —end note]
4 [Note 3: An expression is an xvalue if it is:

—(4.1) the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference to object type (7.6.1.3),
—(4.2) a cast to an rvalue reference to object type (7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.1.10, 7.6.1.11, 7.6.3),
—(4.3) a subscripting operation with an xvalue array operand (7.6.1.2),
—(4.4) a class member access expression designating a non-static data member of non-reference type in which the object expressionis an xvalue (7.6.1.5), or
—(4.5) a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is a pointer to datamember (7.6.4).

In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue references to objects aretreated as xvalues; rvalue references to functions are treated as lvalues whether named or not. —end note]
[Example 1:
struct A {

int m;
};
A&& operator+(A, A);
A&& f();

A a;
A&& ar = static_cast<A&&>(a);

The expressions f(), f().m, static_cast<A&&>(a), and a + a are xvalues. The expression ar is an lvalue. —end example]
5 The result of a glvalue is the entity denoted by the expression. The result of a prvalue is the value that the expressionstores into its context; a prvalue that has type cv void has no result. A prvalue whose result is the value V is sometimessaid to have or name the value V. The result object of a prvalue is the object initialized by the prvalue; a non-discardedprvalue that is used to compute the value of an operand of a built-in operator or a prvalue that has type cv void has noresult object.
[Note 4: Except when the prvalue is the operand of a decltype-specifier , a prvalue of class or array type always has a result object.For a discarded prvalue that has type other than cv void, a temporary object is materialized; see 7.2.3. —end note]

§ 7.2.1 90

© ISO/IEC N4910

6 Whenever a glvalue appears as an operand of an operator that expects a prvalue for that operand, the lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), or function-to-pointer (7.3.4) standard conversions are applied to convert theexpression to a prvalue.
[Note 5: An attempt to bind an rvalue reference to an lvalue is not such a context; see 9.4.4. —end note]
[Note 6: Because cv-qualifiers are removed from the type of an expression of non-class type when the expression is converted to aprvalue, an lvalue of type const int can, for example, be used where a prvalue of type int is required. —end note]
[Note 7: There are no prvalue bit-fields; if a bit-field is converted to a prvalue (7.3.2), a prvalue of the type of the bit-field is created,which might then be promoted (7.3.7). —end note]

7 Whenever a prvalue appears as an operand of an operator that expects a glvalue for that operand, the temporarymaterialization conversion (7.3.5) is applied to convert the expression to an xvalue.
8 The discussion of reference initialization in 9.4.4 and of temporaries in 6.7.7 indicates the behavior of lvalues andrvalues in other significant contexts.
9 Unless otherwise indicated (9.2.9.5), a prvalue shall always have complete type or the void type; if it has a class type or(possibly multi-dimensional) array of class type, that class shall not be an abstract class (11.7.4). A glvalue shall nothave type cv void.
[Note 8: A glvalue can have complete or incomplete non-void type. Class and array prvalues can have cv-qualified types; otherprvalues always have cv-unqualified types. See 7.2.2. —end note]

10 An lvalue is modifiable unless its type is const-qualified or is a function type.
[Note 9: A program that attempts to modify an object through a nonmodifiable lvalue or through an rvalue is ill-formed (7.6.19,7.6.1.6, 7.6.2.3). —end note]

11 If a program attempts to access (3.1) the stored value of an object through a glvalue whose type is not similar (7.3.6) toone of the following types the behavior is undefined:45
—(11.1) the dynamic type of the object,
—(11.2) a type that is the signed or unsigned type corresponding to the dynamic type of the object, or
—(11.3) a char, unsigned char, or std::byte type.

If a program invokes a defaulted copy/move constructor or copy/move assignment operator for a union of type U with aglvalue argument that does not denote an object of type cv U within its lifetime, the behavior is undefined.
[Note 10: In C, an entire object of structure type can be accessed, e.g. using assignment. By contrast, C++ has no notion of accessingan object of class type through an lvalue of class type. —end note]
7.2.2 Type [expr.type]

1 If an expression initially has the type “reference to T” (9.3.4.3, 9.4.4), the type is adjusted to T prior to any furtheranalysis. The expression designates the object or function denoted by the reference, and the expression is an lvalue oran xvalue, depending on the expression.
[Note 1: Before the lifetime of the reference has started or after it has ended, the behavior is undefined (see 6.7.3). —end note]

2 If a prvalue initially has the type “cv T”, where T is a cv-unqualified non-class, non-array type, the type of the expressionis adjusted to T prior to any further analysis.
3 The composite pointer type of two operands p1 and p2 having types T1 and T2, respectively, where at least one is apointer or pointer-to-member type or std::nullptr_t, is:

—(3.1) if both p1 and p2 are null pointer constants, std::nullptr_t;
—(3.2) if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
—(3.3) if T1 or T2 is “pointer to cv1 void” and the other type is “pointer to cv2 T”, where T is an object type or void,“pointer to cv12 void”, where cv12 is the union of cv1 and cv2;
—(3.4) if T1 or T2 is “pointer to noexcept function” and the other type is “pointer to function”, where the function typesare otherwise the same, “pointer to function”;
—(3.5) if T1 is “pointer to cv1 C1” and T2 is “pointer to cv2 C2”, where C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), the qualification-combined type (7.3.6) of T1 and T2 or the qualification-combined type of

T2 and T1, respectively;

45) The intent of this list is to specify those circumstances in which an object can or cannot be aliased.
§ 7.2.2 91

© ISO/IEC N4910

—(3.6) if T1 or T2 is “pointer to member of C1 of type function”, the other type is “pointer to member of C2 of type
noexcept function”, and C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), where the functiontypes are otherwise the same, “pointer to member of C2 of type function” or “pointer to member of C1 of typefunction”, respectively;

—(3.7) if T1 is “pointer to member of C1 of type cv1 U” and T2 is “pointer to member of C2 of type cv2 U”, for somenon-function type U, where C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), the qualification-combined type of T2 and T1 or the qualification-combined type of T1 and T2, respectively;
—(3.8) if T1 and T2 are similar types (7.3.6), the qualification-combined type of T1 and T2;
—(3.9) otherwise, a program that necessitates the determination of a composite pointer type is ill-formed.

[Example 1:
typedef void *p;
typedef const int *q;
typedef int **pi;
typedef const int **pci;

The composite pointer type of p and q is “pointer to const void”; the composite pointer type of pi and pci is “pointer to constpointer to const int”. —end example]
7.2.3 Context dependence [expr.context]

1 In some contexts, unevaluated operands appear (7.5.7, 7.6.1.8, 7.6.2.5, 7.6.2.7, 9.2.9.5, 13.1, 13.7.9). An unevaluatedoperand is not evaluated.
[Note 1: In an unevaluated operand, a non-static class member can be named (7.5.4) and naming of objects or functions does not, byitself, require that a definition be provided (6.3). An unevaluated operand is considered a full-expression (6.9.1). —end note]

2 In some contexts, an expression only appears for its side effects. Such an expression is called a discarded-valueexpression. The array-to-pointer (7.3.3) and function-to-pointer (7.3.4) standard conversions are not applied. Thelvalue-to-rvalue conversion (7.3.2) is applied if and only if the expression is a glvalue of volatile-qualified type and it isone of the following:
—(2.1) (expression), where expression is one of these expressions,
—(2.2) id-expression (7.5.4),
—(2.3) subscripting (7.6.1.2),
—(2.4) class member access (7.6.1.5),
—(2.5) indirection (7.6.2.2),
—(2.6) pointer-to-member operation (7.6.4),
—(2.7) conditional expression (7.6.16) where both the second and the third operands are one of these expressions, or
—(2.8) comma expression (7.6.20) where the right operand is one of these expressions.

[Note 2: Using an overloaded operator causes a function call; the above covers only operators with built-in meaning. —end note]
The temporary materialization conversion (7.3.5) is applied if the (possibly converted) expression is a prvalue of objecttype.
[Note 3: If the original expression is an lvalue of class type, it must have a volatile copy constructor to initialize the temporary objectthat is the result object of the temporary materialization conversion. —end note]
The expression is evaluated and its result (if any) is discarded.
7.3 Standard conversions [conv]
7.3.1 General [conv.general]

1 Standard conversions are implicit conversions with built-in meaning. 7.3 enumerates the full set of such conversions. Astandard conversion sequence is a sequence of standard conversions in the following order:
—(1.1) Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion, andfunction-to-pointer conversion.
—(1.2) Zero or one conversion from the following set: integral promotions, floating-point promotion, integral conversions,floating-point conversions, floating-integral conversions, pointer conversions, pointer-to-member conversions,and boolean conversions.

§ 7.3.1 92

© ISO/IEC N4910

—(1.3) Zero or one function pointer conversion.
—(1.4) Zero or one qualification conversion.

[Note 1: A standard conversion sequence can be empty, i.e., it can consist of no conversions. —end note]
A standard conversion sequence will be applied to an expression if necessary to convert it to a required destination type.

2 [Note 2: Expressions with a given type will be implicitly converted to other types in several contexts:
—(2.1) When used as operands of operators. The operator’s requirements for its operands dictate the destination type (7.6).
—(2.2) When used in the condition of an if statement (8.5.2) or iteration statement (8.6). The destination type is bool.
—(2.3) When used in the expression of a switch statement (8.5.3). The destination type is integral.
—(2.4) When used as the source expression for an initialization (which includes use as an argument in a function call and use as theexpression in a return statement). The type of the entity being initialized is (generally) the destination type. See 9.4, 9.4.4.

—end note]
3 An expression E can be implicitly converted to a type T if and only if the declaration T t=E; is well-formed, for someinvented temporary variable t (9.4).
4 Certain language constructs require that an expression be converted to a Boolean value. An expression E appearing insuch a context is said to be contextually converted to bool and is well-formed if and only if the declaration bool t(E);is well-formed, for some invented temporary variable t (9.4).
5 Certain language constructs require conversion to a value having one of a specified set of types appropriate to theconstruct. An expression E of class type C appearing in such a context is said to be contextually implicitly convertedto a specified type T and is well-formed if and only if E can be implicitly converted to a type T that is determined asfollows: C is searched for non-explicit conversion functions whose return type is cv T or reference to cv T such that T isallowed by the context. There shall be exactly one such T.
6 The effect of any implicit conversion is the same as performing the corresponding declaration and initialization and thenusing the temporary variable as the result of the conversion. The result is an lvalue if T is an lvalue reference type or anrvalue reference to function type (9.3.4.3), an xvalue if T is an rvalue reference to object type, and a prvalue otherwise.The expression E is used as a glvalue if and only if the initialization uses it as a glvalue.
7 [Note 3: For class types, user-defined conversions are considered as well; see 11.4.8. In general, an implicit conversion sequence(12.2.4.2) consists of a standard conversion sequence followed by a user-defined conversion followed by another standard conversionsequence. —end note]
8 [Note 4: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue conversion is not doneon the operand of the unary & operator. Specific exceptions are given in the descriptions of those operators and contexts. —end note]
7.3.2 Lvalue-to-rvalue conversion [conv.lval]

1 A glvalue (7.2.1) of a non-function, non-array type T can be converted to a prvalue.46 If T is an incomplete type, a programthat necessitates this conversion is ill-formed. If T is a non-class type, the type of the prvalue is the cv-unqualifiedversion of T. Otherwise, the type of the prvalue is T.47
2 When an lvalue-to-rvalue conversion is applied to an expression E, and either

—(2.1) E is not potentially evaluated, or
—(2.2) the evaluation of E results in the evaluation of a member Ex of the set of potential results of E, and Ex names avariable x that is not odr-used by Ex (6.3),

the value contained in the referenced object is not accessed.
[Example 1:
struct S { int n; };
auto f() {

S x { 1 };
constexpr S y { 2 };
return [&](bool b) { return (b ? y : x).n; };

}
auto g = f();
int m = g(false); // undefined behavior: access of x.n outside its lifetime
46) For historical reasons, this conversion is called the “lvalue-to-rvalue” conversion, even though that name does not accurately reflect thetaxonomy of expressions described in 7.2.1.
47) In C++ class and array prvalues can have cv-qualified types. This differs from ISO C, in which non-lvalues never have cv-qualified types.
§ 7.3.2 93

© ISO/IEC N4910

int n = g(true); // OK, does not access y.n
—end example]

3 The result of the conversion is determined according to the following rules:
—(3.1) If T is cv std::nullptr_t, the result is a null pointer constant (7.3.12).

[Note 1: Since the conversion does not access the object to which the glvalue refers, there is no side effect even if T isvolatile-qualified (6.9.1), and the glvalue can refer to an inactive member of a union (11.5). —end note]
—(3.2) Otherwise, if T has a class type, the conversion copy-initializes the result object from the glvalue.
—(3.3) Otherwise, if the object to which the glvalue refers contains an invalid pointer value (6.7.5.5.3), the behavior isimplementation-defined.
—(3.4) Otherwise, the object indicated by the glvalue is read (3.1), and the value contained in the object is the prvalueresult.

4 [Note 2: See also 7.2.1. —end note]
7.3.3 Array-to-pointer conversion [conv.array]

1 An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to a prvalue of type“pointer to T”. The temporary materialization conversion (7.3.5) is applied. The result is a pointer to the first element ofthe array.
7.3.4 Function-to-pointer conversion [conv.func]

1 An lvalue of function type T can be converted to a prvalue of type “pointer to T”. The result is a pointer to the function.48
7.3.5 Temporary materialization conversion [conv.rval]

1 A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a temporary object (6.7.7) oftype T from the prvalue by evaluating the prvalue with the temporary object as its result object, and produces an xvaluedenoting the temporary object. T shall be a complete type.
[Note 1: If T is a class type (or array thereof), it must have an accessible and non-deleted destructor; see 11.4.7. —end note]
[Example 1:
struct X { int n; };
int k = X().n; // OK, X() prvalue is converted to xvalue
— end example]
7.3.6 Qualification conversions [conv.qual]

1 A qualification-decomposition of a type T is a sequence of cv i and Pi such that T is
“cv0 P0 cv1 P1 · · · cvn−1 Pn−1 cvn U” for n ≥ 0,

where each cv i is a set of cv-qualifiers (6.8.4), and each Pi is “pointer to” (9.3.4.2), “pointer to member of class Ci oftype” (9.3.4.4), “array of Ni”, or “array of unknown bound of” (9.3.4.5). If Pi designates an array, the cv-qualifiers
cv i+1 on the element type are also taken as the cv-qualifiers cv i of the array.
[Example 1: The type denoted by the type-id const int ** has three qualification-decompositions, taking U as “int”, as “pointer to
const int”, and as “pointer to pointer to const int”. —end example]
The n-tuple of cv-qualifiers after the first one in the longest qualification-decomposition of T, that is, cv1, cv2, . . . , cvn,is called the cv-qualification signature of T.

2 Two types T1 and T2 are similar if they have qualification-decompositions with the same n such that corresponding Picomponents are either the same or one is “array of Ni” and the other is “array of unknown bound of”, and the typesdenoted by U are the same.
3 The qualification-combined type of two types T1 and T2 is the type T3 similar to T1 whose qualification-decompositionis such that:

—(3.1) for every i > 0, cv3
i is the union of cv1

i and cv2
i ,

—(3.2) if either P 1
i or P 2

i is “array of unknown bound of”, P 3
i is “array of unknown bound of”, otherwise it is P 1

i , and

48) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function cannot be obtained.
§ 7.3.6 94

© ISO/IEC N4910

—(3.3) if the resulting cv3
i is different from cv1

i or cv2
i , or the resulting P 3

i is different from P 1
i or P 2

i , then const isadded to every cv3
k for 0 < k < i,

where cv ji and P ji are the components of the qualification-decomposition of Tj. A prvalue of type T1 can be convertedto type T2 if the qualification-combined type of T1 and T2 is T2.
[Note 1: If a program could assign a pointer of type T** to a pointer of type const T** (that is, if line #1 below were allowed), aprogram could inadvertently modify a const object (as it is done on line #2). For example,
int main() {

const char c = 'c';
char* pc;
const char** pcc = &pc; // #1: not allowed
*pcc = &c;
*pc = 'C'; // #2: modifies a const object

}

—end note]
[Note 2: Given similar types T1 and T2, this construction ensures that both can be converted to the qualification-combined type of T1and T2. —end note]

4 [Note 3: A prvalue of type “pointer to cv1 T” can be converted to a prvalue of type “pointer to cv2 T” if “cv2 T” is more cv-qualifiedthan “cv1 T”. A prvalue of type “pointer to member of X of type cv1 T” can be converted to a prvalue of type “pointer to member of Xof type cv2 T” if “cv2 T” is more cv-qualified than “cv1 T”. —end note]
5 [Note 4: Function types (including those used in pointer-to-member-function types) are never cv-qualified (9.3.4.6). —end note]
7.3.7 Integral promotions [conv.prom]

1 A prvalue of an integer type other than bool, char8_t, char16_t, char32_t, or wchar_t whose integer conversionrank (6.8.5) is less than the rank of int can be converted to a prvalue of type int if int can represent all the values ofthe source type; otherwise, the source prvalue can be converted to a prvalue of type unsigned int.
2 A prvalue of type char8_t, char16_t, char32_t, or wchar_t (6.8.2) can be converted to a prvalue of the first of thefollowing types that can represent all the values of its underlying type: int, unsigned int, long int, unsigned long

int, long long int, or unsigned long long int. If none of the types in that list can represent all the values of itsunderlying type, a prvalue of type char8_t, char16_t, char32_t, or wchar_t can be converted to a prvalue of itsunderlying type.
3 A prvalue of an unscoped enumeration type whose underlying type is not fixed can be converted to a prvalue of thefirst of the following types that can represent all the values of the enumeration (9.7.1): int, unsigned int, long int,

unsigned long int, long long int, or unsigned long long int. If none of the types in that list can represent allthe values of the enumeration, a prvalue of an unscoped enumeration type can be converted to a prvalue of the extendedinteger type with lowest integer conversion rank (6.8.5) greater than the rank of long long in which all the values ofthe enumeration can be represented. If there are two such extended types, the signed one is chosen.
4 A prvalue of an unscoped enumeration type whose underlying type is fixed (9.7.1) can be converted to a prvalue ofits underlying type. Moreover, if integral promotion can be applied to its underlying type, a prvalue of an unscopedenumeration type whose underlying type is fixed can also be converted to a prvalue of the promoted underlying type.
5 A prvalue for an integral bit-field (11.4.10) can be converted to a prvalue of type int if int can represent all the valuesof the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all the values of thebit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has an enumerated type, it istreated as any other value of that type for promotion purposes.
6 A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true becoming one.
7 These conversions are called integral promotions.
7.3.8 Floating-point promotion [conv.fpprom]

1 A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.
2 This conversion is called floating-point promotion.
7.3.9 Integral conversions [conv.integral]

1 A prvalue of an integer type can be converted to a prvalue of another integer type. A prvalue of an unscoped enumerationtype can be converted to a prvalue of an integer type.

§ 7.3.9 95

© ISO/IEC N4910

2 If the destination type is bool, see 7.3.15. If the source type is bool, the value false is converted to zero and the value
true is converted to one.

3 Otherwise, the result is the unique value of the destination type that is congruent to the source integer modulo 2N ,where N is the width of the destination type.
4 The conversions allowed as integral promotions are excluded from the set of integral conversions.
7.3.10 Floating-point conversions [conv.double]

1 A prvalue of floating-point type can be converted to a prvalue of another floating-point type. If the source value can beexactly represented in the destination type, the result of the conversion is that exact representation. If the source valueis between two adjacent destination values, the result of the conversion is an implementation-defined choice of either ofthose values. Otherwise, the behavior is undefined.
2 The conversions allowed as floating-point promotions are excluded from the set of floating-point conversions.
7.3.11 Floating-integral conversions [conv.fpint]

1 A prvalue of a floating-point type can be converted to a prvalue of an integer type. The conversion truncates; that is, thefractional part is discarded. The behavior is undefined if the truncated value cannot be represented in the destinationtype.
[Note 1: If the destination type is bool, see 7.3.15. —end note]

2 A prvalue of an integer type or of an unscoped enumeration type can be converted to a prvalue of a floating-point type.The result is exact if possible. If the value being converted is in the range of values that can be represented but the valuecannot be represented exactly, it is an implementation-defined choice of either the next lower or higher representablevalue.
[Note 2: Loss of precision occurs if the integral value cannot be represented exactly as a value of the floating-point type. —end note]
If the value being converted is outside the range of values that can be represented, the behavior is undefined. If thesource type is bool, the value false is converted to zero and the value true is converted to one.
7.3.12 Pointer conversions [conv.ptr]

1 A null pointer constant is an integer literal (5.13.2) with value zero or a prvalue of type std::nullptr_t. A null pointerconstant can be converted to a pointer type; the result is the null pointer value of that type (6.8.3) and is distinguishablefrom every other value of object pointer or function pointer type. Such a conversion is called a null pointer conversion.Two null pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointerto cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qualificationconversion (7.3.6). A null pointer constant of integral type can be converted to a prvalue of type std::nullptr_t.
[Note 1: The resulting prvalue is not a null pointer value. —end note]

2 A prvalue of type “pointer to cv T”, where T is an object type, can be converted to a prvalue of type “pointer to cv void”.The pointer value (6.8.3) is unchanged by this conversion.
3 A prvalue of type “pointer to cv D”, where D is a complete class type, can be converted to a prvalue of type “pointer tocv B”, where B is a base class (11.7) of D. If B is an inaccessible (11.8) or ambiguous (6.5.2) base class of D, a programthat necessitates this conversion is ill-formed. The result of the conversion is a pointer to the base class subobject of thederived class object. The null pointer value is converted to the null pointer value of the destination type.
7.3.13 Pointer-to-member conversions [conv.mem]

1 A null pointer constant (7.3.12) can be converted to a pointer-to-member type; the result is the null member pointervalue of that type and is distinguishable from any pointer to member not created from a null pointer constant. Such aconversion is called a null member pointer conversion. Two null member pointer values of the same type shall compareequal. The conversion of a null pointer constant to a pointer to member of cv-qualified type is a single conversion, andnot the sequence of a pointer-to-member conversion followed by a qualification conversion (7.3.6).
2 A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to a prvalue of type“pointer to member of D of type cv T”, where D is a complete class derived (11.7) from B. If B is an inaccessible (11.8),ambiguous (6.5.2), or virtual (11.7.2) base class of D, or a base class of a virtual base class of D, a program that necessitatesthis conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member beforethe conversion took place, but it refers to the base class member as if it were a member of the derived class. The resultrefers to the member in D’s instance of B. Since the result has type “pointer to member of D of type cv T”, indirection

§ 7.3.13 96

© ISO/IEC N4910

through it with a D object is valid. The result is the same as if indirecting through the pointer to member of B with the Bsubobject of D. The null member pointer value is converted to the null member pointer value of the destination type.49
7.3.14 Function pointer conversions [conv.fctptr]

1 A prvalue of type “pointer to noexcept function” can be converted to a prvalue of type “pointer to function”. The resultis a pointer to the function. A prvalue of type “pointer to member of type noexcept function” can be converted to aprvalue of type “pointer to member of type function”. The result designates the member function.
[Example 1:
void (*p)();
void (**pp)() noexcept = &p; // error: cannot convert to pointer to noexcept function
struct S { typedef void (*p)(); operator p(); };
void (*q)() noexcept = S(); // error: cannot convert to pointer to noexcept function
—end example]
7.3.15 Boolean conversions [conv.bool]

1 A prvalue of arithmetic, unscoped enumeration, pointer, or pointer-to-member type can be converted to a prvalue oftype bool. A zero value, null pointer value, or null member pointer value is converted to false; any other value isconverted to true.
7.4 Usual arithmetic conversions [expr.arith.conv]

1 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield result typesin a similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is called theusual arithmetic conversions, which are defined as follows:
—(1.1) If either operand is of scoped enumeration type (9.7.1), no conversions are performed; if the other operand doesnot have the same type, the expression is ill-formed.
—(1.2) If either operand is of type long double, the other shall be converted to long double.
—(1.3) Otherwise, if either operand is double, the other shall be converted to double.
—(1.4) Otherwise, if either operand is float, the other shall be converted to float.
—(1.5) Otherwise, the integral promotions (7.3.7) shall be performed on both operands.50 Then the following rules shallbe applied to the promoted operands:

—(1.5.1) If both operands have the same type, no further conversion is needed.
—(1.5.2) Otherwise, if both operands have signed integer types or both have unsigned integer types, the operand withthe type of lesser integer conversion rank shall be converted to the type of the operand with greater rank.
—(1.5.3) Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the rank of thetype of the other operand, the operand with signed integer type shall be converted to the type of the operandwith unsigned integer type.
—(1.5.4) Otherwise, if the type of the operand with signed integer type can represent all of the values of the type ofthe operand with unsigned integer type, the operand with unsigned integer type shall be converted to thetype of the operand with signed integer type.
—(1.5.5) Otherwise, both operands shall be converted to the unsigned integer type corresponding to the type of theoperand with signed integer type.

2 If one operand is of enumeration type and the other operand is of a different enumeration type or a floating-point type,this behavior is deprecated (D.2).
7.5 Primary expressions [expr.prim]

49) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted compared tothe rule for pointers to objects (from pointer to derived to pointer to base) (7.3.12, 11.7). This inversion is necessary to ensure type safety. Note that apointer to member is not an object pointer or a function pointer and the rules for conversions of such pointers do not apply to pointers to members. Inparticular, a pointer to member cannot be converted to a void*.
50) As a consequence, operands of type bool, char8_t, char16_t, char32_t, wchar_t, or an enumerated type are converted to some integral type.
§ 7.5 97

© ISO/IEC N4910

primary-expression :
literal
this
(expression)
id-expression
lambda-expression
fold-expression
requires-expression

7.5.1 Literals [expr.prim.literal]
1 The type of a literal is determined based on its form as specified in 5.13. A string-literal is an lvalue designating acorresponding string literal object (5.13.5), a user-defined-literal has the same value category as the correspondingoperator call expression described in 5.13.8, and any other literal is a prvalue.
7.5.2 This [expr.prim.this]

1 The keyword this names a pointer to the object for which an implicit object member function (11.4.3) is invoked or anon-static data member’s initializer (11.4) is evaluated.
2 The current class at a program point is the class associated with the innermost class scope containing that point.
[Note 1: A lambda-expression does not introduce a class scope. —end note]

3 If a declaration declares a member function or member function template of a class X, the expression this is a prvalueof type “pointer to cv-qualifier-seq X” wherever X is the current class between the optional cv-qualifier-seq and the endof the function-definition, member-declarator , or declarator . It shall not appear within the declaration of either a staticmember function or an explicit object member function of the current class (although its type and value category aredefined within such member functions as they are within an implicit object member function).
[Note 2: This is because declaration matching does not occur until the complete declarator is known. —end note]
[Note 3: In a trailing-return-type, the class being defined is not required to be complete for purposes of class member access (7.6.1.5).Class members declared later are not visible.
[Example 1:
struct A {

char g();
template<class T> auto f(T t) -> decltype(t + g())
{ return t + g(); }

};
template auto A::f(int t) -> decltype(t + g());

—end example]
—end note]

4 Otherwise, if a member-declarator declares a non-static data member (11.4) of a class X, the expression this is aprvalue of type “pointer to X” wherever X is the current class within the optional default member initializer (11.4).
5 The expression this shall not appear in any other context.
[Example 2:
class Outer {

int a[sizeof(*this)]; // error: not inside a member function
unsigned int sz = sizeof(*this); // OK, in default member initializer
void f() {

int b[sizeof(*this)]; // OK
struct Inner {
int c[sizeof(*this)]; // error: not inside a member function of Inner

};
}

};

—end example]

§ 7.5.2 98

© ISO/IEC N4910

7.5.3 Parentheses [expr.prim.paren]
1 A parenthesized expression (E) is a primary expression whose type, result, and value category are identical to those of
E. The parenthesized expression can be used in exactly the same contexts as those where E can be used, and with thesame meaning, except as otherwise indicated.
7.5.4 Names [expr.prim.id]
7.5.4.1 General [expr.prim.id.general]

id-expression :
unqualified-id
qualified-id

1 An id-expression is a restricted form of a primary-expression.
[Note 1: An id-expression can appear after . and -> operators (7.6.1.5). —end note]

2 If an id-expression E denotes a memberM of an anonymous union (11.5.2) U :
—(2.1) If U is a non-static data member, E refers toM as a member of the lookup context of the terminal name of E(after any transformation to a class member access expression (11.4.3)).

[Example 1: o.x is interpreted as o.u.x, where u names the anonymous union member. —end example]
—(2.2) Otherwise, E is interpreted as a class member access (7.6.1.5) that designates the member subobjectM of theanonymous union variable for U .

[Note 2: Under this interpretation, E no longer denotes a non-static data member. —end note]
[Example 2: N::x is interpreted as N::u.x, where u names the anonymous union variable. —end example]

3 An id-expression that denotes a non-static data member or non-static member function of a class can only be used:
—(3.1) as part of a class member access (7.6.1.5) in which the object expression refers to the member’s class51 or a classderived from that class, or
—(3.2) to form a pointer to member (7.6.2.2), or
—(3.3) if that id-expression denotes a non-static data member and it appears in an unevaluated operand.

[Example 3:
struct S {
int m;

};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK
—end example]

4 A potentially-evaluated id-expression that denotes an immediate function (9.2.6) shall appear only
—(4.1) as a subexpression of an immediate invocation, or
—(4.2) in an immediate function context (7.7).

5 For an id-expression that denotes an overload set, overload resolution is performed to select a unique function (12.2,12.3).
[Note 3: A program cannot refer to a function with a trailing requires-clause whose constraint-expression is not satisfied, becausesuch functions are never selected by overload resolution.
[Example 4:
template<typename T> struct A {

static void f(int) requires false;
};

void g() {
A<int>::f(0); // error: cannot call f
void (*p1)(int) = A<int>::f; // error: cannot take the address of f
decltype(A<int>::f)* p2 = nullptr; // error: the type decltype(A<int>::f) is invalid

}

51) This also applies when the object expression is an implicit (*this) (11.4.3).
§ 7.5.4.1 99

© ISO/IEC N4910

In each case, the constraints of f are not satisfied. In the declaration of p2, those constraints are required to be satisfied even though fis an unevaluated operand (7.2.3). —end example]
—end note]
7.5.4.2 Unqualified names [expr.prim.id.unqual]

unqualified-id :
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ type-name
~ decltype-specifier
template-id

1 An identifier is only an id-expression if it has been suitably declared (Clause 9) or if it appears as part of a declarator-
id (9.3). An identifier that names a coroutine parameter refers to the copy of the parameter (9.5.4).
[Note 1: For operator-function-ids, see 12.4; for conversion-function-ids, see 11.4.8.3; for literal-operator-ids, see 12.6; for
template-ids, see 13.3. A type-name or decltype-specifier prefixed by ~ denotes the destructor of the type so named; see 7.5.4.4.Within the definition of a non-static member function, an identifier that names a non-static member is transformed to a class memberaccess expression (11.4.3). —end note]

2 A component name of an unqualified-id U is
—(2.1) U if it is a name or
—(2.2) the component name of the template-id or type-name of U , if any.

[Note 2: Other constructs that contain names to look up can have several component names (7.5.4.3, 9.2.9.3, 9.2.9.4, 9.3.4.4, 9.9,13.2, 13.3, 13.8). —end note]
The terminal name of a construct is the component name of that construct that appears lexically last.

3 The result is the entity denoted by the unqualified-id (6.5.3). If the unqualified-id appears in a lambda-expression atprogram point P and the entity is a local entity (6.1) or a variable declared by an init-capture (7.5.5.3), then let S bethe compound-statement of the innermost enclosing lambda-expression of P . If naming the entity from outside of anunevaluated operand within S would refer to an entity captured by copy in some intervening lambda-expression, thenlet E be the innermost such lambda-expression, and:
—(3.1) If P is inE’s function parameter scope but not its parameter-declaration-clause, then the type of the expression isthe type of a class member access expression (7.6.1.5) naming the non-static data member that would be declaredfor such a capture in the object parameter (9.3.4.6) of the function call operator of E.

[Note 3: If E is not declared mutable, the type of such an identifier will typically be const qualified. —end note]
—(3.2) Otherwise (if P either precedes E’s function parameter scope or is in E’s parameter-declaration-clause), theprogram is ill-formed.

Otherwise, the type of the expression is the type of the result.
[Note 4: If the entity is a template parameter object for a template parameter of type T (13.2), the type of the expression is const T.—end note]
[Note 5: The type will be adjusted as described in 7.2.2 if it is cv-qualified or is a reference type. —end note]
The expression is an lvalue if the entity is a function, variable, structured binding (9.6), data member, or templateparameter object and a prvalue otherwise (7.2.1); it is a bit-field if the identifier designates a bit-field.
[Example 1:
void f() {

float x, &r = x;
[=]() -> decltype((x)) { // lambda returns float const& because this lambda is not mutable and// x is an lvalue
decltype(x) y1; // y1 has type float
decltype((x)) y2 = y1; // y2 has type float const&
decltype(r) r1 = y1; // r1 has type float&
decltype((r)) r2 = y2; // r2 has type float const&
return y2;

};

§ 7.5.4.2 100

© ISO/IEC N4910

[=]<decltype(x) P>{}; // error: x refers to local entity but precedes the// lambda’s function parameter scope
[=](decltype((x)) y){}; // error: x refers to local entity but is in the lambda’s// parameter-declaration-clause
[=]{

[]<decltype(x) P>{}; // OK, x is in the outer lambda’s function parameter scope
[](decltype((x)) y){}; // OK, lambda takes a parameter of type float const&
[x=1](decltype((x)) z){}; // error: x refers to init-capture but is in the lambda’s// parameter-declaration-clause

};
}

—end example]
7.5.4.3 Qualified names [expr.prim.id.qual]

qualified-id :
nested-name-specifier templateopt unqualified-id

nested-name-specifier :
::
type-name ::
namespace-name ::
decltype-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

1 The component names of a qualified-id are those of its nested-name-specifier and unqualified-id . The component namesof a nested-name-specifier are its identifier (if any) and those of its type-name, namespace-name, simple-template-id ,and/or nested-name-specifier .
2 A nested-name-specifier is declarative if it is part of

—(2.1) a class-head-name,
—(2.2) an enum-head-name,
—(2.3) a qualified-id that is the id-expression of a declarator-id , or
—(2.4) a declarative nested-name-specifier .

A declarative nested-name-specifier shall not have a decltype-specifier . A declaration that uses a declarative nested-
name-specifier shall be a friend declaration or inhabit a scope that contains the entity being redeclared or specialized.

3 The nested-name-specifier :: nominates the global namespace. A nested-name-specifier with a decltype-specifiernominates the type denoted by the decltype-specifier , which shall be a class or enumeration type. If a nested-name-
specifier N is declarative and has a simple-template-id with a template argument list A that involves a templateparameter, let T be the template nominated by N without A. T shall be a class template.
—(3.1) IfA is the template argument list (13.4) of the corresponding template-head H (13.7.3),N nominates the primarytemplate of T ; H shall be equivalent to the template-head of T (13.7.7.2).
—(3.2) Otherwise, N nominates the partial specialization (13.7.6) of T whose template argument list is equivalent to

A (13.7.7.2); the program is ill-formed if no such partial specialization exists.
Any other nested-name-specifier nominates the entity denoted by its type-name, namespace-name, identifier , or
simple-template-id . If the nested-name-specifier is not declarative, the entity shall not be a template.

4 A qualified-id shall not be of the form nested-name-specifier templateopt ~ decltype-specifier nor of the form
decltype-specifier :: ~ type-name.

5 The result of a qualified-id Q is the entity it denotes (6.5.5). The type of the expression is the type of the result. Theresult is an lvalue if the member is
—(5.1) a function other than a non-static member function,
—(5.2) a non-static member function if Q is the operand of a unary & operator,
—(5.3) a variable,
—(5.4) a structured binding (9.6), or
—(5.5) a data member,

§ 7.5.4.3 101

© ISO/IEC N4910

and a prvalue otherwise.
7.5.4.4 Destruction [expr.prim.id.dtor]

1 An id-expression that denotes the destructor of a type T names the destructor of T if T is a class type (11.4.7), otherwisethe id-expression is said to name a pseudo-destructor.
2 If the id-expression names a pseudo-destructor, T shall be a scalar type and the id-expression shall appear as the rightoperand of a class member access (7.6.1.5) that forms the postfix-expression of a function call (7.6.1.3).
[Note 1: Such a call ends the lifetime of the object (7.6.1.3, 6.7.3). —end note]

3 [Example 1:
struct C { };
void f() {

C * pc = new C;
using C2 = C;
pc->C::~C2(); // OK, destroys *pc
C().C::~C(); // undefined behavior: temporary of type C destroyed twice
using T = int;
0 .T::~T(); // OK, no effect
0.T::~T(); // error: 0.T is a user-defined-floating-point-literal (5.13.8)

}

—end example]
7.5.5 Lambda expressions [expr.prim.lambda]
7.5.5.1 General [expr.prim.lambda.general]

lambda-expression :
lambda-introducer attribute-specifier-seqopt lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt attribute-specifier-seqopt

lambda-declarator compound-statement

lambda-introducer :
[lambda-captureopt]

lambda-declarator :
lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt trailing-return-typeopt
noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt
trailing-return-typeopt
(parameter-declaration-clause) lambda-specifier-seqopt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-typeopt requires-clauseopt

lambda-specifier :
consteval
constexpr
mutable

lambda-specifier-seq :
lambda-specifier
lambda-specifier lambda-specifier-seq

1 A lambda-expression provides a concise way to create a simple function object.
[Example 1:
#include <algorithm>
#include <cmath>
void abssort(float* x, unsigned N) {

std::sort(x, x + N, [](float a, float b) { return std::abs(a) < std::abs(b); });
}

—end example]
2 A lambda-expression is a prvalue whose result object is called the closure object.
[Note 1: A closure object behaves like a function object (22.10). —end note]

3 An ambiguity can arise because a requires-clause can end in an attribute-specifier-seq, which collides with the
attribute-specifier-seq in lambda-expression. In such cases, any attributes are treated as attribute-specifier-seq in
lambda-expression.

§ 7.5.5.1 102

© ISO/IEC N4910

[Note 2: Such ambiguous cases cannot have valid semantics because the constraint expression would not have type bool. —endnote]
4 A lambda-specifier-seq shall contain at most one of each lambda-specifier and shall not contain both constexpr and

consteval. If the lambda-declarator contains an explicit object parameter (9.3.4.6), then no lambda-specifier in the
lambda-specifier-seq shall be mutable.
[Note 3: The trailing requires-clause is described in 9.3. —end note]

5 If a lambda-declarator does not include a parameter-declaration-clause, it is as if () were inserted at the start of the
lambda-declarator . If the lambda-declarator does not include a trailing-return-type, the lambda return type is auto,which is deduced from return statements as described in 9.2.9.6.
[Example 2:
auto x1 = [](int i) { return i; }; // OK, return type is int
auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from braced-init-list
int j;
auto x3 = []()->auto&& { return j; }; // OK, return type is int&
—end example]

6 A lambda is a generic lambda if the lambda-expression has any generic parameter type placeholders (9.2.9.6), or if thelambda has a template-parameter-list.
[Example 3:
int i = [](int i, auto a) { return i; }(3, 4); // OK, a generic lambda
int j = []<class T>(T t, int i) { return i; }(3, 4); // OK, a generic lambda
—end example]
7.5.5.2 Closure types [expr.prim.lambda.closure]

1 The type of a lambda-expression (which is also the type of the closure object) is a unique, unnamed non-union classtype, called the closure type, whose properties are described below.
2 The closure type is declared in the smallest block scope, class scope, or namespace scope that contains the corresponding

lambda-expression.
[Note 1: This determines the set of namespaces and classes associated with the closure type (6.5.4). The parameter types of a
lambda-declarator do not affect these associated namespaces and classes. —end note]
The closure type is not an aggregate type (9.4.2). An implementation may define the closure type differently from whatis described below provided this does not alter the observable behavior of the program other than by changing:
—(2.1) the size and/or alignment of the closure type,
—(2.2) whether the closure type is trivially copyable (11.2), or
—(2.3) whether the closure type is a standard-layout class (11.2).

An implementation shall not add members of rvalue reference type to the closure type.
3 The closure type for a lambda-expression has a public inline function call operator (for a non-generic lambda) orfunction call operator template (for a generic lambda) (12.4.4) whose parameters and return type are described bythe lambda-expression’s parameter-declaration-clause and trailing-return-type respectively, and whose template-

parameter-list consists of the specified template-parameter-list, if any. The requires-clause of the function call operatortemplate is the requires-clause immediately following < template-parameter-list >, if any. The trailing requires-clauseof the function call operator or operator template is the requires-clause of the lambda-declarator , if any.
[Note 2: The function call operator template for a generic lambda can be an abbreviated function template (9.3.4.6). —end note]
[Example 1:
auto glambda = [](auto a, auto&& b) { return a < b; };
bool b = glambda(3, 3.14); // OK
auto vglambda = [](auto printer) {

return [=](auto&& ... ts) { // OK, ts is a function parameter pack
printer(std::forward<decltype(ts)>(ts)...);

return [=]() {
printer(ts ...);

};

§ 7.5.5.2 103

© ISO/IEC N4910

};
};
auto p = vglambda([](auto v1, auto v2, auto v3)

{ std::cout << v1 << v2 << v3; });
auto q = p(1, 'a', 3.14); // OK, outputs 1a3.14
q(); // OK, outputs 1a3.14
auto fact = [](this auto self, int n) -> int { // OK, explicit object parameter

return (n <= 1) ? 1 : n * self(n-1);
};
std::cout << fact(5); // OK, outputs 120
—end example]

4 Given a lambda with a lambda-capture, the type of the explicit object parameter, if any, of the lambda’s function calloperator (possibly instantiated from a function call operator template) shall be either:
—(4.1) the closure type,
—(4.2) a class type derived from the closure type, or
—(4.3) a reference to a possibly cv-qualified such type.

[Example 2:
struct C {

template <typename T>
C(T);

};

void func(int i) {
int x = [=](this auto&&) { return i; }(); // OK
int y = [=](this C) { return i; }(); // error
int z = [](this C) { return 42; }(); // OK

}

—end example]
5 The function call operator or operator template is declared const (11.4.3) if and only if the lambda-expression’s

parameter-declaration-clause is not followed by mutable and the lambda-declarator does not contain an explicit objectparameter. It is neither virtual nor declared volatile. Any noexcept-specifier specified on a lambda-expression appliesto the corresponding function call operator or operator template. An attribute-specifier-seq in a lambda-declaratorappertains to the type of the corresponding function call operator or operator template. An attribute-specifier-seq in a
lambda-expression preceding a lambda-declarator appertains to the corresponding function call operator or operatortemplate. The function call operator or any given operator template specialization is a constexpr function if eitherthe corresponding lambda-expression’s parameter-declaration-clause is followed by constexpr or consteval, or itsatisfies the requirements for a constexpr function (9.2.6). It is an immediate function (9.2.6) if the corresponding
lambda-expression’s parameter-declaration-clause is followed by consteval.
[Example 3:
auto ID = [](auto a) { return a; };
static_assert(ID(3) == 3); // OK
struct NonLiteral {

NonLiteral(int n) : n(n) { }
int n;

};
static_assert(ID(NonLiteral{3}).n == 3); // error
— end example]

6 [Example 4:
auto monoid = [](auto v) { return [=] { return v; }; };
auto add = [](auto m1) constexpr {

auto ret = m1();
return [=](auto m2) mutable {

auto m1val = m1();
auto plus = [=](auto m2val) mutable constexpr

{ return m1val += m2val; };

§ 7.5.5.2 104

© ISO/IEC N4910

ret = plus(m2());
return monoid(ret);

};
};
constexpr auto zero = monoid(0);
constexpr auto one = monoid(1);
static_assert(add(one)(zero)() == one()); // OK
// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)// in a constant expression.
auto two = monoid(2);
assert(two() == 2); // OK, not a constant expression.
static_assert(add(one)(one)() == two()); // error: two() is not a constant expression
static_assert(add(one)(one)() == monoid(2)()); // OK
—end example]

7 [Note 3: The function call operator or operator template can be constrained (13.5.3) by a type-constraint (13.2), a requires-
clause (13.1), or a trailing requires-clause (9.3).
[Example 5:
template <typename T> concept C1 = /* ... */;
template <std::size_t N> concept C2 = /* ... */;
template <typename A, typename B> concept C3 = /* ... */;

auto f = []<typename T1, C1 T2> requires C2<sizeof(T1) + sizeof(T2)>
(T1 a1, T1 b1, T2 a2, auto a3, auto a4) requires C3<decltype(a4), T2> {// T2 is constrained by a type-constraint.// T1 and T2 are constrained by a requires-clause, and// T2 and the type of a4 are constrained by a trailing requires-clause.

};

—end example]
—end note]

8 The closure type for a non-generic lambda-expression with no lambda-capture whose constraints (if any) are satisfiedhas a conversion function to pointer to function with C++ language linkage (9.11) having the same parameter andreturn types as the closure type’s function call operator. The conversion is to “pointer to noexcept function” if thefunction call operator has a non-throwing exception specification. The value returned by this conversion function is theaddress of a function F that, when invoked, has the same effect as invoking the closure type’s function call operator on adefault-constructed instance of the closure type. F is a constexpr function if the function call operator is a constexprfunction and is an immediate function if the function call operator is an immediate function.
9 For a generic lambda with no lambda-capture, the closure type has a conversion function template to pointer to function.The conversion function template has the same invented template parameter list, and the pointer to function has thesame parameter types, as the function call operator template. The return type of the pointer to function shall behave as ifit were a decltype-specifier denoting the return type of the corresponding function call operator template specialization.
10 [Note 4: If the generic lambda has no trailing-return-type or the trailing-return-type contains a placeholder type, return typededuction of the corresponding function call operator template specialization has to be done. The corresponding specialization is thatinstantiation of the function call operator template with the same template arguments as those deduced for the conversion functiontemplate. Consider the following:

auto glambda = [](auto a) { return a; };
int (*fp)(int) = glambda;

The behavior of the conversion function of glambda above is like that of the following conversion function:
struct Closure {

template<class T> auto operator()(T t) const { /* ... */ }
template<class T> static auto lambda_call_operator_invoker(T a) {// forwards execution to operator()(a) and therefore has// the same return type deduced
/* ... */

}
template<class T> using fptr_t =

decltype(lambda_call_operator_invoker(declval<T>())) (*)(T);

§ 7.5.5.2 105

© ISO/IEC N4910

template<class T> operator fptr_t<T>() const
{ return &lambda_call_operator_invoker; }

};

—end note]
[Example 6:
void f1(int (*)(int)) { }
void f2(char (*)(int)) { }

void g(int (*)(int)) { } // #1
void g(char (*)(char)) { } // #2
void h(int (*)(int)) { } // #3
void h(char (*)(int)) { } // #4
auto glambda = [](auto a) { return a; };
f1(glambda); // OK
f2(glambda); // error: ID is not convertible
g(glambda); // error: ambiguous
h(glambda); // OK, calls #3 since it is convertible from ID
int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; }; // OK
—end example]

11 The value returned by any given specialization of this conversion function template is the address of a function F that,when invoked, has the same effect as invoking the generic lambda’s corresponding function call operator templatespecialization on a default-constructed instance of the closure type. F is a constexpr function if the correspondingspecialization is a constexpr function and F is an immediate function if the function call operator template specializationis an immediate function.
[Note 5: This will result in the implicit instantiation of the generic lambda’s body. The instantiated generic lambda’s return type andparameter types are required to match the return type and parameter types of the pointer to function. —end note]
[Example 7:
auto GL = [](auto a) { std::cout << a; return a; };
int (*GL_int)(int) = GL; // OK, through conversion function template
GL_int(3); // OK, same as GL(3)
—end example]

12 The conversion function or conversion function template is public, constexpr, non-virtual, non-explicit, const, and has anon-throwing exception specification (14.5).
[Example 8:
auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
auto C = [](auto a) { return a; };

static_assert(Fwd(C,3) == 3); // OK
// No specialization of the function call operator template can be constexpr (due to the local static).
auto NC = [](auto a) { static int s; return a; };
static_assert(Fwd(NC,3) == 3); // error
— end example]

13 The lambda-expression’s compound-statement yields the function-body (9.5) of the function call operator, but it isnot within the scope of the closure type.
[Example 9:
struct S1 {

int x, y;
int operator()(int);
void f() {
[=]()->int {

return operator()(this->x + y); // equivalent to S1::operator()(this->x + (*this).y)// this has type S1*
};

§ 7.5.5.2 106

© ISO/IEC N4910

}
};

—end example]
Further, a variable __func__ is implicitly defined at the beginning of the compound-statement of the lambda-expression,with semantics as described in 9.5.1.

14 The closure type associated with a lambda-expression has no default constructor if the lambda-expression has a
lambda-capture and a defaulted default constructor otherwise. It has a defaulted copy constructor and a defaulted moveconstructor (11.4.5.3). It has a deleted copy assignment operator if the lambda-expression has a lambda-capture anddefaulted copy and move assignment operators otherwise (11.4.6).
[Note 6: These special member functions are implicitly defined as usual, which can result in them being defined as deleted. —endnote]

15 The closure type associated with a lambda-expression has an implicitly-declared destructor (11.4.7).
16 A member of a closure type shall not be explicitly instantiated (13.9.3), explicitly specialized (13.9.4), or named in afriend declaration (11.8.4).
7.5.5.3 Captures [expr.prim.lambda.capture]

lambda-capture :
capture-default
capture-list
capture-default , capture-list

capture-default :
&
=

capture-list :
capture
capture-list , capture

capture :
simple-capture
init-capture

simple-capture :
identifier ...opt
& identifier ...opt
this
* this

init-capture :
...opt identifier initializer
& ...opt identifier initializer

1 The body of a lambda-expression may refer to local entities of enclosing block scopes by capturing those entities, asdescribed below.
2 If a lambda-capture includes a capture-default that is &, no identifier in a simple-capture of that lambda-capture shallbe preceded by &. If a lambda-capture includes a capture-default that is =, each simple-capture of that lambda-captureshall be of the form “& identifier ...opt”, “this”, or “* this”.
[Note 1: The form [&,this] is redundant but accepted for compatibility with ISO C++ 2014. —end note]
Ignoring appearances in initializers of init-captures, an identifier or this shall not appear more than once in a lambda-
capture.
[Example 1:
struct S2 { void f(int i); };
void S2::f(int i) {

[&, i]{ }; // OK
[&, this, i]{ }; // OK, equivalent to [&, i]
[&, &i]{ }; // error: i preceded by & when & is the default
[=, *this]{ }; // OK
[=, this]{ }; // OK, equivalent to [=]
[i, i]{ }; // error: i repeated

§ 7.5.5.3 107

© ISO/IEC N4910

[this, *this]{ }; // error: this appears twice
}

—end example]
3 A lambda-expression shall not have a capture-default or simple-capture in its lambda-introducer unless its innermostenclosing scope is a block scope (6.4.3) or it appears within a default member initializer and its innermost enclosingscope is the corresponding class scope (6.4.6).
4 The identifier in a simple-capture shall denote a local entity (6.5.3, 6.1). The simple-captures this and * this denotethe local entity *this. An entity that is designated by a simple-capture is said to be explicitly captured.
5 If an identifier in a simple-capture appears as the declarator-id of a parameter of the lambda-declarator ’s parameter-

declaration-clause, the program is ill-formed.
[Example 2:
void f() {

int x = 0;
auto g = [x](int x) { return 0; }; // error: parameter and simple-capture have the same name

}

—end example]
6 An init-capture inhabits the function parameter scope of the lambda-expression’s parameter-declaration-clause. An

init-capture without ellipsis behaves as if it declares and explicitly captures a variable of the form “auto init-capture
;”, except that:
—(6.1) if the capture is by copy (see below), the non-static data member declared for the capture and the variable aretreated as two different ways of referring to the same object, which has the lifetime of the non-static data member,and no additional copy and destruction is performed, and
—(6.2) if the capture is by reference, the variable’s lifetime ends when the closure object’s lifetime ends.

[Note 2: This enables an init-capture like “x = std::move(x)”; the second “x” must bind to a declaration in the surrounding context.—end note]
[Example 3:
int x = 4;
auto y = [&r = x, x = x+1]()->int {

r += 2;
return x+2;

}(); // Updates ::x to 6, and initializes y to 7.
auto z = [a = 42](int a) { return 1; }; // error: parameter and local variable have the same name
auto counter = [i=0]() mutable -> decltype(i) { // OK, returns int
return i++;

};

—end example]
7 For the purposes of lambda capture, an expression potentially references local entities as follows:

—(7.1) An id-expression that names a local entity potentially references that entity; an id-expression that names one ormore non-static class members and does not form a pointer to member (7.6.2.2) potentially references *this.
[Note 3: This occurs even if overload resolution selects a static member function for the id-expression. —end note]

—(7.2) A this expression potentially references *this.
—(7.3) A lambda-expression potentially references the local entities named by its simple-captures.

If an expression potentially references a local entity within a scope in which it is odr-usable, and the expression wouldbe potentially evaluated if the effect of any enclosing typeid expressions (7.6.1.8) were ignored, the entity is said to beimplicitly captured by each intervening lambda-expression with an associated capture-default that does not explicitlycapture it. The implicit capture of *this is deprecated when the capture-default is =; see D.3.
[Example 4:
void f(int, const int (&)[2] = {}); // #1
void f(const int&, const int (&)[1]); // #2
void test() {

const int x = 17;

§ 7.5.5.3 108

© ISO/IEC N4910

auto g = [](auto a) {
f(x); // OK, calls #1, does not capture x

};

auto g1 = [=](auto a) {
f(x); // OK, calls #1, captures x

};

auto g2 = [=](auto a) {
int selector[sizeof(a) == 1 ? 1 : 2]{};
f(x, selector); // OK, captures x, can call #1 or #2

};

auto g3 = [=](auto a) {
typeid(a + x); // captures x regardless of whether a + x is an unevaluated operand

};
}

Within g1, an implementation can optimize away the capture of x as it is not odr-used. —end example]
[Note 4: The set of captured entities is determined syntactically, and entities are implicitly captured even if the expression denoting alocal entity is within a discarded statement (8.5.2).
[Example 5:
template<bool B>
void f(int n) {

[=](auto a) {
if constexpr (B && sizeof(a) > 4) {

(void)n; // captures n regardless of the value of B and sizeof(int)
}

}(0);
}

—end example]
—end note]

8 An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression is odr-used (6.3)by the lambda-expression.
[Note 5: As a consequence, if a lambda-expression explicitly captures an entity that is not odr-usable, the program is ill-formed (6.3).—end note]
[Example 6:
void f1(int i) {

int const N = 20;
auto m1 = [=]{
int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK, N and M are not odr-used
x[0][0] = i; // OK, i is explicitly captured by m2 and implicitly captured by m1

};
};
struct s1 {
int f;
void work(int n) {

int m = n*n;
int j = 40;
auto m3 = [this,m] {

auto m4 = [&,j] { // error: j not odr-usable due to intervening lambda m3
int x = n; // error: n is odr-used but not odr-usable due to intervening lambda m3
x += m; // OK, m implicitly captured by m4 and explicitly captured by m3
x += i; // error: i is odr-used but not odr-usable// due to intervening function and class scopes
x += f; // OK, this captured implicitly by m4 and explicitly by m3

};
};

§ 7.5.5.3 109

© ISO/IEC N4910

}
};

}

struct s2 {
double ohseven = .007;
auto f() {
return [this] {

return [*this] {
return ohseven; // OK

};
}();

}
auto g() {
return [] {

return [*this] { }; // error: *this not captured by outer lambda-expression
}();

}
};

—end example]
9 [Note 6: Because local entities are not odr-usable within a default argument (6.3), a lambda-expression appearing in a defaultargument cannot implicitly or explicitly capture any local entity. Such a lambda-expression can still have an init-capture if anyfull-expression in its initializer satisfies the constraints of an expression appearing in a default argument (9.3.4.7). —end note]
[Example 7:
void f2() {

int i = 1;
void g1(int = ([i]{ return i; })()); // error
void g2(int = ([i]{ return 0; })()); // error
void g3(int = ([=]{ return i; })()); // error
void g4(int = ([=]{ return 0; })()); // OK
void g5(int = ([]{ return sizeof i; })()); // OK
void g6(int = ([x=1]{ return x; })()); // OK
void g7(int = ([x=i]{ return x; })()); // error

}

—end example]
10 An entity is captured by copy if

—(10.1) it is implicitly captured, the capture-default is =, and the captured entity is not *this, or
—(10.2) it is explicitly captured with a capture that is not of the form this, & identifier , or & identifier initializer .

For each entity captured by copy, an unnamed non-static data member is declared in the closure type. The declarationorder of these members is unspecified. The type of such a data member is the referenced type if the entity is a referenceto an object, an lvalue reference to the referenced function type if the entity is a reference to a function, or the type ofthe corresponding captured entity otherwise. A member of an anonymous union shall not be captured by copy.
11 Every id-expression within the compound-statement of a lambda-expression that is an odr-use (6.3) of an entitycaptured by copy is transformed into an access to the corresponding unnamed data member of the closure type.

[Note 7: An id-expression that is not an odr-use refers to the original entity, never to a member of the closure type. However, such an
id-expression can still cause the implicit capture of the entity. —end note]
If *this is captured by copy, each expression that odr-uses *this is transformed to instead refer to the correspondingunnamed data member of the closure type.
[Example 8:
void f(const int*);
void g() {

const int N = 10;
[=] {
int arr[N]; // OK, not an odr-use, refers to automatic variable
f(&N); // OK, causes N to be captured; &N points to

§ 7.5.5.3 110

© ISO/IEC N4910

// the corresponding member of the closure type
};

}

—end example]
12 An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is unspecifiedwhether additional unnamed non-static data members are declared in the closure type for entities captured by reference.If declared, such non-static data members shall be of literal type.
[Example 9:
// The inner closure type must be a literal type regardless of how reference captures are represented.
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);

—end example]
A bit-field or a member of an anonymous union shall not be captured by reference.

13 An id-expression within the compound-statement of a lambda-expression that is an odr-use of a reference captured byreference refers to the entity to which the captured reference is bound and not to the captured reference.
[Note 8: The validity of such captures is determined by the lifetime of the object to which the reference refers, not by the lifetime ofthe reference itself. —end note]
[Example 10:
auto h(int &r) {

return [&] {
++r; // Valid after h returns if the lifetime of the// object to which r is bound has not ended

};
}

—end example]
14 If a lambda-expression m2 captures an entity and that entity is captured by an immediately enclosing lambda-expression

m1, then m2’s capture is transformed as follows:
—(14.1) If m1 captures the entity by copy, m2 captures the corresponding non-static data member of m1’s closure type; if m1is not mutable, the non-static data member is considered to be const-qualified.
—(14.2) If m1 captures the entity by reference, m2 captures the same entity captured by m1.

[Example 11: The nested lambda-expressions and invocations below will output 123234.
int a = 1, b = 1, c = 1;
auto m1 = [a, &b, &c]() mutable {

auto m2 = [a, b, &c]() mutable {
std::cout << a << b << c;
a = 4; b = 4; c = 4;

};
a = 3; b = 3; c = 3;
m2();

};
a = 2; b = 2; c = 2;
m1();
std::cout << a << b << c;

—end example]
15 When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize eachcorresponding non-static data member of the resulting closure object, and the non-static data members corresponding tothe init-captures are initialized as indicated by the corresponding initializer (which may be copy- or direct-initialization).(For array members, the array elements are direct-initialized in increasing subscript order.) These initializations areperformed in the (unspecified) order in which the non-static data members are declared.
[Note 9: This ensures that the destructions will occur in the reverse order of the constructions. —end note]

16 [Note 10: If a non-reference entity is implicitly or explicitly captured by reference, invoking the function call operator of thecorresponding lambda-expression after the lifetime of the entity has ended is likely to result in undefined behavior. —end note]
17 A simple-capture containing an ellipsis is a pack expansion (13.7.4). An init-capture containing an ellipsis is a packexpansion that declares an init-capture pack (13.7.4).

§ 7.5.5.3 111

© ISO/IEC N4910

[Example 12:
template<class... Args>
void f(Args... args) {

auto lm = [&, args...] { return g(args...); };
lm();

auto lm2 = [...xs=std::move(args)] { return g(xs...); };
lm2();

}

—end example]
7.5.6 Fold expressions [expr.prim.fold]

1 A fold expression performs a fold of a pack (13.7.4) over a binary operator.
fold-expression :

(cast-expression fold-operator ...)
(... fold-operator cast-expression)
(cast-expression fold-operator ... fold-operator cast-expression)

fold-operator : one of
+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>= =
== != < > <= >= && || , .* ->*

2 An expression of the form (... op e) where op is a fold-operator is called a unary left fold. An expression of theform (e op ...) where op is a fold-operator is called a unary right fold. Unary left folds and unary right folds arecollectively called unary folds. In a unary fold, the cast-expression shall contain an unexpanded pack (13.7.4).
3 An expression of the form (e1 op1 ... op2 e2) where op1 and op2 are fold-operators is called a binary fold. In abinary fold, op1 and op2 shall be the same fold-operator , and either e1 shall contain an unexpanded pack or e2 shallcontain an unexpanded pack, but not both. If e2 contains an unexpanded pack, the expression is called a binary left fold.If e1 contains an unexpanded pack, the expression is called a binary right fold.
[Example 1:
template<typename ...Args>
bool f(Args ...args) {

return (true && ... && args); // OK
}

template<typename ...Args>
bool f(Args ...args) {

return (args + ... + args); // error: both operands contain unexpanded packs
}

—end example]
7.5.7 Requires expressions [expr.prim.req]
7.5.7.1 General [expr.prim.req.general]

1 A requires-expression provides a concise way to express requirements on template arguments that can be checked byname lookup (6.5) or by checking properties of types and expressions.
requires-expression :

requires requirement-parameter-listopt requirement-body

requirement-parameter-list :
(parameter-declaration-clause)

requirement-body :
{ requirement-seq }

requirement-seq :
requirement
requirement requirement-seq

§ 7.5.7.1 112

© ISO/IEC N4910

requirement :
simple-requirement
type-requirement
compound-requirement
nested-requirement

2 A requires-expression is a prvalue of type bool whose value is described below. Expressions appearing within a
requirement-body are unevaluated operands (7.2.3).

3 [Example 1: A common use of requires-expressions is to define requirements in concepts such as the one below:
template<typename T>

concept R = requires (T i) {
typename T::type;
{*i} -> std::convertible_to<const typename T::type&>;

};

A requires-expression can also be used in a requires-clause (13.1) as a way of writing ad hoc constraints on template argumentssuch as the one below:
template<typename T>

requires requires (T x) { x + x; }
T add(T a, T b) { return a + b; }

The first requires introduces the requires-clause, and the second introduces the requires-expression. —end example]
4 A requires-expressionmay introduce local parameters using a parameter-declaration-clause (9.3.4.6). A local parameterof a requires-expression shall not have a default argument. These parameters have no linkage, storage, or lifetime;they are only used as notation for the purpose of defining requirements. The parameter-declaration-clause of a

requirement-parameter-list shall not terminate with an ellipsis.
[Example 2:
template<typename T>
concept C = requires(T t, ...) { // error: terminates with an ellipsis

t;
};

—end example]
5 The substitution of template arguments into a requires-expression may result in the formation of invalid types orexpressions in its requirements or the violation of the semantic constraints of those requirements. In such cases, the

requires-expression evaluates to false; it does not cause the program to be ill-formed. The substitution and semanticconstraint checking proceeds in lexical order and stops when a condition that determines the result of the requires-
expression is encountered. If substitution (if any) and semantic constraint checking succeed, the requires-expressionevaluates to true.
[Note 1: If a requires-expression contains invalid types or expressions in its requirements, and it does not appear within thedeclaration of a templated entity, then the program is ill-formed. —end note]
If the substitution of template arguments into a requirement would always result in a substitution failure, the programis ill-formed; no diagnostic required.
[Example 3:
template<typename T> concept C =
requires {

new int[-(int)sizeof(T)]; // ill-formed, no diagnostic required
};

—end example]
7.5.7.2 Simple requirements [expr.prim.req.simple]

simple-requirement :
expression ;

1 A simple-requirement asserts the validity of an expression.
[Note 1: The enclosing requires-expression will evaluate to false if substitution of template arguments into the expression fails.The expression is an unevaluated operand (7.2.3). —end note]
[Example 1:

§ 7.5.7.2 113

© ISO/IEC N4910

template<typename T> concept C =
requires (T a, T b) {
a + b; // C<T> is true if a + b is a valid expression

};

—end example]
2 A requirement that starts with a requires token is never interpreted as a simple-requirement.
[Note 2: This simplifies distinguishing between a simple-requirement and a nested-requirement. —end note]
7.5.7.3 Type requirements [expr.prim.req.type]

type-requirement :
typename nested-name-specifieropt type-name ;

1 A type-requirement asserts the validity of a type.
[Note 1: The enclosing requires-expression will evaluate to false if substitution of template arguments fails. —end note]
[Example 1:
template<typename T, typename T::type = 0> struct S;
template<typename T> using Ref = T&;

template<typename T> concept C = requires {
typename T::inner; // required nested member name
typename S<T>; // required valid (13.3) template-id;// fails if T::type does not exist as a type to which 0 can be implicitly converted
typename Ref<T>; // required alias template substitution, fails if T is void

};

—end example]
2 A type-requirement that names a class template specialization does not require that type to be complete (6.8.1).
7.5.7.4 Compound requirements [expr.prim.req.compound]

compound-requirement :
{ expression } noexceptopt return-type-requirementopt ;

return-type-requirement :
-> type-constraint

1 A compound-requirement asserts properties of the expression E. Substitution of template arguments (if any) andverification of semantic properties proceed in the following order:
—(1.1) Substitution of template arguments (if any) into the expression is performed.
—(1.2) If the noexcept specifier is present, E shall not be a potentially-throwing expression (14.5).
—(1.3) If the return-type-requirement is present, then:

—(1.3.1) Substitution of template arguments (if any) into the return-type-requirement is performed.
—(1.3.2) The immediately-declared constraint (13.2) of the type-constraint for decltype((E)) shall be satisfied.

[Example 1: Given concepts C and D,
requires {

{ E1 } -> C;
{ E2 } -> D<A1, · · · , An>;

};

is equivalent to
requires {

E1; requires C<decltype((E1))>;
E2; requires D<decltype((E2)), A1, · · · , An>;

};

(including in the case where n is zero). —end example]
2 [Example 2:

template<typename T> concept C1 = requires(T x) {
{x++};

};

§ 7.5.7.4 114

© ISO/IEC N4910

The compound-requirement in C1 requires that x++ is a valid expression. It is equivalent to the simple-requirement x++;.
template<typename T> concept C2 = requires(T x) {

{*x} -> std::same_as<typename T::inner>;
};

The compound-requirement in C2 requires that *x is a valid expression, that typename T::inner is a valid type, and that std::same_-
as<decltype((*x)), typename T::inner> is satisfied.
template<typename T> concept C3 =

requires(T x) {
{g(x)} noexcept;

};

The compound-requirement in C3 requires that g(x) is a valid expression and that g(x) is non-throwing. —end example]
7.5.7.5 Nested requirements [expr.prim.req.nested]

nested-requirement :
requires constraint-expression ;

1 A nested-requirement can be used to specify additional constraints in terms of local parameters. The constraint-
expression shall be satisfied (13.5.3) by the substituted template arguments, if any. Substitution of template argumentsinto a nested-requirement does not result in substitution into the constraint-expression other than as specified in 13.5.2.
[Example 1:
template<typename U> concept C = sizeof(U) == 1;

template<typename T> concept D = requires (T t) {
requires C<decltype (+t)>;

};

D<T> is satisfied if sizeof(decltype (+t)) == 1 (13.5.2.3). —end example]
2 A local parameter shall only appear as an unevaluated operand (7.2.3) within the constraint-expression.
[Example 2:
template<typename T> concept C = requires (T a) {

requires sizeof(a) == 4; // OK
requires a == 0; // error: evaluation of a constraint variable

};

—end example]
7.6 Compound expressions [expr.compound]
7.6.1 Postfix expressions [expr.post]
7.6.1.1 General [expr.post.general]

1 Postfix expressions group left-to-right.
postfix-expression :

primary-expression
postfix-expression [expression-listopt]
postfix-expression (expression-listopt)
simple-type-specifier (expression-listopt)
typename-specifier (expression-listopt)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

§ 7.6.1.1 115

© ISO/IEC N4910

expression-list :
initializer-list

2 [Note 1: The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_cast can be the productof replacing a >> token by two consecutive > tokens (13.3). —end note]
7.6.1.2 Subscripting [expr.sub]

1 A subscript expression is a postfix expression followed by square brackets containing a possibly empty, comma-separatedlist of initializer-clauses which constitute the arguments to the subscript operator. The postfix-expression is sequencedbefore each expression in the expression-list.
2 With the built-in subscript operator, an expression-list shall be present, consisting of a single assignment-expression.One of the expressions shall be a glvalue of type “array of T” or a prvalue of type “pointer to T” and the other shall be aprvalue of unscoped enumeration or integral type. The result is of type “T”. The type “T” shall be a completely-definedobject type.52 The expression E1[E2] is identical (by definition) to *((E1)+(E2)), except that in the case of an arrayoperand, the result is an lvalue if that operand is an lvalue and an xvalue otherwise.
3 [Note 1: Despite its asymmetric appearance, subscripting is a commutative operation except for sequencing. See 7.6.2 and 7.6.6 fordetails of * and + and 9.3.4.5 for details of array types. —end note]
7.6.1.3 Function call [expr.call]

1 A function call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
initializer-clauses which constitute the arguments to the function.
[Note 1: If the postfix expression is a function or member function name, the appropriate function and the validity of the call aredetermined according to the rules in 12.2. —end note]
The postfix expression shall have function type or function pointer type. For a call to a non-member function or toa static member function, the postfix expression shall either be an lvalue that refers to a function (in which case thefunction-to-pointer standard conversion (7.3.4) is suppressed on the postfix expression), or have function pointer type.

2 For a call to a non-static member function, the postfix expression shall be an implicit (11.4.3, 11.4.9) or explicit classmember access (7.6.1.5) whose id-expression is a function member name, or a pointer-to-member expression (7.6.4)selecting a function member; the call is as a member of the class object referred to by the object expression. In the caseof an implicit class member access, the implied object is the one pointed to by this.
[Note 2: A member function call of the form f() is interpreted as (*this).f() (see 11.4.3). —end note]

3 If the selected function is non-virtual, or if the id-expression in the class member access expression is a qualified-id ,that function is called. Otherwise, its final overrider (11.7.3) in the dynamic type of the object expression is called; sucha call is referred to as a virtual function call.
[Note 3: The dynamic type is the type of the object referred to by the current value of the object expression. 11.9.5 describes thebehavior of virtual function calls when the object expression refers to an object under construction or destruction. —end note]

4 [Note 4: If a function or member function name is used, and name lookup (6.5) does not find a declaration of that name, the programis ill-formed. No function is implicitly declared by such a call. —end note]
5 If the postfix-expression names a destructor or pseudo-destructor (7.5.4.4), the type of the function call expression is

void; otherwise, the type of the function call expression is the return type of the statically chosen function (i.e., ignoringthe virtual keyword), even if the type of the function actually called is different. If the postfix-expression names apseudo-destructor (in which case the postfix-expression is a possibly-parenthesized class member access), the functioncall destroys the object of scalar type denoted by the object expression of the class member access (7.6.1.5, 6.7.3).
6 Calling a function through an expression whose function type E is different from the function type F of the calledfunction’s definition results in undefined behavior unless the type “pointer to F” can be converted to the type “pointer to

E” via a function pointer conversion (7.3.14).
[Note 5: The exception applies when the expression has the type of a potentially-throwing function, but the called function has anon-throwing exception specification, and the function types are otherwise the same. —end note]

7 When a function is called, each parameter (9.3.4.6) is initialized (9.4, 11.4.5.3) with its corresponding argument. Ifthe function is an explicit object member function and there is an implied object argument (12.2.2.2.2), the list ofprovided arguments is preceded by the implied object argument for the purposes of this correspondence. If there is nocorresponding argument, the default argument for the parameter is used.
[Example 1:

52) This is true even if the subscript operator is used in the following common idiom: &x[0].
§ 7.6.1.3 116

© ISO/IEC N4910

template<typename ...T> int f(int n = 0, T ...t);
int x = f<int>(); // error: no argument for second function parameter
— end example]
If the function is an implicit object member function, the this parameter of the function (7.5.2) is initialized with apointer to the object of the call, converted as if by an explicit type conversion (7.6.3).
[Note 6: There is no access or ambiguity checking on this conversion; the access checking and disambiguation are done as part of the(possibly implicit) class member access operator. See 6.5.2, 11.8.3, and 7.6.1.5. —end note]
When a function is called, the type of any parameter shall not be a class type that is either incomplete or abstract.
[Note 7: This still allows a parameter to be a pointer or reference to such a type. However, it prevents a passed-by-value parameter tohave an incomplete or abstract class type. —end note]
It is implementation-defined whether the lifetime of a parameter ends when the function in which it is defined returnsor at the end of the enclosing full-expression. The initialization and destruction of each parameter occurs within thecontext of the calling function.
[Example 2: The access of the constructor, conversion functions or destructor is checked at the point of call in the calling function. Ifa constructor or destructor for a function parameter throws an exception, the search for a handler starts in the calling function; inparticular, if the function called has a function-try-block (14.1) with a handler that can handle the exception, this handler is notconsidered. —end example]

8 The postfix-expression is sequenced before each expression in the expression-list and any default argument. Theinitialization of a parameter, including every associated value computation and side effect, is indeterminately sequencedwith respect to that of any other parameter.
[Note 8: All side effects of argument evaluations are sequenced before the function is entered (see 6.9.1). —end note]
[Example 3:
void f() {

std::string s = "but I have heard it works even if you don't believe in it";
s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don't"), 6, "");
assert(s == "I have heard it works only if you believe in it"); // OK

}

—end example]
[Note 9: If an operator function is invoked using operator notation, argument evaluation is sequenced as specified for the built-inoperator; see 12.2.2.3. —end note]
[Example 4:
struct S {

S(int);
};
int operator<<(S, int);
int i, j;
int x = S(i=1) << (i=2);
int y = operator<<(S(j=1), j=2);

After performing the initializations, the value of i is 2 (see 7.6.7), but it is unspecified whether the value of j is 1 or 2. —endexample]
9 The result of a function call is the result of the possibly-converted operand of the return statement (8.7.4) that transferredcontrol out of the called function (if any), except in a virtual function call if the return type of the final overrider isdifferent from the return type of the statically chosen function, the value returned from the final overrider is convertedto the return type of the statically chosen function.
10 [Note 10: A function can change the values of its non-const parameters, but these changes cannot affect the values of the argumentsexcept where a parameter is of a reference type (9.3.4.3); if the reference is to a const-qualified type, const_cast is required to beused to cast away the constness in order to modify the argument’s value. Where a parameter is of const reference type a temporaryobject is introduced if needed (9.2.9, 5.13, 5.13.5, 9.3.4.5, 6.7.7). In addition, it is possible to modify the values of non-constantobjects through pointer parameters. —end note]
11 A function can be declared to accept fewer arguments (by declaring default arguments (9.3.4.7)) or more arguments(by using the ellipsis, ..., or a function parameter pack (9.3.4.6)) than the number of parameters in the functiondefinition (9.5).
[Note 11: This implies that, except where the ellipsis (...) or a function parameter pack is used, a parameter is available for eachargument. —end note]
§ 7.6.1.3 117

© ISO/IEC N4910

12 When there is no parameter for a given argument, the argument is passed in such a way that the receiving function canobtain the value of the argument by invoking va_arg (17.13).
[Note 12: This paragraph does not apply to arguments passed to a function parameter pack. Function parameter packs are expandedduring template instantiation (13.7.4), thus each such argument has a corresponding parameter when a function template specializationis actually called. —end note]
The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are performedon the argument expression. An argument that has type cv std::nullptr_t is converted to type void* (7.3.12).After these conversions, if the argument does not have arithmetic, enumeration, pointer, pointer-to-member, or classtype, the program is ill-formed. Passing a potentially-evaluated argument of a scoped enumeration type or of a classtype (Clause 11) having an eligible non-trivial copy constructor, an eligible non-trivial move constructor, or a non-trivialdestructor (11.4.4), with no corresponding parameter, is conditionally-supported with implementation-defined semantics.If the argument has integral or enumeration type that is subject to the integral promotions (7.3.7), or a floating-pointtype that is subject to the floating-point promotion (7.3.8), the value of the argument is converted to the promoted typebefore the call. These promotions are referred to as the default argument promotions.

13 Recursive calls are permitted, except to the main function (6.9.3.1).
14 A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference to function type, an xvalueif the result type is an rvalue reference to object type, and a prvalue otherwise.
7.6.1.4 Explicit type conversion (functional notation) [expr.type.conv]

1 A simple-type-specifier (9.2.9.3) or typename-specifier (13.8) followed by a parenthesized optional expression-listor by a braced-init-list (the initializer) constructs a value of the specified type given the initializer. If the type is aplaceholder for a deduced class type, it is replaced by the return type of the function selected by overload resolution forclass template deduction (12.2.2.9) for the remainder of this subclause. Otherwise, if the type contains a placeholdertype, it is replaced by the type determined by placeholder type deduction (9.2.9.6.2).
[Example 1:
struct A {};
void f(A&); // #1
void f(A&&); // #2
A& g();
void h() {

f(g()); // calls #1
f(A(g())); // calls #2 with a temporary object
f(auto(g())); // calls #2 with a temporary object

}

—end example]
2 If the initializer is a parenthesized single expression, the type conversion expression is equivalent to the correspondingcast expression (7.6.3). Otherwise, if the type is cv void and the initializer is () or {} (after pack expansion, if any),the expression is a prvalue of type void that performs no initialization. Otherwise, the expression is a prvalue of thespecified type whose result object is direct-initialized (9.4) with the initializer. If the initializer is a parenthesizedoptional expression-list, the specified type shall not be an array type.
7.6.1.5 Class member access [expr.ref]

1 A postfix expression followed by a dot . or an arrow ->, optionally followed by the keyword template, and thenfollowed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow is evaluated;53 theresult of that evaluation, together with the id-expression, determines the result of the entire postfix expression.
[Note 1: If the keyword template is used, the following unqualified name is considered to refer to a template (13.3). If a simple-
template-id results and is followed by a ::, the id-expression is a qualified-id . —end note]

2 For the first option (dot) the first expression shall be a glvalue. For the second option (arrow) the first expression shallbe a prvalue having pointer type. The expression E1->E2 is converted to the equivalent form (*(E1)).E2; the remainderof 7.6.1.5 will address only the first option (dot).54
3 Abbreviating postfix-expression.id-expression as E1.E2, E1 is called the object expression. If the object expression isof scalar type, E2 shall name the pseudo-destructor of that same type (ignoring cv-qualifications) and E1.E2 is an lvalueof type “function of () returning void”.

53) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary to determine thevalue of the entire postfix expression, for example if the id-expression denotes a static member.
54) Note that (*(E1)) is an lvalue.
§ 7.6.1.5 118

© ISO/IEC N4910

[Note 2: This value can only be used for a notional function call (7.5.4.4). —end note]
4 Otherwise, the object expression shall be of class type. The class type shall be complete unless the class member accessappears in the definition of that class.
[Note 3: The program is ill-formed if the result differs from that when the class is complete (6.5.2). —end note]
[Note 4: 6.5.5 describes how names are looked up after the . and -> operators. —end note]

5 If E2 is a bit-field, E1.E2 is a bit-field. The type and value category of E1.E2 are determined as follows. In the remainderof 7.6.1.5, cq represents either const or the absence of const and vq represents either volatile or the absence of
volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 6.8.4.

6 If E2 is declared to have type “reference to T”, then E1.E2 is an lvalue; the type of E1.E2 is T. Otherwise, one of thefollowing rules applies.
—(6.1) If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates the namedmember of the class. The type of E1.E2 is T.
—(6.2) If E2 is a non-static data member and the type of E1 is “cq1 vq1 X”, and the type of E2 is “cq2 vq2 T”, the expressiondesignates the corresponding member subobject of the object designated by the first expression. If E1 is an lvalue,then E1.E2 is an lvalue; otherwise E1.E2 is an xvalue. Let the notation vq12 stand for the “union” of vq1 and vq2;that is, if vq1 or vq2 is volatile, then vq12 is volatile. Similarly, let the notation cq12 stand for the “union” ofcq1 and cq2; that is, if cq1 or cq2 is const, then cq12 is const. If E2 is declared to be a mutablemember, then thetype of E1.E2 is “vq12 T”. If E2 is not declared to be a mutable member, then the type of E1.E2 is “cq12 vq12 T”.
—(6.3) If E2 is an overload set, function overload resolution (12.2) is used to select the function to which E2 refers. Thetype of E1.E2 is the type of E2 and E1.E2 refers to the function referred to by E2.

—(6.3.1) If E2 refers to a static member function, E1.E2 is an lvalue.
—(6.3.2) Otherwise (when E2 refers to a non-static member function), E1.E2 is a prvalue. The expression can beused only as the left-hand operand of a member function call (11.4.2).

[Note 5: Any redundant set of parentheses surrounding the expression is ignored (7.5.3). —end note]
—(6.4) If E2 is a nested type, the expression E1.E2 is ill-formed.
—(6.5) If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue. The type of E1.E2 is T.

7 If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of which E2 isdirectly a member is an ambiguous base (6.5.2) of the naming class (11.8.3) of E2.
[Note 6: The program is also ill-formed if the naming class is an ambiguous base of the class type of the object expression; see 11.8.3.—end note]
7.6.1.6 Increment and decrement [expr.post.incr]

1 The value of a postfix ++ expression is the value of its operand.
[Note 1: The value obtained is a copy of the original value. —end note]
The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type other than cv bool, ora pointer to a complete object type. An operand with volatile-qualified type is deprecated; see D.5. The value of theoperand object is modified (3.1) by adding 1 to it. The value computation of the ++ expression is sequenced before themodification of the operand object. With respect to an indeterminately-sequenced function call, the operation of postfix
++ is a single evaluation.
[Note 2: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect associated with anysingle postfix ++ operator. —end note]
The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand. If the operand is abit-field that cannot represent the incremented value, the resulting value of the bit-field is implementation-defined. Seealso 7.6.6 and 7.6.19.

2 The operand of postfix -- is decremented analogously to the postfix ++ operator.
[Note 3: For prefix increment and decrement, see 7.6.2.3. —end note]
7.6.1.7 Dynamic cast [expr.dynamic.cast]

1 The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T shall be apointer or reference to a complete class type, or “pointer to cv void”. The dynamic_cast operator shall not cast awayconstness (7.6.1.11).
§ 7.6.1.7 119

© ISO/IEC N4910

2 If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue of type T. If T isan lvalue reference type, v shall be an lvalue of a complete class type, and the result is an lvalue of the type referred toby T. If T is an rvalue reference type, v shall be a glvalue having a complete class type, and the result is an xvalue of thetype referred to by T.
3 If the type of v is the same as T (ignoring cv-qualifications), the result is v (converted if necessary).
4 If T is “pointer to cv1 B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a pointer to theunique B subobject of the D object pointed to by v, or a null pointer value if v is a null pointer value. Similarly, if T is“reference to cv1 B” and v has type cv2 D such that B is a base class of D, the result is the unique B subobject of the Dobject referred to by v.55 In both the pointer and reference cases, the program is ill-formed if B is an inaccessible orambiguous base class of D.
[Example 1:
struct B { };
struct D : B { };
void foo(D* dp) {

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

—end example]
5 Otherwise, v shall be a pointer to or a glvalue of a polymorphic type (11.7.3).
6 If v is a null pointer value, the result is a null pointer value.
7 If T is “pointer to cv void”, then the result is a pointer to the most derived object pointed to by v. Otherwise, a runtimecheck is applied to see if the object pointed or referred to by v can be converted to the type pointed or referred to by T.
8 Let C be the class type to which T points or refers. The runtime check logically executes as follows:

—(8.1) If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class subobject of a Cobject, and if only one object of type C is derived from the subobject pointed (referred) to by v the result points(refers) to that C object.
—(8.2) Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the type of themost derived object has a base class, of type C, that is unambiguous and public, the result points (refers) to the Csubobject of the most derived object.
—(8.3) Otherwise, the runtime check fails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to referencetype throws an exception (14.2) of a type that would match a handler (14.4) of type std::bad_cast (17.7.4).
[Example 2:
class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B { };
void g() {

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // ill-formed (not a runtime check)

}

class E : public D, public B { };
class F : public E, public D { };
void h() {

F f;
A* ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields null; f has two D subobjects
E* ep = (E*)ap; // error: cast from virtual base

55) The most derived object (6.7.2) pointed or referred to by v can contain other B objects as base classes, but these are ignored.
§ 7.6.1.7 120

© ISO/IEC N4910

E* ep1 = dynamic_cast<E*>(ap); // succeeds
}

—end example]
[Note 1: Subclause 11.9.5 describes the behavior of a dynamic_cast applied to an object under construction or destruction. —endnote]
7.6.1.8 Type identification [expr.typeid]

1 The result of a typeid expression is an lvalue of static type const std::type_info (17.7.3) and dynamic type const
std::type_info or const namewhere name is an implementation-defined class publicly derived from std::type_infowhich preserves the behavior described in 17.7.3.56 The lifetime of the object referred to by the lvalue extends to theend of the program. Whether or not the destructor is called for the std::type_info object at the end of the program isunspecified.

2 If the type of the expression or type-id operand is a (possibly cv-qualified) class type or a reference to (possiblycv-qualified) class type, that class shall be completely defined.
3 When typeid is applied to a glvalue whose type is a polymorphic class type (11.7.3), the result refers to a std::type_-

info object representing the type of the most derived object (6.7.2) (that is, the dynamic type) to which the glvalue refers.If the glvalue is obtained by applying the unary * operator to a pointer57 and the pointer is a null pointer value (6.8.3),the typeid expression throws an exception (14.2) of a type that would match a handler of type std::bad_typeidexception (17.7.5).
4 When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result refers to a

std::type_info object representing the static type of the expression. Lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3),and function-to-pointer (7.3.4) conversions are not applied to the expression. If the expression is a prvalue, the temporarymaterialization conversion (7.3.5) is applied. The expression is an unevaluated operand (7.2.3).
5 When typeid is applied to a type-id , the result refers to a std::type_info object representing the type of the type-id .If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid expression refers to a

std::type_info object representing the cv-unqualified referenced type.
[Note 1: The type-id cannot denote a function type with a cv-qualifier-seq or a ref-qualifier (9.3.4.6). —end note]

6 If the type of the expression or type-id is a cv-qualified type, the result of the typeid expression refers to a std::type_-
info object representing the cv-unqualified type.
[Example 1:
class D { /* ... */ };
D d1;
const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true
—end example]

7 If the header <typeinfo> (17.7.2) is not imported or included prior to a use of typeid, the program is ill-formed.
8 [Note 2: Subclause 11.9.5 describes the behavior of typeid applied to an object under construction or destruction. —end note]
7.6.1.9 Static cast [expr.static.cast]

1 The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T is an lvaluereference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue reference to object type, theresult is an xvalue; otherwise, the result is a prvalue. The static_cast operator shall not cast away constness (7.6.1.11).
2 An lvalue of type “cv1 B”, where B is a class type, can be cast to type “reference to cv2 D”, where D is a class derived (11.7)from B, if cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. If B is a virtual base class of D or a baseclass of a virtual base class of D, or if no valid standard conversion from “pointer to D” to “pointer to B” exists (7.3.12),the program is ill-formed. An xvalue of type “cv1 B” can be cast to type “rvalue reference to cv2 D” with the sameconstraints as for an lvalue of type “cv1 B”. If the object of type “cv1 B” is actually a base class subobject of an object oftype D, the result refers to the enclosing object of type D. Otherwise, the behavior is undefined.

56) The recommended name for such a class is extended_type_info.
57) If p is an expression of pointer type, then *p, (*p), *(p), ((*p)), *((p)), and so on all meet this requirement.
§ 7.6.1.9 121

© ISO/IEC N4910

[Example 1:
struct B { };
struct D : public B { };
D d;
B &br = d;

static_cast<D&>(br); // produces lvalue denoting the original d object
— end example]

3 An lvalue of type T1 can be cast to type “rvalue reference to T2” if T2 is reference-compatible with T1 (9.4.4). Ifthe value is not a bit-field, the result refers to the object or the specified base class subobject thereof; otherwise, thelvalue-to-rvalue conversion (7.3.2) is applied to the bit-field and the resulting prvalue is used as the operand of the
static_cast for the remainder of this subclause. If T2 is an inaccessible (11.8) or ambiguous (6.5.2) base class of T1, aprogram that necessitates such a cast is ill-formed.

4 An expression E can be explicitly converted to a type T if there is an implicit conversion sequence (12.2.4.2) from
E to T, if overload resolution for a direct-initialization (9.4) of an object or reference of type T from E would find atleast one viable function (12.2.3), or if T is an aggregate type (9.4.2) having a first element x and there is an implicitconversion sequence from E to the type of x. If T is a reference type, the effect is the same as performing the declarationand initialization
T t(E);

for some invented temporary variable t (9.4) and then using the temporary variable as the result of the conversion.Otherwise, the result object is direct-initialized from E.
[Note 1: The conversion is ill-formed when attempting to convert an expression of class type to an inaccessible or ambiguous baseclass. —end note]
[Note 2: If T is “array of unknown bound of U”, this direct-initialization defines the type of the expression as U[1]. —end note]

5 Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be performedexplicitly using a static_cast.
6 Any expression can be explicitly converted to type cv void, in which case the operand is a discarded-value expression(7.2).
[Note 3: Such a static_cast has no result as it is a prvalue of type void; see 7.2.1. —end note]
[Note 4: However, if the value is in a temporary object (6.7.7), the destructor for that object is not executed until the usual time, andthe value of the object is preserved for the purpose of executing the destructor. —end note]

7 The inverse of any standard conversion sequence (7.3) not containing an lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3),function-to-pointer (7.3.4), null pointer (7.3.12), null member pointer (7.3.13), boolean (7.3.15), or function pointer(7.3.14) conversion, can be performed explicitly using static_cast. A program is ill-formed if it uses static_cast toperform the inverse of an ill-formed standard conversion sequence.
[Example 2:
struct B { };
struct D : private B { };
void f() {

static_cast<D*>((B*)0); // error: B is a private base of D
static_cast<int B::*>((int D::*)0); // error: B is a private base of D

}

—end example]
8 The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) conversions are applied to theoperand. Such a static_cast is subject to the restriction that the explicit conversion does not cast away constness(7.6.1.11), and the following additional rules for specific cases:
9 A value of a scoped enumeration type (9.7.1) can be explicitly converted to an integral type; the result is the same as thatof converting to the enumeration’s underlying type and then to the destination type. A value of a scoped enumerationtype can also be explicitly converted to a floating-point type; the result is the same as that of converting from the originalvalue to the floating-point type.
10 A value of integral or enumeration type can be explicitly converted to a complete enumeration type. If the enumerationtype has a fixed underlying type, the value is first converted to that type by integral promotion (7.3.7) or integralconversion (7.3.9), if necessary, and then to the enumeration type. If the enumeration type does not have a fixed
§ 7.6.1.9 122

© ISO/IEC N4910

underlying type, the value is unchanged if the original value is within the range of the enumeration values (9.7.1), andotherwise, the behavior is undefined. A value of floating-point type can also be explicitly converted to an enumerationtype. The resulting value is the same as converting the original value to the underlying type of the enumeration (7.3.11),and subsequently to the enumeration type.
11 A prvalue of type “pointer to cv1 B”, where B is a class type, can be converted to a prvalue of type “pointer to cv2 D”,where D is a complete class derived (11.7) from B, if cv2 is the same cv-qualification as, or greater cv-qualification than,cv1. If B is a virtual base class of D or a base class of a virtual base class of D, or if no valid standard conversion from“pointer to D” to “pointer to B” exists (7.3.12), the program is ill-formed. The null pointer value (6.8.3) is converted tothe null pointer value of the destination type. If the prvalue of type “pointer to cv1 B” points to a B that is actually abase class subobject of an object of type D, the resulting pointer points to the enclosing object of type D. Otherwise, thebehavior is undefined.
12 A prvalue of type “pointer to member of D of type cv1 T” can be converted to a prvalue of type “pointer to member of Bof type cv2 T”, where D is a complete class type and B is a base class (11.7) of D, if cv2 is the same cv-qualification as, orgreater cv-qualification than, cv1.
[Note 5: Function types (including those used in pointer-to-member-function types) are never cv-qualified (9.3.4.6). —end note]
If no valid standard conversion from “pointer to member of B of type T” to “pointer to member of D of type T”exists (7.3.13), the program is ill-formed. The null member pointer value (7.3.13) is converted to the null memberpointer value of the destination type. If class B contains the original member, or is a base or derived class of the classcontaining the original member, the resulting pointer to member points to the original member. Otherwise, the behavioris undefined.
[Note 6: Although class B need not contain the original member, the dynamic type of the object with which indirection through thepointer to member is performed must contain the original member; see 7.6.4. —end note]

13 A prvalue of type “pointer to cv1 void” can be converted to a prvalue of type “pointer to cv2 T”, where T is an objecttype and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. If the original pointer value representsthe address A of a byte in memory and A does not satisfy the alignment requirement of T, then the resulting pointer valueis unspecified. Otherwise, if the original pointer value points to an object a, and there is an object b of type T (ignoringcv-qualification) that is pointer-interconvertible (6.8.3) with a, the result is a pointer to b. Otherwise, the pointer valueis unchanged by the conversion.
[Example 3:
T* p1 = new T;
const T* p2 = static_cast<const T*>(static_cast<void*>(p1));
bool b = p1 == p2; // b will have the value true.
— end example]
7.6.1.10 Reinterpret cast [expr.reinterpret.cast]

1 The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type T. If T is anlvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue reference to objecttype, the result is an xvalue; otherwise, the result is a prvalue and the lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3),and function-to-pointer (7.3.4) standard conversions are performed on the expression v. Conversions that can beperformed explicitly using reinterpret_cast are listed below. No other conversion can be performed explicitly using
reinterpret_cast.

2 The reinterpret_cast operator shall not cast away constness (7.6.1.11). An expression of integral, enumeration,pointer, or pointer-to-member type can be explicitly converted to its own type; such a cast yields the value of its operand.
3 [Note 1: The mapping performed by reinterpret_cast might, or might not, produce a representation different from the originalvalue. —end note]
4 A pointer can be explicitly converted to any integral type large enough to hold all values of its type. The mappingfunction is implementation-defined.
[Note 2: It is intended to be unsurprising to those who know the addressing structure of the underlying machine. —end note]
A value of type std::nullptr_t can be converted to an integral type; the conversion has the same meaning and validityas a conversion of (void*)0 to the integral type.
[Note 3: A reinterpret_cast cannot be used to convert a value of any type to the type std::nullptr_t. —end note]

§ 7.6.1.10 123

© ISO/IEC N4910

5 A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted to an integerof sufficient size (if any such exists on the implementation) and back to the same pointer type will have its originalvalue; mappings between pointers and integers are otherwise implementation-defined.
6 A function pointer can be explicitly converted to a function pointer of a different type.
[Note 4: The effect of calling a function through a pointer to a function type (9.3.4.6) that is not the same as the type used in thedefinition of the function is undefined (7.6.1.3). —end note]
Except that converting a prvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are function types)and back to its original type yields the original pointer value, the result of such a pointer conversion is unspecified.
[Note 5: See also 7.3.12 for more details of pointer conversions. —end note]

7 An object pointer can be explicitly converted to an object pointer of a different type.58 When a prvalue v of objectpointer type is converted to the object pointer type “pointer to cv T”, the result is static_cast<cv T*>(static_-
cast<cv void*>(v)).
[Note 6: Converting a pointer of type “pointer to T1” that points to an object of type T1 to the type “pointer to T2” (where T2 is anobject type and the alignment requirements of T2 are no stricter than those of T1) and back to its original type yields the originalpointer value. —end note]

8 Converting a function pointer to an object pointer type or vice versa is conditionally-supported. The meaning of sucha conversion is implementation-defined, except that if an implementation supports conversions in both directions,converting a prvalue of one type to the other type and back, possibly with different cv-qualification, shall yield theoriginal pointer value.
9 The null pointer value (6.8.3) is converted to the null pointer value of the destination type.
[Note 7: A null pointer constant of type std::nullptr_t cannot be converted to a pointer type, and a null pointer constant of integraltype is not necessarily converted to a null pointer value. —end note]

10 A prvalue of type “pointer to member of X of type T1” can be explicitly converted to a prvalue of a different type“pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.59 The null member pointervalue (7.3.13) is converted to the null member pointer value of the destination type. The result of this conversion isunspecified, except in the following cases:
—(10.1) Converting a prvalue of type “pointer to member function” to a different pointer-to-member-function type andback to its original type yields the original pointer-to-member value.
—(10.2) Converting a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data member of Y oftype T2” (where the alignment requirements of T2 are no stricter than those of T1) and back to its original typeyields the original pointer-to-member value.

11 A glvalue of type T1, designating an object x, can be cast to the type “reference to T2” if an expression of type“pointer to T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast. The result is that of
*reinterpret_cast<T2 *>(p) where p is a pointer to x of type “pointer to T1”. No temporary is created, no copy ismade, and no constructors (11.4.5) or conversion functions (11.4.8) are called.60
7.6.1.11 Const cast [expr.const.cast]

1 The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference to object type, the result isan lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue and thelvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are performed onthe expression v. Conversions that can be performed explicitly using const_cast are listed below. No other conversionshall be performed explicitly using const_cast.
2 [Note 1: Subject to the restrictions in this subclause, an expression can be cast to its own type using a const_cast operator. —endnote]
3 For two similar types T1 and T2 (7.3.6), a prvalue of type T1 may be explicitly converted to the type T2 using a

const_cast if, considering the qualification-decompositions of both types, each P 1
i is the same as P 2

i for all i. Theresult of a const_cast refers to the original entity.
[Example 1:
typedef int *A[3]; // array of 3 pointer to int
typedef const int *const CA[3]; // array of 3 const pointer to const int

58) The types can have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away constness.
59) T1 and T2 can have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away constness.
60) This is sometimes referred to as a type pun when the result refers to the same object as the source glvalue.
§ 7.6.1.11 124

© ISO/IEC N4910

CA &&r = A{}; // OK, reference binds to temporary array object// after qualification conversion to type CA
A &&r1 = const_cast<A>(CA{}); // error: temporary array decayed to pointer
A &&r2 = const_cast<A&&>(CA{}); // OK
—end example]

4 For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2” using a
const_cast, then the following conversions can also be made:
—(4.1) an lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2&>;
—(4.2) a glvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast const_cast<T2&&>; and
—(4.3) if T1 is a class type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast

const_cast<T2&&>.
The result of a reference const_cast refers to the original object if the operand is a glvalue and to the result of applyingthe temporary materialization conversion (7.3.5) otherwise.

5 A null pointer value (6.8.3) is converted to the null pointer value of the destination type. The null member pointervalue (7.3.13) is converted to the null member pointer value of the destination type.
6 [Note 2: Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member resulting from a

const_cast that casts away a const-qualifier61 can produce undefined behavior (9.2.9.2). —end note]
7 A conversion from a type T1 to a type T2 casts away constness if T1 and T2 are different, there is a qualification-decomposition (7.3.6) of T1 yielding n such that T2 has a qualification-decomposition of the form

cv2
0 P

2
0 cv2

1 P
2
1 · · · cv2

n−1 P
2
n−1 cv

2
n U2,

and there is no qualification conversion that converts T1 to
cv2

0 P
1
0 cv2

1 P
1
1 · · · cv2

n−1 P
1
n−1 cv

2
n U1.

8 Casting from an lvalue of type T1 to an lvalue of type T2 using an lvalue reference cast or casting from an expressionof type T1 to an xvalue of type T2 using an rvalue reference cast casts away constness if a cast from a prvalue of type“pointer to T1” to the type “pointer to T2” casts away constness.
9 [Note 3: Some conversions which involve only changes in cv-qualification cannot be done using const_cast. For instance,conversions between pointers to functions are not covered because such conversions lead to values whose use causes undefinedbehavior. For the same reasons, conversions between pointers to member functions, and in particular, the conversion from a pointerto a const member function to a pointer to a non-const member function, are not covered. —end note]
7.6.2 Unary expressions [expr.unary]
7.6.2.1 General [expr.unary.general]

1 Expressions with unary operators group right-to-left.
unary-expression :

postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

unary-operator : one of
* & + - ! ~

7.6.2.2 Unary operators [expr.unary.op]
1 The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an object type, or apointer to a function type and the result is an lvalue referring to the object or function to which the expression points. Ifthe type of the expression is “pointer to T”, the type of the result is “T”.

61) const_cast is not limited to conversions that cast away a const-qualifier.
§ 7.6.2.2 125

© ISO/IEC N4910

[Note 1: Indirection through a pointer to an incomplete type (other than cv void) is valid. The lvalue thus obtained can be used inlimited ways (to initialize a reference, for example); this lvalue must not be converted to a prvalue, see 7.3.2. —end note]
2 The result of each of the following unary operators is a prvalue.
3 The operand of the unary & operator shall be an lvalue of some type T. The result is a prvalue.

—(3.1) If the operand is a qualified-id naming a non-static or variant member m of some class C, other than an explicitobject member function, the result has type “pointer to member of class C of type T” and designates C::m.
—(3.2) Otherwise, the result has type “pointer to T” and points to the designated object (6.7.1) or function (6.8.3). If theoperand names an explicit object member function (9.3.4.6), the operand shall be a qualified-id .

[Note 2: In particular, taking the address of a variable of type “cv T” yields a pointer of type “pointer to cv T”. —end note]
[Example 1:
struct A { int i; };
struct B : A { };
... &B::i ... // has type int A::*
int a;
int* p1 = &a;
int* p2 = p1 + 1; // defined behavior
bool b = p2 > p1; // defined behavior, with value true
—end example]
[Note 3: A pointer to member formed from a mutable non-static data member (9.2.2) does not reflect the mutable specifier associatedwith the non-static data member. —end note]

4 A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed inparentheses.
[Note 4: That is, the expression &(qualified-id), where the qualified-id is enclosed in parentheses, does not form an expression oftype “pointer to member”. Neither does qualified-id, because there is no implicit conversion from a qualified-id for a non-staticmember function to the type “pointer to member function” as there is from an lvalue of function type to the type “pointer tofunction” (7.3.4). Nor is &unqualified-id a pointer to member, even within the scope of the unqualified-id ’s class. —end note]

5 If & is applied to an lvalue of incomplete class type and the complete type declares operator&(), it is unspecifiedwhether the operator has the built-in meaning or the operator function is called. The operand of & shall not be a bit-field.
6 [Note 5: The address of an overload set (Clause 12) can be taken only in a context that uniquely determines which function is referredto (see 12.3). Since the context can affect whether the operand is a static or non-static member function, the context can also affectwhether the expression has type “pointer to function” or “pointer to member function”. —end note]
7 The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the result is thevalue of the argument. Integral promotion is performed on integral or enumeration operands. The type of the result isthe type of the promoted operand.
8 The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result is the negative ofits operand. Integral promotion is performed on integral or enumeration operands. The negative of an unsigned quantityis computed by subtracting its value from 2n, where n is the number of bits in the promoted operand. The type of theresult is the type of the promoted operand.
9 The operand of the logical negation operator ! is contextually converted to bool (7.3); its value is true if the convertedoperand is false and false otherwise. The type of the result is bool.
10 The operand of ~ shall have integral or unscoped enumeration type; the result is the ones’ complement of its operand.Integral promotions are performed. The type of the result is the type of the promoted operand. There is an ambiguity inthe grammar when ~ is followed by a type-name or decltype-specifier . The ambiguity is resolved by treating ~ as theunary complement operator rather than as the start of an unqualified-id naming a destructor.
[Note 6: Because the grammar does not permit an operator to follow the ., ->, or :: tokens, a ~ followed by a type-name or
decltype-specifier in a member access expression or qualified-id is unambiguously parsed as a destructor name. —end note]
7.6.2.3 Increment and decrement [expr.pre.incr]

1 The operand of prefix ++ is modified (3.1) by adding 1. The operand shall be a modifiable lvalue. The type of theoperand shall be an arithmetic type other than cv bool, or a pointer to a completely-defined object type. An operandwith volatile-qualified type is deprecated; see D.5. The result is the updated operand; it is an lvalue, and it is a bit-fieldif the operand is a bit-field. The expression ++x is equivalent to x+=1.
[Note 1: See the discussions of addition (7.6.6) and assignment operators (7.6.19) for information on conversions. —end note]

§ 7.6.2.3 126

© ISO/IEC N4910

2 The operand of prefix -- is modified (3.1) by subtracting 1. The requirements on the operand of prefix -- and theproperties of its result are otherwise the same as those of prefix ++.
[Note 2: For postfix increment and decrement, see 7.6.1.6. —end note]
7.6.2.4 Await [expr.await]

1 The co_await expression is used to suspend evaluation of a coroutine (9.5.4) while awaiting completion of thecomputation represented by the operand expression.
await-expression :

co_await cast-expression

2 An await-expression shall appear only in a potentially-evaluated expression within the compound-statement of a
function-body outside of a handler (14.1). In a declaration-statement or in the simple-declaration (if any) of an init-
statement, an await-expression shall appear only in an initializer of that declaration-statement or simple-declaration.An await-expression shall not appear in a default argument (9.3.4.7). An await-expression shall not appear in theinitializer of a block variable with static or thread storage duration. A context within a function where an await-expressioncan appear is called a suspension context of the function.

3 Evaluation of an await-expression involves the following auxiliary types, expressions, and objects:
—(3.1) p is an lvalue naming the promise object (9.5.4) of the enclosing coroutine and P is the type of that object.
—(3.2) Unless the await-expression was implicitly produced by a yield-expression (7.6.17), an initial suspend point, or afinal suspend point (9.5.4), a search is performed for the name await_transform in the scope of P (6.5.2). If thissearch is performed and finds at least one declaration, then a is p.await_transform(cast-expression); otherwise,a is the cast-expression.
—(3.3) o is determined by enumerating the applicable operator co_await functions for an argument a (12.2.2.3), andchoosing the best one through overload resolution (12.2). If overload resolution is ambiguous, the program isill-formed. If no viable functions are found, o is a. Otherwise, o is a call to the selected function with the argumenta. If o would be a prvalue, the temporary materialization conversion (7.3.5) is applied.
—(3.4) e is an lvalue referring to the result of evaluating the (possibly-converted) o.
—(3.5) h is an object of type std::coroutine_handle<P> referring to the enclosing coroutine.
—(3.6) await-ready is the expression e.await_ready(), contextually converted to bool.
—(3.7) await-suspend is the expression e.await_suspend(h), which shall be a prvalue of type void, bool, or std::coroutine_-

handle<Z> for some type Z.
—(3.8) await-resume is the expression e.await_resume().

4 The await-expression has the same type and value category as the await-resume expression.
5 The await-expression evaluates the (possibly-converted) o expression and the await-ready expression, then:

—(5.1) If the result of await-ready is false, the coroutine is considered suspended. Then:
—(5.1.1) If the type of await-suspend is std::coroutine_handle<Z>, await-suspend.resume() is evaluated.

[Note 1: This resumes the coroutine referred to by the result of await-suspend. Any number of coroutines can besuccessively resumed in this fashion, eventually returning control flow to the current coroutine caller or resumer (9.5.4).—end note]
—(5.1.2) Otherwise, if the type of await-suspend is bool, await-suspend is evaluated, and the coroutine is resumed ifthe result is false.
—(5.1.3) Otherwise, await-suspend is evaluated.
If the evaluation of await-suspend exits via an exception, the exception is caught, the coroutine is resumed, andthe exception is immediately rethrown (14.2). Otherwise, control flow returns to the current coroutine caller orresumer (9.5.4) without exiting any scopes (8.7).

—(5.2) If the result of await-ready is true, or when the coroutine is resumed other than by rethrowing an exception fromawait-suspend, the await-resume expression is evaluated, and its result is the result of the await-expression.
[Note 2: With respect to sequencing, an await-expression is indivisible (6.9.1). —end note]

6 [Example 1:

§ 7.6.2.4 127

© ISO/IEC N4910

template <typename T>
struct my_future {

/* ... */
bool await_ready();
void await_suspend(std::coroutine_handle<>);
T await_resume();

};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {

struct awaiter {
std::chrono::system_clock::duration duration;
/* ... */
awaiter(std::chrono::system_clock::duration d) : duration(d) {}
bool await_ready() const { return duration.count() <= 0; }
void await_resume() {}
void await_suspend(std::coroutine_handle<> h) { /* ... */ }

};
return awaiter{d};

}

using namespace std::chrono;

my_future<int> h();

my_future<void> g() {
std::cout << "just about go to sleep...\n";
co_await 10ms;
std::cout << "resumed\n";
co_await h();

}

auto f(int x = co_await h()); // error: await-expression outside of function suspension context
int a[] = { co_await h() }; // error: await-expression outside of function suspension context
— end example]
7.6.2.5 Sizeof [expr.sizeof]

1 The sizeof operator yields the number of bytes occupied by a non-potentially-overlapping object of the type of itsoperand. The operand is either an expression, which is an unevaluated operand (7.2.3), or a parenthesized type-id . The
sizeof operator shall not be applied to an expression that has function or incomplete type, to the parenthesized name ofsuch types, or to a glvalue that designates a bit-field. The result of sizeof applied to any of the narrow character typesis 1. The result of sizeof applied to any other fundamental type (6.8.2) is implementation-defined.
[Note 1: In particular, the values of sizeof(bool), sizeof(char16_t), sizeof(char32_t), and sizeof(wchar_t) are implementation-defined.62 —end note]
[Note 2: See 6.7.1 for the definition of byte and 6.8.1 for the definition of object representation. —end note]

2 When applied to a reference type, the result is the size of the referenced type. When applied to a class, the result is thenumber of bytes in an object of that class including any padding required for placing objects of that type in an array. Theresult of applying sizeof to a potentially-overlapping subobject is the size of the type, not the size of the subobject.63When applied to an array, the result is the total number of bytes in the array. This implies that the size of an array of nelements is n times the size of an element.
3 The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are notapplied to the operand of sizeof. If the operand is a prvalue, the temporary materialization conversion (7.3.5) is applied.
4 The identifier in a sizeof... expression shall name a pack. The sizeof... operator yields the number of elements inthe pack (13.7.4). A sizeof... expression is a pack expansion (13.7.4).
[Example 1:

62) sizeof(bool) is not required to be 1.
63) The actual size of a potentially-overlapping subobject can be less than the result of applying sizeof to the subobject, due to virtual base classesand less strict padding requirements on potentially-overlapping subobjects.
§ 7.6.2.5 128

© ISO/IEC N4910

template<class... Types>
struct count {

static const std::size_t value = sizeof...(Types);
};

—end example]
5 The result of sizeof and sizeof... is a prvalue of type std::size_t.
[Note 3: A sizeof expression is an integral constant expression (7.7). The type std::size_t is defined in the standard header
<cstddef> (17.2.1, 17.2.4). —end note]
7.6.2.6 Alignof [expr.alignof]

1 An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id representinga complete object type, or an array thereof, or a reference to one of those types.
2 The result is a prvalue of type std::size_t.
[Note 1: An alignof expression is an integral constant expression (7.7). The type std::size_t is defined in the standard header
<cstddef> (17.2.1, 17.2.4). —end note]

3 When alignof is applied to a reference type, the result is the alignment of the referenced type. When alignof is appliedto an array type, the result is the alignment of the element type.
7.6.2.7 noexcept operator [expr.unary.noexcept]

1 The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand (7.2.3), canthrow an exception (14.2).
noexcept-expression :

noexcept (expression)

2 The result of the noexcept operator is a prvalue of type bool.
[Note 1: A noexcept-expression is an integral constant expression (7.7). —end note]

3 The result of the noexcept operator is true unless the expression is potentially-throwing (14.5).
7.6.2.8 New [expr.new]

1 The new-expression attempts to create an object of the type-id (9.3.2) or new-type-id to which it is applied. The type ofthat object is the allocated type. This type shall be a complete object type (6.8.1), but not an abstract class type (11.7.4)or array thereof (6.7.2).
[Note 1: Because references are not objects, references cannot be created by new-expressions. —end note]
[Note 2: The type-id can be a cv-qualified type, in which case the object created by the new-expression has a cv-qualified type.—end note]

new-expression :
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt (type-id) new-initializeropt

new-placement :
(expression-list)

new-type-id :
type-specifier-seq new-declaratoropt

new-declarator :
ptr-operator new-declaratoropt
noptr-new-declarator

noptr-new-declarator :
[expressionopt] attribute-specifier-seqopt
noptr-new-declarator [constant-expression] attribute-specifier-seqopt

new-initializer :
(expression-listopt)
braced-init-list

2 If a placeholder type (9.2.9.6) appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, theallocated type is deduced as follows: Let init be the new-initializer , if any, and T be the new-type-id or type-id of the
new-expression, then the allocated type is the type deduced for the variable x in the invented declaration (9.2.9.6):
T x init ;
§ 7.6.2.8 129

© ISO/IEC N4910

[Example 1:
new auto(1); // allocated type is int
auto x = new auto('a'); // allocated type is char, x is of type char*
template<class T> struct A { A(T, T); };
auto y = new A{1, 2}; // allocated type is A<int>
—end example]

3 The new-type-id in a new-expression is the longest possible sequence of new-declarators.
[Note 3: This prevents ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts. —end note]
[Example 2:
new int * i; // syntax error: parsed as (new int*) i, not as (new int)*i

The * is the pointer declarator and not the multiplication operator. —end example]
4 [Note 4: Parentheses in a new-type-id of a new-expression can have surprising effects.
[Example 3:
new int(*[10])(); // error

is ill-formed because the binding is
(new int) (*[10])(); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound types (6.8.3):
new (int (*[10])());

allocates an array of 10 pointers to functions (taking no argument and returning int). —end example]
—end note]

5 The attribute-specifier-seq in a noptr-new-declarator appertains to the associated array type.
6 Every constant-expression in a noptr-new-declarator shall be a converted constant expression (7.7) of type std::size_tand its value shall be greater than zero.
[Example 4: Given the definition int n = 42, new float[n][5] is well-formed (because n is the expression of a noptr-new-
declarator), but new float[5][n] is ill-formed (because n is not a constant expression). —end example]

7 If the type-id or new-type-id denotes an array type of unknown bound (9.3.4.5), the new-initializer shall not be omitted;the allocated object is an array with n elements, where n is determined from the number of initial elements supplied inthe new-initializer (9.4.2, 9.4.3).
8 If the expression in a noptr-new-declarator is present, it is implicitly converted to std::size_t. The expression iserroneous if:

—(8.1) the expression is of non-class type and its value before converting to std::size_t is less than zero;
—(8.2) the expression is of class type and its value before application of the second standard conversion (12.2.4.2.3)64 isless than zero;
—(8.3) its value is such that the size of the allocated object would exceed the implementation-defined limit (Annex B); or
—(8.4) the new-initializer is a braced-init-list and the number of array elements for which initializers are provided(including the terminating ’\0’ in a string-literal (5.13.5)) exceeds the number of elements to initialize.

If the expression is erroneous after converting to std::size_t:
—(8.5) if the expression is a core constant expression, the program is ill-formed;
—(8.6) otherwise, an allocation function is not called; instead

—(8.6.1) if the allocation function that would have been called has a non-throwing exception specification (14.5), thevalue of the new-expression is the null pointer value of the required result type;
—(8.6.2) otherwise, the new-expression terminates by throwing an exception of a type that would match a handler(14.4) of type std::bad_array_new_length (17.6.4.2).

When the value of the expression is zero, the allocation function is called to allocate an array with no elements.
9 Objects created by a new-expression have dynamic storage duration (6.7.5.5).

64) If the conversion function returns a signed integer type, the second standard conversion converts to the unsigned type std::size_t and thusthwarts any attempt to detect a negative value afterwards.
§ 7.6.2.8 130

© ISO/IEC N4910

[Note 5: The lifetime of such an object is not necessarily restricted to the scope in which it is created. —end note]
10 When the allocated type is “array of N T” (that is, the noptr-new-declarator syntax is used or the new-type-id or type-iddenotes an array type), the new-expression yields a prvalue of type “pointer to T” that points to the initial element (ifany) of the array. Otherwise, let T be the allocated type; the new-expression is a prvalue of type “pointer to T” thatpoints to the object created.
[Note 6: Both new int and new int[10] have type int* and the type of new int[i][10] is int (*)[10]. —end note]

11 A new-expression may obtain storage for the object by calling an allocation function (6.7.5.5.2). If the new-expressionterminates by throwing an exception, it may release storage by calling a deallocation function (6.7.5.5.3). If theallocated type is a non-array type, the allocation function’s name is operator new and the deallocation function’s nameis operator delete. If the allocated type is an array type, the allocation function’s name is operator new[] and thedeallocation function’s name is operator delete[].
[Note 7: An implementation is required to provide default definitions for the global allocation functions (6.7.5.5, 17.6.3.2, 17.6.3.3).A C++ program can provide alternative definitions of these functions (16.4.5.6) and/or class-specific versions (11.4.11). The set ofallocation and deallocation functions that can be called by a new-expression can include functions that do not perform allocation ordeallocation; for example, see 17.6.3.4. —end note]

12 If the new-expression does not begin with a unary :: operator and the allocated type is a class type T or array thereof, asearch is performed for the allocation function’s name in the scope of T (6.5.2). Otherwise, or if nothing is found, theallocation function’s name is looked up by searching for it in the global scope.
13 An implementation is allowed to omit a call to a replaceable global allocation function (17.6.3.2, 17.6.3.3). Whenit does so, the storage is instead provided by the implementation or provided by extending the allocation of another

new-expression.
14 During an evaluation of a constant expression, a call to an allocation function is always omitted.
[Note 8: Only new-expressions that would otherwise result in a call to a replaceable global allocation function can be evaluated inconstant expressions (7.7). —end note]

15 The implementation may extend the allocation of a new-expression e1 to provide storage for a new-expression e2 if thefollowing would be true were the allocation not extended:
—(15.1) the evaluation of e1 is sequenced before the evaluation of e2, and
—(15.2) e2 is evaluated whenever e1 obtains storage, and
—(15.3) both e1 and e2 invoke the same replaceable global allocation function, and
—(15.4) if the allocation function invoked by e1 and e2 is throwing, any exceptions thrown in the evaluation of either e1or e2 would be first caught in the same handler, and
—(15.5) the pointer values produced by e1 and e2 are operands to evaluated delete-expressions, and
—(15.6) the evaluation of e2 is sequenced before the evaluation of the delete-expression whose operand is the pointervalue produced by e1.

[Example 5:
void can_merge(int x) {// These allocations are safe for merging:

std::unique_ptr<char[]> a{new (std::nothrow) char[8]};
std::unique_ptr<char[]> b{new (std::nothrow) char[8]};
std::unique_ptr<char[]> c{new (std::nothrow) char[x]};

g(a.get(), b.get(), c.get());
}

void cannot_merge(int x) {
std::unique_ptr<char[]> a{new char[8]};
try {// Merging this allocation would change its catch handler.
std::unique_ptr<char[]> b{new char[x]};

} catch (const std::bad_alloc& e) {
std::cerr << "Allocation failed: " << e.what() << std::endl;
throw;

}
}

§ 7.6.2.8 131

© ISO/IEC N4910

—end example]
16 When a new-expression calls an allocation function and that allocation has not been extended, the new-expression passesthe amount of space requested to the allocation function as the first argument of type std::size_t. That argument shallbe no less than the size of the object being created; it may be greater than the size of the object being created only ifthe object is an array and the allocation function is not a non-allocating form (17.6.3.4). For arrays of char, unsigned

char, and std::byte, the difference between the result of the new-expression and the address returned by the allocationfunction shall be an integral multiple of the strictest fundamental alignment requirement (6.7.6) of any object typewhose size is no greater than the size of the array being created.
[Note 9: Because allocation functions are assumed to return pointers to storage that is appropriately aligned for objects of any typewith fundamental alignment, this constraint on array allocation overhead permits the common idiom of allocating character arraysinto which objects of other types will later be placed. —end note]

17 When a new-expression calls an allocation function and that allocation has been extended, the size argument to theallocation call shall be no greater than the sum of the sizes for the omitted calls as specified above, plus the size for theextended call had it not been extended, plus any padding necessary to align the allocated objects within the allocatedmemory.
18 The new-placement syntax is used to supply additional arguments to an allocation function; such an expression is calleda placement new-expression.
19 Overload resolution is performed on a function call created by assembling an argument list. The first argument is theamount of space requested, and has type std::size_t. If the type of the allocated object has new-extended alignment,the next argument is the type’s alignment, and has type std::align_val_t. If the new-placement syntax is used, the

initializer-clauses in its expression-list are the succeeding arguments. If no matching function is found then
—(19.1) if the allocated object type has new-extended alignment, the alignment argument is removed from the argumentlist;
—(19.2) otherwise, an argument that is the type’s alignment and has type std::align_val_t is added into the argumentlist immediately after the first argument;

and then overload resolution is performed again.
20 [Example 6:

—(20.1) new T results in one of the following calls:
operator new(sizeof(T))
operator new(sizeof(T), std::align_val_t(alignof(T)))

—(20.2) new(2,f) T results in one of the following calls:
operator new(sizeof(T), 2, f)
operator new(sizeof(T), std::align_val_t(alignof(T)), 2, f)

—(20.3) new T[5] results in one of the following calls:
operator new[](sizeof(T) * 5 + x)
operator new[](sizeof(T) * 5 + x, std::align_val_t(alignof(T)))

—(20.4) new(2,f) T[5] results in one of the following calls:
operator new[](sizeof(T) * 5 + x, 2, f)
operator new[](sizeof(T) * 5 + x, std::align_val_t(alignof(T)), 2, f)

Here, each instance of x is a non-negative unspecified value representing array allocation overhead; the result of the new-expressionwill be offset by this amount from the value returned by operator new[]. This overhead may be applied in all array new-
expressions, including those referencing a placement allocation function, except when referencing the library function operator
new[](std::size_t, void*). The amount of overhead may vary from one invocation of new to another. —end example]

21 [Note 10: Unless an allocation function has a non-throwing exception specification (14.5), it indicates failure to allocate storageby throwing a std::bad_alloc exception (6.7.5.5.2, Clause 14, 17.6.4.1); it returns a non-null pointer otherwise. If the allocationfunction has a non-throwing exception specification, it returns null to indicate failure to allocate storage and a non-null pointerotherwise. —end note]
If the allocation function is a non-allocating form (17.6.3.4) that returns null, the behavior is undefined. Otherwise, ifthe allocation function returns null, initialization shall not be done, the deallocation function shall not be called, and thevalue of the new-expression shall be null.

22 [Note 11: When the allocation function returns a value other than null, it must be a pointer to a block of storage in which space forthe object has been reserved. The block of storage is assumed to be appropriately aligned and of the requested size. The address ofthe created object will not necessarily be the same as that of the block if the object is an array. —end note]
§ 7.6.2.8 132

© ISO/IEC N4910

23 A new-expression that creates an object of type T initializes that object as follows:
—(23.1) If the new-initializer is omitted, the object is default-initialized (9.4).

[Note 12: If no initialization is performed, the object has an indeterminate value. —end note]
—(23.2) Otherwise, the new-initializer is interpreted according to the initialization rules of 9.4 for direct-initialization.

24 The invocation of the allocation function is sequenced before the evaluations of expressions in the new-initializer .Initialization of the allocated object is sequenced before the value computation of the new-expression.
25 If the new-expression creates an object or an array of objects of class type, access and ambiguity control are done forthe allocation function, the deallocation function (6.7.5.5.3), and the constructor (11.4.5) selected for the initialization(if any). If the new-expression creates an array of objects of class type, the destructor is potentially invoked (11.4.7).
26 If any part of the object initialization described above65 terminates by throwing an exception and a suitable deallocationfunction can be found, the deallocation function is called to free the memory in which the object was being constructed,after which the exception continues to propagate in the context of the new-expression. If no unambiguous matchingdeallocation function can be found, propagating the exception does not cause the object’s memory to be freed.
[Note 13: This is appropriate when the called allocation function does not allocate memory; otherwise, it is likely to result in amemory leak. —end note]

27 If the new-expression does not begin with a unary :: operator and the allocated type is a class type T or an array thereof,a search is performed for the deallocation function’s name in the scope of T. Otherwise, or if nothing is found, thedeallocation function’s name is looked up by searching for it in the global scope.
28 A declaration of a placement deallocation function matches the declaration of a placement allocation function if ithas the same number of parameters and, after parameter transformations (9.3.4.6), all parameter types except the firstare identical. If the lookup finds a single matching deallocation function, that function will be called; otherwise, nodeallocation function will be called. If the lookup finds a usual deallocation function and that function, consideredas a placement deallocation function, would have been selected as a match for the allocation function, the programis ill-formed. For a non-placement allocation function, the normal deallocation function lookup is used to find thematching deallocation function (7.6.2.9).
[Example 7:
struct S {// Placement allocation function:

static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};

S* p = new (0) S; // error: non-placement deallocation function matches// placement allocation function
—end example]

29 If a new-expression calls a deallocation function, it passes the value returned from the allocation function call as the firstargument of type void*. If a placement deallocation function is called, it is passed the same additional arguments aswere passed to the placement allocation function, that is, the same arguments as those specified with the new-placementsyntax. If the implementation is allowed to introduce a temporary object or make a copy of any argument as part of thecall to the allocation function, it is unspecified whether the same object is used in the call to both the allocation anddeallocation functions.
7.6.2.9 Delete [expr.delete]

1 The delete-expression operator destroys a most derived object (6.7.2) or array created by a new-expression.
delete-expression :

::opt delete cast-expression
::opt delete [] cast-expression

The first alternative is a single-object delete expression, and the second is an array delete expression. Whenever the
delete keyword is immediately followed by empty square brackets, it shall be interpreted as the second alternative.66
65) This can include evaluating a new-initializer and/or calling a constructor.
66) A lambda-expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if the lambda-ex-

pression is enclosed in parentheses.
§ 7.6.2.9 133

© ISO/IEC N4910

The operand shall be of pointer to object type or of class type. If of class type, the operand is contextually implicitlyconverted (7.3) to a pointer to object type.67 The delete-expression has type void.
2 If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned conversionfunction, and the converted operand is used in place of the original operand for the remainder of this subclause. In asingle-object delete expression, the value of the operand of delete may be a null pointer value, a pointer value thatresulted from a previous non-array new-expression, or a pointer to a base class subobject of an object created by such a

new-expression. If not, the behavior is undefined. In an array delete expression, the value of the operand of delete maybe a null pointer value or a pointer value that resulted from a previous array new-expression.68 If not, the behavior isundefined.
[Note 1: This means that the syntax of the delete-expression must match the type of the object allocated by new, not the syntax of the
new-expression. —end note]
[Note 2: A pointer to a const type can be the operand of a delete-expression; it is not necessary to cast away the constness (7.6.1.11)of the pointer expression before it is used as the operand of the delete-expression. —end note]

3 In a single-object delete expression, if the static type of the object to be deleted is not similar (7.3.6) to its dynamic typeand the selected deallocation function (see below) is not a destroying operator delete, the static type shall be a baseclass of the dynamic type of the object to be deleted and the static type shall have a virtual destructor or the behavior isundefined. In an array delete expression, if the dynamic type of the object to be deleted is not similar to its static type,the behavior is undefined.
4 The cast-expression in a delete-expression shall be evaluated exactly once.
5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a non-trivialdestructor or a deallocation function, the behavior is undefined.
6 If the value of the operand of the delete-expression is not a null pointer value and the selected deallocation function (seebelow) is not a destroying operator delete, the delete-expression will invoke the destructor (if any) for the object orthe elements of the array being deleted. In the case of an array, the elements will be destroyed in order of decreasingaddress (that is, in reverse order of the completion of their constructor; see 11.9.3).
7 If the value of the operand of the delete-expression is not a null pointer value, then:

—(7.1) If the allocation call for the new-expression for the object to be deleted was not omitted and the allocation wasnot extended (7.6.2.8), the delete-expression shall call a deallocation function (6.7.5.5.3). The value returnedfrom the allocation call of the new-expression shall be passed as the first argument to the deallocation function.
—(7.2) Otherwise, if the allocation was extended or was provided by extending the allocation of another new-expression,and the delete-expression for every other pointer value produced by a new-expression that had storage providedby the extended new-expression has been evaluated, the delete-expression shall call a deallocation function. Thevalue returned from the allocation call of the extended new-expression shall be passed as the first argument to thedeallocation function.
—(7.3) Otherwise, the delete-expression will not call a deallocation function.

[Note 3: The deallocation function is called regardless of whether the destructor for the object or some element of the array throwsan exception. —end note]
If the value of the operand of the delete-expression is a null pointer value, it is unspecified whether a deallocationfunction will be called as described above.

8 If a deallocation function is called, it is operator delete for a single-object delete expression or operator delete[]for an array delete expression.
[Note 4: An implementation provides default definitions of the global deallocation functions (17.6.3.2, 17.6.3.3). A C++ program canprovide alternative definitions of these functions (16.4.5.6), and/or class-specific versions (11.4.11). —end note]

9 If the keyword delete in a delete-expression is not preceded by the unary :: operator and the type of the operand is apointer to a (possibly cv-qualified) class type T or (possibly multidimensional) array thereof:
—(9.1) For a single-object delete expression, if the operand is a pointer to cv T and T has a virtual destructor, thedeallocation function is the one selected at the point of definition of the dynamic type’s virtual destructor (11.4.7).
—(9.2) Otherwise, a search is performed for the deallocation function’s name in the scope of T.

67) This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.
68) For nonzero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression. Zero-length arrays donot have a first element.
§ 7.6.2.9 134

© ISO/IEC N4910

Otherwise, or if nothing is found, the deallocation function’s name is looked up by searching for it in the global scope.In any case, any declarations other than of usual deallocation functions (6.7.5.5.3) are discarded.
[Note 5: If only a placement deallocation function is found in a class, the program is ill-formed because the lookup set is empty (6.5).—end note]

10 If more than one deallocation function is found, the function to be called is selected as follows:
—(10.1) If any of the deallocation functions is a destroying operator delete, all deallocation functions that are not destroyingoperator deletes are eliminated from further consideration.
—(10.2) If the type has new-extended alignment, a function with a parameter of type std::align_val_t is preferred;otherwise a function without such a parameter is preferred. If any preferred functions are found, all non-preferredfunctions are eliminated from further consideration.
—(10.3) If exactly one function remains, that function is selected and the selection process terminates.
—(10.4) If the deallocation functions belong to a class scope, the one without a parameter of type std::size_t is selected.
—(10.5) If the type is complete and if, for an array delete expression only, the operand is a pointer to a class type witha non-trivial destructor or a (possibly multi-dimensional) array thereof, the function with a parameter of type

std::size_t is selected.
—(10.6) Otherwise, it is unspecified whether a deallocation function with a parameter of type std::size_t is selected.

11 For a single-object delete expression, the deleted object is the object A pointed to by the operand if the static type of Adoes not have a virtual destructor, and the most-derived object of A otherwise.
[Note 6: If the deallocation function is not a destroying operator delete and the deleted object is not the most derived object in theformer case, the behavior is undefined, as stated above. —end note]
For an array delete expression, the deleted object is the array object. When a delete-expression is executed, the selecteddeallocation function shall be called with the address of the deleted object in a single-object delete expression, or theaddress of the deleted object suitably adjusted for the array allocation overhead (7.6.2.8) in an array delete expression,as its first argument.
[Note 7: Any cv-qualifiers in the type of the deleted object are ignored when forming this argument. —end note]
If a destroying operator delete is used, an unspecified value is passed as the argument corresponding to the parameter oftype std::destroying_delete_t. If a deallocation function with a parameter of type std::align_val_t is used, thealignment of the type of the deleted object is passed as the corresponding argument. If a deallocation function with aparameter of type std::size_t is used, the size of the deleted object in a single-object delete expression, or of the arrayplus allocation overhead in an array delete expression, is passed as the corresponding argument.
[Note 8: If this results in a call to a replaceable deallocation function, and either the first argument was not the result of a prior call toa replaceable allocation function or the second or third argument was not the corresponding argument in said call, the behavior isundefined (17.6.3.2, 17.6.3.3). —end note]

12 Access and ambiguity control are done for both the deallocation function and the destructor (11.4.7, 11.4.11).
7.6.3 Explicit type conversion (cast notation) [expr.cast]

1 The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference type oran rvalue reference to function type and an xvalue if T is an rvalue reference to object type; otherwise the result is aprvalue.
[Note 1: If T is a non-class type that is cv-qualified, the cv-qualifiers are discarded when determining the type of the resulting prvalue;see 7.2. —end note]

2 An explicit type conversion can be expressed using functional notation (7.6.1.4), a type conversion operator (dynamic_-
cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression :
unary-expression
(type-id) cast-expression

3 Any type conversion not mentioned below and not explicitly defined by the user (11.4.8) is ill-formed.
4 The conversions performed by

—(4.1) a const_cast (7.6.1.11),
—(4.2) a static_cast (7.6.1.9),
—(4.3) a static_cast followed by a const_cast,

§ 7.6.3 135

© ISO/IEC N4910

—(4.4) a reinterpret_cast (7.6.1.10), or
—(4.5) a reinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and behaviorsapply, with the exception that in performing a static_cast in the following situations the conversion is valid even ifthe base class is inaccessible:
—(4.6) a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly convertedto a pointer or reference to an unambiguous base class type, respectively;
—(4.7) a pointer to member of derived class type may be explicitly converted to a pointer to member of an unambiguousnon-virtual base class type;
—(4.8) a pointer to an object of an unambiguous non-virtual base class type, a glvalue of an unambiguous non-virtualbase class type, or a pointer to member of an unambiguous non-virtual base class type may be explicitly convertedto a pointer, a reference, or a pointer to member of a derived class type, respectively.

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears first in thelist is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be interpreted in more thanone way as a static_cast followed by a const_cast, the conversion is ill-formed.
[Example 1:
struct A { };
struct I1 : A { };
struct I2 : A { };
struct D : I1, I2 { };
A* foo(D* p) {

return (A*)(p); // ill-formed static_cast interpretation
}

—end example]
5 The operand of a cast using the cast notation can be a prvalue of type “pointer to incomplete class type”. The destinationtype of a cast using the cast notation can be “pointer to incomplete class type”. If both the operand and destination typesare class types and one or both are incomplete, it is unspecified whether the static_cast or the reinterpret_castinterpretation is used, even if there is an inheritance relationship between the two classes.
[Note 2: For example, if the classes were defined later in the translation unit, a multi-pass compiler would be permitted to interpret acast between pointers to the classes as if the class types were complete at the point of the cast. —end note]
7.6.4 Pointer-to-member operators [expr.mptr.oper]

1 The pointer-to-member operators ->* and .* group left-to-right.
pm-expression :

cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

2 The binary operator .* binds its second operand, which shall be of type “pointer to member of T” to its first operand,which shall be a glvalue of class T or of a class of which T is an unambiguous and accessible base class. The result is anobject or a function of the type specified by the second operand.
3 The binary operator ->* binds its second operand, which shall be of type “pointer to member of T” to its first operand,which shall be of type “pointer to U” where U is either T or a class of which T is an unambiguous and accessible baseclass. The expression E1->*E2 is converted into the equivalent form (*(E1)).*E2.
4 Abbreviating pm-expression.*cast-expression as E1.*E2, E1 is called the object expression. If the dynamic type of E1does not contain the member to which E2 refers, the behavior is undefined. Otherwise, the expression E1 is sequencedbefore the expression E2.
5 The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined to producethe cv-qualifiers of the result, are the same as the rules for E1.E2 given in 7.6.1.5.
[Note 1: It is not possible to use a pointer to member that refers to a mutable member to modify a const class object. For example,
struct S {

S() : i(0) { }
mutable int i;

};

§ 7.6.4 136

© ISO/IEC N4910

void f()
{
const S cs;
int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // error: cs is a const object
}

—end note]
6 If the result of .* or ->* is a function, then that result can be used only as the operand for the function call operator ().
[Example 1:
(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. —end example]
In a .* expression whose object expression is an rvalue, the program is ill-formed if the second operand is a pointer tomember function whose ref-qualifier is &, unless its cv-qualifier-seq is const. In a .* expression whose object expressionis an lvalue, the program is ill-formed if the second operand is a pointer to member function whose ref-qualifier is &&.The result of a .* expression whose second operand is a pointer to a data member is an lvalue if the first operand is anlvalue and an xvalue otherwise. The result of a .* expression whose second operand is a pointer to a member functionis a prvalue. If the second operand is the null member pointer value (7.3.13), the behavior is undefined.
7.6.5 Multiplicative operators [expr.mul]

1 The multiplicative operators *, /, and % group left-to-right.
multiplicative-expression :

pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

2 The operands of * and / shall have arithmetic or unscoped enumeration type; the operands of % shall have integral orunscoped enumeration type. The usual arithmetic conversions (7.4) are performed on the operands and determine thetype of the result.
3 The binary * operator indicates multiplication.
4 The binary / operator yields the quotient, and the binary % operator yields the remainder from the division of the firstexpression by the second. If the second operand of / or % is zero the behavior is undefined. For integral operands the /operator yields the algebraic quotient with any fractional part discarded;69 if the quotient a/b is representable in thetype of the result, (a/b)*b + a%b is equal to a; otherwise, the behavior of both a/b and a%b is undefined.
7.6.6 Additive operators [expr.add]

1 The additive operators + and - group left-to-right. The usual arithmetic conversions (7.4) are performed for operands ofarithmetic or enumeration type.
additive-expression :

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or unscoped enumeration type, or one operand shall be a pointerto a completely-defined object type and the other shall have integral or unscoped enumeration type.
2 For subtraction, one of the following shall hold:

—(2.1) both operands have arithmetic or unscoped enumeration type; or
—(2.2) both operands are pointers to cv-qualified or cv-unqualified versions of the same completely-defined object type;or
—(2.3) the left operand is a pointer to a completely-defined object type and the right operand has integral or unscopedenumeration type.

3 The result of the binary + operator is the sum of the operands. The result of the binary - operator is the differenceresulting from the subtraction of the second operand from the first.
69) This is often called truncation towards zero.
§ 7.6.6 137

© ISO/IEC N4910

4 When an expression J that has integral type is added to or subtracted from an expression P of pointer type, the result hasthe type of P.
—(4.1) If P evaluates to a null pointer value and J evaluates to 0, the result is a null pointer value.
—(4.2) Otherwise, if P points to an array element i of an array object x with n elements (9.3.4.5),70 the expressions P + Jand J + P (where J has the value j) point to the (possibly-hypothetical) array element i+ j of x if 0 ≤ i+ j ≤ nand the expression P - J points to the (possibly-hypothetical) array element i− j of x if 0 ≤ i− j ≤ n.
—(4.3) Otherwise, the behavior is undefined.

5 When two pointer expressions P and Q are subtracted, the type of the result is an implementation-defined signed integraltype; this type shall be the same type that is defined as std::ptrdiff_t in the <cstddef> header (17.2.4).
—(5.1) If P and Q both evaluate to null pointer values, the result is 0.
—(5.2) Otherwise, if P and Q point to, respectively, array elements i and j of the same array object x, the expression P -

Q has the value i− j.
—(5.3) Otherwise, the behavior is undefined.

[Note 1: If the value i − j is not in the range of representable values of type std::ptrdiff_t, the behavior is undefined.—end note]
6 For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T and the array element type arenot similar (7.3.6), the behavior is undefined.
[Note 2: In particular, a pointer to a base class cannot be used for pointer arithmetic when the array contains objects of a derivedclass type. —end note]
7.6.7 Shift operators [expr.shift]

1 The shift operators << and >> group left-to-right.
shift-expression :

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions are performed. The type of theresult is that of the promoted left operand. The behavior is undefined if the right operand is negative, or greater than orequal to the width of the promoted left operand.
2 The value of E1 << E2 is the unique value congruent to E1× 2E2 modulo 2N , where N is the width of the type of theresult.
[Note 1: E1 is left-shifted E2 bit positions; vacated bits are zero-filled. —end note]

3 The value of E1 >> E2 is E1/2E2, rounded down.
[Note 2: E1 is right-shifted E2 bit positions. Right-shift on signed integral types is an arithmetic right shift, which performssign-extension. —end note]

4 The expression E1 is sequenced before the expression E2.
7.6.8 Three-way comparison operator [expr.spaceship]

1 The three-way comparison operator groups left-to-right.
compare-expression :

shift-expression
compare-expression <=> shift-expression

2 The expression p <=> q is a prvalue indicating whether p is less than, equal to, greater than, or incomparable with q.
3 If one of the operands is of type bool and the other is not, the program is ill-formed.
4 If both operands have arithmetic types, or one operand has integral type and the other operand has unscoped enumerationtype, the usual arithmetic conversions (7.4) are applied to the operands. Then:

—(4.1) If a narrowing conversion (9.4.5) is required, other than from an integral type to a floating-point type, the programis ill-formed.
70) As specified in 6.8.3, an object that is not an array element is considered to belong to a single-element array for this purpose and a pointer pastthe last element of an array of n elements is considered to be equivalent to a pointer to a hypothetical array element n for this purpose.
§ 7.6.8 138

© ISO/IEC N4910

—(4.2) Otherwise, if the operands have integral type, the result is of type std::strong_ordering. The result is
std::strong_ordering::equal if both operands are arithmetically equal, std::strong_ordering::less ifthe first operand is arithmetically less than the second operand, and std::strong_ordering::greater otherwise.

—(4.3) Otherwise, the operands have floating-point type, and the result is of type std::partial_ordering. The expres-sion a <=> b yields std::partial_ordering::less if a is less than b, std::partial_ordering::greater if a isgreater than b, std::partial_ordering::equivalent if a is equivalent to b, and std::partial_ordering::unorderedotherwise.
5 If both operands have the same enumeration type E, the operator yields the result of converting the operands to theunderlying type of E and applying <=> to the converted operands.
6 If at least one of the operands is of object pointer type and the other operand is of object pointer or array type, array-to-pointer conversions (7.3.3), pointer conversions (7.3.12), and qualification conversions (7.3.6) are performed on bothoperands to bring them to their composite pointer type (7.2.2). After the conversions, the operands shall have the sametype.
[Note 1: If both of the operands are arrays, array-to-pointer conversions (7.3.3) are not applied. —end note]
In this case, p <=> q is of type std::strong_ordering and the result is defined by the following rules:
—(6.1) If two pointer operands p and q compare equal (7.6.10), p <=> q yields std::strong_ordering::equal;
—(6.2) otherwise, if p and q compare unequal, p <=> q yields std::strong_ordering::less if q compares greater than

p and std::strong_ordering::greater if p compares greater than q (7.6.9);
—(6.3) otherwise, the result is unspecified.

7 Otherwise, the program is ill-formed.
8 The three comparison category types (17.11.2) (the types std::strong_ordering, std::weak_ordering, and std::partial_-

ordering) are not predefined; if the header <compare> (17.11.1) is not imported or included prior to a use of such aclass type – even an implicit use in which the type is not named (e.g., via the auto specifier (9.2.9.6) in a defaultedthree-way comparison (11.10.3) or use of the built-in operator) – the program is ill-formed.
7.6.9 Relational operators [expr.rel]

1 The relational operators group left-to-right.
[Example 1: a<b<c means (a<b)<c and not (a<b)&&(b<c). —end example]

relational-expression :
compare-expression
relational-expression < compare-expression
relational-expression > compare-expression
relational-expression <= compare-expression
relational-expression >= compare-expression

The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are performedon the operands. The comparison is deprecated if both operands were of array type prior to these conversions (D.4).
2 The converted operands shall have arithmetic, enumeration, or pointer type. The operators < (less than), > (greater than),
<= (less than or equal to), and >= (greater than or equal to) all yield false or true. The type of the result is bool.

3 The usual arithmetic conversions (7.4) are performed on operands of arithmetic or enumeration type. If both operandsare pointers, pointer conversions (7.3.12) and qualification conversions (7.3.6) are performed to bring them to theircomposite pointer type (7.2.2). After conversions, the operands shall have the same type.
4 The result of comparing unequal pointers to objects71 is defined in terms of a partial order consistent with the followingrules:

—(4.1) If two pointers point to different elements of the same array, or to subobjects thereof, the pointer to the elementwith the higher subscript is required to compare greater.
—(4.2) If two pointers point to different non-static data members of the same object, or to subobjects of such members,recursively, the pointer to the later declared member is required to compare greater provided neither member is asubobject of zero size and their class is not a union.
—(4.3) Otherwise, neither pointer is required to compare greater than the other.
71) As specified in 6.8.3, an object that is not an array element is considered to belong to a single-element array for this purpose and a pointer pastthe last element of an array of n elements is considered to be equivalent to a pointer to a hypothetical array element n for this purpose.
§ 7.6.9 139

© ISO/IEC N4910

5 If two operands p and q compare equal (7.6.10), p<=q and p>=q both yield true and p<q and p>q both yield false.Otherwise, if a pointer to object p compares greater than a pointer q, p>=q, p>q, q<=p, and q<p all yield true and p<=q,
p<q, q>=p, and q>p all yield false. Otherwise, the result of each of the operators is unspecified.

6 If both operands (after conversions) are of arithmetic or enumeration type, each of the operators shall yield true if thespecified relationship is true and false if it is false.
7.6.10 Equality operators [expr.eq]

equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

1 The == (equal to) and the != (not equal to) operators group left-to-right. The lvalue-to-rvalue (7.3.2), array-to-pointer(7.3.3), and function-to-pointer (7.3.4) standard conversions are performed on the operands. The comparison isdeprecated if both operands were of array type prior to these conversions (D.4).
2 The converted operands shall have arithmetic, enumeration, pointer, or pointer-to-member type, or type std::nullptr_t.The operators == and != both yield true or false, i.e., a result of type bool. In each case below, the operands shallhave the same type after the specified conversions have been applied.
3 If at least one of the operands is a pointer, pointer conversions (7.3.12), function pointer conversions (7.3.14), andqualification conversions (7.3.6) are performed on both operands to bring them to their composite pointer type (7.2.2).Comparing pointers is defined as follows:

—(3.1) If one pointer represents the address of a complete object, and another pointer represents the address one past thelast element of a different complete object,72 the result of the comparison is unspecified.
—(3.2) Otherwise, if the pointers are both null, both point to the same function, or both represent the same address (6.8.3),they compare equal.
—(3.3) Otherwise, the pointers compare unequal.

4 If at least one of the operands is a pointer to member, pointer-to-member conversions (7.3.13), function pointerconversions (7.3.14), and qualification conversions (7.3.6) are performed on both operands to bring them to theircomposite pointer type (7.2.2). Comparing pointers to members is defined as follows:
—(4.1) If two pointers to members are both the null member pointer value, they compare equal.
—(4.2) If only one of two pointers to members is the null member pointer value, they compare unequal.
—(4.3) If either is a pointer to a virtual member function, the result is unspecified.
—(4.4) If one refers to a member of class C1 and the other refers to a member of a different class C2, where neither is abase class of the other, the result is unspecified.

[Example 1:
struct A {};
struct B : A { int x; };
struct C : A { int x; };

int A::*bx = (int(A::*))&B::x;
int A::*cx = (int(A::*))&C::x;

bool b1 = (bx == cx); // unspecified
—end example]

—(4.5) If both refer to (possibly different) members of the same union (11.5), they compare equal.
—(4.6) Otherwise, two pointers to members compare equal if they would refer to the same member of the same mostderived object (6.7.2) or the same subobject if indirection with a hypothetical object of the associated class typewere performed, otherwise they compare unequal.

[Example 2:
struct B {
int f();

};

72) As specified in 6.8.3, an object that is not an array element is considered to belong to a single-element array for this purpose.
§ 7.6.10 140

© ISO/IEC N4910

struct L : B { };
struct R : B { };
struct D : L, R { };

int (B::*pb)() = &B::f;
int (L::*pl)() = pb;
int (R::*pr)() = pb;
int (D::*pdl)() = pl;
int (D::*pdr)() = pr;
bool x = (pdl == pdr); // false
bool y = (pb == pl); // true
—end example]

5 Two operands of type std::nullptr_t or one operand of type std::nullptr_t and the other a null pointer constantcompare equal.
6 If two operands compare equal, the result is true for the == operator and false for the != operator. If two operandscompare unequal, the result is false for the == operator and true for the != operator. Otherwise, the result of each ofthe operators is unspecified.
7 If both operands are of arithmetic or enumeration type, the usual arithmetic conversions (7.4) are performed on bothoperands; each of the operators shall yield true if the specified relationship is true and false if it is false.
7.6.11 Bitwise AND operator [expr.bit.and]

and-expression :
equality-expression
and-expression & equality-expression

1 The & operator groups left-to-right. The operands shall be of integral or unscoped enumeration type. The usual arithmeticconversions (7.4) are performed. Given the coefficients xi and yi of the base-2 representation (6.8.2) of the convertedoperands x and y, the coefficient ri of the base-2 representation of the result r is 1 if both xi and yi are 1, and 0 otherwise.
[Note 1: The result is the bitwise AND function of the operands. —end note]
7.6.12 Bitwise exclusive OR operator [expr.xor]

exclusive-or-expression :
and-expression
exclusive-or-expression ^ and-expression

1 The ˆ operator groups left-to-right. The operands shall be of integral or unscoped enumeration type. The usual arithmeticconversions (7.4) are performed. Given the coefficients xi and yi of the base-2 representation (6.8.2) of the convertedoperands x and y, the coefficient ri of the base-2 representation of the result r is 1 if either (but not both) of xi and yiare 1, and 0 otherwise.
[Note 1: The result is the bitwise exclusive OR function of the operands. —end note]
7.6.13 Bitwise inclusive OR operator [expr.or]

inclusive-or-expression :
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

1 The | operator groups left-to-right. The operands shall be of integral or unscoped enumeration type. The usual arithmeticconversions (7.4) are performed. Given the coefficients xi and yi of the base-2 representation (6.8.2) of the convertedoperands x and y, the coefficient ri of the base-2 representation of the result r is 1 if at least one of xi and yi are 1, and0 otherwise.
[Note 1: The result is the bitwise inclusive OR function of the operands. —end note]
7.6.14 Logical AND operator [expr.log.and]

logical-and-expression :
inclusive-or-expression
logical-and-expression && inclusive-or-expression

1 The && operator groups left-to-right. The operands are both contextually converted to bool (7.3). The result is true ifboth operands are true and false otherwise. Unlike &, && guarantees left-to-right evaluation: the second operand is notevaluated if the first operand is false.
§ 7.6.14 141

© ISO/IEC N4910

2 The result is a bool. If the second expression is evaluated, the first expression is sequenced before the secondexpression (6.9.1).
7.6.15 Logical OR operator [expr.log.or]

logical-or-expression :
logical-and-expression
logical-or-expression || logical-and-expression

1 The || operator groups left-to-right. The operands are both contextually converted to bool (7.3). The result is trueif either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right evaluation; moreover, thesecond operand is not evaluated if the first operand evaluates to true.
2 The result is a bool. If the second expression is evaluated, the first expression is sequenced before the secondexpression (6.9.1).
7.6.16 Conditional operator [expr.cond]

conditional-expression :
logical-or-expression
logical-or-expression ? expression : assignment-expression

1 Conditional expressions group right-to-left. The first expression is contextually converted to bool (7.3). It is evaluatedand if it is true, the result of the conditional expression is the value of the second expression, otherwise that of the thirdexpression. Only one of the second and third expressions is evaluated. The first expression is sequenced before thesecond or third expression (6.9.1).
2 If either the second or the third operand has type void, one of the following shall hold:

—(2.1) The second or the third operand (but not both) is a (possibly parenthesized) throw-expression (7.6.18); the resultis of the type and value category of the other. The conditional-expression is a bit-field if that operand is a bit-field.
—(2.2) Both the second and the third operands have type void; the result is of type void and is a prvalue.

[Note 1: This includes the case where both operands are throw-expressions. —end note]
3 Otherwise, if the second and third operand are glvalue bit-fields of the same value category and of types cv1 T and cv2

T, respectively, the operands are considered to be of type cv T for the remainder of this subclause, where cv is the unionof cv1 and cv2.
4 Otherwise, if the second and third operand have different types and either has (possibly cv-qualified) class type, or ifboth are glvalues of the same value category and the same type except for cv-qualification, an attempt is made to forman implicit conversion sequence (12.2.4.2) from each of those operands to the type of the other.
[Note 2: Properties such as access, whether an operand is a bit-field, or whether a conversion function is deleted are ignored for thatdetermination. —end note]
Attempts are made to form an implicit conversion sequence from an operand expression E1 of type T1 to a target typerelated to the type T2 of the operand expression E2 as follows:
—(4.1) If E2 is an lvalue, the target type is “lvalue reference to T2”, but an implicit conversion sequence can only beformed if the reference would bind directly (9.4.4) to a glvalue.
—(4.2) If E2 is an xvalue, the target type is “rvalue reference to T2”, but an implicit conversion sequence can only beformed if the reference would bind directly.
—(4.3) If E2 is a prvalue or if neither of the conversion sequences above can be formed and at least one of the operandshas (possibly cv-qualified) class type:

—(4.3.1) if T1 and T2 are the same class type (ignoring cv-qualification) and T2 is at least as cv-qualified as T1, thetarget type is T2,
—(4.3.2) otherwise, if T2 is a base class of T1, the target type is cv1 T2, where cv1 denotes the cv-qualifiers of T1,
—(4.3.3) otherwise, the target type is the type that E2 would have after applying the lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions.

Using this process, it is determined whether an implicit conversion sequence can be formed from the second operand tothe target type determined for the third operand, and vice versa. If both sequences can be formed, or one can be formedbut it is the ambiguous conversion sequence, the program is ill-formed. If no conversion sequence can be formed, theoperands are left unchanged and further checking is performed as described below. Otherwise, if exactly one conversion

§ 7.6.16 142

© ISO/IEC N4910

sequence can be formed, that conversion is applied to the chosen operand and the converted operand is used in place ofthe original operand for the remainder of this subclause.
[Note 3: The conversion might be ill-formed even if an implicit conversion sequence could be formed. —end note]

5 If the second and third operands are glvalues of the same value category and have the same type, the result is of thattype and value category and it is a bit-field if the second or the third operand is a bit-field, or if both are bit-fields.
6 Otherwise, the result is a prvalue. If the second and third operands do not have the same type, and either has (possiblycv-qualified) class type, overload resolution is used to determine the conversions (if any) to be applied to the operands(12.2.2.3, 12.5). If the overload resolution fails, the program is ill-formed. Otherwise, the conversions thus determinedare applied, and the converted operands are used in place of the original operands for the remainder of this subclause.
7 Lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are performed onthe second and third operands. After those conversions, one of the following shall hold:

—(7.1) The second and third operands have the same type; the result is of that type and the result object is initializedusing the selected operand.
—(7.2) The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions (7.4) areperformed to bring them to a common type, and the result is of that type.
—(7.3) One or both of the second and third operands have pointer type; pointer conversions (7.3.12), function pointerconversions (7.3.14), and qualification conversions (7.3.6) are performed to bring them to their composite pointertype (7.2.2). The result is of the composite pointer type.
—(7.4) One or both of the second and third operands have pointer-to-member type; pointer tomember conversions (7.3.13),function pointer conversions (7.3.14), and qualification conversions (7.3.6) are performed to bring them to theircomposite pointer type (7.2.2). The result is of the composite pointer type.
—(7.5) Both the second and third operands have type std::nullptr_t or one has that type and the other is a null pointerconstant. The result is of type std::nullptr_t.

7.6.17 Yielding a value [expr.yield]
yield-expression :

co_yield assignment-expression
co_yield braced-init-list

1 A yield-expression shall appear only within a suspension context of a function (7.6.2.4). Let e be the operand of the
yield-expression and p be an lvalue naming the promise object of the enclosing coroutine (9.5.4), then the yield-expressionis equivalent to the expression co_await p.yield_value(e).
[Example 1:
template <typename T>
struct my_generator {

struct promise_type {
T current_value;
/* ... */
auto yield_value(T v) {

current_value = std::move(v);
return std::suspend_always{};

}
};
struct iterator { /* ... */ };
iterator begin();
iterator end();

};

my_generator<pair<int,int>> g1() {
for (int i = i; i < 10; ++i) co_yield {i,i};

}
my_generator<pair<int,int>> g2() {

for (int i = i; i < 10; ++i) co_yield make_pair(i,i);
}

auto f(int x = co_yield 5); // error: yield-expression outside of function suspension context
int a[] = { co_yield 1 }; // error: yield-expression outside of function suspension context

§ 7.6.17 143

© ISO/IEC N4910

int main() {
auto r1 = g1();
auto r2 = g2();
assert(std::equal(r1.begin(), r1.end(), r2.begin(), r2.end()));

}

—end example]
7.6.18 Throwing an exception [expr.throw]

throw-expression :
throw assignment-expressionopt

1 A throw-expression is of type void.
2 Evaluating a throw-expression with an operand throws an exception (14.2); the type of the exception object is determinedby removing any top-level cv-qualifiers from the static type of the operand and adjusting the type from “array of T” orfunction type T to “pointer to T”.
3 A throw-expression with no operand rethrows the currently handled exception (14.4). The exception is reactivated withthe existing exception object; no new exception object is created. The exception is no longer considered to be caught.
[Example 1: An exception handler that cannot completely handle the exception itself can be written like this:
try {// ...
} catch (...) { // catch all exceptions// respond (partially) to exception
throw; // pass the exception to some other handler

}

—end example]
4 If no exception is presently being handled, evaluating a throw-expression with no operand calls std::terminate()(14.6.2).
7.6.19 Assignment and compound assignment operators [expr.ass]

1 The assignment operator (=) and the compound assignment operators all group right-to-left. All require a modifiablelvalue as their left operand; their result is an lvalue of the type of the left operand, referring to the left operand. Theresult in all cases is a bit-field if the left operand is a bit-field. In all cases, the assignment is sequenced after the valuecomputation of the right and left operands, and before the value computation of the assignment expression. The rightoperand is sequenced before the left operand. With respect to an indeterminately-sequenced function call, the operationof a compound assignment is a single evaluation.
[Note 1: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect associated with anysingle compound assignment operator. —end note]

assignment-expression :
conditional-expression
yield-expression
throw-expression
logical-or-expression assignment-operator initializer-clause

assignment-operator : one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the object referred to by the left operand is modified (3.1) by replacing its value with theresult of the right operand.
3 If the right operand is an expression, it is implicitly converted (7.3) to the cv-unqualified type of the left operand.
4 When the left operand of an assignment operator is a bit-field that cannot represent the value of the expression, theresulting value of the bit-field is implementation-defined.
5 A simple assignment whose left operand is of a volatile-qualified type is deprecated (D.5) unless the (possibly parenthe-sized) assignment is a discarded-value expression or an unevaluated operand (7.2.3).
6 The behavior of an expression of the form E1 op= E2 is equivalent to E1 = E1 op E2 except that E1 is evaluated onlyonce. Such expressions are deprecated if E1 has volatile-qualified type; see D.5. For += and -=, E1 shall either havearithmetic type or be a pointer to a possibly cv-qualified completely-defined object type. In all other cases, E1 shallhave arithmetic type.
§ 7.6.19 144

© ISO/IEC N4910

7 If the value being stored in an object is read via another object that overlaps in any way the storage of the first object,then the overlap shall be exact and the two objects shall have the same type, otherwise the behavior is undefined.
[Note 2: This restriction applies to the relationship between the left and right sides of the assignment operation; it is not a statementabout how the target of the assignment can be aliased in general. See 7.2.1. —end note]

8 A braced-init-list may appear on the right-hand side of
—(8.1) an assignment to a scalar, in which case the initializer list shall have at most a single element. The meaning of x

= {v}, where T is the scalar type of the expression x, is that of x = T{v}. The meaning of x = {} is x = T{}.
—(8.2) an assignment to an object of class type, in which case the initializer list is passed as the argument to the assignmentoperator function selected by overload resolution (12.4.3.2, 12.2).

[Example 1:
complex<double> z;
z = { 1,2 }; // meaning z.operator=({1,2})
z += { 1, 2 }; // meaning z.operator+=({1,2})
int a, b;
a = b = { 1 }; // meaning a=b=1;
a = { 1 } = b; // syntax error
— end example]
7.6.20 Comma operator [expr.comma]

1 The comma operator groups left-to-right.
expression :

assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right; the left expression is a discarded-value expression(7.2). The left expression is sequenced before the right expression (6.9.1). The type and value of the result are the typeand value of the right operand; the result is of the same value category as its right operand, and is a bit-field if its rightoperand is a bit-field.
2 [Note 1: In contexts where the comma token is given special meaning (e.g. function calls (7.6.1.3), subscript expressions (7.6.1.2),lists of initializers (9.4), or template-argument-lists (13.3)), the comma operator as described in this subclause can appear only inparentheses.
[Example 1:
f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. —end example]
—end note]
7.7 Constant expressions [expr.const]

1 Certain contexts require expressions that satisfy additional requirements as detailed in this subclause; other contextshave different semantics depending on whether or not an expression satisfies these requirements. Expressions thatsatisfy these requirements, assuming that copy elision (11.9.6) is not performed, are called constant expressions.
[Note 1: Constant expressions can be evaluated during translation. —end note]

constant-expression :
conditional-expression

2 A variable or temporary object o is constant-initialized if
—(2.1) either it has an initializer or its default-initialization results in some initialization being performed, and
—(2.2) the full-expression of its initialization is a constant expression when interpreted as a constant-expression, exceptthat if o is an object, that full-expression may also invoke constexpr constructors for o and its subobjects even ifthose objects are of non-literal class types.

[Note 2: Such a class can have a non-trivial destructor. Within this evaluation, std::is_constant_evaluated() (21.3.11)returns true. —end note]
3 A variable is potentially-constant if it is constexpr or it has reference or const-qualified integral or enumeration type.
4 A constant-initialized potentially-constant variable V is usable in constant expressions at a point P if V ’s initializingdeclaration D is reachable from P and
§ 7.7 145

© ISO/IEC N4910

—(4.1) V is constexpr,
—(4.2) V is not initialized to a TU-local value, or
—(4.3) P is in the same translation unit as D.

An object or reference is usable in constant expressions if it is
—(4.4) a variable that is usable in constant expressions, or
—(4.5) a template parameter object (13.2), or
—(4.6) a string literal object (5.13.5), or
—(4.7) a temporary object of non-volatile const-qualified literal type whose lifetime is extended (6.7.7) to that of avariable that is usable in constant expressions, or
—(4.8) a non-mutable subobject or reference member of any of the above.

5 An expression E is a core constant expression unless the evaluation of E, following the rules of the abstract machine(6.9.1), would evaluate one of the following:
—(5.1) this (7.5.2), except in a constexpr function (9.2.6) that is being evaluated as part of E;
—(5.2) a control flow that passes through a declaration of a variable with static (6.7.5.2) or thread (6.7.5.3) storageduration;
—(5.3) an invocation of a non-constexpr function;73
—(5.4) an invocation of an undefined constexpr function;
—(5.5) an invocation of an instantiated constexpr function that fails to satisfy the requirements for a constexpr function;
—(5.6) an invocation of a virtual function (11.7.3) for an object unless

—(5.6.1) the object is usable in constant expressions or
—(5.6.2) its lifetime began within the evaluation of E;

—(5.7) an expression that would exceed the implementation-defined limits (see Annex B);
—(5.8) an operation that would have undefined behavior as specified in Clause 4 through Clause 15;74
—(5.9) an lvalue-to-rvalue conversion (7.3.2) unless it is applied to

—(5.9.1) a non-volatile glvalue that refers to an object that is usable in constant expressions, or
—(5.9.2) a non-volatile glvalue of literal type that refers to a non-volatile object whose lifetime began within theevaluation of E;

—(5.10) an lvalue-to-rvalue conversion that is applied to a glvalue that refers to a non-active member of a union or asubobject thereof;
—(5.11) an lvalue-to-rvalue conversion that is applied to an object with an indeterminate value (6.7.4);
—(5.12) an invocation of an implicitly-defined copy/move constructor or copy/move assignment operator for a unionwhose active member (if any) is mutable, unless the lifetime of the union object began within the evaluation of E;
—(5.13) an id-expression that refers to a variable or data member of reference type unless the reference has a precedinginitialization and either

—(5.13.1) it is usable in constant expressions or
—(5.13.2) its lifetime began within the evaluation of E;

—(5.14) in a lambda-expression, a reference to this or to a variable with automatic storage duration defined outside that
lambda-expression, where the reference would be an odr-use (6.3, 7.5.5);
[Example 1:
void g() {
const int n = 0;
[=] {

constexpr int i = n; // OK, n is not odr-used here
constexpr int j = *&n; // error: &n would be an odr-use of n

73) Overload resolution (12.2) is applied as usual.
74) This includes, for example, signed integer overflow (7.1), certain pointer arithmetic (7.6.6), division by zero (7.6.5), or certain shift operations(7.6.7).
§ 7.7 146

© ISO/IEC N4910

};
}

—end example]
[Note 3: If the odr-use occurs in an invocation of a function call operator of a closure type, it no longer refers to this or to anenclosing automatic variable due to the transformation (7.5.5.3) of the id-expression into an access of the corresponding datamember.
[Example 2:
auto monad = [](auto v) { return [=] { return v; }; };
auto bind = [](auto m) {
return [=](auto fvm) { return fvm(m()); };

};

// OK to capture objects with automatic storage duration created during constant expression evaluation.
static_assert(bind(monad(2))(monad)() == monad(2)());

—end example]
—end note]

—(5.15) a conversion from type cv void* to a pointer-to-object type;
—(5.16) a reinterpret_cast (7.6.1.10);
—(5.17) a modification of an object (7.6.19, 7.6.1.6, 7.6.2.3) unless it is applied to a non-volatile lvalue of literal type thatrefers to a non-volatile object whose lifetime began within the evaluation of E;
—(5.18) an invocation of a destructor (11.4.7) or a function call whose postfix-expression names a pseudo-destructor(7.6.1.3), in either case for an object whose lifetime did not begin within the evaluation of E;
—(5.19) a new-expression (7.6.2.8), unless the selected allocation function is a replaceable global allocation function(17.6.3.2, 17.6.3.3) and the allocated storage is deallocated within the evaluation of E;
—(5.20) a delete-expression (7.6.2.9), unless it deallocates a region of storage allocated within the evaluation of E;
—(5.21) a call to an instance of std::allocator<T>::allocate (20.2.9.2), unless the allocated storage is deallocatedwithin the evaluation of E;
—(5.22) a call to an instance of std::allocator<T>::deallocate (20.2.9.2), unless it deallocates a region of storageallocated within the evaluation of E;
—(5.23) an await-expression (7.6.2.4);
—(5.24) a yield-expression (7.6.17);
—(5.25) a three-way comparison (7.6.8), relational (7.6.9), or equality (7.6.10) operator where the result is unspecified;
—(5.26) a throw-expression (7.6.18);
—(5.27) a dynamic_cast (7.6.1.7) or typeid (7.6.1.8) expression that would throw an exception;
—(5.28) an asm-declaration (9.10);
—(5.29) an invocation of the va_arg macro (17.13.2);
—(5.30) a non-constant library call (3.36); or
—(5.31) a goto statement (8.7.6).

If E satisfies the constraints of a core constant expression, but evaluation of E would evaluate an operation that hasundefined behavior as specified in Clause 16 through Clause 33, or an invocation of the va_start macro (17.13.2), it isunspecified whether E is a core constant expression.
[Example 3:
int x; // not constant
struct A {

constexpr A(bool b) : m(b?42:x) { }
int m;

};
constexpr int v = A(true).m; // OK, constructor call initializes m with the value 42
constexpr int w = A(false).m; // error: initializer for m is x, which is non-constant

§ 7.7 147

© ISO/IEC N4910

constexpr int f1(int k) {
constexpr int x = k; // error: x is not initialized by a constant expression// because lifetime of k began outside the initializer of x
return x;

}
constexpr int f2(int k) {

int x = k; // OK, not required to be a constant expression// because x is not constexpr
return x;

}

constexpr int incr(int &n) {
return ++n;

}
constexpr int g(int k) {

constexpr int x = incr(k); // error: incr(k) is not a core constant expression// because lifetime of k began outside the expression incr(k)
return x;

}
constexpr int h(int k) {

int x = incr(k); // OK, incr(k) is not required to be a core constant expression
return x;

}
constexpr int y = h(1); // OK, initializes y with the value 2// h(1) is a core constant expression because// the lifetime of k begins inside h(1)
—end example]

6 For the purposes of determining whether an expression E is a core constant expression, the evaluation of a call to amember function of std::allocator<T> as defined in 20.2.9.2, where T is a literal type, does not disqualify E frombeing a core constant expression, even if the actual evaluation of such a call would otherwise fail the requirements fora core constant expression. Similarly, the evaluation of a call to std::construct_at or std::ranges::construct_-
at (27.11.8) does not disqualify E from being a core constant expression unless the first argument, of type T*, does notpoint to storage allocated with std::allocator<T> or to an object whose lifetime began within the evaluation of E, orthe evaluation of the underlying constructor call disqualifies E from being a core constant expression.

7 An object a is said to have constant destruction if:
—(7.1) it is not of class type nor (possibly multi-dimensional) array thereof, or
—(7.2) it is of class type or (possibly multi-dimensional) array thereof, that class type has a constexpr destructor, andfor a hypothetical expression E whose only effect is to destroy a, E would be a core constant expression if thelifetime of a and its non-mutable subobjects (but not its mutable subobjects) were considered to start within E.

8 An integral constant expression is an expression of integral or unscoped enumeration type, implicitly converted to aprvalue, where the converted expression is a core constant expression.
[Note 4: Such expressions can be used as bit-field lengths (11.4.10), as enumerator initializers if the underlying type is not fixed (9.7.1),and as alignments (9.12.2). —end note]

9 If an expression of literal class type is used in a context where an integral constant expression is required, then thatexpression is contextually implicitly converted (7.3) to an integral or unscoped enumeration type and the selectedconversion function shall be constexpr.
[Example 4:
struct A {

constexpr A(int i) : val(i) { }
constexpr operator int() const { return val; }
constexpr operator long() const { return 42; }

private:
int val;

};
constexpr A a = alignof(int);
alignas(a) int n; // error: ambiguous conversion
struct B { int n : a; }; // error: ambiguous conversion
—end example]
§ 7.7 148

© ISO/IEC N4910

10 A converted constant expression of type T is an expression, implicitly converted to type T, where the converted expressionis a constant expression and the implicit conversion sequence contains only
—(10.1) user-defined conversions,
—(10.2) lvalue-to-rvalue conversions (7.3.2),
—(10.3) array-to-pointer conversions (7.3.3),
—(10.4) function-to-pointer conversions (7.3.4),
—(10.5) qualification conversions (7.3.6),
—(10.6) integral promotions (7.3.7),
—(10.7) integral conversions (7.3.9) other than narrowing conversions (9.4.5),
—(10.8) null pointer conversions (7.3.12) from std::nullptr_t,
—(10.9) null member pointer conversions (7.3.13) from std::nullptr_t, and
—(10.10) function pointer conversions (7.3.14),

and where the reference binding (if any) binds directly.
[Note 5: Such expressions can be used in new expressions (7.6.2.8), as case expressions (8.5.3), as enumerator initializers if theunderlying type is fixed (9.7.1), as array bounds (9.3.4.5), and as non-type template arguments (13.4). —end note]
A contextually converted constant expression of type bool is an expression, contextually converted to bool (7.3), wherethe converted expression is a constant expression and the conversion sequence contains only the conversions above.

11 A constant expression is either a glvalue core constant expression that refers to an entity that is a permitted result ofa constant expression (as defined below), or a prvalue core constant expression whose value satisfies the followingconstraints:
—(11.1) if the value is an object of class type, each non-static data member of reference type refers to an entity that is apermitted result of a constant expression,
—(11.2) if the value is of pointer type, it contains the address of an object with static storage duration, the address past theend of such an object (7.6.6), the address of a non-immediate function, or a null pointer value,
—(11.3) if the value is of pointer-to-member-function type, it does not designate an immediate function, and
—(11.4) if the value is an object of class or array type, each subobject satisfies these constraints for the value.

An entity is a permitted result of a constant expression if it is an object with static storage duration that either is nota temporary object or is a temporary object whose value satisfies the above constraints, or if it is a non-immediatefunction.
[Example 5:
consteval int f() { return 42; }
consteval auto g() { return f; }
consteval int h(int (*p)() = g()) { return p(); }
constexpr int r = h(); // OK
constexpr auto e = g(); // error: a pointer to an immediate function is// not a permitted result of a constant expression
—end example]

12 Recommended practice: Implementations should provide consistent results of floating-point evaluations, irrespective ofwhether the evaluation is performed during translation or during program execution.
[Note 6: Since this document imposes no restrictions on the accuracy of floating-point operations, it is unspecified whether theevaluation of a floating-point expression during translation yields the same result as the evaluation of the same expression (or thesame operations on the same values) during program execution.
[Example 6:
bool f() {

char array[1 + int(1 + 0.2 - 0.1 - 0.1)]; // Must be evaluated during translation
int size = 1 + int(1 + 0.2 - 0.1 - 0.1); // May be evaluated at runtime
return sizeof(array) == size;

}

It is unspecified whether the value of f() will be true or false. —end example]
—end note]
§ 7.7 149

© ISO/IEC N4910

13 An expression or conversion is in an immediate function context if it is potentially evaluated and either:
—(13.1) its innermost enclosing non-block scope is a function parameter scope of an immediate function, or
—(13.2) its enclosing statement is enclosed (8.1) by the compound-statement of a consteval if statement (8.5.2).

An expression or conversion is an immediate invocation if it is a potentially-evaluated explicit or implicit invocationof an immediate function and is not in an immediate function context. An immediate invocation shall be a constantexpression.
14 An expression or conversion is manifestly constant-evaluated if it is:

—(14.1) a constant-expression, or
—(14.2) the condition of a constexpr if statement (8.5.2), or
—(14.3) an immediate invocation, or
—(14.4) the result of substitution into an atomic constraint expression to determine whether it is satisfied (13.5.2.3), or
—(14.5) the initializer of a variable that is usable in constant expressions or has constant initialization (6.9.3.2).75

[Example 7:
template<bool> struct X {};
X<std::is_constant_evaluated()> x; // type X<true>
int y;
const int a = std::is_constant_evaluated() ? y : 1; // dynamic initialization to 1
double z[a]; // error: a is not usable// in constant expressions
const int b = std::is_constant_evaluated() ? 2 : y; // static initialization to 2
int c = y + (std::is_constant_evaluated() ? 2 : y); // dynamic initialization to y+y
constexpr int f() {
const int n = std::is_constant_evaluated() ? 13 : 17; // n is 13
int m = std::is_constant_evaluated() ? 13 : 17; // m can be 13 or 17 (see below)
char arr[n] = {}; // char[13]
return m + sizeof(arr);

}
int p = f(); // m is 13; initialized to 26
int q = p + f(); // m is 17 for this call; initialized to 56
—end example]

[Note 7: A manifestly constant-evaluated expression is evaluated even in an unevaluated operand (7.2.3). —end note]
15 An expression or conversion is potentially constant evaluated if it is:

—(15.1) a manifestly constant-evaluated expression,
—(15.2) a potentially-evaluated expression (6.3),
—(15.3) an immediate subexpression of a braced-init-list,76
—(15.4) an expression of the form & cast-expression that occurs within a templated entity,77 or
—(15.5) a subexpression of one of the above that is not a subexpression of a nested unevaluated operand (7.2.3).

A function or variable is needed for constant evaluation if it is:
—(15.6) a constexpr function that is named by an expression (6.3) that is potentially constant evaluated, or
—(15.7) a variable named by a potentially constant evaluated expression that is either a constexpr variable or is ofnon-volatile const-qualified integral type or of reference type.

75) Testing this condition can involve a trial evaluation of its initializer as described above.
76) In some cases, constant evaluation is needed to determine whether a narrowing conversion is performed (9.4.5).
77) In some cases, constant evaluation is needed to determine whether such an expression is value-dependent (13.8.3.4).
§ 7.7 150

© ISO/IEC N4910

8 Statements [stmt.stmt]
8.1 Preamble [stmt.pre]

1 Except as indicated, statements are executed in sequence.
statement :

labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block

init-statement :
expression-statement
simple-declaration
alias-declaration

condition :
expression
attribute-specifier-seqopt decl-specifier-seq declarator brace-or-equal-initializer

The optional attribute-specifier-seq appertains to the respective statement.
2 A substatement of a statement is one of the following:

—(2.1) for a labeled-statement, its statement,
—(2.2) for a compound-statement, any statement of its statement-seq,
—(2.3) for a selection-statement, any of its statements (but not its init-statement), or
—(2.4) for an iteration-statement, its statement (but not an init-statement).

[Note 1: The compound-statement of a lambda-expression is not a substatement of the statement (if any) in which the lambda-
expression lexically appears. —end note]

3 A statement S1 encloses a statement S2 if
—(3.1) S2 is a substatement of S1,
—(3.2) S1 is a selection-statement or iteration-statement and S2 is the init-statement of S1,
—(3.3) S1 is a try-block and S2 is its compound-statement or any of the compound-statements of its handlers, or
—(3.4) S1 encloses a statement S3 and S3 encloses S2.

4 The rules for conditions apply both to selection-statements and to the for and while statements (8.6). A conditionthat is not an expression is a declaration (Clause 9). The declarator shall not specify a function or an array. The
decl-specifier-seq shall not define a class or enumeration. If the auto type-specifier appears in the decl-specifier-seq,the type of the identifier being declared is deduced from the initializer as described in 9.2.9.6.

5 The value of a condition that is an initialized declaration in a statement other than a switch statement is the value of thedeclared variable contextually converted to bool (7.3). If that conversion is ill-formed, the program is ill-formed. Thevalue of a condition that is an initialized declaration in a switch statement is the value of the declared variable if it hasintegral or enumeration type, or of that variable implicitly converted to integral or enumeration type otherwise. Thevalue of a condition that is an expression is the value of the expression, contextually converted to bool for statementsother than switch; if that conversion is ill-formed, the program is ill-formed. The value of the condition will be referredto as simply “the condition” where the usage is unambiguous.
6 If a condition can be syntactically resolved as either an expression or a declaration, it is interpreted as the latter.
7 In the decl-specifier-seq of a condition, each decl-specifier shall be either a type-specifier or constexpr.
8.2 Labeled statement [stmt.label]

1 A statement can be labeled.
§ 8.2 151

© ISO/IEC N4910

labeled-statement :
attribute-specifier-seqopt identifier : statement
attribute-specifier-seqopt case constant-expression : statement
attribute-specifier-seqopt default : statement

The optional attribute-specifier-seq appertains to the label. The only use of a label with an identifier is as the target of a
goto. No two labels in a function shall have the same identifier . A label can be used in a goto statement before itsintroduction by a labeled-statement.

2 Case labels and default labels shall occur only in switch statements.
8.3 Expression statement [stmt.expr]

1 Expression statements have the form
expression-statement :

expressionopt ;

The expression is a discarded-value expression (7.2.3). All side effects from an expression statement are completedbefore the next statement is executed. An expression statement with the expression missing is called a null statement.
[Note 1: Most statements are expression statements — usually assignments or function calls. A null statement is useful to carry alabel just before the } of a compound statement and to supply a null body to an iteration statement such as a while statement (8.6.2).—end note]
8.4 Compound statement or block [stmt.block]

1 A compound statement (also known as a block) groups a sequence of statements into a single statement.
compound-statement :

{ statement-seqopt }

statement-seq :
statement
statement-seq statement

[Note 1: A compound statement defines a block scope (6.4). A declaration is a statement (8.8). —end note]
8.5 Selection statements [stmt.select]
8.5.1 General [stmt.select.general]

1 Selection statements choose one of several flows of control.
selection-statement :

if constexpropt (init-statementopt condition) statement
if constexpropt (init-statementopt condition) statement else statement
if !opt consteval compound-statement
if !opt consteval compound-statement else statement
switch (init-statementopt condition) statement

See 9.3.4 for the optional attribute-specifier-seq in a condition.
[Note 1: An init-statement ends with a semicolon. —end note]

2 [Note 2: Each selection-statement and each substatement of a selection-statement has a block scope (6.4.3). —end note]
8.5.2 The if statement [stmt.if]

1 If the condition (8.5) yields true the first substatement is executed. If the else part of the selection statement is presentand the condition yields false, the second substatement is executed. If the first substatement is reached via a label, thecondition is not evaluated and the second substatement is not executed. In the second form of if statement (the oneincluding else), if the first substatement is also an if statement then that inner if statement shall contain an else part.78
2 If the if statement is of the form if constexpr, the value of the condition is contextually converted to bool and theconverted expression shall be a constant expression (7.7); this form is called a constexpr if statement. If the value of theconverted condition is false, the first substatement is a discarded statement, otherwise the second substatement, ifpresent, is a discarded statement. During the instantiation of an enclosing templated entity (13.1), if the condition is notvalue-dependent after its instantiation, the discarded substatement (if any) is not instantiated.
[Example 1:
if constexpr (sizeof(int[2])) {} // OK, narrowing allowed
78) In other words, the else is associated with the nearest un-elsed if.
§ 8.5.2 152

© ISO/IEC N4910

—end example]
[Note 1: Odr-uses (6.3) in a discarded statement do not require an entity to be defined. —end note]
A case or default label appearing within such an if statement shall be associated with a switch statement (8.5.3)within the same if statement. A label (8.2) declared in a substatement of a constexpr if statement shall only be referredto by a statement (8.7.6) in the same substatement.
[Example 2:
template<typename T, typename ... Rest> void g(T&& p, Rest&& ...rs) {// ... handle p

if constexpr (sizeof...(rs) > 0)
g(rs...); // never instantiated with an empty argument list

}

extern int x; // no definition of x required
int f() {

if constexpr (true)
return 0;

else if (x)
return x;

else
return -x;

}

—end example]
3 An if statement of the form

if constexpropt (init-statement condition) statement

is equivalent to
{

init-statement
if constexpropt (condition) statement

}

and an if statement of the form
if constexpropt (init-statement condition) statement else statement

is equivalent to
{

init-statement
if constexpropt (condition) statement else statement

}

except that the init-statement is in the same scope as the condition.
4 An if statement of the form if consteval is called a consteval if statement. The statement, if any, in a consteval ifstatement shall be a compound-statement.
[Example 3:
constexpr void f(bool b) {

if (true)
if consteval { }
else ; // error: not a compound-statement; else not associated with outer if

}

—end example]
5 If a consteval if statement is evaluated in a context that is manifestly constant-evaluated (7.7), the first substatement isexecuted.
[Note 2: The first substatement is an immediate function context. —end note]
Otherwise, if the else part of the selection statement is present, then the second substatement is executed. A case or
default label appearing within such an if statement shall be associated with a switch statement within the same if

§ 8.5.2 153

© ISO/IEC N4910

statement. A label declared in a substatement of a consteval if statement shall only be referred to by a statement in thesame substatement.
6 An if statement of the form

if ! consteval compound-statement

is not itself a consteval if statement, but is equivalent to the consteval if statement
if consteval { } else compound-statement

An if statement of the form
if ! consteval compound-statement1 else statement2

is not itself a consteval if statement, but is equivalent to the consteval if statement
if consteval statement2 else compound-statement1

8.5.3 The switch statement [stmt.switch]
1 The switch statement causes control to be transferred to one of several statements depending on the value of a condition.
2 The condition shall be of integral type, enumeration type, or class type. If of class type, the condition is contextuallyimplicitly converted (7.3) to an integral or enumeration type. If the (possibly converted) type is subject to integralpromotions (7.3.7), the condition is converted to the promoted type. Any statement within the switch statement can belabeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be a converted constant expression (7.7) of the adjusted type of the switch condition.No two of the case constants in the same switch shall have the same value after conversion.
3 There shall be at most one label of the form

default :

within a switch statement.
4 Switch statements can be nested; a case or default label is associated with the smallest switch enclosing it.
5 When the switch statement is executed, its condition is evaluated. If one of the case constants has the same value as thecondition, control is passed to the statement following the matched case label. If no case constant matches the condition,and if there is a default label, control passes to the statement labeled by the default label. If no case matches and ifthere is no default then none of the statements in the switch is executed.
6 case and default labels in themselves do not alter the flow of control, which continues unimpeded across such labels.To exit from a switch, see break, 8.7.2.
[Note 1: Usually, the substatement that is the subject of a switch is compound and case and default labels appear on the top-levelstatements contained within the (compound) substatement, but this is not required. Declarations can appear in the substatement of a
switch statement. —end note]

7 A switch statement of the form
switch (init-statement condition) statement

is equivalent to
{

init-statement
switch (condition) statement

}

except that the init-statement is in the same scope as the condition.
8.6 Iteration statements [stmt.iter]
8.6.1 General [stmt.iter.general]

1 Iteration statements specify looping.
iteration-statement :

while (condition) statement
do statement while (expression) ;
for (init-statement conditionopt ; expressionopt) statement
for (init-statementopt for-range-declaration : for-range-initializer) statement

§ 8.6.1 154

© ISO/IEC N4910

for-range-declaration :
attribute-specifier-seqopt decl-specifier-seq declarator
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list]

for-range-initializer :
expr-or-braced-init-list

See 9.3.4 for the optional attribute-specifier-seq in a for-range-declaration.
[Note 1: An init-statement ends with a semicolon. —end note]

2 The substatement in an iteration-statement implicitly defines a block scope (6.4) which is entered and exited each timethrough the loop. If the substatement in an iteration-statement is a single statement and not a compound-statement, itis as if it was rewritten to be a compound-statement containing the original statement.
[Example 1:
while (--x >= 0)

int i;

can be equivalently rewritten as
while (--x >= 0) {

int i;
}

Thus after the while statement, i is no longer in scope. —end example]
8.6.2 The while statement [stmt.while]

1 In the while statement the substatement is executed repeatedly until the value of the condition (8.5) becomes false.The test takes place before each execution of the substatement.
2 A while statement is equivalent to

label :
{

if (condition) {
statement
goto label ;

}
}

[Note 1: The variable created in the condition is destroyed and created with each iteration of the loop.
[Example 1:
struct A {

int val;
A(int i) : val(i) { }
~A() { }
operator bool() { return val != 0; }

};
int i = 1;
while (A a = i) {// ...

i = 0;
}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds and once for the conditionthat fails. —end example]
—end note]
8.6.3 The do statement [stmt.do]

1 The expression is contextually converted to bool (7.3); if that conversion is ill-formed, the program is ill-formed.
2 In the do statement the substatement is executed repeatedly until the value of the expression becomes false. The testtakes place after each execution of the statement.
8.6.4 The for statement [stmt.for]

1 The for statement
for (init-statement conditionopt ; expressionopt) statement

§ 8.6.4 155

© ISO/IEC N4910

is equivalent to
{

init-statement
while (condition) {

statement
expression ;

}
}

except that the init-statement is in the same scope as the condition, and except that a continue in statement (notenclosed in another iteration statement) will execute expression before re-evaluating condition.
[Note 1: Thus the first statement specifies initialization for the loop; the condition (8.5) specifies a test, sequenced before eachiteration, such that the loop is exited when the condition becomes false; the expression often specifies incrementing that is sequencedafter each iteration. —end note]

2 Either or both of the condition and the expression can be omitted. A missing condition makes the implied while clauseequivalent to while(true).
8.6.5 The range-based for statement [stmt.ranged]

1 The range-based for statement
for (init-statementopt for-range-declaration : for-range-initializer) statement

is equivalent to
{

init-statementopt
auto &&range = for-range-initializer ;
auto begin = begin-expr ;
auto end = end-expr ;
for (; begin != end; ++begin) {

for-range-declaration = * begin ;
statement

}
}

where
—(1.1) if the for-range-initializer is an expression, it is regarded as if it were surrounded by parentheses (so that a commaoperator cannot be reinterpreted as delimiting two init-declarators);
—(1.2) range, begin, and end are variables defined for exposition only; and
—(1.3) begin-expr and end-expr are determined as follows:

—(1.3.1) if the for-range-initializer is an expression of array type R, begin-expr and end-expr are range and range
+ N, respectively, where N is the array bound. If R is an array of unknown bound or an array of incompletetype, the program is ill-formed;

—(1.3.2) if the for-range-initializer is an expression of class type C, and searches in the scope of C (6.5.2) for thenames begin and end each find at least one declaration, begin-expr and end-expr are range.begin() and
range.end(), respectively;

—(1.3.3) otherwise, begin-expr and end-expr are begin(range) and end(range), respectively, where begin and
end undergo argument-dependent lookup (6.5.4).
[Note 1: Ordinary unqualified lookup (6.5.3) is not performed. —end note]

[Example 1:
int array[5] = { 1, 2, 3, 4, 5 };
for (int& x : array)

x *= 2;

—end example]
2 In the decl-specifier-seq of a for-range-declaration, each decl-specifier shall be either a type-specifier or constexpr.The decl-specifier-seq shall not define a class or enumeration.

§ 8.6.5 156

© ISO/IEC N4910

8.7 Jump statements [stmt.jump]
8.7.1 General [stmt.jump.general]

1 Jump statements unconditionally transfer control.
jump-statement :

break ;
continue ;
return expr-or-braced-init-listopt ;
coroutine-return-statement
goto identifier ;

2 [Note 1: On exit from a scope (however accomplished), objects with automatic storage duration (6.7.5.4) that have been constructed inthat scope are destroyed in the reverse order of their construction. For temporaries, see 6.7.7. However, the program can be terminated(by calling std::exit() or std::abort() (17.5), for example) without destroying objects with automatic storage duration. —endnote]
[Note 2: A suspension of a coroutine (7.6.2.4) is not considered to be an exit from a scope. —end note]
8.7.2 The break statement [stmt.break]

1 The break statement shall occur only in an iteration-statement or a switch statement and causes termination of thesmallest enclosing iteration-statement or switch statement; control passes to the statement following the terminatedstatement, if any.
8.7.3 The continue statement [stmt.cont]

1 The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-continuationportion of the smallest enclosing iteration-statement, that is, to the end of the loop. More precisely, in each of thestatements
while (foo) {

{ // ...
}

contin: ;
}

do {
{ // ...
}

contin: ;
} while (foo);

for (;;) {
{ // ...
}

contin: ;
}

a continue not contained in an enclosed iteration statement is equivalent to goto contin.
8.7.4 The return statement [stmt.return]

1 A function returns to its caller by the return statement.
2 The expr-or-braced-init-list of a return statement is called its operand. A return statement with no operand shall beused only in a function whose return type is cv void, a constructor (11.4.5), or a destructor (11.4.7). A return statementwith an operand of type void shall be used only in a function that has a cv void return type. A return statement with anyother operand shall be used only in a function that has a return type other than cv void; the return statement initializesthe returned reference or prvalue result object of the (explicit or implicit) function call by copy-initialization (9.4) fromthe operand.
[Note 1: A constructor or destructor does not have a return type. —end note]
[Note 2: A return statement can involve an invocation of a constructor to perform a copy or move of the operand if it is not aprvalue or if its type differs from the return type of the function. A copy operation associated with a return statement can be elidedor converted to a move operation if an automatic storage duration variable is returned (11.9.6). —end note]

3 The destructor for the result object is potentially invoked (11.4.7, 14.3).
[Example 1:
class A {
~A() {}

};
A f() { return A(); } // error: destructor of A is private (even though it is never invoked)
— end example]

4 Flowing off the end of a constructor, a destructor, or a non-coroutine function with a cv void return type is equivalent to a
returnwith no operand. Otherwise, flowing off the end of a function that is neither main (6.9.3.1) nor a coroutine (9.5.4)results in undefined behavior.

§ 8.7.4 157

© ISO/IEC N4910

5 The copy-initialization of the result of the call is sequenced before the destruction of temporaries at the end of thefull-expression established by the operand of the return statement, which, in turn, is sequenced before the destructionof local variables (8.7) of the block enclosing the return statement.
8.7.5 The co_return statement [stmt.return.coroutine]

coroutine-return-statement :
co_return expr-or-braced-init-listopt ;

1 A coroutine returns to its caller or resumer (9.5.4) by the co_return statement or when suspended (7.6.2.4). A coroutineshall not enclose a return statement (8.7.4).
[Note 1: For this determination, it is irrelevant whether the return statement is enclosed by a discarded statement (8.5.2). —endnote]

2 The expr-or-braced-init-list of a co_return statement is called its operand. Let p be an lvalue naming the coroutinepromise object (9.5.4). A co_return statement is equivalent to:
{ S; goto final-suspend; }

where final-suspend is the exposition-only label defined in 9.5.4 and S is defined as follows:
—(2.1) If the operand is a braced-init-list or an expression of non-void type, S is p.return_value(expr-or-braced-init-

list). The expression S shall be a prvalue of type void.
—(2.2) Otherwise, S is the compound-statement { expressionopt ; p.return_void(); }. The expression p.return_-

void() shall be a prvalue of type void.
3 If p.return_void() is a valid expression, flowing off the end of a coroutine’s function-body is equivalent to a co_returnwith no operand; otherwise flowing off the end of a coroutine’s function-body results in undefined behavior.
8.7.6 The goto statement [stmt.goto]

1 The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier shall be alabel (8.2) located in the current function.
8.8 Declaration statement [stmt.dcl]

1 A declaration statement introduces one or more new names into a block; it has the form
declaration-statement :

block-declaration

[Note 1: If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration is hidden for theremainder of the block (6.5.3), after which it resumes its force. —end note]
2 A variable with automatic storage duration (6.7.5.4) is active everywhere in the scope to which it belongs after its

init-declarator . Upon each transfer of control (including sequential execution of statements) within a function frompoint P to point Q, all variables with automatic storage duration that are active at P and not at Q are destroyed in thereverse order of their construction. Then, all variables with automatic storage duration that are active at Q but not at Pare initialized in declaration order; unless all such variables have vacuous initialization (6.7.3), the transfer of controlshall not be a jump.79 When a declaration-statement is executed, P and Q are the points immediately before and afterit; when a function returns, Q is after its body.
[Example 1:
void f() {// ...

goto lx; // error: jump into scope of a// ...
ly:

X a = 1;// ...
lx:

goto ly; // OK, jump implies destructor call for a followed by// construction again immediately following label ly
}

—end example]

79) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.
§ 8.8 158

© ISO/IEC N4910

3 Dynamic initialization of a block variable with static storage duration (6.7.5.2) or thread storage duration (6.7.5.3)is performed the first time control passes through its declaration; such a variable is considered initialized upon thecompletion of its initialization. If the initialization exits by throwing an exception, the initialization is not complete, soit will be tried again the next time control enters the declaration. If control enters the declaration concurrently while thevariable is being initialized, the concurrent execution shall wait for completion of the initialization.
[Note 2: A conforming implementation cannot introduce any deadlock around execution of the initializer. Deadlocks might still becaused by the program logic; the implementation need only avoid deadlocks due to its own synchronization operations. —end note]
If control re-enters the declaration recursively while the variable is being initialized, the behavior is undefined.
[Example 2:
int foo(int i) {

static int s = foo(2*i); // undefined behavior: recursive call
return i+1;

}

—end example]
4 An object associated with a block variable with static or thread storage duration will be destroyed if and only if it wasconstructed.
[Note 3: 6.9.3.4 describes the order in which such objects are destroyed. —end note]
8.9 Ambiguity resolution [stmt.ambig]

1 There is an ambiguity in the grammar involving expression-statements and declarations: An expression-statementwith a function-style explicit type conversion (7.6.1.4) as its leftmost subexpression can be indistinguishable from a
declaration where the first declarator starts with a (. In those cases the statement is a declaration.

2 [Note 1: If the statement cannot syntactically be a declaration, there is no ambiguity, so this rule does not apply. In some cases, thewhole statement needs to be examined to determine whether this is the case. This resolves the meaning of many examples.
[Example 1: Assuming T is a simple-type-specifier (9.2.9),
T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement
T(*d)(int); // declaration
T(e)[5]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed for semantic reasons,but that does not affect the syntactic analysis. —end example]
The remaining cases are declarations.
[Example 2:
class T {// ...
public:

T();
T(int);
T(int, int);

};
T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g)(h,2); // declaration
—end example]
—end note]

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement, beyondwhether they are type-names or not, is not generally used in or changed by the disambiguation. Class templates areinstantiated as necessary to determine if a qualified name is a type-name. Disambiguation precedes parsing, and a
§ 8.9 159

© ISO/IEC N4910

statement disambiguated as a declaration may be an ill-formed declaration. If, during parsing, lookup finds that a namein a template argument is bound to (part of) the declaration being parsed, the program is ill-formed. No diagnostic isrequired.
[Example 3:
struct T1 {

T1 operator()(int x) { return T1(x); }
int operator=(int x) { return x; }
T1(int) { }

};
struct T2 { T2(int) { } };
int a, (*(*b)(T2))(int), c, d;

void f() {// disambiguation requires this to be parsed as a declaration:
T1(a) = 3,
T2(4), // T2 will be declared as a variable of type T1, but this will not
(*(*b)(T2(c)))(int(d)); // allow the last part of the declaration to parse properly,// since it depends on T2 being a type-name

}

—end example]

§ 8.9 160

© ISO/IEC N4910

9 Declarations [dcl.dcl]
9.1 Preamble [dcl.pre]

1 Declarations generally specify how names are to be interpreted. Declarations have the form
declaration-seq :

declaration
declaration-seq declaration

declaration :
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
deduction-guide
explicit-instantiation
explicit-specialization
export-declaration
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
module-import-declaration

block-declaration :
simple-declaration
asm-declaration
namespace-alias-definition
using-declaration
using-enum-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

nodeclspec-function-declaration :
attribute-specifier-seqopt declarator ;

alias-declaration :
using identifier attribute-specifier-seqopt = defining-type-id ;

simple-declaration :
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list] initializer ;

static_assert-declaration :
static_assert (constant-expression) ;
static_assert (constant-expression , string-literal) ;

empty-declaration :
;

attribute-declaration :
attribute-specifier-seq ;

[Note 1: asm-declarations are described in 9.10, and linkage-specifications are described in 9.11; function-definitions are describedin 9.5 and template-declarations and deduction-guides are described in 13.7.2.3; namespace-definitions are described in 9.8.2,
using-declarations are described in 9.9 and using-directives are described in 9.8.4. —end note]

2 Certain declarations contain one ormore scopes (6.4.1). Unless otherwise stated, utterances in Clause 9 about componentsin, of, or contained by a declaration or subcomponent thereof refer only to those components of the declaration that arenot nested within scopes nested within the declaration.
3 A simple-declaration or nodeclspec-function-declaration of the form

attribute-specifier-seqopt decl-specifier-seqopt init-declarator-listopt ;

§ 9.1 161

© ISO/IEC N4910

is divided into three parts. Attributes are described in 9.12. decl-specifiers, the principal components of a decl-
specifier-seq, are described in 9.2. declarators, the components of an init-declarator-list, are described in 9.3. The
attribute-specifier-seq appertains to each of the entities declared by the declarators of the init-declarator-list.
[Note 2: In the declaration for an entity, attributes appertaining to that entity can appear at the start of the declaration and after the
declarator-id for that declaration. —end note]
[Example 1:
[[noreturn]] void f [[noreturn]] (); // OK
—end example]

4 If a declarator-id is a name, the init-declarator and (hence) the declaration introduce that name.
[Note 3: Otherwise, the declarator-id is a qualified-id or names a destructor or its unqualified-id is a template-id and no name isintroduced. —end note]
The defining-type-specifiers (9.2.9) in the decl-specifier-seq and the recursive declarator structure describe a type (9.3.4),which is then associated with the declarator-id .

5 In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (11.1) or enumeration(9.7.1), that is, when the decl-specifier-seq contains either a class-specifier , an elaborated-type-specifier with a class-
key (11.3), or an enum-specifier . In these cases and whenever a class-specifier or enum-specifier is present in the
decl-specifier-seq, the identifiers in these specifiers are also declared (as class-names, enum-names, or enumerators,depending on the syntax). In such cases, the decl-specifier-seq shall (re)introduce one or more names into the program.
[Example 2:
enum { }; // error
typedef class { }; // error
— end example]

6 A simple-declaration with an identifier-list is called a structured binding declaration (9.6). If the decl-specifier-seqcontains any decl-specifier other than static, thread_local, auto (9.2.9.6), or cv-qualifiers, the program is ill-formed.The initializer shall be of the form “= assignment-expression”, of the form “{ assignment-expression }”, or of the form“(assignment-expression)”, where the assignment-expression is of array or non-union class type.
7 If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and each declarator-

id is declared to be a typedef-name, synonymous with its associated type (9.2.4).
[Note 4: Such a declarator-id is an identifier (11.4.8.3). —end note]
If the decl-specifier-seq contains no typedef specifier, the declaration is called a function declaration if the typeassociated with a declarator-id is a function type (9.3.4.6) and an object declaration otherwise.

8 Syntactic components beyond those found in the general form of simple-declaration are added to a function declarationto make a function-definition. An object declaration, however, is also a definition unless it contains the extern specifierand has no initializer (6.2). An object definition causes storage of appropriate size and alignment to be reserved and anyappropriate initialization (9.4) to be done.
9 A nodeclspec-function-declaration shall declare a constructor, destructor, or conversion function.
[Note 5: Because a member function cannot be subject to a non-defining declaration outside of a class definition (11.4.2), a
nodeclspec-function-declaration can only be used in a template-declaration (13.1), explicit-instantiation (13.9.3), or explicit-
specialization (13.9.4). —end note]

10 In a static_assert-declaration, the constant-expression is contextually converted to bool and the converted expressionshall be a constant expression (7.7). If the value of the expression when so converted is true, the declaration has noeffect. Otherwise, the program is ill-formed, and the resulting diagnostic message (4.1) should include the text of the
string-literal , if one is supplied.
[Example 3:
static_assert(sizeof(int) == sizeof(void*), "wrong pointer size");
static_assert(sizeof(int[2])); // OK, narrowing allowed
—end example]

11 An empty-declaration has no effect.
12 Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

§ 9.1 162

© ISO/IEC N4910

9.2 Specifiers [dcl.spec]
9.2.1 General [dcl.spec.general]

1 The specifiers that can be used in a declaration are
decl-specifier :

storage-class-specifier
defining-type-specifier
function-specifier
friend
typedef
constexpr
consteval
constinit
inline

decl-specifier-seq :
decl-specifier attribute-specifier-seqopt
decl-specifier decl-specifier-seq

The optional attribute-specifier-seq in a decl-specifier-seq appertains to the type determined by the preceding decl-
specifiers (9.3.4). The attribute-specifier-seq affects the type only for the declaration it appears in, not other declarationsinvolving the same type.

2 Each decl-specifier shall appear at most once in a complete decl-specifier-seq, except that long may appear twice. Atmost one of the constexpr, consteval, and constinit keywords shall appear in a decl-specifier-seq.
3 If a type-name is encountered while parsing a decl-specifier-seq, it is interpreted as part of the decl-specifier-seq if andonly if there is no previous defining-type-specifier other than a cv-qualifier in the decl-specifier-seq. The sequenceshall be self-consistent as described below.
[Example 1:
typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc. To get a variablecalled Pc, a type-specifier (other than const or volatile) has to be present to indicate that the typedef-name Pc is the name being(re)declared, rather than being part of the decl-specifier sequence. For another example,
void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

—end example]
4 [Note 1: Since signed, unsigned, long, and short by default imply int, a type-name appearing after one of those specifiers istreated as the name being (re)declared.
[Example 2:
void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

—end example]
—end note]
9.2.2 Storage class specifiers [dcl.stc]

1 The storage class specifiers are
storage-class-specifier :

static
thread_local
extern
mutable

At most one storage-class-specifier shall appear in a given decl-specifier-seq, except that thread_local may appearwith static or extern. If thread_local appears in any declaration of a variable it shall be present in all declarationsof that entity. If a storage-class-specifier appears in a decl-specifier-seq, there can be no typedef specifier in the same
decl-specifier-seq and the init-declarator-list ormember-declarator-list of the declaration shall not be empty (except foran anonymous union declared in a namespace scope (11.5.2)). The storage-class-specifier applies to the name declaredby each init-declarator in the list and not to any names declared by other specifiers.
§ 9.2.2 163

© ISO/IEC N4910

[Note 1: See 13.9.4 and 13.9.3 for restrictions in explicit specializations and explicit instantiations, respectively. —end note]
2 [Note 2: A variable declared without a storage-class-specifier at block scope or declared as a function parameter has automaticstorage duration by default (6.7.5.4). —end note]
3 The thread_local specifier indicates that the named entity has thread storage duration (6.7.5.3). It shall be applied onlyto the declaration of a variable of namespace or block scope, to a structured binding declaration (9.6), or to the declarationof a static data member. When thread_local is applied to a variable of block scope the storage-class-specifier staticis implied if no other storage-class-specifier appears in the decl-specifier-seq.
4 The static specifier shall be applied only to the declaration of a variable or function, to a structured binding declaration(9.6), or to the declaration of an anonymous union (11.5.2). There can be no static function declarations within ablock, nor any static function parameters. A static specifier used in the declaration of a variable declares the variableto have static storage duration (6.7.5.2), unless accompanied by the thread_local specifier, which declares the variableto have thread storage duration (6.7.5.3). A static specifier can be used in declarations of class members; 11.4.9describes its effect. For the linkage of a name declared with a static specifier, see 6.6.
5 The extern specifier shall be applied only to the declaration of a variable or function. The extern specifier shall not beused in the declaration of a class member or function parameter. For the linkage of a name declared with an externspecifier, see 6.6.
[Note 3: The extern keyword can also be used in explicit-instantiations and linkage-specifications, but it is not a storage-class-
specifier in such contexts. —end note]

6 All declarations for a given entity shall give its name the same linkage.
[Note 4: The linkage given by some declarations is affected by previous declarations. Overloads are distinct entities. —end note]
[Example 1:
static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

void h();
inline void h(); // external linkage
inline void l();
void l(); // external linkage
inline void m();
extern void m(); // external linkage
static void n();
inline void n(); // internal linkage
static int a; // a has internal linkage
int a; // error: two definitions
static int b; // b has internal linkage
extern int b; // b still has internal linkage
int c; // c has external linkage
static int c; // error: inconsistent linkage
extern int d; // d has external linkage
static int d; // error: inconsistent linkage
—end example]

7 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can only be usedin ways that do not require a complete class type.
[Example 2:
struct S;

§ 9.2.2 164

© ISO/IEC N4910

extern S a;
extern S f();
extern void g(S);

void h() {
g(a); // error: S is incomplete
f(); // error: S is incomplete

}

—end example]
8 The mutable specifier shall appear only in the declaration of a non-static data member (11.4) whose type is neitherconst-qualified nor a reference type.
[Example 3:
class X {

mutable const int* p; // OK
mutable int* const q; // error

};

—end example]
9 [Note 5: The mutable specifier on a class data member nullifies a const specifier applied to the containing class object and permitsmodification of the mutable class member even though the rest of the object is const (6.8.4, 9.2.9.2). —end note]
9.2.3 Function specifiers [dcl.fct.spec]

1 A function-specifier can be used only in a function declaration.
function-specifier :

virtual
explicit-specifier

explicit-specifier :
explicit (constant-expression)
explicit

2 The virtual specifier shall be used only in the initial declaration of a non-static member function; see 11.7.3.
3 An explicit-specifier shall be used only in the declaration of a constructor or conversion function within its classdefinition; see 11.4.8.2 and 11.4.8.3.
4 In an explicit-specifier , the constant-expression, if supplied, shall be a contextually converted constant expression oftype bool (7.7). The explicit-specifier explicit without a constant-expression is equivalent to the explicit-specifier

explicit(true). If the constant expression evaluates to true, the function is explicit. Otherwise, the function is notexplicit. A (token that follows explicit is parsed as part of the explicit-specifier .
[Example 1:
struct S {

explicit(sizeof(char[2])) S(char); // error: narrowing conversion of value 2 to type bool
explicit(sizeof(char)) S(bool); // OK, conversion of value 1 to type bool is non-narrowing

};

—end example]
9.2.4 The typedef specifier [dcl.typedef]

1 Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming fundamental(6.8.2) or compound (6.8.3) types. The typedef specifier shall not be combined in a decl-specifier-seq with any otherkind of specifier except a defining-type-specifier , and it shall not be used in the decl-specifier-seq of a parameter-
declaration (9.3.4.6) nor in the decl-specifier-seq of a function-definition (9.5). If a typedef specifier appears in adeclaration without a declarator , the program is ill-formed.

typedef-name :
identifier
simple-template-id

A name declared with the typedef specifier becomes a typedef-name. A typedef-name names the type associated withthe identifier (9.3) or simple-template-id (13.1); a typedef-name is thus a synonym for another type. A typedef-namedoes not introduce a new type the way a class declaration (11.3) or enum declaration (9.7.1) does.

§ 9.2.4 165

© ISO/IEC N4910

[Example 1: After
typedef int MILES, *KLICKSP;

the constructions
MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int”. —end example]
2 A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword is notlooked up; it becomes a typedef-name and the optional attribute-specifier-seq following the identifier appertains tothat typedef-name. Such a typedef-name has the same semantics as if it were introduced by the typedef specifier. Inparticular, it does not define a new type.
[Example 2:
using handler_t = void (*)(int);
extern handler_t ignore;
extern void (*ignore)(int); // redeclare ignore
template<class T> struct P { };
using cell = P<cell*>; // error: cell not found (6.4.2)
— end example]
The defining-type-specifier-seq of the defining-type-id shall not define a class or enumeration if the alias-declaration isthe declaration of a template-declaration.

3 A simple-template-id is only a typedef-name if its template-name names an alias template or a template template-
parameter .
[Note 1: A simple-template-id that names a class template specialization is a class-name (11.3). If a typedef-name is used toidentify the subject of an elaborated-type-specifier (9.2.9.4), a class definition (Clause 11), a constructor declaration (11.4.5), or adestructor declaration (11.4.7), the program is ill-formed. —end note]
[Example 3:
struct S {

S();
~S();

};

typedef struct S T;

S a = T(); // OK
struct T * p; // error
— end example]

4 An unnamed class or enumeration C defined in a typedef declaration has the first typedef-name declared by thedeclaration to be of type C as its typedef name for linkage purposes (6.6).
[Note 2: A typedef declaration involving a lambda-expression does not itself define the associated closure type, and so the closuretype is not given a typedef name for linkage purposes. —end note]
[Example 4:
typedef struct { } *ps, S; // S is the typedef name for linkage purposes
typedef decltype([]{}) C; // the closure type has no typedef name for linkage purposes
— end example]

5 An unnamed class with a typedef name for linkage purposes shall not
—(5.1) declare any members other than non-static data members, member enumerations, or member classes,
—(5.2) have any base classes or default member initializers, or
—(5.3) contain a lambda-expression,

and all member classes shall also satisfy these requirements (recursively).
[Example 5:
typedef struct {

int f() {}
} X; // error: struct with typedef name for linkage has member functions
§ 9.2.4 166

© ISO/IEC N4910

—end example]
9.2.5 The friend specifier [dcl.friend]

1 The friend specifier is used to specify access to class members; see 11.8.4.
9.2.6 The constexpr and consteval specifiers [dcl.constexpr]

1 The constexpr specifier shall be applied only to the definition of a variable or variable template or the declarationof a function or function template. The consteval specifier shall be applied only to the declaration of a function orfunction template. A function or static data member declared with the constexpr or consteval specifier is implicitly aninline function or variable (9.2.8). If any declaration of a function or function template has a constexpr or constevalspecifier, then all its declarations shall contain the same specifier.
[Note 1: An explicit specialization can differ from the template declaration with respect to the constexpr or consteval specifier.—end note]
[Note 2: Function parameters cannot be declared constexpr. —end note]
[Example 1:
constexpr void square(int &x); // OK, declaration
constexpr int bufsz = 1024; // OK, definition
constexpr struct pixel { // error: pixel is a type
int x;
int y;
constexpr pixel(int); // OK, declaration

};
constexpr pixel::pixel(int a)

: x(a), y(x) // OK, definition
{ square(x); }

constexpr pixel small(2); // error: square not defined, so small(2)// not constant (7.7) so constexpr not satisfied
constexpr void square(int &x) { // OK, definition

x *= x;
}
constexpr pixel large(4); // OK, square defined
int next(constexpr int x) { // error: not for parameters

return x + 1;
}
extern constexpr int memsz; // error: not a definition
—end example]

2 A constexpr or consteval specifier used in the declaration of a function declares that function to be a constexprfunction. A function or constructor declared with the consteval specifier is called an immediate function. A destructor,an allocation function, or a deallocation function shall not be declared with the consteval specifier.
3 The definition of a constexpr function shall satisfy the following requirements:

—(3.1) its return type (if any) shall be a literal type;
—(3.2) each of its parameter types shall be a literal type;
—(3.3) it shall not be a coroutine (9.5.4);
—(3.4) if the function is a constructor or destructor, its class shall not have any virtual base classes.

[Example 2:
constexpr int square(int x)

{ return x * x; } // OK
constexpr long long_max()

{ return 2147483647; } // OK
constexpr int abs(int x) {

if (x < 0)
x = -x;

return x; // OK
}

§ 9.2.6 167

© ISO/IEC N4910

constexpr int constant_non_42(int n) { // OK
if (n == 42) {
static int value = n;
return value;

}
return n;

}
constexpr int uninit() {

struct { int a; } s;
return s.a; // error: uninitialized read of s.a

}
constexpr int prev(int x)

{ return --x; } // OK
constexpr int g(int x, int n) { // OK

int r = 1;
while (--n > 0) r *= x;
return r;

}

—end example]
4 The definition of a constexpr constructor whose function-body is not = delete shall additionally satisfy the followingrequirements:

—(4.1) for a non-delegating constructor, every constructor selected to initialize non-static data members and base classsubobjects shall be a constexpr constructor;
—(4.2) for a delegating constructor, the target constructor shall be a constexpr constructor.

[Example 3:
struct Length {

constexpr explicit Length(int i = 0) : val(i) { }
private:

int val;
};

—end example]
5 The definition of a constexpr destructor whose function-body is not = delete shall additionally satisfy the followingrequirement:

—(5.1) for every subobject of class type or (possibly multi-dimensional) array thereof, that class type shall have aconstexpr destructor.
6 For a constexpr function or constexpr constructor that is neither defaulted nor a template, if no argument values exist suchthat an invocation of the function or constructor could be an evaluated subexpression of a core constant expression (7.7),or, for a constructor, an evaluated subexpression of the initialization full-expression of some constant-initializedobject (6.9.3.2), the program is ill-formed, no diagnostic required.
[Example 4:
constexpr int f(bool b)

{ return b ? throw 0 : 0; } // OK
constexpr int f() { return f(true); } // ill-formed, no diagnostic required
struct B {

constexpr B(int x) : i(0) { } // x is unused
int i;

};

int global;

struct D : B {
constexpr D() : B(global) { } // ill-formed, no diagnostic required// lvalue-to-rvalue conversion on non-constant global

};

constexpr int f(int x) {
static int n = x;

§ 9.2.6 168

© ISO/IEC N4910

return n + x; // ill-formed, no diagnostic required// all calls reach the static variable declaration
}

—end example]
7 If the instantiated template specialization of a constexpr function template or member function of a class templatewould fail to satisfy the requirements for a constexpr function, that specialization is still a constexpr function, eventhough a call to such a function cannot appear in a constant expression. If no specialization of the template would satisfythe requirements for a constexpr function when considered as a non-template function, the template is ill-formed, nodiagnostic required.
8 An invocation of a constexpr function in a given context produces the same result as an invocation of an equivalentnon-constexpr function in the same context in all respects except that

—(8.1) an invocation of a constexpr function can appear in a constant expression (7.7) and
—(8.2) copy elision is not performed in a constant expression (11.9.6).

[Note 3: Declaring a function constexpr can change whether an expression is a constant expression. This can indirectly cause calls to
std::is_constant_evaluated within an invocation of the function to produce a different value. —end note]

9 The constexpr and consteval specifiers have no effect on the type of a constexpr function.
[Example 5:
constexpr int bar(int x, int y) // OK

{ return x + y + x*y; }// ...
int bar(int x, int y) // error: redefinition of bar

{ return x * 2 + 3 * y; }

—end example]
10 A constexpr specifier used in an object declaration declares the object as const. Such an object shall have literal typeand shall be initialized. In any constexpr variable declaration, the full-expression of the initialization shall be a constantexpression (7.7). A constexpr variable shall have constant destruction.
[Example 6:
struct pixel {

int x, y;
};
constexpr pixel ur = { 1294, 1024 }; // OK
constexpr pixel origin; // error: initializer missing
—end example]
9.2.7 The constinit specifier [dcl.constinit]

1 The constinit specifier shall be applied only to a declaration of a variable with static or thread storage duration. If thespecifier is applied to any declaration of a variable, it shall be applied to the initializing declaration. No diagnostic isrequired if no constinit declaration is reachable at the point of the initializing declaration.
2 If a variable declared with the constinit specifier has dynamic initialization (6.9.3.3), the program is ill-formed.
[Note 1: The constinit specifier ensures that the variable is initialized during static initialization (6.9.3.2). —end note]

3 [Example 1:
const char * g() { return "dynamic initialization"; }
constexpr const char * f(bool p) { return p ? "constant initializer" : g(); }
constinit const char * c = f(true); // OK
constinit const char * d = f(false); // error
— end example]
9.2.8 The inline specifier [dcl.inline]

1 The inline specifier shall be applied only to the declaration of a variable or function.
2 A function declaration (9.3.4.6, 11.4.2, 11.8.4) with an inline specifier declares an inline function. The inline specifierindicates to the implementation that inline substitution of the function body at the point of call is to be preferred to theusual function call mechanism. An implementation is not required to perform this inline substitution at the point of call;

§ 9.2.8 169

© ISO/IEC N4910

however, even if this inline substitution is omitted, the other rules for inline functions specified in this subclause shallstill be respected.
[Note 1: The inline keyword has no effect on the linkage of a function. In certain cases, an inline function cannot use names withinternal linkage; see 6.6. —end note]

3 A variable declaration with an inline specifier declares an inline variable.
4 The inline specifier shall not appear on a block scope declaration or on the declaration of a function parameter. If the

inline specifier is used in a friend function declaration, that declaration shall be a definition or the function shall havepreviously been declared inline.
5 If a definition of a function or variable is reachable at the point of its first declaration as inline, the program is ill-formed.If a function or variable with external or module linkage is declared inline in one definition domain, an inline declarationof it shall be reachable from the end of every definition domain in which it is declared; no diagnostic is required.
[Note 2: A call to an inline function or a use of an inline variable can be encountered before its definition becomes reachable in atranslation unit. —end note]

6 [Note 3: An inline function or variable with external or module linkage can be defined in multiple translation units (6.3), but is oneentity with one address. A type or static variable defined in the body of such a function is therefore a single entity. —end note]
7 If an inline function or variable that is attached to a named module is declared in a definition domain, it shall be definedin that domain.
[Note 4: A constexpr function (9.2.6) is implicitly inline. In the global module, a function defined within a class definition is implicitlyinline (11.4.2, 11.8.4). —end note]
9.2.9 Type specifiers [dcl.type]
9.2.9.1 General [dcl.type.general]

1 The type-specifiers are
type-specifier :

simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

type-specifier-seq :
type-specifier attribute-specifier-seqopt
type-specifier type-specifier-seq

defining-type-specifier :
type-specifier
class-specifier
enum-specifier

defining-type-specifier-seq :
defining-type-specifier attribute-specifier-seqopt
defining-type-specifier defining-type-specifier-seq

The optional attribute-specifier-seq in a type-specifier-seq or a defining-type-specifier-seq appertains to the typedenoted by the preceding type-specifiers or defining-type-specifiers (9.3.4). The attribute-specifier-seq affects the typeonly for the declaration it appears in, not other declarations involving the same type.
2 As a general rule, at most one defining-type-specifier is allowed in the complete decl-specifier-seq of a declaration orin a defining-type-specifier-seq, and at most one type-specifier is allowed in a type-specifier-seq. The only exceptionsto this rule are the following:

—(2.1) const can be combined with any type specifier except itself.
—(2.2) volatile can be combined with any type specifier except itself.
—(2.3) signed or unsigned can be combined with char, long, short, or int.
—(2.4) short or long can be combined with int.
—(2.5) long can be combined with double.
—(2.6) long can be combined with long.

§ 9.2.9.1 170

© ISO/IEC N4910

3 Except in a declaration of a constructor, destructor, or conversion function, at least one defining-type-specifier that isnot a cv-qualifier shall appear in a complete type-specifier-seq or a complete decl-specifier-seq.80
4 [Note 1: enum-specifiers, class-specifiers, and typename-specifiers are discussed in 9.7.1, Clause 11, and 13.8, respectively. Theremaining type-specifiers are discussed in the rest of 9.2.9. —end note]
9.2.9.2 The cv-qualifiers [dcl.type.cv]

1 There are two cv-qualifiers, const and volatile. Each cv-qualifier shall appear at most once in a cv-qualifier-seq. If a
cv-qualifier appears in a decl-specifier-seq, the init-declarator-list or member-declarator-list of the declaration shallnot be empty.
[Note 1: 6.8.4 and 9.3.4.6 describe how cv-qualifiers affect object and function types. —end note]
Redundant cv-qualifications are ignored.
[Note 2: For example, these could be introduced by typedefs. —end note]

2 [Note 3: Declaring a variable const can affect its linkage (9.2.2) and its usability in constant expressions (7.7). As described in 9.4,the definition of an object or subobject of const-qualified type must specify an initializer or be subject to default-initialization. —endnote]
3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is treated as ifit does; a const-qualified access path cannot be used to modify an object even if the object referenced is a non-constobject and can be modified through some other access path.
[Note 4: Cv-qualifiers are supported by the type system so that they cannot be subverted without casting (7.6.1.11). —end note]

4 Any attempt to modify (7.6.19, 7.6.1.6, 7.6.2.3) a const object (6.8.4) during its lifetime (6.7.3) results in undefinedbehavior.
[Example 1:
const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // error: attempt to modify const
int i = 2; // not cv-qualified
const int* cip; // pointer to const int
cip = &i; // OK, cv-qualified access path to unqualified
*cip = 4; // error: attempt to modify through ptr to const
int* ip;
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
*ip = 4; // defined: *ip points to i, a non-const object
const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined behavior: modifies a const object

For another example,
struct X {

mutable int i;
int j;

};
struct Y {

X x;
Y();

};

const Y y;
y.x.i++; // well-formed: mutable member can be modified
y.x.j++; // error: const-qualified member modified
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined behavior: modifies a const subobject
— end example]

80) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies cv-qualifiers.The “implicit int” rule of C is no longer supported.
§ 9.2.9.2 171

© ISO/IEC N4910

5 The semantics of an access through a volatile glvalue are implementation-defined. If an attempt is made to access anobject defined with a volatile-qualified type through the use of a non-volatile glvalue, the behavior is undefined.
6 [Note 5: volatile is a hint to the implementation to avoid aggressive optimization involving the object because the value of theobject might be changed by means undetectable by an implementation. Furthermore, for some implementations, volatile mightindicate that special hardware instructions are required to access the object. See 6.9.1 for detailed semantics. In general, the semanticsof volatile are intended to be the same in C++ as they are in C. —end note]
9.2.9.3 Simple type specifiers [dcl.type.simple]

1 The simple type specifiers are
simple-type-specifier :

nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier
placeholder-type-specifier
nested-name-specifieropt template-name
char
char8_t
char16_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name :
class-name
enum-name
typedef-name

2 The component names of a simple-type-specifier are those of its nested-name-specifier , type-name, simple-template-id ,
template-name, and/or type-constraint (if it is a placeholder-type-specifier). The component name of a type-name isthe first name in it.

3 A placeholder-type-specifier is a placeholder for a type to be deduced (9.2.9.6). A type-specifier of the form typenameopt
nested-name-specifieropt template-name is a placeholder for a deduced class type (9.2.9.7). The nested-name-specifier ,if any, shall be non-dependent and the template-name shall name a deducible template. A deducible template is either aclass template or is an alias template whose defining-type-id is of the form

typenameopt nested-name-specifieropt templateopt simple-template-id

where the nested-name-specifier (if any) is non-dependent and the template-name of the simple-template-id names adeducible template.
[Note 1: An injected-class-name is never interpreted as a template-name in contexts where class template argument deductionwould be performed (13.8.2). —end note]
The other simple-type-specifiers specify either a previously-declared type, a type determined from an expression, orone of the fundamental types (6.8.2). Table 16 summarizes the valid combinations of simple-type-specifiers and thetypes they specify.

4 When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in any order.
[Note 2: It is implementation-defined whether objects of char type are represented as signed or unsigned quantities. The signedspecifier forces char objects to be signed; it is redundant in other contexts. —end note]
9.2.9.4 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier :
class-key attribute-specifier-seqopt nested-name-specifieropt identifier
class-key simple-template-id
class-key nested-name-specifier templateopt simple-template-id
elaborated-enum-specifier

§ 9.2.9.4 172

© ISO/IEC N4910

Table 16: simple-type-specifiers and the types they specify [tab:dcl.type.simple]
Specifier(s) Type
type-name the type named
simple-template-id the type as defined in 13.3
decltype-specifier the type as defined in 9.2.9.5
placeholder-type-specifier the type as defined in 9.2.9.6
template-name the type as defined in 9.2.9.7
char “char”
unsigned char “unsigned char”
signed char “signed char”
char8_t “char8_t”
char16_t “char16_t”
char32_t “char32_t”
bool “bool”
unsigned “unsigned int”
unsigned int “unsigned int”
signed “int”
signed int “int”
int “int”
unsigned short int “unsigned short int”
unsigned short “unsigned short int”
unsigned long int “unsigned long int”
unsigned long “unsigned long int”
unsigned long long int “unsigned long long int”
unsigned long long “unsigned long long int”
signed long int “long int”
signed long “long int”
signed long long int “long long int”
signed long long “long long int”
long long int “long long int”
long long “long long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar_t “wchar_t”
float “float”
double “double”
long double “long double”
void “void”

elaborated-enum-specifier :
enum nested-name-specifieropt identifier

1 The component names of an elaborated-type-specifier are its identifier (if any) and those of its nested-name-specifierand simple-template-id (if any).
2 If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it is an explicitspecialization (13.9.4), an explicit instantiation (13.9.3) or it has one of the following forms:

class-key attribute-specifier-seqopt identifier ;
class-key attribute-specifier-seqopt simple-template-id ;

In the first case, the elaborated-type-specifier declares the identifier as a class-name. The second case shall appearonly in an explicit-specialization (13.9.4) or in a template-declaration (where it declares a partial specialization (13.7)).The attribute-specifier-seq, if any, appertains to the class or template being declared.

§ 9.2.9.4 173

© ISO/IEC N4910

3 Otherwise, an elaborated-type-specifier E shall not have an attribute-specifier-seq. If E contains an identifier but no
nested-name-specifier and (unqualified) lookup for the identifier finds nothing, E shall not be introduced by the enumkeyword and declares the identifier as a class-name. The target scope of E is the nearest enclosing namespace or blockscope.

4 If an elaborated-type-specifier appears with the friend specifier as an entire member-declaration, the member-
declaration shall have one of the following forms:

friend class-key nested-name-specifieropt identifier ;
friend class-key simple-template-id ;
friend class-key nested-name-specifier templateopt simple-template-id ;

Any unqualified lookup for the identifier (in the first case) does not consider scopes that contain the target scope; noname is bound.
[Note 1: A using-directive in the target scope is ignored if it refers to a namespace not contained by that scope. 6.5.6 describes howname lookup proceeds in an elaborated-type-specifier . —end note]

5 [Note 2: An elaborated-type-specifier can be used to refer to a previously declared class-name or enum-name even if the name hasbeen hidden by a non-type declaration. —end note]
If the identifier or simple-template-id resolves to a class-name or enum-name, the elaborated-type-specifier introducesit into the declaration the same way a simple-type-specifier introduces its type-name (9.2.9.3). If the identifier or
simple-template-id resolves to a typedef-name (9.2.4, 13.3), the elaborated-type-specifier is ill-formed.
[Note 3: This implies that, within a class template with a template type-parameter T, the declaration
friend class T;

is ill-formed. However, the similar declaration friend T; is allowed (11.8.4). —end note]
6 The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the declaration towhich the name in the elaborated-type-specifier refers. This rule also applies to the form of elaborated-type-specifierthat declares a class-name or friend class since it can be construed as referring to the definition of the class. Thus, inany elaborated-type-specifier , the enum keyword shall be used to refer to an enumeration (9.7.1), the union class-keyshall be used to refer to a union (11.5), and either the class or struct class-key shall be used to refer to a non-unionclass (11.1).
[Example 1:
enum class E { a, b };
enum E x = E::a; // OK
struct S { } s;
class S* p = &s; // OK
—end example]
9.2.9.5 Decltype specifiers [dcl.type.decltype]

decltype-specifier :
decltype (expression)

1 For an expression E, the type denoted by decltype(E) is defined as follows:
—(1.1) if E is an unparenthesized id-expression naming a structured binding (9.6), decltype(E) is the referenced typeas given in the specification of the structured binding declaration;
—(1.2) otherwise, if E is an unparenthesized id-expression naming a non-type template-parameter (13.2), decltype(E)is the type of the template-parameter after performing any necessary type deduction (9.2.9.6, 9.2.9.7);
—(1.3) otherwise, if E is an unparenthesized id-expression or an unparenthesized class member access (7.6.1.5),

decltype(E) is the type of the entity named by E. If there is no such entity, the program is ill-formed;
—(1.4) otherwise, if E is an xvalue, decltype(E) is T&&, where T is the type of E;
—(1.5) otherwise, if E is an lvalue, decltype(E) is T&, where T is the type of E;
—(1.6) otherwise, decltype(E) is the type of E.

The operand of the decltype specifier is an unevaluated operand (7.2.3).
[Example 1:
const int&& foo();
int i;
struct A { double x; };

§ 9.2.9.5 174

© ISO/IEC N4910

const A* a = new A();
decltype(foo()) x1 = 17; // type is const int&&
decltype(i) x2; // type is int
decltype(a->x) x3; // type is double
decltype((a->x)) x4 = x3; // type is const double&

—end example]
[Note 1: The rules for determining types involving decltype(auto) are specified in 9.2.9.6. —end note]

2 If the operand of a decltype-specifier is a prvalue and is not a (possibly parenthesized) immediate invocation (7.7), thetemporary materialization conversion is not applied (7.3.5) and no result object is provided for the prvalue. The type ofthe prvalue may be incomplete or an abstract class type.
[Note 2: As a result, storage is not allocated for the prvalue and it is not destroyed. Thus, a class type is not instantiated as a result ofbeing the type of a function call in this context. In this context, the common purpose of writing the expression is merely to refer toits type. In that sense, a decltype-specifier is analogous to a use of a typedef-name, so the usual reasons for requiring a completetype do not apply. In particular, it is not necessary to allocate storage for a temporary object or to enforce the semantic constraintsassociated with invoking the type’s destructor. —end note]
[Note 3: Unlike the preceding rule, parentheses have no special meaning in this context. —end note]
[Example 2:
template<class T> struct A { ~A() = delete; };
template<class T> auto h()

-> A<T>;
template<class T> auto i(T) // identity

-> T;
template<class T> auto f(T) // #1

-> decltype(i(h<T>())); // forces completion of A<T> and implicitly uses A<T>::~A()// for the temporary introduced by the use of h().// (A temporary is not introduced as a result of the use of i().)
template<class T> auto f(T) // #2

-> void;
auto g() -> void {

f(42); // OK, calls #2. (#1 is not a viable candidate: type deduction// fails (13.10.3) because A<int>::~A() is implicitly used in its// decltype-specifier)
}
template<class T> auto q(T)

-> decltype((h<T>())); // does not force completion of A<T>; A<T>::~A() is not implicitly// used within the context of this decltype-specifier
void r() {

q(42); // error: deduction against q succeeds, so overload resolution selects// the specialization “q(T) -> decltype((h<T>()))” with T=int;// the return type is A<int>, so a temporary is introduced and its// destructor is used, so the program is ill-formed
}

—end example]
9.2.9.6 Placeholder type specifiers [dcl.spec.auto]
9.2.9.6.1 General [dcl.spec.auto.general]

placeholder-type-specifier :
type-constraintopt auto
type-constraintopt decltype (auto)

1 A placeholder-type-specifier designates a placeholder type that will be replaced later by deduction from an initializer.
2 A placeholder-type-specifier of the form type-constraintopt auto can be used as a decl-specifier of the decl-specifier-seqof a parameter-declaration of a function declaration or lambda-expression and, if it is not the auto type-specifierintroducing a trailing-return-type (see below), is a generic parameter type placeholder of the function declaration or

lambda-expression.
[Note 1: Having a generic parameter type placeholder signifies that the function is an abbreviated function template (9.3.4.6) or thelambda is a generic lambda (7.5.5). —end note]

§ 9.2.9.6.1 175

© ISO/IEC N4910

3 A placeholder type can appear with a function declarator in the decl-specifier-seq, type-specifier-seq, conversion-
function-id , or trailing-return-type, in any context where such a declarator is valid. If the function declarator includes a
trailing-return-type (9.3.4.6), that trailing-return-type specifies the declared return type of the function. Otherwise, thefunction declarator shall declare a function. If the declared return type of the function contains a placeholder type, thereturn type of the function is deduced from non-discarded return statements, if any, in the body of the function (8.5.2).

4 The type of a variable declared using a placeholder type is deduced from its initializer. This use is allowed in aninitializing declaration (9.4) of a variable. The placeholder type shall appear as one of the decl-specifiers in the
decl-specifier-seq and the decl-specifier-seq shall be followed by one or more declarators, each of which shall befollowed by a non-empty initializer .
[Example 1:
auto x = 5; // OK, x has type int
const auto *v = &x, u = 6; // OK, v has type const int*, u has type const int
static auto y = 0.0; // OK, y has type double
auto int r; // error: auto is not a storage-class-specifier
auto f() -> int; // OK, f returns int
auto g() { return 0.0; } // OK, g returns double
auto h(); // OK, h’s return type will be deduced when it is defined
—end example]
The auto type-specifier can also be used to introduce a structured binding declaration (9.6).

5 A placeholder type can also be used in the type-specifier-seq in the new-type-id or type-id of a new-expression (7.6.2.8)and as a decl-specifier of the parameter-declaration’s decl-specifier-seq in a template-parameter (13.2). The auto
type-specifier can also be used as the simple-type-specifier in an explicit type conversion (functional notation) (7.6.1.4).

6 A program that uses a placeholder type in a context not explicitly allowed in 9.2.9.6 is ill-formed.
7 If the init-declarator-list contains more than one init-declarator , they shall all form declarations of variables. The typeof each declared variable is determined by placeholder type deduction (9.2.9.6.2), and if the type that replaces theplaceholder type is not the same in each deduction, the program is ill-formed.
[Example 2:
auto x = 5, *y = &x; // OK, auto is int
auto a = 5, b = { 1, 2 }; // error: different types for auto
—end example]

8 If a function with a declared return type that contains a placeholder type has multiple non-discarded return statements,the return type is deduced for each such return statement. If the type deduced is not the same in each deduction, theprogram is ill-formed.
9 If a function with a declared return type that uses a placeholder type has no non-discarded return statements, the returntype is deduced as though from a return statement with no operand at the closing brace of the function body.
[Example 3:
auto f() { } // OK, return type is void
auto* g() { } // error: cannot deduce auto* from void()

—end example]
10 An exported function with a declared return type that uses a placeholder type shall be defined in the translation unitcontaining its exported declaration, outside the private-module-fragment (if any).
[Note 2: The deduced return type cannot have a name with internal linkage (6.6). —end note]

11 If a variable or function with an undeduced placeholder type is named by an expression (6.3), the program is ill-formed.Once a non-discarded return statement has been seen in a function, however, the return type deduced from thatstatement can be used in the rest of the function, including in other return statements.
[Example 4:
auto n = n; // error: n’s initializer refers to n
auto f();
void g() { &f; } // error: f’s return type is unknown
auto sum(int i) {

if (i == 1)
return i; // sum’s return type is int

§ 9.2.9.6.1 176

© ISO/IEC N4910

else
return sum(i-1)+i; // OK, sum’s return type has been deduced

}

—end example]
12 Return type deduction for a templated entity that is a function or function template with a placeholder in its declaredtype occurs when the definition is instantiated even if the function body contains a return statement with a non-type-dependent operand.
[Note 3: Therefore, any use of a specialization of the function template will cause an implicit instantiation. Any errors that arisefrom this instantiation are not in the immediate context of the function type and can result in the program being ill-formed (13.10.3).—end note]
[Example 5:
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
template<class T> auto f(T* t) { return *t; }
void g() { int (*p)(int*) = &f; } // instantiates both fs to determine return types,// chooses second
—end example]

13 If a function or function template F has a declared return type that uses a placeholder type, redeclarations or spe-cializations of F shall use that placeholder type, not a deduced type; otherwise, they shall not use a placeholdertype.
[Example 6:
auto f();
auto f() { return 42; } // return type is int
auto f(); // OK
int f(); // error: auto and int don’t match
decltype(auto) f(); // error: auto and decltype(auto) don’t match
template <typename T> auto g(T t) { return t; } // #1
template auto g(int); // OK, return type is int
template char g(char); // error: no matching template
template<> auto g(double); // OK, forward declaration with unknown return type
template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
template char g(char); // OK, now there is a matching template
template auto g(float); // still matches #1
void h() { return g(42); } // error: ambiguous
template <typename T> struct A {

friend T frf(T);
};
auto frf(int i) { return i; } // not a friend of A<int>
extern int v;
auto v = 17; // OK, redeclares v
struct S {

static int i;
};
auto S::i = 23; // OK
—end example]

14 A function declared with a return type that uses a placeholder type shall not be virtual (11.7.3).
15 A function declared with a return type that uses a placeholder type shall not be a coroutine (9.5.4).
16 An explicit instantiation declaration (13.9.3) does not cause the instantiation of an entity declared using a placeholdertype, but it also does not prevent that entity from being instantiated as needed to determine its type.
[Example 7:
template <typename T> auto f(T t) { return t; }
extern template auto f(int); // does not instantiate f<int>
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
§ 9.2.9.6.1 177

© ISO/IEC N4910

// instantiation definition is still required somewhere in the program
—end example]
9.2.9.6.2 Placeholder type deduction [dcl.type.auto.deduct]

1 Placeholder type deduction is the process by which a type containing a placeholder type is replaced by a deduced type.
2 A type T containing a placeholder type, and a corresponding initializer-clause E, are determined as follows:

—(2.1) For a non-discarded return statement that occurs in a function declared with a return type that contains aplaceholder type, T is the declared return type.
—(2.1.1) If the return statement has no operand, then E is void().
—(2.1.2) If the operand is a braced-init-list (9.4.5), the program is ill-formed.
—(2.1.3) If the operand is an expression X that is not an assignment-expression, E is (X).

[Note 1: A comma expression (7.6.20) is not an assignment-expression. —end note]
—(2.1.4) Otherwise, E is the operand of the return statement.
If E has type void, T shall be either type-constraintopt decltype(auto) or cv type-constraintopt auto.

—(2.2) For a variable declared with a type that contains a placeholder type, T is the declared type of the variable.
—(2.2.1) If the initializer of the variable is a brace-or-equal-initializer of the form = initializer-clause, E is the

initializer-clause.
—(2.2.2) If the initializer is a braced-init-list, it shall consist of a single brace-enclosed assignment-expression and Eis the assignment-expression.
—(2.2.3) If the initializer is a parenthesized expression-list, the expression-list shall be a single assignment-expressionand E is the assignment-expression.

—(2.3) For an explicit type conversion (7.6.1.4), T is the specified type, which shall be auto.
—(2.3.1) If the initializer is a braced-init-list, it shall consist of a single brace-enclosed assignment-expression and Eis the assignment-expression.
—(2.3.2) If the initializer is a parenthesized expression-list, the expression-list shall be a single assignment-expressionand E is the assignment-expression.

—(2.4) For a non-type template parameter declared with a type that contains a placeholder type, T is the declared type ofthe non-type template parameter and E is the corresponding template argument.
T shall not be an array type.

3 If the placeholder-type-specifier is of the form type-constraintopt auto, the deduced type T′ replacing T is determinedusing the rules for template argument deduction. Obtain P from T by replacing the occurrences of type-constraintopt
auto either with a new invented type template parameter U or, if the initialization is copy-list-initialization, with
std::initializer_list<U>. Deduce a value for U using the rules of template argument deduction from a functioncall (13.10.3.2), where P is a function template parameter type and the corresponding argument is E. If the deductionfails, the declaration is ill-formed. Otherwise, T′ is obtained by substituting the deduced U into P.
[Example 1:
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
auto x3{ 1, 2 }; // error: not a single element
auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int>
auto x5{ 3 }; // decltype(x5) is int
—end example]
[Example 2:
const auto &i = expr;

The type of i is the deduced type of the parameter u in the call f(expr) of the following invented function template:
template <class U> void f(const U& u);

—end example]
4 If the placeholder-type-specifier is of the form type-constraintopt decltype(auto), T shall be the placeholder alone.The type deduced for T is determined as described in 9.2.9.5, as though E had been the operand of the decltype.
§ 9.2.9.6.2 178

© ISO/IEC N4910

[Example 3:
int i;
int&& f();
auto x2a(i); // decltype(x2a) is int
decltype(auto) x2d(i); // decltype(x2d) is int
auto x3a = i; // decltype(x3a) is int
decltype(auto) x3d = i; // decltype(x3d) is int
auto x4a = (i); // decltype(x4a) is int
decltype(auto) x4d = (i); // decltype(x4d) is int&
auto x5a = f(); // decltype(x5a) is int
decltype(auto) x5d = f(); // decltype(x5d) is int&&
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
decltype(auto) x6d = { 1, 2 }; // error: { 1, 2 } is not an expression
auto *x7a = &i; // decltype(x7a) is int*
decltype(auto)*x7d = &i; // error: declared type is not plain decltype(auto)
—end example]

5 For a placeholder-type-specifier with a type-constraint, the immediately-declared constraint (13.2) of the type-
constraint for the type deduced for the placeholder shall be satisfied.
9.2.9.7 Deduced class template specialization types [dcl.type.class.deduct]

1 If a placeholder for a deduced class type appears as a decl-specifier in the decl-specifier-seq of an initializing declaration(9.4) of a variable, the declared type of the variable shall be cv T, where T is the placeholder.
[Example 1:
template <class ...T> struct A {

A(T...) {}
};
A x[29]{}; // error: no declarator operators allowed
const A& y{}; // error: no declarator operators allowed
—end example]
The placeholder is replaced by the return type of the function selected by overload resolution for class templatededuction (12.2.2.9). If the decl-specifier-seq is followed by an init-declarator-list ormember-declarator-list containingmore than one declarator , the type that replaces the placeholder shall be the same in each deduction.

2 A placeholder for a deduced class type can also be used in the type-specifier-seq in the new-type-id or type-id of a
new-expression (7.6.2.8), as the simple-type-specifier in an explicit type conversion (functional notation) (7.6.1.4), oras the type-specifier in the parameter-declaration of a template-parameter (13.2). A placeholder for a deduced classtype shall not appear in any other context.

3 [Example 2:
template<class T> struct container {

container(T t) {}
template<class Iter> container(Iter beg, Iter end);

};
template<class Iter>
container(Iter b, Iter e) -> container<typename std::iterator_traits<Iter>::value_type>;
std::vector<double> v = { /* ... */ };

container c(7); // OK, deduces int for T
auto d = container(v.begin(), v.end()); // OK, deduces double for T
container e{5, 6}; // error: int is not an iterator
— end example]
9.3 Declarators [dcl.decl]
9.3.1 General [dcl.decl.general]

1 A declarator declares a single variable, function, or type, within a declaration. The init-declarator-list appearing in a
simple-declaration is a comma-separated sequence of declarators, each of which can have an initializer.

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

§ 9.3.1 179

© ISO/IEC N4910

init-declarator :
declarator initializeropt
declarator requires-clause

2 In all contexts, a declarator is interpreted as given below. Where an abstract-declarator can be used (or omitted) inplace of a declarator (9.3.4.6, 14.1), it is as if a unique identifier were included in the appropriate place (9.3.2). Thepreceding specifiers indicate the type, storage class or other properties of the entity or entities being declared. Eachdeclarator specifies one entity and (optionally) names it and/or modifies the type of the specifiers with operators such as
* (pointer to) and () (function returning).
[Note 1: An init-declarator can also specify an initializer (9.4). —end note]

3 Each init-declarator or member-declarator in a declaration is analyzed separately as if it were in a declaration by itself.
[Note 2: A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a singledeclarator. That is,
T D1, D2, ... Dn;

is usually equivalent to
T D1; T D2; ... T Dn;

where T is a decl-specifier-seq and each Di is an init-declarator ormember-declarator . One exception is when a name introduced byone of the declarators hides a type name used by the decl-specifiers, so that when the same decl-specifiers are used in a subsequentdeclaration, they do not have the same meaning, as in
struct S { /* ... */ };
S S, T; // declare two instances of struct S

which is not equivalent to
struct S { /* ... */ };
S S;
S T; // error

Another exception is when T is auto (9.2.9.6), for example:
auto i = 1, j = 2.0; // error: deduced types for i and j do not match

as opposed to
auto i = 1; // OK, i deduced to have type int
auto j = 2.0; // OK, j deduced to have type double
—end note]

4 The optional requires-clause (13.1) in an init-declarator or member-declarator shall be present only if the declaratordeclares a templated function (9.3.4.6). When present after a declarator, the requires-clause is called the trailing
requires-clause. The trailing requires-clause introduces the constraint-expression that results from interpreting its
constraint-logical-or-expression as a constraint-expression.
[Example 1:
void f1(int a) requires true; // error: non-templated function
template<typename T>

auto f2(T a) -> bool requires true; // OK
template<typename T>

auto f3(T a) requires true -> bool; // error: requires-clause precedes trailing-return-type
void (*pf)() requires true; // error: constraint on a variable
void g(int (*)() requires true); // error: constraint on a parameter-declaration

auto* p = new void(*)(char) requires true; // error: not a function declaration
—end example]

5 Declarators have the syntax
declarator :

ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator :
noptr-declarator
ptr-operator ptr-declarator

§ 9.3.1 180

© ISO/IEC N4910

noptr-declarator :
declarator-id attribute-specifier-seqopt
noptr-declarator parameters-and-qualifiers
noptr-declarator [constant-expressionopt] attribute-specifier-seqopt
(ptr-declarator)

parameters-and-qualifiers :
(parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-type :
-> type-id

ptr-operator :
* attribute-specifier-seqopt cv-qualifier-seqopt
& attribute-specifier-seqopt
&& attribute-specifier-seqopt
nested-name-specifier * attribute-specifier-seqopt cv-qualifier-seqopt

cv-qualifier-seq :
cv-qualifier cv-qualifier-seqopt

cv-qualifier :
const
volatile

ref-qualifier :
&
&&

declarator-id :
...opt id-expression

9.3.2 Type names [dcl.name]
1 To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or typeid, the name of a type shallbe specified. This can be done with a type-id , which is syntactically a declaration for a variable or function of that typethat omits the name of the entity.

type-id :
type-specifier-seq abstract-declaratoropt

defining-type-id :
defining-type-specifier-seq abstract-declaratoropt

abstract-declarator :
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
abstract-pack-declarator

ptr-abstract-declarator :
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator :
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [constant-expressionopt] attribute-specifier-seqopt
(ptr-abstract-declarator)

abstract-pack-declarator :
noptr-abstract-pack-declarator
ptr-operator abstract-pack-declarator

noptr-abstract-pack-declarator :
noptr-abstract-pack-declarator parameters-and-qualifiers
noptr-abstract-pack-declarator [constant-expressionopt] attribute-specifier-seqopt
...

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear if theconstruction were a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
[Example 1:

§ 9.3.2 181

© ISO/IEC N4910

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types “int”, “pointer to int”, “array of 3 pointers to int”, “pointer to array of 3 int”, “function of (noparameters) returning pointer to int”, and “pointer to a function of (double) returning int”. —end example]
2 A type can also be named (often more easily) by using a typedef (9.2.4).
9.3.3 Ambiguity resolution [dcl.ambig.res]

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 8.9 can alsooccur in the context of a declaration. In that context, the choice is between a function declaration with a redundant setof parentheses around a parameter name and an object declaration with a function-style cast as the initializer. Just asfor the ambiguities mentioned in 8.9, the resolution is to consider any construct that could possibly be a declaration adeclaration.
[Note 1: A declaration can be explicitly disambiguated by adding parentheses around the argument. The ambiguity can be avoidedby use of copy-initialization or list-initialization syntax, or by use of a non-function-style cast. —end note]
[Example 1:
struct S {

S(int);
};

void foo(double a) {
S w(int(a)); // function declaration
S x(int()); // function declaration
S y((int(a))); // object declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

—end example]
2 An ambiguity can arise from the similarity between a function-style cast and a type-id . The resolution is that anyconstruct that could possibly be a type-id in its syntactic context shall be considered a type-id .
[Example 2:
template <class T> struct X {};
template <int N> struct Y {};
X<int()> a; // type-id
X<int(1)> b; // expression (ill-formed)
Y<int()> c; // type-id (ill-formed)
Y<int(1)> d; // expression
void foo(signed char a) {

sizeof(int()); // type-id (ill-formed)
sizeof(int(a)); // expression
sizeof(int(unsigned(a))); // type-id (ill-formed)
(int())+1; // type-id (ill-formed)
(int(a))+1; // expression
(int(unsigned(a)))+1; // type-id (ill-formed)

}

—end example]
3 Another ambiguity arises in a parameter-declaration-clause when a type-name is nested in parentheses. In this case,the choice is between the declaration of a parameter of type pointer to function and the declaration of a parameter withredundant parentheses around the declarator-id . The resolution is to consider the type-name as a simple-type-specifierrather than a declarator-id .
[Example 3:
class C { };

§ 9.3.3 182

© ISO/IEC N4910

void f(int(C)) { } // void f(int(*fp)(C c)) { }// not: void f(int C) { }

int g(C);

void foo() {
f(1); // error: cannot convert 1 to function pointer
f(g); // OK

}

For another example,
class C { };
void h(int *(C[10])); // void h(int *(*_fp)(C _parm[10]));// not: void h(int *C[10]);

—end example]
9.3.4 Meaning of declarators [dcl.meaning]
9.3.4.1 General [dcl.meaning.general]

1 A declarator contains exactly one declarator-id ; it names the entity that is declared. If the unqualified-id occurringin a declarator-id is a template-id , the declarator shall appear in the declaration of a template-declaration (13.7),
explicit-specialization (13.9.4), or explicit-instantiation (13.9.3).
[Note 1: An unqualified-id that is not an identifier is used to declare certain functions (11.4.8.3, 11.4.7, 12.4, 12.6). —end note]
The optional attribute-specifier-seq following a declarator-id appertains to the entity that is declared.

2 If the declaration is a friend declaration:
—(2.1) The declarator does not bind a name.
—(2.2) If the id-expression E in the declarator-id of the declarator is a qualified-id or a template-id :

—(2.2.1) If the friend declaration is not a template declaration, then in the lookup for the terminal name of E:
—(2.2.1.1) if the unqualified-id in E is a template-id , all function declarations are discarded;
—(2.2.1.2) otherwise, if the declarator corresponds (6.4.1) to any declaration found of a non-template function,all function template declarations are discarded;
—(2.2.1.3) each remaining function template is replaced with the specialization chosen by deduction from thefriend declaration (13.10.3.7) or discarded if deduction fails.

—(2.2.2) The declarator shall correspond to one or more declarations found by the lookup; they shall all have thesame target scope, and the target scope of the declarator is that scope.
—(2.3) Otherwise, the terminal name of E is not looked up. The declaration’s target scope is the innermost enclosingnamespace scope; if the declaration is contained by a block scope, the declaration shall correspond to a reachable(10.7) declaration that inhabits the innermost block scope.

3 Otherwise:
—(3.1) If the id-expression in the declarator-id of the declarator is a qualified-id Q, let S be its lookup context (6.5.5);the declaration shall inhabit a namespace scope.
—(3.2) Otherwise, let S be the entity associated with the scope inhabited by the declarator .
—(3.3) If the declarator declares an explicit instantiation or a partial or explicit specialization, the declarator does notbind a name. If it declares a class member, the terminal name of the declarator-id is not looked up; otherwise, onlythose lookup results that are nominable in S are considered when identifying any function template specializationbeing declared (13.10.3.7).

[Example 1:
namespace N {
inline namespace O {

template<class T> void f(T); // #1
template<class T> void g(T) {}

}
namespace P {

template<class T> void f(T*); // #2, more specialized than #1

§ 9.3.4.1 183

© ISO/IEC N4910

template<class> int g;
}
using P::f,P::g;

}
template<> void N::f(int*) {} // OK, #2 is not nominable
template void N::g(int); // error: lookup is ambiguous
— end example]

—(3.4) Otherwise, the terminal name of the declarator-id is not looked up. If it is a qualified name, the declarator shallcorrespond to one or more declarations nominable in S; all the declarations shall have the same target scope andthe target scope of the declarator is that scope.
[Example 2:
namespace Q {
namespace V {

void f();
}
void V::f() { /* ... */ } // OK
void V::g() { /* ... */ } // error: g() is not yet a member of V
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /* ... */ } // error: R doesn’t enclose Q

}

—end example]
—(3.5) If the declaration inhabits a block scope S and declares a function (9.3.4.6) or uses the extern specifier, thedeclaration shall not be attached to a named module (10.1); its target scope is the innermost enclosing namespacescope, but the name is bound in S.

[Example 3:
namespace X {
void p() {

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X
extern void r(); // r is a member of namespace X

}

void middle() {
q(); // error: q not found

}

void q() { /* ... */ } // definition of X::q
}

void q() { /* ... */ } // some other, unrelated q
void X::r() { /* ... */ } // error: r cannot be declared by qualified-id
—end example]

4 A static, thread_local, extern, mutable, friend, inline, virtual, constexpr, consteval, constinit, or typedefspecifier or an explicit-specifier applies directly to each declarator-id in a declaration; the type specified for each
declarator-id depends on both the decl-specifier-seq and its declarator .

5 Thus, (for each declarator) a declaration has the form
T D

where T is of the form attribute-specifier-seqopt decl-specifier-seq and D is a declarator. Following is a recursiveprocedure for determining the type specified for the contained declarator-id by such a declaration.
6 First, the decl-specifier-seq determines a type. In a declaration

T D

§ 9.3.4.1 184

© ISO/IEC N4910

the decl-specifier-seq T determines the type T.
[Example 4: In the declaration
int unsigned i;

the type specifiers int unsigned determine the type “unsigned int” (9.2.9.3). —end example]
7 In a declaration attribute-specifier-seqopt T D where D is an unadorned name, the type of the declared entity is “T”.
8 In a declaration T D where D has the form

(D1)

the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1

Parentheses do not alter the type of the embedded declarator-id , but they can alter the binding of complex declarators.
9.3.4.2 Pointers [dcl.ptr]

1 In a declaration T D where D has the form
* attribute-specifier-seqopt cv-qualifier-seqopt D1

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type of the
declarator-id in D is “derived-declarator-type-list cv-qualifier-seq pointer to T”. The cv-qualifiers apply to the pointerand not to the object pointed to. Similarly, the optional attribute-specifier-seq (9.12.1) appertains to the pointer and notto the object pointed to.

2 [Example 1: The declarations
const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant integer; ppc, a pointer to apointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a constant pointer to integer. The value of ci, cpc, and cpcannot be changed after initialization. The value of pc can be changed, and so can the object pointed to by cp. Examples of somecorrect operations are
i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to be changed through acv-unqualified pointer later, for example:
*ppc = &ci; // OK, but would make p point to ci because of previous error
*p = 5; // clobber ci
—end example]

3 See also 7.6.19 and 9.4.
4 [Note 1: Forming a pointer to reference type is ill-formed; see 9.3.4.3. Forming a function pointer type is ill-formed if the functiontype has cv-qualifiers or a ref-qualifier ; see 9.3.4.6. Since the address of a bit-field (11.4.10) cannot be taken, a pointer can neverpoint to a bit-field. —end note]
9.3.4.3 References [dcl.ref]

1 In a declaration T D where D has either of the forms
& attribute-specifier-seqopt D1
&& attribute-specifier-seqopt D1

§ 9.3.4.3 185

© ISO/IEC N4910

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type of the
declarator-id in D is “derived-declarator-type-list reference to T”. The optional attribute-specifier-seq appertains to thereference type. Cv-qualified references are ill-formed except when the cv-qualifiers are introduced through the use of a
typedef-name (9.2.4, 13.2) or decltype-specifier (9.2.9.5), in which case the cv-qualifiers are ignored.
[Example 1:
typedef int& A;
const A aref = 3; // error: lvalue reference to non-const initialized with rvalue

The type of aref is “lvalue reference to int”, not “lvalue reference to const int”. —end example]
[Note 1: A reference can be thought of as a name of an object. —end note]
A declarator that specifies the type “reference to cv void” is ill-formed.

2 A reference type that is declared using & is called an lvalue reference, and a reference type that is declared using && iscalled an rvalue reference. Lvalue references and rvalue references are distinct types. Except where explicitly noted,they are semantically equivalent and commonly referred to as references.
3 [Example 2:

void f(double& a) { a += 3.14; }// ...
double d = 0;
f(d);

declares a to be a reference parameter of f so the call f(d) will add 3.14 to d.
int v[20];// ...
int& g(int i) { return v[i]; }// ...
g(3) = 7;

declares the function g() to return a reference to an integer so g(3)=7 will assign 7 to the fourth element of the array v. For anotherexample,
struct link {

link* next;
};

link* first;

void h(link*& p) { // p is a reference to pointer
p->next = first;
first = p;
p = 0;

}

void k() {
link* q = new link;
h(q);

}

declares p to be a reference to a pointer to link so h(q) will leave q with the value zero. See also 9.4.4. —end example]
4 It is unspecified whether or not a reference requires storage (6.7.5).
5 There shall be no references to references, no arrays of references, and no pointers to references. The declaration of areference shall contain an initializer (9.4.4) except when the declaration contains an explicit extern specifier (9.2.2), isa class member (11.4) declaration within a class definition, or is the declaration of a parameter or a return type (9.3.4.6);see 6.2. A reference shall be initialized to refer to a valid object or function.
[Note 2: In particular, a null reference cannot exist in a well-defined program, because the only way to create such a reference wouldbe to bind it to the “object” obtained by indirection through a null pointer, which causes undefined behavior. As described in 11.4.10,a reference cannot be bound directly to a bit-field. —end note]

6 If a typedef-name (9.2.4, 13.2) or a decltype-specifier (9.2.9.5) denotes a type TR that is a reference to a type T, anattempt to create the type “lvalue reference to cv TR” creates the type “lvalue reference to T”, while an attempt to createthe type “rvalue reference to cv TR” creates the type TR.
[Note 3: This rule is known as reference collapsing. —end note]
§ 9.3.4.3 186

© ISO/IEC N4910

[Example 3:
int i;
typedef int& LRI;
typedef int&& RRI;

LRI& r1 = i; // r1 has the type int&
const LRI& r2 = i; // r2 has the type int&
const LRI&& r3 = i; // r3 has the type int&
RRI& r4 = i; // r4 has the type int&
RRI&& r5 = 5; // r5 has the type int&&
decltype(r2)& r6 = i; // r6 has the type int&
decltype(r2)&& r7 = i; // r7 has the type int&
—end example]

7 [Note 4: Forming a reference to function type is ill-formed if the function type has cv-qualifiers or a ref-qualifier ; see 9.3.4.6. —endnote]
9.3.4.4 Pointers to members [dcl.mptr]

1 The component names of a ptr-operator are those of its nested-name-specifier , if any.
2 In a declaration T D where D has the form

nested-name-specifier * attribute-specifier-seqopt cv-qualifier-seqopt D1

and the nested-name-specifier denotes a class, and the type of the contained declarator-id in the declaration T D1is “derived-declarator-type-list T”, the type of the declarator-id in D is “derived-declarator-type-list cv-qualifier-seqpointer to member of class nested-name-specifier of type T”. The optional attribute-specifier-seq (9.12.1) appertains tothe pointer-to-member.
3 [Example 1:

struct X {
void f(int);
int a;

};
struct Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declares pmi, pmf, pmd and pmc to be a pointer to a member of X of type int, a pointer to a member of X of type void(int), a pointerto a member of X of type double and a pointer to a member of Y of type char respectively. The declaration of pmd is well-formedeven though X has no members of type double. Similarly, the declaration of pmc is well-formed even though Y is an incomplete type.
pmi and pmf can be used like this:
X obj;// ...
obj.*pmi = 7; // assign 7 to an integer member of obj
(obj.*pmf)(7); // call a function member of obj with the argument 7
—end example]

4 A pointer to member shall not point to a static member of a class (11.4.9), a member with reference type, or “cv void”.
5 [Note 1: See also 7.6.2 and 7.6.4. The type “pointer to member” is distinct from the type “pointer”, that is, a pointer to member isdeclared only by the pointer-to-member declarator syntax, and never by the pointer declarator syntax. There is no “reference-to-member” type in C++. —end note]
9.3.4.5 Arrays [dcl.array]

1 In a declaration T D where D has the form
D1 [constant-expressionopt] attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type of the
declarator-id in D is “derived-declarator-type-list array of N T”. The constant-expression shall be a converted constant

§ 9.3.4.5 187

© ISO/IEC N4910

expression of type std::size_t (7.7). Its value N specifies the array bound, i.e., the number of elements in the array; Nshall be greater than zero.
2 In a declaration T D where D has the form

D1 [] attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type of the
declarator-id in D is “derived-declarator-type-list array of unknown bound of T”, except as specified below.

3 A type of the form “array of N U” or “array of unknown bound of U” is an array type. The optional attribute-specifier-seqappertains to the array type.
4 U is called the array element type; this type shall not be a reference type, a function type, an array of unknown bound, orcv void.
[Note 1: An array can be constructed from one of the fundamental types (except void), from a pointer, from a pointer to member,from a class, from an enumeration type, or from an array of known bound. —end note]
[Example 1:
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. —end example]
5 Any type of the form “cv-qualifier-seq array of N U” is adjusted to “array of N cv-qualifier-seq U”, and similarly for“array of unknown bound of U”.
[Example 2:
typedef int A[5], AA[2][3];
typedef const A CA; // type is “array of 5 const int”
typedef const AA CAA; // type is “array of 2 array of 3 const int”
—end example]
[Note 2: An “array of N cv-qualifier-seq U” has cv-qualified type; see 6.8.4. —end note]

6 An object of type “array of N U” consists of a contiguously allocated non-empty set of N subobjects of type U, known asthe elements of the array, and numbered 0 to N-1.
7 In addition to declarations in which an incomplete object type is allowed, an array bound may be omitted in some casesin the declaration of a function parameter (9.3.4.6). An array bound may also be omitted when an object (but not anon-static data member) of array type is initialized and the declarator is followed by an initializer (9.4, 11.4, 7.6.1.4,7.6.2.8). In these cases, the array bound is calculated from the number of initial elements (say, N) supplied (9.4.2), andthe type of the array is “array of N U”.
8 Furthermore, if there is a reachable declaration of the entity that inhabits the same scope in which the bound wasspecified, an omitted array bound is taken to be the same as in that earlier declaration, and similarly for the definition ofa static data member of a class.
[Example 3:
extern int x[10];
struct S {

static int y[10];
};

int x[]; // OK, bound is 10
int S::y[]; // OK, bound is 10
void f() {

extern int x[];
int i = sizeof(x); // error: incomplete object type

}

—end example]
9 [Note 3: When several “array of” specifications are adjacent, a multidimensional array type is created; only the first of the constantexpressions that specify the bounds of the arrays can be omitted.
[Example 4:
int x3d[3][5][7];

§ 9.3.4.5 188

© ISO/IEC N4910

declares an array of three elements, each of which is an array of five elements, each of which is an array of seven integers. The overallarray can be viewed as a three-dimensional array of integers, with rank 3× 5× 7. Any of the expressions x3d, x3d[i], x3d[i][j],
x3d[i][j][k] can reasonably appear in an expression. The expression x3d[i] is equivalent to *(x3d + i); in that expression, x3dis subject to the array-to-pointer conversion (7.3.3) and is first converted to a pointer to a 2-dimensional array with rank 5× 7 thatpoints to the first element of x3d. Then i is added, which on typical implementations involves multiplying i by the length of theobject to which the pointer points, which is sizeof(int)×5× 7. The result of the addition and indirection is an lvalue denoting the
ith array element of x3d (an array of five arrays of seven integers). If there is another subscript, the same argument applies again, so
x3d[i][j] is an lvalue denoting the jth array element of the ith array element of x3d (an array of seven integers), and x3d[i][j][k]is an lvalue denoting the kth array element of the jth array element of the ith array element of x3d (an integer). —end example]
The first subscript in the declaration helps determine the amount of storage consumed by an array but plays no other part in subscriptcalculations. —end note]

10 [Note 4: Conversions affecting expressions of array type are described in 7.3.3. —end note]
11 [Note 5: The subscript operator can be overloaded for a class (12.4.5). For the operator’s built-in meaning, see 7.6.1.2. —end note]
9.3.4.6 Functions [dcl.fct]

1 In a declaration T D where D has the form
D1 (parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type ofthe declarator-id in D is “derived-declarator-type-list noexceptopt function of parameter-type-list cv-qualifier-seqopt
ref-qualifieropt returning T”, where
—(1.1) the parameter-type-list is derived from the parameter-declaration-clause as described below and
—(1.2) the optional noexcept is present if and only if the exception specification (14.5) is non-throwing.

The optional attribute-specifier-seq appertains to the function type.
2 In a declaration T D where D has the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt
ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt trailing-return-type

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, T shall be thesingle type-specifier auto. The type of the declarator-id in D is “derived-declarator-type-list noexceptopt function ofparameter-type-list cv-qualifier-seqopt ref-qualifieropt returning U”, where
—(2.1) the parameter-type-list is derived from the parameter-declaration-clause as described below,
—(2.2) U is the type specified by the trailing-return-type, and
—(2.3) the optional noexcept is present if and only if the exception specification is non-throwing.

The optional attribute-specifier-seq appertains to the function type.
3 A type of either form is a function type.81

parameter-declaration-clause :
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list :
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration :
attribute-specifier-seqopt thisopt decl-specifier-seq declarator
attribute-specifier-seqopt thisopt decl-specifier-seq declarator = initializer-clause
attribute-specifier-seqopt thisopt decl-specifier-seq abstract-declaratoropt
attribute-specifier-seqopt thisopt decl-specifier-seq abstract-declaratoropt = initializer-clause

The optional attribute-specifier-seq in a parameter-declaration appertains to the parameter.
4 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when thefunction is called.
[Note 1: The parameter-declaration-clause is used to convert the arguments specified on the function call; see 7.6.1.3. —end note]

81) As indicated by syntax, cv-qualifiers are a significant component in function return types.
§ 9.3.4.6 189

© ISO/IEC N4910

If the parameter-declaration-clause is empty, the function takes no arguments. A parameter list consisting of a singleunnamed parameter of non-dependent type void is equivalent to an empty parameter list. Except for this specialcase, a parameter shall not have type cv void. A parameter with volatile-qualified type is deprecated; see D.5. Ifthe parameter-declaration-clause terminates with an ellipsis or a function parameter pack (13.7.4), the number ofarguments shall be equal to or greater than the number of parameters that do not have a default argument and are notfunction parameter packs. Where syntactically correct and where “...” is not part of an abstract-declarator , “, ...”is synonymous with “...”.
[Example 1: The declaration
int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.
printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*. —end example]
[Note 2: The standard header <cstdarg> (17.13.2) contains a mechanism for accessing arguments passed using the ellipsis (see 7.6.1.3and 17.13). —end note]

5 The type of a function is determined using the following rules. The type of each parameter (including function parameterpacks) is determined from its own parameter-declaration (9.3). After determining the type of each parameter, anyparameter of type “array of T” or of function type T is adjusted to be “pointer to T”. After producing the list of parametertypes, any top-level cv-qualifiers modifying a parameter type are deleted when forming the function type. The resultinglist of transformed parameter types and the presence or absence of the ellipsis or a function parameter pack is thefunction’s parameter-type-list.
[Note 3: This transformation does not affect the types of the parameters. For example, int(*)(const int p, decltype(p)*) and
int(*)(int, const int*) are identical types. —end note]
[Example 2:
void f(char*); // #1
void f(char[]) {} // defines #1
void f(const char*) {} // OK, another overload
void f(char *const) {} // error: redefines #1
void g(char(*)[2]); // #2
void g(char[3][2]) {} // defines #2
void g(char[3][3]) {} // OK, another overload
void h(int x(const int)); // #3
void h(int (*)(int)) {} // defines #3
—end example]

6 An explicit-object-parameter-declaration is a parameter-declaration with a this specifier. An explicit-object-parameter-declaration shall appear only as the first parameter-declaration of a parameter-declaration-list of either:
—(6.1) a member-declarator that declares a member function (11.4), or
—(6.2) a lambda-declarator (7.5.5).

Amember-declarator with an explicit-object-parameter-declaration shall not include a ref-qualifier or a cv-qualifier-seqand shall not be declared static or virtual.
[Example 3:
struct C {

void f(this C& self);
template <typename Self> void g(this Self&& self, int);

void h(this C) const; // error: const not allowed here
};

void test(C c) {
c.f(); // OK, calls C::f
c.g(42); // OK, calls C::g<C&>
std::move(c).g(42); // OK, calls C::g<C>

}

§ 9.3.4.6 190

© ISO/IEC N4910

—end example]
7 A function parameter declared with an explicit-object-parameter-declaration is an explicit object parameter. An explicitobject parameter shall not be a function parameter pack (13.7.4). An explicit object member function is a non-staticmember function with an explicit object parameter. An implicit object member function is a non-static member functionwithout an explicit object parameter.
8 The object parameter of a non-static member function is either the explicit object parameter or the implicit objectparameter (12.2.2).
9 A non-object parameter is a function parameter that is not the explicit object parameter. The non-object-parameter-type-list of a member function is the parameter-type-list of that function with the explicit object parameter, if any,omitted.
[Note 4: The non-object-parameter-type-list consists of the adjusted types of all the non-object parameters. —end note]

10 A function type with a cv-qualifier-seq or a ref-qualifier (including a type named by typedef-name (9.2.4, 13.2)) shallappear only as:
—(10.1) the function type for a non-static member function,
—(10.2) the function type to which a pointer to member refers,
—(10.3) the top-level function type of a function typedef declaration or alias-declaration,
—(10.4) the type-id in the default argument of a type-parameter (13.2), or
—(10.5) the type-id of a template-argument for a type-parameter (13.4.2).

[Example 4:
typedef int FIC(int) const;
FIC f; // error: does not declare a member function
struct S {

FIC f; // OK
};
FIC S::*pm = &S::f; // OK
—end example]

11 The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification on top of the functiontype. In the latter case, the cv-qualifiers are ignored.
[Note 5: A function type that has a cv-qualifier-seq is not a cv-qualified type; there are no cv-qualified function types. —end note]
[Example 5:
typedef void F();
struct S {

const F f; // OK, equivalent to: void f();
};

—end example]
12 The return type, the parameter-type-list, the ref-qualifier , the cv-qualifier-seq, and the exception specification, but notthe default arguments (9.3.4.7) or the trailing requires-clause (9.3), are part of the function type.

[Note 6: Function types are checked during the assignments and initializations of pointers to functions, references to functions, andpointers to member functions. —end note]
13 [Example 6: The declaration

int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returning int (9.2.9). —end example]
14 [Note 7: A single name can be used for several different functions in a single scope; this is function overloading (Clause 12). —endnote]
15 The return type shall be a non-array object type, a reference type, or cv void.
[Note 8: An array of placeholder type is considered an array type. —end note]

16 A volatile-qualified return type is deprecated; see D.5.
17 Types shall not be defined in return or parameter types.
18 A typedef of function type may be used to declare a function but shall not be used to define a function (9.5).

§ 9.3.4.6 191

© ISO/IEC N4910

[Example 7:
typedef void F();
F fv; // OK, equivalent to void fv();
F fv { } // error
void fv() { } // OK, definition of fv
—end example]

19 An identifier can optionally be provided as a parameter name; if present in a function definition (9.5), it names aparameter.
[Note 9: In particular, parameter names are also optional in function definitions and names used for a parameter in differentdeclarations and the definition of a function need not be the same. —end note]

20 [Example 8: The declaration
int i,

*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*),
(*fpif(int))(int);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer, a function fpi taking aninteger argument and returning a pointer to an integer, a pointer pif to a function which takes two pointers to constant characters andreturns an integer, a function fpif taking an integer argument and returning a pointer to a function that takes an integer argumentand returns an integer. It is especially useful to compare fpi and pif. The binding of *fpi(int) is *(fpi(int)), so the declarationsuggests, and the same construction in an expression requires, the calling of a function fpi, and then using indirection through the(pointer) result to yield an integer. In the declarator (*pif)(const char*, const char*), the extra parentheses are necessary toindicate that indirection through a pointer to a function yields a function, which is then called. —end example]
[Note 10: Typedefs and trailing-return-types are sometimes convenient when the return type of a function is complex. For example,the function fpif above can be declared
typedef int IFUNC(int);
IFUNC* fpif(int);

or
auto fpif(int)->int(*)(int);

A trailing-return-type is most useful for a type that would be more complicated to specify before the declarator-id :
template <class T, class U> auto add(T t, U u) -> decltype(t + u);

rather than
template <class T, class U> decltype((*(T*)0) + (*(U*)0)) add(T t, U u);

—end note]
21 A non-template function is a function that is not a function template specialization.
[Note 11: A function template is not a function. —end note]

22 An abbreviated function template is a function declaration that has one or more generic parameter type placeholders(9.2.9.6). An abbreviated function template is equivalent to a function template (13.7.7) whose template-parameter-listincludes one invented type template-parameter for each generic parameter type placeholder of the function declaration,in order of appearance. For a placeholder-type-specifier of the form auto, the invented parameter is an unconstrained
type-parameter . For a placeholder-type-specifier of the form type-constraint auto, the invented parameter is a
type-parameter with that type-constraint. The invented type template-parameter is a template parameter pack if thecorresponding parameter-declaration declares a function parameter pack. If the placeholder contains decltype(auto),the program is ill-formed. The adjusted function parameters of an abbreviated function template are derived fromthe parameter-declaration-clause by replacing each occurrence of a placeholder with the name of the correspondinginvented template-parameter .
[Example 9:
template<typename T> concept C1 = /* ... */;
template<typename T> concept C2 = /* ... */;
template<typename... Ts> concept C3 = /* ... */;
void g1(const C1 auto*, C2 auto&);
void g2(C1 auto&...);

§ 9.3.4.6 192

© ISO/IEC N4910

void g3(C3 auto...);
void g4(C3 auto);

The declarations above are functionally equivalent (but not equivalent) to their respective declarations below:
template<C1 T, C2 U> void g1(const T*, U&);
template<C1... Ts> void g2(Ts&...);
template<C3... Ts> void g3(Ts...);
template<C3 T> void g4(T);

Abbreviated function templates can be specialized like all function templates.
template<> void g1<int>(const int*, const double&); // OK, specialization of g1<int, const double>

—end example]
23 An abbreviated function template can have a template-head . The invented template-parameters are appended to the

template-parameter-list after the explicitly declared template-parameters.
[Example 10:
template<typename> concept C = /* ... */;
template <typename T, C U>

void g(T x, U y, C auto z);

This is functionally equivalent to each of the following two declarations.
template<typename T, C U, C W>

void g(T x, U y, W z);

template<typename T, typename U, typename W>
requires C<U> && C<W>
void g(T x, U y, W z);

—end example]
24 A function declaration at block scope shall not declare an abbreviated function template.
25 A declarator-id or abstract-declarator containing an ellipsis shall only be used in a parameter-declaration. Whenit is part of a parameter-declaration-clause, the parameter-declaration declares a function parameter pack (13.7.4).Otherwise, the parameter-declaration is part of a template-parameter-list and declares a template parameter pack;see 13.2. A function parameter pack is a pack expansion (13.7.4).
[Example 11:
template<typename... T> void f(T (* ...t)(int, int));

int add(int, int);
float subtract(int, int);

void g() {
f(add, subtract);

}

—end example]
26 There is a syntactic ambiguity when an ellipsis occurs at the end of a parameter-declaration-clause without a precedingcomma. In this case, the ellipsis is parsed as part of the abstract-declarator if the type of the parameter eithernames a template parameter pack that has not been expanded or contains auto; otherwise, it is parsed as part of the

parameter-declaration-clause.82
9.3.4.7 Default arguments [dcl.fct.default]

1 If an initializer-clause is specified in a parameter-declaration this initializer-clause is used as a default argument.
[Note 1: Default arguments will be used in calls where trailing arguments are missing (7.6.1.3). —end note]

2 [Example 1: The declaration
void point(int = 3, int = 4);

82) One can explicitly disambiguate the parse either by introducing a comma (so the ellipsis will be parsed as part of the parameter-declaration–
clause) or by introducing a name for the parameter (so the ellipsis will be parsed as part of the declarator-id).
§ 9.3.4.7 193

© ISO/IEC N4910

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any of these ways:
point(1,2); point(1); point();

The last two calls are equivalent to point(1,4) and point(3,4), respectively. —end example]
3 A default argument shall be specified only in the parameter-declaration-clause of a function declaration or lambda-

declarator or in a template-parameter (13.2); in the latter case, the initializer-clause shall be an assignment-expression.A default argument shall not be specified for a template parameter pack or a function parameter pack. If it is specified in a
parameter-declaration-clause, it shall not occur within a declarator or abstract-declarator of a parameter-declaration.83

4 For non-template functions, default arguments can be added in later declarations of a function that inhabit the samescope. Declarations that inhabit different scopes have completely distinct sets of default arguments. That is, declarationsin inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In a given functiondeclaration, each parameter subsequent to a parameter with a default argument shall have a default argument suppliedin this or a previous declaration, unless the parameter was expanded from a parameter pack, or shall be a functionparameter pack.
[Note 2: A default argument cannot be redefined by a later declaration (not even to the same value) (6.3). —end note]
[Example 2:
void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow// a parameter with a default argument
void f(int, int);
void f(int, int = 7);
void h() {

f(3); // OK, calls f(3, 7)
void f(int = 1, int); // error: does not use default from surrounding scope

}
void m() {

void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // OK
f(4); // OK, calls f(4, 5);
void f(int, int = 5); // error: cannot redefine, even to same value

}
void n() {

f(6); // OK, calls f(6, 7)
}
template<class ... T> struct C {

void f(int n = 0, T...);
};
C<int> c; // OK, instantiates declaration void C::f(int n = 0, int)

—end example]
For a given inline function defined in different translation units, the accumulated sets of default arguments at the end ofthe translation units shall be the same; no diagnostic is required. If a friend declaration D specifies a default argumentexpression, that declaration shall be a definition and there shall be no other declaration of the function or functiontemplate which is reachable from D or from which D is reachable.

5 The default argument has the same semantic constraints as the initializer in a declaration of a variable of the parametertype, using the copy-initialization semantics (9.4). The names in the default argument are looked up, and the semanticconstraints are checked, at the point where the default argument appears. Name lookup and checking of semanticconstraints for default arguments of templated functions are performed as described in 13.9.2.
[Example 3: In the following code, g will be called with the value f(2):
int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)
void h() {

a = 2;
{
int a = 3;

83) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or typedefdeclarations.
§ 9.3.4.7 194

© ISO/IEC N4910

g(); // g(f(::a))
}

}

—end example]
[Note 3: A default argument is a complete-class context (11.4). Access checking applies to names in default arguments as describedin 11.8. —end note]

6 Except for member functions of class templates, the default arguments in a member function definition that appearsoutside of the class definition are added to the set of default arguments provided by the member function declaration inthe class definition; the program is ill-formed if a default constructor (11.4.5.2), copy or move constructor (11.4.5.3), orcopy or move assignment operator (11.4.6) is so declared. Default arguments for a member function of a class templateshall be specified on the initial declaration of the member function within the class template.
[Example 4:
class C {

void f(int i = 3);
void g(int i, int j = 99);

};

void C::f(int i = 3) {} // error: default argument already specified in class scope
void C::g(int i = 88, int j) {} // in this translation unit, C::g can be called with no argument
— end example]

7 [Note 4: A local variable cannot be odr-used (6.3) in a default argument. —end note]
[Example 5:
void f() {

int i;
extern void g(int x = i); // error
extern void h(int x = sizeof(i)); // OK// ...

}

—end example]
8 [Note 5: The keyword this cannot appear in a default argument of a member function; see 7.5.2.
[Example 6:
class A {

void f(A* p = this) { } // error
};

—end example]
—end note]

9 A default argument is evaluated each time the function is called with no argument for the corresponding parameter. Aparameter shall not appear as a potentially-evaluated expression in a default argument.
[Note 6: Parameters of a function declared before a default argument are in scope and can hide namespace and class member names.—end note]
[Example 7:
int a;
int f(int a, int b = a); // error: parameter a used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found
int h(int a, int b = sizeof(a)); // OK, unevaluated operand (7.2.3)
— end example]
A non-static member shall not appear in a default argument unless it appears as the id-expression of a class memberaccess expression (7.6.1.5) or unless it is used to form a pointer to member (7.6.2.2).
[Example 8: The declaration of X::mem1() in the following example is ill-formed because no object is supplied for the non-staticmember X::a used as an initializer.
int b;

§ 9.3.4.7 195

© ISO/IEC N4910

class X {
int a;
int mem1(int i = a); // error: non-static member a used as default argument
int mem2(int i = b); // OK; use X::b
static int b;

};

The declaration of X::mem2() is meaningful, however, since no object is needed to access the static member X::b. Classes, objects,and members are described in Clause 11. —end example]
A default argument is not part of the type of a function.
[Example 9:
int f(int = 0);

void h() {
int j = f(1);
int k = f(); // OK, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch
—end example]
When an overload set contains a declaration of a function that inhabits a scope S, any default argument associated withany reachable declaration that inhabits S is available to the call.
[Note 7: The candidate might have been found through a using-declarator from which the declaration that provides the defaultargument is not reachable. —end note]

10 A virtual function call (11.7.3) uses the default arguments in the declaration of the virtual function determined by thestatic type of the pointer or reference denoting the object. An overriding function in a derived class does not acquiredefault arguments from the function it overrides.
[Example 10:
struct A {

virtual void f(int a = 7);
};
struct B : public A {

void f(int a);
};
void m() {

B* pb = new B;
A* pa = pb;
pa->f(); // OK, calls pa->B::f(7)
pb->f(); // error: wrong number of arguments for B::f()

}

—end example]
9.4 Initializers [dcl.init]
9.4.1 General [dcl.init.general]

1 The process of initialization described in 9.4 applies to all initializations regardless of syntactic context, including theinitialization of a function parameter (7.6.1.3), the initialization of a return value (8.7.4), or when an initializer followsa declarator.
initializer :

brace-or-equal-initializer
(expression-list)

brace-or-equal-initializer :
= initializer-clause
braced-init-list

initializer-clause :
assignment-expression
braced-init-list

§ 9.4.1 196

© ISO/IEC N4910

braced-init-list :
{ initializer-list ,opt }
{ designated-initializer-list ,opt }
{ }

initializer-list :
initializer-clause ...opt
initializer-list , initializer-clause ...opt

designated-initializer-list :
designated-initializer-clause
designated-initializer-list , designated-initializer-clause

designated-initializer-clause :
designator brace-or-equal-initializer

designator :
. identifier

expr-or-braced-init-list :
expression
braced-init-list

[Note 1: The rules in 9.4 apply even if the grammar permits only the brace-or-equal-initializer form of initializer in a given context.—end note]
2 Except for objects declared with the constexpr specifier, for which see 9.2.6, an initializer in the definition of a variablecan consist of arbitrary expressions involving literals and previously declared variables and functions, regardless of thevariable’s storage duration.
[Example 1:
int f(int);
int a = 2;
int b = f(a);
int c(b);

—end example]
3 [Note 2: Default arguments are more restricted; see 9.3.4.7. —end note]
4 [Note 3: The order of initialization of variables with static storage duration is described in 6.9.3 and 8.8. —end note]
5 A declaration D of a variable with linkage shall not have an initializer if D inhabits a block scope.
6 To zero-initialize an object or reference of type T means:

—(6.1) if T is a scalar type (6.8.1), the object is initialized to the value obtained by converting the integer literal 0 (zero)to T;84
—(6.2) if T is a (possibly cv-qualified) non-union class type, its padding bits (6.8.1) are initialized to zero bits and eachnon-static data member, each non-virtual base class subobject, and, if the object is not a base class subobject,each virtual base class subobject is zero-initialized;
—(6.3) if T is a (possibly cv-qualified) union type, its padding bits (6.8.1) are initialized to zero bits and the object’s firstnon-static named data member is zero-initialized;
—(6.4) if T is an array type, each element is zero-initialized;
—(6.5) if T is a reference type, no initialization is performed.

7 To default-initialize an object of type T means:
—(7.1) If T is a (possibly cv-qualified) class type (Clause 11), constructors are considered. The applicable constructorsare enumerated (12.2.2.4), and the best one for the initializer () is chosen through overload resolution (12.2).The constructor thus selected is called, with an empty argument list, to initialize the object.
—(7.2) If T is an array type, each element is default-initialized.
—(7.3) Otherwise, no initialization is performed.

8 A class type T is const-default-constructible if default-initialization of T would invoke a user-provided constructor of T(not inherited from a base class) or if

84) As specified in 7.3.12, converting an integer literal whose value is 0 to a pointer type results in a null pointer value.
§ 9.4.1 197

© ISO/IEC N4910

—(8.1) each direct non-variant non-static data member M of T has a default member initializer or, if M is of class type X(or array thereof), X is const-default-constructible,
—(8.2) if T is a union with at least one non-static data member, exactly one variant member has a default memberinitializer,
—(8.3) if T is not a union, for each anonymous union member with at least one non-static data member (if any), exactlyone non-static data member has a default member initializer, and
—(8.4) each potentially constructed base class of T is const-default-constructible.

If a program calls for the default-initialization of an object of a const-qualified type T, T shall be a const-default-constructible class type or array thereof.
9 To value-initialize an object of type T means:

—(9.1) if T is a (possibly cv-qualified) class type (Clause 11), then
—(9.1.1) if T has either no default constructor (11.4.5.2) or a default constructor that is user-provided or deleted, thenthe object is default-initialized;
—(9.1.2) otherwise, the object is zero-initialized and the semantic constraints for default-initialization are checked,and if T has a non-trivial default constructor, the object is default-initialized;

—(9.2) if T is an array type, then each element is value-initialized;
—(9.3) otherwise, the object is zero-initialized.

10 A program that calls for default-initialization or value-initialization of an entity of reference type is ill-formed.
11 [Note 4: For every object of static storage duration, static initialization (6.9.3.2) is performed at program startup before any otherinitialization takes place. In some cases, additional initialization is done later. —end note]
12 If no initializer is specified for an object, the object is default-initialized.
13 If the entity being initialized does not have class type, the expression-list in a parenthesized initializer shall be a singleexpression.
14 The initialization that occurs in the = form of a brace-or-equal-initializer or condition (8.5), as well as in argument passing,function return, throwing an exception (14.2), handling an exception (14.4), and aggregate member initialization (9.4.2),is called copy-initialization.
[Note 5: Copy-initialization can invoke a move (11.4.5.3). —end note]

15 The initialization that occurs
—(15.1) for an initializer that is a parenthesized expression-list or a braced-init-list,
—(15.2) for a new-initializer (7.6.2.8),
—(15.3) in a static_cast expression (7.6.1.9),
—(15.4) in a functional notation type conversion (7.6.1.4), and
—(15.5) in the braced-init-list form of a condition

is called direct-initialization.
16 The semantics of initializers are as follows. The destination type is the type of the object or reference being initializedand the source type is the type of the initializer expression. If the initializer is not a single (possibly parenthesized)expression, the source type is not defined.

—(16.1) If the initializer is a (non-parenthesized) braced-init-list or is = braced-init-list, the object or reference is list-initialized (9.4.5).
—(16.2) If the destination type is a reference type, see 9.4.4.
—(16.3) If the destination type is an array of characters, an array of char8_t, an array of char16_t, an array of char32_t,or an array of wchar_t, and the initializer is a string-literal , see 9.4.3.
—(16.4) If the initializer is (), the object is value-initialized.

[Note 6: Since () is not permitted by the syntax for initializer ,
X a();

is not the declaration of an object of class X, but the declaration of a function taking no argument and returning an X. The form
() is permitted in certain other initialization contexts (7.6.2.8, 7.6.1.4, 11.9.3). —end note]

§ 9.4.1 198

© ISO/IEC N4910

—(16.5) Otherwise, if the destination type is an array, the object is initialized as follows. Let x1, . . . , xk be the elementsof the expression-list. If the destination type is an array of unknown bound, it is defined as having k elements. Let
n denote the array size after this potential adjustment. If k is greater than n, the program is ill-formed. Otherwise,the ith array element is copy-initialized with xi for each 1 ≤ i ≤ k, and value-initialized for each k < i ≤ n. Foreach 1 ≤ i < j ≤ n, every value computation and side effect associated with the initialization of the ith elementof the array is sequenced before those associated with the initialization of the jth element.

—(16.6) Otherwise, if the destination type is a (possibly cv-qualified) class type:
—(16.6.1) If the initializer expression is a prvalue and the cv-unqualified version of the source type is the same classas the class of the destination, the initializer expression is used to initialize the destination object.

[Example 2: T x = T(T(T())); calls the T default constructor to initialize x. —end example]
—(16.6.2) Otherwise, if the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualifiedversion of the source type is the same class as, or a derived class of, the class of the destination, constructorsare considered. The applicable constructors are enumerated (12.2.2.4), and the best one is chosen throughoverload resolution (12.2). Then:

—(16.6.2.1) If overload resolution is successful, the selected constructor is called to initialize the object, with theinitializer expression or expression-list as its argument(s).
—(16.6.2.2) Otherwise, if no constructor is viable, the destination type is an aggregate class, and the initializeris a parenthesized expression-list, the object is initialized as follows. Let e1, . . . , en be the elementsof the aggregate (9.4.2). Let x1, . . . , xk be the elements of the expression-list. If k is greater than n,the program is ill-formed. The element ei is copy-initialized with xi for 1 ≤ i ≤ k. The remainingelements are initialized with their default member initializers, if any, and otherwise are value-initialized.For each 1 ≤ i < j ≤ n, every value computation and side effect associated with the initialization of

ei is sequenced before those associated with the initialization of ej .
[Note 7: By contrast with direct-list-initialization, narrowing conversions (9.4.5) are permitted, designators are notpermitted, a temporary object bound to a reference does not have its lifetime extended (6.7.7), and there is nobrace elision.
[Example 3:
struct A {
int a;
int&& r;

};

int f();
int n = 10;

A a1{1, f()}; // OK, lifetime is extended
A a2(1, f()); // well-formed, but dangling reference
A a3{1.0, 1}; // error: narrowing conversion
A a4(1.0, 1); // well-formed, but dangling reference
A a5(1.0, std::move(n)); // OK
—end example]
—end note]

—(16.6.2.3) Otherwise, the initialization is ill-formed.
—(16.6.3) Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversions that can convert fromthe source type to the destination type or (when a conversion function is used) to a derived class thereofare enumerated as described in 12.2.2.5, and the best one is chosen through overload resolution (12.2). Ifthe conversion cannot be done or is ambiguous, the initialization is ill-formed. The function selected iscalled with the initializer expression as its argument; if the function is a constructor, the call is a prvalueof the cv-unqualified version of the destination type whose result object is initialized by the constructor.The call is used to direct-initialize, according to the rules above, the object that is the destination of thecopy-initialization.

—(16.7) Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered. Theapplicable conversion functions are enumerated (12.2.2.6), and the best one is chosen through overload resolution(12.2). The user-defined conversion so selected is called to convert the initializer expression into the object beinginitialized. If the conversion cannot be done or is ambiguous, the initialization is ill-formed.
§ 9.4.1 199

© ISO/IEC N4910

—(16.8) Otherwise, if the initialization is direct-initialization, the source type is std::nullptr_t, and the destination typeis bool, the initial value of the object being initialized is false.
—(16.9) Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initializerexpression. A standard conversion sequence (7.3) will be used, if necessary, to convert the initializer expressionto the cv-unqualified version of the destination type; no user-defined conversions are considered. If the conversioncannot be done, the initialization is ill-formed. When initializing a bit-field with a value that it cannot represent,the resulting value of the bit-field is implementation-defined.

[Note 8: An expression of type “cv1 T” can initialize an object of type “cv2 T” independently of the cv-qualifiers cv1 and cv2.
int a;
const int b = a;
int c = b;

—end note]
17 An initializer-clause followed by an ellipsis is a pack expansion (13.7.4).
18 If the initializer is a parenthesized expression-list, the expressions are evaluated in the order specified for functioncalls (7.6.1.3).
19 The same identifier shall not appear in multiple designators of a designated-initializer-list.
20 An object whose initialization has completed is deemed to be constructed, even if the object is of non-class type or noconstructor of the object’s class is invoked for the initialization.
[Note 9: Such an object might have been value-initialized or initialized by aggregate initialization (9.4.2) or by an inheritedconstructor (11.9.4). —end note]
Destroying an object of class type invokes the destructor of the class. Destroying a scalar type has no effect other thanending the lifetime of the object (6.7.3). Destroying an array destroys each element in reverse subscript order.

21 A declaration that specifies the initialization of a variable, whether from an explicit initializer or by default-initialization,is called the initializing declaration of that variable.
[Note 10: In most cases this is the defining declaration (6.2) of the variable, but the initializing declaration of a non-inline static datamember (11.4.9.3) can be the declaration within the class definition and not the definition (if any) outside it. —end note]
9.4.2 Aggregates [dcl.init.aggr]

1 An aggregate is an array or a class (Clause 11) with
—(1.1) no user-declared or inherited constructors (11.4.5),
—(1.2) no private or protected direct non-static data members (11.8),
—(1.3) no virtual functions (11.7.3), and
—(1.4) no virtual, private, or protected base classes (11.7.2).

[Note 1: Aggregate initialization does not allow accessing protected and private base class’ members or constructors. —end note]
2 The elements of an aggregate are:

—(2.1) for an array, the array elements in increasing subscript order, or
—(2.2) for a class, the direct base classes in declaration order, followed by the direct non-static data members (11.4) thatare not members of an anonymous union, in declaration order.

3 When an aggregate is initialized by an initializer list as specified in 9.4.5, the elements of the initializer list are takenas initializers for the elements of the aggregate. The explicitly initialized elements of the aggregate are determined asfollows:
—(3.1) If the initializer list is a brace-enclosed designated-initializer-list, the aggregate shall be of class type, the identifierin each designator shall name a direct non-static data member of the class, and the explicitly initialized elementsof the aggregate are the elements that are, or contain, those members.
—(3.2) If the initializer list is a brace-enclosed initializer-list, the explicitly initialized elements of the aggregate are thefirst n elements of the aggregate, where n is the number of elements in the initializer list.
—(3.3) Otherwise, the initializer list must be {}, and there are no explicitly initialized elements.

4 For each explicitly initialized element:

§ 9.4.2 200

© ISO/IEC N4910

—(4.1) If the element is an anonymous union member and the initializer list is a brace-enclosed designated-initializer-list,the element is initialized by the designated-initializer-list { D }, where D is the designated-initializer-clausenaming a member of the anonymous union member. There shall be only one such designated-initializer-clause.
[Example 1:
struct C {
union {

int a;
const char* p;

};
int x;

} c = { .a = 1, .x = 3 };

initializes c.a with 1 and c.x with 3. —end example]
—(4.2) Otherwise, the element is copy-initialized from the corresponding initializer-clause or is initialized with the

brace-or-equal-initializer of the corresponding designated-initializer-clause. If that initializer is of the form
assignment-expression or = assignment-expression and a narrowing conversion (9.4.5) is required to convert theexpression, the program is ill-formed.
[Note 2: If an initializer is itself an initializer list, the element is list-initialized, which will result in a recursive application ofthe rules in this subclause if the element is an aggregate. —end note]
[Example 2:
struct A {
int x;
struct B {

int i;
int j;

} b;
} a = { 1, { 2, 3 } };

initializes a.x with 1, a.b.i with 2, a.b.j with 3.
struct base1 { int b1, b2 = 42; };
struct base2 {
base2() {

b3 = 42;
}
int b3;

};
struct derived : base1, base2 {
int d;

};

derived d1{{1, 2}, {}, 4};
derived d2{{}, {}, 4};

initializes d1.b1 with 1, d1.b2 with 2, d1.b3 with 42, d1.d with 4, and d2.b1 with 0, d2.b2 with 42, d2.b3 with 42, d2.dwith 4. —end example]
5 For a non-union aggregate, each element that is not an explicitly initialized element is initialized as follows:

—(5.1) If the element has a default member initializer (11.4), the element is initialized from that initializer.
—(5.2) Otherwise, if the element is not a reference, the element is copy-initialized from an empty initializer list (9.4.5).
—(5.3) Otherwise, the program is ill-formed.

If the aggregate is a union and the initializer list is empty, then
—(5.4) if any variant member has a default member initializer, that member is initialized from its default memberinitializer;
—(5.5) otherwise, the first member of the union (if any) is copy-initialized from an empty initializer list.

6 [Example 3:
struct S { int a; const char* b; int c; int d = b[a]; };
S ss = { 1, "asdf" };

§ 9.4.2 201

© ISO/IEC N4910

initializes ss.a with 1, ss.b with "asdf", ss.c with the value of an expression of the form int{} (that is, 0), and ss.d with thevalue of ss.b[ss.a] (that is, ’s’), and in
struct X { int i, j, k = 42; };
X a[] = { 1, 2, 3, 4, 5, 6 };
X b[2] = { { 1, 2, 3 }, { 4, 5, 6 } };

a and b have the same value
struct A {

string a;
int b = 42;
int c = -1;

};

A{.c=21} has the following steps:
—(6.1) Initialize a with {}
—(6.2) Initialize b with = 42

—(6.3) Initialize c with = 21

—end example]
7 The initializations of the elements of the aggregate are evaluated in the element order. That is, all value computationsand side effects associated with a given element are sequenced before those of any element that follows it in order.
8 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as described in 9.4.
9 The destructor for each element of class type is potentially invoked (11.4.7) from the context where the aggregateinitialization occurs.
[Note 3: This provision ensures that destructors can be called for fully-constructed subobjects in case an exception is thrown (14.3).—end note]

10 An array of unknown bound initialized with a brace-enclosed initializer-list containing n initializer-clauses is defined ashaving n elements (9.3.4.5).
[Example 4:
int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three elements since no size was specified and there are three initializers.—end example]
An array of unknown bound shall not be initialized with an empty braced-init-list {}.85
[Note 4: A default member initializer does not determine the bound for a member array of unknown bound. Since the default memberinitializer is ignored if a suitable mem-initializer is present (11.9.3), the default member initializer is not considered to initialize thearray of unknown bound.
[Example 5:
struct S {

int y[] = { 0 }; // error: non-static data member of incomplete type
};

—end example]
—end note]

11 [Note 5: Static data members, non-static data members of anonymous union members, and unnamed bit-fields are not consideredelements of the aggregate.
[Example 6:
struct A {

int i;
static int s;
int j;
int :17;
int k;

} a = { 1, 2, 3 };

Here, the second initializer 2 initializes a.j and not the static data member A::s, and the third initializer 3 initializes a.k and not theunnamed bit-field before it. —end example]
85) The syntax provides for empty braced-init-lists, but nonetheless C++ does not have zero length arrays.
§ 9.4.2 202

© ISO/IEC N4910

—end note]
12 An initializer-list is ill-formed if the number of initializer-clauses exceeds the number of elements of the aggregate.
[Example 7:
char cv[4] = { 'a', 's', 'd', 'f', 0 }; // error

is ill-formed. —end example]
13 If a member has a default member initializer and a potentially-evaluated subexpression thereof is an aggregate initial-ization that would use that default member initializer, the program is ill-formed.
[Example 8:
struct A;
extern A a;
struct A {

const A& a1 { A{a,a} }; // OK
const A& a2 { A{} }; // error

};
A a{a,a}; // OK
struct B {

int n = B{}.n; // error
};

—end example]
14 If an aggregate class C contains a subaggregate element e with no elements, the initializer-clause for e shall not beomitted from an initializer-list for an object of type C unless the initializer-clauses for all elements of C following e arealso omitted.
[Example 9:
struct S { } s;
struct A {

S s1;
int i1;
S s2;
int i2;
S s3;
int i3;

} a = {
{ }, // Required initialization
0,
s, // Required initialization
0

}; // Initialization not required for A::s3 because A::i3 is also not initialized
— end example]

15 When initializing a multi-dimensional array, the initializer-clauses initialize the elements with the last (rightmost) indexof the array varying the fastest (9.3.4.5).
[Example 10:
int x[2][2] = { 3, 1, 4, 2 };

initializes x[0][0] to 3, x[0][1] to 1, x[1][0] to 4, and x[1][1] to 2. On the other hand,
float y[4][3] = {

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest zero. —end example]
16 Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the succeedingcomma-separated list of initializer-clauses initializes the elements of a subaggregate; it is erroneous for there to be more

initializer-clauses than elements. If, however, the initializer-list for a subaggregate does not begin with a left brace, thenonly enough initializer-clauses from the list are taken to initialize the elements of the subaggregate; any remaining
initializer-clauses are left to initialize the next element of the aggregate of which the current subaggregate is an element.
[Example 11:

§ 9.4.2 203

© ISO/IEC N4910

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely y[0][0], y[0][1], and y[0][2].Likewise the next two lines initialize y[1] and y[2]. The initializer ends early and therefore y[3]s elements are initialized as ifexplicitly initialized with an expression of the form float(), that is, are initialized with 0.0. In the following example, braces inthe initializer-list are elided; however the initializer-list has the same effect as the completely-braced initializer-list of the aboveexample,
float y[4][3] = {

1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace, but the one for y[0] does not, therefore three elements from the list are used. Likewisethe next three are taken successively for y[1] and y[2]. —end example]
17 All implicit type conversions (7.3) are considered when initializing the element with an assignment-expression. Ifthe assignment-expression can initialize an element, the element is initialized. Otherwise, if the element is itself asubaggregate, brace elision is assumed and the assignment-expression is considered for the initialization of the firstelement of the subaggregate.
[Note 6: As specified above, brace elision cannot apply to subaggregates with no elements; an initializer-clause for the entiresubobject is required. —end note]
[Example 12:
struct A {

int i;
operator int();

};
struct B {

A a1, a2;
int z;

};
A a;
B b = { 4, a, a };

Braces are elided around the initializer-clause for b.a1.i. b.a1.i is initialized with 4, b.a2 is initialized with a, b.z is initializedwith whatever a.operator int() returns. —end example]
18 [Note 7: An aggregate array or an aggregate class can contain elements of a class type with a user-declared constructor (11.4.5).Initialization of these aggregate objects is described in 11.9.2. —end note]
19 [Note 8: Whether the initialization of aggregates with static storage duration is static or dynamic is specified in 6.9.3.2, 6.9.3.3,and 8.8. —end note]
20 When a union is initialized with an initializer list, there shall not be more than one explicitly initialized element.
[Example 13:
union u { int a; const char* b; };
u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error
u f = { .b = "asdf" };
u g = { .a = 1, .b = "asdf" }; // error
— end example]

21 [Note 9: As described above, the braces around the initializer-clause for a union member can be omitted if the union is a member ofanother aggregate. —end note]
9.4.3 Character arrays [dcl.init.string]

1 An array of ordinary character type (6.8.2), char8_t array, char16_t array, char32_t array, or wchar_t array can beinitialized by an ordinary string literal, UTF-8 string literal, UTF-16 string literal, UTF-32 string literal, or wide string

§ 9.4.3 204

© ISO/IEC N4910

literal, respectively, or by an appropriately-typed string-literal enclosed in braces (5.13.5). Successive characters of thevalue of the string-literal initialize the elements of the array.
[Example 1:
char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string-literal . Note that because ’\n’ is a single character and becausea trailing ’\0’ is appended, sizeof(msg) is 25. —end example]
2 There shall not be more initializers than there are array elements.
[Example 2:
char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing ’\0’. —end example]
3 If there are fewer initializers than there are array elements, each element not explicitly initialized shall be zero-initialized (9.4).
9.4.4 References [dcl.init.ref]

1 A variable whose declared type is “reference to T” (9.3.4.3) shall be initialized.
[Example 1:
int g(int) noexcept;
void f() {

int i;
int& r = i; // r refers to i
r = 1; // the value of i becomes 1
int* p = &r; // p points to i
int& rr = r; // rr refers to what r refers to, that is, to i
int (&rg)(int) = g; // rg refers to the function g
rg(i); // calls function g
int a[3];
int (&ra)[3] = a; // ra refers to the array a
ra[1] = i; // modifies a[1]

}

—end example]
2 A reference cannot be changed to refer to another object after initialization.
[Note 1: Assignment to a reference assigns to the object referred to by the reference (7.6.19). —end note]
Argument passing (7.6.1.3) and function value return (8.7.4) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (9.3.4.6), in the declaration of a functionreturn type, in the declaration of a class member within its class definition (11.4), and where the extern specifier isexplicitly used.
[Example 2:
int& r1; // error: initializer missing
extern int& r2; // OK
—end example]

4 Given types “cv1 T1” and “cv2 T2”, “cv1 T1” is reference-related to “cv2 T2” if T1 is similar (7.3.6) to T2, or T1 is a baseclass of T2. “cv1 T1” is reference-compatible with “cv2 T2” if a prvalue of type “pointer to cv2 T2” can be convertedto the type “pointer to cv1 T1” via a standard conversion sequence (7.3). In all cases where the reference-compatiblerelationship of two types is used to establish the validity of a reference binding and the standard conversion sequencewould be ill-formed, a program that necessitates such a binding is ill-formed.
5 A reference to type “cv1 T1” is initialized by an expression of type “cv2 T2” as follows:

—(5.1) If the reference is an lvalue reference and the initializer expression
—(5.1.1) is an lvalue (but is not a bit-field), and “cv1 T1” is reference-compatible with “cv2 T2”, or
—(5.1.2) has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be converted to anlvalue of type “cv3 T3”, where “cv1 T1” is reference-compatible with “cv3 T3”86 (this conversion is selected

86) This requires a conversion function (11.4.8.3) returning a reference type.
§ 9.4.4 205

© ISO/IEC N4910

by enumerating the applicable conversion functions (12.2.2.7) and choosing the best one through overloadresolution (12.2)),
then the reference binds to the initializer expression lvalue in the first case and to the lvalue result of the conversionin the second case (or, in either case, to the appropriate base class subobject of the object).
[Note 2: The usual lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions arenot needed, and therefore are suppressed, when such direct bindings to lvalues are done. —end note]
[Example 3:
double d = 2.0;
double& rd = d; // rd refers to d
const double& rcd = d; // rcd refers to d
struct A { };
struct B : A { operator int&(); } b;
A& ra = b; // ra refers to A subobject in b
const A& rca = b; // rca refers to A subobject in b
int& ir = B(); // ir refers to the result of B::operator int&

—end example]
—(5.2) Otherwise, if the reference is an lvalue reference to a type that is not const-qualified or is volatile-qualified, theprogram is ill-formed.

[Example 4:
double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;
double& rd3 = i; // error: type mismatch and reference not const
—end example]

—(5.3) Otherwise, if the initializer expression
—(5.3.1) is an rvalue (but not a bit-field) or function lvalue and “cv1 T1” is reference-compatible with “cv2 T2”, or
—(5.3.2) has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be convertedto an rvalue or function lvalue of type “cv3 T3”, where “cv1 T1” is reference-compatible with “cv3 T3”(see 12.2.2.7),
then the initializer expression in the first case and the converted expression in the second case is called theconverted initializer. If the converted initializer is a prvalue, its type T4 is adjusted to type “cv1 T4” (7.3.6) and thetemporary materialization conversion (7.3.5) is applied. In any case, the reference binds to the resulting glvalue(or to an appropriate base class subobject).
[Example 5:
struct A { };
struct B : A { } b;
extern B f();
const A& rca2 = f(); // binds to the A subobject of the B rvalue.
A&& rra = f(); // same as above
struct X {
operator B();
operator int&();

} x;
const A& r = x; // binds to the A subobject of the result of the conversion
int i2 = 42;
int&& rri = static_cast<int&&>(i2); // binds directly to i2
B&& rrb = x; // binds directly to the result of operator B

—end example]
—(5.4) Otherwise:

—(5.4.1) If T1 or T2 is a class type and T1 is not reference-related to T2, user-defined conversions are consid-ered using the rules for copy-initialization of an object of type “cv1 T1” by user-defined conversion (9.4,12.2.2.5, 12.2.2.6); the program is ill-formed if the corresponding non-reference copy-initialization wouldbe ill-formed. The result of the call to the conversion function, as described for the non-reference copy-

§ 9.4.4 206

© ISO/IEC N4910

initialization, is then used to direct-initialize the reference. For this direct-initialization, user-definedconversions are not considered.
—(5.4.2) Otherwise, the initializer expression is implicitly converted to a prvalue of type “T1”. The temporarymaterialization conversion is applied, considering the type of the prvalue to be “cv1 T1”, and the referenceis bound to the result.
If T1 is reference-related to T2:
—(5.4.3) cv1 shall be the same cv-qualification as, or greater cv-qualification than, cv2; and
—(5.4.4) if the reference is an rvalue reference, the initializer expression shall not be an lvalue.
[Example 6:
struct Banana { };
struct Enigma { operator const Banana(); };
struct Alaska { operator Banana&(); };
void enigmatic() {
typedef const Banana ConstBanana;
Banana &&banana1 = ConstBanana(); // error
Banana &&banana2 = Enigma(); // error
Banana &&banana3 = Alaska(); // error

}

const double& rcd2 = 2; // rcd2 refers to temporary with value 2.0
double&& rrd = 2; // rrd refers to temporary with value 2.0
const volatile int cvi = 1;
const int& r2 = cvi; // error: cv-qualifier dropped
struct A { operator volatile int&(); } a;
const int& r3 = a; // error: cv-qualifier dropped// from result of conversion function
double d2 = 1.0;
double&& rrd2 = d2; // error: initializer is lvalue of related type
struct X { operator int&(); };
int&& rri2 = X(); // error: result of conversion function is lvalue of related type
int i3 = 2;
double&& rrd3 = i3; // rrd3 refers to temporary with value 2.0
—end example]

In all cases except the last (i.e., implicitly converting the initializer expression to the referenced type), the reference issaid to bind directly to the initializer expression.
6 [Note 3: 6.7.7 describes the lifetime of temporaries bound to references. —end note]
9.4.5 List-initialization [dcl.init.list]

1 List-initialization is initialization of an object or reference from a braced-init-list. Such an initializer is called aninitializer list, and the comma-separated initializer-clauses of the initializer-list or designated-initializer-clauses of the
designated-initializer-list are called the elements of the initializer list. An initializer list may be empty. List-initializationcan occur in direct-initialization or copy-initialization contexts; list-initialization in a direct-initialization context iscalled direct-list-initialization and list-initialization in a copy-initialization context is called copy-list-initialization.
[Note 1: List-initialization can be used
—(1.1) as the initializer in a variable definition (9.4)
—(1.2) as the initializer in a new-expression (7.6.2.8)
—(1.3) in a return statement (8.7.4)
—(1.4) as a for-range-initializer (8.6)
—(1.5) as a function argument (7.6.1.3)
—(1.6) as a subscript (7.6.1.2)
—(1.7) as an argument to a constructor invocation (9.4, 7.6.1.4)
—(1.8) as an initializer for a non-static data member (11.4)
—(1.9) in a mem-initializer (11.9.3)
—(1.10) on the right-hand side of an assignment (7.6.19)

§ 9.4.5 207

© ISO/IEC N4910

[Example 1:
int a = {1};
std::complex<double> z{1,2};
new std::vector<std::string>{"once", "upon", "a", "time"}; // 4 string elements
f({"Nicholas","Annemarie"}); // pass list of two elements
return { "Norah" }; // return list of one element
int* e {}; // initialization to zero / null pointer
x = double{1}; // explicitly construct a double
std::map<std::string,int> anim = { {"bear",4}, {"cassowary",2}, {"tiger",7} };

—end example]
—end note]

2 A constructor is an initializer-list constructor if its first parameter is of type std::initializer_list<E> or referenceto cv std::initializer_list<E> for some type E, and either there are no other parameters or else all other parametershave default arguments (9.3.4.7).
[Note 2: Initializer-list constructors are favored over other constructors in list-initialization (12.2.2.8). Passing an initializer list as theargument to the constructor template template<class T> C(T) of a class C does not create an initializer-list constructor, because aninitializer list argument causes the corresponding parameter to be a non-deduced context (13.10.3.2). —end note]
The template std::initializer_list is not predefined; if the header <initializer_list> is not imported or includedprior to a use of std::initializer_list — even an implicit use in which the type is not named (9.2.9.6) — theprogram is ill-formed.

3 List-initialization of an object or reference of type T is defined as follows:
—(3.1) If the braced-init-list contains a designated-initializer-list, T shall be an aggregate class. The ordered identifiersin the designators of the designated-initializer-list shall form a subsequence of the ordered identifiers in thedirect non-static data members of T. Aggregate initialization is performed (9.4.2).

[Example 2:
struct A { int x; int y; int z; };
A a{.y = 2, .x = 1}; // error: designator order does not match declaration order
A b{.x = 1, .z = 2}; // OK, b.y initialized to 0
—end example]

—(3.2) If T is an aggregate class and the initializer list has a single element of type cv U, where U is T or a classderived from T, the object is initialized from that element (by copy-initialization for copy-list-initialization, or bydirect-initialization for direct-list-initialization).
—(3.3) Otherwise, if T is a character array and the initializer list has a single element that is an appropriately-typed

string-literal (9.4.3), initialization is performed as described in that subclause.
—(3.4) Otherwise, if T is an aggregate, aggregate initialization is performed (9.4.2).

[Example 3:
double ad[] = { 1, 2.0 }; // OK
int ai[] = { 1, 2.0 }; // error: narrowing
struct S2 {
int m1;
double m2, m3;

};
S2 s21 = { 1, 2, 3.0 }; // OK
S2 s22 { 1.0, 2, 3 }; // error: narrowing
S2 s23 { }; // OK, default to 0,0,0
— end example]

—(3.5) Otherwise, if the initializer list has no elements and T is a class type with a default constructor, the object isvalue-initialized.
—(3.6) Otherwise, if T is a specialization of std::initializer_list<E>, the object is constructed as described below.
—(3.7) Otherwise, if T is a class type, constructors are considered. The applicable constructors are enumerated and thebest one is chosen through overload resolution (12.2, 12.2.2.8). If a narrowing conversion (see below) is requiredto convert any of the arguments, the program is ill-formed.

§ 9.4.5 208

© ISO/IEC N4910

[Example 4:
struct S {
S(std::initializer_list<double>); // #1
S(std::initializer_list<int>); // #2
S(); // #3// ...

};
S s1 = { 1.0, 2.0, 3.0 }; // invoke #1
S s2 = { 1, 2, 3 }; // invoke #2
S s3 = { }; // invoke #3
—end example]
[Example 5:
struct Map {
Map(std::initializer_list<std::pair<std::string,int>>);

};
Map ship = {{"Sophie",14}, {"Surprise",28}};

—end example]
[Example 6:
struct S {// no initializer-list constructors
S(int, double, double); // #1
S(); // #2// ...

};
S s1 = { 1, 2, 3.0 }; // OK, invoke #1
S s2 { 1.0, 2, 3 }; // error: narrowing
S s3 { }; // OK, invoke #2
—end example]

—(3.8) Otherwise, if T is an enumeration with a fixed underlying type (9.7.1) U, the initializer-list has a single element v,
v can be implicitly converted to U, and the initialization is direct-list-initialization, the object is initialized withthe value T(v) (7.6.1.4); if a narrowing conversion is required to convert v to U, the program is ill-formed.
[Example 7:
enum byte : unsigned char { };
byte b { 42 }; // OK
byte c = { 42 }; // error
byte d = byte{ 42 }; // OK; same value as b
byte e { -1 }; // error
struct A { byte b; };
A a1 = { { 42 } }; // error
A a2 = { byte{ 42 } }; // OK
void f(byte);
f({ 42 }); // error
enum class Handle : uint32_t { Invalid = 0 };
Handle h { 42 }; // OK
—end example]

—(3.9) Otherwise, if the initializer list has a single element of type E and either T is not a reference type or its referencedtype is reference-related to E, the object or reference is initialized from that element (by copy-initialization forcopy-list-initialization, or by direct-initialization for direct-list-initialization); if a narrowing conversion (seebelow) is required to convert the element to T, the program is ill-formed.
[Example 8:
int x1 {2}; // OK
int x2 {2.0}; // error: narrowing
—end example]

§ 9.4.5 209

© ISO/IEC N4910

—(3.10) Otherwise, if T is a reference type, a prvalue is generated. The prvalue initializes its result object by copy-list-initialization. The prvalue is then used to direct-initialize the reference. The type of the temporary is the typereferenced by T, unless T is “reference to array of unknown bound of U”, in which case the type of the temporaryis the type of x in the declaration U x[] H , where H is the initializer list.
[Note 3: As usual, the binding will fail and the program is ill-formed if the reference type is an lvalue reference to a non-consttype. —end note]
[Example 9:
struct S {
S(std::initializer_list<double>); // #1
S(const std::string&); // #2// ...

};
const S& r1 = { 1, 2, 3.0 }; // OK, invoke #1
const S& r2 { "Spinach" }; // OK, invoke #2
S& r3 = { 1, 2, 3 }; // error: initializer is not an lvalue
const int& i1 = { 1 }; // OK
const int& i2 = { 1.1 }; // error: narrowing
const int (&iar)[2] = { 1, 2 }; // OK, iar is bound to temporary array
struct A { } a;
struct B { explicit B(const A&); };
const B& b2{a}; // error: cannot copy-list-initialize B temporary from A

—end example]
—(3.11) Otherwise, if the initializer list has no elements, the object is value-initialized.

[Example 10:
int** pp {}; // initialized to null pointer
— end example]

—(3.12) Otherwise, the program is ill-formed.
[Example 11:
struct A { int i; int j; };
A a1 { 1, 2 }; // aggregate initialization
A a2 { 1.2 }; // error: narrowing
struct B {

B(std::initializer_list<int>);
};
B b1 { 1, 2 }; // creates initializer_list<int> and calls constructor
B b2 { 1, 2.0 }; // error: narrowing
struct C {

C(int i, double j);
};
C c1 = { 1, 2.2 }; // calls constructor with arguments (1, 2.2)
C c2 = { 1.1, 2 }; // error: narrowing
int j { 1 }; // initialize to 1
int k { }; // initialize to 0
—end example]

4 Within the initializer-list of a braced-init-list, the initializer-clauses, including any that result from pack expansions(13.7.4), are evaluated in the order in which they appear. That is, every value computation and side effect associated with agiven initializer-clause is sequenced before every value computation and side effect associated with any initializer-clausethat follows it in the comma-separated list of the initializer-list.
[Note 4: This evaluation ordering holds regardless of the semantics of the initialization; for example, it applies when the elements ofthe initializer-list are interpreted as arguments of a constructor call, even though ordinarily there are no sequencing constraints onthe arguments of a call. —end note]

5 An object of type std::initializer_list<E> is constructed from an initializer list as if the implementation generatedand materialized (7.3.5) a prvalue of type “array of N const E”, where N is the number of elements in the initializer

§ 9.4.5 210

© ISO/IEC N4910

list. Each element of that array is copy-initialized with the corresponding element of the initializer list, and the
std::initializer_list<E> object is constructed to refer to that array.
[Note 5: A constructor or conversion function selected for the copy is required to be accessible (11.8) in the context of the initializerlist. —end note]
If a narrowing conversion is required to initialize any of the elements, the program is ill-formed.
[Example 12:
struct X {

X(std::initializer_list<double> v);
};
X x{ 1,2,3 };

The initialization will be implemented in a way roughly equivalent to this:
const double __a[3] = {double{1}, double{2}, double{3}};
X x(std::initializer_list<double>(__a, __a+3));

assuming that the implementation can construct an initializer_list object with a pair of pointers. —end example]
6 The array has the same lifetime as any other temporary object (6.7.7), except that initializing an initializer_listobject from the array extends the lifetime of the array exactly like binding a reference to a temporary.
[Example 13:
typedef std::complex<double> cmplx;
std::vector<cmplx> v1 = { 1, 2, 3 };

void f() {
std::vector<cmplx> v2{ 1, 2, 3 };
std::initializer_list<int> i3 = { 1, 2, 3 };

}

struct A {
std::initializer_list<int> i4;
A() : i4{ 1, 2, 3 } {} // ill-formed, would create a dangling reference

};

For v1 and v2, the initializer_list object is a parameter in a function call, so the array created for { 1, 2, 3 } has full-expression lifetime. For i3, the initializer_list object is a variable, so the array persists for the lifetime of the variable. For
i4, the initializer_list object is initialized in the constructor’s ctor-initializer as if by binding a temporary array to a referencemember, so the program is ill-formed (11.9.3). —end example]
[Note 6: The implementation is free to allocate the array in read-only memory if an explicit array with the same initializer can be soallocated. —end note]

7 A narrowing conversion is an implicit conversion
—(7.1) from a floating-point type to an integer type, or
—(7.2) from long double to double or float, or from double to float, except where the source is a constant expressionand the actual value after conversion is within the range of values that can be represented (even if it cannot berepresented exactly), or
—(7.3) from an integer type or unscoped enumeration type to a floating-point type, except where the source is a constantexpression and the actual value after conversion will fit into the target type and will produce the original valuewhen converted back to the original type, or
—(7.4) from an integer type or unscoped enumeration type to an integer type that cannot represent all the values of theoriginal type, except where the source is a constant expression whose value after integral promotions will fit intothe target type, or
—(7.5) from a pointer type or a pointer-to-member type to bool.

[Note 7: As indicated above, such conversions are not allowed at the top level in list-initializations. —end note]
[Example 14:
int x = 999; // x is not a constant expression
const int y = 999;
const int z = 99;
char c1 = x; // OK, though it potentially narrows (in this case, it does narrow)
char c2{x}; // error: potentially narrows
§ 9.4.5 211

© ISO/IEC N4910

char c3{y}; // error: narrows (assuming char is 8 bits)
char c4{z}; // OK, no narrowing needed
unsigned char uc1 = {5}; // OK, no narrowing needed
unsigned char uc2 = {-1}; // error: narrows
unsigned int ui1 = {-1}; // error: narrows
signed int si1 =

{ (unsigned int)-1 }; // error: narrows
int ii = {2.0}; // error: narrows
float f1 { x }; // error: potentially narrows
float f2 { 7 }; // OK, 7 can be exactly represented as a float
bool b = {"meow"}; // error: narrows
int f(int);
int a[] = { 2, f(2), f(2.0) }; // OK, the double-to-int conversion is not at the top level
— end example]
9.5 Function definitions [dcl.fct.def]
9.5.1 In general [dcl.fct.def.general]

1 Function definitions have the form
function-definition :

attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause function-body

function-body :
ctor-initializeropt compound-statement
function-try-block
= default ;
= delete ;

Any informal reference to the body of a function should be interpreted as a reference to the non-terminal function-body .The optional attribute-specifier-seq in a function-definition appertains to the function. A virt-specifier-seq can be partof a function-definition only if it is a member-declaration (11.4).
2 In a function-definition, either void declarator ; or declarator ; shall be a well-formed function declaration as describedin 9.3.4.6. A function shall be defined only in namespace or class scope. The type of a parameter or the return type for afunction definition shall not be a (possibly cv-qualified) class type that is incomplete or abstract within the functionbody unless the function is deleted (9.5.3).
3 [Example 1: A simple example of a complete function definition is

int max(int a, int b, int c) {
int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Here int is the decl-specifier-seq; max(int a, int b, int c) is the declarator ; { /* ... */ } is the function-body . —endexample]
4 A ctor-initializer is used only in a constructor; see 11.4.5 and 11.9.
5 [Note 1: A cv-qualifier-seq affects the type of this in the body of a member function; see 7.5.2. —end note]
6 [Note 2: Unused parameters need not be named. For example,

void print(int a, int) {
std::printf("a = %d\n",a);

}

—end note]
7 A function-local predefined variable is a variable with static storage duration that is implicitly defined in a functionparameter scope.
8 The function-local predefined variable __func__ is defined as if a definition of the form

static const char __func__[] = "function-name";

§ 9.5.1 212

© ISO/IEC N4910

had been provided, where function-name is an implementation-defined string. It is unspecified whether such a variablehas an address distinct from that of any other object in the program.87
[Example 2:
struct S {

S() : s(__func__) { } // OK
const char* s;

};
void f(const char* s = __func__); // error: __func__ is undeclared
—end example]
9.5.2 Explicitly-defaulted functions [dcl.fct.def.default]

1 A function definition whose function-body is of the form = default ; is called an explicitly-defaulted definition. Afunction that is explicitly defaulted shall
—(1.1) be a special member function or a comparison operator function (12.4.3), and
—(1.2) not have default arguments.

2 The type T1 of an explicitly defaulted special member function F is allowed to differ from the type T2 it would have hadif it were implicitly declared, as follows:
—(2.1) T1 and T2 may have differing ref-qualifiers;
—(2.2) T1 and T2 may have differing exception specifications; and
—(2.3) if T2 has a parameter of type const C&, the corresponding parameter of T1 may be of type C&.

If T1 differs from T2 in any other way, then:
—(2.4) if F is an assignment operator, and the return type of T1 differs from the return type of T2 or T1’s parameter typeis not a reference, the program is ill-formed;
—(2.5) otherwise, if F is explicitly defaulted on its first declaration, it is defined as deleted;
—(2.6) otherwise, the program is ill-formed.

3 An explicitly-defaulted function that is not defined as deleted may be declared constexpr or consteval only if it isconstexpr-compatible (11.4.4, 11.10.1). A function explicitly defaulted on its first declaration is implicitly inline (9.2.8),and is implicitly constexpr (9.2.6) if it is constexpr-compatible.
4 [Example 1:

struct S {
constexpr S() = default; // error: implicit S() is not constexpr
S(int a = 0) = default; // error: default argument
void operator=(const S&) = default; // error: non-matching return type
~S() noexcept(false) = default; // OK, despite mismatched exception specification

private:
int i;
S(S&); // OK, private copy constructor

};
S::S(S&) = default; // OK, defines copy constructor
struct T {

T();
T(T &&) noexcept(false);

};
struct U {

T t;
U();
U(U &&) noexcept = default;

};
U u1;
U u2 = static_cast<U&&>(u1); // OK, calls std::terminate if T::T(T&&) throws

87) Implementations are permitted to provide additional predefined variables with names that are reserved to the implementation (5.10). If apredefined variable is not odr-used (6.3), its string value need not be present in the program image.
§ 9.5.2 213

© ISO/IEC N4910

—end example]
5 Explicitly-defaulted functions and implicitly-declared functions are collectively called defaulted functions, and theimplementation shall provide implicit definitions for them (11.4.5, 11.4.7, 11.4.5.3, 11.4.6), including possibly definingthem as deleted. A defaulted prospective destructor (11.4.7) that is not a destructor is defined as deleted. A defaultedspecial member function that is neither a prospective destructor nor an eligible special member function (11.4.4) isdefined as deleted. A function is user-provided if it is user-declared and not explicitly defaulted or deleted on its firstdeclaration. A user-provided explicitly-defaulted function (i.e., explicitly defaulted after its first declaration) is definedat the point where it is explicitly defaulted; if such a function is implicitly defined as deleted, the program is ill-formed.
[Note 1: Declaring a function as defaulted after its first declaration can provide efficient execution and concise definition whileenabling a stable binary interface to an evolving code base. —end note]

6 [Example 2:
struct trivial {

trivial() = default;
trivial(const trivial&) = default;
trivial(trivial&&) = default;
trivial& operator=(const trivial&) = default;
trivial& operator=(trivial&&) = default;
~trivial() = default;

};

struct nontrivial1 {
nontrivial1();

};
nontrivial1::nontrivial1() = default; // not first declaration
—end example]
9.5.3 Deleted definitions [dcl.fct.def.delete]

1 A deleted definition of a function is a function definition whose function-body is of the form = delete ; or anexplicitly-defaulted definition of the function where the function is defined as deleted. A deleted function is a functionwith a deleted definition or a function that is implicitly defined as deleted.
2 A program that refers to a deleted function implicitly or explicitly, other than to declare it, is ill-formed.
[Note 1: This includes calling the function implicitly or explicitly and forming a pointer or pointer-to-member to the function. Itapplies even for references in expressions that are not potentially-evaluated. For an overload set, only the function selected byoverload resolution is referenced. The implicit odr-use (6.3) of a virtual function does not, by itself, constitute a reference. —endnote]

3 [Example 1: One can prevent default initialization and initialization by non-doubles with
struct onlydouble {

onlydouble() = delete; // OK, but redundant
template<class T>
onlydouble(T) = delete;

onlydouble(double);
};

—end example]
[Example 2: One can prevent use of a class in certain new-expressions by using deleted definitions of a user-declared operator newfor that class.
struct sometype {

void* operator new(std::size_t) = delete;
void* operator new[](std::size_t) = delete;

};
sometype* p = new sometype; // error: deleted class operator new
sometype* q = new sometype[3]; // error: deleted class operator new[]

—end example]
[Example 3: One can make a class uncopyable, i.e., move-only, by using deleted definitions of the copy constructor and copyassignment operator, and then providing defaulted definitions of the move constructor and move assignment operator.
struct moveonly {

moveonly() = default;

§ 9.5.3 214

© ISO/IEC N4910

moveonly(const moveonly&) = delete;
moveonly(moveonly&&) = default;
moveonly& operator=(const moveonly&) = delete;
moveonly& operator=(moveonly&&) = default;
~moveonly() = default;

};
moveonly* p;
moveonly q(*p); // error: deleted copy constructor
— end example]

4 A deleted function is implicitly an inline function (9.2.8).
[Note 2: The one-definition rule (6.3) applies to deleted definitions. —end note]
A deleted definition of a function shall be the first declaration of the function or, for an explicit specialization of a functiontemplate, the first declaration of that specialization. An implicitly declared allocation or deallocation function (6.7.5.5)shall not be defined as deleted.
[Example 4:
struct sometype {

sometype();
};
sometype::sometype() = delete; // error: not first declaration
—end example]
9.5.4 Coroutine definitions [dcl.fct.def.coroutine]

1 A function is a coroutine if its function-body encloses a coroutine-return-statement (8.7.5), an await-expression(7.6.2.4), or a yield-expression (7.6.17). The parameter-declaration-clause of the coroutine shall not terminate with anellipsis that is not part of a parameter-declaration.
2 [Example 1:

task<int> f();

task<void> g1() {
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

template <typename... Args>
task<void> g2(Args&&...) { // OK, ellipsis is a pack expansion

int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

task<void> g3(int a, ...) { // error: variable parameter list not allowed
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

—end example]
3 The promise type of a coroutine is std::coroutine_traits<R, P1, . . . , Pn>::promise_type, where R is the returntype of the function, and P1 . . . Pn are the sequence of types of the non-object function parameters, preceded by the typeof the object parameter (9.3.4.6) if the coroutine is a non-static member function. The promise type shall be a class type.
4 In the following, pi is an lvalue of type Pi, where p1 denotes the object parameter and pi+1 denotes the ith non-objectfunction parameter for a non-static member function, and pi denotes the ith function parameter otherwise. For anon-static member function, q1 is an lvalue that denotes *this; any other qi is an lvalue that denotes the parametercopy corresponding to pi, as described below.
5 A coroutine behaves as if its function-body were replaced by:

§ 9.5.4 215

© ISO/IEC N4910

{ promise-type promise promise-constructor-arguments ;
try {

co_await promise.initial_suspend() ;
function-body

} catch (...) {
if (!initial-await-resume-called)

throw ;
promise.unhandled_exception() ;

}
final-suspend :

co_await promise.final_suspend() ;
}

where
—(5.1) the await-expression containing the call to initial_suspend is the initial suspend point, and
—(5.2) the await-expression containing the call to final_suspend is the final suspend point, and
—(5.3) initial-await-resume-called is initially false and is set to true immediately before the evaluation of the await-resume expression (7.6.2.4) of the initial suspend point, and
—(5.4) promise-type denotes the promise type, and
—(5.5) the object denoted by the exposition-only name promise is the promise object of the coroutine, and
—(5.6) the label denoted by the name final-suspend is defined for exposition only (8.7.5), and
—(5.7) promise-constructor-arguments is determined as follows: overload resolution is performed on a promise con-structor call created by assembling an argument list q1 . . . qn. If a viable constructor is found (12.2.3), thenpromise-constructor-arguments is (q1, . . . , qn), otherwise promise-constructor-arguments is empty.

6 If searches for the names return_void and return_value in the scope of the promise type each find any declarations,the program is ill-formed.
[Note 1: If return_void is found, flowing off the end of a coroutine is equivalent to a co_return with no operand. Otherwise,flowing off the end of a coroutine results in undefined behavior (8.7.5). —end note]

7 The expression promise.get_return_object() is used to initialize the returned reference or prvalue result object of acall to a coroutine. The call to get_return_object is sequenced before the call to initial_suspend and is invoked atmost once.
8 A suspended coroutine can be resumed to continue execution by invoking a resumption member function (17.12.4.6) ofa coroutine handle (17.12.4) that refers to the coroutine. The function that invoked a resumption member function iscalled the resumer. Invoking a resumption member function for a coroutine that is not suspended results in undefinedbehavior.
9 An implementation may need to allocate additional storage for a coroutine. This storage is known as the coroutine stateand is obtained by calling a non-array allocation function (6.7.5.5.2). The allocation function’s name is looked up bysearching for it in the scope of the promise type.

—(9.1) If any declarations are found, overload resolution is performed on a function call created by assembling anargument list. The first argument is the amount of space requested, and has type std::size_t. The lvalues
p1 . . . pn are the succeeding arguments.

—(9.2) Otherwise, a search is performed in the global scope.
If no viable function is found (12.2.3), overload resolution is performed again on a function call created by passing justthe amount of space required as an argument of type std::size_t.

10 If a search for the name get_return_object_on_allocation_failure in the scope of the promise type (6.5.2) finds anydeclarations, then the result of a call to an allocation function used to obtain storage for the coroutine state is assumed toreturn nullptr if it fails to obtain storage, and if a global allocation function is selected, the ::operator new(size_t,
nothrow_t) form is used. The allocation function used in this case shall have a non-throwing noexcept-specifier . If theallocation function returns nullptr, the coroutine returns control to the caller of the coroutine and the return value isobtained by a call to T::get_return_object_on_allocation_failure(), where T is the promise type.
[Example 2:
#include <iostream>
#include <coroutine>

§ 9.5.4 216

© ISO/IEC N4910

// ::operator new(size_t, nothrow_t) will be used if allocation is needed
struct generator {

struct promise_type;
using handle = std::coroutine_handle<promise_type>;
struct promise_type {
int current_value;
static auto get_return_object_on_allocation_failure() { return generator{nullptr}; }
auto get_return_object() { return generator{handle::from_promise(*this)}; }
auto initial_suspend() { return std::suspend_always{}; }
auto final_suspend() noexcept { return std::suspend_always{}; }
void unhandled_exception() { std::terminate(); }
void return_void() {}
auto yield_value(int value) {

current_value = value;
return std::suspend_always{};

}
};
bool move_next() { return coro ? (coro.resume(), !coro.done()) : false; }
int current_value() { return coro.promise().current_value; }
generator(generator const&) = delete;
generator(generator && rhs) : coro(rhs.coro) { rhs.coro = nullptr; }
~generator() { if (coro) coro.destroy(); }

private:
generator(handle h) : coro(h) {}
handle coro;

};
generator f() { co_yield 1; co_yield 2; }
int main() {

auto g = f();
while (g.move_next()) std::cout << g.current_value() << std::endl;

}

—end example]
11 The coroutine state is destroyed when control flows off the end of the coroutine or the destroy member function(17.12.4.6) of a coroutine handle (17.12.4) that refers to the coroutine is invoked. In the latter case, control in thecoroutine is considered to be transferred out of the function (8.8). The storage for the coroutine state is released bycalling a non-array deallocation function (6.7.5.5.3). If destroy is called for a coroutine that is not suspended, theprogram has undefined behavior.
12 The deallocation function’s name is looked up by searching for it in the scope of the promise type. If nothing is found,a search is performed in the global scope. If both a usual deallocation function with only a pointer parameter and ausual deallocation function with both a pointer parameter and a size parameter are found, then the selected deallocationfunction shall be the one with two parameters. Otherwise, the selected deallocation function shall be the function withone parameter. If no usual deallocation function is found, the program is ill-formed. The selected deallocation functionshall be called with the address of the block of storage to be reclaimed as its first argument. If a deallocation functionwith a parameter of type std::size_t is used, the size of the block is passed as the corresponding argument.
13 When a coroutine is invoked, after initializing its parameters (7.6.1.3), a copy is created for each coroutine parameter.For a parameter of type cv T, the copy is a variable of type cv T with automatic storage duration that is direct-initializedfrom an xvalue of type T referring to the parameter.
[Note 2: An original parameter object is never a const or volatile object (6.8.4). —end note]
The initialization and destruction of each parameter copy occurs in the context of the called coroutine. Initializations ofparameter copies are sequenced before the call to the coroutine promise constructor and indeterminately sequenced withrespect to each other. The lifetime of parameter copies ends immediately after the lifetime of the coroutine promiseobject ends.
[Note 3: If a coroutine has a parameter passed by reference, resuming the coroutine after the lifetime of the entity referred to by thatparameter has ended is likely to result in undefined behavior. —end note]

14 If the evaluation of the expression promise.unhandled_exception() exits via an exception, the coroutine is consideredsuspended at the final suspend point.
15 The expression co_await promise.final_suspend() shall not be potentially-throwing (14.5).

§ 9.5.4 217

© ISO/IEC N4910

9.6 Structured binding declarations [dcl.struct.bind]
1 A structured binding declaration introduces the identifiers v0, v1, v2, . . . of the identifier-list as names of structuredbindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S consist of the storage-class-specifiers of the

decl-specifier-seq (if any). A cv that includes volatile is deprecated; see D.5. First, a variable with a unique name eis introduced. If the assignment-expression in the initializer has array type cv1 A and no ref-qualifier is present, e isdefined by
attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of the assignment-expressionas specified by the form of the initializer . Otherwise, e is defined as-if by
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the declaration other than the
declarator-id are taken from the corresponding structured binding declaration. The type of the id-expression e is called
E.
[Note 1: E is never a reference type (7.2). —end note]

2 If the initializer refers to one of the names introduced by the structured binding declaration, the program is ill-formed.
3 If E is an array type with element type T, the number of elements in the identifier-list shall be equal to the numberof elements of E. Each vi is the name of an lvalue that refers to the element i of the array and whose type is T; thereferenced type is T.
[Note 2: The top-level cv-qualifiers of T are cv. —end note]
[Example 1:
auto f() -> int(&)[2];
auto [x, y] = f(); // x and y refer to elements in a copy of the array return value
auto& [xr, yr] = f(); // xr and yr refer to elements in the array referred to by f’s return value
— end example]

4 Otherwise, if the qualified-id std::tuple_size<E> names a complete class type with a member named value, theexpression std::tuple_size<E>::value shall be a well-formed integral constant expression and the number of elementsin the identifier-list shall be equal to the value of that expression. Let i be an index prvalue of type std::size_tcorresponding to vi. If a search for the name get in the scope of E (6.5.2) finds at least one declaration that is a functiontemplate whose first template parameter is a non-type parameter, the initializer is e.get<i>(). Otherwise, the initializeris get<i>(e), where get undergoes argument-dependent lookup (6.5.4). In either case, get<i> is interpreted as a
template-id .
[Note 3: Ordinary unqualified lookup (6.5.3) is not performed. —end note]
In either case, e is an lvalue if the type of the entity e is an lvalue reference and an xvalue otherwise. Given the type
Ti designated by std::tuple_element<i, E>::type and the type Ui designated by either Ti& or Ti&&, where Ui is anlvalue reference if the initializer is an lvalue and an rvalue reference otherwise, variables are introduced with uniquenames ri as follows:

S Ui ri = initializer ;

Each vi is the name of an lvalue of type Ti that refers to the object bound to ri; the referenced type is Ti.
5 Otherwise, all of E’s non-static data members shall be direct members of E or of the same base class of E, well-formedwhen named as e.name in the context of the structured binding, E shall not have an anonymous union member, and thenumber of elements in the identifier-list shall be equal to the number of non-static data members of E. Designating thenon-static data members of E as m0, m1, m2, . . . (in declaration order), each vi is the name of an lvalue that refers to themember mi of e and whose type is that of e.mi (7.6.1.5); the referenced type is the declared type of mi if that type is areference type, or the type of e.mi otherwise. The lvalue is a bit-field if that member is a bit-field.
[Example 2:
struct S { mutable int x1 : 2; volatile double y1; };
S f();
const auto [x, y] = f();

The type of the id-expression x is “int”, the type of the id-expression y is “const volatile double”. —end example]

§ 9.6 218

© ISO/IEC N4910

9.7 Enumerations [enum]
9.7.1 Enumeration declarations [dcl.enum]

1 An enumeration is a distinct type (6.8.3) with named constants. Its name becomes an enum-name within its scope.
enum-name :

identifier

enum-specifier :
enum-head { enumerator-listopt }
enum-head { enumerator-list , }

enum-head :
enum-key attribute-specifier-seqopt enum-head-nameopt enum-baseopt

enum-head-name :
nested-name-specifieropt identifier

opaque-enum-declaration :
enum-key attribute-specifier-seqopt enum-head-name enum-baseopt ;

enum-key :
enum
enum class
enum struct

enum-base :
: type-specifier-seq

enumerator-list :
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition :
enumerator
enumerator = constant-expression

enumerator :
identifier attribute-specifier-seqopt

The optional attribute-specifier-seq in the enum-head and the opaque-enum-declaration appertains to the enumeration;the attributes in that attribute-specifier-seq are thereafter considered attributes of the enumeration whenever it is named.A : following “enum nested-name-specifieropt identifier” within the decl-specifier-seq of a member-declaration isparsed as part of an enum-base.
[Note 1: This resolves a potential ambiguity between the declaration of an enumeration with an enum-base and the declaration of anunnamed bit-field of enumeration type.
[Example 1:
struct S {

enum E : int {};
enum E : int {}; // error: redeclaration of enumeration

};

—end example]
—end note]
The identifier in an enum-head-name is not looked up and is introduced by the enum-specifier or opaque-enum-
declaration. If the enum-head-name of an opaque-enum-declaration contains a nested-name-specifier , the declarationshall be an explicit specialization (13.9.4).

2 The enumeration type declared with an enum-key of only enum is an unscoped enumeration, and its enumerators areunscoped enumerators. The enum-keys enum class and enum struct are semantically equivalent; an enumerationtype declared with one of these is a scoped enumeration, and its enumerators are scoped enumerators. The optional
enum-head-name shall not be omitted in the declaration of a scoped enumeration. The type-specifier-seq of an enum-
base shall name an integral type; any cv-qualification is ignored. An opaque-enum-declaration declaring an unscopedenumeration shall not omit the enum-base. The identifiers in an enumerator-list are declared as constants, and canappear wherever constants are required. An enumerator-definition with = gives the associated enumerator the valueindicated by the constant-expression. If the first enumerator has no initializer , the value of the corresponding constantis zero. An enumerator-definition without an initializer gives the enumerator the value obtained by increasing thevalue of the previous enumerator by one.
§ 9.7.1 219

© ISO/IEC N4910

[Example 2:
enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3. —end example]
The optional attribute-specifier-seq in an enumerator appertains to that enumerator.

3 An opaque-enum-declaration is either a redeclaration of an enumeration in the current scope or a declaration of a newenumeration.
[Note 2: An enumeration declared by an opaque-enum-declaration has a fixed underlying type and is a complete type. The list ofenumerators can be provided in a later redeclaration with an enum-specifier . —end note]
A scoped enumeration shall not be later redeclared as unscoped or with a different underlying type. An unscopedenumeration shall not be later redeclared as scoped and each redeclaration shall include an enum-base specifying thesame underlying type as in the original declaration.

4 If an enum-head-name contains a nested-name-specifier , the enclosing enum-specifier or opaque-enum-declaration Dshall not inhabit a class scope and shall correspond to one or more declarations nominable in the class, class template,or namespace to which the nested-name-specifier refers (6.4.1). All those declarations shall have the same target scope;the target scope of D is that scope.
5 Each enumeration defines a type that is different from all other types. Each enumeration also has an underlying type.The underlying type can be explicitly specified using an enum-base. For a scoped enumeration type, the underlyingtype is int if it is not explicitly specified. In both of these cases, the underlying type is said to be fixed. Followingthe closing brace of an enum-specifier , each enumerator has the type of its enumeration. If the underlying type isfixed, the type of each enumerator prior to the closing brace is the underlying type and the constant-expression in the

enumerator-definition shall be a converted constant expression of the underlying type (7.7). If the underlying type isnot fixed, the type of each enumerator prior to the closing brace is determined as follows:
—(5.1) If an initializer is specified for an enumerator, the constant-expression shall be an integral constant expression (7.7).If the expression has unscoped enumeration type, the enumerator has the underlying type of that enumerationtype, otherwise it has the same type as the expression.
—(5.2) If no initializer is specified for the first enumerator, its type is an unspecified signed integral type.
—(5.3) Otherwise the type of the enumerator is the same as that of the preceding enumerator unless the incrementedvalue is not representable in that type, in which case the type is an unspecified integral type sufficient to containthe incremented value. If no such type exists, the program is ill-formed.

6 An enumeration whose underlying type is fixed is an incomplete type until immediately after its enum-base (if any), atwhich point it becomes a complete type. An enumeration whose underlying type is not fixed is an incomplete type untilthe closing } of its enum-specifier , at which point it becomes a complete type.
7 For an enumeration whose underlying type is not fixed, the underlying type is an integral type that can represent allthe enumerator values defined in the enumeration. If no integral type can represent all the enumerator values, theenumeration is ill-formed. It is implementation-defined which integral type is used as the underlying type except thatthe underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or unsigned int.If the enumerator-list is empty, the underlying type is as if the enumeration had a single enumerator with value 0.
8 For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the underlyingtype. Otherwise, the values of the enumeration are the values representable by a hypothetical integer type with minimalwidthM such that all enumerators can be represented. The width of the smallest bit-field large enough to hold allthe values of the enumeration type isM . It is possible to define an enumeration that has values not defined by any ofits enumerators. If the enumerator-list is empty, the values of the enumeration are as if the enumeration had a singleenumerator with value 0.88
9 Two enumeration types are layout-compatible enumerations if they have the same underlying type.
10 The value of an enumerator or an object of an unscoped enumeration type is converted to an integer by integralpromotion (7.3.7).
[Example 3:
enum color { red, yellow, green=20, blue };
color col = red;

88) This set of values is used to define promotion and conversion semantics for the enumeration type. It does not preclude an expression ofenumeration type from having a value that falls outside this range.
§ 9.7.1 220

© ISO/IEC N4910

color* cp = &col;
if (*cp == blue) // ...

makes color a type describing various colors, and then declares col as an object of that type, and cp as a pointer to an object of thattype. The possible values of an object of type color are red, yellow, green, blue; these values can be converted to the integralvalues 0, 1, 20, and 21. Since enumerations are distinct types, objects of type color can be assigned only values of type color.
color c = 1; // error: type mismatch, no conversion from int to color
int i = yellow; // OK, yellow converted to integral value 1, integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:
enum class Col { red, yellow, green };
int x = Col::red; // error: no Col to int conversion
Col y = Col::red;
if (y) { } // error: no Col to bool conversion
—end example]

11 The name of each unscoped enumerator is also bound in the scope that immediately contains the enum-specifier . Anunnamed enumeration that does not have a typedef name for linkage purposes (9.2.4) and that has a first enumerator isdenoted, for linkage purposes (6.6), by its underlying type and its first enumerator; such an enumeration is said to havean enumerator as a name for linkage purposes.
[Note 3: Each unnamed enumeration with no enumerators is a distinct type. —end note]
[Example 4:
enum direction { left='l', right='r' };

void g() {
direction d; // OK
d = left; // OK
d = direction::right; // OK

}

enum class altitude { high='h', low='l' };

void h() {
altitude a; // OK
a = high; // error: high not in scope
a = altitude::low; // OK

}

—end example]
9.7.2 The using enum declaration [enum.udecl]

using-enum-declaration :
using elaborated-enum-specifier ;

1 The elaborated-enum-specifier shall not name a dependent type and the type shall have a reachable enum-specifier .
2 A using-enum-declaration is equivalent to a using-declaration for each enumerator.
3 [Note 1: A using-enum-declaration in class scope makes the enumerators of the named enumeration available via member lookup.
[Example 1:
enum class fruit { orange, apple };
struct S {

using enum fruit; // OK, introduces orange and apple into S
};
void f() {

S s;
s.orange; // OK, names fruit::orange
S::orange; // OK, names fruit::orange

}

—end example]
—end note]

4 [Note 2: Two using-enum-declarations that introduce two enumerators of the same name conflict.

§ 9.7.2 221

© ISO/IEC N4910

[Example 2:
enum class fruit { orange, apple };
enum class color { red, orange };
void f() {

using enum fruit; // OK
using enum color; // error: color::orange and fruit::orange conflict

}

—end example]
—end note]
9.8 Namespaces [basic.namespace]
9.8.1 General [basic.namespace.general]

1 A namespace is an optionally-named entity whose scope can contain declarations of any kind of entity. The name of anamespace can be used to access entities that belong to that namespace; that is, the members of the namespace. Unlikeother entities, the definition of a namespace can be split over several parts of one or more translation units and modules.
2 [Note 1: A namespace-definition is exported if it contains any export-declarations (10.2). A namespace is never attached to anamed module and never has a name with module linkage. —end note]
[Example 1:
export module M;
namespace N1 {} // N1 is not exported
export namespace N2 {} // N2 is exported
namespace N3 { export int n; } // N3 is exported
—end example]

3 There is a global namespace with no declaration; see 6.4.5. The global namespace belongs to the global scope; it is notan unnamed namespace (9.8.2.2).
[Note 2: Lacking a declaration, it cannot be found by name lookup. —end note]
9.8.2 Namespace definition [namespace.def]
9.8.2.1 General [namespace.def.general]

namespace-name :
identifier
namespace-alias

namespace-definition :
named-namespace-definition
unnamed-namespace-definition
nested-namespace-definition

named-namespace-definition :
inlineopt namespace attribute-specifier-seqopt identifier { namespace-body }

unnamed-namespace-definition :
inlineopt namespace attribute-specifier-seqopt { namespace-body }

nested-namespace-definition :
namespace enclosing-namespace-specifier :: inlineopt identifier { namespace-body }

enclosing-namespace-specifier :
identifier
enclosing-namespace-specifier :: inlineopt identifier

namespace-body :
declaration-seqopt

1 Every namespace-definition shall inhabit a namespace scope (6.4.5).
2 In a named-namespace-definition D, the identifier is the name of the namespace. The identifier is looked up bysearching for it in the scopes of the namespace A in which D appears and of every element of the inline namespace setof A. If the lookup finds a namespace-definition for a namespace N , D extends N , and the target scope of D is thescope to which N belongs. If the lookup finds nothing, the identifier is introduced as a namespace-name into A.
3 Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is itself a

declaration, it follows that namespace-definitions can be nested.
§ 9.8.2.1 222

© ISO/IEC N4910

[Example 1:
namespace Outer {

int i;
namespace Inner {
void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

—end example]
4 If the optional initial inline keyword appears in a namespace-definition for a particular namespace, that namespaceis declared to be an inline namespace. The inline keyword may be used on a namespace-definition that extends anamespace only if it was previously used on the namespace-definition that initially declared the namespace-name forthat namespace.
5 The optional attribute-specifier-seq in a named-namespace-definition appertains to the namespace being defined orextended.
6 Members of an inline namespace can be used in most respects as though they were members of the innermost enclosingnamespace. Specifically, the inline namespace and its enclosing namespace are both added to the set of associatednamespaces used in argument-dependent lookup (6.5.4) whenever one of them is, and a using-directive (9.8.4) thatnames the inline namespace is implicitly inserted into the enclosing namespace as for an unnamed namespace (9.8.2.2).Furthermore, each member of the inline namespace can subsequently be partially specialized (13.7.6), explicitlyinstantiated (13.9.3), or explicitly specialized (13.9.4) as though it were a member of the enclosing namespace. Finally,looking up a name in the enclosing namespace via explicit qualification (6.5.5.3) will include members of the inlinenamespace even if there are declarations of that name in the enclosing namespace.
7 These properties are transitive: if a namespace N contains an inline namespace M, which in turn contains an inlinenamespace O, then the members of O can be used as though they were members of M or N. The inline namespace set of Nis the transitive closure of all inline namespaces in N.
8 A nested-namespace-definition with an enclosing-namespace-specifier E, identifier I and namespace-body B isequivalent to

namespace E { inlineopt namespace I { B } }

where the optional inline is present if and only if the identifier I is preceded by inline.
[Example 2:
namespace A::inline B::C {

int i;
}

The above has the same effect as:
namespace A {

inline namespace B {
namespace C {
int i;

}
}

}

—end example]
9.8.2.2 Unnamed namespaces [namespace.unnamed]

1 An unnamed-namespace-definition behaves as if it were replaced by
inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition and all occurrences of unique in atranslation unit are replaced by the same identifier, and this identifier differs from all other identifiers in the translationunit. The optional attribute-specifier-seq in the unnamed-namespace-definition appertains to unique.
[Example 1:

§ 9.8.2.2 223

© ISO/IEC N4910

namespace { int i; } // unique::i
void f() { i++; } // unique::i++
namespace A {

namespace {
int i; // A::unique::i
int j; // A::unique::j

}
void g() { i++; } // A::unique::i++

}

using namespace A;
void h() {

i++; // error: unique::i or A::unique::i
A::i++; // A::unique::i
j++; // A::unique::j

}

—end example]
9.8.3 Namespace alias [namespace.alias]

1 A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:
namespace-alias :

identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier :
nested-name-specifieropt namespace-name

2 The identifier in a namespace-alias-definition becomes a namespace-alias and denotes the namespace denoted by the
qualified-namespace-specifier .
[Note 1: When looking up a namespace-name in a namespace-alias-definition, only namespace names are considered, see 6.5.7.—end note]
9.8.4 Using namespace directive [namespace.udir]

using-directive :
attribute-specifier-seqopt using namespace nested-name-specifieropt namespace-name ;

1 A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note 1: When looking up a namespace-name in a using-directive, only namespace names are considered, see 6.5.7. —end note]
The optional attribute-specifier-seq appertains to the using-directive.

2 [Note 2: A using-directive makes the names in the nominated namespace usable in the scope in which the using-directive appearsafter the using-directive (6.5.3, 6.5.5.3). During unqualified name lookup, the names appear as if they were declared in the nearestenclosing namespace which contains both the using-directive and the nominated namespace. —end note]
3 [Note 3: A using-directive does not introduce any names. —end note]
[Example 1:
namespace A {

int i;
namespace B {

namespace C {
int i;

}
using namespace A::B::C;
void f1() {
i = 5; // OK, C::i visible in B and hides A::i

}
}
namespace D {

using namespace B;
using namespace C;

§ 9.8.4 224

© ISO/IEC N4910

void f2() {
i = 5; // ambiguous, B::C::i or A::i?

}
}
void f3() {
i = 5; // uses A::i

}
}
void f4() {

i = 5; // error: neither i is visible
}

—end example]
4 [Note 4: A using-directive is transitive: if a scope contains a using-directive that nominates a namespace that itself contains

using-directives, the namespaces nominated by those using-directives are also eligible to be considered. —end note]
[Example 2:
namespace M {

int i;
}

namespace N {
int i;
using namespace M;

}

void f() {
using namespace N;
i = 7; // error: both M::i and N::i are visible

}

For another example,
namespace A {

int i;
}
namespace B {

int i;
int j;
namespace C {

namespace D {
using namespace A;
int j;
int k;
int a = i; // B::i hides A::i

}
using namespace D;
int k = 89; // no problem yet
int l = k; // ambiguous: C::k or D::k
int m = i; // B::i hides A::i
int n = j; // D::j hides B::j

}
}

—end example]
5 [Note 5: Declarations in a namespace that appear after a using-directive for that namespace can be found through that using-directiveafter they appear. —end note]
6 [Note 6: If name lookup finds a declaration for a name in two different namespaces, and the declarations do not declare the sameentity and do not declare functions or function templates, the use of the name is ill-formed (6.5). In particular, the name of a variable,function or enumerator does not hide the name of a class or enumeration declared in a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();

}

§ 9.8.4 225

© ISO/IEC N4910

namespace B {
void X(int);
extern "C" int g();
extern "C++" int h(int);

}
using namespace A;
using namespace B;

void f() {
X(1); // error: name X found in two namespaces
g(); // OK, name g refers to the same entity
h(); // OK, overload resolution selects A::h

}

—end note]
7 [Note 7: The order in which namespaces are considered and the relationships among the namespaces implied by the using-directivesdo not affect overload resolution. Neither is any function excluded because another has the same signature, even if one is in anamespace reachable through using-directives in the namespace of the other.89 —end note]
[Example 3:
namespace D {

int d1;
void f(char);

}
using namespace D;

int d1; // OK, no conflict with D::d1
namespace E {

int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}

void f() {
d1++; // error: ambiguous ::d1 or D::d1?
::d1++; // OK
D::d1++; // OK
d2++; // OK, D::d2
e++; // OK, E::e
f(1); // error: ambiguous: D::f(int) or E::f(int)?
f('a'); // OK, D::f(char)

}

—end example]
9.9 The using declaration [namespace.udecl]

using-declaration :
using using-declarator-list ;

using-declarator-list :
using-declarator ...opt
using-declarator-list , using-declarator ...opt

using-declarator :
typenameopt nested-name-specifier unqualified-id

89) During name lookup in a class hierarchy, some ambiguities can be resolved by considering whether one member hides the other along somepaths (6.5.2). There is no such disambiguation when considering the set of names found as a result of following using-directives.
§ 9.9 226

© ISO/IEC N4910

1 The component names of a using-declarator are those of its nested-name-specifier and unqualified-id . Each using-
declarator in a using-declaration90 names the set of declarations found by lookup (6.5.5) for the using-declarator , exceptthat class and enumeration declarations that would be discarded are merely ignored when checking for ambiguity (6.5),conversion function templates with a dependent return type are ignored, and certain functions are hidden as describedbelow. If the terminal name of the using-declarator is dependent (13.8.3.2), the using-declarator is considered to namea constructor if and only if the nested-name-specifier has a terminal name that is the same as the unqualified-id . If thelookup in any instantiation finds that a using-declarator that is not considered to name a constructor does do so, or thata using-declarator that is considered to name a constructor does not, the program is ill-formed.

2 If the using-declarator names a constructor, it declares that the class inherits the named set of constructor declarationsfrom the nominated base class.
[Note 1: Otherwise, the unqualified-id in the using-declarator is bound to the using-declarator , which is replaced during namelookup with the declarations it names (6.5). If such a declaration is of an enumeration, the names of its enumerators are not bound.For the keyword typename, see 13.8. —end note]

3 In a using-declaration used as a member-declaration, each using-declarator shall either name an enumerator or have a
nested-name-specifier naming a base class of the current class (7.5.2).
[Example 1:
enum class button { up, down };
struct S {

using button::up;
button b = up; // OK

};

—end example]
If a using-declarator names a constructor, its nested-name-specifier shall name a direct base class of the current class.If the immediate (class) scope is associated with a class template, it shall derive from the specified base class or have atleast one dependent base class.
[Example 2:
struct B {

void f(char);
enum E { e };
union { int x; };

};

struct C {
int f();

};

struct D : B {
using B::f; // OK, B is a base of D
using B::e; // OK, e is an enumerator of base B
using B::x; // OK, x is a union member of base B
using C::f; // error: C isn’t a base of D
void f(int) { f('c'); } // calls B::f(char)
void g(int) { g('c'); } // recursively calls D::g(int)

};
template <typename... bases>
struct X : bases... {

using bases::f...;
};
X<B, C> x; // OK, B::f and C::f named
—end example]

4 [Note 2: Since destructors do not have names, a using-declaration cannot refer to a destructor for a base class. —end note]
If a constructor or assignment operator brought from a base class into a derived class has the signature of a copy/moveconstructor or assignment operator for the derived class (11.4.5.3, 11.4.6), the using-declaration does not by itselfsuppress the implicit declaration of the derived class member; the member from the base class is hidden or overriddenby the implicitly-declared copy/move constructor or assignment operator of the derived class, as described below.
90)A using-declaration with more than one using-declarator is equivalent to a corresponding sequence of using-declarations with one

using-declarator each.
§ 9.9 227

© ISO/IEC N4910

5 A using-declaration shall not name a template-id .
[Example 3:
struct A {

template <class T> void f(T);
template <class T> struct X { };

};
struct B : A {

using A::f<double>; // error
using A::X<int>; // error

};

—end example]
6 A using-declaration shall not name a namespace.
7 A using-declaration that names a class member other than an enumerator shall be a member-declaration.
[Example 4:
struct X {

int i;
static int s;

};

void f() {
using X::i; // error: X::i is a class member and this is not a member declaration.
using X::s; // error: X::s is a class member and this is not a member declaration.

}

—end example]
8 If a declaration is named by two using-declarators that inhabit the same class scope, the program is ill-formed.
9 [Note 3: A using-declarator whose nested-name-specifier names a namespace does not name declarations added to the namespaceafter it. Thus, additional overloads added after the using-declaration are ignored, but default function arguments (9.3.4.7), defaulttemplate arguments (13.2), and template specializations (13.7.6, 13.9.4) are considered. —end note]
[Example 5:
namespace A {

void f(int);
}

using A::f; // f is a synonym for A::f; that is, for A::f(int).
namespace A {

void f(char);
}

void foo() {
f('a'); // calls f(int), even though f(char) exists.

}

void bar() {
using A::f; // f is a synonym for A::f; that is, for A::f(int) and A::f(char).
f('a'); // calls f(char)

}

—end example]
10 If a declaration named by a using-declaration that inhabits the target scope of another declaration potentially conflictswith it (6.4.1), and either is reachable from the other, the program is ill-formed. If two declarations named by using-

declarations that inhabit the same scope potentially conflict, either is reachable from the other, and they do not bothdeclare functions or function templates, the program is ill-formed.
[Note 4: Overload resolution possibly cannot distinguish between conflicting function declarations. —end note]
[Example 6:
namespace A {

int x;
int f(int);

§ 9.9 228

© ISO/IEC N4910

int g;
void h();

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);
void g(char); // OK, hides struct g

}

void func() {
int i;
using B::i; // error: conflicts
void f(char);
using B::f; // OK, each f is a function
using A::f; // OK, but interferes with B::f(int)
f(1); // error: ambiguous
static_cast<int(*)(int)>(f)(1); // OK, calls A::f
f(3.5); // calls B::f(double)
using B::g;
g('a'); // calls B::g(char)
struct g g1; // g1 has class type B::g
using A::g; // error: conflicts with B::g
void h();
using A::h; // error: conflicts
using B::x;
using A::x; // OK, hides struct B::x
x = 99; // assigns to A::x
struct x x1; // x1 has class type B::x

}

—end example]
11 The set of declarations named by a using-declarator that inhabits a class C does not include member functions andmember function templates of a base class that correspond to (and thus would conflict with) a declaration of a functionor function template in C.
[Example 7:
struct B {

virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

struct D : B {
using B::f;
void f(int); // OK, D::f(int) overrides B::f(int);
using B::g;
void g(char); // OK
using B::h;
void h(int); // OK, D::h(int) hides B::h(int)

};

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f('a'); // calls B::f(char)
p->g(1); // calls B::g(int)

§ 9.9 229

© ISO/IEC N4910

p->g('a'); // calls D::g(char)
}

struct B1 {
B1(int);

};

struct B2 {
B2(int);

};

struct D1 : B1, B2 {
using B1::B1;
using B2::B2;

};
D1 d1(0); // error: ambiguous
struct D2 : B1, B2 {

using B1::B1;
using B2::B2;
D2(int); // OK, D2::D2(int) hides B1::B1(int) and B2::B2(int)

};
D2 d2(0); // calls D2::D2(int)
—end example]

12 [Note 5: For the purpose of forming a set of candidates during overload resolution, the functions named by a using-declarationin a derived class are treated as though they were direct members of the derived class. In particular, the implicit object parameteris treated as if it were a reference to the derived class rather than to the base class (12.2.2). This has no effect on the type of thefunction, and in all other respects the function remains part of the base class. —end note]
13 Constructors that are named by a using-declaration are treated as though they were constructors of the derived classwhen looking up the constructors of the derived class (6.5.5.2) or forming a set of overload candidates (12.2.2.4, 12.2.2.5,12.2.2.8).
[Note 6: If such a constructor is selected to perform the initialization of an object of class type, all subobjects other than the baseclass from which the constructor originated are implicitly initialized (11.9.4). A constructor of a derived class is sometimes preferredto a constructor of a base class if they would otherwise be ambiguous (12.2.4). —end note]

14 In a using-declarator that does not name a constructor, every declaration named shall be accessible. In a using-declaratorthat names a constructor, no access check is performed.
15 [Note 7: Because a using-declarator designates a base class member (and not a member subobject or a member function of a baseclass subobject), a using-declarator cannot be used to resolve inherited member ambiguities.
[Example 8:
struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;
int x(int);

};

struct D : B, C {
using C::x;
int x(double);

};
int f(D* d) {

return d->x(); // error: overload resolution selects A::x, but A is an ambiguous base class
}

—end example]
—end note]

16 A using-declaration has the usual accessibility for a member-declaration. Base-class constructors considered becauseof a using-declarator are accessible if they would be accessible when used to construct an object of the base class; theaccessibility of the using-declaration is ignored.

§ 9.9 230

© ISO/IEC N4910

[Example 9:
class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};

class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym for A::g

};

—end example]
9.10 The asm declaration [dcl.asm]

1 An asm declaration has the form
asm-declaration :

attribute-specifier-seqopt asm (string-literal) ;

The asm declaration is conditionally-supported; its meaning is implementation-defined. The optional attribute-specifier-
seq in an asm-declaration appertains to the asm declaration.
[Note 1: Typically it is used to pass information through the implementation to an assembler. —end note]
9.11 Linkage specifications [dcl.link]

1 All functions and variables whose names have external linkage and all function types have a language linkage.
[Note 1: Some of the properties associated with an entity with language linkage are specific to each implementation and are notdescribed here. For example, a particular language linkage might be associated with a particular form of representing names ofobjects and functions with external linkage, or with a particular calling convention, etc. —end note]
The default language linkage of all function types, functions, and variables is C++ language linkage. Two function typeswith different language linkages are distinct types even if they are otherwise identical.

2 Linkage (6.6) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification :

extern string-literal { declaration-seqopt }
extern string-literal declaration

The string-literal indicates the required language linkage. This document specifies the semantics for the string-literals
"C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-supported, with implementation-definedsemantics.
[Note 2: Therefore, a linkage-specification with a string-literal that is unknown to the implementation requires a diagnostic. —endnote]
Recommended practice: The spelling of the string-literal should be taken from the document defining that language.For example, Ada (not ADA) and Fortran or FORTRAN, depending on the vintage.

3 Every implementation shall provide for linkage to the C programming language, "C", and C++, "C++".
[Example 1:
complex sqrt(complex); // C++ language linkage by default
extern "C" {

double sqrt(double); // C language linkage
}

—end example]
4 A module-import-declaration shall not be directly contained in a linkage-specification. A module-import-declarationappearing in a linkage specification with other than C++ language linkage is conditionally-supported with implementation-defined semantics.
5 Linkage specifications nest. When linkage specifications nest, the innermost one determines the language linkage.
§ 9.11 231

© ISO/IEC N4910

[Note 3: A linkage specification does not establish a scope. —end note]
A linkage-specification shall inhabit a namespace scope. In a linkage-specification, the specified language linkageapplies to the function types of all function declarators and to all functions and variables.
[Example 2:
extern "C" // f1 and its function type have C language linkage;

void f1(void(*pf)(int)); // pf is a pointer to a C function
extern "C" typedef void FUNC();
FUNC f2; // f2 has C++ language linkage and// its type has C language linkage
extern "C" FUNC f3; // f3 and its type have C language linkage
void (*pf2)(FUNC*); // the variable pf2 has C++ language linkage; its type// is “pointer to C++ function that takes one parameter of type// pointer to C function”
extern "C" {

static void f4(); // the name of the function f4 has internal linkage,// so f4 has no language linkage; its type has C language linkage
}

extern "C" void f5() {
extern void f4(); // OK, name linkage (internal) and function type linkage (C language linkage)// obtained from previous declaration.

}

extern void f4(); // OK, name linkage (internal) and function type linkage (C language linkage)// obtained from previous declaration.
void f6() {

extern void f4(); // OK, name linkage (internal) and function type linkage (C language linkage)// obtained from previous declaration.
}

—end example]
A C language linkage is ignored in determining the language linkage of class members, friend functions with a trailing
requires-clause, and the function type of class member functions.
[Example 3:
extern "C" typedef void FUNC_c();

class C {
void mf1(FUNC_c*); // the function mf1 and its type have C++ language linkage;// the parameter has type “pointer to C function”
FUNC_c mf2; // the function mf2 and its type have C++ language linkage
static FUNC_c* q; // the data member q has C++ language linkage;// its type is “pointer to C function”

};

extern "C" {
class X {
void mf(); // the function mf and its type have C++ language linkage
void mf2(void(*)()); // the function mf2 has C++ language linkage;// the parameter has type “pointer to C function”

};
}

—end example]

§ 9.11 232

© ISO/IEC N4910

6 If two declarations of an entity give it different language linkages, the program is ill-formed; no diagnostic is required ifneither declaration is reachable from the other. A redeclaration of an entity without a linkage specification inherits thelanguage linkage of the entity and (if applicable) its type.
7 Two declarations declare the same entity if they (re)introduce the same name, one declares a function or variable with Clanguage linkage, and the other declares such an entity or declares a variable that belongs to the global scope.
[Example 4:
int x;
namespace A {

extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();
extern "C" int x(); // error: same name as global-space object x

}

namespace B {
extern "C" int f(); // A::f and B::f refer to the same function
extern "C" int g() { return 1; } // error: the function g with C language linkage has two definitions

}

int A::f() { return 98; } // definition for the function f with C language linkage
extern "C" int h() { return 97; } // definition for the function h with C language linkage// A::h and ::h refer to the same function
—end example]

8 A declaration directly contained in a linkage-specification is treated as if it contains the extern specifier (9.2.2) for thepurpose of determining the linkage of the declared name and whether it is a definition. Such a declaration shall notspecify a storage class.
[Example 5:
extern "C" double f();
static double f(); // error
extern "C" int i; // declaration
extern "C" {

int i; // definition
}
extern "C" static void g(); // error
— end example]

9 [Note 4: Because the language linkage is part of a function type, when indirecting through a pointer to C function, the function towhich the resulting lvalue refers is considered a C function. —end note]
10 Linkage fromC++ to objects defined in other languages and to objects defined in C++ from other languages is implementation-defined and language-dependent. Only where the object layout strategies of two language implementations are similarenough can such linkage be achieved.
9.12 Attributes [dcl.attr]
9.12.1 Attribute syntax and semantics [dcl.attr.grammar]

1 Attributes specify additional information for various source constructs such as types, variables, names, blocks, ortranslation units.
attribute-specifier-seq :

attribute-specifier-seqopt attribute-specifier

attribute-specifier :
[[attribute-using-prefixopt attribute-list]]
alignment-specifier

alignment-specifier :
alignas (type-id ...opt)
alignas (constant-expression ...opt)

attribute-using-prefix :
using attribute-namespace :

§ 9.12.1 233

© ISO/IEC N4910

attribute-list :
attributeopt
attribute-list , attributeopt
attribute ...
attribute-list , attribute ...

attribute :
attribute-token attribute-argument-clauseopt

attribute-token :
identifier
attribute-scoped-token

attribute-scoped-token :
attribute-namespace :: identifier

attribute-namespace :
identifier

attribute-argument-clause :
(balanced-token-seqopt)

balanced-token-seq :
balanced-token
balanced-token-seq balanced-token

balanced-token :
(balanced-token-seqopt)
[balanced-token-seqopt]
{ balanced-token-seqopt }any token other than a parenthesis, a bracket, or a brace

2 If an attribute-specifier contains an attribute-using-prefix , the attribute-list following that attribute-using-prefix shallnot contain an attribute-scoped-token and every attribute-token in that attribute-list is treated as if its identifier wereprefixed with N::, where N is the attribute-namespace specified in the attribute-using-prefix .
[Note 1: This rule imposes no constraints on how an attribute-using-prefix affects the tokens in an attribute-argument-clause.—end note]
[Example 1:
[[using CC: opt(1), debug]] // same as [[CC::opt(1), CC::debug]]
void f() {}

[[using CC: opt(1)]] [[CC::debug]] // same as [[CC::opt(1)]] [[CC::debug]]
void g() {}

[[using CC: CC::opt(1)]] // error: cannot combine using and scoped attribute token
void h() {}

—end example]
3 [Note 2: For each individual attribute, the form of the balanced-token-seq will be specified. —end note]
4 In an attribute-list, an ellipsis may appear only if that attribute’s specification permits it. An attribute followed by anellipsis is a pack expansion (13.7.4). An attribute-specifier that contains no attributes has no effect. The order in whichthe attribute-tokens appear in an attribute-list is not significant. If a keyword (5.11) or an alternative token (5.5) thatsatisfies the syntactic requirements of an identifier (5.10) is contained in an attribute-token, it is considered an identifier.No name lookup (6.5) is performed on any of the identifiers contained in an attribute-token. The attribute-tokendetermines additional requirements on the attribute-argument-clause (if any).
5 Each attribute-specifier-seq is said to appertain to some entity or statement, identified by the syntactic context where itappears (Clause 8, Clause 9, 9.3). If an attribute-specifier-seq that appertains to some entity or statement contains an

attribute or alignment-specifier that is not allowed to apply to that entity or statement, the program is ill-formed. If an
attribute-specifier-seq appertains to a friend declaration (11.8.4), that declaration shall be a definition.
[Note 3: An attribute-specifier-seq cannot appeartain to an explicit instantiation (13.9.3). —end note]

6 For an attribute-token (including an attribute-scoped-token) not specified in this document, the behavior is implementation-defined. Any attribute-token that is not recognized by the implementation is ignored. An attribute-token is reservedfor future standardization if
—(6.1) it is not an attribute-scoped-token and is not specified in this document, or
—(6.2) it is an attribute-scoped-token and its attribute-namespace is std followed by zero or more digits.

§ 9.12.1 234

© ISO/IEC N4910

Each implementation should choose a distinctive name for the attribute-namespace in an attribute-scoped-token.
7 Two consecutive left square bracket tokens shall appear only when introducing an attribute-specifier or within the

balanced-token-seq of an attribute-argument-clause.
[Note 4: If two consecutive left square brackets appear where an attribute-specifier is not allowed, the program is ill-formed even ifthe brackets match an alternative grammar production. —end note]
[Example 2:
int p[10];
void f() {

int x = 42, y[5];
int(p[[x] { return x; }()]); // error: invalid attribute on a nested declarator-id and// not a function-style cast of an element of p.
y[[] { return 2; }()] = 2; // error even though attributes are not allowed in this context.
int i [[vendor::attr([[]])]]; // well-formed implementation-defined attribute.

}

—end example]
9.12.2 Alignment specifier [dcl.align]

1 An alignment-specifier may be applied to a variable or to a class data member, but it shall not be applied to a bit-field, afunction parameter, or an exception-declaration (14.4). An alignment-specifier may also be applied to the declarationof a class (in an elaborated-type-specifier (9.2.9.4) or class-head (Clause 11), respectively). An alignment-specifierwith an ellipsis is a pack expansion (13.7.4).
2 When the alignment-specifier is of the form alignas(constant-expression):

—(2.1) the constant-expression shall be an integral constant expression
—(2.2) if the constant expression does not evaluate to an alignment value (6.7.6), or evaluates to an extended alignmentand the implementation does not support that alignment in the context of the declaration, the program is ill-formed.

3 An alignment-specifier of the form alignas(type-id) has the same effect as alignas(alignof(type-id)) (7.6.2.6).
4 The alignment requirement of an entity is the strictest nonzero alignment specified by its alignment-specifiers, if any;otherwise, the alignment-specifiers have no effect.
5 The combined effect of all alignment-specifiers in a declaration shall not specify an alignment that is less strict than thealignment that would be required for the entity being declared if all alignment-specifiers appertaining to that entitywere omitted.
[Example 1:
struct alignas(8) S {};
struct alignas(1) U {

S s;
}; // error: U specifies an alignment that is less strict than if the alignas(1) were omitted.
— end example]

6 If the defining declaration of an entity has an alignment-specifier , any non-defining declaration of that entity shalleither specify equivalent alignment or have no alignment-specifier . Conversely, if any declaration of an entity has an
alignment-specifier , every defining declaration of that entity shall specify an equivalent alignment. No diagnostic isrequired if declarations of an entity have different alignment-specifiers in different translation units.
[Example 2:
// Translation unit #1:
struct S { int x; } s, *p = &s;

// Translation unit #2:
struct alignas(16) S; // ill-formed, no diagnostic required: definition of S lacks alignment
extern S* p;

—end example]
7 [Example 3: An aligned buffer with an alignment requirement of A and holding N elements of type T can be declared as:

alignas(T) alignas(A) T buffer[N];

Specifying alignas(T) ensures that the final requested alignment will not be weaker than alignof(T), and therefore the programwill not be ill-formed. —end example]
§ 9.12.2 235

© ISO/IEC N4910

8 [Example 4:
alignas(double) void f(); // error: alignment applied to function
alignas(double) unsigned char c[sizeof(double)]; // array of characters, suitably aligned for a double
extern unsigned char c[sizeof(double)]; // no alignas necessary
alignas(float)

extern unsigned char c[sizeof(double)]; // error: different alignment in declaration
—end example]
9.12.3 Carries dependency attribute [dcl.attr.depend]

1 The attribute-token carries_dependency specifies dependency propagation into and out of functions. No attribute-
argument-clause shall be present. The attribute may be applied to a parameter of a function or lambda, in which case itspecifies that the initialization of the parameter carries a dependency to (6.9.2) each lvalue-to-rvalue conversion (7.3.2)of that object. The attribute may also be applied to a function or a lambda call operator, in which case it specifies thatthe return value, if any, carries a dependency to the evaluation of the function call expression.

2 The first declaration of a function shall specify the carries_dependency attribute for its declarator-id if any declarationof the function specifies the carries_dependency attribute. Furthermore, the first declaration of a function shall specifythe carries_dependency attribute for a parameter if any declaration of that function specifies the carries_dependencyattribute for that parameter. If a function or one of its parameters is declared with the carries_dependency attributein its first declaration in one translation unit and the same function or one of its parameters is declared without the
carries_dependency attribute in its first declaration in another translation unit, the program is ill-formed, no diagnosticrequired.

3 [Note 1: The carries_dependency attribute does not change the meaning of the program, but might result in generation of moreefficient code. —end note]
4 [Example 1:

/* Translation unit A. */
struct foo { int* a; int* b; };
std::atomic<struct foo *> foo_head[10];
int foo_array[10][10];

[[carries_dependency]] struct foo* f(int i) {
return foo_head[i].load(memory_order::consume);

}

int g(int* x, int* y [[carries_dependency]]) {
return kill_dependency(foo_array[*x][*y]);

}

/* Translation unit B. */
[[carries_dependency]] struct foo* f(int i);
int g(int* x, int* y [[carries_dependency]]);

int c = 3;

void h(int i) {
struct foo* p;

p = f(i);
do_something_with(g(&c, p->a));
do_something_with(g(p->a, &c));

}

The carries_dependency attribute on function fmeans that the return value carries a dependency out of f, so that the implementationneed not constrain ordering upon return from f. Implementations of f and its caller may choose to preserve dependencies instead ofemitting hardware memory ordering instructions (a.k.a. fences). Function g’s second parameter has a carries_dependency attribute,but its first parameter does not. Therefore, function h’s first call to g carries a dependency into g, but its second call does not. Theimplementation might need to insert a fence prior to the second call to g. —end example]

§ 9.12.3 236

© ISO/IEC N4910

9.12.4 Deprecated attribute [dcl.attr.deprecated]
1 The attribute-token deprecated can be used to mark names and entities whose use is still allowed, but is discouragedfor some reason.
[Note 1: In particular, deprecated is appropriate for names and entities that are deemed obsolescent or unsafe. —end note]
An attribute-argument-clause may be present and, if present, it shall have the form:

(string-literal)

[Note 2: The string-literal in the attribute-argument-clause can be used to explain the rationale for deprecation and/or to suggest areplacing entity. —end note]
2 The attribute may be applied to the declaration of a class, a typedef-name, a variable, a non-static data member, afunction, a namespace, an enumeration, an enumerator, or a template specialization.
3 An entity declared without the deprecated attribute can later be redeclared with the attribute and vice-versa.
[Note 3: Thus, an entity initially declared without the attribute can be marked as deprecated by a subsequent redeclaration. However,after an entity is marked as deprecated, later redeclarations do not un-deprecate the entity. —end note]
Redeclarations using different forms of the attribute (with or without the attribute-argument-clause or with different
attribute-argument-clauses) are allowed.

4 Recommended practice: Implementations should use the deprecated attribute to produce a diagnostic message incase the program refers to a name or entity other than to declare it, after a declaration that specifies the attribute. Thediagnostic message should include the text provided within the attribute-argument-clause of any deprecated attributeapplied to the name or entity.
9.12.5 Fallthrough attribute [dcl.attr.fallthrough]

1 The attribute-token fallthrough may be applied to a null statement (8.3); such a statement is a fallthrough statement.No attribute-argument-clause shall be present. A fallthrough statement may only appear within an enclosing switchstatement (8.5.3). The next statement that would be executed after a fallthrough statement shall be a labeled statementwhose label is a case label or default label for the same switch statement and, if the fallthrough statement is containedin an iteration statement, the next statement shall be part of the same execution of the substatement of the innermostenclosing iteration statement. The program is ill-formed if there is no such statement.
2 Recommended practice: The use of a fallthrough statement should suppress a warning that an implementation mightotherwise issue for a case or default label that is reachable from another case or default label along some path ofexecution. Implementations should issue a warning if a fallthrough statement is not dynamically reachable.
3 [Example 1:

void f(int n) {
void g(), h(), i();
switch (n) {
case 1:
case 2:
g();
[[fallthrough]];

case 3: // warning on fallthrough discouraged
do {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
} while (false);

case 6:
do {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
} while (n--);

case 7:
while (false) {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
}

case 5:
h();

case 4: // implementation may warn on fallthrough
i();
[[fallthrough]]; // error

§ 9.12.5 237

© ISO/IEC N4910

}
}

—end example]
9.12.6 Likelihood attributes [dcl.attr.likelihood]

1 The attribute-tokens likely and unlikely may be applied to labels or statements. No attribute-argument-clause shallbe present. The attribute-token likely shall not appear in an attribute-specifier-seq that contains the attribute-token
unlikely.

2 Recommended practice: The use of the likely attribute is intended to allow implementations to optimize for the casewhere paths of execution including it are arbitrarily more likely than any alternative path of execution that does notinclude such an attribute on a statement or label. The use of the unlikely attribute is intended to allow implementationsto optimize for the case where paths of execution including it are arbitrarily more unlikely than any alternative path ofexecution that does not include such an attribute on a statement or label. A path of execution includes a label if andonly if it contains a jump to that label.
[Note 1: Excessive usage of either of these attributes is liable to result in performance degradation. —end note]

3 [Example 1:
void g(int);
int f(int n) {

if (n > 5) [[unlikely]] { // n > 5 is considered to be arbitrarily unlikely
g(0);
return n * 2 + 1;

}

switch (n) {
case 1:
g(1);
[[fallthrough]];

[[likely]] case 2: // n == 2 is considered to be arbitrarily more
g(2); // likely than any other value of n
break;

}
return 3;

}

—end example]
9.12.7 Maybe unused attribute [dcl.attr.unused]

1 The attribute-token maybe_unused indicates that a name or entity is possibly intentionally unused. No attribute-
argument-clause shall be present.

2 The attribute may be applied to the declaration of a class, a typedef-name, a variable (including a structured bindingdeclaration), a non-static data member, a function, an enumeration, or an enumerator.
3 A name or entity declared without the maybe_unused attribute can later be redeclared with the attribute and vice versa.An entity is considered marked after the first declaration that marks it.
4 Recommended practice: For an entity marked maybe_unused, implementations should not emit a warning that the entityor its structured bindings (if any) are used or unused. For a structured binding declaration not marked maybe_unused,implementations should not emit such a warning unless all of its structured bindings are unused.
5 [Example 1:

[[maybe_unused]] void f([[maybe_unused]] bool thing1,
[[maybe_unused]] bool thing2) {

[[maybe_unused]] bool b = thing1 && thing2;
assert(b);

}

Implementations should not warn that b is unused, whether or not NDEBUG is defined. —end example]

§ 9.12.7 238

© ISO/IEC N4910

9.12.8 Nodiscard attribute [dcl.attr.nodiscard]
1 The attribute-token nodiscard may be applied to a function or a lambda call operator or to the declaration of a class orenumeration. An attribute-argument-clause may be present and, if present, shall have the form:

(string-literal)

2 A name or entity declared without the nodiscard attribute can later be redeclared with the attribute and vice-versa.
[Note 1: Thus, an entity initially declared without the attribute can be marked as nodiscard by a subsequent redeclaration. However,after an entity is marked as nodiscard, later redeclarations do not remove the nodiscard from the entity. —end note]
Redeclarations using different forms of the attribute (with or without the attribute-argument-clause or with different
attribute-argument-clauses) are allowed.

3 A nodiscard type is a (possibly cv-qualified) class or enumeration type marked nodiscard in a reachable declaration. Anodiscard call is either
—(3.1) a function call expression (7.6.1.3) that calls a function declared nodiscard in a reachable declaration or whosereturn type is a nodiscard type, or
—(3.2) an explicit type conversion (7.6.1.4, 7.6.1.9, 7.6.3) that constructs an object through a constructor declared

nodiscard in a reachable declaration, or that initializes an object of a nodiscard type.
4 Recommended practice: Appearance of a nodiscard call as a potentially-evaluated discarded-value expression (7.2) isdiscouraged unless explicitly cast to void. Implementations should issue a warning in such cases.
[Note 2: This is typically because discarding the return value of a nodiscard call has surprising consequences. —end note]
The string-literal in a nodiscard attribute-argument-clause should be used in the message of the warning as therationale for why the result should not be discarded.

5 [Example 1:
struct [[nodiscard]] my_scopeguard { /* ... */ };
struct my_unique {

my_unique() = default; // does not acquire resource
[[nodiscard]] my_unique(int fd) { /* ... */ } // acquires resource
~my_unique() noexcept { /* ... */ } // releases resource, if any
/* ... */

};
struct [[nodiscard]] error_info { /* ... */ };
error_info enable_missile_safety_mode();
void launch_missiles();
void test_missiles() {

my_scopeguard(); // warning encouraged
(void)my_scopeguard(), // warning not encouraged, cast to void

launch_missiles(); // comma operator, statement continues
my_unique(42); // warning encouraged
my_unique(); // warning not encouraged
enable_missile_safety_mode(); // warning encouraged
launch_missiles();

}
error_info &foo();
void f() { foo(); } // warning not encouraged: not a nodiscard call, because neither// the (reference) return type nor the function is declared nodiscard
—end example]
9.12.9 Noreturn attribute [dcl.attr.noreturn]

1 The attribute-token noreturn specifies that a function does not return. No attribute-argument-clause shall be present.The attribute may be applied to a function or a lambda call operator. The first declaration of a function shall specify the
noreturn attribute if any declaration of that function specifies the noreturn attribute. If a function is declared with the
noreturn attribute in one translation unit and the same function is declared without the noreturn attribute in anothertranslation unit, the program is ill-formed, no diagnostic required.

2 If a function f is called where f was previously declared with the noreturn attribute and f eventually returns, thebehavior is undefined.
[Note 1: The function may terminate by throwing an exception. —end note]

§ 9.12.9 239

© ISO/IEC N4910

3 Recommended practice: Implementations should issue a warning if a function marked [[noreturn]] might return.
4 [Example 1:

[[noreturn]] void f() {
throw "error"; // OK

}

[[noreturn]] void q(int i) { // behavior is undefined if called with an argument <= 0
if (i > 0)

throw "positive";
}

—end example]
9.12.10 No unique address attribute [dcl.attr.nouniqueaddr]

1 The attribute-token no_unique_address specifies that a non-static data member is a potentially-overlapping subobject(6.7.2). No attribute-argument-clause shall be present. The attribute may appertain to a non-static data member otherthan a bit-field.
2 [Note 1: The non-static data member can share the address of another non-static data member or that of a base class, and any paddingthat would normally be inserted at the end of the object can be reused as storage for other members. —end note]
[Example 1:
template<typename Key, typename Value,

typename Hash, typename Pred, typename Allocator>
class hash_map {

[[no_unique_address]] Hash hasher;
[[no_unique_address]] Pred pred;
[[no_unique_address]] Allocator alloc;
Bucket *buckets;// ...

public:// ...
};

Here, hasher, pred, and alloc could have the same address as buckets if their respective types are all empty. —end example]

§ 9.12.10 240

© ISO/IEC N4910

10 Modules [module]
10.1 Module units and purviews [module.unit]

module-declaration :
export-keywordopt module-keyword module-name module-partitionopt attribute-specifier-seqopt ;

module-name :
module-name-qualifieropt identifier

module-partition :
: module-name-qualifieropt identifier

module-name-qualifier :
identifier .
module-name-qualifier identifier .

1 A module unit is a translation unit that contains a module-declaration. A named module is the collection of moduleunits with the same module-name. The identifiers module and import shall not appear as identifiers in a module-nameor module-partition. All module-names either beginning with an identifier consisting of std followed by zero or more
digits or containing a reserved identifier (5.10) are reserved and shall not be specified in a module-declaration; nodiagnostic is required. If any identifier in a reserved module-name is a reserved identifier, the module name is reservedfor use by C++ implementations; otherwise it is reserved for future standardization. The optional attribute-specifier-seqappertains to the module-declaration.

2 A module interface unit is a module unit whose module-declaration starts with export-keyword ; any other moduleunit is a module implementation unit. A named module shall contain exactly one module interface unit with no
module-partition, known as the primary module interface unit of the module; no diagnostic is required.

3 A module partition is a module unit whose module-declaration contains a module-partition. A named module shall notcontain multiple module partitions with the same module-partition. All module partitions of a module that are moduleinterface units shall be directly or indirectly exported by the primary module interface unit (10.3). No diagnostic isrequired for a violation of these rules.
[Note 1: Module partitions can be imported only by other module units in the same module. The division of a module into moduleunits is not visible outside the module. —end note]

4 [Example 1:
Translation unit #1:
export module A;
export import :Foo;
export int baz();

Translation unit #2:
export module A:Foo;
import :Internals;
export int foo() { return 2 * (bar() + 1); }

Translation unit #3:
module A:Internals;
int bar();

Translation unit #4:
module A;
import :Internals;
int bar() { return baz() - 10; }
int baz() { return 30; }

Module A contains four translation units:
—(4.1) a primary module interface unit,
—(4.2) a module partition A:Foo, which is a module interface unit forming part of the interface of module A,
—(4.3) a module partition A:Internals, which does not contribute to the external interface of module A, and

§ 10.1 241

© ISO/IEC N4910

—(4.4) a module implementation unit providing a definition of bar and baz, which cannot be imported because it does not have apartition name.
—end example]

5 A module unit purview is the sequence of tokens starting at the module-declaration and extending to the end of thetranslation unit. The purview of a named module M is the set of module unit purviews of M’s module units.
6 The global module is the collection of all global-module-fragments and all translation units that are not module units.Declarations appearing in such a context are said to be in the purview of the global module.
[Note 2: The global module has no name, no module interface unit, and is not introduced by any module-declaration. —end note]

7 A module is either a named module or the global module. A declaration is attached to a module as follows:
—(7.1) If the declaration is a non-dependent friend declaration that nominates a function with a declarator-id that is a

qualified-id or template-id or that nominates a class other than with an elaborated-type-specifier with neither a
nested-name-specifier nor a simple-template-id , it is attached to the module to which the friend is attached (6.6).

—(7.2) Otherwise, if the declaration
—(7.2.1) is a replaceable global allocation or deallocation function (17.6.3.2, 17.6.3.3), or
—(7.2.2) is a namespace-definition with external linkage, or
—(7.2.3) appears within a linkage-specification,
it is attached to the global module.

—(7.3) Otherwise, the declaration is attached to the module in whose purview it appears.
8 A module-declaration that contains neither an export-keyword nor a module-partition implicitly imports the primarymodule interface unit of the module as if by a module-import-declaration.
[Example 2:
Translation unit #1:
module B:Y; // does not implicitly import B
int y();

Translation unit #2:
export module B;
import :Y; // OK, does not create interface dependency cycle
int n = y();

Translation unit #3:
module B:X1; // does not implicitly import B
int &a = n; // error: n not visible here
Translation unit #4:
module B:X2; // does not implicitly import B
import B;
int &b = n; // OK
Translation unit #5:
module B; // implicitly imports B
int &c = n; // OK
—end example]
10.2 Export declaration [module.interface]

export-declaration :
export declaration
export { declaration-seqopt }
export-keyword module-import-declaration

1 An export-declaration shall inhabit a namespace scope and appear in the purview of a module interface unit. An export-
declaration shall not appear directly or indirectly within an unnamed namespace or a private-module-fragment. An
export-declaration has the declarative effects of its declaration, declaration-seq (if any), or module-import-declaration.The declaration or declaration-seq of an export-declaration shall not contain an export-declaration or module-import-
declaration.
§ 10.2 242

© ISO/IEC N4910

[Note 1: An export-declaration does not establish a scope. —end note]
2 A declaration is exported if it is declared within an export-declaration and inhabits a namespace scope or it is

—(2.1) a namespace-definition that contains an exported declaration, or
—(2.2) a declaration within a header unit (10.3) that introduces at least one name.

3 An exported declaration that is not a module-import-declaration shall declare at least one name. If the declaration isnot within a header unit, it shall not declare a name with internal linkage.
4 [Example 1:
Source file "a.h":
export int x;

Translation unit #1:
module;
#include "a.h" // error: declaration of x is not in the// purview of a module interface unit
export module M;
export namespace {} // error: does not introduce any names
export namespace {

int a1; // error: export of name with internal linkage
}
namespace {

export int a2; // error: export of name with internal linkage
}
export static int b; // error: b explicitly declared static
export int f(); // OK
export namespace N { } // OK
export using namespace N; // error: does not declare a name
—end example]

5 If an exported declaration is a using-declaration (9.9) and is not within a header unit, all entities to which all of the
using-declarators ultimately refer (if any) shall have been introduced with a name having external linkage.
[Example 2:
Source file "b.h":
int f();

Importable header "c.h":
int g();

Translation unit #1:
export module X;
export int h();

Translation unit #2:
module;
#include "b.h"
export module M;
import "c.h";
import X;
export using ::f, ::g, ::h; // OK
struct S;
export using ::S; // error: S has module linkage
namespace N {

export int h();
static int h(int); // #1

}
export using N::h; // error: #1 has internal linkage
—end example]
[Note 2: These constraints do not apply to type names introduced by typedef declarations and alias-declarations.
[Example 3:
§ 10.2 243

© ISO/IEC N4910

export module M;
struct S;
export using T = S; // OK, exports name T denoting type S
—end example]
—end note]

6 A redeclaration of an entity X is implicitly exported if X was introduced by an exported declaration; otherwise it shallnot be exported.
[Example 4:
export module M;
struct S { int n; };
typedef S S;
export typedef S S; // OK, does not redeclare an entity
export struct S; // error: exported declaration follows non-exported declaration
—end example]

7 [Note 3: Names introduced by exported declarations have either external linkage or no linkage; see 6.6. Namespace-scope declarationsexported by a module can be found by name lookup in any translation unit importing that module (6.5). Class and enumerationmember names can be found by name lookup in any context in which a definition of the type is reachable. —end note]
[Example 5:
Interface unit of M:
export module M;
export struct X {

static void f();
struct Y { };

};

namespace {
struct S { };

}
export void f(S); // OK
struct T { };
export T id(T); // OK
export struct A; // A exported as incomplete
export auto rootFinder(double a) {

return [=](double x) { return (x + a/x)/2; };
}

export const int n = 5; // OK, n has external linkage
Implementation unit of M:
module M;
struct A {

int value;
};

Main program:
import M;
int main() {

X::f(); // OK, X is exported and definition of X is reachable
X::Y y; // OK, X::Y is exported as a complete type
auto f = rootFinder(2); // OK
return A{45}.value; // error: A is incomplete

}

—end example]
8 [Note 4: Declarations in an exported namespace-definition or in an exported linkage-specification (9.11) are exported and subjectto the rules of exported declarations.
[Example 6:
§ 10.2 244

© ISO/IEC N4910

export module M;
export namespace N {

int x; // OK
static_assert(1 == 1); // error: does not declare a name

}

—end example]
—end note]
10.3 Import declaration [module.import]

module-import-declaration :
import-keyword module-name attribute-specifier-seqopt ;
import-keyword module-partition attribute-specifier-seqopt ;
import-keyword header-name attribute-specifier-seqopt ;

1 A module-import-declaration shall inhabit the global namespace scope. In a module unit, all module-import-
declarations and export-declarations exporting module-import-declarations shall appear before all other declarationsin the declaration-seq of the translation-unit and of the private-module-fragment (if any). The optional attribute-
specifier-seq appertains to the module-import-declaration.

2 A module-import-declaration imports a set of translation units determined as described below.
[Note 1: Namespace-scope declarations exported by the imported translation units can be found by name lookup (6.5) in the importingtranslation unit and declarations within the imported translation units become reachable (10.7) in the importing translation unit afterthe import declaration. —end note]

3 A module-import-declaration that specifies a module-name M imports all module interface units of M.
4 A module-import-declaration that specifies a module-partition shall only appear after the module-declaration in amodule unit of some module M. Such a declaration imports the so-named module partition of M.
5 A module-import-declaration that specifies a header-name H imports a synthesized header unit, which is a translationunit formed by applying phases 1 to 7 of translation (5.2) to the source file or header nominated by H, which shall notcontain a module-declaration.
[Note 2: All declarations within a header unit are implicitly exported (10.2), and are attached to the global module (10.1). —endnote]
An importable header is a member of an implementation-defined set of headers that includes all importable C++ libraryheaders (16.4.2.3). H shall identify an importable header. Given two such module-import-declarations:
—(5.1) if their header-names identify different headers or source files (15.3), they import distinct header units;
—(5.2) otherwise, if they appear in the same translation unit, they import the same header unit;
—(5.3) otherwise, it is unspecified whether they import the same header unit.

[Note 3: It is therefore possible that multiple copies exist of entities declared with internal linkage in an importable header.—end note]
[Note 4: A module-import-declaration nominating a header-name is also recognized by the preprocessor, and results in macrosdefined at the end of phase 4 of translation of the header unit being made visible as described in 15.5. Any other module-import-
declaration does not make macros visible. —end note]

6 A declaration of a name with internal linkage is permitted within a header unit despite all declarations being implicitlyexported (10.2).
[Note 5: A definition that appears in multiple translation units cannot in general refer to such names (6.3). —end note]
A header unit shall not contain a definition of a non-inline function or variable whose name has external linkage.

7 When a module-import-declaration imports a translation unit T , it also imports all translation units imported byexported module-import-declarations in T ; such translation units are said to be exported by T . Additionally, when a
module-import-declaration in a module unit of some moduleM imports another module unit U ofM , it also importsall translation units imported by non-exported module-import-declarations in the module unit purview of U .91 Theserules can in turn lead to the importation of yet more translation units.

8 A module implementation unit shall not be exported.
[Example 1:

91) This is consistent with the lookup rules for imported names (6.5).
§ 10.3 245

© ISO/IEC N4910

Translation unit #1:
module M:Part;

Translation unit #2:
export module M;
export import :Part; // error: exported partition :Part is an implementation unit
— end example]

9 Amodule implementation unit of a module M that is not a module partition shall not contain amodule-import-declarationnominating M.
[Example 2:
module M;
import M; // error: cannot import M in its own unit
— end example]

10 A translation unit has an interface dependency on a translation unit U if it contains a declaration (possibly a module-
declaration) that imports U or if it has an interface dependency on a translation unit that has an interface dependency on
U. A translation unit shall not have an interface dependency on itself.
[Example 3:
Interface unit of M1:
export module M1;
import M2;

Interface unit of M2:
export module M2;
import M3;

Interface unit of M3:
export module M3;
import M1; // error: cyclic interface dependency M3→ M1→ M2→ M3

—end example]
10.4 Global module fragment [module.global.frag]

global-module-fragment :
module-keyword ; declaration-seqopt

1 [Note 1: Prior to phase 4 of translation, only preprocessing directives can appear in the declaration-seq (15.1). —end note]
2 A global-module-fragment specifies the contents of the global module fragment for a module unit. The global modulefragment can be used to provide declarations that are attached to the global module and usable within the module unit.
3 A declaration D is decl-reachable from a declaration S in the same translation unit if:

—(3.1) D does not declare a function or function template and S contains an id-expression, namespace-name, type-name,
template-name, or concept-name naming D, or

—(3.2) D declares a function or function template that is named by an expression (6.3) appearing in S, or
—(3.3) S contains a dependent call E (13.8.3) and D is found by name lookup for the dependent name in an expressionsynthesized from E by replacing each type-dependent argument or operand with a value of a placeholder typewith no associated namespaces or entities, or
—(3.4) S contains an expression that takes the address of an overload set (12.3) that contains D and for which the targettype is dependent, or
—(3.5) there exists a declarationM that is not a namespace-definition for whichM is decl-reachable from S and either

—(3.5.1) D is decl-reachable fromM , or
—(3.5.2) D redeclares the entity declared byM orM redeclares the entity declared by D, and D neither is a frienddeclaration nor inhabits a block scope, or
—(3.5.3) D declares a namespace N andM is a member of N , or
—(3.5.4) one ofM and D declares a class or class template C and the other declares a member or friend of C, or

§ 10.4 246

© ISO/IEC N4910

—(3.5.5) one of D andM declares an enumeration E and the other declares an enumerator of E, or
—(3.5.6) D declares a function or variable andM is declared in D,92 or
—(3.5.7) one ofM and D declares a template and the other declares a partial or explicit specialization or an implicitor explicit instantiation of that template, or
—(3.5.8) one ofM and D declares a class or enumeration type and the other introduces a typedef name for linkagepurposes for that type.

In this determination, it is unspecified
—(3.6) whether a reference to an alias-declaration, typedef declaration, using-declaration, or namespace-alias-definitionis replaced by the declarations they name prior to this determination,
—(3.7) whether a simple-template-id that does not denote a dependent type and whose template-name names an aliastemplate is replaced by its denoted type prior to this determination,
—(3.8) whether a decltype-specifier that does not denote a dependent type is replaced by its denoted type prior to thisdetermination, and
—(3.9) whether a non-value-dependent constant expression is replaced by the result of constant evaluation prior to thisdetermination.

4 A declaration D in a global module fragment of a module unit is discarded if D is not decl-reachable from any declarationin the declaration-seq of the translation-unit.
[Note 2: A discarded declaration is neither reachable nor visible to name lookup outside the module unit, nor in template instantiationswhose points of instantiation (13.8.4.1) are outside the module unit, even when the instantiation context (10.6) includes the moduleunit. —end note]

5 [Example 1:
const int size = 2;
int ary1[size]; // unspecified whether size is decl-reachable from ary1
constexpr int identity(int x) { return x; }
int ary2[identity(2)]; // unspecified whether identity is decl-reachable from ary2

template<typename> struct S;
template<typename, int> struct S2;
constexpr int g(int);

template<typename T, int N>
S<S2<T, g(N)>> f(); // S, S2, g, and :: are decl-reachable from f

template<int N>
void h() noexcept(g(N) == N); // g and :: are decl-reachable from h

—end example]
6 [Example 2:
Source file "foo.h":
namespace N {

struct X {};
int d();
int e();
inline int f(X, int = d()) { return e(); }
int g(X);
int h(X);

}

Module M interface:
module;
#include "foo.h"
export module M;
template<typename T> int use_f() {

N::X x; // N::X, N, and :: are decl-reachable from use_f
return f(x, 123); // N::f is decl-reachable from use_f,

92) A declaration can appear within a lambda-expression in the initializer of a variable.
§ 10.4 247

© ISO/IEC N4910

// N::e is indirectly decl-reachable from use_f// because it is decl-reachable from N::f, and// N::d is decl-reachable from use_f// because it is decl-reachable from N::f// even though it is not used in this call
}
template<typename T> int use_g() {

N::X x; // N::X, N, and :: are decl-reachable from use_g
return g((T(), x)); // N::g is not decl-reachable from use_g

}
template<typename T> int use_h() {

N::X x; // N::X, N, and :: are decl-reachable from use_h
return h((T(), x)); // N::h is not decl-reachable from use_h, but// N::h is decl-reachable from use_h<int>

}
int k = use_h<int>();// use_h<int> is decl-reachable from k, so// N::h is decl-reachable from k

Module M implementation:
module M;
int a = use_f<int>(); // OK
int b = use_g<int>(); // error: no viable function for call to g;// g is not decl-reachable from purview of// module M’s interface, so is discarded
int c = use_h<int>(); // OK
—end example]
10.5 Private module fragment [module.private.frag]

private-module-fragment :
module-keyword : private ; declaration-seqopt

1 A private-module-fragment shall appear only in a primary module interface unit (10.1). A module unit with a private-
module-fragment shall be the only module unit of its module; no diagnostic is required.

2 [Note 1: A private-module-fragment ends the portion of the module interface unit that can affect the behavior of other translationunits. A private-module-fragment allows a module to be represented as a single translation unit without making all of the contentsof the module reachable to importers. The presence of a private-module-fragment affects:
—(2.1) the point by which the definition of an exported inline function is required (9.2.8),
—(2.2) the point by which the definition of an exported function with a placeholder return type is required (9.2.9.6),
—(2.3) whether a declaration is required not to be an exposure (6.6),
—(2.4) where definitions for inline functions and templates must appear (6.3, 9.2.8, 13.1),
—(2.5) the instantiation contexts of templates instantiated before it (10.6), and
—(2.6) the reachability of declarations within it (10.7).

—end note]
3 [Example 1:

export module A;
export inline void fn_e(); // error: exported inline function fn_e not defined// before private module fragment
inline void fn_m(); // OK, module-linkage inline function
static void fn_s();
export struct X;
export void g(X *x) {

fn_s(); // OK, call to static function in same translation unit
fn_m(); // OK, call to module-linkage inline function

}
export X *factory(); // OK
module :private;
struct X {}; // definition not reachable from importers of A

§ 10.5 248

© ISO/IEC N4910

X *factory() {
return new X ();

}
void fn_e() {}
void fn_m() {}
void fn_s() {}

—end example]
10.6 Instantiation context [module.context]

1 The instantiation context is a set of points within the program that determines which declarations are found by argument-dependent name lookup (6.5.4) and which are reachable (10.7) in the context of a particular declaration or templateinstantiation.
2 During the implicit definition of a defaulted function (11.4.4, 11.10.1), the instantiation context is the union of theinstantiation context from the definition of the class and the instantiation context of the program construct that resultedin the implicit definition of the defaulted function.
3 During the implicit instantiation of a template whose point of instantiation is specified as that of an enclosing specializa-tion (13.8.4.1), the instantiation context is the union of the instantiation context of the enclosing specialization and,if the template is defined in a module interface unit of a moduleM and the point of instantiation is not in a moduleinterface unit ofM , the point at the end of the declaration-seq of the primary module interface unit ofM (prior to the

private-module-fragment, if any).
4 During the implicit instantiation of a template that is implicitly instantiated because it is referenced from within theimplicit definition of a defaulted function, the instantiation context is the instantiation context of the defaulted function.
5 During the instantiation of any other template specialization, the instantiation context comprises the point of instantiationof the template.
6 In any other case, the instantiation context at a point within the program comprises that point.
7 [Example 1:
Translation unit #1:
export module stuff;
export template<typename T, typename U> void foo(T, U u) { auto v = u; }
export template<typename T, typename U> void bar(T, U u) { auto v = *u; }

Translation unit #2:
export module M1;
import "defn.h"; // provides struct X {};
import stuff;
export template<typename T> void f(T t) {

X x;
foo(t, x);

}

Translation unit #3:
export module M2;
import "decl.h"; // provides struct X; (not a definition)
import stuff;
export template<typename T> void g(T t) {

X *x;
bar(t, x);

}

Translation unit #4:
import M1;
import M2;
void test() {

f(0);
g(0);

}

The call to f(0) is valid; the instantiation context of foo<int, X> comprises
—(7.1) the point at the end of translation unit #1,

§ 10.6 249

© ISO/IEC N4910

—(7.2) the point at the end of translation unit #2, and
—(7.3) the point of the call to f(0),

so the definition of X is reachable (10.7).
It is unspecified whether the call to g(0) is valid: the instantiation context of bar<int, X> comprises
—(7.4) the point at the end of translation unit #1,
—(7.5) the point at the end of translation unit #3, and
—(7.6) the point of the call to g(0),

so the definition of X need not be reachable, as described in 10.7. —end example]
10.7 Reachability [module.reach]

1 A translation unit U is necessarily reachable from a point P if U is a module interface unit on which the translationunit containing P has an interface dependency, or the translation unit containing P imports U , in either case prior to
P (10.3).
[Note 1: While module interface units are reachable even when they are only transitively imported via a non-exported importdeclaration, namespace-scope names from such module interface units are not found by name lookup (6.5). —end note]

2 All translation units that are necessarily reachable are reachable. Additional translation units on which the point withinthe program has an interface dependency may be considered reachable, but it is unspecified which are and under whatcircumstances.93
[Note 2: It is advisable to avoid depending on the reachability of any additional translation units in programs intending to be portable.—end note]

3 A declaration D is reachable from a point P if
—(3.1) D appears prior to P in the same translation unit, or
—(3.2) D is not discarded (10.4), appears in a translation unit that is reachable from P , and does not appear within a

private-module-fragment.
A declaration is reachable if it is reachable from any point in the instantiation context (10.6).
[Note 3: Whether a declaration is exported has no bearing on whether it is reachable. —end note]

4 The accumulated properties of all reachable declarations of an entity within a context determine the behavior of theentity within that context.
[Note 4: These reachable semantic properties include type completeness, type definitions, initializers, default arguments of functionsor template declarations, attributes, names bound, etc. Since default arguments are evaluated in the context of the call expression, thereachable semantic properties of the corresponding parameter types apply in that context.
[Example 1:
Translation unit #1:
export module M:A;
export struct B;

Translation unit #2:
module M:B;
struct B {

operator int();
};

Translation unit #3:
module M:C;
import :A;
B b1; // error: no reachable definition of struct B

Translation unit #4:
export module M;
export import :A;
import :B;

93) Implementations are therefore not required to prevent the semantic effects of additional translation units involved in the compilation from beingobserved.
§ 10.7 250

© ISO/IEC N4910

B b2;
export void f(B b = B());

Translation unit #5:
module X;
import M;
B b3; // error: no reachable definition of struct B
void g() { f(); } // error: no reachable definition of struct B

—end example]
—end note]

5 [Note 5: Declarations of an entity can be reachable even where they cannot be found by name lookup. —end note]
[Example 2:
Translation unit #1:
export module A;
struct X {};
export using Y = X;

Translation unit #2:
module B;
import A;
Y y; // OK, definition of X is reachable
X x; // error: X not visible to unqualified lookup
—end example]

§ 10.7 251

© ISO/IEC N4910

11 Classes [class]
11.1 Preamble [class.pre]

1 A class is a type. Its name becomes a class-name (11.3) within its scope.
class-name :

identifier
simple-template-id

A class-specifier or an elaborated-type-specifier (9.2.9.4) is used to make a class-name. An object of a class consistsof a (possibly empty) sequence of members and base class objects.
class-specifier :

class-head { member-specificationopt }

class-head :
class-key attribute-specifier-seqopt class-head-name class-virt-specifieropt base-clauseopt
class-key attribute-specifier-seqopt base-clauseopt

class-head-name :
nested-name-specifieropt class-name

class-virt-specifier :
final

class-key :
class
struct
union

A class declaration where the class-name in the class-head-name is a simple-template-id shall be an explicit specializa-tion (13.9.4) or a partial specialization (13.7.6). A class-specifier whose class-head omits the class-head-name definesan unnamed class.
[Note 1: An unnamed class thus can’t be final. —end note]
Otherwise, the class-name is an identifier ; it is not looked up, and the class-specifier introduces it.

2 The class-name is also bound in the scope of the class (template) itself; this is known as the injected-class-name. Forpurposes of access checking, the injected-class-name is treated as if it were a public member name. A class-specifier iscommonly referred to as a class definition. A class is considered defined after the closing brace of its class-specifierhas been seen even though its member functions are in general not yet defined. The optional attribute-specifier-seqappertains to the class; the attributes in the attribute-specifier-seq are thereafter considered attributes of the classwhenever it is named.
3 If a class-head-name contains a nested-name-specifier , the class-specifier shall not inhabit a class scope. If its class-

name is an identifier , the class-specifier shall correspond to one or more declarations nominable in the class, classtemplate, or namespace to which the nested-name-specifier refers; they shall all have the same target scope, and thetarget scope of the class-specifier is that scope.
[Example 1:
namespace N {

template<class>
struct A {
struct B;

};
}
using N::A;
template<class T> struct A<T>::B {}; // OK
template<> struct A<void> {}; // OK
—end example]

4 [Note 2: The class-key determines whether the class is a union (11.5) and whether access is public or private by default (11.8). Aunion holds the value of at most one data member at a time. —end note]

§ 11.1 252

© ISO/IEC N4910

5 If a class is marked with the class-virt-specifier final and it appears as a class-or-decltype in a base-clause (11.7), theprogram is ill-formed. Whenever a class-key is followed by a class-head-name, the identifier final, and a colon or leftbrace, final is interpreted as a class-virt-specifier .
[Example 2:
struct A;
struct A final {}; // OK, definition of struct A,// not value-initialization of variable final
struct X {
struct C { constexpr operator int() { return 5; } };
struct B final : C{}; // OK, definition of nested class B,// not declaration of a bit-field member final

};

—end example]
6 [Note 3: Complete objects of class type have nonzero size. Base class subobjects and members declared with the no_unique_addressattribute (9.12.10) are not so constrained. —end note]
7 [Note 4: Class objects can be assigned (12.4.3.2, 11.4.6), passed as arguments to functions (9.4, 11.4.5.3), and returned by functions(except objects of classes for which copying or moving has been restricted; see 9.5.3 and 11.8). Other plausible operators, such asequality comparison, can be defined by the user; see 12.4. —end note]
11.2 Properties of classes [class.prop]

1 A trivially copyable class is a class:
—(1.1) that has at least one eligible copy constructor, move constructor, copy assignment operator, or move assignmentoperator (11.4.4, 11.4.5.3, 11.4.6),
—(1.2) where each eligible copy constructor, move constructor, copy assignment operator, and move assignment operatoris trivial, and
—(1.3) that has a trivial, non-deleted destructor (11.4.7).

2 A trivial class is a class that is trivially copyable and has one or more eligible default constructors (11.4.5.2), all ofwhich are trivial.
[Note 1: In particular, a trivially copyable or trivial class does not have virtual functions or virtual base classes. —end note]

3 A class S is a standard-layout class if it:
—(3.1) has no non-static data members of type non-standard-layout class (or array of such types) or reference,
—(3.2) has no virtual functions (11.7.3) and no virtual base classes (11.7.2),
—(3.3) has the same access control (11.8) for all non-static data members,
—(3.4) has no non-standard-layout base classes,
—(3.5) has at most one base class subobject of any given type,
—(3.6) has all non-static data members and bit-fields in the class and its base classes first declared in the same class, and
—(3.7) has no element of the setM(S) of types as a base class, where for any type X,M(X) is defined as follows.94

[Note 2:M(X) is the set of the types of all non-base-class subobjects that can be at a zero offset in X. —end note]
—(3.7.1) If X is a non-union class type with no non-static data members, the setM(X) is empty.
—(3.7.2) If X is a non-union class type with a non-static data member of type X0 that is either of zero size or is thefirst non-static data member of X (where said member may be an anonymous union), the setM(X) consistsof X0 and the elements ofM(X0).
—(3.7.3) If X is a union type, the setM(X) is the union of allM(Ui) and the set containing all Ui, where each Ui isthe type of the ith non-static data member of X.
—(3.7.4) If X is an array type with element type Xe, the setM(X) consists of Xe and the elements ofM(Xe).
—(3.7.5) If X is a non-class, non-array type, the setM(X) is empty.

94) This ensures that two subobjects that have the same class type and that belong to the same most derived object are not allocated at the sameaddress (7.6.10).
§ 11.2 253

© ISO/IEC N4910

4 [Example 1:
struct B { int i; }; // standard-layout class
struct C : B { }; // standard-layout class
struct D : C { }; // standard-layout class
struct E : D { char : 4; }; // not a standard-layout class
struct Q {};
struct S : Q { };
struct T : Q { };
struct U : S, T { }; // not a standard-layout class
— end example]

5 A standard-layout struct is a standard-layout class defined with the class-key struct or the class-key class. Astandard-layout union is a standard-layout class defined with the class-key union.
6 [Note 3: Standard-layout classes are useful for communicating with code written in other programming languages. Their layout isspecified in 11.4. —end note]
7 [Example 2:

struct N { // neither trivial nor standard-layout
int i;
int j;
virtual ~N();

};

struct T { // trivial but not standard-layout
int i;

private:
int j;

};

struct SL { // standard-layout but not trivial
int i;
int j;
~SL();

};

struct POD { // both trivial and standard-layout
int i;
int j;

};

—end example]
8 [Note 4: Aggregates of class type are described in 9.4.2. —end note]
9 A class S is an implicit-lifetime class if it is an aggregate or has at least one trivial eligible constructor and a trivial,non-deleted destructor.
11.3 Class names [class.name]

1 A class definition introduces a new type.
[Example 1:
struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that
a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that
int f(X);
int f(Y);

§ 11.3 254

© ISO/IEC N4910

declare overloads (Clause 12) named f and not simply a single function f twice. For the same reason,
struct S { int a; };
struct S { int a; }; // error: double definition

is ill-formed because it defines S twice. —end example]
2 [Note 1: It can be necessary to use an elaborated-type-specifier to refer to a class that belongs to a scope in which its name is alsobound to a variable, function, or enumerator (6.5.6).
[Example 2:
struct stat {// ...
};

stat gstat; // use plain stat to define variable
int stat(struct stat*); // stat now also names a function
void f() {

struct stat* ps; // struct prefix needed to name struct stat
stat(ps); // call stat function

}

—end example]
An elaborated-type-specifier can also be used to declare an identifier as a class-name.
[Example 3:
struct s { int a; };

void g() {
struct s; // hide global struct s with a block-scope declaration
s* p; // refer to local struct s
struct s { char* p; }; // define local struct s
struct s; // redeclaration, has no effect

}

—end example]
Such declarations allow definition of classes that refer to each other.
[Example 4:
class Vector;

class Matrix {// ...
friend Vector operator*(const Matrix&, const Vector&);

};

class Vector {// ...
friend Vector operator*(const Matrix&, const Vector&);

};

Declaration of friends is described in 11.8.4, operator functions in 12.4. —end example]
—end note]

3 [Note 2: An elaborated-type-specifier (9.2.9.4) can also be used as a type-specifier as part of a declaration. It differs from a classdeclaration in that it can refer to an existing class of the given name. —end note]
[Example 5:
struct s { int a; };

void g(int s) {
struct s* p = new struct s; // global s
p->a = s; // parameter s

}

—end example]
§ 11.3 255

© ISO/IEC N4910

4 [Note 3: The declaration of a class name takes effect immediately after the identifier is seen in the class definition or elaborated-
type-specifier . For example,
class A * A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that class. This means that theelaborated form class A must be used to refer to the class. Such artistry with names can be confusing and is best avoided. —endnote]
5 A simple-template-id is only a class-name if its template-name names a class template.
11.4 Class members [class.mem]
11.4.1 General [class.mem.general]

member-specification :
member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration :
attribute-specifier-seqopt decl-specifier-seqopt member-declarator-listopt ;
function-definition
using-declaration
using-enum-declaration
static_assert-declaration
template-declaration
explicit-specialization
deduction-guide
alias-declaration
opaque-enum-declaration
empty-declaration

member-declarator-list :
member-declarator
member-declarator-list , member-declarator

member-declarator :
declarator virt-specifier-seqopt pure-specifieropt
declarator requires-clause
declarator brace-or-equal-initializeropt
identifieropt attribute-specifier-seqopt : constant-expression brace-or-equal-initializeropt

virt-specifier-seq :
virt-specifier
virt-specifier-seq virt-specifier

virt-specifier :
override
final

pure-specifier :
= 0

1 The member-specification in a class definition declares the full set of members of the class; no member can be addedelsewhere. A direct member of a class X is a member of X that was first declared within the member-specification of
X, including anonymous union members (11.5.2) and direct members thereof. Members of a class are data members,member functions (11.4.2), nested types, enumerators, and member templates (13.7.3) and specializations thereof.
[Note 1: A specialization of a static data member template is a static data member. A specialization of a member function template isa member function. A specialization of a member class template is a nested class. —end note]

2 A member-declaration does not declare new members of the class if it is
—(2.1) a friend declaration (11.8.4),
—(2.2) a deduction-guide (13.7.2.3),
—(2.3) a template-declaration whose declaration is one of the above,
—(2.4) a static_assert-declaration,
—(2.5) a using-declaration (9.9), or
—(2.6) an empty-declaration.

§ 11.4.1 256

© ISO/IEC N4910

For any other member-declaration, each declared entity that is not an unnamed bit-field (11.4.10) is a member of theclass, and each such member-declaration shall either declare at least one member name of the class or declare at leastone unnamed bit-field.
3 A data member is a non-function member introduced by a member-declarator . A member function is a member that isa function. Nested types are classes (11.3, 11.4.12) and enumerations (9.7.1) declared in the class and arbitrary typesdeclared as members by use of a typedef declaration (9.2.4) or alias-declaration. The enumerators of an unscopedenumeration (9.7.1) defined in the class are members of the class.
4 A data member or member function may be declared static in its member-declaration, in which case it is a staticmember (see 11.4.9) (a static data member (11.4.9.3) or static member function (11.4.9.2), respectively) of the class.Any other data member or member function is a non-static member (a non-static data member or non-static memberfunction (11.4.3), respectively).
[Note 2: A non-static data member of non-reference type is a member subobject of a class object (6.7.2). —end note]

5 A member shall not be declared twice in the member-specification, except that
—(5.1) a nested class or member class template can be declared and then later defined, and
—(5.2) an enumeration can be introduced with an opaque-enum-declaration and later redeclared with an enum-specifier .

[Note 3: A single name can denote several member functions provided their types are sufficiently different (6.4.1). —end note]
6 A redeclaration of a class member outside its class definition shall be a definition, an explicit specialization, or anexplicit instantiation (13.9.4, 13.9.3). The member shall not be a non-static data member.
7 A complete-class context of a class (template) is a

—(7.1) function body (9.5.1),
—(7.2) default argument (9.3.4.7),
—(7.3) default template argument (13.2),
—(7.4) noexcept-specifier (14.5), or
—(7.5) default member initializer

within the member-specification of the class or class template.
[Note 4: A complete-class context of a nested class is also a complete-class context of any enclosing class, if the nested class isdefined within the member-specification of the enclosing class. —end note]

8 A class is considered a completely-defined object type (6.8.1) (or complete type) at the closing } of the class-specifier .The class is regarded as complete within its complete-class contexts; otherwise it is regarded as incomplete within itsown class member-specification.
9 In a member-declarator , an = immediately following the declarator is interpreted as introducing a pure-specifier if the

declarator-id has function type, otherwise it is interpreted as introducing a brace-or-equal-initializer .
[Example 1:
struct S {

using T = void();
T * p = 0; // OK, brace-or-equal-initializer
virtual T f = 0; // OK, pure-specifier

};

—end example]
10 In a member-declarator for a bit-field, the constant-expression is parsed as the longest sequence of tokens that couldsyntactically form a constant-expression.
[Example 2:
int a;
const int b = 0;
struct S {

int x1 : 8 = 42; // OK, "= 42" is brace-or-equal-initializer
int x2 : 8 { 42 }; // OK, "{ 42 }" is brace-or-equal-initializer
int y1 : true ? 8 : a = 42; // OK, brace-or-equal-initializer is absent
int y2 : true ? 8 : b = 42; // error: cannot assign to const int
int y3 : (true ? 8 : b) = 42; // OK, "= 42" is brace-or-equal-initializer

§ 11.4.1 257

© ISO/IEC N4910

int z : 1 || new int { 0 }; // OK, brace-or-equal-initializer is absent
};

—end example]
11 A brace-or-equal-initializer shall appear only in the declaration of a data member. (For static data members, see 11.4.9.3;for non-static data members, see 11.9.3 and 9.4.2). A brace-or-equal-initializer for a non-static data member specifies adefault member initializer for the member, and shall not directly or indirectly cause the implicit definition of a defaulteddefault constructor for the enclosing class or the exception specification of that constructor.
12 A member shall not be declared with the extern storage-class-specifier . Within a class definition, a member shall notbe declared with the thread_local storage-class-specifier unless also declared static.
13 The decl-specifier-seq may be omitted in constructor, destructor, and conversion function declarations only; whendeclaring another kind of member the decl-specifier-seq shall contain a type-specifier that is not a cv-qualifier . The

member-declarator-list can be omitted only after a class-specifier or an enum-specifier or in a friend declaration (11.8.4).A pure-specifier shall be used only in the declaration of a virtual function (11.7.3) that is not a friend declaration.
14 The optional attribute-specifier-seq in a member-declaration appertains to each of the entities declared by the member-

declarators; it shall not appear if the optional member-declarator-list is omitted.
15 A virt-specifier-seq shall contain at most one of each virt-specifier . A virt-specifier-seq shall appear only in the firstdeclaration of a virtual member function (11.7.3).
16 The type of a non-static data member shall not be an incomplete type (6.8.1), an abstract class type (11.7.4), or a(possibly multi-dimensional) array thereof.

[Note 5: In particular, a class C cannot contain a non-static member of class C, but it can contain a pointer or reference to an object ofclass C. —end note]
17 [Note 6: See 7.5.4 for restrictions on the use of non-static data members and non-static member functions. —end note]
18 [Note 7: The type of a non-static member function is an ordinary function type, and the type of a non-static data member is anordinary object type. There are no special member function types or data member types. —end note]
19 [Example 3: A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode* left;
tnode* right;

};

which contains an array of twenty characters, an integer, and two pointers to objects of the same type. Once this definition has beengiven, the declaration
tnode s, *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these declarations, sp->count refers to the count member of theobject to which sp points; s.left refers to the left subtree pointer of the object s; and s.right->tword[0] refers to the initialcharacter of the tword member of the right subtree of s. —end example]
20 [Note 8: Non-variant non-static data members of non-zero size (6.7.2) are allocated so that later members have higher addresseswithin a class object (7.6.9). Implementation alignment requirements can cause two adjacent members not to be allocated immediatelyafter each other; so can requirements for space for managing virtual functions (11.7.3) and virtual base classes (11.7.2). —end note]
21 If T is the name of a class, then each of the following shall have a name different from T:

—(21.1) every static data member of class T;
—(21.2) every member function of class T;

[Note 9: This restriction does not apply to constructors, which do not have names (11.4.5) —end note]
—(21.3) every member of class T that is itself a type;
—(21.4) every member template of class T;
—(21.5) every enumerator of every member of class T that is an unscoped enumerated type; and
—(21.6) every member of every anonymous union that is a member of class T.

22 In addition, if class T has a user-declared constructor (11.4.5), every non-static data member of class T shall have aname different from T.

§ 11.4.1 258

© ISO/IEC N4910

23 The common initial sequence of two standard-layout struct (11.2) types is the longest sequence of non-static data membersand bit-fields in declaration order, starting with the first such entity in each of the structs, such that corresponding entitieshave layout-compatible types (6.8), either both entities are declared with the no_unique_address attribute (9.12.10) orneither is, and either both entities are bit-fields with the same width or neither is a bit-field.
[Example 4:
struct A { int a; char b; };
struct B { const int b1; volatile char b2; };
struct C { int c; unsigned : 0; char b; };
struct D { int d; char b : 4; };
struct E { unsigned int e; char b; };

The common initial sequence of A and B comprises all members of either class. The common initial sequence of A and C and of A and
D comprises the first member in each case. The common initial sequence of A and E is empty. —end example]

24 Two standard-layout struct (11.2) types are layout-compatible classes if their common initial sequence comprises allmembers and bit-fields of both classes (6.8).
25 Two standard-layout unions are layout-compatible if they have the same number of non-static data members andcorresponding non-static data members (in any order) have layout-compatible types (6.8.1).
26 In a standard-layout union with an active member (11.5) of struct type T1, it is permitted to read a non-static datamember m of another union member of struct type T2 provided m is part of the common initial sequence of T1 and T2;the behavior is as if the corresponding member of T1 were nominated.
[Example 5:
struct T1 { int a, b; };
struct T2 { int c; double d; };
union U { T1 t1; T2 t2; };
int f() {

U u = { { 1, 2 } }; // active member is t1
return u.t2.c; // OK, as if u.t1.a were nominated

}

—end example]
[Note 10: Reading a volatile object through a glvalue of non-volatile type has undefined behavior (9.2.9.2). —end note]

27 If a standard-layout class object has any non-static data members, its address is the same as the address of its firstnon-static data member if that member is not a bit-field. Its address is also the same as the address of each of its baseclass subobjects.
[Note 11: There can therefore be unnamed padding within a standard-layout struct object inserted by an implementation, but not atits beginning, as necessary to achieve appropriate alignment. —end note]
[Note 12: The object and its first subobject are pointer-interconvertible (6.8.3, 7.6.1.9). —end note]
11.4.2 Member functions [class.mfct]

1 If a member function is attached to the global module and is defined (9.5) in its class definition, it is inline (9.2.8).
[Note 1: A member function is also inline if it is declared inline, constexpr, or consteval. —end note]

2 [Example 1:
struct X {

typedef int T;
static T count;
void f(T);

};
void X::f(T t = count) { }

The definition of the member function f of class X inhabits the global scope; the notation X::f indicates that the function f is amember of class X and in the scope of class X. In the function definition, the parameter type T refers to the typedef member T declaredin class X and the default argument count refers to the static data member count declared in class X. —end example]
3 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.
4 [Note 2: A member function can be declared (but not defined) using a typedef for a function type. The resulting member function hasexactly the same type as it would have if the function declarator were provided explicitly, see 9.3.4.6. For example,

typedef void fv();
typedef void fvc() const;

§ 11.4.2 259

© ISO/IEC N4910

struct S {
fv memfunc1; // equivalent to: void memfunc1();
void memfunc2();
fvc memfunc3; // equivalent to: void memfunc3() const;

};
fv S::* pmfv1 = &S::memfunc1;
fv S::* pmfv2 = &S::memfunc2;
fvc S::* pmfv3 = &S::memfunc3;

Also see 13.4. —end note]
11.4.3 Non-static member functions [class.mfct.non.static]

1 A non-static member function may be called for an object of its class type, or for an object of a class derived (11.7)from its class type, using the class member access syntax (7.6.1.5, 12.2.2.2). A non-static member function may also becalled directly using the function call syntax (7.6.1.3, 12.2.2.2) from within its class or a class derived from its class, ora member thereof, as described below.
2 If a non-static member function of a class X is called for an object that is not of type X, or of a type derived from X, thebehavior is undefined.
3 When an id-expression (7.5.4) that is not part of a class member access syntax (7.6.1.5) and not used to form a pointer tomember (7.6.2.2) is used where the current class is X (7.5.2), if name lookup (6.5) resolves the name in the id-expressionto a non-static non-type member of some class C, and if either the id-expression is potentially evaluated or C is X or abase class of X, the id-expression is transformed into a class member access expression (7.6.1.5) using (*this) as the

postfix-expression to the left of the . operator.
[Note 1: If C is not X or a base class of X, the class member access expression is ill-formed. —end note]
This transformation does not apply in the template definition context (13.8.3.2).
[Example 1:
struct tnode {

char tword[20];
int count;
tnode* left;
tnode* right;
void set(const char*, tnode* l, tnode* r);

};

void tnode::set(const char* w, tnode* l, tnode* r) {
count = strlen(w)+1;
if (sizeof(tword)<=count)

perror("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

void f(tnode n1, tnode n2) {
n1.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member function tnode::set, the member names tword, count, left, and right refer to members of the object forwhich the function is called. Thus, in the call n1.set("abc",&n2,0), tword refers to n1.tword, and in the call n2.set("def",0,0),it refers to n2.tword. The functions strlen, perror, and strcpy are not members of the class tnode and should be declaredelsewhere.95 —end example]
4 [Note 2: An implicit object member function can be declared with cv-qualifiers, which affect the type of the this pointer (7.5.2),and/or a ref-qualifier (9.3.4.6); both affect overload resolution (12.2.2) —end note]
5 An implicit object member function may be declared virtual (11.7.3) or pure virtual (11.7.4).

95) See, for example, <cstring> (23.5.3).
§ 11.4.3 260

© ISO/IEC N4910

11.4.4 Special member functions [special]
1 Default constructors (11.4.5.2), copy constructors, move constructors (11.4.5.3), copy assignment operators, moveassignment operators (11.4.6), and prospective destructors (11.4.7) are special member functions.
[Note 1: The implementation will implicitly declare these member functions for some class types when the program does not explicitlydeclare them. The implementation will implicitly define them if they are odr-used (6.3) or needed for constant evaluation (7.7).—end note]
An implicitly-declared special member function is declared at the closing } of the class-specifier . Programs shall notdefine implicitly-declared special member functions.

2 Programs may explicitly refer to implicitly-declared special member functions.
[Example 1: A program may explicitly call or form a pointer to member to an implicitly-declared special member function.
struct A { }; // implicitly declared A::operator=
struct B : A {

B& operator=(const B &);
};
B& B::operator=(const B& s) {

this->A::operator=(s); // well-formed
return *this;

}

—end example]
3 [Note 2: The special member functions affect the way objects of class type are created, copied, moved, and destroyed, and howvalues can be converted to values of other types. Often such special member functions are called implicitly. —end note]
4 Special member functions obey the usual access rules (11.8).
[Example 2: Declaring a constructor protected ensures that only derived classes and friends can create objects using it. —endexample]

5 Two special member functions are of the same kind if:
—(5.1) they are both default constructors,
—(5.2) they are both copy or move constructors with the same first parameter type, or
—(5.3) they are both copy or move assignment operators with the same first parameter type and the same cv-qualifiersand ref-qualifier , if any.

6 An eligible special member function is a special member function for which:
—(6.1) the function is not deleted,
—(6.2) the associated constraints (13.5), if any, are satisfied, and
—(6.3) no special member function of the same kind is more constrained (13.5.5).

7 For a class, its non-static data members, its non-virtual direct base classes, and, if the class is not abstract (11.7.4), itsvirtual base classes are called its potentially constructed subobjects.
8 A defaulted special member function is constexpr-compatible if the corresponding implicitly-declared special memberfunction would be a constexpr function.
11.4.5 Constructors [class.ctor]
11.4.5.1 General [class.ctor.general]

1 A declarator declares a constructor if it is a function declarator (9.3.4.6) of the form
ptr-declarator (parameter-declaration-clause) noexcept-specifieropt attribute-specifier-seqopt

where the ptr-declarator consists solely of an id-expression, an optional attribute-specifier-seq, and optional surroundingparentheses, and the id-expression has one of the following forms:
—(1.1) in a friend declaration (11.8.4), the id-expression is a qualified-id that names a constructor (6.5.5.2);
—(1.2) otherwise, in a member-declaration that belongs to the member-specification of a class or class template, the

id-expression is the injected-class-name (11.1) of the immediately-enclosing entity;
—(1.3) otherwise, the id-expression is a qualified-id whose unqualified-id is the injected-class-name of its lookup context.

Constructors do not have names. In a constructor declaration, each decl-specifier in the optional decl-specifier-seq shallbe friend, inline, constexpr, consteval, or an explicit-specifier .
§ 11.4.5.1 261

© ISO/IEC N4910

[Example 1:
struct S {

S(); // declares the constructor
};

S::S() { } // defines the constructor
— end example]

2 A constructor is used to initialize objects of its class type.
[Note 1: Because constructors do not have names, they are never found during unqualified name lookup; however an explicit typeconversion using the functional notation (7.6.1.4) will cause a constructor to be called to initialize an object. The syntax looks like anexplicit call of the constructor. —end note]
[Example 2:
complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

—end example]
[Note 2: For initialization of objects of class type see 11.9. —end note]

3 An object created in this way is unnamed.
[Note 3: 6.7.7 describes the lifetime of temporary objects. —end note]
[Note 4: Explicit constructor calls do not yield lvalues, see 7.2.1. —end note]

4 [Note 5: Some language constructs have special semantics when used during construction; see 11.9.3 and 11.9.5. —end note]
5 A constructor can be invoked for a const, volatile or const volatile object. const and volatile semantics (9.2.9.2)are not applied on an object under construction. They come into effect when the constructor for the most derivedobject (6.7.2) ends.
6 The address of a constructor shall not be taken.
[Note 6: A return statement in the body of a constructor cannot specify a return value (8.7.4). —end note]

7 A constructor shall not be a coroutine.
11.4.5.2 Default constructors [class.default.ctor]

1 A default constructor for a class X is a constructor of class X for which each parameter that is not a function parameterpack has a default argument (including the case of a constructor with no parameters). If there is no user-declaredconstructor for class X, a non-explicit constructor having no parameters is implicitly declared as defaulted (9.5). Animplicitly-declared default constructor is an inline public member of its class.
2 A defaulted default constructor for class X is defined as deleted if:

—(2.1) X is a union that has a variant member with a non-trivial default constructor and no variant member of X has adefault member initializer,
—(2.2) X is a non-union class that has a variant member M with a non-trivial default constructor and no variant memberof the anonymous union containing M has a default member initializer,
—(2.3) any non-static data member with no default member initializer (11.4) is of reference type,
—(2.4) any non-variant non-static data member of const-qualified type (or array thereof) with no brace-or-equal-initializeris not const-default-constructible (9.4),
—(2.5) X is a union and all of its variant members are of const-qualified type (or array thereof),
—(2.6) X is a non-union class and all members of any anonymous union member are of const-qualified type (or arraythereof),
—(2.7) any potentially constructed subobject, except for a non-static data member with a brace-or-equal-initializer , hasclass type M (or array thereof) and either M has no default constructor or overload resolution (12.2) as applied tofind M’s corresponding constructor results in an ambiguity or in a function that is deleted or inaccessible from thedefaulted default constructor, or
—(2.8) any potentially constructed subobject has a type with a destructor that is deleted or inaccessible from the defaulteddefault constructor.

3 A default constructor is trivial if it is not user-provided and if:
§ 11.4.5.2 262

© ISO/IEC N4910

—(3.1) its class has no virtual functions (11.7.3) and no virtual base classes (11.7.2), and
—(3.2) no non-static data member of its class has a default member initializer (11.4), and
—(3.3) all the direct base classes of its class have trivial default constructors, and
—(3.4) for all the non-static data members of its class that are of class type (or array thereof), each such class has a trivialdefault constructor.

Otherwise, the default constructor is non-trivial.
4 A default constructor that is defaulted and not defined as deleted is implicitly definedwhen it is odr-used (6.3) to initializean object of its class type (6.7.2), when it is needed for constant evaluation (7.7), or when it is explicitly defaultedafter its first declaration. The implicitly-defined default constructor performs the set of initializations of the class thatwould be performed by a user-written default constructor for that class with no ctor-initializer (11.9.3) and an empty

compound-statement. If that user-written default constructor would be ill-formed, the program is ill-formed. If thatuser-written default constructor would satisfy the requirements of a constexpr constructor (9.2.6), the implicitly-defineddefault constructor is constexpr. Before the defaulted default constructor for a class is implicitly defined, all thenon-user-provided default constructors for its base classes and its non-static data members are implicitly defined.
[Note 1: An implicitly-declared default constructor has an exception specification (14.5). An explicitly-defaulted definition mighthave an implicit exception specification, see 9.5. —end note]

5 [Note 2: A default constructor is implicitly invoked to initialize a class object when no initializer is specified (9.4.1). Such a defaultconstructor is required to be accessible (11.8). —end note]
6 [Note 3: 11.9.3 describes the order in which constructors for base classes and non-static data members are called and describes howarguments can be specified for the calls to these constructors. —end note]
11.4.5.3 Copy/move constructors [class.copy.ctor]

1 A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&, volatile X&or const volatile X&, and either there are no other parameters or else all other parameters have default arguments(9.3.4.7).
[Example 1: X::X(const X&) and X::X(X&,int=1) are copy constructors.
struct X {

X(int);
X(const X&, int = 1);

};
X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

—end example]
2 A non-template constructor for class X is a move constructor if its first parameter is of type X&&, const X&&, volatile

X&&, or const volatile X&&, and either there are no other parameters or else all other parameters have defaultarguments (9.3.4.7).
[Example 2: Y::Y(Y&&) is a move constructor.
struct Y {

Y(const Y&);
Y(Y&&);

};
extern Y f(int);
Y d(f(1)); // calls Y(Y&&)
Y e = d; // calls Y(const Y&)

—end example]
3 [Note 1: All forms of copy/move constructor can be declared for a class.
[Example 3:
struct X {

X(const X&);
X(X&); // OK
X(X&&);
X(const X&&); // OK, but possibly not sensible

};

§ 11.4.5.3 263

© ISO/IEC N4910

—end example]
—end note]

4 [Note 2: If a class X only has a copy constructor with a parameter of type X&, an initializer of type const X or volatile X cannotinitialize an object of type cv X.
[Example 4:
struct X {

X(); // default constructor
X(X&); // copy constructor with a non-const parameter

};
const X cx;
X x = cx; // error: X::X(X&) cannot copy cx into x
—end example]
—end note]

5 A declaration of a constructor for a class X is ill-formed if its first parameter is of type cv X and either there are no otherparameters or else all other parameters have default arguments. A member function template is never instantiated toproduce such a constructor signature.
[Example 5:
struct S {

template<typename T> S(T);
S();

};

S g;

void h() {
S a(g); // does not instantiate the member template to produce S::S<S>(S);// uses the implicitly declared copy constructor

}

—end example]
6 If the class definition does not explicitly declare a copy constructor, a non-explicit one is declared implicitly. If the classdefinition declares a move constructor or move assignment operator, the implicitly declared copy constructor is definedas deleted; otherwise, it is defaulted (9.5). The latter case is deprecated if the class has a user-declared copy assignmentoperator or a user-declared destructor (D.8).
7 The implicitly-declared copy constructor for a class X will have the form

X::X(const X&)

if each potentially constructed subobject of a class type M (or array thereof) has a copy constructor whose first parameteris of type const M& or const volatile M&.96 Otherwise, the implicitly-declared copy constructor will have the form
X::X(X&)

8 If the definition of a class X does not explicitly declare a move constructor, a non-explicit one will be implicitly declaredas defaulted if and only if
—(8.1) X does not have a user-declared copy constructor,
—(8.2) X does not have a user-declared copy assignment operator,
—(8.3) X does not have a user-declared move assignment operator, and
—(8.4) X does not have a user-declared destructor.

[Note 3: When the move constructor is not implicitly declared or explicitly supplied, expressions that otherwise would have invokedthe move constructor might instead invoke a copy constructor. —end note]
9 The implicitly-declared move constructor for class X will have the form

X::X(X&&)

10 An implicitly-declared copy/move constructor is an inline public member of its class. A defaulted copy/move constructorfor a class X is defined as deleted (9.5.3) if X has:
96) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue; see C.6.7.
§ 11.4.5.3 264

© ISO/IEC N4910

—(10.1) a potentially constructed subobject type M (or array thereof) that cannot be copied/moved because overloadresolution (12.2), as applied to find M’s corresponding constructor, results in an ambiguity or a function that isdeleted or inaccessible from the defaulted constructor,
—(10.2) a variant member whose corresponding constructor as selected by overload resolution is non-trivial,
—(10.3) any potentially constructed subobject of a type with a destructor that is deleted or inaccessible from the defaultedconstructor, or,
—(10.4) for the copy constructor, a non-static data member of rvalue reference type.

[Note 4: A defaulted move constructor that is defined as deleted is ignored by overload resolution (12.2, 12.3). Such a constructorwould otherwise interfere with initialization from an rvalue which can use the copy constructor instead. —end note]
11 A copy/move constructor for class X is trivial if it is not user-provided and if:

—(11.1) class X has no virtual functions (11.7.3) and no virtual base classes (11.7.2), and
—(11.2) the constructor selected to copy/move each direct base class subobject is trivial, and
—(11.3) for each non-static data member of X that is of class type (or array thereof), the constructor selected to copy/movethat member is trivial;

otherwise the copy/move constructor is non-trivial.
12 A copy/move constructor that is defaulted and not defined as deleted is implicitly defined when it is odr-used (6.3),when it is needed for constant evaluation (7.7), or when it is explicitly defaulted after its first declaration.
[Note 5: The copy/move constructor is implicitly defined even if the implementation elided its odr-use (6.3, 6.7.7). —end note]
If the implicitly-defined constructor would satisfy the requirements of a constexpr constructor (9.2.6), the implicitly-defined constructor is constexpr.

13 Before the defaulted copy/move constructor for a class is implicitly defined, all non-user-provided copy/move construc-tors for its potentially constructed subobjects are implicitly defined.
[Note 6: An implicitly-declared copy/move constructor has an implied exception specification (14.5). —end note]

14 The implicitly-defined copy/move constructor for a non-union class X performs a memberwise copy/move of its basesand members.
[Note 7: Default member initializers of non-static data members are ignored. See also the example in 11.9.3. —end note]
The order of initialization is the same as the order of initialization of bases and members in a user-defined constructor(see 11.9.3). Let x be either the parameter of the constructor or, for the move constructor, an xvalue referring to theparameter. Each base or non-static data member is copied/moved in the manner appropriate to its type:
—(14.1) if the member is an array, each element is direct-initialized with the corresponding subobject of x;
—(14.2) if a member m has rvalue reference type T&&, it is direct-initialized with static_cast<T&&>(x.m);
—(14.3) otherwise, the base or member is direct-initialized with the corresponding base or member of x.

Virtual base class subobjects shall be initialized only once by the implicitly-defined copy/move constructor (see 11.9.3).
15 The implicitly-defined copy/move constructor for a union X copies the object representation (6.8.1) of X. For each objectnested within (6.7.2) the object that is the source of the copy, a corresponding object o nested within the destination isidentified (if the object is a subobject) or created (otherwise), and the lifetime of o begins before the copy is performed.
11.4.6 Copy/move assignment operator [class.copy.assign]

1 A user-declared copy assignment operator X::operator= is a non-static non-template member function of class X withexactly one parameter of type X, X&, const X&, volatile X&, or const volatile X&.97
[Note 1: An overloaded assignment operator must be declared to have only one parameter; see 12.4.3.2. —end note]
[Note 2: More than one form of copy assignment operator can be declared for a class. —end note]
[Note 3: If a class X only has a copy assignment operator with a parameter of type X&, an expression of type const X cannot beassigned to an object of type X.
[Example 1:
97) Because a template assignment operator or an assignment operator taking an rvalue reference parameter is never a copy assignment operator,the presence of such an assignment operator does not suppress the implicit declaration of a copy assignment operator. Such assignment operatorsparticipate in overload resolution with other assignment operators, including copy assignment operators, and, if selected, will be used to assign anobject.
§ 11.4.6 265

© ISO/IEC N4910

struct X {
X();
X& operator=(X&);

};
const X cx;
X x;
void f() {

x = cx; // error: X::operator=(X&) cannot assign cx into x
}

—end example]
—end note]

2 If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly. If the classdefinition declares a move constructor or move assignment operator, the implicitly declared copy assignment operatoris defined as deleted; otherwise, it is defaulted (9.5). The latter case is deprecated if the class has a user-declared copyconstructor or a user-declared destructor (D.8). The implicitly-declared copy assignment operator for a class X will havethe form
X& X::operator=(const X&)

if
—(2.1) each direct base class B of X has a copy assignment operator whose parameter is of type const B&, const

volatile B&, or B, and
—(2.2) for all the non-static data members of X that are of a class type M (or array thereof), each such class type has acopy assignment operator whose parameter is of type const M&, const volatile M&, or M.98

Otherwise, the implicitly-declared copy assignment operator will have the form
X& X::operator=(X&)

3 A user-declared move assignment operator X::operator= is a non-static non-template member function of class X withexactly one parameter of type X&&, const X&&, volatile X&&, or const volatile X&&.
[Note 4: An overloaded assignment operator must be declared to have only one parameter; see 12.4.3.2. —end note]
[Note 5: More than one form of move assignment operator can be declared for a class. —end note]

4 If the definition of a class X does not explicitly declare a move assignment operator, one will be implicitly declared asdefaulted if and only if
—(4.1) X does not have a user-declared copy constructor,
—(4.2) X does not have a user-declared move constructor,
—(4.3) X does not have a user-declared copy assignment operator, and
—(4.4) X does not have a user-declared destructor.

[Example 2: The class definition
struct S {

int a;
S& operator=(const S&) = default;

};

will not have a default move assignment operator implicitly declared because the copy assignment operator has been user-declared.The move assignment operator may be explicitly defaulted.
struct S {

int a;
S& operator=(const S&) = default;
S& operator=(S&&) = default;

};

—end example]
5 The implicitly-declared move assignment operator for a class X will have the form

X& X::operator=(X&&)

98) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile lvalue; see C.6.7.
§ 11.4.6 266

© ISO/IEC N4910

6 The implicitly-declared copy/move assignment operator for class X has the return type X&. An implicitly-declaredcopy/move assignment operator is an inline public member of its class.
7 A defaulted copy/move assignment operator for class X is defined as deleted if X has:

—(7.1) a variant member with a non-trivial corresponding assignment operator and X is a union-like class, or
—(7.2) a non-static data member of const non-class type (or array thereof), or
—(7.3) a non-static data member of reference type, or
—(7.4) a direct non-static data member of class type M (or array thereof) or a direct base class M that cannot be copied/movedbecause overload resolution (12.2), as applied to find M’s corresponding assignment operator, results in an ambiguityor a function that is deleted or inaccessible from the defaulted assignment operator.

[Note 6: A defaulted move assignment operator that is defined as deleted is ignored by overload resolution (12.2, 12.3). —end note]
8 Because a copy/move assignment operator is implicitly declared for a class if not declared by the user, a base classcopy/move assignment operator is always hidden by the corresponding assignment operator of a derived class (12.4.3.2).
[Note 7: A using-declaration in a derived class C that names an assignment operator from a base class never suppresses the implicitdeclaration of an assignment operator of C, even if the base class assignment operator would be a copy or move assignment operatorif declared as a member of C. —end note]

9 A copy/move assignment operator for class X is trivial if it is not user-provided and if:
—(9.1) class X has no virtual functions (11.7.3) and no virtual base classes (11.7.2), and
—(9.2) the assignment operator selected to copy/move each direct base class subobject is trivial, and
—(9.3) for each non-static data member of X that is of class type (or array thereof), the assignment operator selected tocopy/move that member is trivial;

otherwise the copy/move assignment operator is non-trivial.
10 A copy/move assignment operator for a class X that is defaulted and not defined as deleted is implicitly defined whenit is odr-used (6.3) (e.g., when it is selected by overload resolution to assign to an object of its class type), when it isneeded for constant evaluation (7.7), or when it is explicitly defaulted after its first declaration. The implicitly-definedcopy/move assignment operator is constexpr if

—(10.1) X is a literal type, and
—(10.2) the assignment operator selected to copy/move each direct base class subobject is a constexpr function, and
—(10.3) for each non-static data member of X that is of class type (or array thereof), the assignment operator selected tocopy/move that member is a constexpr function.

11 Before the defaulted copy/move assignment operator for a class is implicitly defined, all non-user-provided copy/moveassignment operators for its direct base classes and its non-static data members are implicitly defined.
[Note 8: An implicitly-declared copy/move assignment operator has an implied exception specification (14.5). —end note]

12 The implicitly-defined copy/move assignment operator for a non-union class X performs memberwise copy/moveassignment of its subobjects. The direct base classes of X are assigned first, in the order of their declaration in the
base-specifier-list, and then the immediate non-static data members of X are assigned, in the order in which they weredeclared in the class definition. Let x be either the parameter of the function or, for the move operator, an xvaluereferring to the parameter. Each subobject is assigned in the manner appropriate to its type:
—(12.1) if the subobject is of class type, as if by a call to operator= with the subobject as the object expression and thecorresponding subobject of x as a single function argument (as if by explicit qualification; that is, ignoring anypossible virtual overriding functions in more derived classes);
—(12.2) if the subobject is an array, each element is assigned, in the manner appropriate to the element type;
—(12.3) if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the implicitly-defined copy/move assignment operator.
[Example 3:
struct V { };
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

§ 11.4.6 267

© ISO/IEC N4910

It is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy/move assignment operatorfor C. —end example]
13 The implicitly-defined copy assignment operator for a union X copies the object representation (6.8.1) of X. If the sourceand destination of the assignment are not the same object, then for each object nested within (6.7.2) the object that isthe source of the copy, a corresponding object o nested within the destination is created, and the lifetime of o beginsbefore the copy is performed.
14 The implicitly-defined copy/move assignment operator for a class returns the object for which the assignment operatoris invoked, that is, the object assigned to.
11.4.7 Destructors [class.dtor]

1 A declaration whose declarator-id has an unqualified-id that begins with a ~ declares a prospective destructor; its
declarator shall be a function declarator (9.3.4.6) of the form

ptr-declarator (parameter-declaration-clause) noexcept-specifieropt attribute-specifier-seqopt

where the ptr-declarator consists solely of an id-expression, an optional attribute-specifier-seq, and optional surroundingparentheses, and the id-expression has one of the following forms:
—(1.1) in a member-declaration that belongs to the member-specification of a class or class template but is not a frienddeclaration (11.8.4), the id-expression is ~class-name and the class-name is the injected-class-name (11.1) of theimmediately-enclosing entity or
—(1.2) otherwise, the id-expression is nested-name-specifier ~class-name and the class-name is the injected-class-nameof the class nominated by the nested-name-specifier .

A prospective destructor shall take no arguments (9.3.4.6). Each decl-specifier of the decl-specifier-seq of a prospectivedestructor declaration (if any) shall be friend, inline, virtual, constexpr, or consteval.
2 If a class has no user-declared prospective destructor, a prospective destructor is implicitly declared as defaulted (9.5).An implicitly-declared prospective destructor is an inline public member of its class.
3 An implicitly-declared prospective destructor for a class X will have the form

~X()
4 At the end of the definition of a class, overload resolution is performed among the prospective destructors declared inthat class with an empty argument list to select the destructor for the class, also known as the selected destructor. Theprogram is ill-formed if overload resolution fails. Destructor selection does not constitute a reference to, or odr-use (6.3)of, the selected destructor, and in particular, the selected destructor may be deleted (9.5.3).
5 The address of a destructor shall not be taken.
[Note 1: A return statement in the body of a destructor cannot specify a return value (8.7.4). —end note]
A destructor can be invoked for a const, volatile or const volatile object. const and volatile semantics (9.2.9.2)are not applied on an object under destruction. They stop being in effect when the destructor for the most derivedobject (6.7.2) starts.

6 [Note 2: A declaration of a destructor that does not have a noexcept-specifier has the same exception specification as if it had beenimplicitly declared (14.5). —end note]
7 A defaulted destructor for a class X is defined as deleted if:

—(7.1) X is a union-like class that has a variant member with a non-trivial destructor,
—(7.2) any potentially constructed subobject has class type M (or array thereof) and M has a deleted destructor or adestructor that is inaccessible from the defaulted destructor,
—(7.3) or, for a virtual destructor, lookup of the non-array deallocation function results in an ambiguity or in a functionthat is deleted or inaccessible from the defaulted destructor.

8 A destructor is trivial if it is not user-provided and if:
—(8.1) the destructor is not virtual,
—(8.2) all of the direct base classes of its class have trivial destructors, and
—(8.3) for all of the non-static data members of its class that are of class type (or array thereof), each such class has atrivial destructor.

Otherwise, the destructor is non-trivial.

§ 11.4.7 268

© ISO/IEC N4910

9 A defaulted destructor is a constexpr destructor if it satisfies the requirements for a constexpr destructor (9.2.6).
10 A destructor that is defaulted and not defined as deleted is implicitly defined when it is odr-used (6.3) or when it isexplicitly defaulted after its first declaration.
11 Before a defaulted destructor for a class is implicitly defined, all the non-user-provided destructors for its base classesand its non-static data members are implicitly defined.
12 A prospective destructor can be declared virtual (11.7.3) and with a pure-specifier (11.7.4). If the destructor of a classis virtual and any objects of that class or any derived class are created in the program, the destructor shall be defined.
13 [Note 3: Some language constructs have special semantics when used during destruction; see 11.9.5. —end note]
14 After executing the body of the destructor and destroying any objects with automatic storage duration allocated withinthe body, a destructor for class X calls the destructors for X’s direct non-variant non-static data members, the destructorsfor X’s non-virtual direct base classes and, if X is the most derived class (11.9.3), its destructor calls the destructors for

X’s virtual base classes. All destructors are called as if they were referenced with a qualified name, that is, ignoring anypossible virtual overriding destructors in more derived classes. Bases and members are destroyed in the reverse order ofthe completion of their constructor (see 11.9.3).
[Note 4: A return statement (8.7.4) in a destructor might not directly return to the caller; before transferring control to the caller, thedestructors for the members and bases are called. —end note]
Destructors for elements of an array are called in reverse order of their construction (see 11.9).

15 A destructor is invoked implicitly
—(15.1) for a constructed object with static storage duration (6.7.5.2) at program termination (6.9.3.4),
—(15.2) for a constructed object with thread storage duration (6.7.5.3) at thread exit,
—(15.3) for a constructed object with automatic storage duration (6.7.5.4) when the block in which an object is createdexits (8.8),
—(15.4) for a constructed temporary object when its lifetime ends (7.3.5, 6.7.7).

In each case, the context of the invocation is the context of the construction of the object. A destructor may also be invokedimplicitly through use of a delete-expression (7.6.2.9) for a constructed object allocated by a new-expression (7.6.2.8);the context of the invocation is the delete-expression.
[Note 5: An array of class type contains several subobjects for each of which the destructor is invoked. —end note]
A destructor can also be invoked explicitly. A destructor is potentially invoked if it is invoked or as specified in 7.6.2.8,8.7.4, 9.4.2, 11.9.3, and 14.2. A program is ill-formed if a destructor that is potentially invoked is deleted or notaccessible from the context of the invocation.

16 At the point of definition of a virtual destructor (including an implicit definition), the non-array deallocation functionis determined as if for the expression delete this appearing in a non-virtual destructor of the destructor’s class(see 7.6.2.9). If the lookup fails or if the deallocation function has a deleted definition (9.5), the program is ill-formed.
[Note 6: This assures that a deallocation function corresponding to the dynamic type of an object is available for the delete-
expression (11.4.11). —end note]

17 In an explicit destructor call, the destructor is specified by a ~ followed by a type-name or decltype-specifier that denotesthe destructor’s class type. The invocation of a destructor is subject to the usual rules for member functions (11.4.2); thatis, if the object is not of the destructor’s class type and not of a class derived from the destructor’s class type (includingwhen the destructor is invoked via a null pointer value), the program has undefined behavior.
[Note 7: Invoking delete on a null pointer does not call the destructor; see 7.6.2.9. —end note]
[Example 1:
struct B {

virtual ~B() { }
};
struct D : B {
~D() { }

};

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

§ 11.4.7 269

© ISO/IEC N4910

void f() {
D_object.B::~B(); // calls B’s destructor
B_ptr->~B(); // calls D’s destructor
B_ptr->~B_alias(); // calls D’s destructor
B_ptr->B_alias::~B(); // calls B’s destructor
B_ptr->B_alias::~B_alias(); // calls B’s destructor

}

—end example]
[Note 8: An explicit destructor call must always be written using a member access operator (7.6.1.5) or a qualified-id (7.5.4.3); inparticular, the unary-expression ~X() in a member function is not an explicit destructor call (7.6.2.2). —end note]

18 [Note 9: Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific addresses using aplacement new-expression. Such use of explicit placement and destruction of objects can be necessary to cope with dedicatedhardware resources and for writing memory management facilities. For example,
void* operator new(std::size_t, void* p) { return p; }
struct X {

X(int);
~X();

};
void f(X* p);

void g() { // rare, specialized use:
char* buf = new char[sizeof(X)];
X* p = new(buf) X(222); // use buf[] and initialize
f(p);
p->X::~X(); // cleanup

}

—end note]
19 Once a destructor is invoked for an object, the object’s lifetime ends; the behavior is undefined if the destructor isinvoked for an object whose lifetime has ended (6.7.3).

[Example 2: If the destructor for an object with automatic storage duration is explicitly invoked, and the block is subsequently left ina manner that would ordinarily invoke implicit destruction of the object, the behavior is undefined. —end example]
20 [Note 10: The notation for explicit call of a destructor can be used for any scalar type name (7.5.4.4). Allowing this makes it possibleto write code without having to know if a destructor exists for a given type. For example:

typedef int I;
I* p;
p->I::~I();
—end note]

21 A destructor shall not be a coroutine.
11.4.8 Conversions [class.conv]
11.4.8.1 General [class.conv.general]

1 Type conversions of class objects can be specified by constructors and by conversion functions. These conversions arecalled user-defined conversions and are used for implicit type conversions (7.3), for initialization (9.4), and for explicittype conversions (7.6.1.4, 7.6.3, 7.6.1.9).
2 User-defined conversions are applied only where they are unambiguous (6.5.2, 11.4.8.3). Conversions obey the accesscontrol rules (11.8). Access control is applied after ambiguity resolution (6.5).
3 [Note 1: See 12.2 for a discussion of the use of conversions in function calls as well as examples below. —end note]
4 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single value.
[Example 1:
struct X {

operator int();
};

struct Y {
operator X();

};

§ 11.4.8.1 270

© ISO/IEC N4910

Y a;
int b = a; // error: no viable conversion (a.operator X().operator int() not considered)
int c = X(a); // OK, a.operator X().operator int()

—end example]
11.4.8.2 Conversion by constructor [class.conv.ctor]

1 A constructor that is not explicit (9.2.3) specifies a conversion from the types of its parameters (if any) to the type of itsclass. Such a constructor is called a converting constructor.
[Example 1:
struct X {

X(int);
X(const char*, int =0);
X(int, int);

};

void f(X arg) {
X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))
f({1, 2}); // f(X(1,2))

}

—end example]
2 [Note 1: An explicit constructor constructs objects just like non-explicit constructors, but does so only where the direct-initializationsyntax (9.4) or where casts (7.6.1.9, 7.6.3) are explicitly used; see also 12.2.2.5. A default constructor can be an explicit constructor;such a constructor will be used to perform default-initialization or value-initialization (9.4).
[Example 2:
struct Z {

explicit Z();
explicit Z(int);
explicit Z(int, int);

};

Z a; // OK, default-initialization performed
Z b{}; // OK, direct initialization syntax used
Z c = {}; // error: copy-list-initialization
Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // OK, direct initialization syntax used
Z a2(1); // OK, direct initialization syntax used
Z* p = new Z(1); // OK, direct initialization syntax used
Z a4 = (Z)1; // OK, explicit cast used
Z a5 = static_cast<Z>(1); // OK, explicit cast used
Z a6 = { 3, 4 }; // error: no implicit conversion
—end example]
—end note]

3 A non-explicit copy/move constructor (11.4.5.3) is a converting constructor.
[Note 2: An implicitly-declared copy/move constructor is not an explicit constructor; it can be called for implicit type conversions.—end note]
11.4.8.3 Conversion functions [class.conv.fct]

conversion-function-id :
operator conversion-type-id

conversion-type-id :
type-specifier-seq conversion-declaratoropt

conversion-declarator :
ptr-operator conversion-declaratoropt

§ 11.4.8.3 271

© ISO/IEC N4910

1 A declaration whose declarator-id has an unqualified-id that is a conversion-function-id declares a conversion function;its declarator shall be a function declarator (9.3.4.6) of the form
ptr-declarator (parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifier-seqopt noexcept-specifieropt attribute-specifier-seqopt

where the ptr-declarator consists solely of an id-expression, an optional attribute-specifier-seq, and optional surroundingparentheses, and the id-expression has one of the following forms:
—(1.1) in a member-declaration that belongs to the member-specification of a class or class template but is not a frienddeclaration (11.8.4), the id-expression is a conversion-function-id ;
—(1.2) otherwise, the id-expression is a qualified-id whose unqualified-id is a conversion-function-id .

2 A conversion function shall have no non-object parameters and shall be a non-static member function of a class or classtemplate X; it specifies a conversion from X to the type specified by the conversion-type-id , interpreted as a type-id (9.3.2).A decl-specifier in the decl-specifier-seq of a conversion function (if any) shall not be a defining-type-specifier .
3 The type of the conversion function is “noexceptopt function taking no parameter cv-qualifier-seqopt ref-qualifieroptreturning conversion-type-id”.
4 A conversion function is never used to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same objecttype (or a reference to it), to a (possibly cv-qualified) base class of that type (or a reference to it), or to cv void.99
[Example 1:
struct X {

operator int();
operator auto() -> short; // error: trailing return type

};

void f(X a) {
int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted by X::operator int(). —end example]
5 A conversion function may be explicit (9.2.3), in which case it is only considered as a user-defined conversion fordirect-initialization (9.4). Otherwise, user-defined conversions are not restricted to use in assignments and initializations.
[Example 2:
class Y { };
struct Z {

explicit operator Y() const;
};

void h(Z z) {
Y y1(z); // OK, direct-initialization
Y y2 = z; // error: no conversion function candidate for copy-initialization
Y y3 = (Y)z; // OK, cast notation

}

void g(X a, X b) {
int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) {
}

}

—end example]
6 The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a conversion-

function-id is the longest sequence of tokens that could possibly form a conversion-type-id .
99) These conversions are considered as standard conversions for the purposes of overload resolution (12.2.4.2, 12.2.4.2.5) and therefore initialization(9.4) and explicit casts (7.6.1.9). A conversion to void does not invoke any conversion function (7.6.1.9). Even though never directly called toperform a conversion, such conversion functions can be declared and can potentially be reached through a call to a virtual conversion function in abase class.
§ 11.4.8.3 272

© ISO/IEC N4910

[Note 1: This prevents ambiguities between the declarator operator * and its expression counterparts.
[Example 3:
&ac.operator int*i; // syntax error:// parsed as: &(ac.operator int *)i// not as: &(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator. —end example]
This rule also prevents ambiguities for attributes.
[Example 4:
operator int [[noreturn]] (); // error: noreturn attribute applied to a type
— end example]
—end note]

7 [Note 2: A conversion function in a derived class hides only conversion functions in base classes that convert to the same type. Aconversion function template with a dependent return type hides only templates in base classes that correspond to it (6.5.2); otherwise,it hides and is hidden as a non-template function. Function overload resolution (12.2.4) selects the best conversion function toperform the conversion.
[Example 5:
struct X {

operator int();
};

struct Y : X {
operator char();

};

void f(Y& a) {
if (a) { // error: ambiguous between X::operator int() and Y::operator char()
}

}

—end example]
—end note]

8 Conversion functions can be virtual.
9 A conversion function template shall not have a deduced return type (9.2.9.6).
[Example 6:
struct S {

operator auto() const { return 10; } // OK
template<class T>
operator auto() const { return 1.2; } // error: conversion function template

};

—end example]
11.4.9 Static members [class.static]
11.4.9.1 General [class.static.general]

1 A static member s of class X may be referred to using the qualified-id expression X::s; it is not necessary to use theclass member access syntax (7.6.1.5) to refer to a static member. A static member may be referred to using the classmember access syntax, in which case the object expression is evaluated.
[Example 1:
struct process {

static void reschedule();
};
process& g();

void f() {
process::reschedule(); // OK, no object necessary

§ 11.4.9.1 273

© ISO/IEC N4910

g().reschedule(); // g() is called
}

—end example]
2 Static members obey the usual class member access rules (11.8). When used in the declaration of a class member, the

static specifier shall only be used in the member declarations that appear within the member-specification of the classdefinition.
[Note 1: It cannot be specified in member declarations that appear in namespace scope. —end note]
11.4.9.2 Static member functions [class.static.mfct]

1 [Note 1: The rules described in 11.4.2 apply to static member functions. —end note]
2 [Note 2: A static member function does not have a this pointer (7.5.2). A static member function cannot be qualified with const,

volatile, or virtual (9.3.4.6). —end note]
11.4.9.3 Static data members [class.static.data]

1 A static data member is not part of the subobjects of a class. If a static data member is declared thread_local there isone copy of the member per thread. If a static data member is not declared thread_local there is one copy of the datamember that is shared by all the objects of the class.
2 A static data member shall not be mutable (9.2.2). A static data member shall not be a direct member (11.4) of anunnamed (11.1) or local (11.6) class or of a (possibly indirectly) nested class (11.4.12) thereof.
3 The declaration of a non-inline static data member in its class definition is not a definition and may be of an incompletetype other than cv void.
[Note 1: The initializer in the definition of a static data member is in the scope of its class (6.4.6). —end note]
[Example 1:
class process {

static process* run_chain;
static process* running;

};

process* process::running = get_main();
process* process::run_chain = running;

The definition of the static data member run_chain of class process inhabits the global scope; the notation process::run_chainindicates that the member run_chain is a member of class process and in the scope of class process. In the static data memberdefinition, the initializer expression refers to the static data member running of class process. —end example]
[Note 2: Once the static data member has been defined, it exists even if no objects of its class have been created.
[Example 2: In the example above, run_chain and running exist even if no objects of class process are created by the program.—end example]
The initialization and destruction of static data members is described in 6.9.3.2, 6.9.3.3, and 6.9.3.4. —end note]

4 If a non-volatile non-inline const static data member is of integral or enumeration type, its declaration in the classdefinition can specify a brace-or-equal-initializer in which every initializer-clause that is an assignment-expression is aconstant expression (7.7). The member shall still be defined in a namespace scope if it is odr-used (6.3) in the programand the namespace scope definition shall not contain an initializer . The declaration of an inline static data member(which is a definition) may specify a brace-or-equal-initializer . If the member is declared with the constexpr specifier,it may be redeclared in namespace scope with no initializer (this usage is deprecated; see D.6). Declarations of otherstatic data members shall not specify a brace-or-equal-initializer .
5 [Note 3: There is exactly one definition of a static data member that is odr-used (6.3) in a valid program. —end note]
6 [Note 4: Static data members of a class in namespace scope have the linkage of the name of the class (6.6). —end note]
11.4.10 Bit-fields [class.bit]

1 A member-declarator of the form
identifieropt attribute-specifier-seqopt : constant-expression brace-or-equal-initializeropt

specifies a bit-field. The optional attribute-specifier-seq appertains to the entity being declared. A bit-field shall notbe a static member. A bit-field shall have integral or (possibly cv-qualified) enumeration type; the bit-field semanticproperty is not part of the type of the class member. The constant-expression shall be an integral constant expressionwith a value greater than or equal to zero and is called the width of the bit-field. If the width of a bit-field is larger
§ 11.4.10 274

© ISO/IEC N4910

than the width of the bit-field’s type (or, in case of an enumeration type, of its underlying type), the extra bits arepadding bits (6.8.1). Allocation of bit-fields within a class object is implementation-defined. Alignment of bit-fields isimplementation-defined. Bit-fields are packed into some addressable allocation unit.
[Note 1: Bit-fields straddle allocation units on some machines and not on others. Bit-fields are assigned right-to-left on somemachines, left-to-right on others. —end note]

2 A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields are not membersand cannot be initialized. An unnamed bit-field shall not be declared with a cv-qualified type.
[Note 2: An unnamed bit-field is useful for padding to conform to externally-imposed layouts. —end note]
As a special case, an unnamed bit-field with a width of zero specifies alignment of the next bit-field at an allocation unitboundary. Only when declaring an unnamed bit-field may the width be zero.

3 The address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A non-const referenceshall not bind to a bit-field (9.4.4).
[Note 3: If the initializer for a reference of type const T& is an lvalue that refers to a bit-field, the reference is bound to a temporaryinitialized to hold the value of the bit-field; the reference is not bound to the bit-field directly. See 9.4.4. —end note]

4 If a value of integral type (other than bool) is stored into a bit-field of width N and the value would be representable ina hypothetical signed or unsigned integer type with width N and the same signedness as the bit-field’s type, the originalvalue and the value of the bit-field compare equal. If the value true or false is stored into a bit-field of type bool ofany size (including a one bit bit-field), the original bool value and the value of the bit-field compare equal. If a value ofan enumeration type is stored into a bit-field of the same type and the width is large enough to hold all the values of thatenumeration type (9.7.1), the original value and the value of the bit-field compare equal.
[Example 1:
enum BOOL { FALSE=0, TRUE=1 };
struct A {

BOOL b:1;
};
A a;
void f() {

a.b = TRUE;
if (a.b == TRUE) // yields true
{ /* ... */ }

}

—end example]
11.4.11 Allocation and deallocation functions [class.free]

1 Any allocation function for a class T is a static member (even if not explicitly declared static).
2 [Example 1:

class Arena;
struct B {

void* operator new(std::size_t, Arena*);
};
struct D1 : B {
};

Arena* ap;
void foo(int i) {

new (ap) D1; // calls B::operator new(std::size_t, Arena*)
new D1[i]; // calls ::operator new[](std::size_t)
new D1; // error: ::operator new(std::size_t) hidden

}

—end example]
3 Any deallocation function for a class X is a static member (even if not explicitly declared static).
[Example 2:
class X {

void operator delete(void*);

§ 11.4.11 275

© ISO/IEC N4910

void operator delete[](void*, std::size_t);
};

class Y {
void operator delete(void*, std::size_t);
void operator delete[](void*);

};

—end example]
4 Since member allocation and deallocation functions are static they cannot be virtual.
[Note 1: However, when the cast-expression of a delete-expression refers to an object of class type with a virtual destructor, becausethe deallocation function is chosen by the destructor of the dynamic type of the object, the effect is the same in that case. Forexample,
struct B {

virtual ~B();
void operator delete(void*, std::size_t);

};

struct D : B {
void operator delete(void*);

};

struct E : B {
void log_deletion();
void operator delete(E *p, std::destroying_delete_t) {
p->log_deletion();
p->~E();
::operator delete(p);

}
};

void f() {
B* bp = new D;
delete bp; // 1: uses D::operator delete(void*)
bp = new E;
delete bp; // 2: uses E::operator delete(E*, std::destroying_delete_t)

}

Here, storage for the object of class D is deallocated by D::operator delete(), and the object of class E is destroyed and its storageis deallocated by E::operator delete(), due to the virtual destructor. —end note]
[Note 2: Virtual destructors have no effect on the deallocation function actually called when the cast-expression of a delete-expressionrefers to an array of objects of class type. For example,
struct B {

virtual ~B();
void operator delete[](void*, std::size_t);

};

struct D : B {
void operator delete[](void*, std::size_t);

};

void f(int i) {
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, std::size_t)
B* bp = new D[i];
delete[] bp; // undefined behavior

}

—end note]
5 Access to the deallocation function is checked statically, even if a different one is actually executed.
[Example 3: For the call on line “// 1” above, if B::operator delete() had been private, the delete expression would have beenill-formed. —end example]

§ 11.4.11 276

© ISO/IEC N4910

6 [Note 3: If a deallocation function has no explicit noexcept-specifier , it has a non-throwing exception specification (14.5). —endnote]
11.4.12 Nested class declarations [class.nest]

1 A class can be declared within another class. A class declared within another is called a nested class.
[Note 1: See 7.5.4 for restrictions on the use of non-static data members and non-static member functions. —end note]
[Example 1:
int x;
int y;

struct enclose {
int x;
static int s;

struct inner {
void f(int i) {
int a = sizeof(x); // OK, operand of sizeof is an unevaluated operand
x = i; // error: assign to enclose::x
s = i; // OK, assign to enclose::s
::x = i; // OK, assign to global x
y = i; // OK, assign to global y

}
void g(enclose* p, int i) {
p->x = i; // OK, assign to enclose::x

}
};

};

inner* p = 0; // error: inner not found
—end example]

2 [Note 2: Nested classes can be defined either in the enclosing class or in an enclosing namespace; member functions and static datamembers of a nested class can be defined either in the nested class or in an enclosing namespace scope.
[Example 2:
struct enclose {

struct inner {
static int x;
void f(int i);

};
};

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /* ... */ }

class E {
class I1; // forward declaration of nested class
class I2;
class I1 { }; // definition of nested class

};
class E::I2 { }; // definition of nested class
— end example]
—end note]

3 A friend function (11.8.4) defined within a nested class has no special access rights to members of an enclosing class.
11.5 Unions [class.union]
11.5.1 General [class.union.general]

1 A union is a class defined with the class-key union.

§ 11.5.1 277

© ISO/IEC N4910

2 In a union, a non-static data member is active if its name refers to an object whose lifetime has begun and has notended (6.7.3). At most one of the non-static data members of an object of union type can be active at any time, that is,the value of at most one of the non-static data members can be stored in a union at any time.
[Note 1: One special guarantee is made in order to simplify the use of unions: If a standard-layout union contains several standard-layout structs that share a common initial sequence (11.4), and if a non-static data member of an object of this standard-layoutunion type is active and is one of the standard-layout structs, it is permitted to inspect the common initial sequence of any of thestandard-layout struct members; see 11.4. —end note]

3 The size of a union is sufficient to contain the largest of its non-static data members. Each non-static data member isallocated as if it were the sole member of a non-union class.
[Note 2: A union object and its non-static data members are pointer-interconvertible (6.8.3, 7.6.1.9). As a consequence, all non-staticdata members of a union object have the same address. —end note]

4 A union can have member functions (including constructors and destructors), but it shall not have virtual (11.7.3)functions. A union shall not have base classes. A union shall not be used as a base class. If a union contains a non-staticdata member of reference type the program is ill-formed.
[Note 3: Absent default member initializers (11.4), if any non-static data member of a union has a non-trivial default constructor(11.4.5.2), copy constructor, move constructor (11.4.5.3), copy assignment operator, move assignment operator (11.4.6), or destructor(11.4.7), the corresponding member function of the union must be user-provided or it will be implicitly deleted (9.5.3) for the union.—end note]

5 [Example 1: Consider the following union:
union U {

int i;
float f;
std::string s;

};

Since std::string (23.4) declares non-trivial versions of all of the special member functions, U will have an implicitly deleteddefault constructor, copy/move constructor, copy/move assignment operator, and destructor. To use U, some or all of these memberfunctions must be user-provided. —end example]
6 When the left operand of an assignment operator involves a member access expression (7.6.1.5) that nominates a unionmember, it may begin the lifetime of that union member, as described below. For an expression E, define the set S(E) ofsubexpressions of E as follows:

—(6.1) If E is of the form A.B, S(E) contains the elements of S(A), and also contains A.B if B names a union member of anon-class, non-array type, or of a class type with a trivial default constructor that is not deleted, or an array ofsuch types.
—(6.2) If E is of the form A[B] and is interpreted as a built-in array subscripting operator, S(E) is S(A) if A is of arraytype, S(B) if B is of array type, and empty otherwise.
—(6.3) Otherwise, S(E) is empty.

In an assignment expression of the form E1 = E2 that uses either the built-in assignment operator (7.6.19) or a trivialassignment operator (11.4.6), for each element X ofS(E1), if modification of Xwould have undefined behavior under 6.7.3,an object of the type of X is implicitly created in the nominated storage; no initialization is performed and the beginningof its lifetime is sequenced after the value computation of the left and right operands and before the assignment.
[Note 4: This ends the lifetime of the previously-active member of the union, if any (6.7.3). —end note]
[Example 2:
union A { int x; int y[4]; };
struct B { A a; };
union C { B b; int k; };
int f() {

C c; // does not start lifetime of any union member
c.b.a.y[3] = 4; // OK, S(c.b.a.y[3]) contains c.b and c.b.a.y;// creates objects to hold union members c.b and c.b.a.y
return c.b.a.y[3]; // OK, c.b.a.y refers to newly created object (see 6.7.3)

}

struct X { const int a; int b; };
union Y { X x; int k; };

§ 11.5.1 278

© ISO/IEC N4910

void g() {
Y y = { { 1, 2 } }; // OK, y.x is active union member (11.4)
int n = y.x.a;
y.k = 4; // OK, ends lifetime of y.x, y.k is active member of union
y.x.b = n; // undefined behavior: y.x.b modified outside its lifetime,// S(y.x.b) is empty because X’s default constructor is deleted,// so union member y.x’s lifetime does not implicitly start

}

—end example]
7 [Note 5: In cases where the above rule does not apply, the active member of a union can only be changed by the use of a placement

new-expression. —end note]
[Example 3: Consider an object u of a union type U having non-static data members m of type M and n of type N. If M has a non-trivialdestructor and N has a non-trivial constructor (for instance, if they declare or inherit virtual functions), the active member of u can besafely switched from m to n using the destructor and placement new-expression as follows:
u.m.~M();
new (&u.n) N;

—end example]
11.5.2 Anonymous unions [class.union.anon]

1 A union of the form
union { member-specification } ;

is called an anonymous union; it defines an unnamed type and an unnamed object of that type called an anonymousunion member if it is a non-static data member or an anonymous union variable otherwise. Eachmember-declaration inthemember-specification of an anonymous union shall either define one or more public non-static data members or be a
static_assert-declaration. Nested types, anonymous unions, and functions shall not be declared within an anonymousunion. The names of the members of an anonymous union are bound in the scope inhabited by the union declaration.
[Example 1:
void f() {

union { int a; const char* p; };
a = 1;
p = "Jennifer";

}

Here a and p are used like ordinary (non-member) variables, but since they are union members they have the same address. —endexample]
2 Anonymous unions declared in the scope of a namespace with external linkage shall be declared static. Anonymousunions declared at block scope shall be declared with any storage class allowed for a block variable, or with no storageclass. A storage class is not allowed in a declaration of an anonymous union in a class scope.
3 [Note 1: A union for which objects, pointers, or references are declared is not an anonymous union.
[Example 2:
void f() {

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

}

The assignment to plain aa is ill-formed since the member name is not visible outside the union, and even if it were visible, it is notassociated with any particular object. —end example]
—end note]
[Note 2: Initialization of unions with no user-declared constructors is described in 9.4.2. —end note]

4 A union-like class is a union or a class that has an anonymous union as a direct member. A union-like class X has a setof variant members. If X is a union, a non-static data member of X that is not an anonymous union is a variant memberof X. In addition, a non-static data member of an anonymous union that is a member of X is also a variant member of X.At most one variant member of a union may have a default member initializer.
[Example 3:

§ 11.5.2 279

© ISO/IEC N4910

union U {
int x = 0;
union {
int k;

};
union {
int z;
int y = 1; // error: initialization for second variant member of U

};
};

—end example]
11.6 Local class declarations [class.local]

1 A class can be declared within a function definition; such a class is called a local class.
[Note 1: A declaration in a local class cannot odr-use (6.3) a local entity from an enclosing scope. —end note]
[Example 1:
int x;
void f() {

static int s;
int x;
const int N = 5;
extern int q();
int arr[2];
auto [y, z] = arr;

struct local {
int g() { return x; } // error: odr-use of non-odr-usable variable x
int h() { return s; } // OK
int k() { return ::x; } // OK
int l() { return q(); } // OK
int m() { return N; } // OK, not an odr-use
int* n() { return &N; } // error: odr-use of non-odr-usable variable N
int p() { return y; } // error: odr-use of non-odr-usable structured binding y

};
}

local* p = 0; // error: local not found
—end example]

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules (11.8). Memberfunctions of a local class shall be defined within their class definition, if they are defined at all.
3 If class X is a local class a nested class Y may be declared in class X and later defined in the definition of class X or belater defined in the same scope as the definition of class X. A class nested within a local class is a local class.
4 [Note 2: A local class cannot have static data members (11.4.9.3). —end note]
11.7 Derived classes [class.derived]
11.7.1 General [class.derived.general]

1 A list of base classes can be specified in a class definition using the notation:
base-clause :

: base-specifier-list

base-specifier-list :
base-specifier ...opt
base-specifier-list , base-specifier ...opt

base-specifier :
attribute-specifier-seqopt class-or-decltype
attribute-specifier-seqopt virtual access-specifieropt class-or-decltype
attribute-specifier-seqopt access-specifier virtualopt class-or-decltype

§ 11.7.1 280

© ISO/IEC N4910

class-or-decltype :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier

access-specifier :
private
protected
public

The optional attribute-specifier-seq appertains to the base-specifier .
2 The component names of a class-or-decltype are those of its nested-name-specifier , type-name, and/or simple-template-

id . A class-or-decltype shall denote a (possibly cv-qualified) class type that is not an incompletely defined class (11.4);any cv-qualifiers are ignored. The class denoted by the class-or-decltype of a base-specifier is called a direct baseclass for the class being defined. The lookup for the component name of the type-name or simple-template-id istype-only (6.5). A class B is a base class of a class D if it is a direct base class of D or a direct base class of one of D’sbase classes. A class is an indirect base class of another if it is a base class but not a direct base class. A class is said tobe (directly or indirectly) derived from its (direct or indirect) base classes.
[Note 1: See 11.8 for the meaning of access-specifier . —end note]
Members of a base class are also members of the derived class.
[Note 2: Constructors of a base class can be explicitly inherited (9.9). Base class members can be referred to in expressions in thesame manner as other members of the derived class, unless their names are hidden or ambiguous (6.5.2). The scope resolutionoperator :: (7.5.4.3) can be used to refer to a direct or indirect base member explicitly, even if it is hidden in the derived class. Aderived class can itself serve as a base class subject to access control; see 11.8.3. A pointer to a derived class can be implicitlyconverted to a pointer to an accessible unambiguous base class (7.3.12). An lvalue of a derived class type can be bound to a referenceto an accessible unambiguous base class (9.4.4). —end note]

3 The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived class type.
[Example 1:
struct Base {

int a, b, c;
};

struct Derived : Base {
int b;

};

struct Derived2 : Derived {
int c;

};

Here, an object of class Derived2 will have a subobject of class Derived which in turn will have a subobject of class Base. —endexample]
4 A base-specifier followed by an ellipsis is a pack expansion (13.7.4).
5 The order in which the base class subobjects are allocated in the most derived object (6.7.2) is unspecified.
[Note 3: A derived class and its base class subobjects can be represented by a directed acyclic graph (DAG) where an arrow means“directly derived from” (see Figure 3). An arrow need not have a physical representation in memory. A DAG of subobjects is oftenreferred to as a “subobject lattice”. —end note]

Base

Derived1

Derived2

Figure 3: Directed acyclic graph [fig:class.dag]
6 [Note 4: Initialization of objects representing base classes can be specified in constructors; see 11.9.3. —end note]

§ 11.7.1 281

© ISO/IEC N4910

7 [Note 5: A base class subobject can have a layout different from the layout of a most derived object of the same type. A base classsubobject can have a polymorphic behavior (11.9.5) different from the polymorphic behavior of a most derived object of the sametype. A base class subobject can be of zero size; however, two subobjects that have the same class type and that belong to the samemost derived object cannot be allocated at the same address (6.7.2). —end note]
11.7.2 Multiple base classes [class.mi]

1 A class can be derived from any number of base classes.
[Note 1: The use of more than one direct base class is often called multiple inheritance. —end note]
[Example 1:
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

—end example]
2 [Note 2: The order of derivation is not significant except as specified by the semantics of initialization by constructor (11.9.3),cleanup (11.4.7), and storage layout (11.4, 11.8.2). —end note]
3 A class shall not be specified as a direct base class of a derived class more than once.
[Note 3: A class can be an indirect base class more than once and can be a direct and an indirect base class. There are limited thingsthat can be done with such a class; lookup that finds its non-static data members and member functions in the scope of the derivedclass will be ambiguous. However, the static members, enumerations and types can be unambiguously referred to. —end note]
[Example 2:
class X { /* ... */ };
class Y : public X, public X { /* ... */ }; // error
class L { public: int next; /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { void f(); /* ... */ }; // well-formed
class D : public A, public L { void f(); /* ... */ }; // well-formed
—end example]

4 A base class specifier that does not contain the keyword virtual specifies a non-virtual base class. A base classspecifier that contains the keyword virtual specifies a virtual base class. For each distinct occurrence of a non-virtualbase class in the class lattice of the most derived class, the most derived object (6.7.2) shall contain a correspondingdistinct base class subobject of that type. For each distinct base class that is specified virtual, the most derived objectshall contain a single base class subobject of that type.
5 [Note 4: For an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class lattice of C correspondsone-to-one with a distinct L subobject within the object of type C. Given the class C defined above, an object of class C will have twosubobjects of class L as shown in Figure 4.

L L

A B

C

Figure 4: Non-virtual base [fig:class.nonvirt]
In such lattices, explicit qualification can be used to specify which subobject is meant. The body of function C::f can refer to themember next of each L subobject:
void C::f() { A::next = B::next; } // well-formed

Without the A:: or B:: qualifiers, the definition of C::f above would be ill-formed because of ambiguity (6.5.2). —end note]
6 [Note 5: In contrast, consider the case with a virtual base class:

class V { /* ... */ };

§ 11.7.2 282

© ISO/IEC N4910

class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

V

A B

C

Figure 5: Virtual base [fig:class.virt]
For an object c of class type C, a single subobject of type V is shared by every base class subobject of c that has a virtual base classof type V. Given the class C defined above, an object of class C will have one subobject of class V, as shown in Figure 5. —end note]

7 [Note 6: A class can have both virtual and non-virtual base classes of a given type.
class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

For an object of class AA, all virtual occurrences of base class B in the class lattice of AA correspond to a single B subobject withinthe object of type AA, and every other occurrence of a (non-virtual) base class B in the class lattice of AA corresponds one-to-one witha distinct B subobject within the object of type AA. Given the class AA defined above, class AA has two subobjects of class B: Z’s B andthe virtual B shared by X and Y, as shown in Figure 6.

B B

AA

X Y Z

Figure 6: Virtual and non-virtual base [fig:class.virtnonvirt]
—end note]
11.7.3 Virtual functions [class.virtual]

1 A non-static member function is a virtual function if it is first declared with the keyword virtual or if it overrides avirtual member function declared in a base class (see below).100
[Note 1: Virtual functions support dynamic binding and object-oriented programming. —end note]
A class with a virtual member function is called a polymorphic class.101

2 If a virtual member function F is declared in a class B, and, in a class D derived (directly or indirectly) from B, adeclaration of a member function G corresponds (6.4.1) to a declaration of F , ignoring trailing requires-clauses, then Goverrides102 F . For convenience we say that any virtual function overrides itself. A virtual member function V of aclass object S is a final overrider unless the most derived class (6.7.2) of which S is a base class subobject (if any) hasanother member function that overrides V . In a derived class, if a virtual member function of a base class subobject hasmore than one final overrider the program is ill-formed.
[Example 1:
100) The use of the virtual specifier in the declaration of an overriding function is valid but redundant (has empty semantics).
101) If all virtual functions are immediate functions, the class is still polymorphic even if its internal representation does not otherwise require anyadditions for that polymorphic behavior.
102) A function with the same name but a different parameter list (Clause 12) as a virtual function is not necessarily virtual and does not override.Access control (11.8) is not considered in determining overriding.
§ 11.7.3 283

© ISO/IEC N4910

struct A {
virtual void f();

};
struct B : virtual A {

virtual void f();
};
struct C : B , virtual A {

using A::f;
};

void foo() {
C c;
c.f(); // calls B::f, the final overrider
c.C::f(); // calls A::f because of the using-declaration

}

—end example]
[Example 2:
struct A { virtual void f(); };
struct B : A { };
struct C : A { void f(); };
struct D : B, C { }; // OK, A::f and C::f are the final overriders// for the B and C subobjects, respectively
— end example]

3 [Note 2: A virtual member function does not have to be visible to be overridden, for example,
struct B {

virtual void f();
};
struct D : B {

void f(int);
};
struct D2 : D {

void f();
};

the function f(int) in class D hides the virtual function f() in its base class B; D::f(int) is not a virtual function. However, f()declared in class D2 has the same name and the same parameter list as B::f(), and therefore is a virtual function that overrides thefunction B::f() even though B::f() is not visible in class D2. —end note]
4 If a virtual function f in some class B is marked with the virt-specifier final and in a class D derived from B a function

D::f overrides B::f, the program is ill-formed.
[Example 3:
struct B {

virtual void f() const final;
};

struct D : B {
void f() const; // error: D::f attempts to override final B::f

};

—end example]
5 If a virtual function is marked with the virt-specifier override and does not override a member function of a base class,the program is ill-formed.
[Example 4:
struct B {

virtual void f(int);
};

struct D : B {
virtual void f(long) override; // error: wrong signature overriding B::f
virtual void f(int) override; // OK

};

§ 11.7.3 284

© ISO/IEC N4910

—end example]
6 A virtual function shall not have a trailing requires-clause (9.3).
[Example 5:
template<typename T>
struct A {

virtual void f() requires true; // error: virtual function cannot be constrained (13.5.3)
};

—end example]
7 The ref-qualifier , or lack thereof, of an overriding function shall be the same as that of the overridden function.
8 The return type of an overriding function shall be either identical to the return type of the overridden function orcovariant with the classes of the functions. If a function D::f overrides a function B::f, the return types of the functionsare covariant if they satisfy the following criteria:

—(8.1) both are pointers to classes, both are lvalue references to classes, or both are rvalue references to classes103
—(8.2) the class in the return type of B::f is the same class as the class in the return type of D::f, or is an unambiguousand accessible direct or indirect base class of the class in the return type of D::f
—(8.3) both pointers or references have the same cv-qualification and the class type in the return type of D::f has thesame cv-qualification as or less cv-qualification than the class type in the return type of B::f.

9 If the class type in the covariant return type of D::f differs from that of B::f, the class type in the return type of D::fshall be complete at the locus (6.4.2) of the overriding declaration or shall be the class type D. When the overridingfunction is called as the final overrider of the overridden function, its result is converted to the type returned by the(statically chosen) overridden function (7.6.1.3).
[Example 6:
class B { };
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
virtual B* vf5();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

class A;
struct Derived : public Base {

void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // OK, returns pointer to derived class
A* vf5(); // error: returns pointer to incomplete class
void f();

};

void g() {
Derived d;
Base* bp = &d; // standard conversion:// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::vf4() and converts the

103)Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.
§ 11.7.3 285

© ISO/IEC N4910

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::vf4() and does not// convert the result to B*
dp->vf2(); // error: argument mismatch

}

—end example]
10 [Note 3: The interpretation of the call of a virtual function depends on the type of the object for which it is called (the dynamic type),whereas the interpretation of a call of a non-virtual member function depends only on the type of the pointer or reference denotingthat object (the static type) (7.6.1.3). —end note]
11 [Note 4: The virtual specifier implies membership, so a virtual function cannot be a non-member (9.2.3) function. Nor can a virtualfunction be a static member, since a virtual function call relies on a specific object for determining which function to invoke. Avirtual function declared in one class can be declared a friend (11.8.4) in another class. —end note]
12 A virtual function declared in a class shall be defined, or declared pure (11.7.4) in that class, or both; no diagnostic isrequired (6.3).
13 [Example 7: Here are some uses of virtual functions with multiple base classes:

struct A {
virtual void f();

};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A subobjects
};

void foo() {
D d;// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // error: ambiguous

}

In class D above there are two occurrences of class A and hence two occurrences of the virtual member function A::f. The finaloverrider of B1::A::f is B1::f and the final overrider of B2::A::f is B2::f. —end example]
14 [Example 8: The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // error
};

§ 11.7.3 286

© ISO/IEC N4910

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f and VB2::f override A::f but there is no overrider of both of them in class Error. This example is therefore ill-formed.Class Okay is well-formed, however, because Okay::f is a final overrider. —end example]
15 [Example 9: The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

void foe() {
VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2::f

}

—end example]
16 Explicit qualification with the scope operator (7.5.4.3) suppresses the virtual call mechanism.
[Example 10:
class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call in D::f really does call B::f and not D::f. —end example]
17 A deleted function (9.5) shall not override a function that is not deleted. Likewise, a function that is not deleted shallnot override a deleted function.
18 A consteval virtual function shall not override a virtual function that is not consteval. A consteval virtual functionshall not be overridden by a virtual function that is not consteval.
11.7.4 Abstract classes [class.abstract]

1 [Note 1: The abstract class mechanism supports the notion of a general concept, such as a shape, of which only more concretevariants, such as circle and square, can actually be used. An abstract class can also be used to define an interface for which derivedclasses provide a variety of implementations. —end note]
2 A virtual function is specified as a pure virtual function by using a pure-specifier (11.4) in the function declaration inthe class definition.
[Note 2: Such a function might be inherited: see below. —end note]
A class is an abstract class if it has at least one pure virtual function.
[Note 3: An abstract class can be used only as a base class of some other class; no objects of an abstract class can be created exceptas subobjects of a class derived from it (6.2, 11.4). —end note]
A pure virtual function need be defined only if called with, or as if with (11.4.7), the qualified-id syntax (7.5.4.3).
[Example 1:
class point { /* ... */ };
class shape { // abstract class

point center;
public:

point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual

};

—end example]
[Note 4: A function declaration cannot provide both a pure-specifier and a definition. —end note]
[Example 2:

§ 11.7.4 287

© ISO/IEC N4910

struct C {
virtual void f() = 0 { }; // error

};

—end example]
3 [Note 5: An abstract class type cannot be used as a parameter or return type of a function being defined (9.3.4.6) or called (7.6.1.3),except as specified in 9.2.9.3. Further, an abstract class type cannot be used as the type of an explicit type conversion (7.6.1.9,7.6.1.10, 7.6.1.11), because the resulting prvalue would be of abstract class type (7.2.1). However, pointers and references to abstractclass types can appear in such contexts. —end note]
4 A class is abstract if it has at least one pure virtual function for which the final overrider is pure virtual.
[Example 3:
class ab_circle : public shape {

int radius;
public:

void rotate(int) { }// ab_circle::draw() is a pure virtual
};

Since shape::draw() is a pure virtual function ab_circle::draw() is a pure virtual by default. The alternative declaration,
class circle : public shape {

int radius;
public:

void rotate(int) { }
void draw(); // a definition is required somewhere

};

would make class circle non-abstract and a definition of circle::draw() must be provided. —end example]
5 [Note 6: An abstract class can be derived from a class that is not abstract, and a pure virtual function can override a virtual functionwhich is not pure. —end note]
6 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making a virtualcall (11.7.3) to a pure virtual function directly or indirectly for the object being created (or destroyed) from such aconstructor (or destructor) is undefined.
11.8 Member access control [class.access]
11.8.1 General [class.access.general]

1 A member of a class can be
—(1.1) private, that is, it can be named only by members and friends of the class in which it is declared;
—(1.2) protected, that is, it can be named only by members and friends of the class in which it is declared, by classesderived from that class, and by their friends (see 11.8.5); or
—(1.3) public, that is, it can be named anywhere without access restriction.

[Note 1: A constructor or destructor can be named by an expression (6.3) even though it has no name. —end note]
2 A member of a class can also access all the members to which the class has access. A local class of a member functionmay access the same members that the member function itself may access.104
3 Members of a class defined with the keyword class are private by default. Members of a class defined with thekeywords struct or union are public by default.
[Example 1:
class X {

int a; // X::a is private by default
};

struct S {
int a; // S::a is public by default

};

—end example]
4 Access control is applied uniformly to declarations and expressions.

104) Access permissions are thus transitive and cumulative to nested and local classes.
§ 11.8.1 288

© ISO/IEC N4910

[Note 2: Access control applies to members nominated by friend declarations (11.8.4) and using-declarations (9.9). —end note]
When a using-declarator is named, access control is applied to it, not to the declarations that replace it. For an overloadset, access control is applied only to the function selected by overload resolution.
[Note 3: Because access control applies to the declarations named, if access control is applied to a typedef-name, only the accessibilityof the typedef or alias declaration itself is considered. The accessibility of the entity referred to by the typedef-name is not considered.For example,
class A {

class B { };
public:

typedef B BB;
};

void f() {
A::BB x; // OK, typedef A::BB is public
A::B y; // access error, A::B is private

}

—end note]
5 [Note 4: Access control does not prevent members from being found by name lookup or implicit conversions to base classes frombeing considered. —end note]
The interpretation of a given construct is established without regard to access control. If the interpretation establishedmakes use of inaccessible members or base classes, the construct is ill-formed.

6 All access controls in 11.8 affect the ability to name a class member from the declaration of a particular entity, includingparts of the declaration preceding the name of the entity being declared and, if the entity is a class, the definitions ofmembers of the class appearing outside the class’s member-specification.
[Note 5: This access also applies to implicit references to constructors, conversion functions, and destructors. —end note]

7 [Example 2:
class A {

typedef int I; // private member
I f();
friend I g(I);
static I x;
template<int> struct Q;
template<int> friend struct R;

protected:
struct B { };

};

A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;
template<A::I> struct A::Q { };
template<A::I> struct R { };

struct D: A::B, A { };

Here, all the uses of A::I are well-formed because A::f, A::x, and A::Q are members of class A and g and R are friends of class A.This implies, for example, that access checking on the first use of A::I must be deferred until it is determined that this use of A::I isas the return type of a member of class A. Similarly, the use of A::B as a base-specifier is well-formed because D is derived from A,so checking of base-specifiers must be deferred until the entire base-specifier-list has been seen. —end example]
8 Access is checked for a default argument (9.3.4.7) at the point of declaration, rather than at any points of use of thedefault argument. Access checking for default arguments in function templates and in member functions of classtemplates is performed as described in 13.9.2.
9 Access for a default template-argument (13.2) is checked in the context in which it appears rather than at any points ofuse of it.
[Example 3:
class B { };

§ 11.8.1 289

© ISO/IEC N4910

template <class T> class C {
protected:

typedef T TT;
};

template <class U, class V = typename U::TT>
class D : public U { };

D <C >* d; // access error, C::TT is protected
— end example]
11.8.2 Access specifiers [class.access.spec]

1 Member declarations can be labeled by an access-specifier (11.7):
access-specifier : member-specificationopt

An access-specifier specifies the access rules for members following it until the end of the class or until another
access-specifier is encountered.
[Example 1:
class X {

int a; // X::a is private by default: class used
public:

int b; // X::b is public
int c; // X::c is public

};

—end example]
2 Any number of access specifiers is allowed and no particular order is required.
[Example 2:
struct S {

int a; // S::a is public by default: struct used
protected:

int b; // S::b is protected
private:

int c; // S::c is private
public:

int d; // S::d is public
};

—end example]
3 [Note 1: The effect of access control on the order of allocation of data members is specified in 7.6.9. —end note]
4 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the same as atits initial declaration.
[Example 3:
struct S {

class A;
enum E : int;

private:
class A { }; // error: cannot change access
enum E: int { e0 }; // error: cannot change access

};

—end example]
5 [Note 2: In a derived class, the lookup of a base class name will find the injected-class-name instead of the name of the base class inthe scope in which it was declared. The injected-class-name might be less accessible than the name of the base class in the scope inwhich it was declared. —end note]
[Example 4:
class A { };
class B : private A { };

§ 11.8.2 290

© ISO/IEC N4910

class C : public B {
A* p; // error: injected-class-name A is inaccessible
::A* q; // OK

};

—end example]
11.8.3 Accessibility of base classes and base class members [class.access.base]

1 If a class is declared to be a base class (11.7) for another class using the public access specifier, the public membersof the base class are accessible as public members of the derived class and protected members of the base class areaccessible as protected members of the derived class. If a class is declared to be a base class for another class using the
protected access specifier, the public and protected members of the base class are accessible as protected members ofthe derived class. If a class is declared to be a base class for another class using the private access specifier, the publicand protected members of the base class are accessible as private members of the derived class.105

2 In the absence of an access-specifier for a base class, public is assumed when the derived class is defined with the
class-key struct and private is assumed when the class is defined with the class-key class.
[Example 1:
class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // B private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // B public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7 and D8. —end example]
3 [Note 1: A member of a private base class can be inaccessible as inherited, but accessible directly. Because of the rules on pointerconversions (7.3.12) and explicit casts (7.6.1.4, 7.6.1.9, 7.6.3), a conversion from a pointer to a derived class to a pointer to aninaccessible base class can be ill-formed if an implicit conversion is used, but well-formed if an explicit cast is used. For example,

class B {
public:

int mi; // non-static member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
::B b;
b.mi = 3; // OK (b.mi is different from this->mi)
b.si = 3; // OK (b.si is different from this->si)
::B::si = 3; // OK
::B* bp1 = this; // error: B is a private base class
::B* bp2 = (::B*)this; // OK with cast
bp2->mi = 3; // OK, access through a pointer to B.

}

—end note]
4 A base class B of N is accessible at R, if

—(4.1) an invented public member of B would be a public member of N, or

105) As specified previously in 11.8, private members of a base class remain inaccessible even to derived classes unless friend declarations withinthe base class definition are used to grant access explicitly.
§ 11.8.3 291

© ISO/IEC N4910

—(4.2) R occurs in a direct member or friend of class N, and an invented public member of B would be a private orprotected member of N, or
—(4.3) R occurs in a direct member or friend of a class P derived from N, and an invented public member of B would be aprivate or protected member of P, or
—(4.4) there exists a class S such that B is a base class of S accessible at R and S is a base class of N accessible at R.

[Example 2:
class B {
public:

int m;
};

class S: private B {
friend class N;

};

class N: private S {
void f() {
B* p = this; // OK because class S satisfies the fourth condition above: B is a base class of N// accessible in f() because B is an accessible base class of S and S is an accessible// base class of N.

}
};

—end example]
5 If a base class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class (7.3.12,7.3.13).
[Note 2: It follows that members and friends of a class X can implicitly convert an X* to a pointer to a private or protected immediatebase class of X. —end note]
The access to a member is affected by the class in which the member is named. This naming class is the class in whosescope name lookup performed a search that found the member.
[Note 3: This class can be explicit, e.g., when a qualified-id is used, or implicit, e.g., when a class member access operator (7.6.1.5)is used (including cases where an implicit “this->” is added). If both a class member access operator and a qualified-id are used toname the member (as in p->T::m), the class naming the member is the class denoted by the nested-name-specifier of the qualified-id(that is, T). —end note]
A member m is accessible at the point R when named in class N if
—(5.1) m as a member of N is public, or
—(5.2) m as a member of N is private, and R occurs in a direct member or friend of class N, or
—(5.3) m as a member of N is protected, and R occurs in a direct member or friend of class N, or in a member of a class Pderived from N, where m as a member of P is public, private, or protected, or
—(5.4) there exists a base class B of N that is accessible at R, and m is accessible at R when named in class B.

[Example 3:
class B;
class A {
private:
int i;
friend void f(B*);

};
class B : public A { };
void f(B* p) {
p->i = 1; // OK, B* can be implicitly converted to A*, and f has access to i in A

}

—end example]
6 If a class member access operator, including an implicit “this->”, is used to access a non-static data member ornon-static member function, the reference is ill-formed if the left operand (considered as a pointer in the “.” operatorcase) cannot be implicitly converted to a pointer to the naming class of the right operand.

§ 11.8.3 292

© ISO/IEC N4910

[Note 4: This requirement is in addition to the requirement that the member be accessible as named. —end note]
11.8.4 Friends [class.friend]

1 A friend of a class is a function or class that is given permission to name the private and protected members of the class.A class specifies its friends, if any, by way of friend declarations. Such declarations give special access rights to thefriends, but they do not make the nominated friends members of the befriending class.
[Example 1: The following example illustrates the differences between members and friends:
class X {

int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f() {
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

—end example]
2 Declaring a class to be a friend implies that private and protected members of the class granting friendship can benamed in the base-specifiers and member declarations of the befriended class.
[Example 2:
class A {

class B { };
friend class X;

};

struct X : A::B { // OK, A::B accessible to friend
A::B mx; // OK, A::B accessible to member of friend
class Y {

A::B my; // OK, A::B accessible to nested member of friend
};

};

—end example]
[Example 3:
class X {

enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // OK, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

—end example]
3 A friend declaration that does not declare a function shall have one of the following forms:

friend elaborated-type-specifier ;
friend simple-type-specifier ;
friend typename-specifier ;

[Note 1: A friend declaration can be the declaration in a template-declaration (13.1, 13.7.5). —end note]

§ 11.8.4 293

© ISO/IEC N4910

If the type specifier in a friend declaration designates a (possibly cv-qualified) class type, that class is declared as afriend; otherwise, the friend declaration is ignored.
[Example 4:
class C;
typedef C Ct;

class X1 {
friend C; // OK, class C is a friend

};

class X2 {
friend Ct; // OK, class C is a friend
friend D; // error: D not found
friend class D; // OK, elaborated-type-specifier declares new class

};

template <typename T> class R {
friend T;

};

R<C> rc; // class C is a friend of R<C>
R<int> Ri; // OK, "friend int;" is ignored
—end example]

4 A function first declared in a friend declaration has the linkage of the namespace of which it is a member (6.6). Otherwise,the function retains its previous linkage (9.2.2).
5 [Note 2: A friend declaration refers to an entity, not (all overloads of) a name. A member function of a class X can be a friend of aclass Y.
[Example 5:
class Y {

friend char* X::foo(int);
friend X::X(char); // constructors can be friends
friend X::~X(); // destructors can be friends

};

—end example]
—end note]

6 A function may be defined in a friend declaration of a class if and only if the class is a non-local class (11.6) and thefunction name is unqualified.
[Example 6:
class M {

friend void f() { } // definition of global f, a friend of M,// not the definition of a member function
};

—end example]
7 Such a function is implicitly an inline (9.2.8) function if it is attached to the global module.
[Note 3: If a friend function is defined outside a class, it is not in the scope of the class. —end note]

8 No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.
9 A member nominated by a friend declaration shall be accessible in the class containing the friend declaration. Themeaning of the friend declaration is the same whether the friend declaration appears in the private, protected, orpublic (11.4) portion of the class member-specification.
10 Friendship is neither inherited nor transitive.
[Example 7:
class A {

friend class B;

§ 11.8.4 294

© ISO/IEC N4910

int a;
};

class B {
friend class C;

};

class C {
void f(A* p) {
p->a++; // error: C is not a friend of A despite being a friend of a friend

}
};

class D : public B {
void f(A* p) {
p->a++; // error: D is not a friend of A despite being derived from a friend

}
};

—end example]
11 [Note 4: A friend declaration never binds any names (9.3.4, 9.2.9.4). —end note]
[Example 8:
// Assume f and g have not yet been declared.
void h(int);
template <class T> void f2(T);
namespace A {

class X {
friend void f(X); // A::f(X) is a friend
class Y {
friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend// ::h not considered
friend void f2<>(int); // ::f2<>(int) is a friend

};
};

// A::f, A::g and A::h are not visible here
X x;
void g() { f(x); } // definition of A::g
void f(X) { /* ... */ } // definition of A::f
void h(int) { /* ... */ } // definition of A::h// A::f, A::g and A::h are visible here and known to be friends

}

using A::x;

void h() {
A::f(x);
A::X::f(x); // error: f is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y

}

—end example]
[Example 9:
class X;
void a();
void f() {

class Y;
extern void b();
class A {
friend class X; // OK, but X is a local class, not ::X
friend class Y; // OK
friend class Z; // OK, introduces local class Z

§ 11.8.4 295

© ISO/IEC N4910

friend void a(); // error, ::a is not considered
friend void b(); // OK
friend void c(); // error
};
X* px; // OK, but ::X is found
Z* pz; // error: no Z is found

}

—end example]
11.8.5 Protected member access [class.protected]

1 An additional access check beyond those described earlier in 11.8 is applied when a non-static data member or non-staticmember function is a protected member of its naming class (11.8.3).106 As described earlier, access to a protectedmember is granted because the reference occurs in a friend or direct member of some class C. If the access is to form apointer to member (7.6.2.2), the nested-name-specifier shall denote C or a class derived from C. All other accessesinvolve a (possibly implicit) object expression (7.6.1.5). In this case, the class of the object expression shall be C or aclass derived from C.
[Example 1:
class B {
protected:

int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2) {
pb->i = 1; // error
p1->i = 2; // error
p2->i = 3; // OK (access through a D2)
p2->B::i = 4; // OK (access through a D2, even though naming class is B)
int B::* pmi_B = &B::i; // error
int B::* pmi_B2 = &D2::i; // OK (type of &D2::i is int B::*)
B::j = 5; // error: not a friend of naming class B
D2::j = 6; // OK (because refers to static member)

}

void D2::mem(B* pb, D1* p1) {
pb->i = 1; // error
p1->i = 2; // error
i = 3; // OK (access through this)
B::i = 4; // OK (access through this, qualification ignored)
int B::* pmi_B = &B::i; // error
int B::* pmi_B2 = &D2::i; // OK
j = 5; // OK (because j refers to static member)
B::j = 6; // OK (because B::j refers to static member)

}

void g(B* pb, D1* p1, D2* p2) {
pb->i = 1; // error
p1->i = 2; // error
p2->i = 3; // error

}

—end example]

106) This additional check does not apply to other members, e.g., static data members or enumerator member constants.
§ 11.8.5 296

© ISO/IEC N4910

11.8.6 Access to virtual functions [class.access.virt]
1 The access rules (11.8) for a virtual function are determined by its declaration and are not affected by the rules for afunction that later overrides it.
[Example 1:
class B {
public:

virtual int f();
};

class D : public B {
private:

int f();
};

void f() {
D d;
B* pb = &d;
D* pd = &d;

pb->f(); // OK, B::f() is public, D::f() is invoked
pd->f(); // error: D::f() is private

}

—end example]
2 Access is checked at the call point using the type of the expression used to denote the object for which the memberfunction is called (B* in the example above). The access of the member function in the class in which it was defined (Din the example above) is in general not known.
11.8.7 Multiple access [class.paths]

1 If a declaration can be reached by several paths through a multiple inheritance graph, the access is that of the path thatgives most access.
[Example 1:
class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // OK
};

Since W::f() is available to C::f() along the public path through B, access is allowed. —end example]
11.8.8 Nested classes [class.access.nest]

1 A nested class is a member and as such has the same access rights as any other member. The members of an enclosingclass have no special access to members of a nested class; the usual access rules (11.8) shall be obeyed.
[Example 1:
class E {

int x;
class B { };

class I {
B b; // OK, E::I can access E::B
int y;
void f(E* p, int i) {

p->x = i; // OK, E::I can access E::x
}

};

int g(I* p) {
return p->y; // error: I::y is private

§ 11.8.8 297

© ISO/IEC N4910

}
};

—end example]
11.9 Initialization [class.init]
11.9.1 General [class.init.general]

1 When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the initializer hasthe form (), the object is initialized as specified in 9.4.
2 An object of class type (or array thereof) can be explicitly initialized; see 11.9.2 and 11.9.3.
3 When an array of class objects is initialized (either explicitly or implicitly) and the elements are initialized by constructor,the constructor shall be called for each element of the array, following the subscript order; see 9.3.4.5.
[Note 1: Destructors for the array elements are called in reverse order of their construction. —end note]
11.9.2 Explicit initialization [class.expl.init]

1 An object of class type can be initialized with a parenthesized expression-list, where the expression-list is construed asan argument list for a constructor that is called to initialize the object. Alternatively, a single assignment-expression canbe specified as an initializer using the = form of initialization. Either direct-initialization semantics or copy-initializationsemantics apply; see 9.4.
[Example 1:
struct complex {

complex();
complex(double);
complex(double,double);

};

complex sqrt(complex,complex);

complex a(1); // initialized by calling complex(double) with argument 1
complex b = a; // initialized as a copy of a
complex c = complex(1,2); // initialized by calling complex(double,double) with arguments 1 and 2
complex d = sqrt(b,c); // initialized by calling sqrt(complex,complex) with d as its result object
complex e; // initialized by calling complex()
complex f = 3; // initialized by calling complex(double) with argument 3
complex g = { 1, 2 }; // initialized by calling complex(double, double) with arguments 1 and 2
—end example]
[Note 1: Overloading of the assignment operator (12.4.3.2) has no effect on initialization. —end note]

2 An object of class type can also be initialized by a braced-init-list. List-initialization semantics apply; see 9.4 and 9.4.5.
[Example 2:
complex v[6] = { 1, complex(1,2), complex(), 2 };

Here, complex::complex(double) is called for the initialization of v[0] and v[3], complex::complex(double, double) is calledfor the initialization of v[1], complex::complex() is called for the initialization v[2], v[4], and v[5]. For another example,
struct X {

int i;
float f;
complex c;

} x = { 99, 88.8, 77.7 };

Here, x.i is initialized with 99, x.f is initialized with 88.8, and complex::complex(double) is called for the initialization of x.c.—end example]
[Note 2: Braces can be elided in the initializer-list for any aggregate, even if the aggregate has members of a class type withuser-defined type conversions; see 9.4.2. —end note]

3 [Note 3: If T is a class type with no default constructor, any declaration of an object of type T (or array thereof) is ill-formed if no
initializer is explicitly specified (see 11.9 and 9.4). —end note]

4 [Note 4: The order in which objects with static or thread storage duration are initialized is described in 6.9.3.3 and 8.8. —end note]

§ 11.9.2 298

© ISO/IEC N4910

11.9.3 Initializing bases and members [class.base.init]
1 In the definition of a constructor for a class, initializers for direct and virtual base class subobjects and non-static datamembers can be specified by a ctor-initializer , which has the form

ctor-initializer :
: mem-initializer-list

mem-initializer-list :
mem-initializer ...opt
mem-initializer-list , mem-initializer ...opt

mem-initializer :
mem-initializer-id (expression-listopt)
mem-initializer-id braced-init-list

mem-initializer-id :
class-or-decltype
identifier

2 Lookup for an unqualified name in a mem-initializer-id ignores the constructor’s function parameter scope.
[Note 1: If the constructor’s class contains a member with the same name as a direct or virtual base class of the class, a mem-
initializer-id naming the member or base class and composed of a single identifier refers to the class member. A mem-initializer-idfor the hidden base class can be specified using a qualified name. —end note]
Unless the mem-initializer-id names the constructor’s class, a non-static data member of the constructor’s class, or adirect or virtual base of that class, the mem-initializer is ill-formed.

3 A mem-initializer-list can initialize a base class using any class-or-decltype that denotes that base class type.
[Example 1:
struct A { A(); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for base A
—end example]

4 If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base class and an indirect virtualbase class, the mem-initializer is ill-formed.
[Example 2:
struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // error: which A?
—end example]

5 A ctor-initializer may initialize a variant member of the constructor’s class. If a ctor-initializer specifies more than one
mem-initializer for the same member or for the same base class, the ctor-initializer is ill-formed.

6 A mem-initializer-list can delegate to another constructor of the constructor’s class using any class-or-decltype thatdenotes the constructor’s class itself. If a mem-initializer-id designates the constructor’s class, it shall be the only
mem-initializer ; the constructor is a delegating constructor, and the constructor selected by the mem-initializer is thetarget constructor. The target constructor is selected by overload resolution. Once the target constructor returns, thebody of the delegating constructor is executed. If a constructor delegates to itself directly or indirectly, the program isill-formed, no diagnostic required.
[Example 3:
struct C {

C(int) { } // #1: non-delegating constructor
C(): C(42) { } // #2: delegates to #1
C(char c) : C(42.0) { } // #3: ill-formed due to recursion with #4
C(double d) : C('a') { } // #4: ill-formed due to recursion with #3

};

—end example]

§ 11.9.3 299

© ISO/IEC N4910

7 The expression-list or braced-init-list in a mem-initializer is used to initialize the designated subobject (or, in the caseof a delegating constructor, the complete class object) according to the initialization rules of 9.4 for direct-initialization.
[Example 4:
struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };
struct D : B1, B2 {

D(int);
B1 b;
const int c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4) { /* ... */ }
D d(10);

—end example]
[Note 2: The initialization performed by each mem-initializer constitutes a full-expression (6.9.1). Any expression in a mem-
initializer is evaluated as part of the full-expression that performs the initialization. —end note]
A mem-initializer where the mem-initializer-id denotes a virtual base class is ignored during execution of a constructorof any class that is not the most derived class.

8 A temporary expression bound to a reference member in a mem-initializer is ill-formed.
[Example 5:
struct A {

A() : v(42) { } // error
const int& v;

};

—end example]
9 In a non-delegating constructor other than an implicitly-defined copy/move constructor (11.4.5.3), if a given potentiallyconstructed subobject is not designated by amem-initializer-id (including the case where there is nomem-initializer-listbecause the constructor has no ctor-initializer), then

—(9.1) if the entity is a non-static data member that has a default member initializer (11.4) and either
—(9.1.1) the constructor’s class is a union (11.5), and no other variant member of that union is designated by a

mem-initializer-id or
—(9.1.2) the constructor’s class is not a union, and, if the entity is a member of an anonymous union, no other memberof that union is designated by a mem-initializer-id ,
the entity is initialized from its default member initializer as specified in 9.4;

—(9.2) otherwise, if the entity is an anonymous union or a variant member (11.5.2), no initialization is performed;
—(9.3) otherwise, the entity is default-initialized (9.4).

[Note 3: An abstract class (11.7.4) is never a most derived class, thus its constructors never initialize virtual base classes, thereforethe corresponding mem-initializers can be omitted. —end note]
An attempt to initialize more than one non-static data member of a union renders the program ill-formed.
[Note 4: After the call to a constructor for class X for an object with automatic or dynamic storage duration has completed, if theconstructor was not invoked as part of value-initialization and a member of X is neither initialized nor given a value during executionof the compound-statement of the body of the constructor, the member has an indeterminate value. —end note]
[Example 6:
struct A {

A();
};

struct B {
B(int);

};

struct C {
C() { } // initializes members as follows:
A a; // OK, calls A::A()

§ 11.9.3 300

© ISO/IEC N4910

const B b; // error: B has no default constructor
int i; // OK, i has indeterminate value
int j = 5; // OK, j has the value 5

};

—end example]
10 If a given non-static data member has both a default member initializer and amem-initializer , the initialization specifiedby the mem-initializer is performed, and the non-static data member’s default member initializer is ignored.
[Example 7: Given
struct A {

int i = /* some integer expression with side effects */ ;
A(int arg) : i(arg) { }// ...

};

the A(int) constructor will simply initialize i to the value of arg, and the side effects in i’s default member initializer will not takeplace. —end example]
11 A temporary expression bound to a reference member from a default member initializer is ill-formed.
[Example 8:
struct A {

A() = default; // OK
A(int v) : v(v) { } // OK
const int& v = 42; // OK

};
A a1; // error: ill-formed binding of temporary to reference
A a2(1); // OK, unfortunately
— end example]

12 In a non-delegating constructor, the destructor for each potentially constructed subobject of class type is potentiallyinvoked (11.4.7).
[Note 5: This provision ensures that destructors can be called for fully-constructed subobjects in case an exception is thrown (14.3).—end note]

13 In a non-delegating constructor, initialization proceeds in the following order:
—(13.1) First, and only for the constructor of the most derived class (6.7.2), virtual base classes are initialized in the orderthey appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes, where “left-to-right”is the order of appearance of the base classes in the derived class base-specifier-list.
—(13.2) Then, direct base classes are initialized in declaration order as they appear in the base-specifier-list (regardless ofthe order of the mem-initializers).
—(13.3) Then, non-static data members are initialized in the order they were declared in the class definition (againregardless of the order of the mem-initializers).
—(13.4) Finally, the compound-statement of the constructor body is executed.

[Note 6: The declaration order is mandated to ensure that base and member subobjects are destroyed in the reverse order ofinitialization. —end note]
14 [Example 9:

struct V {
V();
V(int);

};

struct A : virtual V {
A();
A(int);

};

struct B : virtual V {
B();
B(int);

};

§ 11.9.3 301

© ISO/IEC N4910

struct C : A, B, virtual V {
C();
C(int);

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()
—end example]

15 [Note 7: The expression-list or braced-init-list of amem-initializer is in the function parameter scope of the constructor and can use
this to refer to the object being initialized. —end note]
[Example 10:
class X {

int a;
int b;
int i;
int j;

public:
const int& r;
X(int i): r(a), b(i), i(i), j(this->i) { }

};

initializes X::r to refer to X::a, initializes X::b with the value of the constructor parameter i, initializes X::i with the value of theconstructor parameter i, and initializes X::j with the value of X::i; this takes place each time an object of class X is created. —endexample]
16 Member functions (including virtual member functions, 11.7.3) can be called for an object under construction. Similarly,an object under construction can be the operand of the typeid operator (7.6.1.8) or of a dynamic_cast (7.6.1.7).However, if these operations are performed in a ctor-initializer (or in a function called directly or indirectly from a

ctor-initializer) before all the mem-initializers for base classes have completed, the program has undefined behavior.
[Example 11:
class A {
public:

A(int);
};

class B : public A {
int j;

public:
int f();
B() : A(f()), // undefined behavior: calls member function but base A not yet initialized
j(f()) { } // well-defined: bases are all initialized

};

class C {
public:

C(int);
};

class D : public B, C {
int i;

public:
D() : C(f()), // undefined behavior: calls member function but base C not yet initialized
i(f()) { } // well-defined: bases are all initialized

};

—end example]

§ 11.9.3 302

© ISO/IEC N4910

17 [Note 8: 11.9.5 describes the result of virtual function calls, typeid and dynamic_casts during construction for the well-definedcases; that is, describes the polymorphic behavior of an object under construction. —end note]
18 A mem-initializer followed by an ellipsis is a pack expansion (13.7.4) that initializes the base classes specified by apack expansion in the base-specifier-list for the class.
[Example 12:
template<class... Mixins>
class X : public Mixins... {
public:

X(const Mixins&... mixins) : Mixins(mixins)... { }
};

—end example]
11.9.4 Initialization by inherited constructor [class.inhctor.init]

1 When a constructor for type B is invoked to initialize an object of a different type D (that is, when the constructor wasinherited (9.9)), initialization proceeds as if a defaulted default constructor were used to initialize the D object and eachbase class subobject from which the constructor was inherited, except that the B subobject is initialized by the invocationof the inherited constructor. The complete initialization is considered to be a single function call; in particular, theinitialization of the inherited constructor’s parameters is sequenced before the initialization of any part of the D object.
[Example 1:
struct B1 {

B1(int, ...) { }
};

struct B2 {
B2(double) { }

};

int get();

struct D1 : B1 {
using B1::B1; // inherits B1(int, ...)
int x;
int y = get();

};

void test() {
D1 d(2, 3, 4); // OK, B1 is initialized by calling B1(2, 3, 4),// then d.x is default-initialized (no initialization is performed),// then d.y is initialized by calling get()
D1 e; // error: D1 has a deleted default constructor

}

struct D2 : B2 {
using B2::B2;
B1 b;

};

D2 f(1.0); // error: B1 has a deleted default constructor
struct W { W(int); };
struct X : virtual W { using W::W; X() = delete; };
struct Y : X { using X::X; };
struct Z : Y, virtual W { using Y::Y; };
Z z(0); // OK, initialization of Y does not invoke default constructor of X
template<class T> struct Log : T {

using T::T; // inherits all constructors from class T
~Log() { std::clog << "Destroying wrapper" << std::endl; }

};

§ 11.9.4 303

© ISO/IEC N4910

Class template Log wraps any class and forwards all of its constructors, while writing a message to the standard log whenever anobject of class Log is destroyed. —end example]
2 If the constructor was inherited from multiple base class subobjects of type B, the program is ill-formed.
[Example 2:
struct A { A(int); };
struct B : A { using A::A; };

struct C1 : B { using B::B; };
struct C2 : B { using B::B; };

struct D1 : C1, C2 {
using C1::C1;
using C2::C2;

};

struct V1 : virtual B { using B::B; };
struct V2 : virtual B { using B::B; };

struct D2 : V1, V2 {
using V1::V1;
using V2::V2;

};

D1 d1(0); // error: ambiguous
D2 d2(0); // OK, initializes virtual B base class, which initializes the A base class// then initializes the V1 and V2 base classes as if by a defaulted default constructor
struct M { M(); M(int); };
struct N : M { using M::M; };
struct O : M {};
struct P : N, O { using N::N; using O::O; };
P p(0); // OK, use M(0) to initialize N’s base class,// use M() to initialize O’s base class
— end example]

3 When an object is initialized by an inherited constructor, initialization of the object is complete when the initializationof all subobjects is complete.
11.9.5 Construction and destruction [class.cdtor]

1 For an object with a non-trivial constructor, referring to any non-static member or base class of the object before theconstructor begins execution results in undefined behavior. For an object with a non-trivial destructor, referring to anynon-static member or base class of the object after the destructor finishes execution results in undefined behavior.
[Example 1:
struct X { int i; };
struct Y : X { Y(); }; // non-trivial
struct A { int a; };
struct B : public A { int j; Y y; }; // non-trivial
extern B bobj;
B* pb = &bobj; // OK
int* p1 = &bobj.a; // undefined behavior: refers to base class member
int* p2 = &bobj.y.i; // undefined behavior: refers to member’s member
A* pa = &bobj; // undefined behavior: upcast to a base class type
B bobj; // definition of bobj
extern X xobj;
int* p3 = &xobj.i; // OK, X is a trivial class
X xobj;

For another example,

§ 11.9.5 304

© ISO/IEC N4910

struct W { int j; };
struct X : public virtual W { };
struct Y {

int* p;
X x;
Y() : p(&x.j) { // undefined, x is not yet constructed
}

};

—end example]
2 During the construction of an object, if the value of the object or any of its subobjects is accessed through a glvaluethat is not obtained, directly or indirectly, from the constructor’s this pointer, the value of the object or subobject thusobtained is unspecified.
[Example 2:
struct C;
void no_opt(C*);

struct C {
int c;
C() : c(0) { no_opt(this); }

};

const C cobj;

void no_opt(C* cptr) {
int i = cobj.c * 100; // value of cobj.c is unspecified
cptr->c = 1;
cout << cobj.c * 100 // value of cobj.c is unspecified

<< '\n';
}

extern struct D d;
struct D {

D(int a) : a(a), b(d.a) {}
int a, b;

};
D d = D(1); // value of d.b is unspecified
—end example]

3 To explicitly or implicitly convert a pointer (a glvalue) referring to an object of class X to a pointer (reference) to a director indirect base class B of X, the construction of X and the construction of all of its direct or indirect bases that directly orindirectly derive from B shall have started and the destruction of these classes shall not have completed, otherwise theconversion results in undefined behavior. To form a pointer to (or access the value of) a direct non-static member ofan object obj, the construction of obj shall have started and its destruction shall not have completed, otherwise thecomputation of the pointer value (or accessing the member value) results in undefined behavior.
[Example 3:
struct A { };
struct B : virtual A { };
struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined behavior: upcast from E* to A* might use path E*→ D*→ A*// but D is not constructed

// “D((C*)this)” would be defined: E*→ C* is defined because E() has started,// and C*→ A* is defined because C is fully constructed
X(this) {} // defined: upon construction of X, C/B/D/A sublattice is fully constructed

};

§ 11.9.5 305

© ISO/IEC N4910

—end example]
4 Member functions, including virtual functions (11.7.3), can be called during construction or destruction (11.9.3). Whena virtual function is called directly or indirectly from a constructor or from a destructor, including during the constructionor destruction of the class’s non-static data members, and the object to which the call applies is the object (call it x)under construction or destruction, the function called is the final overrider in the constructor’s or destructor’s class andnot one overriding it in a more-derived class. If the virtual function call uses an explicit class member access (7.6.1.5)and the object expression refers to the complete object of x or one of that object’s base class subobjects but not x or oneof its base class subobjects, the behavior is undefined.
[Example 4:
struct V {

virtual void f();
virtual void g();

};

struct A : virtual V {
virtual void f();

};

struct B : virtual V {
virtual void g();
B(V*, A*);

};

struct D : A, B {
virtual void f();
virtual void g();
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
f(); // calls V::f, not A::f
g(); // calls B::g, not D::g
v->g(); // v is base of B, the call is well-defined, calls B::g
a->f(); // undefined behavior: a’s type not a base of B

}

—end example]
5 The typeid operator (7.6.1.8) can be used during construction or destruction (11.9.3). When typeid is used in aconstructor (including the mem-initializer or default member initializer (11.4) for a non-static data member) or ina destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the operand of

typeid refers to the object under construction or destruction, typeid yields the std::type_info object representing theconstructor or destructor’s class. If the operand of typeid refers to the object under construction or destruction and thestatic type of the operand is neither the constructor or destructor’s class nor one of its bases, the behavior is undefined.
6 dynamic_casts (7.6.1.7) can be used during construction or destruction (11.9.3). When a dynamic_cast is used in aconstructor (including the mem-initializer or default member initializer for a non-static data member) or in a destructor,or used in a function called (directly or indirectly) from a constructor or destructor, if the operand of the dynamic_castrefers to the object under construction or destruction, this object is considered to be a most derived object that has thetype of the constructor or destructor’s class. If the operand of the dynamic_cast refers to the object under constructionor destruction and the static type of the operand is not a pointer to or object of the constructor or destructor’s own classor one of its bases, the dynamic_cast results in undefined behavior.
[Example 5:
struct V {

virtual void f();
};

struct A : virtual V { };

struct B : virtual V {
B(V*, A*);

};

§ 11.9.5 306

© ISO/IEC N4910

struct D : A, B {
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
typeid(*this); // type_info for B
typeid(*v); // well-defined: *v has type V, a base of B yields type_info for B
typeid(*a); // undefined behavior: type A not a base of B
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B results in B*
dynamic_cast<B*>(a); // undefined behavior: a has type A*, A not a base of B

}

—end example]
11.9.6 Copy/move elision [class.copy.elision]

1 When certain criteria are met, an implementation is allowed to omit the copy/move construction of a class object, evenif the constructor selected for the copy/move operation and/or the destructor for the object have side effects. In suchcases, the implementation treats the source and target of the omitted copy/move operation as simply two different waysof referring to the same object. If the first parameter of the selected constructor is an rvalue reference to the object’stype, the destruction of that object occurs when the target would have been destroyed; otherwise, the destruction occursat the later of the times when the two objects would have been destroyed without the optimization.107 This elision ofcopy/move operations, called copy elision, is permitted in the following circumstances (which may be combined toeliminate multiple copies):
—(1.1) in a return statement in a function with a class return type, when the expression is the name of a non-volatileobject with automatic storage duration (other than a function parameter or a variable introduced by the exception-

declaration of a handler (14.4)) with the same type (ignoring cv-qualification) as the function return type, thecopy/move operation can be omitted by constructing the object directly into the function call’s return object
—(1.2) in a throw-expression (7.6.18), when the operand is the name of a non-volatile object with automatic storageduration (other than a function or catch-clause parameter) that belongs to a scope that does not contain theinnermost enclosing compound-statement associated with a try-block (if there is one), the copy/move operationcan be omitted by constructing the object directly into the exception object
—(1.3) in a coroutine (9.5.4), a copy of a coroutine parameter can be omitted and references to that copy replacedwith references to the corresponding parameter if the meaning of the program will be unchanged except for theexecution of a constructor and destructor for the parameter copy object
—(1.4) when the exception-declaration of an exception handler (14.1) declares an object of the same type (except forcv-qualification) as the exception object (14.2), the copy operation can be omitted by treating the exception-

declaration as an alias for the exception object if the meaning of the program will be unchanged except for theexecution of constructors and destructors for the object declared by the exception-declaration.
[Note 1: There cannot be a move from the exception object because it is always an lvalue. —end note]

Copy elision is not permitted where an expression is evaluated in a context requiring a constant expression (7.7) and inconstant initialization (6.9.3.2).
[Note 2: It is possible that copy elision is performed if the same expression is evaluated in another context. —end note]

2 [Example 1:
class Thing {
public:

Thing();
~Thing();
Thing(const Thing&);

};

Thing f() {
Thing t;
return t;

}

107) Because only one object is destroyed instead of two, and one copy/move constructor is not executed, there is still one object destroyed for eachone constructed.
§ 11.9.6 307

© ISO/IEC N4910

Thing t2 = f();

struct A {
void *p;
constexpr A(): p(this) {}

};

constexpr A g() {
A loc;
return loc;

}

constexpr A a; // well-formed, a.p points to a
constexpr A b = g(); // error: b.p would be dangling (7.7)
void h() {

A c = g(); // well-formed, c.p can point to c or be dangling
}

Here the criteria for elision can eliminate the copying of the object t with automatic storage duration into the result object for thefunction call f(), which is the non-local object t2. Effectively, the construction of t can be viewed as directly initializing t2, andthat object’s destruction will occur at program exit. Adding a move constructor to Thing has the same effect, but it is the moveconstruction from the object with automatic storage duration to t2 that is elided. —end example]
3 An implicitly movable entity is a variable of automatic storage duration that is either a non-volatile object or an rvaluereference to a non-volatile object type. In the following copy-initialization contexts, a move operation is first consideredbefore attempting a copy operation:

—(3.1) If the expression in a return (8.7.4) or co_return (8.7.5) statement is a (possibly parenthesized) id-expressionthat names an implicitly movable entity declared in the body or parameter-declaration-clause of the innermostenclosing function or lambda-expression, or
—(3.2) if the operand of a throw-expression (7.6.18) is a (possibly parenthesized) id-expression that names an implicitlymovable entity that belongs to a scope that does not contain the compound-statement of the innermost try-blockor function-try-block (if any) whose compound-statement or ctor-initializer contains the throw-expression,

overload resolution to select the constructor for the copy or the return_value overload to call is first performed as ifthe expression or operand were an rvalue. If the first overload resolution fails or was not performed, overload resolutionis performed again, considering the expression or operand as an lvalue.
[Note 3: This two-stage overload resolution is performed regardless of whether copy elision will occur. It determines the constructoror the return_value overload to be called if elision is not performed, and the selected constructor or return_value overload mustbe accessible even if the call is elided. —end note]

4 [Example 2:
class Thing {
public:

Thing();
~Thing();
Thing(Thing&&);

private:
Thing(const Thing&);

};

Thing f(bool b) {
Thing t;
if (b)
throw t; // OK, Thing(Thing&&) used (or elided) to throw t

return t; // OK, Thing(Thing&&) used (or elided) to return t
}

Thing t2 = f(false); // OK, no extra copy/move performed, t2 constructed by call to f
struct Weird {

Weird();

§ 11.9.6 308

© ISO/IEC N4910

Weird(Weird&);
};

Weird g() {
Weird w;
return w; // OK, first overload resolution fails, second overload resolution selects Weird(Weird&)

}

—end example]
5 [Example 3:

template<class T> void g(const T&);

template<class T> void f() {
T x;
try {
T y;
try { g(x); }
catch (...) {

if (/*...*/)
throw x; // does not move

throw y; // moves
}
g(y);

} catch(...) {
g(x);
g(y); // error: y is not in scope

}
}

—end example]
11.10 Comparisons [class.compare]
11.10.1 Defaulted comparison operator functions [class.compare.default]

1 A defaulted comparison operator function (12.4.3) for some class C shall be a non-template function that is
—(1.1) a non-static const non-volatile member of C having one parameter of type const C& and either no ref-qualifier orthe ref-qualifier &, or
—(1.2) a friend of C having either two parameters of type const C& or two parameters of type C.

A comparison operator function for class C that is defaulted on its first declaration and is not defined as deleted isimplicitly defined when it is odr-used or needed for constant evaluation. Name lookups in the defaulted definitionof a comparison operator function are performed from a context equivalent to its function-body . A definition of acomparison operator as defaulted that appears in a class shall be the first declaration of that function.
2 A defaulted <=> or == operator function for class C is defined as deleted if any non-static data member of C is of referencetype or C has variant members (11.5.2).
3 A binary operator expression a @ b is usable if either

—(3.1) a or b is of class or enumeration type and overload resolution (12.2) as applied to a @ b results in a usablecandidate, or
—(3.2) neither a nor b is of class or enumeration type and a @ b is a valid expression.

4 A defaulted comparison function is constexpr-compatible if it satisfies the requirements for a constexpr function (9.2.6)and no overload resolution performed when determining whether to delete the function results in a usable candidate thatis a non-constexpr function.
[Note 1: This includes the overload resolutions performed:
—(4.1) for an operator<=> whose return type is not auto, when determining whether a synthesized three-way comparison is defined,
—(4.2) for an operator<=> whose return type is auto or for an operator==, for a comparison between an element of the expandedlist of subobjects and itself, or
—(4.3) for a secondary comparison operator @, for the expression x @ y.

—end note]

§ 11.10.1 309

© ISO/IEC N4910

5 If the member-specification does not explicitly declare any member or friend named operator==, an == operatorfunction is declared implicitly for each three-way comparison operator function defined as defaulted in the member-
specification, with the same access and function-definition and in the same class scope as the respective three-waycomparison operator function, except that the return type is replaced with bool and the declarator-id is replaced with
operator==.
[Note 2: Such an implicitly-declared == operator for a class X is defined as defaulted in the definition of X and has the same parameter-
declaration-clause and trailing requires-clause as the respective three-way comparison operator. It is declared with friend, virtual,
constexpr, or consteval if the three-way comparison operator function is so declared. If the three-way comparison operator functionhas no noexcept-specifier , the implicitly-declared == operator function has an implicit exception specification (14.5) that can differfrom the implicit exception specification of the three-way comparison operator function. —end note]
[Example 1:
template<typename T> struct X {

friend constexpr std::partial_ordering operator<=>(X, X) requires (sizeof(T) != 1) = default;// implicitly declares: friend constexpr bool operator==(X, X) requires (sizeof(T) != 1) = default;

[[nodiscard]] virtual std::strong_ordering operator<=>(const X&) const = default;// implicitly declares: [[nodiscard]] virtual bool operator==(const X&) const = default;
};

—end example]
[Note 3: The == operator function is declared implicitly even if the defaulted three-way comparison operator function is defined asdeleted. —end note]

6 The direct base class subobjects of C, in the order of their declaration in the base-specifier-list of C, followed by thenon-static data members of C, in the order of their declaration in themember-specification of C, form a list of subobjects.In that list, any subobject of array type is recursively expanded to the sequence of its elements, in the order of increasingsubscript. Let xi be an lvalue denoting the ith element in the expanded list of subobjects for an object x (of length n),where xi is formed by a sequence of derived-to-base conversions (12.2.4.2), class member access expressions (7.6.1.5),and array subscript expressions (7.6.1.2) applied to x.
11.10.2 Equality operator [class.eq]

1 A defaulted equality operator function (12.4.3) shall have a declared return type bool.
2 A defaulted == operator function for a class C is defined as deleted unless, for each xi in the expanded list of subobjectsfor an object x of type C, xi == xi is usable (11.10.1).
3 The return value V of a defaulted == operator function with parameters x and y is determined by comparing correspondingelements xi and yi in the expanded lists of subobjects for x and y (in increasing index order) until the first index i where

xi == yi yields a result value which, when contextually converted to bool, yields false. If no such index exists, V is
true. Otherwise, V is false.

4 [Example 1:
struct D {

int i;
friend bool operator==(const D& x, const D& y) = default;// OK, returns x.i == y.i

};

—end example]
11.10.3 Three-way comparison [class.spaceship]

1 The synthesized three-way comparison of type R (17.11.2) of glvalues a and b of the same type is defined as follows:
—(1.1) If a <=> b is usable (11.10.1), static_cast<R>(a <=> b).
—(1.2) Otherwise, if overload resolution for a <=> b is performed and finds at least one viable candidate, the synthesizedthree-way comparison is not defined.
—(1.3) Otherwise, if R is not a comparison category type, or either the expression a == b or the expression a < b is notusable, the synthesized three-way comparison is not defined.
—(1.4) Otherwise, if R is strong_ordering, then

§ 11.10.3 310

© ISO/IEC N4910

a == b ? strong_ordering::equal :
a < b ? strong_ordering::less :

strong_ordering::greater

—(1.5) Otherwise, if R is weak_ordering, then
a == b ? weak_ordering::equivalent :
a < b ? weak_ordering::less :

weak_ordering::greater

—(1.6) Otherwise (when R is partial_ordering),
a == b ? partial_ordering::equivalent :
a < b ? partial_ordering::less :
b < a ? partial_ordering::greater :

partial_ordering::unordered

[Note 1: A synthesized three-way comparison is ill-formed if overload resolution finds usable candidates that do not otherwise meetthe requirements implied by the defined expression. —end note]
2 Let R be the declared return type of a defaulted three-way comparison operator function, and let xi be the elements ofthe expanded list of subobjects for an object x of type C.

—(2.1) If R is auto, then let cv i Ri be the type of the expression xi <=> xi. The operator function is defined as deleted ifthat expression is not usable or if Ri is not a comparison category type (17.11.2.1) for any i. The return type isdeduced as the common comparison type (see below) of R0, R1, . . . , Rn−1.
—(2.2) Otherwise, R shall not contain a placeholder type. If the synthesized three-way comparison of type R between anyobjects xi and xi is not defined, the operator function is defined as deleted.

3 The return value V of type R of the defaulted three-way comparison operator function with parameters x and y of thesame type is determined by comparing corresponding elements xi and yi in the expanded lists of subobjects for x and y(in increasing index order) until the first index i where the synthesized three-way comparison of type R between xi and
yi yields a result value vi where vi != 0, contextually converted to bool, yields true; V is a copy of vi. If no such indexexists, V is static_cast<R>(std::strong_ordering::equal).

4 The common comparison type U of a possibly-empty list of n comparison category types T0, T1, . . . , Tn−1 is defined asfollows:
—(4.1) If at least one Ti is std::partial_ordering, U is std::partial_ordering (17.11.2.2).
—(4.2) Otherwise, if at least one Ti is std::weak_ordering, U is std::weak_ordering (17.11.2.3).
—(4.3) Otherwise, U is std::strong_ordering (17.11.2.4).

[Note 2: In particular, this is the result when n is 0. —end note]
11.10.4 Secondary comparison operators [class.compare.secondary]

1 A secondary comparison operator is a relational operator (7.6.9) or the != operator. A defaulted operator function (12.4.3)for a secondary comparison operator @ shall have a declared return type bool.
2 The operator function with parameters x and y is defined as deleted if

—(2.1) overload resolution (12.2), as applied to x @ y, does not result in a usable candidate, or
—(2.2) the candidate selected by overload resolution is not a rewritten candidate.

Otherwise, the operator function yields x @ y. The defaulted operator function is not considered as a candidate in theoverload resolution for the @ operator.
3 [Example 1:

struct HasNoLessThan { };

struct C {
friend HasNoLessThan operator<=>(const C&, const C&);
bool operator<(const C&) const = default; // OK, function is deleted

};

—end example]

§ 11.10.4 311

© ISO/IEC N4910

12 Overloading [over]
12.1 Preamble [over.pre]

1 [Note 1: Each of two or more entities with the same name in the same scope, which must be functions or function templates, iscommonly called an “overload”. —end note]
2 When a function is named in a call, which function declaration is being referenced and the validity of the call aredetermined by comparing the types of the arguments at the point of use with the types of the parameters in the declarationsin the overload set. This function selection process is called overload resolution and is defined in 12.2.
[Example 1:
double abs(double);
int abs(int);

abs(1); // calls abs(int);
abs(1.0); // calls abs(double);
—end example]
12.2 Overload resolution [over.match]
12.2.1 General [over.match.general]

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are to be thearguments of the call and a set of candidate functions that can be called based on the context of the call. The selectioncriteria for the best function are the number of arguments, how well the arguments match the parameter-type-list of thecandidate function, how well (for non-static member functions) the object matches the object parameter, and certainother properties of the candidate function.
[Note 1: The function selected by overload resolution is not guaranteed to be appropriate for the context. Other restrictions, such asthe accessibility of the function, can make its use in the calling context ill-formed. —end note]

2 Overload resolution selects the function to call in seven distinct contexts within the language:
—(2.1) invocation of a function named in the function call syntax (12.2.2.2.2);
—(2.2) invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-to-functionconversion function, or a reference-to-function conversion function on a class object named in the function callsyntax (12.2.2.2.3);
—(2.3) invocation of the operator referenced in an expression (12.2.2.3);
—(2.4) invocation of a constructor for default- or direct-initialization (9.4) of a class object (12.2.2.4);
—(2.5) invocation of a user-defined conversion for copy-initialization (9.4) of a class object (12.2.2.5);
—(2.6) invocation of a conversion function for initialization of an object of a non-class type from an expression of classtype (12.2.2.6); and
—(2.7) invocation of a conversion function for conversion in which a reference (9.4.4) will be directly bound (12.2.2.7).

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique way. But, oncethe candidate functions and argument lists have been identified, the selection of the best function is the same in all cases:
—(2.8) First, a subset of the candidate functions (those that have the proper number of arguments and meet certain otherconditions) is selected to form a set of viable functions (12.2.3).
—(2.9) Then the best viable function is selected based on the implicit conversion sequences (12.2.4.2) needed to matcheach argument to the corresponding parameter of each viable function.

3 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result. Otherwiseoverload resolution fails and the invocation is ill-formed. When overload resolution succeeds, and the best viablefunction is not accessible (11.8) in the context in which it is used, the program is ill-formed.
4 Overload resolution results in a usable candidate if overload resolution succeeds and the selected candidate is either nota function (12.5), or is a function that is not deleted and is accessible from the context in which overload resolution wasperformed.
§ 12.2.1 312

© ISO/IEC N4910

12.2.2 Candidate functions and argument lists [over.match.funcs]
12.2.2.1 General [over.match.funcs.general]

1 The subclauses of 12.2.2 describe the set of candidate functions and the argument list submitted to overload resolutionin each context in which overload resolution is used. The source transformations and constructions defined in thesesubclauses are only for the purpose of describing the overload resolution process. An implementation is not required touse such transformations and constructions.
2 The set of candidate functions can contain both member and non-member functions to be resolved against the sameargument list. So that argument and parameter lists are comparable within this heterogeneous set, a member functionthat does not have an explicit object parameter is considered to have an extra first parameter, called the implicit objectparameter, which represents the object for which the member function has been called. For the purposes of overloadresolution, both static and non-static member functions have an object parameter, but constructors do not.
3 Similarly, when appropriate, the context can construct an argument list that contains an implied object argument as thefirst argument in the list to denote the object to be operated on.
4 For implicit object member functions, the type of the implicit object parameter is

—(4.1) “lvalue reference to cv X” for functions declared without a ref-qualifier or with the & ref-qualifier
—(4.2) “rvalue reference to cv X” for functions declared with the && ref-qualifier

where X is the class of which the function is a member and cv is the cv-qualification on the member function declaration.
[Example 1: For a const member function of class X, the extra parameter is assumed to have type “lvalue reference to const X”.—end example]
For conversion functions that are implicit object member functions, the function is considered to be a member ofthe class of the implied object argument for the purpose of defining the type of the implicit object parameter. Fornon-conversion functions that are implicit object member functions nominated by a using-declaration in a derived class,the function is considered to be a member of the derived class for the purpose of defining the type of the implicit objectparameter. For static member functions, the implicit object parameter is considered to match any object (since if thefunction is selected, the object is discarded).
[Note 1: No actual type is established for the implicit object parameter of a static member function, and no attempt will be made todetermine a conversion sequence for that parameter (12.2.4). —end note]

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The implicit objectparameter, however, retains its identity since no user-defined conversions can be applied to achieve a type match withit. For implicit object member functions declared without a ref-qualifier , even if the implicit object parameter is notconst-qualified, an rvalue can be bound to the parameter as long as in all other respects the argument can be convertedto the type of the implicit object parameter.
[Note 2: The fact that such an argument is an rvalue does not affect the ranking of implicit conversion sequences (12.2.4.3). —endnote]

6 Because other than in list-initialization only one user-defined conversion is allowed in an implicit conversion sequence,special rules apply when selecting the best user-defined conversion (12.2.4, 12.2.4.2).
[Example 2:
class T {
public:

T();
};

class C : T {
public:

C(int);
};
T a = 1; // error: no viable conversion (T(C(1)) not considered)
— end example]

7 In each case where conversion functions of a class S are considered for initializing an object or reference of type T, thecandidate functions include the result of a search for the conversion-function-id operator T in S.
[Note 3: This search can find a specialization of a conversion function template (6.5). —end note]
Each such case also defines sets of permissible types for explicit and non-explicit conversion functions; each (non-template) conversion function that
§ 12.2.2.1 313

© ISO/IEC N4910

—(7.1) is a non-hidden member of S,
—(7.2) yields a permissible type, and,
—(7.3) for the former set, is non-explicit

is also a candidate function. If initializing an object, for any permissible type cv U, any cv2 U, cv2 U&, or cv2 U&& is alsoa permissible type. If the set of permissible types for explicit conversion functions is empty, any candidates that areexplicit are discarded.
8 In each case where a candidate is a function template, candidate function template specializations are generated usingtemplate argument deduction (13.10.4, 13.10.3). If a constructor template or conversion function template has an

explicit-specifier whose constant-expression is value-dependent (13.8.3), template argument deduction is performedfirst and then, if the context admits only candidates that are not explicit and the generated specialization is explicit (9.2.3),it will be removed from the candidate set. Those candidates are then handled as candidate functions in the usual way.108A given name can refer to, or a conversion can consider, one or more function templates as well as a set of non-templatefunctions. In such a case, the candidate functions generated from each function template are combined with the set ofnon-template candidate functions.
9 A defaulted move special member function (11.4.5.3, 11.4.6) that is defined as deleted is excluded from the set ofcandidate functions in all contexts. A constructor inherited from class type C (11.9.4) that has a first parameter oftype “reference to cv1 P” (including such a constructor instantiated from a template) is excluded from the set ofcandidate functions when constructing an object of type cv2 D if the argument list has exactly one argument and C isreference-related to P and P is reference-related to D.
[Example 3:
struct A {

A(); // #1
A(A &&); // #2
template<typename T> A(T &&); // #3

};
struct B : A {

using A::A;
B(const B &); // #4
B(B &&) = default; // #5, implicitly deleted
struct X { X(X &&) = delete; } x;

};
extern B b1;
B b2 = static_cast<B&&>(b1); // calls #4: #1 is not viable, #2, #3, and #5 are not candidates
struct C { operator B&&(); };
B b3 = C(); // calls #4
—end example]
12.2.2.2 Function call syntax [over.match.call]
12.2.2.2.1 General [over.match.call.general]

1 In a function call (7.6.1.3)
postfix-expression (expression-listopt)

if the postfix-expression names at least one function or function template, overload resolution is applied as specifiedin 12.2.2.2.2. If the postfix-expression denotes an object of class type, overload resolution is applied as specified in12.2.2.2.3.
2 If the postfix-expression is the address of an overload set, overload resolution is applied using that set as describedabove. If the function selected by overload resolution is a non-static member function, the program is ill-formed.
[Note 1: The resolution of the address of an overload set in other contexts is described in 12.3. —end note]
12.2.2.2.2 Call to named function [over.call.func]

1 Of interest in 12.2.2.2.2 are only those function calls in which the postfix-expression ultimately contains an id-expressionthat denotes one or more functions. Such a postfix-expression, perhaps nested arbitrarily deep in parentheses, has oneof the following forms:
108) The process of argument deduction fully determines the parameter types of the function template specializations, i.e., the parameters of functiontemplate specializations contain no template parameter types. Therefore, except where specified otherwise, function template specializations andnon-template functions (9.3.4.6) are treated equivalently for the remainder of overload resolution.
§ 12.2.2.2.2 314

© ISO/IEC N4910

postfix-expression:
postfix-expression . id-expression
postfix-expression -> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified function calls.
2 In qualified function calls, the function is named by an id-expression preceded by an -> or . operator. Since the construct

A->B is generally equivalent to (*A).B, the rest of Clause 12 assumes, without loss of generality, that all memberfunction calls have been normalized to the form that uses an object and the . operator. Furthermore, Clause 12 assumesthat the postfix-expression that is the left operand of the . operator has type “cv T” where T denotes a class.109 Thefunction declarations found by name lookup (6.5.2) constitute the set of candidate functions. The argument list is the
expression-list in the call augmented by the addition of the left operand of the . operator in the normalized memberfunction call as the implied object argument (12.2.2).

3 In unqualified function calls, the function is named by a primary-expression. The function declarations found by namelookup (6.5) constitute the set of candidate functions. Because of the rules for name lookup, the set of candidatefunctions consists (1) entirely of non-member functions or (2) entirely of member functions of some class T. In case (1),the argument list is the same as the expression-list in the call. In case (2), the argument list is the expression-list in thecall augmented by the addition of an implied object argument as in a qualified function call. If the current class is, or isderived from, T, and the keyword this (7.5.2) refers to it, then the implied object argument is (*this). Otherwise, acontrived object of type T becomes the implied object argument;110 if overload resolution selects a non-static memberfunction, the call is ill-formed.
[Example 1:
struct C {

void a();
void b() {
a(); // OK, (*this).a()

}

void f(this const C&);
void g() const {
f(); // OK, (*this).f()
f(*this); // error: no viable candidate for (*this).f(*this)
this->f(); // OK

}

static void h() {
f(); // error: contrived object argument, but overload resolution// picked a non-static member function
f(C{}); // error: no viable candidate
C{}.f(); // OK

}

void k(this int);
operator int() const;
void m(this const C& c) {
c.k(); // OK

}
};

—end example]
12.2.2.2.3 Call to object of class type [over.call.object]

1 If the postfix-expression E in the function call syntax evaluates to a class object of type “cv T”, then the set of candidatefunctions includes at least the function call operators of T. The function call operators of T are the results of a search forthe name operator() in the scope of T.
2 In addition, for each non-explicit conversion function declared in T of the form

109) Note that cv-qualifiers on the type of objects are significant in overload resolution for both glvalue and class prvalue objects.
110) An implied object argument is contrived to correspond to the implicit object parameter attributed to member functions during overload resolution.It is not used in the call to the selected function. Since the member functions all have the same implicit object parameter, the contrived object will notbe the cause to select or reject a function.
§ 12.2.2.2.3 315

© ISO/IEC N4910

operator conversion-type-id () cv-qualifier-seqopt ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt ;

where the optional cv-qualifier-seq is the same cv-qualification as, or a greater cv-qualification than, cv, and where
conversion-type-id denotes the type “pointer to function of (P1, . . . , Pn) returning R”, or the type “reference to pointerto function of (P1, . . . , Pn) returning R”, or the type “reference to function of (P1, . . . , Pn) returning R”, a surrogate callfunction with the unique name call-function and having the form

R call-function (conversion-type-id F, P1 a1, . . . , Pn an) { return F (a1, . . . , an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candidate functionsfor each non-explicit conversion function declared in a base class of T provided the function is not hidden within T byanother intervening declaration.111
3 The argument list submitted to overload resolution consists of the argument expressions present in the function callsyntax preceded by the implied object argument (E).
[Note 1: When comparing the call against the function call operators, the implied object argument is compared against the objectparameter of the function call operator. When comparing the call against a surrogate call function, the implied object argument iscompared against the first parameter of the surrogate call function. The conversion function from which the surrogate call functionwas derived will be used in the conversion sequence for that parameter since it converts the implied object argument to the appropriatefunction pointer or reference required by that first parameter. —end note]
[Example 1:
int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {

operator fp1() { return f1; }
operator fp2() { return f2; }

} a;
int i = a(1); // calls f1 via pointer returned from conversion function
—end example]
12.2.2.3 Operators in expressions [over.match.oper]

1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is assumed to bea built-in operator and interpreted according to 7.6.
[Note 1: Because ., .*, and :: cannot be overloaded, these operators are always built-in operators interpreted according to 7.6. ?:cannot be overloaded, but the rules in this subclause are used to determine the conversions to be applied to the second and thirdoperands when they have class or enumeration type (7.6.16). —end note]
[Example 1:
struct String {

String (const String&);
String (const char*);
operator const char* ();

};
String operator + (const String&, const String&);

void f() {
const char* p= "one" + "two"; // error: cannot add two pointers; overloaded operator+ not considered// because neither operand has class or enumeration type
int I = 1 + 1; // always evaluates to 2 even if class or enumeration types exist// that would perform the operation.

}

—end example]
2 If either operand has a type that is a class or an enumeration, a user-defined operator function can be declared thatimplements this operator or a user-defined conversion can be necessary to convert the operand to a type that is appropriatefor a built-in operator. In this case, overload resolution is used to determine which operator function or built-in operatoris to be invoked to implement the operator. Therefore, the operator notation is first transformed to the equivalent

111) Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolution becausethey have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution cannot select a match to the callthat is uniquely better than such undifferentiable functions.
§ 12.2.2.3 316

© ISO/IEC N4910

function-call notation as summarized in Table 17 (where @ denotes one of the operators covered in the specifiedsubclause). However, the operands are sequenced in the order prescribed for the built-in operator (7.6).
Table 17: Relationship between operator and function call notation [tab:over.match.oper]

Subclause Expression As member function As non-member function
12.4.2 @a (a).operator@ () operator@(a)12.4.3 a@b (a).operator@ (b) operator@(a, b)12.4.3.2 a=b (a).operator= (b)12.4.5 a[b] (a).operator[](b)12.4.6 a-> (a).operator->()12.4.7 a@ (a).operator@ (0) operator@(a, 0)

3 For a unary operator @ with an operand of type cv1 T1, and for a binary operator @ with a left operand of type cv1 T1 anda right operand of type cv2 T2, four sets of candidate functions, designated member candidates, non-member candidates,built-in candidates, and rewritten candidates, are constructed as follows:
—(3.1) If T1 is a complete class type or a class currently being defined, the set of member candidates is the result of asearch for operator@ in the scope of T1; otherwise, the set of member candidates is empty.
—(3.2) For the operators =, [], or ->, the set of non-member candidates is empty; otherwise, it includes the result ofunqualified lookup for operator@ in the rewritten function call (6.5.3, 6.5.4), ignoring all member functions.However, if no operand has a class type, only those non-member functions in the lookup set that have a firstparameter of type T1 or “reference to cv T1”, when T1 is an enumeration type, or (if there is a right operand) asecond parameter of type T2 or “reference to cv T2”, when T2 is an enumeration type, are candidate functions.
—(3.3) For the operator ,, the unary operator &, or the operator ->, the built-in candidates set is empty. For all otheroperators, the built-in candidates include all of the candidate operator functions defined in 12.5 that, compared tothe given operator,

—(3.3.1) have the same operator name, and
—(3.3.2) accept the same number of operands, and
—(3.3.3) accept operand types to which the given operand or operands can be converted according to 12.2.4.2, and
—(3.3.4) do not have the same parameter-type-list as any non-member candidate that is not a function templatespecialization.

—(3.4) The rewritten candidate set is determined as follows:
—(3.4.1) For the relational (7.6.9) operators, the rewritten candidates include all non-rewritten candidates for theexpression x <=> y.
—(3.4.2) For the relational (7.6.9) and three-way comparison (7.6.8) operators, the rewritten candidates also includea synthesized candidate, with the order of the two parameters reversed, for each non-rewritten candidate forthe expression y <=> x.
—(3.4.3) For the != operator (7.6.10), the rewritten candidates include all non-rewritten candidates for the expression

x == y.
—(3.4.4) For the equality operators, the rewritten candidates also include a synthesized candidate, with the order ofthe two parameters reversed, for each non-rewritten candidate for the expression y == x.
—(3.4.5) For all other operators, the rewritten candidate set is empty.
[Note 2: A candidate synthesized from a member candidate has its object parameter as the second parameter, thus implicitconversions are considered for the first, but not for the second, parameter. —end note]

4 For the built-in assignment operators, conversions of the left operand are restricted as follows:
—(4.1) no temporaries are introduced to hold the left operand, and
—(4.2) no user-defined conversions are applied to the left operand to achieve a type match with the left-most parameterof a built-in candidate.

5 For all other operators, no such restrictions apply.
6 The set of candidate functions for overload resolution for some operator @ is the union of the member candidates, thenon-member candidates, the built-in candidates, and the rewritten candidates for that operator @.
§ 12.2.2.3 317

© ISO/IEC N4910

7 The argument list contains all of the operands of the operator. The best function from the set of candidate functions isselected according to 12.2.3 and 12.2.4.112
[Example 2:
struct A {

operator int();
};
A operator+(const A&, const A&);
void m() {

A a, b;
a + b; // operator+(a, b) chosen over int(a) + int(b)

}

—end example]
8 If a rewritten operator<=> candidate is selected by overload resolution for an operator @, x @ y is interpreted as 0

@ (y <=> x) if the selected candidate is a synthesized candidate with reversed order of parameters, or (x <=> y)
@ 0 otherwise, using the selected rewritten operator<=> candidate. Rewritten candidates for the operator @ are notconsidered in the context of the resulting expression.

9 If a rewritten operator== candidate is selected by overload resolution for an operator @, its return type shall be cv bool,and x @ y is interpreted as:
—(9.1) if @ is != and the selected candidate is a synthesized candidate with reversed order of parameters, !(y == x),
—(9.2) otherwise, if @ is !=, !(x == y),
—(9.3) otherwise (when @ is ==), y == x,

in each case using the selected rewritten operator== candidate.
10 If a built-in candidate is selected by overload resolution, the operands of class type are converted to the types of thecorresponding parameters of the selected operation function, except that the second standard conversion sequence of auser-defined conversion sequence (12.2.4.2.3) is not applied. Then the operator is treated as the corresponding built-inoperator and interpreted according to 7.6.
[Example 3:
struct X {

operator double();
};

struct Y {
operator int*();

};

int *a = Y() + 100.0; // error: pointer arithmetic requires integral operand
int *b = Y() + X(); // error: pointer arithmetic requires integral operand
—end example]

11 The second operand of operator -> is ignored in selecting an operator-> function, and is not an argument when the
operator-> function is called. When operator-> returns, the operator -> is applied to the value returned, with theoriginal second operand.113

12 If the operator is the operator ,, the unary operator &, or the operator ->, and there are no viable functions, then theoperator is assumed to be the built-in operator and interpreted according to 7.6.
13 [Note 3: The lookup rules for operators in expressions are different than the lookup rules for operator function names in a functioncall, as shown in the following example:

struct A { };
void operator + (A, A);

struct B {
void operator + (B);
void f ();

};

112) If the set of candidate functions is empty, overload resolution is unsuccessful.
113) If the value returned by the operator-> function has class type, this can result in selecting and calling another operator-> function. Theprocess repeats until an operator-> function returns a value of non-class type.
§ 12.2.2.3 318

© ISO/IEC N4910

A a;

void B::f() {
operator+ (a,a); // error: global operator hidden by member
a + a; // OK, calls global operator+

}

—end note]
12.2.2.4 Initialization by constructor [over.match.ctor]

1 When objects of class type are direct-initialized (9.4), copy-initialized from an expression of the same or a derivedclass type (9.4), or default-initialized (9.4), overload resolution selects the constructor. For direct-initialization ordefault-initialization that is not in the context of copy-initialization, the candidate functions are all the constructorsof the class of the object being initialized. For copy-initialization (including default initialization in the context ofcopy-initialization), the candidate functions are all the converting constructors (11.4.8.2) of that class. The argumentlist is the expression-list or assignment-expression of the initializer .
12.2.2.5 Copy-initialization of class by user-defined conversion [over.match.copy]

1 Under the conditions specified in 9.4, as part of a copy-initialization of an object of class type, a user-defined conversioncan be invoked to convert an initializer expression to the type of the object being initialized. Overload resolution isused to select the user-defined conversion to be invoked.
[Note 1: The conversion performed for indirect binding to a reference to a possibly cv-qualified class type is determined in terms of acorresponding non-reference copy-initialization. —end note]
Assuming that “cv1 T” is the type of the object being initialized, with T a class type, the candidate functions are selectedas follows:
—(1.1) The converting constructors (11.4.8.2) of T are candidate functions.
—(1.2) When the type of the initializer expression is a class type “cv S”, conversion functions are considered. Thepermissible types for non-explicit conversion functions are T and any class derived from T. When initializinga temporary object (11.4) to be bound to the first parameter of a constructor where the parameter is of type“reference to cv2 T” and the constructor is called with a single argument in the context of direct-initialization ofan object of type “cv3 T”, the permissible types for explicit conversion functions are the same; otherwise thereare none.

2 In both cases, the argument list has one argument, which is the initializer expression.
[Note 2: This argument will be compared against the first parameter of the constructors and against the object parameter of theconversion functions. —end note]
12.2.2.6 Initialization by conversion function [over.match.conv]

1 Under the conditions specified in 9.4, as part of an initialization of an object of non-class type, a conversion functioncan be invoked to convert an initializer expression of class type to the type of the object being initialized. Overloadresolution is used to select the conversion function to be invoked. Assuming that “cv T” is the type of the object beinginitialized, the candidate functions are selected as follows:
—(1.1) The permissible types for non-explicit conversion functions are those that can be converted to type T via a standardconversion sequence (12.2.4.2.2). For direct-initialization, the permissible types for explicit conversion functionsare those that can be converted to type T with a (possibly trivial) qualification conversion (7.3.6); otherwise thereare none.

2 The argument list has one argument, which is the initializer expression.
[Note 1: This argument will be compared against the object parameter of the conversion functions. —end note]
12.2.2.7 Initialization by conversion function for direct reference binding [over.match.ref]

1 Under the conditions specified in 9.4.4, a reference can be bound directly to the result of applying a conversion functionto an initializer expression. Overload resolution is used to select the conversion function to be invoked. Assuming that“reference to cv1 T” is the type of the reference being initialized, the candidate functions are selected as follows:
—(1.1) Let R be a set of types including

—(1.1.1) “lvalue reference to cv2 T2” (when initializing an lvalue reference or an rvalue reference to function) and
—(1.1.2) “cv2 T2” and “rvalue reference to cv2 T2” (when initializing an rvalue reference or an lvalue reference tofunction)

§ 12.2.2.7 319

© ISO/IEC N4910

for any T2. The permissible types for non-explicit conversion functions are the members of R where “cv1 T” isreference-compatible (9.4.4) with “cv2 T2”. For direct-initialization, the permissible types for explicit conversionfunctions are the members of R where T2 can be converted to type T with a (possibly trivial) qualificationconversion (7.3.6); otherwise there are none.
2 The argument list has one argument, which is the initializer expression.
[Note 1: This argument will be compared against the object parameter of the conversion functions. —end note]
12.2.2.8 Initialization by list-initialization [over.match.list]

1 When objects of non-aggregate class type T are list-initialized such that 9.4.5 specifies that overload resolution isperformed according to the rules in this subclause or when forming a list-initialization sequence according to 12.2.4.2.6,overload resolution selects the constructor in two phases:
—(1.1) If the initializer list is not empty or T has no default constructor, overload resolution is first performed where thecandidate functions are the initializer-list constructors (9.4.5) of the class T and the argument list consists of theinitializer list as a single argument.
—(1.2) Otherwise, or if no viable initializer-list constructor is found, overload resolution is performed again, where thecandidate functions are all the constructors of the class T and the argument list consists of the elements of theinitializer list.

In copy-list-initialization, if an explicit constructor is chosen, the initialization is ill-formed.
[Note 1: This differs from other situations (12.2.2.4, 12.2.2.5), where only converting constructors are considered for copy-initialization. This restriction only applies if this initialization is part of the final result of overload resolution. —end note]
12.2.2.9 Class template argument deduction [over.match.class.deduct]

1 When resolving a placeholder for a deduced class type (9.2.9.7) where the template-name names a primary classtemplate C, a set of functions and function templates, called the guides of C, is formed comprising:
—(1.1) If C is defined, for each constructor of C, a function template with the following properties:

—(1.1.1) The template parameters are the template parameters of C followed by the template parameters (includingdefault template arguments) of the constructor, if any.
—(1.1.2) The types of the function parameters are those of the constructor.
—(1.1.3) The return type is the class template specialization designated by C and template arguments correspondingto the template parameters of C.

—(1.2) If C is not defined or does not declare any constructors, an additional function template derived as above from ahypothetical constructor C().
—(1.3) An additional function template derived as above from a hypothetical constructor C(C), called the copy deductioncandidate.
—(1.4) For each deduction-guide, a function or function template with the following properties:

—(1.4.1) The template parameters, if any, and function parameters are those of the deduction-guide.
—(1.4.2) The return type is the simple-template-id of the deduction-guide.

In addition, if C is defined and its definition satisfies the conditions for an aggregate class (9.4.2) with the assumptionthat any dependent base class has no virtual functions and no virtual base classes, and the initializer is a non-empty
braced-init-list or parenthesized expression-list, and there are no deduction-guides for C, the set contains an additionalfunction template, called the aggregate deduction candidate, defined as follows. Let x1, . . . , xn be the elements of the
initializer-list or designated-initializer-list of the braced-init-list, or of the expression-list. For each xi, let ei be thecorresponding aggregate element of C or of one of its (possibly recursive) subaggregates that would be initialized by
xi (9.4.2) if
—(1.5) brace elision is not considered for any aggregate element that has a dependent non-array type or an array typewith a value-dependent bound, and
—(1.6) each non-trailing aggregate element that is a pack expansion is assumed to correspond to no elements of theinitializer list, and
—(1.7) a trailing aggregate element that is a pack expansion is assumed to correspond to all remaining elements of theinitializer list (if any).

§ 12.2.2.9 320

© ISO/IEC N4910

If there is no such aggregate element ei for any xi, the aggregate deduction candidate is not added to the set. Theaggregate deduction candidate is derived as above from a hypothetical constructor C(T1, . . . , Tn), where
—(1.8) if ei is of array type and xi is a braced-init-list or string-literal , Ti is an rvalue reference to the declared type of

ei, and
—(1.9) otherwise, Ti is the declared type of ei,

except that additional parameter packs of the form Pj... are inserted into the parameter list in their original aggregateelement position corresponding to each non-trailing aggregate element of type Pj that was skipped because it was aparameter pack, and the trailing sequence of parameters corresponding to a trailing aggregate element that is a packexpansion (if any) is replaced by a single parameter of the form Tn....
2 When resolving a placeholder for a deduced class type (9.2.9.3) where the template-name names an alias template A,the defining-type-id of A must be of the form

typenameopt nested-name-specifieropt templateopt simple-template-id

as specified in 9.2.9.3. The guides of A are the set of functions or function templates formed as follows. For eachfunction or function template f in the guides of the template named by the simple-template-id of the defining-type-id ,the template arguments of the return type of f are deduced from the defining-type-id of A according to the process in13.10.3.6 with the exception that deduction does not fail if not all template arguments are deduced. Let g denote theresult of substituting these deductions into f. If substitution succeeds, form a function or function template f’ with thefollowing properties and add it to the set of guides of A:
—(2.1) The function type of f’ is the function type of g.
—(2.2) If f is a function template, f’ is a function template whose template parameter list consists of all the templateparameters of A (including their default template arguments) that appear in the above deductions or (recursively)in their default template arguments, followed by the template parameters of f that were not deduced (includingtheir default template arguments), otherwise f’ is not a function template.
—(2.3) The associated constraints (13.5.3) are the conjunction of the associated constraints of g and a constraint that issatisfied if and only if the arguments of A are deducible (see below) from the return type.
—(2.4) If f is a copy deduction candidate, then f’ is considered to be so as well.
—(2.5) If f was generated from a deduction-guide (13.7.2.3), then f’ is considered to be so as well.
—(2.6) The explicit-specifier of f’ is the explicit-specifier of g (if any).

3 The arguments of a template A are said to be deducible from a type T if, given a class template
template <typename> class AA;

with a single partial specialization whose template parameter list is that of A and whose template argument list is aspecialization of A with the template argument list of A (13.8.3.2), AA<T> matches the partial specialization.
4 Initialization and overload resolution are performed as described in 9.4 and 12.2.2.4, 12.2.2.5, or 12.2.2.8 (as appropriatefor the type of initialization performed) for an object of a hypothetical class type, where the guides of the templatenamed by the placeholder are considered to be the constructors of that class type for the purpose of forming an overloadset, and the initializer is provided by the context in which class template argument deduction was performed. Thefollowing exceptions apply:

—(4.1) The first phase in 12.2.2.8 (considering initializer-list constructors) is omitted if the initializer list consists of asingle expression of type cv U, where U is, or is derived from, a specialization of the class template directly orindirectly named by the placeholder.
—(4.2) During template argument deduction for the aggregate deduction candidate, the number of elements in a trailingparameter pack is only deduced from the number of remaining function arguments if it is not otherwise deduced.

If the function or function template was generated from a constructor or deduction-guide that had an explicit-specifier ,each such notional constructor is considered to have that same explicit-specifier . All such notional constructors areconsidered to be public members of the hypothetical class type.
5 [Example 1:

template <class T> struct A {
explicit A(const T&, ...) noexcept; // #1
A(T&&, ...); // #2

};

§ 12.2.2.9 321

© ISO/IEC N4910

int i;
A a1 = { i, i }; // error: explicit constructor #1 selected in copy-list-initialization during deduction,// cannot deduce from non-forwarding rvalue reference in #2
A a2{i, i}; // OK, #1 deduces to A<int> and also initializes
A a3{0, i}; // OK, #2 deduces to A<int> and also initializes
A a4 = {0, i}; // OK, #2 deduces to A<int> and also initializes
template <class T> A(const T&, const T&) -> A<T&>; // #3
template <class T> explicit A(T&&, T&&) -> A<T>; // #4
A a5 = {0, 1}; // error: explicit deduction guide #4 selected in copy-list-initialization during deduction
A a6{0,1}; // OK, #4 deduces to A<int> and #2 initializes
A a7 = {0, i}; // error: #3 deduces to A<int&>, #1 and #2 declare same constructor
A a8{0,i}; // error: #3 deduces to A<int&>, #1 and #2 declare same constructor
template <class T> struct B {

template <class U> using TA = T;
template <class U> B(U, TA<U>);

};

B b{(int*)0, (char*)0}; // OK, deduces B<char*>
template <typename T>
struct S {

T x;
T y;

};

template <typename T>
struct C {

S<T> s;
T t;

};

template <typename T>
struct D {

S<int> s;
T t;

};

C c1 = {1, 2}; // error: deduction failed
C c2 = {1, 2, 3}; // error: deduction failed
C c3 = {{1u, 2u}, 3}; // OK, deduces C<int>
D d1 = {1, 2}; // error: deduction failed
D d2 = {1, 2, 3}; // OK, braces elided, deduces D<int>
template <typename T>
struct E {

T t;
decltype(t) t2;

};

E e1 = {1, 2}; // OK, deduces E<int>
template <typename... T>
struct Types {};

template <typename... T>
struct F : Types<T...>, T... {};

struct X {};
struct Y {};

§ 12.2.2.9 322

© ISO/IEC N4910

struct Z {};
struct W { operator Y(); };

F f1 = {Types<X, Y, Z>{}, {}, {}}; // OK, F<X, Y, Z> deduced
F f2 = {Types<X, Y, Z>{}, X{}, Y{}}; // OK, F<X, Y, Z> deduced
F f3 = {Types<X, Y, Z>{}, X{}, W{}}; // error: conflicting types deduced; operator Y not considered
—end example]

6 [Example 2:
template <class T, class U> struct C {

C(T, U); // #1
};
template<class T, class U>

C(T, U) -> C<T, std::type_identity_t<U>>; // #2
template<class V> using A = C<V *, V *>;
template<std::integral W> using B = A<W>;

int i{};
double d{};
A a1(&i, &i); // deduces A<int>
A a2(i, i); // error: cannot deduce V * from i
A a3(&i, &d); // error: #1: cannot deduce (V*, V*) from (int *, double *)// #2: cannot deduce A<V> from C<int *, double *>
B b1(&i, &i); // deduces B<int>
B b2(&d, &d); // error: cannot deduce B<W> from C<double *, double *>

Possible exposition-only implementation of the above procedure:
// The following concept ensures a specialization of A is deduced.
template <class> class AA;
template <class V> class AA<A<V>> { };
template <class T> concept deduces_A = requires { sizeof(AA<T>); };

// f1 is formed from the constructor #1 of C, generating the following function template
template<T, U>

auto f1(T, U) -> C<T, U>;

// Deducing arguments for C<T, U> from C<V *, V*> deduces T as V * and U as V *;// f1’ is obtained by transforming f1 as described by the above procedure.
template<class V> requires deduces_A<C<V *, V *>>

auto f1_prime(V *, V*) -> C<V *, V *>;

// f2 is formed from the deduction-guide #2 of C
template<class T, class U> auto f2(T, U) -> C<T, std::type_identity_t<U>>;

// Deducing arguments for C<T, std::type_identity_t<U>> from C<V *, V*> deduces T as V *;// f2’ is obtained by transforming f2 as described by the above procedure.
template<class V, class U>

requires deduces_A<C<V *, std::type_identity_t<U>>>
auto f2_prime(V *, U) -> C<V *, std::type_identity_t<U>>;

// The following concept ensures a specialization of B is deduced.
template <class> class BB;
template <class V> class BB<B<V>> { };
template <class T> concept deduces_B = requires { sizeof(BB<T>); };

// The guides for B derived from the above f1’ and f2’ for A are as follows:
template<std::integral W>

requires deduces_A<C<W *, W *>> && deduces_B<C<W *, W *>>
auto f1_prime_for_B(W *, W *) -> C<W *, W *>;

§ 12.2.2.9 323

© ISO/IEC N4910

template<std::integral W, class U>
requires deduces_A<C<W *, std::type_identity_t<U>>> &&
deduces_B<C<W *, std::type_identity_t<U>>>

auto f2_prime_for_B(W *, U) -> C<W *, std::type_identity_t<U>>;

—end example]
12.2.3 Viable functions [over.match.viable]

1 From the set of candidate functions constructed for a given context (12.2.2), a set of viable functions is chosen, fromwhich the best function will be selected by comparing argument conversion sequences and associated constraints (13.5.3)for the best fit (12.2.4). The selection of viable functions considers associated constraints, if any, and relationshipsbetween arguments and function parameters other than the ranking of conversion sequences.
2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with the argumentsin the list.

—(2.1) If there arem arguments in the list, all candidate functions having exactlym parameters are viable.
—(2.2) A candidate function having fewer thanm parameters is viable only if it has an ellipsis in its parameter list (9.3.4.6).For the purposes of overload resolution, any argument for which there is no corresponding parameter is consideredto “match the ellipsis” (12.2.4.2.4).
—(2.3) A candidate function having more than m parameters is viable only if all parameters following the mth havedefault arguments (9.3.4.7). For the purposes of overload resolution, the parameter list is truncated on the right,so that there are exactlym parameters.

3 Second, for a function to be viable, if it has associated constraints (13.5.3), those constraints shall be satisfied (13.5.2).
4 Third, for F to be a viable function, there shall exist for each argument an implicit conversion sequence (12.2.4.2) thatconverts that argument to the corresponding parameter of F. If the parameter has reference type, the implicit conversionsequence includes the operation of binding the reference, and the fact that an lvalue reference to non-const cannot bindto an rvalue and that an rvalue reference cannot bind to an lvalue can affect the viability of the function (see 12.2.4.2.5).
12.2.4 Best viable function [over.match.best]
12.2.4.1 General [over.match.best.general]

1 Define ICSi(F) as follows:
—(1.1) If F is a static member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than ICS1(G) forany function G, and, symmetrically, ICS1(G) is neither better nor worse than ICS1(F);114 otherwise,
—(1.2) let ICSi(F) denote the implicit conversion sequence that converts the ith argument in the list to the type of the ithparameter of viable function F. 12.2.4.2 defines the implicit conversion sequences and 12.2.4.3 defines what itmeans for one implicit conversion sequence to be a better conversion sequence or worse conversion sequencethan another.

2 Given these definitions, a viable function F1 is defined to be a better function than another viable function F2 if for allarguments i, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and then
—(2.1) for some argument j, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,
—(2.2) the context is an initialization by user-defined conversion (see 9.4, 12.2.2.6, and 12.2.2.7) and the standardconversion sequence from the return type of F1 to the destination type (i.e., the type of the entity being initialized)is a better conversion sequence than the standard conversion sequence from the return type of F2 to the destinationtype

[Example 1:
struct A {
A();
operator int();
operator double();

} a;
int i = a; // a.operator int() followed by no conversion is better than// a.operator double() followed by a conversion to int
float x = a; // ambiguous: both possibilities require conversions,// and neither is better than the other

114) If a function is a static member function, this definition means that the first argument, the implied object argument, has no effect in thedetermination of whether the function is better or worse than any other function.
§ 12.2.4.1 324

© ISO/IEC N4910

—end example]
or, if not that,

—(2.3) the context is an initialization by conversion function for direct reference binding (12.2.2.7) of a reference tofunction type, the return type of F1 is the same kind of reference (lvalue or rvalue) as the reference being initialized,and the return type of F2 is not
[Example 2:
template <class T> struct A {
operator T&(); // #1
operator T&&(); // #2

};
typedef int Fn();
A<Fn> a;
Fn& lf = a; // calls #1
Fn&& rf = a; // calls #2
—end example]
or, if not that,

—(2.4) F1 is not a function template specialization and F2 is a function template specialization, or, if not that,
—(2.5) F1 and F2 are function template specializations, and the function template for F1 is more specialized than thetemplate for F2 according to the partial ordering rules described in 13.7.7.3, or, if not that,
—(2.6) F1 and F2 are non-template functions with the same parameter-type-lists, and F1 is more constrained than F2according to the partial ordering of constraints described in 13.5.5, or if not that,
—(2.7) F1 is a constructor for a class D, F2 is a constructor for a base class B of D, and for all arguments the correspondingparameters of F1 and F2 have the same type

[Example 3:
struct A {
A(int = 0);

};

struct B: A {
using A::A;
B();

};

int main() {
B b; // OK, B::B()

}

—end example]
or, if not that,

—(2.8) F2 is a rewritten candidate (12.2.2.3) and F1 is not
[Example 4:
struct S {
friend auto operator<=>(const S&, const S&) = default; // #1
friend bool operator<(const S&, const S&); // #2

};
bool b = S() < S(); // calls #2
—end example]
or, if not that,

—(2.9) F1 and F2 are rewritten candidates, and F2 is a synthesized candidate with reversed order of parameters and F1 isnot
[Example 5:
struct S {
friend std::weak_ordering operator<=>(const S&, int); // #1

§ 12.2.4.1 325

© ISO/IEC N4910

friend std::weak_ordering operator<=>(int, const S&); // #2
};
bool b = 1 < S(); // calls #2
—end example]
or, if not that

—(2.10) F1 is generated from a deduction-guide (12.2.2.9) and F2 is not, or, if not that,
—(2.11) F1 is the copy deduction candidate (12.2.2.9) and F2 is not, or, if not that,
—(2.12) F1 is generated from a non-template constructor and F2 is generated from a constructor template.

[Example 6:
template <class T> struct A {
using value_type = T;
A(value_type); // #1
A(const A&); // #2
A(T, T, int); // #3
template<class U>

A(int, T, U); // #4// #5 is the copy deduction candidate, A(A)
};

A x(1, 2, 3); // uses #3, generated from a non-template constructor
template <class T>
A(T) -> A<T>; // #6, less specialized than #5
A a(42); // uses #6 to deduce A<int> and #1 to initialize
A b = a; // uses #5 to deduce A<int> and #2 to initialize
template <class T>
A(A<T>) -> A<A<T>>; // #7, as specialized as #5
A b2 = a; // uses #7 to deduce A<A<int>> and #1 to initialize
— end example]

3 If there is exactly one viable function that is a better function than all other viable functions, then it is the one selectedby overload resolution; otherwise the call is ill-formed.115
[Example 7:
void Fcn(const int*, short);
void Fcn(int*, int);

int i;
short s = 0;

void f() {
Fcn(&i, s); // is ambiguous because &i→ int* is better than &i→ const int*// but s→ short is also better than s→ int

Fcn(&i, 1L); // calls Fcn(int*, int), because &i→ int* is better than &i→ const int*// and 1L→ short and 1L→ int are indistinguishable
Fcn(&i, 'c'); // calls Fcn(int*, int), because &i→ int* is better than &i→ const int*// and c→ int is better than c→ short

}

—end example]

115) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a function W thatis not worse than any opponent it faced. Although it is possible that another function F that W did not face is at least as good as W, F cannot be thebest function because at some point in the tournament F encountered another function G such that F was not better than G. Hence, either W is the bestfunction or there is no best function. So, make a second pass over the viable functions to verify that W is better than all other functions.
§ 12.2.4.1 326

© ISO/IEC N4910

4 If the best viable function resolves to a function for which multiple declarations were found, and if any two of thesedeclarations inhabit different scopes and specify a default argument that made the function viable, the program isill-formed.
[Example 8:
namespace A {

extern "C" void f(int = 5);
}
namespace B {

extern "C" void f(int = 5);
}

using A::f;
using B::f;

void use() {
f(3); // OK, default argument was not used for viability
f(); // error: found default argument twice

}

—end example]
12.2.4.2 Implicit conversion sequences [over.best.ics]
12.2.4.2.1 General [over.best.ics.general]

1 An implicit conversion sequence is a sequence of conversions used to convert an argument in a function call to the typeof the corresponding parameter of the function being called. The sequence of conversions is an implicit conversionas defined in 7.3, which means it is governed by the rules for initialization of an object or reference by a singleexpression (9.4, 9.4.4).
2 Implicit conversion sequences are concerned only with the type, cv-qualification, and value category of the argumentand how these are converted to match the corresponding properties of the parameter.
[Note 1: Other properties, such as the lifetime, storage class, alignment, accessibility of the argument, whether the argument is abit-field, and whether a function is deleted (9.5.3), are ignored. So, although an implicit conversion sequence can be defined for agiven argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the final analysis.—end note]

3 A well-formed implicit conversion sequence is one of the following forms:
—(3.1) a standard conversion sequence (12.2.4.2.2),
—(3.2) a user-defined conversion sequence (12.2.4.2.3), or
—(3.3) an ellipsis conversion sequence (12.2.4.2.4).

4 However, if the target is
—(4.1) the first parameter of a constructor or
—(4.2) the object parameter of a user-defined conversion function

and the constructor or user-defined conversion function is a candidate by
—(4.3) 12.2.2.4, when the argument is the temporary in the second step of a class copy-initialization,
—(4.4) 12.2.2.5, 12.2.2.6, or 12.2.2.7 (in all cases), or
—(4.5) the second phase of 12.2.2.8 when the initializer list has exactly one element that is itself an initializer list, andthe target is the first parameter of a constructor of class X, and the conversion is to X or reference to cv X,

user-defined conversion sequences are not considered.
[Note 2: These rules prevent more than one user-defined conversion from being applied during overload resolution, thereby avoidinginfinite recursion. —end note]
[Example 1:
struct Y { Y(int); };
struct A { operator int(); };
Y y1 = A(); // error: A::operator int() is not a candidate

§ 12.2.4.2.1 327

© ISO/IEC N4910

struct X { X(); };
struct B { operator X(); };
B b;
X x{{b}}; // error: B::operator X() is not a candidate
— end example]

5 For the case where the parameter type is a reference, see 12.2.4.2.5.
6 When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization of theparameter from the argument expression. The implicit conversion sequence is the one required to convert the argumentexpression to a prvalue of the type of the parameter.
[Note 3: When the parameter has a class type, this is a conceptual conversion defined for the purposes of Clause 12; the actualinitialization is defined in terms of constructors and is not a conversion. —end note]
Any difference in top-level cv-qualification is subsumed by the initialization itself and does not constitute a conversion.
[Example 2: A parameter of type A can be initialized from an argument of type const A. The implicit conversion sequence for thatcase is the identity sequence; it contains no “conversion” from const A to A. —end example]
When the parameter has a class type and the argument expression has the same type, the implicit conversion sequenceis an identity conversion. When the parameter has a class type and the argument expression has a derived class type, theimplicit conversion sequence is a derived-to-base conversion from the derived class to the base class.
[Note 4: There is no such standard conversion; this derived-to-base conversion exists only in the description of implicit conversionsequences. —end note]
A derived-to-base conversion has Conversion rank (12.2.4.2.2).

7 In all contexts, when converting to the implicit object parameter or when converting to the left operand of an assignmentoperation only standard conversion sequences are allowed.
[Note 5: When converting to the explicit object parameter, if any, user-defined conversion sequences are allowed. —end note]

8 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence is the standardconversion sequence consisting of the identity conversion (12.2.4.2.2).
9 If no sequence of conversions can be found to convert an argument to a parameter type, an implicit conversion sequencecannot be formed.
10 If there are multiple well-formed implicit conversion sequences converting the argument to the parameter type, theimplicit conversion sequence associated with the parameter is defined to be the unique conversion sequence designatedthe ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences as described in 12.2.4.3,the ambiguous conversion sequence is treated as a user-defined conversion sequence that is indistinguishable from anyother user-defined conversion sequence.
[Note 6: This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of itsparameters.
[Example 3:
class B;
class A { A (B&);};
class B { operator A (); };
class C { C (B&); };
void f(A) { }
void f(C) { }
B b;
f(b); // error: ambiguous because there is a conversion b→ C (via constructor)// and an (ambiguous) conversion b→ A (via constructor or conversion function)
void f(B) { }
f(b); // OK, unambiguous
— end example]
—end note]
If a function that uses the ambiguous conversion sequence is selected as the best viable function, the call will beill-formed because the conversion of one of the arguments in the call is ambiguous.

11 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

§ 12.2.4.2.1 328

© ISO/IEC N4910

12.2.4.2.2 Standard conversion sequences [over.ics.scs]
1 Table 18 summarizes the conversions defined in 7.3 and partitions them into four disjoint categories: Lvalue Transfor-mation, Qualification Adjustment, Promotion, and Conversion.
[Note 1: These categories are orthogonal with respect to value category, cv-qualification, and data representation: the LvalueTransformations do not change the cv-qualification or data representation of the type; the Qualification Adjustments do not changethe value category or data representation of the type; and the Promotions and Conversions do not change the value category orcv-qualification of the type. —end note]

2 [Note 2: As described in 7.3, a standard conversion sequence either is the Identity conversion by itself (that is, no conversion)or consists of one to three conversions from the other four categories. If there are two or more conversions in the sequence, theconversions are applied in the canonical order: Lvalue Transformation, Promotion or Conversion, Qualification Adjustment.—end note]
3 Each conversion in Table 18 also has an associated rank (Exact Match, Promotion, or Conversion). These are usedto rank standard conversion sequences (12.2.4.3). The rank of a conversion sequence is determined by consideringthe rank of each conversion in the sequence and the rank of any reference binding (12.2.4.2.5). If any of those hasConversion rank, the sequence has Conversion rank; otherwise, if any of those has Promotion rank, the sequence hasPromotion rank; otherwise, the sequence has Exact Match rank.

Table 18: Conversions [tab:over.ics.scs]
Conversion Category Rank Subclause
No conversions required IdentityLvalue-to-rvalue conversion 7.3.2Array-to-pointer conversion Lvalue Transformation 7.3.3Function-to-pointer conversion Exact Match 7.3.4Qualification conversions 7.3.6Function pointer conversion Qualification Adjustment 7.3.14Integral promotions 7.3.7Floating-point promotion Promotion Promotion 7.3.8Integral conversions 7.3.9Floating-point conversions 7.3.10Floating-integral conversions 7.3.11Pointer conversions Conversion Conversion 7.3.12Pointer-to-member conversions 7.3.13Boolean conversions 7.3.15

12.2.4.2.3 User-defined conversion sequences [over.ics.user]
1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a user-definedconversion (11.4.8) followed by a second standard conversion sequence. If the user-defined conversion is specifiedby a constructor (11.4.8.2), the initial standard conversion sequence converts the source type to the type of the firstparameter of that constructor. If the user-defined conversion is specified by a conversion function (11.4.8.3), the initialstandard conversion sequence converts the source type to the type of the object parameter of that conversion function.
2 The second standard conversion sequence converts the result of the user-defined conversion to the target type for thesequence; any reference binding is included in the second standard conversion sequence. Since an implicit conversionsequence is an initialization, the special rules for initialization by user-defined conversion apply when selecting the bestuser-defined conversion for a user-defined conversion sequence (see 12.2.4 and 12.2.4.2).
3 If the user-defined conversion is specified by a specialization of a conversion function template, the second standardconversion sequence shall have exact match rank.
4 A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion of anexpression of class type to a base class of that type is given Conversion rank, in spite of the fact that a constructor (i.e.,a user-defined conversion function) is called for those cases.
12.2.4.2.4 Ellipsis conversion sequences [over.ics.ellipsis]

1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis parameterspecification of the function called (see 7.6.1.3).

§ 12.2.4.2.4 329

© ISO/IEC N4910

12.2.4.2.5 Reference binding [over.ics.ref]
1 When a parameter of reference type binds directly (9.4.4) to an argument expression, the implicit conversion sequenceis the identity conversion, unless the argument expression has a type that is a derived class of the parameter type, inwhich case the implicit conversion sequence is a derived-to-base conversion (12.2.4.2).
[Example 1:
struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // calls f(B&), an exact match, rather than f(A&), a conversion
—end example]
If the parameter binds directly to the result of applying a conversion function to the argument expression, the implicitconversion sequence is a user-defined conversion sequence (12.2.4.2.3) whose second standard conversion sequenceis either an identity conversion or, if the conversion function returns an entity of a type that is a derived class of theparameter type, a derived-to-base conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion sequence is the onerequired to convert the argument expression to the referenced type according to 12.2.4.2. Conceptually, this conversionsequence corresponds to copy-initializing a temporary of the referenced type with the argument expression. Anydifference in top-level cv-qualification is subsumed by the initialization itself and does not constitute a conversion.
3 Except for an implicit object parameter, for which see 12.2.2, an implicit conversion sequence cannot be formed ifit requires binding an lvalue reference other than a reference to a non-volatile const type to an rvalue or binding anrvalue reference to an lvalue other than a function lvalue.
[Note 1: This means, for example, that a candidate function cannot be a viable function if it has a non-const lvalue referenceparameter (other than the implicit object parameter) and the corresponding argument would require a temporary to be created toinitialize the lvalue reference (see 9.4.4). —end note]

4 Other restrictions on binding a reference to a particular argument that are not based on the types of the reference and theargument do not affect the formation of an implicit conversion sequence, however.
[Example 2: A function with an “lvalue reference to int” parameter can be a viable candidate even if the corresponding argument isan int bit-field. The formation of implicit conversion sequences treats the int bit-field as an int lvalue and finds an exact match withthe parameter. If the function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibition onbinding a non-const lvalue reference to a bit-field (9.4.4). —end example]
12.2.4.2.6 List-initialization sequence [over.ics.list]

1 When an argument is an initializer list (9.4.5), it is not an expression and special rules apply for converting it to aparameter type.
2 If the initializer list is a designated-initializer-list, a conversion is only possible if the parameter has an aggregate typethat can be initialized from the initializer list according to the rules for aggregate initialization (9.4.2), in which case theimplicit conversion sequence is a user-defined conversion sequence whose second standard conversion sequence is anidentity conversion.
[Note 1: Aggregate initialization does not require that the members are declared in designation order. If, after overload resolution,the order does not match for the selected overload, the initialization of the parameter will be ill-formed (9.4.5).
[Example 1:
struct A { int x, y; };
struct B { int y, x; };
void f(A a, int); // #1
void f(B b, ...); // #2
void g(A a); // #3
void g(B b); // #4
void h() {

f({.x = 1, .y = 2}, 0); // OK; calls #1
f({.y = 2, .x = 1}, 0); // error: selects #1, initialization of a fails// due to non-matching member order (9.4.5)
g({.x = 1, .y = 2}); // error: ambiguous between #3 and #4

}

—end example]

§ 12.2.4.2.6 330

© ISO/IEC N4910

—end note]
3 Otherwise, if the parameter type is an aggregate class X and the initializer list has a single element of type cv U, where

U is X or a class derived from X, the implicit conversion sequence is the one required to convert the element to theparameter type.
4 Otherwise, if the parameter type is a character array116 and the initializer list has a single element that is an appropriately-typed string-literal (9.4.3), the implicit conversion sequence is the identity conversion.
5 Otherwise, if the parameter type is std::initializer_list<X> and all the elements of the initializer list can beimplicitly converted to X, the implicit conversion sequence is the worst conversion necessary to convert an elementof the list to X, or if the initializer list has no elements, the identity conversion. This conversion can be a user-definedconversion even in the context of a call to an initializer-list constructor.
[Example 2:
void f(std::initializer_list<int>);
f({}); // OK, f(initializer_list<int>) identity conversion
f({1,2,3}); // OK, f(initializer_list<int>) identity conversion
f({'a','b'}); // OK, f(initializer_list<int>) integral promotion
f({1.0}); // error: narrowing
struct A {

A(std::initializer_list<double>); // #1
A(std::initializer_list<complex<double>>); // #2
A(std::initializer_list<std::string>); // #3

};
A a{ 1.0,2.0 }; // OK, uses #1
void g(A);
g({ "foo", "bar" }); // OK, uses #3
typedef int IA[3];
void h(const IA&);
h({ 1, 2, 3 }); // OK, identity conversion
—end example]

6 Otherwise, if the parameter type is “array of N X” or “array of unknown bound of X”, if there exists an implicit conversionsequence from each element of the initializer list (and from {} in the former case if N exceeds the number of elements inthe initializer list) to X, the implicit conversion sequence is the worst such implicit conversion sequence.
7 Otherwise, if the parameter is a non-aggregate class X and overload resolution per 12.2.2.8 chooses a single bestconstructor C of X to perform the initialization of an object of type X from the argument initializer list:

—(7.1) If C is not an initializer-list constructor and the initializer list has a single element of type cv U, where U is X or aclass derived from X, the implicit conversion sequence has Exact Match rank if U is X, or Conversion rank if U isderived from X.
—(7.2) Otherwise, the implicit conversion sequence is a user-defined conversion sequence whose second standardconversion sequence is an identity conversion.

If multiple constructors are viable but none is better than the others, the implicit conversion sequence is the ambiguousconversion sequence. User-defined conversions are allowed for conversion of the initializer list elements to theconstructor parameter types except as noted in 12.2.4.2.
[Example 3:
struct A {

A(std::initializer_list<int>);
};
void f(A);
f({'a', 'b'}); // OK, f(A(std::initializer_list<int>)) user-defined conversion
struct B {

B(int, double);
};
void g(B);

116) Since there are no parameters of array type, this will only occur as the referenced type of a reference parameter.
§ 12.2.4.2.6 331

© ISO/IEC N4910

g({'a', 'b'}); // OK, g(B(int, double)) user-defined conversion
g({1.0, 1.0}); // error: narrowing
void f(B);
f({'a', 'b'}); // error: ambiguous f(A) or f(B)
struct C {

C(std::string);
};
void h(C);
h({"foo"}); // OK, h(C(std::string("foo")))
struct D {

D(A, C);
};
void i(D);
i({ {1,2}, {"bar"} }); // OK, i(D(A(std::initializer_list<int>{1,2}), C(std::string("bar"))))

—end example]
8 Otherwise, if the parameter has an aggregate type which can be initialized from the initializer list according to therules for aggregate initialization (9.4.2), the implicit conversion sequence is a user-defined conversion sequence whosesecond standard conversion sequence is an identity conversion.
[Example 4:
struct A {

int m1;
double m2;

};

void f(A);
f({'a', 'b'}); // OK, f(A(int,double)) user-defined conversion
f({1.0}); // error: narrowing
—end example]

9 Otherwise, if the parameter is a reference, see 12.2.4.2.5.
[Note 2: The rules in this subclause will apply for initializing the underlying temporary for the reference. —end note]
[Example 5:
struct A {

int m1;
double m2;

};

void f(const A&);
f({'a', 'b'}); // OK, f(A(int,double)) user-defined conversion
f({1.0}); // error: narrowing
void g(const double &);
g({1}); // same conversion as int to double
—end example]

10 Otherwise, if the parameter type is not a class:
—(10.1) if the initializer list has one element that is not itself an initializer list, the implicit conversion sequence is the onerequired to convert the element to the parameter type;

[Example 6:
void f(int);
f({'a'}); // OK, same conversion as char to int
f({1.0}); // error: narrowing
—end example]

—(10.2) if the initializer list has no elements, the implicit conversion sequence is the identity conversion.
[Example 7:

§ 12.2.4.2.6 332

© ISO/IEC N4910

void f(int);
f({ }); // OK, identity conversion
—end example]

11 In all cases other than those enumerated above, no conversion is possible.
12.2.4.3 Ranking implicit conversion sequences [over.ics.rank]

1 This subclause defines a partial ordering of implicit conversion sequences based on the relationships better conversionsequence and better conversion. If an implicit conversion sequence S1 is defined by these rules to be a better conversionsequence than S2, then it is also the case that S2 is a worse conversion sequence than S1. If conversion sequence S1is neither better than nor worse than conversion sequence S2, S1 and S2 are said to be indistinguishable conversionsequences.
2 When comparing the basic forms of implicit conversion sequences (as defined in 12.2.4.2)

—(2.1) a standard conversion sequence (12.2.4.2.2) is a better conversion sequence than a user-defined conversionsequence or an ellipsis conversion sequence, and
—(2.2) a user-defined conversion sequence (12.2.4.2.3) is a better conversion sequence than an ellipsis conversionsequence (12.2.4.2.4).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of thefollowing rules applies:
—(3.1) List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if

—(3.1.1) L1 converts to std::initializer_list<X> for some X and L2 does not, or, if not that,
—(3.1.2) L1 and L2 convert to arrays of the same element type, and either the number of elements n1 initialized by L1is less than the number of elements n2 initialized by L2, or n1 = n2 and L2 converts to an array of unknownbound and L1 does not,
even if one of the other rules in this paragraph would otherwise apply.
[Example 1:
void f1(int); // #1
void f1(std::initializer_list<long>); // #2
void g1() { f1({42}); } // chooses #2
void f2(std::pair<const char*, const char*>); // #3
void f2(std::initializer_list<std::string>); // #4
void g2() { f2({"foo","bar"}); } // chooses #4
—end example]
[Example 2:
void f(int (&&)[]); // #1
void f(double (&&)[]); // #2
void f(int (&&)[2]); // #3
f({1}); // Calls #1: Better than #2 due to conversion, better than #3 due to bounds
f({1.0}); // Calls #2: Identity conversion is better than floating-integral conversion
f({1.0, 2.0}); // Calls #2: Identity conversion is better than floating-integral conversion
f({1, 2}); // Calls #3: Converting to array of known bound is better than to unknown bound,// and an identity conversion is better than floating-integral conversion
—end example]

—(3.2) Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence S2 if
—(3.2.1) S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form definedby 12.2.4.2.2, excluding any Lvalue Transformation; the identity conversion sequence is considered to be asubsequence of any non-identity conversion sequence) or, if not that,
—(3.2.2) the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distinguishable by therules in the paragraph below, or, if not that,
—(3.2.3) S1 and S2 include reference bindings (9.4.4) and neither refers to an implicit object parameter of a non-staticmember function declared without a ref-qualifier , and S1 binds an rvalue reference to an rvalue and S2binds an lvalue reference

§ 12.2.4.3 333

© ISO/IEC N4910

[Example 3:
int i;
int f1();
int&& f2();
int g(const int&);
int g(const int&&);
int j = g(i); // calls g(const int&)
int k = g(f1()); // calls g(const int&&)
int l = g(f2()); // calls g(const int&&)

struct A {
A& operator<<(int);
void p() &;
void p() &&;

};
A& operator<<(A&&, char);
A() << 1; // calls A::operator<<(int)
A() << 'c'; // calls operator<<(A&&, char)
A a;
a << 1; // calls A::operator<<(int)
a << 'c'; // calls A::operator<<(int)
A().p(); // calls A::p()&&
a.p(); // calls A::p()&
—end example]
or, if not that,

—(3.2.4) S1 and S2 include reference bindings (9.4.4) and S1 binds an lvalue reference to a function lvalue and S2binds an rvalue reference to a function lvalue
[Example 4:
int f(void(&)()); // #1
int f(void(&&)()); // #2
void g();
int i1 = f(g); // calls #1
—end example]
or, if not that,

—(3.2.5) S1 and S2 differ only in their qualification conversion (7.3.6) and yield similar types T1 and T2, respectively,where T1 can be converted to T2 by a qualification conversion.
[Example 5:
int f(const volatile int *);
int f(const int *);
int i;
int j = f(&i); // calls f(const int*)

—end example]
or, if not that,

—(3.2.6) S1 and S2 include reference bindings (9.4.4), and the types to which the references refer are the sametype except for top-level cv-qualifiers, and the type to which the reference initialized by S2 refers is morecv-qualified than the type to which the reference initialized by S1 refers.
[Example 6:
int f(const int &);
int f(int &);
int g(const int &);
int g(int);

int i;
int j = f(i); // calls f(int &)
int k = g(i); // ambiguous

§ 12.2.4.3 334

© ISO/IEC N4910

struct X {
void f() const;
void f();

};
void g(const X& a, X b) {

a.f(); // calls X::f() const
b.f(); // calls X::f()

}

—end example]
—(3.3) User-defined conversion sequence U1 is a better conversion sequence than another user-defined conversionsequence U2 if they contain the same user-defined conversion function or constructor or they initialize the sameclass in an aggregate initialization and in either case the second standard conversion sequence of U1 is better thanthe second standard conversion sequence of U2.

[Example 7:
struct A {
operator short();

} a;
int f(int);
int f(float);
int i = f(a); // calls f(int), because short→ int is// better than short→ float.
— end example]

4 Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a Promotion,which is a better conversion than a Conversion. Two conversion sequences with the same rank are indistinguishableunless one of the following rules applies:
—(4.1) A conversion that does not convert a pointer or a pointer to member to bool is better than one that does.
—(4.2) A conversion that promotes an enumeration whose underlying type is fixed to its underlying type is better thanone that promotes to the promoted underlying type, if the two are different.
—(4.3) If class B is derived directly or indirectly from class A, conversion of B* to A* is better than conversion of B* to

void*, and conversion of A* to void* is better than conversion of B* to void*.
—(4.4) If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from B,

—(4.4.1) conversion of C* to B* is better than conversion of C* to A*,
[Example 8:
struct A {};
struct B : public A {};
struct C : public B {};
C* pc;
int f(A*);
int f(B*);
int i = f(pc); // calls f(B*)
—end example]

—(4.4.2) binding of an expression of type C to a reference to type B is better than binding an expression of type C to areference to type A,
—(4.4.3) conversion of A::* to B::* is better than conversion of A::* to C::*,
—(4.4.4) conversion of C to B is better than conversion of C to A,
—(4.4.5) conversion of B* to A* is better than conversion of C* to A*,
—(4.4.6) binding of an expression of type B to a reference to type A is better than binding an expression of type C to areference to type A,
—(4.4.7) conversion of B::* to C::* is better than conversion of A::* to C::*, and
—(4.4.8) conversion of B to A is better than conversion of C to A.

[Note 1: Compared conversion sequences will have different source types only in the context of comparing the second standardconversion sequence of an initialization by user-defined conversion (see 12.2.4); in all other contexts, the source types will bethe same and the target types will be different. —end note]
§ 12.2.4.3 335

© ISO/IEC N4910

12.3 Address of an overload set [over.over]
1 An id-expression whose terminal name refers to an overload set S and that appears without arguments is resolved toa function, a pointer to function, or a pointer to member function for a specific function that is chosen from a set offunctions selected from S determined based on the target type required in the context (if any), as described below. Thetarget can be

—(1.1) an object or reference being initialized (9.4, 9.4.4, 9.4.5),
—(1.2) the left side of an assignment (7.6.19),
—(1.3) a parameter of a function (7.6.1.3),
—(1.4) a parameter of a user-defined operator (12.4),
—(1.5) the return value of a function, operator function, or conversion (8.7.4),
—(1.6) an explicit type conversion (7.6.1.4, 7.6.1.9, 7.6.3), or
—(1.7) a non-type template-parameter (13.4.3).

The id-expression can be preceded by the & operator.
[Note 1: Any redundant set of parentheses surrounding the function name is ignored (7.5.3). —end note]

2 If there is no target, all non-template functions named are selected. Otherwise, a non-template function with type F isselected for the function type FT of the target type if F (after possibly applying the function pointer conversion (7.3.14))is identical to FT.
[Note 2: That is, the class of which the function is a member is ignored when matching a pointer-to-member-function type. —endnote]

3 The specialization, if any, generated by template argument deduction (13.10.4, 13.10.3.3, 13.10.2) for each functiontemplate named is added to the set of selected functions considered.
4 Non-member functions, static member functions, and explicit object member functions match targets of function pointertype or reference to function type. Non-static member functions match targets of pointer-to-member-function type.
[Note 3: If an implicit object member function is chosen, the result can be used only to form a pointer to member (7.6.2.2). —endnote]

5 All functions with associated constraints that are not satisfied (13.5.3) are eliminated from the set of selected functions.If more than one function in the set remains, all function template specializations in the set are eliminated if the set alsocontains a function that is not a function template specialization. Any given non-template function F0 is eliminated ifthe set contains a second non-template function that is more constrained than F0 according to the partial ordering rulesof 13.5.5. Any given function template specialization F1 is eliminated if the set contains a second function templatespecialization whose function template is more specialized than the function template of F1 according to the partialordering rules of 13.7.7.3. After such eliminations, if any, there shall remain exactly one selected function.
6 [Example 1:

int f(double);
int f(int);
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f(int)
int (*pfe)(...) = &f; // error: type mismatch
int (&rfi)(int) = f; // selects f(int)
int (&rfd)(double) = f; // selects f(double)
void g() {

(int (*)(int))&f; // cast expression as selector
}

The initialization of pfe is ill-formed because no f() with type int(...) has been declared, and not because of any ambiguity. Foranother example,
struct X {

int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK

§ 12.3 336

© ISO/IEC N4910

int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for// pointer to member
int (*p6)(long) = &(X::f); // OK
—end example]

7 [Note 4: If f and g are both overload sets, the Cartesian product of possibilities is considered to resolve f(&g), or the equivalentexpression f(g). —end note]
8 [Note 5: Even if B is a public base of D, we have

D* f();
B* (*p1)() = &f; // error
void g(D*);
void (*p2)(B*) = &g; // error
— end note]
12.4 Overloaded operators [over.oper]
12.4.1 General [over.oper.general]

1 A declaration whose declarator-id is an operator-function-id shall declare a function or function template or an explicitinstantiation or specialization of a function template. A function so declared is an operator function. A function templateso declared is an operator function template. A specialization of an operator function template is also an operatorfunction. An operator function is said to implement the operator named in its operator-function-id .
operator-function-id :

operator operator

operator : one of
new delete new[] delete[] co_await () [] -> ->*
~ ! + - * / % ^ &
| = += -= *= /= %= ^= &=
|= == != < > <= >= <=> &&
|| << >> <<= >>= ++ -- ,

[Note 1: The operators new[], delete[], (), and [] are formed from more than one token. The latter two operators are functioncall (7.6.1.3) and subscripting (7.6.1.2). —end note]
2 Both the unary and binary forms of

+ - * &

can be overloaded.
3 [Note 2: The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols # (15.6.3) and ## (15.6.4). —end note]
4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they imple-ment (12.4.2 – 12.4.7). They can be explicitly called, however, using the operator-function-id as the name of thefunction in the function call syntax (7.6.1.3).
[Example 1:
complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

—end example]
5 The allocation and deallocation functions, operator new, operator new[], operator delete, and operator delete[],are described completely in 6.7.5.5. The attributes and restrictions found in the rest of 12.4 do not apply to them unlessexplicitly stated in 6.7.5.5.
6 The co_await operator is described completely in 7.6.2.4. The attributes and restrictions found in the rest of 12.4 donot apply to it unless explicitly stated in 7.6.2.4.
7 An operator function shall either be a non-static member function or be a non-member function that has at least onenon-object parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enumeration. Itis not possible to change the precedence, grouping, or number of operands of operators. The meaning of the operators =,
§ 12.4.1 337

© ISO/IEC N4910

(unary) &, and , (comma), predefined for each type, can be changed for specific class types by defining operator functionsthat implement these operators. Likewise, the meaning of the operators (unary) & and , (comma) can be changed forspecific enumeration types. Operator functions are inherited in the same manner as other base class functions.
8 An operator function shall be a prefix unary, binary, function call, subscripting, class member access, increment, ordecrement operator function.
9 [Note 3: The identities among certain predefined operators applied to basic types (for example, ++a ≡ a+=1) need not hold foroperator functions. Some predefined operators, such as +=, require an operand to be an lvalue when applied to basic types; this is notrequired by operator functions. —end note]
10 An operator function cannot have default arguments (9.3.4.7), except where explicitly stated below. Operator functionscannot have more or fewer parameters than the number required for the corresponding operator, as described in the restof 12.4.
11 Operators not mentioned explicitly in subclauses 12.4.3.2 through 12.4.7 act as ordinary unary and binary operatorsobeying the rules of 12.4.2 or 12.4.3.
12.4.2 Unary operators [over.unary]

1 A prefix unary operator function is a function named operator@ for a prefix unary-operator @ (7.6.2.2) that is either anon-static member function (11.4.2) with no non-object parameters or a non-member function with one parameter. Fora unary-expression of the form @ cast-expression, the operator function is selected by overload resolution (12.2.2.3). Ifa member function is selected, the expression is interpreted as
cast-expression . operator @ ()

Otherwise, if a non-member function is selected, the expression is interpreted as
operator @ (cast-expression)

[Note 1: The operators ++ and -- (7.6.2.3) are described in 12.4.7. —end note]
2 [Note 2: The unary and binary forms of the same operator have the same name. Consequently, a unary operator can hide a binaryoperator from an enclosing scope, and vice versa. —end note]
12.4.3 Binary operators [over.binary]
12.4.3.1 General [over.binary.general]

1 A binary operator function is a function named operator@ for a binary operator @ that is either a non-static memberfunction (11.4.2) with one non-object parameter or a non-member function with two parameters. For an expression x @
y with subexpressions x and y, the operator function is selected by overload resolution (12.2.2.3). If a member functionis selected, the expression is interpreted as

x . operator @ (y)

Otherwise, if a non-member function is selected, the expression is interpreted as
operator @ (x , y)

2 An equality operator function is an operator function for an equality operator (7.6.10). A relational operator function isan operator function for a relational operator (7.6.9). A three-way comparison operator function is an operator functionfor the three-way comparison operator (7.6.8). A comparison operator function is an equality operator function, arelational operator function, or a three-way comparison operator function.
12.4.3.2 Simple assignment [over.ass]

1 A simple assignment operator function is a binary operator function named operator=. A simple assignment operatorfunction shall be a non-static member function.
[Note 1: Because only standard conversion sequences are considered when converting to the left operand of an assignmentoperation (12.2.4.2), an expression x = y with a subexpression x of class type is always interpreted as x.operator=(y). —endnote]

2 [Note 2: Since a copy assignment operator is implicitly declared for a class if not declared by the user (11.4.6), a base class assignmentoperator function is always hidden by the copy assignment operator function of the derived class. —end note]
3 [Note 3: Any assignment operator function, even the copy and move assignment operators, can be virtual. For a derived class Dwith a base class B for which a virtual copy/move assignment has been declared, the copy/move assignment operator in D does notoverride B’s virtual copy/move assignment operator.
[Example 1:
struct B {

virtual int operator= (int);

§ 12.4.3.2 338

© ISO/IEC N4910

virtual B& operator= (const B&);
};
struct D : B {

virtual int operator= (int);
virtual D& operator= (const B&);

};

D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {

bptr->operator=(99); // calls D::operator=(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D::operator=(const B&)
*bptr = dobj2; // ditto
dobj1 = dobj2; // calls implicitly-declared D::operator=(const D&)

}

—end example]
—end note]
12.4.4 Function call [over.call]

1 A function call operator function is a function named operator() that is a non-static member function with an arbitrarynumber of parameters. It may have default arguments. For an expression of the form
postfix-expression (expression-listopt)

where the postfix-expression is of class type, the operator function is selected by overload resolution (12.2.2.2.3). Ifa surrogate call function for a conversion function named operator conversion-type-id is selected, the expression isinterpreted as
postfix-expression . operator conversion-type-id () (expression-listopt)

Otherwise, the expression is interpreted as
postfix-expression . operator () (expression-listopt)

12.4.5 Subscripting [over.sub]
1 A subscripting operator function is a function named operator[] that is a non-static member function. For an expressionof the form

postfix-expression [expression-listopt]

the operator function is selected by overload resolution (12.2.2.3). If a member function is selected, the expression isinterpreted as
postfix-expression . operator [] (expression-listopt)

2 [Example 1:
struct X {

Z operator[](std::initializer_list<int>);
Z operator[](auto...);

};
X x;
x[{1,2,3}] = 7; // OK, meaning x.operator[]({1,2,3})
x[1,2,3] = 7; // OK, meaning x.operator[](1,2,3)
int a[10];
a[{1,2,3}] = 7; // error: built-in subscript operator
a[1,2,3] = 7; // error: built-in subscript operator
— end example]
12.4.6 Class member access [over.ref]

1 A class member access operator function is a function named operator-> that is a non-static member function takingno non-object parameters. For an expression of the form
postfix-expression -> templateopt id-expression

the operator function is selected by overload resolution (12.2.2.3), and the expression is interpreted as

§ 12.4.6 339

© ISO/IEC N4910

(postfix-expression . operator -> ()) -> templateopt id-expression

12.4.7 Increment and decrement [over.inc]
1 An increment operator function is a function named operator++. If this function is a non-static member function withno non-object parameters, or a non-member function with one parameter, it defines the prefix increment operator ++ forobjects of that type. If the function is a non-static member function with one non-object parameter (which shall beof type int) or a non-member function with two parameters (the second of which shall be of type int), it defines thepostfix increment operator ++ for objects of that type. When the postfix increment is called as a result of using the ++operator, the int argument will have value zero.117
[Example 1:
struct X {

X& operator++(); // prefix ++a
X operator++(int); // postfix a++

};

struct Y { };
Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfix b++
void f(X a, Y b) {

++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

—end example]
2 A decrement operator function is a function named operator-- and is handled analogously to an increment operatorfunction.
12.5 Built-in operators [over.built]

1 The candidate operator functions that represent the built-in operators defined in 7.6 are specified in this subclause.These candidate functions participate in the operator overload resolution process as described in 12.2.2.3 and are usedfor no other purpose.
[Note 1: Because built-in operators take only operands with non-class type, and operator overload resolution occurs only when anoperand expression originally has class or enumeration type, operator overload resolution can resolve to a built-in operator onlywhen an operand has a class type that has a user-defined conversion to a non-class type appropriate for the operator, or when anoperand has an enumeration type that can be converted to a type appropriate for the operator. Also note that some of the candidateoperator functions given in this subclause are more permissive than the built-in operators themselves. As described in 12.2.2.3, aftera built-in operator is selected by overload resolution the expression is subject to the requirements for the built-in operator given in7.6, and therefore to any additional semantic constraints given there. In some cases, user-written candidates with the same name andparameter types as a built-in candidate operator function cause the built-in operator function to not be included in the set of candidatefunctions. —end note]

2 In this subclause, the term promoted integral type is used to refer to those cv-unqualified integral types which arepreserved by integral promotion (7.3.7) (including e.g. int and long but excluding e.g. char).
[Note 2: In all cases where a promoted integral type is required, an operand of unscoped enumeration type will be acceptable by wayof the integral promotions. —end note]

3 In the remainder of this subclause, vq represents either volatile or no cv-qualifier.
4 For every pair (T, vq), where T is a cv-unqualified arithmetic type other than bool or a cv-unqualified pointer to (possiblycv-qualified) object type, there exist candidate operator functions of the form

vq T& operator++(vq T&);
T operator++(vq T&, int);

117) Calling operator++ explicitly, as in expressions like a.operator++(2), has no special properties: The argument to operator++ is 2.
§ 12.5 340

© ISO/IEC N4910

vq T& operator--(vq T&);
T operator--(vq T&, int);

5 For every (possibly cv-qualified) object type T and for every function type T that has neither cv-qualifiers nor a
ref-qualifier , there exist candidate operator functions of the form
T& operator*(T*);

6 For every type T there exist candidate operator functions of the form
T* operator+(T*);

7 For every cv-unqualified floating-point or promoted integral type T, there exist candidate operator functions of the form
T operator+(T);
T operator-(T);

8 For every promoted integral type T, there exist candidate operator functions of the form
T operator~(T);

9 For every quintuple (C1, C2, T, cv1, cv2), where C2 is a class type, C1 is the same type as C2 or is a derived class of C2,and T is an object type or a function type, there exist candidate operator functions of the form
cv12 T& operator->*(cv1 C1*, cv2 T C2::*);

where cv12 is the union of cv1 and cv2. The return type is shown for exposition only; see 7.6.4 for the determination ofthe operator’s result type.
10 For every pair of types L and R, where each of L and R is a floating-point or promoted integral type, there exist candidateoperator functions of the form

LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator==(L, R);
bool operator!=(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);

where LR is the result of the usual arithmetic conversions (7.4) between types L and R.
11 For every integral type T there exists a candidate operator function of the form

std::strong_ordering operator<=>(T, T);

12 For every pair of floating-point types L and R, there exists a candidate operator function of the form
std::partial_ordering operator<=>(L, R);

13 For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form
T* operator+(T*, std::ptrdiff_t);
T& operator[](T*, std::ptrdiff_t);
T* operator-(T*, std::ptrdiff_t);
T* operator+(std::ptrdiff_t, T*);
T& operator[](std::ptrdiff_t, T*);

14 For every T, where T is a pointer to object type, there exist candidate operator functions of the form
std::ptrdiff_t operator-(T, T);

15 For every T, where T is an enumeration type or a pointer type, there exist candidate operator functions of the form
bool operator==(T, T);
bool operator!=(T, T);
bool operator<(T, T);
bool operator>(T, T);
bool operator<=(T, T);
bool operator>=(T, T);
R operator<=>(T, T);

where R is the result type specified in 7.6.8.

§ 12.5 341

© ISO/IEC N4910

16 For every T, where T is a pointer-to-member type or std::nullptr_t, there exist candidate operator functions of theform
bool operator==(T, T);
bool operator!=(T, T);

17 For every pair of promoted integral types L and R, there exist candidate operator functions of the form
LR operator%(L, R);
LR operator&(L, R);
LR operator^(L, R);
LR operator|(L, R);
L operator<<(L, R);
L operator>>(L, R);

where LR is the result of the usual arithmetic conversions (7.4) between types L and R.
18 For every triple (L, vq, R), where L is an arithmetic type, and R is a floating-point or promoted integral type, there existcandidate operator functions of the form

vq L& operator=(vq L&, R);
vq L& operator*=(vq L&, R);
vq L& operator/=(vq L&, R);
vq L& operator+=(vq L&, R);
vq L& operator-=(vq L&, R);

19 For every pair (T, vq), where T is any type, there exist candidate operator functions of the form
T*vq& operator=(T*vq&, T*);

20 For every pair (T, vq), where T is an enumeration or pointer-to-member type, there exist candidate operator functions ofthe form
vq T& operator=(vq T&, T);

21 For every pair (T, vq), where T is a cv-qualified or cv-unqualified object type, there exist candidate operator functionsof the form
T*vq& operator+=(T*vq&, std::ptrdiff_t);
T*vq& operator-=(T*vq&, std::ptrdiff_t);

22 For every triple (L, vq, R), where L is an integral type, and R is a promoted integral type, there exist candidate operatorfunctions of the form
vq L& operator%=(vq L&, R);
vq L& operator<<=(vq L&, R);
vq L& operator>>=(vq L&, R);
vq L& operator&=(vq L&, R);
vq L& operator^=(vq L&, R);
vq L& operator|=(vq L&, R);

23 There also exist candidate operator functions of the form
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

24 For every pair of types L and R, where each of L and R is a floating-point or promoted integral type, there exist candidateoperator functions of the form
LR operator?:(bool, L, R);

where LR is the result of the usual arithmetic conversions (7.4) between types L and R.
[Note 3: As with all these descriptions of candidate functions, this declaration serves only to describe the built-in operator forpurposes of overload resolution. The operator “?:” cannot be overloaded. —end note]

25 For every type T, where T is a pointer, pointer-to-member, or scoped enumeration type, there exist candidate operatorfunctions of the form
T operator?:(bool, T, T);

12.6 User-defined literals [over.literal]

§ 12.6 342

© ISO/IEC N4910

literal-operator-id :
operator string-literal identifier
operator user-defined-string-literal

1 The string-literal or user-defined-string-literal in a literal-operator-id shall have no encoding-prefix and shall contain nocharacters other than the implicit terminating ’\0’. The ud-suffix of the user-defined-string-literal or the identifier in a
literal-operator-id is called a literal suffix identifier. Some literal suffix identifiers are reserved for future standardization;see 16.4.5.3.6. A declaration whose literal-operator-id uses such a literal suffix identifier is ill-formed, no diagnosticrequired.

2 A declaration whose declarator-id is a literal-operator-id shall declare a function or function template that belongs to anamespace (it could be a friend function (11.8.4)) or an explicit instantiation or specialization of a function template. Afunction declared with a literal-operator-id is a literal operator. A function template declared with a literal-operator-idis a literal operator template.
3 The declaration of a literal operator shall have a parameter-declaration-clause equivalent to one of the following:

const char*
unsigned long long int
long double
char
wchar_t
char8_t
char16_t
char32_t
const char*, std::size_t
const wchar_t*, std::size_t
const char8_t*, std::size_t
const char16_t*, std::size_t
const char32_t*, std::size_t

If a parameter has a default argument (9.3.4.7), the program is ill-formed.
4 A raw literal operator is a literal operator with a single parameter whose type is const char*.
5 A numeric literal operator template is a literal operator template whose template-parameter-list has a single template-

parameter that is a non-type template parameter pack (13.7.4) with element type char. A string literal operator templateis a literal operator template whose template-parameter-list comprises a single non-type template-parameter of classtype. The declaration of a literal operator template shall have an empty parameter-declaration-clause and shall declareeither a numeric literal operator template or a string literal operator template.
6 Literal operators and literal operator templates shall not have C language linkage.
7 [Note 1: Literal operators and literal operator templates are usually invoked implicitly through user-defined literals (5.13.8). However,except for the constraints described above, they are ordinary namespace-scope functions and function templates. In particular, theyare looked up like ordinary functions and function templates and they follow the same overload resolution rules. Also, they can bedeclared inline or constexpr, they can have internal, module, or external linkage, they can be called explicitly, their addresses canbe taken, etc. —end note]
8 [Example 1:

void operator "" _km(long double); // OK
string operator "" _i18n(const char*, std::size_t); // OK
template <char...> double operator "" _\u03C0(); // OK, UCN for lowercase pi
float operator ""_e(const char*); // OK
float operator ""E(const char*); // ill-formed, no diagnostic required:// reserved literal suffix (16.4.5.3.6, 5.13.8)
double operator""_Bq(long double); // OK, does not use the reserved identifier _Bq (5.10)
double operator"" _Bq(long double); // ill-formed, no diagnostic required:// uses the reserved identifier _Bq (5.10)
float operator " " B(const char*); // error: non-empty string-literal
string operator "" 5X(const char*, std::size_t); // error: invalid literal suffix identifier
double operator "" _miles(double); // error: invalid parameter-declaration-clause
template <char...> int operator "" _j(const char*); // error: invalid parameter-declaration-clause
extern "C" void operator "" _m(long double); // error: C language linkage
—end example]

§ 12.6 343

© ISO/IEC N4910

13 Templates [temp]
13.1 Preamble [temp.pre]

1 A template defines a family of classes, functions, or variables, an alias for a family of types, or a concept.
template-declaration :

template-head declaration
template-head concept-definition

template-head :
template < template-parameter-list > requires-clauseopt

template-parameter-list :
template-parameter
template-parameter-list , template-parameter

requires-clause :
requires constraint-logical-or-expression

constraint-logical-or-expression :
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression :
primary-expression
constraint-logical-and-expression && primary-expression

[Note 1: The > token following the template-parameter-list of a template-declaration can be the product of replacing a >> token bytwo consecutive > tokens (13.3). —end note]
2 The declaration in a template-declaration (if any) shall

—(2.1) declare or define a function, a class, or a variable, or
—(2.2) define a member function, a member class, a member enumeration, or a static data member of a class template orof a class nested within a class template, or
—(2.3) define a member template of a class or class template, or
—(2.4) be a deduction-guide, or
—(2.5) be an alias-declaration.

3 A template-declaration is a declaration. A declaration introduced by a template declaration of a variable is a variabletemplate. A variable template at class scope is a static data member template.
[Example 1:
template<class T>

constexpr T pi = T(3.1415926535897932385L);
template<class T>

T circular_area(T r) {
return pi<T> * r * r;

}
struct matrix_constants {

template<class T>
using pauli = hermitian_matrix<T, 2>;

template<class T>
constexpr static pauli<T> sigma1 = { { 0, 1 }, { 1, 0 } };

template<class T>
constexpr static pauli<T> sigma2 = { { 0, -1i }, { 1i, 0 } };

template<class T>
constexpr static pauli<T> sigma3 = { { 1, 0 }, { 0, -1 } };

};

—end example]
4 [Note 2: A template-declaration can appear only as a namespace scope or class scope declaration. —end note]

§ 13.1 344

© ISO/IEC N4910

Its declaration shall not be an export-declaration. In a function template declaration, the unqualified-id of the declarator-
id shall be a name.
[Note 3: A class or variable template declaration of a simple-template-id declares a partial specialization (13.7.6). —end note]

5 In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the declaration shallcontain at most one declarator. When such a declaration is used to declare a class template, no declarator is permitted.
6 A specialization (explicit or implicit) of one template is distinct from all specializations of any other template. Atemplate, an explicit specialization (13.9.4), and a partial specialization shall not have C language linkage.
[Note 4: Default arguments for function templates and for member functions of class templates are considered definitions for thepurpose of template instantiation (13.7) and must obey the one-definition rule (6.3). —end note]

7 [Note 5: A template cannot have the same name as any other name bound in the same scope (6.4.1), except that a function templatecan share a name with non-template functions (9.3.4.6) and/or function templates (13.10.4). Specializations, including partialspecializations (13.7.6), do not reintroduce or bind names. Their target scope is the target scope of the primary template, so allspecializations of a template belong to the same scope as it does. —end note]
8 An entity is templated if it is

—(8.1) a template,
—(8.2) an entity defined (6.2) or created (6.7.7) in a templated entity,
—(8.3) a member of a templated entity,
—(8.4) an enumerator for an enumeration that is a templated entity, or
—(8.5) the closure type of a lambda-expression (7.5.5.2) appearing in the declaration of a templated entity.

[Note 6: A local class, a local or block variable, or a friend function defined in a templated entity is a templated entity. —end note]
9 A template-declaration is written in terms of its template parameters. The optional requires-clause following a

template-parameter-list allows the specification of constraints (13.5.3) on template arguments (13.4). The requires-
clause introduces the constraint-expression that results from interpreting the constraint-logical-or-expression as a
constraint-expression. The constraint-logical-or-expression of a requires-clause is an unevaluated operand (7.2.3).
[Note 7: The expression in a requires-clause uses a restricted grammar to avoid ambiguities. Parentheses can be used to specifyarbitrary expressions in a requires-clause.
[Example 2:
template<int N> requires N == sizeof new unsigned short
int f(); // error: parentheses required around == expression
—end example]
—end note]

10 A definition of a function template, member function of a class template, variable template, or static data member of aclass template shall be reachable from the end of every definition domain (6.3) in which it is implicitly instantiated (13.9.2)unless the corresponding specialization is explicitly instantiated (13.9.3) in some translation unit; no diagnostic isrequired.
13.2 Template parameters [temp.param]

1 The syntax for template-parameters is:
template-parameter :

type-parameter
parameter-declaration

type-parameter :
type-parameter-key ...opt identifieropt
type-parameter-key identifieropt = type-id
type-constraint ...opt identifieropt
type-constraint identifieropt = type-id
template-head type-parameter-key ...opt identifieropt
template-head type-parameter-key identifieropt = id-expression

type-parameter-key :
class
typename

§ 13.2 345

© ISO/IEC N4910

type-constraint :
nested-name-specifieropt concept-name
nested-name-specifieropt concept-name < template-argument-listopt >

The component names of a type-constraint are its concept-name and those of its nested-name-specifier (if any).
[Note 1: The > token following the template-parameter-list of a type-parameter can be the product of replacing a >> token by twoconsecutive > tokens (13.3). —end note]

2 There is no semantic difference between class and typename in a type-parameter-key . typename followed by an
unqualified-id names a template type parameter. typename followed by a qualified-id denotes the type in a non-type118
parameter-declaration. A template-parameter of the form class identifier is a type-parameter .
[Example 1:
class T { /* ... */ };
int i;

template<class T, T i> void f(T t) {
T t1 = i; // template-parameters T and i
::T t2 = ::i; // global namespace members T and i

}

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter of class T. —endexample]
A storage class shall not be specified in a template-parameter declaration. Types shall not be defined in a template-
parameter declaration.

3 The identifier in a type-parameter is not looked up. A type-parameter whose identifier does not follow an ellipsisdefines its identifier to be a typedef-name (if declared without template) or template-name (if declared with template)in the scope of the template declaration.
[Note 2: A template argument can be a class template or alias template. For example,
template<class T> class myarray { /* ... */ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;

};

—end note]
4 A type-constraint Q that designates a concept C can be used to constrain a contextually-determined type or templatetype parameter pack T with a constraint-expression E defined as follows. If Q is of the form C<A1, · · · , An>, thenlet E′ be C<T, A1, · · · , An>. Otherwise, let E′ be C<T>. If T is not a pack, then E is E′, otherwise E is (E′ && ...).This constraint-expression E is called the immediately-declared constraint of Q for T. The concept designated by a

type-constraint shall be a type concept (13.7.9).
5 A type-parameter that starts with a type-constraint introduces the immediately-declared constraint of the type-

constraint for the parameter.
[Example 2:
template<typename T> concept C1 = true;
template<typename... Ts> concept C2 = true;
template<typename T, typename U> concept C3 = true;

template<C1 T> struct s1; // associates C1<T>
template<C1... T> struct s2; // associates (C1<T> && ...)
template<C2... T> struct s3; // associates (C2<T> && ...)
template<C3<int> T> struct s4; // associates C3<T, int>
template<C3<int>... T> struct s5; // associates (C3<T, int> && ...)

—end example]
6 A non-type template-parameter shall have one of the following (possibly cv-qualified) types:

118) Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the terms non-typeparameter and non-type argument are used to refer to non-type, non-template parameters and arguments.
§ 13.2 346

© ISO/IEC N4910

—(6.1) a structural type (see below),
—(6.2) a type that contains a placeholder type (9.2.9.6), or
—(6.3) a placeholder for a deduced class type (9.2.9.7).

The top-level cv-qualifiers on the template-parameter are ignored when determining its type.
7 A structural type is one of the following:

—(7.1) a scalar type, or
—(7.2) an lvalue reference type, or
—(7.3) a literal class type with the following properties:

—(7.3.1) all base classes and non-static data members are public and non-mutable and
—(7.3.2) the types of all bases classes and non-static data members are structural types or (possibly multi-dimensional)array thereof.

8 An id-expression naming a non-type template-parameter of class type T denotes a static storage duration object of type
const T, known as a template parameter object, whose value is that of the corresponding template argument after ithas been converted to the type of the template-parameter . All such template parameters in the program of the sametype with the same value denote the same template parameter object. A template parameter object shall have constantdestruction (7.7).
[Note 3: If an id-expression names a non-type non-reference template-parameter , then it is a prvalue if it has non-class type.Otherwise, if it is of class type T, it is an lvalue and has type const T (7.5.4.2). —end note]
[Example 3:
using X = int;
struct A {};
template<const X& x, int i, A a> void f() {

i++; // error: change of template-parameter value
&x; // OK
&i; // error: address of non-reference template-parameter
&a; // OK
int& ri = i; // error: attempt to bind non-const reference to temporary
const int& cri = i; // OK, const reference binds to temporary
const A& ra = a; // OK, const reference binds to a template parameter object

}

—end example]
9 [Note 4: A non-type template-parameter cannot be declared to have type cv void.
[Example 4:
template<void v> class X; // error
template<void* pv> class Y; // OK
—end example]
—end note]

10 A non-type template-parameter of type “array of T” or of function type T is adjusted to be of type “pointer to T”.
[Example 5:
template<int* a> struct R { /* ... */ };
template<int b[5]> struct S { /* ... */ };
int p;
R<&p> w; // OK
S<&p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion
—end example]

11 A non-type template parameter declared with a type that contains a placeholder type with a type-constraint introduces theimmediately-declared constraint of the type-constraint for the invented type corresponding to the placeholder (9.3.4.6).

§ 13.2 347

© ISO/IEC N4910

12 A default template-argument is a template-argument (13.4) specified after = in a template-parameter . A default
template-argument may be specified for any kind of template-parameter (type, non-type, template) that is not atemplate parameter pack (13.7.4). A default template-argument may be specified in a template declaration. A default
template-argument shall not be specified in the template-parameter-lists of the definition of a member of a classtemplate that appears outside of the member’s class. A default template-argument shall not be specified in a friendclass template declaration. If a friend function template declaration D specifies a default template-argument, thatdeclaration shall be a definition and there shall be no other declaration of the function template which is reachable from
D or from which D is reachable.

13 The set of default template-arguments available for use is obtained by merging the default arguments from all priordeclarations of the template in the same way default function arguments are (9.3.4.7).
[Example 6:
template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to
template<class T1 = int, class T2 = int> class A;

—end example]
14 If a template-parameter of a class template, variable template, or alias template has a default template-argument, eachsubsequent template-parameter shall either have a default template-argument supplied or be a template parameter pack.If a template-parameter of a primary class template, primary variable template, or alias template is a template parameterpack, it shall be the last template-parameter . A template parameter pack of a function template shall not be followed byanother template parameter unless that template parameter can be deduced from the parameter-type-list (9.3.4.6) of thefunction template or has a default argument (13.10.3). A template parameter of a deduction guide template (13.7.2.3)that does not have a default argument shall be deducible from the parameter-type-list of the deduction guide template.
[Example 7:
template<class T1 = int, class T2> class B; // error
// U can be neither deduced from the parameter-type-list nor specified
template<class... T, class... U> void f() { } // error
template<class... T, class U> void g() { } // error
— end example]

15 When parsing a default template-argument for a non-type template-parameter , the first non-nested > is taken as theend of the template-parameter-list rather than a greater-than operator.
[Example 8:
template<int i = 3 > 4 > // syntax error
class X { /* ... */ };

template<int i = (3 > 4) > // OK
class Y { /* ... */ };

—end example]
16 A template-parameter of a template template-parameter is permitted to have a default template-argument. Whensuch default arguments are specified, they apply to the template template-parameter in the scope of the template

template-parameter .
[Example 9:
template <template <class TT = float> class T> struct A {

inline void f();
inline void g();

};
template <template <class TT> class T> void A<T>::f() {

T<> t; // error: TT has no default template argument
}
template <template <class TT = char> class T> void A<T>::g() {

T<> t; // OK, T<char>
}

—end example]

§ 13.2 348

© ISO/IEC N4910

17 If a template-parameter is a type-parameter with an ellipsis prior to its optional identifier or is a parameter-declarationthat declares a pack (9.3.4.6), then the template-parameter is a template parameter pack (13.7.4). A template parameterpack that is a parameter-declaration whose type contains one or more unexpanded packs is a pack expansion. Similarly,a template parameter pack that is a type-parameter with a template-parameter-list containing one or more unexpandedpacks is a pack expansion. A type parameter pack with a type-constraint that contains an unexpanded parameter packis a pack expansion. A template parameter pack that is a pack expansion shall not expand a template parameter packdeclared in the same template-parameter-list.
[Example 10:
template <class... Types> // Types is a template type parameter pack

class Tuple; // but not a pack expansion
template <class T, int... Dims> // Dims is a non-type template parameter pack

struct multi_array; // but not a pack expansion
template <class... T>

struct value_holder {
template <T... Values> struct apply { }; // Values is a non-type template parameter pack

}; // and a pack expansion
template <class... T, T... Values> // error: Values expands template type parameter

struct static_array; // pack T within the same template parameter list
— end example]
13.3 Names of template specializations [temp.names]

1 A template specialization (13.9) can be referred to by a template-id :
simple-template-id :

template-name < template-argument-listopt >

template-id :
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name :
identifier

template-argument-list :
template-argument ...opt
template-argument-list , template-argument ...opt

template-argument :
constant-expression
type-id
id-expression

2 The component name of a simple-template-id , template-id , or template-name is the first name in it.
3 A < is interpreted as the delimiter of a template-argument-list if it follows a name that is not a conversion-function-idand

—(3.1) that follows the keyword template or a ~ after a nested-name-specifier or in a class member access expression,or
—(3.2) for which name lookup finds the injected-class-name of a class template or finds any declaration of a template, or
—(3.3) that is an unqualified name for which name lookup either finds one or more functions or finds nothing, or
—(3.4) that is a terminal name in a using-declarator (9.9), in a declarator-id (9.3.4), or in a type-only context other thana nested-name-specifier (13.8).

[Note 1: If the name is an identifier , it is then interpreted as a template-name. The keyword template is used to indicate that adependent qualified name (13.8.3.2) denotes a template where an expression might appear. —end note]
[Example 1:
struct X {

template<std::size_t> X* alloc();

§ 13.3 349

© ISO/IEC N4910

template<std::size_t> static X* adjust();
};
template<class T> void f(T* p) {

T* p1 = p->alloc<200>(); // error: < means less than
T* p2 = p->template alloc<200>(); // OK, < starts template argument list
T::adjust<100>(); // error: < means less than
T::template adjust<100>(); // OK, < starts template argument list

}

—end example]
4 When parsing a template-argument-list, the first non-nested >119 is taken as the ending delimiter rather than a greater-than operator. Similarly, the first non-nested >> is treated as two consecutive but distinct > tokens, the first of which istaken as the end of the template-argument-list and completes the template-id .
[Note 2: The second > token produced by this replacement rule can terminate an enclosing template-id construct or it can be part ofa different construct (e.g., a cast). —end note]
[Example 2:
template<int i> class X { /* ... */ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK
template<class T> class Y { /* ... */ };
Y<X<1>> x3; // OK, same as Y<X<1> > x3;
Y<X<6>>1>> x4; // syntax error
Y<X<(6>>1)>> x5; // OK
—end example]

5 The keyword template shall not appear immediately after a declarative nested-name-specifier (7.5.4.3).
6 A name prefixed by the keyword template shall be followed by a template argument list or refer to a class template oran alias template. The latter case is deprecated (D.9). The keyword template shall not appear immediately before a ~token (as to name a destructor).
[Note 3: The keyword template cannot be applied to non-template members of class templates. —end note]
[Note 4: As is the case with the typename prefix, the template prefix is allowed even when lookup for the name would already find atemplate. —end note]
[Example 3:
template <class T> struct A {

void f(int);
template <class U> void f(U);

};

template <class T> void f(T t) {
A<T> a;
a.template f<>(t); // OK, calls template
a.template f(t); // error: not a template-id

}

template <class T> struct B {
template <class T2> struct C { };

};

// deprecated: T::C is assumed to name a class template:
template <class T, template <class X> class TT = T::template C> struct D { };
D<B<int> > db;

—end example]
7 A template-id is valid if

—(7.1) there are at most as many arguments as there are parameters or a parameter is a template parameter pack (13.7.4),
119) A > that encloses the type-id of a dynamic_cast, static_cast, reinterpret_cast or const_cast, or which encloses the template-argumentsof a subsequent template-id , is considered nested for the purpose of this description.
§ 13.3 350

© ISO/IEC N4910

—(7.2) there is an argument for each non-deducible non-pack parameter that does not have a default template-argument,
—(7.3) each template-argument matches the corresponding template-parameter (13.4),
—(7.4) substitution of each template argument into the following template parameters (if any) succeeds, and
—(7.5) if the template-id is non-dependent, the associated constraints are satisfied as specified in the next paragraph.

A simple-template-id shall be valid unless it names a function template specialization (13.10.3).
[Example 4:
template<class T, T::type n = 0> class X;
struct S {

using type = int;
};
using T1 = X<S, int, int>; // error: too many arguments
using T2 = X<>; // error: no default argument for first template parameter
using T3 = X<1>; // error: value 1 does not match type-parameter
using T4 = X<int>; // error: substitution failure for second template parameter
using T5 = X<S>; // OK
—end example]

8 When the template-name of a simple-template-id names a constrained non-function template or a constrained template
template-parameter , and all template-arguments in the simple-template-id are non-dependent (13.8.3.5), the associatedconstraints (13.5.3) of the constrained template shall be satisfied (13.5.2).
[Example 5:
template<typename T> concept C1 = sizeof(T) != sizeof(int);

template<C1 T> struct S1 { };
template<C1 T> using Ptr = T*;

S1<int>* p; // error: constraints not satisfied
Ptr<int> p; // error: constraints not satisfied
template<typename T>
struct S2 { Ptr<int> x; }; // ill-formed, no diagnostic required
template<typename T>
struct S3 { Ptr<T> x; }; // OK, satisfaction is not required
S3<int> x; // error: constraints not satisfied
template<template<C1 T> class X>
struct S4 {

X<int> x; // ill-formed, no diagnostic required
};

template<typename T> concept C2 = sizeof(T) == 1;

template<C2 T> struct S { };

template struct S<char[2]>; // error: constraints not satisfied
template<> struct S<char[2]> { }; // error: constraints not satisfied
—end example]

9 A concept-id is a simple-template-id where the template-name is a concept-name. A concept-id is a prvalue oftype bool, and does not name a template specialization. A concept-id evaluates to true if the concept’s normalized
constraint-expression (13.5.3) is satisfied (13.5.2) by the specified template arguments and false otherwise.
[Note 5: Since a constraint-expression is an unevaluated operand, a concept-id appearing in a constraint-expression is not evaluatedexcept as necessary to determine whether the normalized constraints are satisfied. —end note]
[Example 6:
template<typename T> concept C = true;
static_assert(C<int>); // OK

§ 13.3 351

© ISO/IEC N4910

—end example]
13.4 Template arguments [temp.arg]
13.4.1 General [temp.arg.general]

1 There are three forms of template-argument, corresponding to the three forms of template-parameter : type, non-typeand template. The type and form of each template-argument specified in a template-id shall match the type and formspecified for the corresponding parameter declared by the template in its template-parameter-list. When the parameterdeclared by the template is a template parameter pack (13.7.4), it will correspond to zero or more template-arguments.
[Example 1:
template<class T> class Array {

T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

Array<int> v1(20);
typedef std::complex<double> dcomplex; // std::complex is a standard library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);

void bar() {
v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

}

—end example]
2 The template argument list of a template-head is a template argument list in which the nth template argument hasthe value of the nth template parameter of the template-head . If the nth template parameter is a template parameterpack (13.7.4), the nth template argument is a pack expansion whose pattern is the name of the template parameter pack.
3 In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id , regardless of theform of the corresponding template-parameter .120
[Example 2:
template<class T> void f();
template<int I> void f();

void g() {
f<int()>(); // int() is a type-id: call the first f()

}

—end example]
4 [Note 1: Names used in a template-argument are subject to access control where they appear. Because a template-parameter is nota class member, no access control applies. —end note]
[Example 3:
template<class T> class X {

static T t;
};

class Y {
private:

struct S { /* ... */ };
X<S> x; // OK, S is accessible// X<Y::S> has a static member of type Y::S// OK, even though Y::S is private

};

120) There is no such ambiguity in a default template-argument because the form of the template-parameter determines the allowable forms ofthe template-argument.
§ 13.4.1 352

© ISO/IEC N4910

X<Y::S> y; // error: S not accessible
— end example]
For a template-argument that is a class type or a class template, the template definition has no special access rights tothe members of the template-argument.
[Example 4:
template <template <class TT> class T> class A {

typename T<int>::S s;
};

template <class U> class B {
private:

struct S { /* ... */ };
};

A b; // error: A has no access to B::S
—end example]

5 When template argument packs or default template-arguments are used, a template-argument list can be empty. Inthat case the empty <> brackets shall still be used as the template-argument-list.
[Example 5:
template<class T = char> class String;
String<>* p; // OK, String<char>
String* q; // syntax error
template<class ... Elements> class Tuple;
Tuple<>* t; // OK, Elements is empty
Tuple* u; // syntax error
— end example]

6 An explicit destructor call (11.4.7) for an object that has a type that is a class template specialization may explicitlyspecify the template-arguments.
[Example 6:
template<class T> struct A {
~A();

};
void f(A<int>* p, A<int>* q) {

p->A<int>::~A(); // OK, destructor call
q->A<int>::~A<int>(); // OK, destructor call

}

—end example]
7 If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template specialization,the program is ill-formed.
8 When name lookup for the component name of a template-id finds an overload set, both non-template functionsin the overload set and function templates in the overload set for which the template-arguments do not match the

template-parameters are ignored.
[Note 2: If none of the function templates have matching template-parameters, the program is ill-formed. —end note]

9 When a simple-template-id does not name a function, a default template-argument is implicitly instantiated (13.9.2)when the value of that default argument is needed.
[Example 7:
template<typename T, typename U = int> struct S { };
S<bool>* p; // the type of p is S<bool, int>*

The default argument for U is instantiated to form the type S<bool, int>*. —end example]
10 A template-argument followed by an ellipsis is a pack expansion (13.7.4).
13.4.2 Template type arguments [temp.arg.type]

1 A template-argument for a template-parameter which is a type shall be a type-id .

§ 13.4.2 353

© ISO/IEC N4910

2 [Example 1:
template <class T> class X { };
template <class T> void f(T t) { }
struct { } unnamed_obj;

void f() {
struct A { };
enum { e1 };
typedef struct { } B;
B b;
X<A> x1; // OK
X<A*> x2; // OK
X x3; // OK
f(e1); // OK
f(unnamed_obj); // OK
f(b); // OK

}

—end example]
[Note 1: A template type argument can be an incomplete type (6.8.1). —end note]
13.4.3 Template non-type arguments [temp.arg.nontype]

1 If the type T of a template-parameter (13.2) contains a placeholder type (9.2.9.6) or a placeholder for a deduced classtype (9.2.9.7), the type of the parameter is the type deduced for the variable x in the invented declaration
T x = template-argument ;

If a deduced parameter type is not permitted for a template-parameter declaration (13.2), the program is ill-formed.
2 A template-argument for a non-type template-parameter shall be a converted constant expression (7.7) of the type ofthe template-parameter .
[Note 1: If the template-argument is an overload set (or the address of such, including forming a pointer-to-member), the matchingfunction is selected from the set (12.3). —end note]

3 For a non-type template-parameter of reference or pointer type, or for each non-static data member of reference orpointer type in a non-type template-parameter of class type or subobject thereof, the reference or pointer value shallnot refer to or be the address of (respectively):
—(3.1) a temporary object (6.7.7),
—(3.2) a string literal object (5.13.5),
—(3.3) the result of a typeid expression (7.6.1.8),
—(3.4) a predefined __func__ variable (9.5.1), or
—(3.5) a subobject (6.7.2) of one of the above.

4 [Example 1:
template<const int* pci> struct X { /* ... */ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions
struct Y { /* ... */ };
template<const Y& b> struct Z { /* ... */ };
Y y;
Z<y> z; // no conversion, but note extra cv-qualification
template<int (&pa)[5]> struct W { /* ... */ };
int b[5];
W w; // no conversion
void f(char);
void f(int);

template<void (*pf)(int)> struct A { /* ... */ };

§ 13.4.3 354

© ISO/IEC N4910

A<&f> a; // selects f(int)
template<auto n> struct B { /* ... */ };
B<5> b1; // OK, template parameter type is int
B<'a'> b2; // OK, template parameter type is char
B<2.5> b3; // OK, template parameter type is double
B<void(0)> b4; // error: template parameter type cannot be void
—end example]

5 [Note 2: A string-literal (5.13.5) is not an acceptable template-argument for a template-parameter of non-class type.
[Example 2:
template<class T, T p> class X {

/* ... */
};

X<const char*, "Studebaker"> x; // error: string literal object as template-argument
X<const char*, "Knope" + 1> x2; // error: subobject of string literal object as template-argument

const char p[] = "Vivisectionist";
X<const char*, p> y; // OK
struct A {

constexpr A(const char*) {}
};

X<A, "Pyrophoricity"> z; // OK, string-literal is a constructor argument to A
—end example]
—end note]

6 [Note 3: A temporary object is not an acceptable template-argument when the corresponding template-parameter has referencetype.
[Example 3:
template<const int& CRI> struct B { /* ... */ };

B<1> b1; // error: temporary would be required for template argument
int c = 1;
B<c> b2; // OK
struct X { int n; };
struct Y { const int &r; };
template<Y y> struct C { /* ... */ };
C<Y{X{1}.n}> c; // error: subobject of temporary object used to initialize// reference member of template parameter
— end example]
—end note]
13.4.4 Template template arguments [temp.arg.template]

1 A template-argument for a template template-parameter shall be the name of a class template or an alias template,expressed as id-expression. Only primary templates are considered when matching the template template argument withthe corresponding parameter; partial specializations are not considered even if their parameter lists match that of thetemplate template parameter.
2 Any partial specializations (13.7.6) associated with the primary template are considered when a specialization based onthe template template-parameter is instantiated. If a specialization is not reachable from the point of instantiation, andit would have been selected had it been reachable, the program is ill-formed, no diagnostic required.
[Example 1:
template<class T> class A { // primary template

int x;
};

§ 13.4.4 355

© ISO/IEC N4910

template<class T> class A<T*> { // partial specialization
long x;

};
template<template<class U> class V> class C {

V<int> y;
V<int*> z;

};
C<A> c; // V<int> within C<A> uses the primary template, so c.y.x has type int// V<int*> within C<A> uses the partial specialization, so c.z.x has type long
—end example]

3 A template-argument matches a template template-parameter P when P is at least as specialized as the template-
argument A. In this comparison, if P is unconstrained, the constraints on A are not considered. If P contains a templateparameter pack, then A also matches P if each of A’s template parameters matches the corresponding template parameterin the template-head of P. Two template parameters match if they are of the same kind (type, non-type, template), fornon-type template-parameters, their types are equivalent (13.7.7.2), and for template template-parameters, each oftheir corresponding template-parameters matches, recursively. When P’s template-head contains a template parameterpack (13.7.4), the template parameter pack will match zero or more template parameters or template parameter packsin the template-head of A with the same type and form as the template parameter pack in P (ignoring whether thosetemplate parameters are template parameter packs).
[Example 2:
template<class T> class A { /* ... */ };
template<class T, class U = T> class B { /* ... */ };
template<class ... Types> class C { /* ... */ };
template<auto n> class D { /* ... */ };
template<template<class> class P> class X { /* ... */ };
template<template<class ...> class Q> class Y { /* ... */ };
template<template<int> class R> class Z { /* ... */ };

X<A> xa; // OK
X xb; // OK
X<C> xc; // OK
Y<A> ya; // OK
Y yb; // OK
Y<C> yc; // OK
Z<D> zd; // OK
—end example]
[Example 3:
template <class T> struct eval;

template <template <class, class...> class TT, class T1, class... Rest>
struct eval<TT<T1, Rest...>> { };

template <class T1> struct A;
template <class T1, class T2> struct B;
template <int N> struct C;
template <class T1, int N> struct D;
template <class T1, class T2, int N = 17> struct E;

eval<A<int>> eA; // OK, matches partial specialization of eval
eval<B<int, float>> eB; // OK, matches partial specialization of eval
eval<C<17>> eC; // error: C does not match TT in partial specialization
eval<D<int, 17>> eD; // error: D does not match TT in partial specialization
eval<E<int, float>> eE; // error: E does not match TT in partial specialization
—end example]
[Example 4:
template<typename T> concept C = requires (T t) { t.f(); };
template<typename T> concept D = C<T> && requires (T t) { t.g(); };

template<template<C> class P> struct S { };

§ 13.4.4 356

© ISO/IEC N4910

template<C> struct X { };
template<D> struct Y { };
template<typename T> struct Z { };

S<X> s1; // OK, X and P have equivalent constraints
S<Y> s2; // error: P is not at least as specialized as Y
S<Z> s3; // OK, P is at least as specialized as Z
—end example]

4 A template template-parameter P is at least as specialized as a template template-argument A if, given the followingrewrite to two function templates, the function template corresponding to P is at least as specialized as the functiontemplate corresponding to A according to the partial ordering rules for function templates (13.7.7.3). Given an inventedclass template X with the template-head of A (including default arguments and requires-clause, if any):
—(4.1) Each of the two function templates has the same template parameters and requires-clause (if any), respectively,as P or A.
—(4.2) Each function template has a single function parameter whose type is a specialization of Xwith template argumentscorresponding to the template parameters from the respective function template where, for each template parameter

PP in the template-head of the function template, a corresponding template argument AA is formed. If PP declaresa template parameter pack, then AA is the pack expansion PP... (13.7.4); otherwise, AA is the id-expression PP.
If the rewrite produces an invalid type, then P is not at least as specialized as A.
13.5 Template constraints [temp.constr]
13.5.1 General [temp.constr.general]

1 [Note 1: Subclause 13.5 defines the meaning of constraints on template arguments. The abstract syntax and satisfaction rules aredefined in 13.5.2. Constraints are associated with declarations in 13.5.3. Declarations are partially ordered by their associatedconstraints (13.5.5). —end note]
13.5.2 Constraints [temp.constr.constr]
13.5.2.1 General [temp.constr.constr.general]

1 A constraint is a sequence of logical operations and operands that specifies requirements on template arguments. Theoperands of a logical operation are constraints. There are three different kinds of constraints:
—(1.1) conjunctions (13.5.2.2),
—(1.2) disjunctions (13.5.2.2), and
—(1.3) atomic constraints (13.5.2.3).

2 In order for a constrained template to be instantiated (13.9), its associated constraints (13.5.3) shall be satisfied asdescribed in the following subclauses.
[Note 1: Forming the name of a specialization of a class template, a variable template, or an alias template (13.3) requires thesatisfaction of its constraints. Overload resolution (12.2.3) requires the satisfaction of constraints on functions and function templates.—end note]
13.5.2.2 Logical operations [temp.constr.op]

1 There are two binary logical operations on constraints: conjunction and disjunction.
[Note 1: These logical operations have no corresponding C++ syntax. For the purpose of exposition, conjunction is spelled using thesymbol ∧ and disjunction is spelled using the symbol ∨. The operands of these operations are called the left and right operands. Inthe constraint A ∧B, A is the left operand, and B is the right operand. —end note]

2 A conjunction is a constraint taking two operands. To determine if a conjunction is satisfied, the satisfaction of the firstoperand is checked. If that is not satisfied, the conjunction is not satisfied. Otherwise, the conjunction is satisfied if andonly if the second operand is satisfied.
3 A disjunction is a constraint taking two operands. To determine if a disjunction is satisfied, the satisfaction of the firstoperand is checked. If that is satisfied, the disjunction is satisfied. Otherwise, the disjunction is satisfied if and only ifthe second operand is satisfied.
4 [Example 1:

template<typename T>
constexpr bool get_value() { return T::value; }

§ 13.5.2.2 357

© ISO/IEC N4910

template<typename T>
requires (sizeof(T) > 1) && (get_value<T>())
void f(T); // has associated constraint sizeof(T) > 1 ∧ get_value<T>()

void f(int);

f('a'); // OK, calls f(int)
In the satisfaction of the associated constraints (13.5.3) of f, the constraint sizeof(char) > 1 is not satisfied; the second operand isnot checked for satisfaction. —end example]

5 [Note 2: A logical negation expression (7.6.2.2) is an atomic constraint; the negation operator is not treated as a logical operation onconstraints. As a result, distinct negation constraint-expressions that are equivalent under 13.7.7.2 do not subsume one anotherunder 13.5.5. Furthermore, if substitution to determine whether an atomic constraint is satisfied (13.5.2.3) encounters a substitutionfailure, the constraint is not satisfied, regardless of the presence of a negation operator.
[Example 2:
template <class T> concept sad = false;

template <class T> int f1(T) requires (!sad<T>);
template <class T> int f1(T) requires (!sad<T>) && true;
int i1 = f1(42); // ambiguous, !sad<T> atomic constraint expressions (13.5.2.3)// are not formed from the same expression
template <class T> concept not_sad = !sad<T>;
template <class T> int f2(T) requires not_sad<T>;
template <class T> int f2(T) requires not_sad<T> && true;
int i2 = f2(42); // OK, !sad<T> atomic constraint expressions both come from not_sad

template <class T> int f3(T) requires (!sad<typename T::type>);
int i3 = f3(42); // error: associated constraints not satisfied due to substitution failure
template <class T> concept sad_nested_type = sad<typename T::type>;
template <class T> int f4(T) requires (!sad_nested_type<T>);
int i4 = f4(42); // OK, substitution failure contained within sad_nested_type

Here, requires (!sad<typename T::type>) requires that there is a nested type that is not sad, whereas requires (!sad_nested_-
type<T>) requires that there is no sad nested type. —end example]
—end note]
13.5.2.3 Atomic constraints [temp.constr.atomic]

1 An atomic constraint is formed from an expression E and a mapping from the template parameters that appear within Eto template arguments that are formed via substitution during constraint normalization in the declaration of a constrainedentity (and, therefore, can involve the unsubstituted template parameters of the constrained entity), called the parametermapping (13.5.3).
[Note 1: Atomic constraints are formed by constraint normalization (13.5.4). E is never a logical AND expression (7.6.14) nor alogical OR expression (7.6.15). —end note]

2 Two atomic constraints, e1 and e2, are identical if they are formed from the same appearance of the same expressionand if, given a hypothetical template A whose template-parameter-list consists of template-parameters correspondingand equivalent (13.7.7.2) to those mapped by the parameter mappings of the expression, a template-id naming A whose
template-arguments are the targets of the parameter mapping of e1 is the same (13.6) as a template-id naming Awhose template-arguments are the targets of the parameter mapping of e2.
[Note 2: The comparison of parameter mappings of atomic constraints operates in a manner similar to that of declaration matchingwith alias template substitution (13.7.8).
[Example 1:
template <unsigned N> constexpr bool Atomic = true;
template <unsigned N> concept C = Atomic<N>;
template <unsigned N> concept Add1 = C<N + 1>;
template <unsigned N> concept AddOne = C<N + 1>;
template <unsigned M> void f()

requires Add1<2 * M>;

§ 13.5.2.3 358

© ISO/IEC N4910

template <unsigned M> int f()
requires AddOne<2 * M> && true;

int x = f<0>(); // OK, the atomic constraints from concept C in both fs are Atomic<N>// with mapping similar to N 7→ 2 * M + 1

template <unsigned N> struct WrapN;
template <unsigned N> using Add1Ty = WrapN<N + 1>;
template <unsigned N> using AddOneTy = WrapN<N + 1>;
template <unsigned M> void g(Add1Ty<2 * M> *);
template <unsigned M> void g(AddOneTy<2 * M> *);

void h() {
g<0>(nullptr); // OK, there is only one g

}

—end example]
As specified in 13.7.7.2, if the validity or meaning of the program depends on whether two constructs are equivalent, and they arefunctionally equivalent but not equivalent, the program is ill-formed, no diagnostic required.
[Example 2:
template <unsigned N> void f2()

requires Add1<2 * N>;
template <unsigned N> int f2()

requires Add1<N * 2> && true;
void h2() {

f2<0>(); // ill-formed, no diagnostic required:// requires determination of subsumption between atomic constraints that are// functionally equivalent but not equivalent
}

—end example]
—end note]

3 To determine if an atomic constraint is satisfied, the parameter mapping and template arguments are first substitutedinto its expression. If substitution results in an invalid type or expression, the constraint is not satisfied. Otherwise, thelvalue-to-rvalue conversion (7.3.2) is performed if necessary, and E shall be a constant expression of type bool. Theconstraint is satisfied if and only if evaluation of E results in true. If, at different points in the program, the satisfactionresult is different for identical atomic constraints and template arguments, the program is ill-formed, no diagnosticrequired.
[Example 3:
template<typename T> concept C =

sizeof(T) == 4 && !true; // requires atomic constraints sizeof(T) == 4 and !true
template<typename T> struct S {

constexpr operator bool() const { return true; }
};

template<typename T> requires (S<T>{})
void f(T); // #1
void f(int); // #2
void g() {

f(0); // error: expression S<int>{} does not have type bool
} // while checking satisfaction of deduced arguments of #1;// call is ill-formed even though #2 is a better match
—end example]
13.5.3 Constrained declarations [temp.constr.decl]

1 A template declaration (13.1) or templated function declaration (9.3.4.6) can be constrained by the use of a requires-
clause. This allows the specification of constraints for that declaration as an expression:

§ 13.5.3 359

© ISO/IEC N4910

constraint-expression :
logical-or-expression

2 Constraints can also be associated with a declaration through the use of type-constraints in a template-parameter-listor parameter-type-list. Each of these forms introduces additional constraint-expressions that are used to constrain thedeclaration.
3 A declaration’s associated constraints are defined as follows:

—(3.1) If there are no introduced constraint-expressions, the declaration has no associated constraints.
—(3.2) Otherwise, if there is a single introduced constraint-expression, the associated constraints are the normal form(13.5.4) of that expression.
—(3.3) Otherwise, the associated constraints are the normal form of a logical AND expression (7.6.14) whose operandsare in the following order:

—(3.3.1) the constraint-expression introduced by each type-constraint (13.2) in the declaration’s template-parameter-
list, in order of appearance, and

—(3.3.2) the constraint-expression introduced by a requires-clause following a template-parameter-list (13.1), and
—(3.3.3) the constraint-expression introduced by each type-constraint in the parameter-type-list of a functiondeclaration, and
—(3.3.4) the constraint-expression introduced by a trailing requires-clause (9.3) of a function declaration (9.3.4.6).

The formation of the associated constraints establishes the order in which constraints are instantiated when checking forsatisfaction (13.5.2).
[Example 1:
template<typename T> concept C = true;

template<C T> void f1(T);
template<typename T> requires C<T> void f2(T);
template<typename T> void f3(T) requires C<T>;

The functions f1, f2, and f3 have the associated constraint C<T>.
template<typename T> concept C1 = true;
template<typename T> concept C2 = sizeof(T) > 0;

template<C1 T> void f4(T) requires C2<T>;
template<typename T> requires C1<T> && C2<T> void f5(T);

The associated constraints of f4 and f5 are C1<T> ∧ C2<T>.
template<C1 T> requires C2<T> void f6();
template<C2 T> requires C1<T> void f7();

The associated constraints of f6 are C1<T> ∧ C2<T>, and those of f7 are C2<T> ∧ C1<T>. —end example]
4 When determining whether a given introduced constraint-expression C1 of a declaration in an instantiated specializationof a templated class is equivalent (13.7.7.2) to the corresponding constraint-expression C2 of a declaration outside theclass body, C1 is instantiated. If the instantiation results in an invalid expression, the constraint-expressions are notequivalent.
[Note 1: This can happen when determining which member template is specialized by an explicit specialization declaration. —endnote]
[Example 2:
template <class T> concept C = true;
template <class T> struct A {

template <class U> U f(U) requires C<typename T::type>; // #1
template <class U> U f(U) requires C<T>; // #2

};

template <> template <class U>
U A<int>::f(U u) requires C<int> { return u; } // OK, specializes #2

Substituting int for T in C<typename T::type> produces an invalid expression, so the specialization does not match #1. Substituting
int for T in C<T> produces C<int>, which is equivalent to the constraint-expression for the specialization, so it does match #2.—end example]
§ 13.5.3 360

© ISO/IEC N4910

13.5.4 Constraint normalization [temp.constr.normal]
1 The normal form of an expression E is a constraint (13.5.2) that is defined as follows:

—(1.1) The normal form of an expression (E) is the normal form of E.
—(1.2) The normal form of an expression E1 || E2 is the disjunction (13.5.2.2) of the normal forms of E1 and E2.
—(1.3) The normal form of an expression E1 && E2 is the conjunction of the normal forms of E1 and E2.
—(1.4) The normal form of a concept-id C<A1, A2, ..., An> is the normal form of the constraint-expression of C,after substituting A1, A2, ..., An for C’s respective template parameters in the parameter mappings in eachatomic constraint. If any such substitution results in an invalid type or expression, the program is ill-formed; nodiagnostic is required.

[Example 1:
template<typename T> concept A = T::value || true;
template<typename U> concept B = A<U*>;
template<typename V> concept C = B<V&>;

Normalization of B’s constraint-expression is valid and results in T::value (with the mapping T 7→ U*)∨ true (with an emptymapping), despite the expression T::value being ill-formed for a pointer type T. Normalization of C’s constraint-expressionresults in the program being ill-formed, because it would form the invalid type V&* in the parameter mapping. —end example]
—(1.5) The normal form of any other expression E is the atomic constraint whose expression is E and whose parametermapping is the identity mapping.

2 The process of obtaining the normal form of a constraint-expression is called normalization.
[Note 1: Normalization of constraint-expressions is performed when determining the associated constraints (13.5.2) of a declarationand when evaluating the value of an id-expression that names a concept specialization (7.5.4). —end note]

3 [Example 2:
template<typename T> concept C1 = sizeof(T) == 1;
template<typename T> concept C2 = C1<T> && 1 == 2;
template<typename T> concept C3 = requires { typename T::type; };
template<typename T> concept C4 = requires (T x) { ++x; }

template<C2 U> void f1(U); // #1
template<C3 U> void f2(U); // #2
template<C4 U> void f3(U); // #3

The associated constraints of #1 are sizeof(T) == 1 (with mapping T 7→ U) ∧ 1 == 2.The associated constraints of #2 are requires { typename T::type; } (with mapping T 7→ U).The associated constraints of #3 are requires (T x) { ++x; } (with mapping T 7→ U). —end example]
13.5.5 Partial ordering by constraints [temp.constr.order]

1 A constraint P subsumes a constraint Q if and only if, for every disjunctive clause Pi in the disjunctive normal form121of P , Pi subsumes every conjunctive clause Qj in the conjunctive normal form122 of Q, where
—(1.1) a disjunctive clause Pi subsumes a conjunctive clause Qj if and only if there exists an atomic constraint Pia in

Pi for which there exists an atomic constraint Qjb in Qj such that Pia subsumes Qjb, and
—(1.2) an atomic constraint A subsumes another atomic constraint B if and only if A and B are identical using the rulesdescribed in 13.5.2.3.

[Example 1: Let A and B be atomic constraints (13.5.2.3). The constraint A ∧B subsumes A, but A does not subsume A ∧B. Theconstraint A subsumes A ∨B, but A ∨B does not subsume A. Also note that every constraint subsumes itself. —end example]
2 [Note 1: The subsumption relation defines a partial ordering on constraints. This partial ordering is used to determine

—(2.1) the best viable candidate of non-template functions (12.2.4),
—(2.2) the address of a non-template function (12.3),
—(2.3) the matching of template template arguments (13.4.4),
—(2.4) the partial ordering of class template specializations (13.7.6.3), and

121)A constraint is in disjunctive normal form when it is a disjunction of clauses where each clause is a conjunction of atomic constraints. Foratomic constraints A, B, and C, the disjunctive normal form of the constraint A ∧ (B ∨ C) is (A ∧ B) ∨ (A ∧ C). Its disjunctive clauses are
(A ∧B) and (A ∧ C).
122)A constraint is in conjunctive normal form when it is a conjunction of clauses where each clause is a disjunction of atomic constraints. Foratomic constraints A, B, and C, the constraint A ∧ (B ∨ C) is in conjunctive normal form. Its conjunctive clauses are A and (B ∨ C).
§ 13.5.5 361

© ISO/IEC N4910

—(2.5) the partial ordering of function templates (13.7.7.3).
—end note]

3 A declaration D1 is at least as constrained as a declaration D2 if
—(3.1) D1 and D2 are both constrained declarations and D1’s associated constraints subsume those of D2; or
—(3.2) D2 has no associated constraints.

4 A declaration D1 is more constrained than another declaration D2 when D1 is at least as constrained as D2, and D2 is notat least as constrained as D1.
[Example 2:
template<typename T> concept C1 = requires(T t) { --t; };
template<typename T> concept C2 = C1<T> && requires(T t) { *t; };

template<C1 T> void f(T); // #1
template<C2 T> void f(T); // #2
template<typename T> void g(T); // #3
template<C1 T> void g(T); // #4
f(0); // selects #1
f((int*)0); // selects #2
g(true); // selects #3 because C1<bool> is not satisfied
g(0); // selects #4
—end example]
13.6 Type equivalence [temp.type]

1 Two template-ids are the same if
—(1.1) their template-names, operator-function-ids, or literal-operator-ids refer to the same template, and
—(1.2) their corresponding type template-arguments are the same type, and
—(1.3) their corresponding non-type template-arguments are template-argument-equivalent (see below) after conversionto the type of the template-parameter , and
—(1.4) their corresponding template template-arguments refer to the same template.

Two template-ids that are the same refer to the same class, function, or variable.
2 Two values are template-argument-equivalent if they are of the same type and

—(2.1) they are of integral type and their values are the same, or
—(2.2) they are of floating-point type and their values are identical, or
—(2.3) they are of type std::nullptr_t, or
—(2.4) they are of enumeration type and their values are the same,123 or
—(2.5) they are of pointer type and they have the same pointer value, or
—(2.6) they are of pointer-to-member type and they refer to the same class member or are both the null member pointervalue, or
—(2.7) they are of reference type and they refer to the same object or function, or
—(2.8) they are of array type and their corresponding elements are template-argument-equivalent,124 or
—(2.9) they are of union type and either they both have no active member or they have the same active member and theiractive members are template-argument-equivalent, or
—(2.10) they are of class type and their corresponding direct subobjects and reference members are template-argument-equivalent.

3 [Example 1:
template<class E, int size> class buffer { /* ... */ };
buffer<char,2*512> x;
buffer<char,1024> y;

123) The identity of enumerators is not preserved.
124) An array as a template-parameter decays to a pointer.
§ 13.6 362

© ISO/IEC N4910

declares x and y to be of the same type, and
template<class T, void(*err_fct)()> class list { /* ... */ };
list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4.
template<class T> struct X { };
template<class> struct Y { };
template<class T> using Z = Y<T>;
X<Y<int> > y;
X<Z<int> > z;

declares y and z to be of the same type. —end example]
4 If an expression e is type-dependent (13.8.3.3), decltype(e) denotes a unique dependent type. Two such decltype-

specifiers refer to the same type only if their expressions are equivalent (13.7.7.2).
[Note 1: However, such a type might be aliased, e.g., by a typedef-name. —end note]
13.7 Template declarations [temp.decls]
13.7.1 General [temp.decls.general]

1 The template parameters of a template are specified in the angle bracket enclosed list that immediately follows thekeyword template.
2 A primary template declaration is one in which the name of the template is not followed by a template-argument-list.The template argument list of a primary template is the template argument list of its template-head (13.4). A templatedeclaration in which the name of the template is followed by a template-argument-list is a partial specialization (13.7.6)of the template named in the declaration, which shall be a class or variable template.
3 For purposes of name lookup and instantiation, default arguments, type-constraints, requires-clauses (13.1), and

noexcept-specifiers of function templates and of member functions of class templates are considered definitions; eachdefault argument, type-constraint, requires-clause, or noexcept-specifier is a separate definition which is unrelated tothe templated function definition or to any other default arguments type-constraints, requires-clauses, or noexcept-
specifiers. For the purpose of instantiation, the substatements of a constexpr if statement (8.5.2) are considereddefinitions.

4 Because an alias-declaration cannot declare a template-id , it is not possible to partially or explicitly specialize an aliastemplate.
13.7.2 Class templates [temp.class]
13.7.2.1 General [temp.class.general]

1 A class template defines the layout and operations for an unbounded set of related types.
2 [Example 1: It is possible for a single class template List to provide an unbounded set of class definitions: one class List<T> forevery type T, each describing a linked list of elements of type T. Similarly, a class template Array describing a contiguous, dynamicarray can be defined like this:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

The prefix template<class T> specifies that a template is being declared and that a type-name T can be used in the declaration. Inother words, Array is a parameterized type with T as its parameter. —end example]
3 [Note 1: When a member of a class template is defined outside of the class template definition, the member definition is defined as atemplate definition with the template-head equivalent to that of the class template. The names of the template parameters used inthe definition of the member can differ from the template parameter names used in the class template definition. The class templatename in the member definition is followed by the template argument list of the template-head (13.4).
[Example 2:
§ 13.7.2.1 363

© ISO/IEC N4910

template<class T1, class T2> struct A {
void f1();
void f2();

};

template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error
template<class ... Types> struct B {

void f3();
void f4();

};

template<class ... Types> void B<Types ...>::f3() { } // OK
template<class ... Types> void B<Types>::f4() { } // error
template<typename T> concept C = true;
template<typename T> concept D = true;

template<C T> struct S {
void f();
void g();
void h();
template<D U> struct Inner;

};

template<C A> void S<A>::f() { } // OK, template-heads match
template<typename T> void S<T>::g() { } // error: no matching declaration for S<T>
template<typename T> requires C<T> // ill-formed, no diagnostic required: template-heads are
void S<T>::h() { } // functionally equivalent but not equivalent
template<C X> template<D Y>
struct S<X>::Inner { }; // OK
—end example]
—end note]

4 In a partial specialization, explicit specialization or explicit instantiation of a class template, the class-key shall agree inkind with the original class template declaration (9.2.9.4).
13.7.2.2 Member functions of class templates [temp.mem.func]

1 A member function of a class template may be defined outside of the class template definition in which it is declared.
[Example 1:
template<class T> class Array {

T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

declares three member functions of a class template. The subscript function can be defined like this:
template<class T> T& Array<T>::operator[](int i) {

if (i<0 || sz<=i) error("Array: range error");
return v[i];

}

A constrained member function can be defined out of line:
template<typename T> concept C = requires {

typename T::type;
};

§ 13.7.2.2 364

© ISO/IEC N4910

template<typename T> struct S {
void f() requires C<T>;
void g() requires C<T>;

};

template<typename T>
void S<T>::f() requires C<T> { } // OK

template<typename T>
void S<T>::g() { } // error: no matching function in S<T>

—end example]
2 The template-arguments for a member function of a class template are determined by the template-arguments of thetype of the object for which the member function is called.
[Example 2: The template-argument for Array<T>::operator[] will be determined by the Array to which the subscriptingoperation is applied.
Array<int> v1(20);
Array<dcomplex> v2(30);

v1[3] = 7; // Array<int>::operator[]
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]
—end example]
13.7.2.3 Deduction guides [temp.deduct.guide]

1 Deduction guides are usedwhen a template-name appears as a type specifier for a deduced class type (9.2.9.7). Deductionguides are not found by name lookup. Instead, when performing class template argument deduction (12.2.2.9), allreachable deduction guides declared for the class template are considered.
deduction-guide :

explicit-specifieropt template-name (parameter-declaration-clause) -> simple-template-id ;
2 [Example 1:

template<class T, class D = int>
struct S {

T data;
};
template<class U>
S(U) -> S<typename U::type>;

struct A {
using type = short;
operator type();

};
S x{A()}; // x is of type S<short, int>

—end example]
3 The same restrictions apply to the parameter-declaration-clause of a deduction guide as in a function declaration (9.3.4.6).The simple-template-id shall name a class template specialization. The template-name shall be the same identifier asthe template-name of the simple-template-id . A deduction-guide shall inhabit the scope to which the correspondingclass template belongs and, for a member class template, have the same access. Two deduction guide declarations forthe same class template shall not have equivalent parameter-declaration-clauses if either is reachable from the other.
13.7.2.4 Member classes of class templates [temp.mem.class]

1 A member class of a class template may be defined outside the class template definition in which it is declared.
[Note 1: The member class must be defined before its first use that requires an instantiation (13.9.2). For example,
template<class T> struct A {

class B;
};
A<int>::B* b1; // OK, requires A to be defined but not A::B
template<class T> class A<T>::B { };
A<int>::B b2; // OK, requires A::B to be defined
—end note]
§ 13.7.2.4 365

© ISO/IEC N4910

13.7.2.5 Static data members of class templates [temp.static]
1 A definition for a static data member or static data member template may be provided in a namespace scope enclosingthe definition of the static member’s class template.
[Example 1:
template<class T> class X {

static T s;
};
template<class T> T X<T>::s = 0;

struct limits {
template<class T>
static const T min; // declaration

};

template<class T>
const T limits::min = { }; // definition

—end example]
2 An explicit specialization of a static data member declared as an array of unknown bound can have a different boundfrom its definition, if any.
[Example 2:
template <class T> struct A {

static int i[];
};
template <class T> int A<T>::i[4]; // 4 elements
template <> int A<int>::i[] = { 1 }; // OK, 1 element
— end example]
13.7.2.6 Enumeration members of class templates [temp.mem.enum]

1 An enumeration member of a class template may be defined outside the class template definition.
[Example 1:
template<class T> struct A {

enum E : T;
};
A<int> a;
template<class T> enum A<T>::E : T { e1, e2 };
A<int>::E e = A<int>::e1;

—end example]
13.7.3 Member templates [temp.mem]

1 A template can be declared within a class or class template; such a template is called a member template. A membertemplate can be defined within or outside its class definition or class template definition. A member template of a classtemplate that is defined outside of its class template definition shall be specified with a template-head equivalent to thatof the class template followed by a template-head equivalent to that of the member template (13.7.7.2).
[Example 1:
template<class T> struct string {

template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }

};

template<class T> template<class T2> int string<T>::compare(const T2& s) {
}

—end example]
[Example 2:
template<typename T> concept C1 = true;
template<typename T> concept C2 = sizeof(T) <= 4;

§ 13.7.3 366

© ISO/IEC N4910

template<C1 T> struct S {
template<C2 U> void f(U);
template<C2 U> void g(U);

};

template<C1 T> template<C2 U>
void S<T>::f(U) { } // OK
template<C1 T> template<typename U>
void S<T>::g(U) { } // error: no matching function in S<T>
—end example]

2 A local class of non-closure type shall not have member templates. Access control rules (11.8) apply to member templatenames. A destructor shall not be a member template. A non-template member function (9.3.4.6) with a given name andtype and a member function template of the same name, which could be used to generate a specialization of the sametype, can both be declared in a class. When both exist, a use of that name and type refers to the non-template memberunless an explicit template argument list is supplied.
[Example 3:
template <class T> struct A {

void f(int);
template <class T2> void f(T2);

};

template <> void A<int>::f(int) { } // non-template member function
template <> template <> void A<int>::f<>(int) { } // member function template specialization
int main() {

A<char> ac;
ac.f(1); // non-template
ac.f('c'); // template
ac.f<>(1); // template

}

—end example]
3 A member function template shall not be declared virtual.
[Example 4:
template <class T> struct AA {

template <class C> virtual void g(C); // error
virtual void f(); // OK

};

—end example]
4 A specialization of a member function template does not override a virtual function from a base class.
[Example 5:
class B {

virtual void f(int);
};

class D : public B {
template <class T> void f(T); // does not override B::f(int)
void f(int i) { f<>(i); } // overriding function that calls the function template specialization

};

—end example]
5 [Note 1: A specialization of a conversion function template is referenced in the same way as a non-template conversion function thatconverts to the same type (11.4.8.3).
[Example 6:
struct A {

template <class T> operator T*();
};
template <class T> A::operator T*() { return 0; }

§ 13.7.3 367

© ISO/IEC N4910

template <> A::operator char*() { return 0; } // specialization
template A::operator void*(); // explicit instantiation
int main() {

A a;
int* ip;
ip = a.operator int*(); // explicit call to template operator A::operator int*()

}

—end example]
There is no syntax to form a template-id (13.3) by providing an explicit template argument list (13.10.2) for a conversion functiontemplate. —end note]
13.7.4 Variadic templates [temp.variadic]

1 A template parameter pack is a template parameter that accepts zero or more template arguments.
[Example 1:
template<class ... Types> struct Tuple { };

Tuple<> t0; // Types contains no arguments
Tuple<int> t1; // Types contains one argument: int
Tuple<int, float> t2; // Types contains two arguments: int and float
Tuple<0> error; // error: 0 is not a type
— end example]

2 A function parameter pack is a function parameter that accepts zero or more function arguments.
[Example 2:
template<class ... Types> void f(Types ... args);

f(); // args contains no arguments
f(1); // args contains one argument: int
f(2, 1.0); // args contains two arguments: int and double
—end example]

3 An init-capture pack is a lambda capture that introduces an init-capture for each of the elements in the pack expansionof its initializer .
[Example 3:
template <typename... Args>
void foo(Args... args) {

[...xs=args]{
bar(xs...); // xs is an init-capture pack

};
}

foo(); // xs contains zero init-captures
foo(1); // xs contains one init-capture
—end example]

4 A pack is a template parameter pack, a function parameter pack, or an init-capture pack. The number of elements of atemplate parameter pack or a function parameter pack is the number of arguments provided for the parameter pack. Thenumber of elements of an init-capture pack is the number of elements in the pack expansion of its initializer .
5 A pack expansion consists of a pattern and an ellipsis, the instantiation of which produces zero or more instantiationsof the pattern in a list (described below). The form of the pattern depends on the context in which the expansion occurs.Pack expansions can occur in the following contexts:

—(5.1) In a function parameter pack (9.3.4.6); the pattern is the parameter-declaration without the ellipsis.
—(5.2) In a using-declaration (9.9); the pattern is a using-declarator .
—(5.3) In a template parameter pack that is a pack expansion (13.2):

—(5.3.1) if the template parameter pack is a parameter-declaration; the pattern is the parameter-declaration withoutthe ellipsis;
§ 13.7.4 368

© ISO/IEC N4910

—(5.3.2) if the template parameter pack is a type-parameter ; the pattern is the corresponding type-parameter withoutthe ellipsis.
—(5.4) In an initializer-list (9.4); the pattern is an initializer-clause.
—(5.5) In a base-specifier-list (11.7); the pattern is a base-specifier .
—(5.6) In a mem-initializer-list (11.9.3) for a mem-initializer whose mem-initializer-id denotes a base class; the patternis the mem-initializer .
—(5.7) In a template-argument-list (13.4); the pattern is a template-argument.
—(5.8) In an attribute-list (9.12.1); the pattern is an attribute.
—(5.9) In an alignment-specifier (9.12.2); the pattern is the alignment-specifier without the ellipsis.
—(5.10) In a capture-list (7.5.5.3); the pattern is the capture without the ellipsis.
—(5.11) In a sizeof... expression (7.6.2.5); the pattern is an identifier .
—(5.12) In a fold-expression (7.5.6); the pattern is the cast-expression that contains an unexpanded pack.

[Example 4:
template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {

f(&rest ...); // “&rest ...” is a pack expansion; “&rest” is its pattern
}

—end example]
6 For the purpose of determining whether a pack satisfies a rule regarding entities other than packs, the pack is consideredto be the entity that would result from an instantiation of the pattern in which it appears.
7 A pack whose name appears within the pattern of a pack expansion is expanded by that pack expansion. An appearanceof the name of a pack is only expanded by the innermost enclosing pack expansion. The pattern of a pack expansionshall name one or more packs that are not expanded by a nested pack expansion; such packs are called unexpandedpacks in the pattern. All of the packs expanded by a pack expansion shall have the same number of arguments specified.An appearance of a name of a pack that is not expanded is ill-formed.
[Example 5:
template<typename...> struct Tuple {};
template<typename T1, typename T2> struct Pair {};

template<class ... Args1> struct zip {
template<class ... Args2> struct with {
typedef Tuple<Pair<Args1, Args2> ... > type;

};
};

typedef zip<short, int>::with<unsigned short, unsigned>::type T1;// T1 is Tuple<Pair<short, unsigned short>, Pair<int, unsigned>>
typedef zip<short>::with<unsigned short, unsigned>::type T2;// error: different number of arguments specified for Args1 and Args2
template<class ... Args>

void g(Args ... args) { // OK, Args is expanded by the function parameter pack args
f(const_cast<const Args*>(&args)...); // OK, “Args” and “args” are expanded
f(5 ...); // error: pattern does not contain any packs
f(args); // error: pack “args” is not expanded
f(h(args ...) + args ...); // OK, first “args” expanded within h,// second “args” expanded within f

}

—end example]
8 The instantiation of a pack expansion considers items E1, E2, . . . , EN , where N is the number of elements in the packexpansion parameters. Each Ei is generated by instantiating the pattern and replacing each pack expansion parameterwith its ith element. Such an element, in the context of the instantiation, is interpreted as follows:

—(8.1) if the pack is a template parameter pack, the element is an id-expression (for a non-type template parameter pack),a typedef-name (for a type template parameter pack declared without template), or a template-name (for a
§ 13.7.4 369

© ISO/IEC N4910

type template parameter pack declared with template), designating the ith corresponding type or value templateargument;
—(8.2) if the pack is a function parameter pack, the element is an id-expression designating the ith function parameterthat resulted from instantiation of the function parameter pack declaration; otherwise
—(8.3) if the pack is an init-capture pack, the element is an id-expression designating the variable introduced by the ith

init-capture that resulted from instantiation of the init-capture pack.
When N is zero, the instantiation of a pack expansion does not alter the syntactic interpretation of the enclosingconstruct, even in cases where omitting the pack expansion entirely would otherwise be ill-formed or would result in anambiguity in the grammar.

9 The instantiation of a sizeof... expression (7.6.2.5) produces an integral constant with value N .
10 The instantiation of a fold-expression (7.5.6) produces:

—(10.1) ((E1 op E2) op · · ·) op EN for a unary left fold,
—(10.2) E1 op (· · · op (EN−1 op EN)) for a unary right fold,
—(10.3) (((E op E1) op E2) op · · ·) op EN for a binary left fold, and
—(10.4) E1 op (· · · op (EN−1 op (EN op E))) for a binary right fold.

In each case, op is the fold-operator . For a binary fold, E is generated by instantiating the cast-expression that did notcontain an unexpanded pack.
[Example 6:
template<typename ...Args>

bool all(Args ...args) { return (... && args); }

bool b = all(true, true, true, false);

Within the instantiation of all, the returned expression expands to ((true && true) && true) && false, which evaluates to false.—end example]
If N is zero for a unary fold, the value of the expression is shown in Table 19; if the operator is not listed in Table 19,the instantiation is ill-formed.

Table 19: Value of folding empty sequences [tab:temp.fold.empty]
Operator Value when pack is empty
&& true
|| false
, void()

11 The instantiation of any other pack expansion produces a list of elements E1, E2, . . . , EN .
[Note 1: The variety of list varies with the context: expression-list, base-specifier-list, template-argument-list, etc. —end note]
When N is zero, the instantiation of the expansion produces an empty list.
[Example 7:
template<class... T> struct X : T... { };
template<class... T> void f(T... values) {

X<T...> x(values...);
}

template void f<>(); // OK, X<> has no base classes// x is a variable of type X<> that is value-initialized
— end example]
13.7.5 Friends [temp.friend]

1 A friend of a class or class template can be a function template or class template, a specialization of a function templateor class template, or a non-template function or class.
[Example 1:

§ 13.7.5 370

© ISO/IEC N4910

template<class T> class task;
template<class T> task<T>* preempt(task<T>*);

template<class T> class task {
friend void next_time();
friend void process(task<T>*);
friend task<T>* preempt<T>(task<T>*);
template<class C> friend int func(C);

friend class task<int>;
template<class P> friend class frd;

};

Here, each specialization of the task class template has the function next_time as a friend; because process does not have explicit
template-arguments, each specialization of the task class template has an appropriately typed function process as a friend, and thisfriend is not a function template specialization; because the friend preempt has an explicit template-argument T, each specializationof the task class template has the appropriate specialization of the function template preempt as a friend; and each specialization ofthe task class template has all specializations of the function template func as friends. Similarly, each specialization of the taskclass template has the class template specialization task<int> as a friend, and has all specializations of the class template frd asfriends. —end example]

2 Friend classes, class templates, functions, or function templates can be declared within a class template. When atemplate is instantiated, its friend declarations are found by name lookup as if the specialization had been explicitlydeclared at its point of instantiation.
[Note 1: They can introduce entities that belong to an enclosing namespace scope (9.3.4), in which case they are attached to the samemodule as the class template (10.1). —end note]

3 A friend template may be declared within a class or class template. A friend function template may be defined withina class or class template, but a friend class template may not be defined in a class or class template. In these cases,all specializations of the friend class or friend function template are friends of the class or class template grantingfriendship.
[Example 2:
class A {

template<class T> friend class B; // OK
template<class T> friend void f(T) { /* ... */ } // OK

};

—end example]
4 A template friend declaration specifies that all specializations of that template, whether they are implicitly instantiated(13.9.2), partially specialized (13.7.6) or explicitly specialized (13.9.4), are friends of the class containing the templatefriend declaration.
[Example 3:
class X {

template<class T> friend struct A;
class Y { };

};

template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK
—end example]

5 A template friend declaration may declare a member of a dependent type to be a friend. The friend declaration shalldeclare a function or specify a type with an elaborated-type-specifier , in either case with a nested-name-specifierending with a simple-template-id , C, whose template-name names a class template. The template parameters of thetemplate friend declaration shall be deducible from C (13.10.3.6). In this case, a member of a specialization S of theclass template is a friend of the class granting friendship if deduction of the template parameters of C from S succeeds,and substituting the deduced template arguments into the friend declaration produces a declaration that corresponds tothe member of the specialization.
[Example 4:
template<class T> struct A {

struct B { };

§ 13.7.5 371

© ISO/IEC N4910

void f();
struct D {
void g();

};
T h();
template<T U> T i();

};
template<> struct A<int> {

struct B { };
int f();
struct D {
void g();

};
template<int U> int i();

};
template<> struct A<float*> {

int *h();
};

class C {
template<class T> friend struct A<T>::B; // grants friendship to A<int>::B even though// it is not a specialization of A<T>::B
template<class T> friend void A<T>::f(); // does not grant friendship to A<int>::f()// because its return type does not match
template<class T> friend void A<T>::D::g(); // error: A<T>::D does not end with a simple-template-id
template<class T> friend int *A<T*>::h(); // grants friendship to A<int*>::h() and A<float*>::h()
template<class T> template<T U> // grants friendship to instantiations of A<T>::i() and
friend T A<T>::i(); // to A<int>::i(), and thereby to all specializations

}; // of those function templates
— end example]

6 A friend template shall not be declared in a local class.
7 Friend declarations shall not declare partial specializations.
[Example 5:
template<class T> class A { };
class X {

template<class T> friend class A<T*>; // error
};

—end example]
8 When a friend declaration refers to a specialization of a function template, the function parameter declarations shall notinclude default arguments, nor shall the inline, constexpr, or consteval specifiers be used in such a declaration.
9 A non-template friend declaration with a requires-clause shall be a definition. A friend function template with aconstraint that depends on a template parameter from an enclosing template shall be a definition. Such a constrainedfriend function or function template declaration does not declare the same function or function template as a declarationin any other scope.
13.7.6 Partial specialization [temp.spec.partial]
13.7.6.1 General [temp.spec.partial.general]

1 A partial specialization of a template provides an alternative definition of the template that is used instead of theprimary definition when the arguments in a specialization match those given in the partial specialization (13.7.6.2). Adeclaration of the primary template shall precede any partial specialization of that template. A partial specializationshall be reachable from any use of a template specialization that would make use of the partial specialization as theresult of an implicit or explicit instantiation; no diagnostic is required.
2 Two partial specialization declarations declare the same entity if they are partial specializations of the same templateand have equivalent template-heads and template argument lists (13.7.7.2). Each partial specialization is a distincttemplate.
3 [Example 1:

template<class T1, class T2, int I> class A { };

§ 13.7.6.1 372

© ISO/IEC N4910

template<class T, int I> class A<T, T*, I> { };
template<class T1, class T2, int I> class A<T1*, T2, I> { };
template<class T> class A<int, T*, 5> { };
template<class T1, class T2, int I> class A<T1, T2*, I> { };

The first declaration declares the primary (unspecialized) class template. The second and subsequent declarations declare partialspecializations of the primary template. —end example]
4 A partial specialization may be constrained (13.5).
[Example 2:
template<typename T> concept C = true;

template<typename T> struct X { };
template<typename T> struct X<T*> { }; // #1
template<C T> struct X<T> { }; // #2

Both partial specializations are more specialized than the primary template. #1 is more specialized because the deduction of itstemplate arguments from the template argument list of the class template specialization succeeds, while the reverse does not. #2 ismore specialized because the template arguments are equivalent, but the partial specialization is more constrained (13.5.5). —endexample]
5 The template argument list of a partial specialization is the template-argument-list following the name of the template.
6 A partial specialization may be declared in any scope in which the corresponding primary template may be defined (9.3.4,11.4, 13.7.3).
[Example 3:
template<class T> struct A {

struct C {
template<class T2> struct B { };
template<class T2> struct B<T2**> { }; // partial specialization #1

};
};

// partial specialization of A<T>::C::B<T2>
template<class T> template<class T2>

struct A<T>::C::B<T2*> { }; // #2
A<short>::C::B<int*> absip; // uses partial specialization #2
—end example]

7 Partial specialization declarations do not introduce a name. Instead, when the primary template name is used, anyreachable partial specializations of the primary template are also considered.
[Note 1: One consequence is that a using-declaration which refers to a class template does not restrict the set of partial specializationsthat are found through the using-declaration. —end note]
[Example 4:
namespace N {

template<class T1, class T2> class A { }; // primary template
}

using N::A; // refers to the primary template
namespace N {

template<class T> class A<T, T*> { }; // partial specialization
}

A<int,int*> a; // uses the partial specialization, which is found through the using-declaration// which refers to the primary template
— end example]

8 A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type arguments arespecialized.
9 Within the argument list of a partial specialization, the following restrictions apply:

§ 13.7.6.1 373

© ISO/IEC N4910

—(9.1) The type of a template parameter corresponding to a specialized non-type argument shall not be dependent on aparameter of the partial specialization.
[Example 5:
template <class T, T t> struct C {};
template <class T> struct C<T, 1>; // error
template< int X, int (*array_ptr)[X] > class A {};
int array[5];
template< int X > class A<X,&array> { }; // error
— end example]

—(9.2) The partial specialization shall be more specialized than the primary template (13.7.6.3).
—(9.3) The template parameter list of a partial specialization shall not contain default template argument values.125
—(9.4) An argument shall not contain an unexpanded pack. If an argument is a pack expansion (13.7.4), it shall be thelast argument in the template argument list.

10 The usual access checking rules do not apply to non-dependent names used to specify template arguments of the
simple-template-id of the partial specialization.
[Note 2: The template arguments can be private types or objects that would normally not be accessible. Dependent names cannot bechecked when declaring the partial specialization, but will be checked when substituting into the partial specialization. —end note]
13.7.6.2 Matching of partial specializations [temp.spec.partial.match]

1 When a template is used in a context that requires an instantiation of the template, it is necessary to determine whether theinstantiation is to be generated using the primary template or one of the partial specializations. This is done by matchingthe template arguments of the template specialization with the template argument lists of the partial specializations.
—(1.1) If exactly one matching partial specialization is found, the instantiation is generated from that partial specialization.
—(1.2) If more than one matching partial specialization is found, the partial order rules (13.7.6.3) are used to determinewhether one of the partial specializations is more specialized than the others. If such a partial specialization exists,the instantiation is generated from that partial specialization; otherwise, the use of the template is ambiguous andthe program is ill-formed.
—(1.3) If no matches are found, the instantiation is generated from the primary template.

2 A partial specialization matches a given actual template argument list if the template arguments of the partial specializa-tion can be deduced from the actual template argument list (13.10.3), and the deduced template arguments satisfy theassociated constraints of the partial specialization, if any (13.5.3).
[Example 1:
template<class T1, class T2, int I> class A { }; // #1
template<class T, int I> class A<T, T*, I> { }; // #2
template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
template<class T> class A<int, T*, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5
A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5
—end example]
[Example 2:
template<typename T> concept C = requires (T t) { t.f(); };

template<typename T> struct S { }; // #1
template<C T> struct S<T> { }; // #2
struct Arg { void f(); };

125) There is no context in which they would be used.
§ 13.7.6.2 374

© ISO/IEC N4910

S<int> s1; // uses #1; the constraints of #2 are not satisfied
S<Arg> s2; // uses #2; both constraints are satisfied but #2 is more specialized
— end example]

3 If the template arguments of a partial specialization cannot be deduced because of the structure of its template-parameter-
list and the template-id , the program is ill-formed.
[Example 3:
template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error
template <int I> struct A<I, I> {}; // OK
template <int I, int J, int K> struct B {};
template <int I> struct B<I, I*2, 2> {}; // OK
—end example]

4 In a name that refers to a specialization of a class or variable template (e.g., A<int, int, 1>), the argument list shallmatch the template parameter list of the primary template. The template arguments of a partial specialization arededuced from the arguments of the primary template.
13.7.6.3 Partial ordering of partial specializations [temp.spec.partial.order]

1 For two partial specializations, the first is more specialized than the second if, given the following rewrite to twofunction templates, the first function template is more specialized than the second according to the ordering rules forfunction templates (13.7.7.3):
—(1.1) Each of the two function templates has the same template parameters and associated constraints (13.5.3) as thecorresponding partial specialization.
—(1.2) Each function template has a single function parameter whose type is a class template specialization where thetemplate arguments are the corresponding template parameters from the function template for each templateargument in the template-argument-list of the simple-template-id of the partial specialization.

2 [Example 1:
template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2
template<int I0, int J0> void f(X<I0, J0, int>); // A
template<int I0> void f(X<I0, I0, int>); // B
template <auto v> class Y { };
template <auto* p> class Y<p> { }; // #3
template <auto** pp> class Y<pp> { }; // #4
template <auto* p0> void g(Y<p0>); // C
template <auto** pp0> void g(Y<pp0>); // D

According to the ordering rules for function templates, the function template B is more specialized than the function template A andthe function template D is more specialized than the function template C. Therefore, the partial specialization #2 is more specializedthan the partial specialization #1 and the partial specialization #4 is more specialized than the partial specialization #3. —endexample]
[Example 2:
template<typename T> concept C = requires (T t) { t.f(); };
template<typename T> concept D = C<T> && requires (T t) { t.f(); };

template<typename T> class S { };
template<C T> class S<T> { }; // #1
template<D T> class S<T> { }; // #2
template<C T> void f(S<T>); // A
template<D T> void f(S<T>); // B

The partial specialization #2 is more specialized than #1 because B is more specialized than A. —end example]

§ 13.7.6.3 375

© ISO/IEC N4910

13.7.6.4 Members of class template partial specializations [temp.spec.partial.member]
1 The members of the class template partial specialization are unrelated to the members of the primary template. Classtemplate partial specialization members that are used in a way that requires a definition shall be defined; the definitionsof members of the primary template are never used as definitions for members of a class template partial specialization.An explicit specialization of a member of a class template partial specialization is declared in the same way as anexplicit specialization of a member of the primary template.
[Example 1:
// primary class template
template<class T, int I> struct A {

void f();
};

// member of primary class template
template<class T, int I> void A<T,I>::f() { }

// class template partial specialization
template<class T> struct A<T,2> {

void f();
void g();
void h();

};

// member of class template partial specialization
template<class T> void A<T,2>::g() { }

// explicit specialization
template<> void A<char,2>::h() { }

int main() {
A<char,0> a0;
A<char,2> a2;
a0.f(); // OK, uses definition of primary template’s member
a2.g(); // OK, uses definition of partial specialization’s member
a2.h(); // OK, uses definition of explicit specialization’s member
a2.f(); // error: no definition of f for A<T,2>; the primary template is not used here

}

—end example]
2 If a member template of a class template is partially specialized, the member template partial specializations are membertemplates of the enclosing class template; if the enclosing class template is instantiated (13.9.2, 13.9.3), a declaration forevery member template partial specialization is also instantiated as part of creating the members of the class templatespecialization. If the primary member template is explicitly specialized for a given (implicit) specialization of theenclosing class template, the partial specializations of the member template are ignored for this specialization of theenclosing class template. If a partial specialization of the member template is explicitly specialized for a given (implicit)specialization of the enclosing class template, the primary member template and its other partial specializations are stillconsidered for this specialization of the enclosing class template.
[Example 2:
template<class T> struct A {

template<class T2> struct B {}; // #1
template<class T2> struct B<T2*> {}; // #2

};

template<> template<class T2> struct A<short>::B {}; // #3
A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1
—end example]

§ 13.7.6.4 376

© ISO/IEC N4910

13.7.7 Function templates [temp.fct]
13.7.7.1 General [temp.fct.general]

1 A function template defines an unbounded set of related functions.
[Example 1: A family of sort functions can be declared like this:
template<class T> class Array { };
template<class T> void sort(Array<T>&);

—end example]
2 [Note 1: A function template can have the same name as other function templates and non-template functions (9.3.4.6) in the samescope. —end note]
A non-template function is not related to a function template (i.e., it is never considered to be a specialization), even ifit has the same name and type as a potentially generated function template specialization.126
13.7.7.2 Function template overloading [temp.over.link]

1 It is possible to overload function templates so that two different function template specializations have the same type.
[Example 1:
// translation unit 1:
template<class T>

void f(T*);
void g(int* p) {

f(p); // calls f<int>(int*)
}

// translation unit 2:
template<class T>
void f(T);

void h(int* p) {
f(p); // calls f<int*>(int*)

}

—end example]
2 Such specializations are distinct functions and do not violate the one-definition rule (6.3).
3 The signature of a function template is defined in Clause 3. The names of the template parameters are significant onlyfor establishing the relationship between the template parameters and the rest of the signature.
[Note 1: Two distinct function templates can have identical function return types and function parameter lists, even if overloadresolution alone cannot distinguish them.
template<class T> void f();
template<int I> void f(); // OK, overloads the first template// distinguishable with an explicit template argument list
— end note]

4 When an expression that references a template parameter is used in the function parameter list or the return type in thedeclaration of a function template, the expression that references the template parameter is part of the signature of thefunction template. This is necessary to permit a declaration of a function template in one translation unit to be linkedwith another declaration of the function template in another translation unit and, conversely, to ensure that functiontemplates that are intended to be distinct are not linked with one another.
[Example 2:
template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1
—end example]
[Note 2: Most expressions that use template parameters use non-type template parameters, but it is possible for an expression toreference a type parameter. For example, a template type parameter can be used in the sizeof operator. —end note]

5 Two expressions involving template parameters are considered equivalent if two function definitions containing theexpressions would satisfy the one-definition rule (6.3), except that the tokens used to name the template parameters maydiffer as long as a token used to name a template parameter in one expression is replaced by another token that namesthe same template parameter in the other expression. Two unevaluated operands that do not involve template parametersare considered equivalent if two function definitions containing the expressions would satisfy the one-definition rule,except that the tokens used to name types and declarations may differ as long as they name the same entities, and thetokens used to form concept-ids (13.3) may differ as long as the two template-ids are the same (13.6).
126) That is, declarations of non-template functions do not merely guide overload resolution of function template specializations with the samename. If such a non-template function is odr-used (6.3) in a program, it must be defined; it will not be implicitly instantiated using the functiontemplate definition.
§ 13.7.7.2 377

© ISO/IEC N4910

[Note 3: For instance, A<42> and A<40+2> name the same type. —end note]
Two lambda-expressions are never considered equivalent.
[Note 4: The intent is to avoid lambda-expressions appearing in the signature of a function template with external linkage. —endnote]
For determining whether two dependent names (13.8.3) are equivalent, only the name itself is considered, not the resultof name lookup.
[Note 5: If such a dependent name is unqualified, it is looked up from the first declaration of the function template (13.8.4.2). —endnote]
[Example 3:
template <int I, int J> void f(A<I+J>); // #1
template <int K, int L> void f(A<K+L>); // same as #1
template <class T> decltype(g(T())) h();
int g(int);
template <class T> decltype(g(T())) h() // redeclaration of h() uses the earlier lookup. . .

{ return g(T()); } // . . . although the lookup here does find g(int)
int i = h<int>(); // template argument substitution fails; g(int)// not considered at the first declaration of h()
// ill-formed, no diagnostic required: the two expressions are functionally equivalent but not equivalent
template <int N> void foo(const char (*s)[([]{}, N)]);
template <int N> void foo(const char (*s)[([]{}, N)]);

// two different declarations because the non-dependent portions are not considered equivalent
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);

—end example]
Two potentially-evaluated expressions involving template parameters that are not equivalent are functionally equivalentif, for any given set of template arguments, the evaluation of the expression results in the same value. Two unevaluatedoperands that are not equivalent are functionally equivalent if, for any given set of template arguments, the expressionsperform the same operations in the same order with the same entities.
[Note 6: For instance, one could have redundant parentheses. —end note]
[Example 4:
template<int I> concept C = true;
template<typename T> struct A {

void f() requires C<42>; // #1
void f() requires true; // OK, different functions

};

—end example]
6 Two template-heads are equivalent if their template-parameter-lists have the same length, corresponding template-

parameters are equivalent and are both declared with type-constraints that are equivalent if either template-parameteris declared with a type-constraint, and if either template-head has a requires-clause, they both have requires-clausesand the corresponding constraint-expressions are equivalent. Two template-parameters are equivalent under thefollowing conditions:
—(6.1) they declare template parameters of the same kind,
—(6.2) if either declares a template parameter pack, they both do,
—(6.3) if they declare non-type template parameters, they have equivalent types ignoring the use of type-constraints forplaceholder types, and
—(6.4) if they declare template template parameters, their template parameters are equivalent.

When determining whether types or type-constraints are equivalent, the rules above are used to compare expressionsinvolving template parameters. Two template-heads are functionally equivalent if they accept and are satisfiedby (13.5.2) the same set of template argument lists.
7 If the validity or meaning of the program depends on whether two constructs are equivalent, and they are functionallyequivalent but not equivalent, the program is ill-formed, no diagnostic required.
§ 13.7.7.2 378

© ISO/IEC N4910

8 [Note 7: This rule guarantees that equivalent declarations will be linked with one another, while not requiring implementations to useheroic efforts to guarantee that functionally equivalent declarations will be treated as distinct. For example, the last two declarationsare functionally equivalent and would cause a program to be ill-formed:
// guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);

// guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);

// ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);

—end note]
13.7.7.3 Partial ordering of function templates [temp.func.order]

1 If multiple function templates share a name, the use of that name can be ambiguous because template argumentdeduction (13.10.3) may identify a specialization for more than one function template. Partial ordering of overloadedfunction template declarations is used in the following contexts to select the function template to which a functiontemplate specialization refers:
—(1.1) during overload resolution for a call to a function template specialization (12.2.4);
—(1.2) when the address of a function template specialization is taken;
—(1.3) when a placement operator delete that is a function template specialization is selected to match a placementoperator new (6.7.5.5.3, 7.6.2.8);
—(1.4) when a friend function declaration (13.7.5), an explicit instantiation (13.9.3) or an explicit specialization (13.9.4)refers to a function template specialization.

2 Partial ordering selects which of two function templates is more specialized than the other by transforming each templatein turn (see next paragraph) and performing template argument deduction using the function type. The deduction processdetermines whether one of the templates is more specialized than the other. If so, the more specialized template is theone chosen by the partial ordering process. If both deductions succeed, the partial ordering selects the more constrainedtemplate (if one exists) as determined below.
3 To produce the transformed template, for each type, non-type, or template template parameter (including templateparameter packs (13.7.4) thereof) synthesize a unique type, value, or class template respectively and substitute it foreach occurrence of that parameter in the function type of the template.
[Note 1: The type replacing the placeholder in the type of the value synthesized for a non-type template parameter is also a uniquesynthesized type. —end note]
Each function template M that is a member function is considered to have a new first parameter of type X(M),described below, inserted in its function parameter list. If exactly one of the function templates was considered byoverload resolution via a rewritten candidate (12.2.2.3) with a reversed order of parameters, then the order of thefunction parameters in its transformed template is reversed. For a function templateM with cv-qualifiers cv that is amember of a class A:
—(3.1) The type X(M) is “rvalue reference to cv A” if the optional ref-qualifier ofM is && or ifM has no ref-qualifierand the positionally-corresponding parameter of the other transformed template has rvalue reference type; if thisdetermination depends recursively upon whether X(M) is an rvalue reference type, it is not considered to havervalue reference type.
—(3.2) Otherwise, X(M) is “lvalue reference to cv A”.

[Note 2: This allows a non-static member to be ordered with respect to a non-member function and for the results to be equivalent tothe ordering of two equivalent non-members. —end note]
[Example 1:
struct A { };
template<class T> struct B {

template<class R> int operator*(R&); // #1
};

§ 13.7.7.3 379

© ISO/IEC N4910

template<class T, class R> int operator*(T&, R&); // #2
// The declaration of B::operator* is transformed into the equivalent of// template<class R> int operator*(B<A>&, R&); // #1a
int main() {

A a;
B<A> b;
b * a; // calls #1

}

—end example]
4 Using the transformed function template’s function type, perform type deduction against the other template as describedin 13.10.3.5.
[Example 2:
template<class T> struct A { A(); };

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>&);

void m() {
const int* p;
f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;
g(x); // ambiguous: g(T) or g(T&)
A<int> z;
h(z); // overload resolution selects h(A<T>&)
const A<int> z2;
h(z2); // h(const T&) is called because h(A<T>&) is not callable

}

—end example]
5 [Note 3: Since, in a call context, such type deduction considers only parameters for which there are explicit call arguments, someparameters are ignored (namely, function parameter packs, parameters with default arguments, and ellipsis parameters).
[Example 3:
template<class T> void f(T); // #1
template<class T> void f(T*, int=1); // #2
template<class T> void g(T); // #3
template<class T> void g(T*, ...); // #4
int main() {

int* ip;
f(ip); // calls #2
g(ip); // calls #4

}

—end example]
[Example 4:
template<class T, class U> struct A { };

template<class T, class U> void f(U, A<U, T>* p = 0); // #1
template< class U> void f(U, A<U, U>* p = 0); // #2
template<class T > void g(T, T = T()); // #3
template<class T, class... U> void g(T, U ...); // #4

§ 13.7.7.3 380

© ISO/IEC N4910

void h() {
f<int>(42, (A<int, int>*)0); // calls #2
f<int>(42); // error: ambiguous
g(42); // error: ambiguous

}

—end example]
[Example 5:
template<class T, class... U> void f(T, U...); // #1
template<class T > void f(T); // #2
template<class T, class... U> void g(T*, U...); // #3
template<class T > void g(T); // #4
void h(int i) {

f(&i); // OK, calls #2
g(&i); // OK, calls #3

}

—end example]
—end note]

6 If deduction against the other template succeeds for both transformed templates, constraints can be considered asfollows:
—(6.1) If their template-parameter-lists (possibly including template-parameters invented for an abbreviated functiontemplate (9.3.4.6)) or function parameter lists differ in length, neither template is more specialized than the other.
—(6.2) Otherwise:

—(6.2.1) If exactly one of the templates was considered by overload resolution via a rewritten candidate with reversedorder of parameters:
—(6.2.1.1) If, for either template, some of the template parameters are not deducible from their function parameters,neither template is more specialized than the other.
—(6.2.1.2) If there is either no reordering or more than one reordering of the associated template-parameter-listsuch that

—(6.2.1.2) the corresponding template-parameters of the template-parameter-lists are equivalent and
—(6.2.1.2) the function parameters that positionally correspond between the two templates are of the sametype,
neither template is more specialized than the other.

—(6.2.2) Otherwise, if the corresponding template-parameters of the template-parameter-lists are not equivalent(13.7.7.2) or if the function parameters that positionally correspond between the two templates are not ofthe same type, neither template is more specialized than the other.
—(6.3) Otherwise, if the context in which the partial ordering is done is that of a call to a conversion function and thereturn types of the templates are not the same, then neither template is more specialized than the other.
—(6.4) Otherwise, if one template is more constrained than the other (13.5.5), the more constrained template is morespecialized than the other.
—(6.5) Otherwise, neither template is more specialized than the other.

[Example 6:
template <typename> constexpr bool True = true;
template <typename T> concept C = True<T>;

void f(C auto &, auto &) = delete;
template <C Q> void f(Q &, C auto &);

void g(struct A *ap, struct B *bp) {
f(*ap, *bp); // OK, can use different methods to produce template parameters

}

template <typename T, typename U> struct X {};

§ 13.7.7.3 381

© ISO/IEC N4910

template <typename T, C U, typename V> bool operator==(X<T, U>, V) = delete;
template <C T, C U, C V> bool operator==(T, X<U, V>);

void h() {
X<void *, int>{} == 0; // OK, correspondence of [T, U, V] and [U, V, T]

}

—end example]
13.7.8 Alias templates [temp.alias]

1 A template-declaration in which the declaration is an alias-declaration (9.1) declares the identifier to be an aliastemplate. An alias template is a name for a family of types. The name of the alias template is a template-name.
2 When a template-id refers to the specialization of an alias template, it is equivalent to the associated type obtained bysubstitution of its template-arguments for the template-parameters in the defining-type-id of the alias template.
[Note 1: An alias template name is never deduced. —end note]
[Example 1:
template<class T> struct Alloc { /* ... */ };
template<class T> using Vec = vector<T, Alloc<T>>;
Vec<int> v; // same as vector<int, Alloc<int>> v;

template<class T>
void process(Vec<T>& v)
{ /* ... */ }

template<class T>
void process(vector<T, Alloc<T>>& w)
{ /* ... */ } // error: redefinition

template<template<class> class TT>
void f(TT<int>);

f(v); // error: Vec not deduced
template<template<class,class> class TT>

void g(TT<int, Alloc<int>>);
g(v); // OK, TT = vector

—end example]
3 However, if the template-id is dependent, subsequent template argument substitution still applies to the template-id .
[Example 2:
template<typename...> using void_t = void;
template<typename T> void_t<typename T::foo> f();
f<int>(); // error: int does not have a nested type foo
—end example]

4 The defining-type-id in an alias template declaration shall not refer to the alias template being declared. The typeproduced by an alias template specialization shall not directly or indirectly make use of that specialization.
[Example 3:
template <class T> struct A;
template <class T> using B = typename A<T>::U;
template <class T> struct A {

typedef B<T> U;
};
B<short> b; // error: instantiation of B<short> uses own type via A<short>::U
—end example]

5 The type of a lambda-expression appearing in an alias template declaration is different between instantiations of thattemplate, even when the lambda-expression is not dependent.
[Example 4:

§ 13.7.8 382

© ISO/IEC N4910

template <class T>
using A = decltype([] { }); // A<int> and A<char> refer to different closure types

— end example]
13.7.9 Concept definitions [temp.concept]

1 A concept is a template that defines constraints on its template arguments.
concept-definition :

concept concept-name = constraint-expression ;

concept-name :
identifier

2 A concept-definition declares a concept. Its identifier becomes a concept-name referring to that concept within itsscope.
[Example 1:
template<typename T>
concept C = requires(T x) {

{ x == x } -> std::convertible_to<bool>;
};

template<typename T>
requires C<T> // C constrains f1(T) in constraint-expression

T f1(T x) { return x; }

template<C T> // C, as a type-constraint, constrains f2(T)
T f2(T x) { return x; }

—end example]
3 A concept-definition shall inhabit a namespace scope (6.4.5).
4 A concept shall not have associated constraints (13.5.3).
5 A concept is not instantiated (13.9).
[Note 1: A concept-id (13.3) is evaluated as an expression. A concept cannot be explicitly instantiated (13.9.3), explicitly specialized(13.9.4), or partially specialized (13.7.6). —end note]

6 The constraint-expression of a concept-definition is an unevaluated operand (7.2.3).
7 The first declared template parameter of a concept definition is its prototype parameter. A type concept is a conceptwhose prototype parameter is a type template-parameter .
13.8 Name resolution [temp.res]
13.8.1 General [temp.res.general]

1 A name that appears in a declarationD of a template T is looked up from where it appears in an unspecified declarationof T that either is D itself or is reachable from D and from which no other declaration of T that contains the usage ofthe name is reachable. If the name is dependent (as specified in 13.8.3), it is looked up for each specialization (aftersubstitution) because the lookup depends on a template parameter.
[Note 1: Some dependent names are also looked up during parsing to determine that they are dependent or to interpret following <tokens. Uses of other names might be type-dependent or value-dependent (13.8.3.3, 13.8.3.4). A using-declarator is never dependentin a specialization and is therefore replaced during lookup for that specialization (6.5). —end note]
[Example 1:
struct A { operator int(); };
template<class B, class T>
struct D : B {

T get() { return operator T(); } // conversion-function-id is dependent
};
int f(D<A, int> d) { return d.get(); } // OK, lookup finds A::operator int
— end example]
[Example 2:
void f(char);

§ 13.8.1 383

© ISO/IEC N4910

template<class T> void g(T t) {
f(1); // f(char)
f(T(1)); // dependent
f(t); // dependent
dd++; // not dependent; error: declaration for dd not found

}

enum E { e };
void f(E);

double dd;
void h() {

g(e); // will cause one call of f(char) followed by two calls of f(E)
g('a'); // will cause three calls of f(char)

}

—end example]
[Example 3:
struct A {

struct B { /* ... */ };
int a;
int Y;

};

int a;

template<class T> struct Y : T {
struct B { /* ... */ };
B b; // The B defined in Y
void f(int i) { a = i; } // ::a
Y* p; // Y<T>

};

Y<A> ya;

The members A::B, A::a, and A::Y of the template argument A do not affect the binding of names in Y<A>. —end example]
2 If the validity or meaning of the program would be changed by considering a default argument or default templateargument introduced in a declaration that is reachable from the point of instantiation of a specialization (13.8.4.1) but isnot found by lookup for the specialization, the program is ill-formed, no diagnostic required.

typename-specifier :
typename nested-name-specifier identifier
typename nested-name-specifier templateopt simple-template-id

3 The component names of a typename-specifier are its identifier (if any) and those of its nested-name-specifier and
simple-template-id (if any). A typename-specifier denotes the type or class template denoted by the simple-type-
specifier (9.2.9.3) formed by omitting the keyword typename.
[Note 2: The usual qualified name lookup (6.5.5) applies even in the presence of typename. —end note]
[Example 4:
struct A {

struct X { };
int X;

};
struct B {

struct X { };
};
template<class T> void f(T t) {

typename T::X x;
}
void foo() {

A a;
B b;
f(b); // OK, T::X refers to B::X

§ 13.8.1 384

© ISO/IEC N4910

f(a); // error: T::X refers to the data member A::X not the struct A::X
}

—end example]
4 A qualified or unqualified name is said to be in a type-only context if it is the terminal name of

—(4.1) a typename-specifier , nested-name-specifier , elaborated-type-specifier , class-or-decltype, or
—(4.2) a type-specifier of a

—(4.2.1) new-type-id ,
—(4.2.2) defining-type-id ,
—(4.2.3) conversion-type-id ,
—(4.2.4) trailing-return-type,
—(4.2.5) default argument of a type-parameter , or
—(4.2.6) type-id of a static_cast, const_cast, reinterpret_cast, or dynamic_cast, or

—(4.3) a decl-specifier of the decl-specifier-seq of a
—(4.3.1) simple-declaration or a function-definition in namespace scope,
—(4.3.2) member-declaration,
—(4.3.3) parameter-declaration in a member-declaration,127 unless that parameter-declaration appears in a defaultargument,
—(4.3.4) parameter-declaration in a declarator of a function or function template declaration whose declarator-id isqualified, unless that parameter-declaration appears in a default argument,
—(4.3.5) parameter-declaration in a lambda-declarator or requirement-parameter-list, unless that parameter-

declaration appears in a default argument, or
—(4.3.6) parameter-declaration of a (non-type) template-parameter .

[Example 5:
template<class T> T::R f(); // OK, return type of a function declaration at global scope
template<class T> void f(T::R); // ill-formed, no diagnostic required: attempt to declare// a void variable template
template<class T> struct S {

using Ptr = PtrTraits<T>::Ptr; // OK, in a defining-type-id
T::R f(T::P p) { // OK, class scope

return static_cast<T::R>(p); // OK, type-id of a static_cast
}
auto g() -> S<T*>::Ptr; // OK, trailing-return-type

};
template<typename T> void f() {

void (*pf)(T::X); // variable pf of type void* initialized with T::X
void g(T::X); // error: T::X at block scope does not denote a type// (attempt to declare a void variable)

}

—end example]
5 A qualified-id whose terminal name is dependent and that is in a type-only context is considered to denote a type.A name that refers to a using-declarator whose terminal name is dependent is interpreted as a typedef-name if the

using-declarator uses the keyword typename.
[Example 6:
template <class T> void f(int i) {

T::x * i; // expression, not the declaration of a variable i
}

struct Foo {
typedef int x;

};

127) This includes friend function declarations.
§ 13.8.1 385

© ISO/IEC N4910

struct Bar {
static int const x = 5;

};

int main() {
f<Bar>(1); // OK
f<Foo>(1); // error: Foo::x is a type

}

—end example]
6 The validity of a template may be checked prior to any instantiation.
[Note 3: Knowing which names are type names allows the syntax of every template to be checked in this way. —end note]
The program is ill-formed, no diagnostic required, if:
—(6.1) no valid specialization can be generated for a template or a substatement of a constexpr if statement (8.5.2) withina template and the template is not instantiated, or
—(6.2) any constraint-expression in the program, introduced or otherwise, has (in its normal form) an atomic constraint

A where no satisfaction check of A could be well-formed and no satisfaction check of A is performed, or
—(6.3) every valid specialization of a variadic template requires an empty template parameter pack, or
—(6.4) a hypothetical instantiation of a template immediately following its definition would be ill-formed due to aconstruct that does not depend on a template parameter, or
—(6.5) the interpretation of such a construct in the hypothetical instantiation is different from the interpretation of thecorresponding construct in any actual instantiation of the template.

[Note 4: This can happen in situations including the following:
—(6.6) a type used in a non-dependent name is incomplete at the point at which a template is defined but is complete at the point atwhich an instantiation is performed, or
—(6.7) lookup for a name in the template definition found a using-declaration, but the lookup in the corresponding scope in theinstantiation does not find any declarations because the using-declaration was a pack expansion and the corresponding packis empty, or
—(6.8) an instantiation uses a default argument or default template argument that had not been defined at the point at which thetemplate was defined, or
—(6.9) constant expression evaluation (7.7) within the template instantiation uses

—(6.9.1) the value of a const object of integral or unscoped enumeration type or
—(6.9.2) the value of a constexpr object or
—(6.9.3) the value of a reference or
—(6.9.4) the definition of a constexpr function,

and that entity was not defined when the template was defined, or
—(6.10) a class template specialization or variable template specialization that is specified by a non-dependent simple-template-id isused by the template, and either it is instantiated from a partial specialization that was not defined when the template wasdefined or it names an explicit specialization that was not declared when the template was defined.

—end note]
Otherwise, no diagnostic shall be issued for a template for which a valid specialization can be generated.
[Note 5: If a template is instantiated, errors will be diagnosed according to the other rules in this document. Exactly when theseerrors are diagnosed is a quality of implementation issue. —end note]
[Example 7:
int j;
template<class T> class X {

void f(T t, int i, char* p) {
t = i; // diagnosed if X::f is instantiated, and the assignment to t is an error
p = i; // may be diagnosed even if X::f is not instantiated
p = j; // may be diagnosed even if X::f is not instantiated
X<T>::g(t); // OK
X<T>::h(); // may be diagnosed even if X::f is not instantiated

}

§ 13.8.1 386

© ISO/IEC N4910

void g(T t) {
+; // may be diagnosed even if X::g is not instantiated

}
};

template<class... T> struct A {
void operator++(int, T... t); // error: too many parameters

};
template<class... T> union X : T... { }; // error: union with base class
template<class... T> struct A : T..., T... { }; // error: duplicate base class
— end example]

7 [Note 6: For purposes of name lookup, default arguments and noexcept-specifiers of function templates and default arguments and
noexcept-specifiers of member functions of class templates are considered definitions (13.7). —end note]
13.8.2 Locally declared names [temp.local]

1 Like normal (non-template) classes, class templates have an injected-class-name (11.1). The injected-class-name can beused as a template-name or a type-name. When it is used with a template-argument-list, as a template-argumentfor a template template-parameter , or as the final identifier in the elaborated-type-specifier of a friend class templatedeclaration, it is a template-name that refers to the class template itself. Otherwise, it is a type-name equivalent to the
template-name followed by the template argument list (13.7.1, 13.4.1) of the class template enclosed in <>.

2 When the inject-class-name of a class template specialization or partial specialization is used as a type-name, it isequivalent to the template-name followed by the template-arguments of the class template specialization or partialspecialization enclosed in <>.
[Example 1:
template<template<class> class T> class A { };
template<class T> class Y;
template<> class Y<int> {

Y* p; // meaning Y<int>
Y<char>* q; // meaning Y<char>
A<Y>* a; // meaning A<::Y>
class B {

template<class> friend class Y; // meaning ::Y
};

};

—end example]
3 The injected-class-name of a class template or class template specialization can be used as either a template-name or a

type-name wherever it is named.
[Example 2:
template <class T> struct Base {

Base* p;
};

template <class T> struct Derived: public Base<T> {
typename Derived::Base* p; // meaning Derived::Base<T>

};

template<class T, template<class> class U = T::Base> struct Third { };
Third<Derived<int> > t; // OK, default argument uses injected-class-name as a template
— end example]

4 A lookup that finds an injected-class-name (6.5.2) can result in an ambiguity in certain cases (for example, if it isfound in more than one base class). If all of the injected-class-names that are found refer to specializations of the sameclass template, and if the name is used as a template-name, the reference refers to the class template itself and not aspecialization thereof, and is not ambiguous.
[Example 3:
template <class T> struct Base { };
template <class T> struct Derived: Base<int>, Base<char> {

typename Derived::Base b; // error: ambiguous
§ 13.8.2 387

© ISO/IEC N4910

typename Derived::Base<double> d; // OK
};

—end example]
5 When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-name) is used, italways refers to the class template itself and not a specialization of the template.
[Example 4:
template<class T> class X {

X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;
::X* p4; // error: missing template argument list// ::X does not refer to the injected-class-name

};

—end example]
6 The name of a template-parameter shall not be bound to any following declaration contained by the scope to which thetemplate-parameter belongs.
[Example 5:
template<class T, int i> class Y {

int T; // error: template-parameter hidden
void f() {
char T; // error: template-parameter hidden

}
friend void T(); // OK, no name bound

};

template<class X> class X; // error: hidden by template-parameter

—end example]
7 Unqualified name lookup considers the template parameter scope of a template-declaration immediately after theoutermost scope associated with the template declared (even if its parent scope does not contain the template-parameter-

list).
[Note 1: The scope of a class template, including its non-dependent base classes (13.8.3.2, 6.5.2), is searched before its templateparameter scope. —end note]
[Example 6:
struct B { };
namespace N {

typedef void V;
template<class T> struct A : B {
typedef void C;
void f();
template<class U> void g(U);

};
}

template<class V> void N::A<V>::f() { // N::V not considered here
V v; // V is still the template parameter, not N::V

}

template<class B> template<class C> void N::A::g(C) {
B b; // B is the base class, not the template parameter
C c; // C is the template parameter, not A’s C

}

—end example]
13.8.3 Dependent names [temp.dep]
13.8.3.1 General [temp.dep.general]

1 Inside a template, some constructs have semantics which may differ from one instantiation to another. Such a constructdepends on the template parameters. In particular, types and expressions may depend on the type and/or value of
§ 13.8.3.1 388

© ISO/IEC N4910

template parameters (as determined by the template arguments) and this determines the context for name lookupfor certain names. An expression may be type-dependent (that is, its type may depend on a template parameter) orvalue-dependent (that is, its value when evaluated as a constant expression (7.7) may depend on a template parameter)as described below.
2 A dependent call is an expression, possibly formed as a non-member candidate for an operator (12.2.2.3), of the form:

postfix-expression (expression-listopt)

where the postfix-expression is an unqualified-id and
—(2.1) any of the expressions in the expression-list is a pack expansion (13.7.4), or
—(2.2) any of the expressions or braced-init-lists in the expression-list is type-dependent (13.8.3.3), or
—(2.3) the unqualified-id is a template-id in which any of the template arguments depends on a template parameter.

The component name of an unqualified-id (7.5.4.2) is dependent if
—(2.4) it is a conversion-function-id whose conversion-type-id is dependent, or
—(2.5) it is operator= and the current class is a templated entity, or
—(2.6) the unqualified-id is the postfix-expression in a dependent call.

[Note 1: Such names are looked up only at the point of the template instantiation (13.8.4.1) in both the context of the templatedefinition and the context of the point of instantiation (13.8.4.2). —end note]
3 [Example 1:

template<class T> struct X : B<T> {
typename T::A* pa;
void f(B<T>* pb) {
static int i = B<T>::i;
pb->j++;

}
};

The base class name B<T>, the type name T::A, the names B<T>::i and pb->j explicitly depend on the template-parameter . —endexample]
13.8.3.2 Dependent types [temp.dep.type]

1 A name or template-id refers to the current instantiation if it is
—(1.1) in the definition of a class template, a nested class of a class template, a member of a class template, or a memberof a nested class of a class template, the injected-class-name (11.1) of the class template or nested class,
—(1.2) in the definition of a primary class template or a member of a primary class template, the name of the classtemplate followed by the template argument list of its template-head (13.4) enclosed in <> (or an equivalenttemplate alias specialization),
—(1.3) in the definition of a nested class of a class template, the name of the nested class referenced as a member of thecurrent instantiation, or
—(1.4) in the definition of a class template partial specialization or a member of a class template partial specialization,the name of the class template followed by a template argument list equivalent to that of the partial specialization(13.7.6) enclosed in <> (or an equivalent template alias specialization).

2 A template argument that is equivalent to a template parameter can be used in place of that template parameter in areference to the current instantiation. For a template type-parameter , a template argument is equivalent to a templateparameter if it denotes the same type. For a non-type template parameter, a template argument is equivalent to a templateparameter if it is an identifier that names a variable that is equivalent to the template parameter. A variable is equivalentto a template parameter if
—(2.1) it has the same type as the template parameter (ignoring cv-qualification) and
—(2.2) its initializer consists of a single identifier that names the template parameter or, recursively, such a variable.

[Note 1: Using a parenthesized variable name breaks the equivalence. —end note]
[Example 1:
template <class T> class A {

A* p1; // A is the current instantiation
§ 13.8.3.2 389

© ISO/IEC N4910

A<T>* p2; // A<T> is the current instantiation
A<T*> p3; // A<T*> is not the current instantiation
::A<T>* p4; // ::A<T> is the current instantiation
class B {

B* p1; // B is the current instantiation
A<T>::B* p2; // A<T>::B is the current instantiation
typename A<T*>::B* p3; // A<T*>::B is not the current instantiation

};
};

template <class T> class A<T*> {
A<T*>* p1; // A<T*> is the current instantiation
A<T>* p2; // A<T> is not the current instantiation

};

template <class T1, class T2, int I> struct B {
B<T1, T2, I>* b1; // refers to the current instantiation
B<T2, T1, I>* b2; // not the current instantiation
typedef T1 my_T1;
static const int my_I = I;
static const int my_I2 = I+0;
static const int my_I3 = my_I;
static const long my_I4 = I;
static const int my_I5 = (I);
B<my_T1, T2, my_I>* b3; // refers to the current instantiation
B<my_T1, T2, my_I2>* b4; // not the current instantiation
B<my_T1, T2, my_I3>* b5; // refers to the current instantiation
B<my_T1, T2, my_I4>* b6; // not the current instantiation
B<my_T1, T2, my_I5>* b7; // not the current instantiation

};

—end example]
3 A dependent base class is a base class that is a dependent type and is not the current instantiation.
[Note 2: A base class can be the current instantiation in the case of a nested class naming an enclosing class as a base.
[Example 2:
template<class T> struct A {

typedef int M;
struct B {

typedef void M;
struct C;

};
};

template<class T> struct A<T>::B::C : A<T> {
M m; // OK, A<T>::M

};

—end example]
—end note]

4 A qualified (6.5.5) or unqualified name is a member of the current instantiation if
—(4.1) its lookup context, if it is a qualified name, is the current instantiation, and
—(4.2) lookup for it finds any member of a class that is the current instantiation

[Example 3:
template <class T> class A {

static const int i = 5;
int n1[i]; // i refers to a member of the current instantiation
int n2[A::i]; // A::i refers to a member of the current instantiation
int n3[A<T>::i]; // A<T>::i refers to a member of the current instantiation
int f();

};

§ 13.8.3.2 390

© ISO/IEC N4910

template <class T> int A<T>::f() {
return i; // i refers to a member of the current instantiation

}

—end example]
A qualified or unqualified name names a dependent member of the current instantiation if it is a member of the currentinstantiation that, when looked up, refers to at least one member declaration (including a using-declarator whoseterminal name is dependent) of a class that is the current instantiation.

5 A qualified name (6.5.5) is dependent if
—(5.1) it is a conversion-function-id whose conversion-type-id is dependent, or
—(5.2) its lookup context is dependent and is not the current instantiation, or
—(5.3) its lookup context is the current instantiation and it is operator=,128 or
—(5.4) its lookup context is the current instantiation and has at least one dependent base class, and qualified name lookupfor the name finds nothing (6.5.5).

[Example 4:
struct A {

using B = int;
A f();

};
struct C : A {};
template<class T>
void g(T t) {

decltype(t.A::f())::B i; // error: typename needed to interpret B as a type
}
template void g(C); // . . . even though A is ::A here
— end example]

6 If, for a given set of template arguments, a specialization of a template is instantiated that refers to a member of thecurrent instantiation with a qualified name, the name is looked up in the template instantiation context. If the result ofthis lookup differs from the result of name lookup in the template definition context, name lookup is ambiguous.
[Example 5:
struct A {

int m;
};

struct B {
int m;

};

template<typename T>
struct C : A, T {

int f() { return this->m; } // finds A::m in the template definition context
int g() { return m; } // finds A::m in the template definition context

};

template int C::f(); // error: finds both A::m and B::m
template int C::g(); // OK, transformation to class member access syntax// does not occur in the template definition context; see 11.4.3
— end example]

7 A type is dependent if it is
—(7.1) a template parameter,
—(7.2) denoted by a dependent (qualified) name,
—(7.3) a nested class or enumeration that is a direct member of a class that is the current instantiation,
—(7.4) a cv-qualified type where the cv-unqualified type is dependent,

128) Every instantiation of a class template declares a different set of assignment operators.
§ 13.8.3.2 391

© ISO/IEC N4910

—(7.5) a compound type constructed from any dependent type,
—(7.6) an array type whose element type is dependent or whose bound (if any) is value-dependent,
—(7.7) a function type whose parameters include one or more function parameter packs,
—(7.8) a function type whose exception specification is value-dependent,
—(7.9) denoted by a simple-template-id in which either the template name is a template parameter or any of the templatearguments is a dependent type or an expression that is type-dependent or value-dependent or is a pack expansion,129or
—(7.10) denoted by decltype(expression), where expression is type-dependent (13.8.3.3).

8 [Note 3: Because typedefs do not introduce new types, but instead simply refer to other types, a name that refers to a typedef that is amember of the current instantiation is dependent only if the type referred to is dependent. —end note]
13.8.3.3 Type-dependent expressions [temp.dep.expr]

1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.
2 this is type-dependent if the current class (7.5.2) is dependent (13.8.3.2).
3 An id-expression is type-dependent if it is a template-id that is not a concept-id and is dependent; or if its terminalname is

—(3.1) associated by name lookup with one or more declarations declared with a dependent type,
—(3.2) associated by name lookup with a non-type template-parameter declared with a type that contains a placeholdertype (9.2.9.6),
—(3.3) associated by name lookup with a variable declared with a type that contains a placeholder type (9.2.9.6) wherethe initializer is type-dependent,
—(3.4) associated by name lookup with one or more declarations of member functions of a class that is the currentinstantiation declared with a return type that contains a placeholder type,
—(3.5) associated by name lookup with a structured binding declaration (9.6) whose brace-or-equal-initializer is type-dependent,
—(3.6) associated by name lookup with an entity captured by copy (7.5.5.3) in a lambda-expression that has an explicitobject parameter whose type is dependent (9.3.4.6),
—(3.7) the identifier __func__ (9.5.1), where any enclosing function is a template, a member of a class template, or ageneric lambda,
—(3.8) a conversion-function-id that specifies a dependent type, or
—(3.9) dependent

or if it names a dependent member of the current instantiation that is a static data member of type “array of unknownbound of T” for some T (13.7.2.5). Expressions of the following forms are type-dependent only if the type specified bythe type-id , simple-type-specifier or new-type-id is dependent, even if any subexpression is type-dependent:
simple-type-specifier (expression-listopt)
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt (type-id) new-initializeropt
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be dependent):

129) This includes an injected-class-name (11.1) of a class template used without a template-argument-list.
§ 13.8.3.3 392

© ISO/IEC N4910

literal
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
typeid (expression)
typeid (type-id)
::opt delete cast-expression
::opt delete [] cast-expression
throw assignment-expressionopt
noexcept (expression)

[Note 1: For the standard library macro offsetof, see 17.2. —end note]
5 A class member access expression (7.6.1.5) is type-dependent if the terminal name of its id-expression, if any, isdependent or the expression refers to a member of the current instantiation and the type of the referenced member isdependent.
[Note 2: In an expression of the form x.y or xp->y the type of the expression is usually the type of the member y of the class of x (orthe class pointed to by xp). However, if x or xp refers to a dependent type that is not the current instantiation, the type of y is alwaysdependent. —end note]

6 A braced-init-list is type-dependent if any element is type-dependent or is a pack expansion.
7 A fold-expression is type-dependent.
13.8.3.4 Value-dependent expressions [temp.dep.constexpr]

1 Except as described below, an expression used in a context where a constant expression is required is value-dependentif any subexpression is value-dependent.
2 An id-expression is value-dependent if:

—(2.1) it is a concept-id and any of its arguments are dependent,
—(2.2) it is type-dependent,
—(2.3) it is the name of a non-type template parameter,
—(2.4) it names a static data member that is a dependent member of the current instantiation and is not initialized in a

member-declarator ,
—(2.5) it names a static member function that is a dependent member of the current instantiation, or
—(2.6) it names a potentially-constant variable (7.7) that is initialized with an expression that is value-dependent.

Expressions of the following form are value-dependent if the unary-expression or expression is type-dependent or the
type-id is dependent:

sizeof unary-expression
sizeof (type-id)
typeid (expression)
typeid (type-id)
alignof (type-id)
noexcept (expression)

[Note 1: For the standard library macro offsetof, see 17.2. —end note]
3 Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is dependent or the

expression or cast-expression is value-dependent:
simple-type-specifier (expression-listopt)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

4 Expressions of the following form are value-dependent:
sizeof ... (identifier)
fold-expression

5 An expression of the form &qualified-id where the qualified-id names a dependent member of the current instantiationis value-dependent. An expression of the form &cast-expression is also value-dependent if evaluating cast-expression
§ 13.8.3.4 393

© ISO/IEC N4910

as a core constant expression (7.7) succeeds and the result of the evaluation refers to a templated entity that is an objectwith static or thread storage duration or a member function.
13.8.3.5 Dependent template arguments [temp.dep.temp]

1 A type template-argument is dependent if the type it specifies is dependent.
2 A non-type template-argument is dependent if its type is dependent or the constant expression it specifies is value-dependent.
3 Furthermore, a non-type template-argument is dependent if the corresponding non-type template-parameter is ofreference or pointer type and the template-argument designates or points to a member of the current instantiation or amember of a dependent type.
4 A template template-parameter is dependent if it names a template-parameter or its terminal name is dependent.
13.8.4 Dependent name resolution [temp.dep.res]
13.8.4.1 Point of instantiation [temp.point]

1 For a function template specialization, a member function template specialization, or a specialization for a memberfunction or static data member of a class template, if the specialization is implicitly instantiated because it is referencedfrom within another template specialization and the context from which it is referenced depends on a template parameter,the point of instantiation of the specialization is the point of instantiation of the enclosing specialization. Otherwise, thepoint of instantiation for such a specialization immediately follows the namespace scope declaration or definition thatrefers to the specialization.
2 If a function template or member function of a class template is called in a way which uses the definition of a defaultargument of that function template or member function, the point of instantiation of the default argument is the point ofinstantiation of the function template or member function specialization.
3 For a noexcept-specifier of a function template specialization or specialization of a member function of a class template,if the noexcept-specifier is implicitly instantiated because it is needed by another template specialization and the contextthat requires it depends on a template parameter, the point of instantiation of the noexcept-specifier is the point ofinstantiation of the specialization that requires it. Otherwise, the point of instantiation for such a noexcept-specifierimmediately follows the namespace scope declaration or definition that requires the noexcept-specifier .
4 For a class template specialization, a class member template specialization, or a specialization for a class member ofa class template, if the specialization is implicitly instantiated because it is referenced from within another templatespecialization, if the context from which the specialization is referenced depends on a template parameter, and if thespecialization is not instantiated previous to the instantiation of the enclosing template, the point of instantiation isimmediately before the point of instantiation of the enclosing template. Otherwise, the point of instantiation for such aspecialization immediately precedes the namespace scope declaration or definition that refers to the specialization.
5 If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of instantiationof its enclosing class template specialization.
6 An explicit instantiation definition is an instantiation point for the specialization or specializations specified by theexplicit instantiation.
7 A specialization for a function template, a member function template, or of a member function or static data member ofa class template may have multiple points of instantiations within a translation unit, and in addition to the points ofinstantiation described above,

—(7.1) for any such specialization that has a point of instantiation within the declaration-seq of the translation-unit,prior to the private-module-fragment (if any), the point after the declaration-seq of the translation-unit is alsoconsidered a point of instantiation, and
—(7.2) for any such specialization that has a point of instantiation within the private-module-fragment, the end of thetranslation unit is also considered a point of instantiation.

A specialization for a class template has at most one point of instantiation within a translation unit. A specialization forany template may have points of instantiation in multiple translation units. If two different points of instantiation givea template specialization different meanings according to the one-definition rule (6.3), the program is ill-formed, nodiagnostic required.
13.8.4.2 Candidate functions [temp.dep.candidate]

1 If a dependent call (13.8.3) would be ill-formed or would find a better match had the lookup for its dependent nameconsidered all the function declarations with external linkage introduced in the associated namespaces in all translation
§ 13.8.4.2 394

© ISO/IEC N4910

units, not just considering those declarations found in the template definition and template instantiation contexts (6.5.4),then the program is ill-formed, no diagnostic required.
2 [Example 1:
Source file "X.h":
namespace Q {

struct X { };
}

Source file "G.h":
namespace Q {

void g_impl(X, X);
}

Module interface unit of M1:
module;
#include "X.h"
#include "G.h"
export module M1;
export template<typename T>
void g(T t) {

g_impl(t, Q::X{ }); // ADL in definition context finds Q::g_impl, g_impl not discarded
}

Module interface unit of M2:
module;
#include "X.h"
export module M2;
import M1;
void h(Q::X x) {

g(x); // OK
}

—end example]
3 [Example 2:
Module interface unit of Std:
export module Std;
export template<typename Iter>
void indirect_swap(Iter lhs, Iter rhs)
{

swap(*lhs, *rhs); // swap not found by unqualified lookup, can be found only via ADL
}

Module interface unit of M:
export module M;
import Std;

struct S { /* ...*/ };
void swap(S&, S&); // #1
void f(S* p, S* q)
{

indirect_swap(p, q); // finds #1 via ADL in instantiation context
}

—end example]
4 [Example 3:
Source file "X.h":
struct X { /* ... */ };
X operator+(X, X);

§ 13.8.4.2 395

© ISO/IEC N4910

Module interface unit of F:
export module F;
export template<typename T>
void f(T t) {

t + t;
}

Module interface unit of M:
module;
#include "X.h"
export module M;
import F;
void g(X x) {

f(x); // OK, instantiates f from F,// operator+ is visible in instantiation context
}

—end example]
5 [Example 4:
Module interface unit of A:
export module A;
export template<typename T>
void f(T t) {

cat(t, t); // #1
dog(t, t); // #2

}

Module interface unit of B:
export module B;
import A;
export template<typename T, typename U>
void g(T t, U u) {

f(t);
}

Source file "foo.h", not an importable header:
struct foo {

friend int cat(foo, foo);
};
int dog(foo, foo);

Module interface unit of C1:
module;
#include "foo.h" // dog not referenced, discarded
export module C1;
import B;
export template<typename T>
void h(T t) {

g(foo{ }, t);
}

Translation unit:
import C1;
void i() {

h(0); // error: dog not found at #2
}

Importable header "bar.h":
struct bar {

friend int cat(bar, bar);
};
int dog(bar, bar);

§ 13.8.4.2 396

© ISO/IEC N4910

Module interface unit of C2:
module;
#include "bar.h" // imports header unit "bar.h"
export module C2;
import B;
export template<typename T>
void j(T t) {

g(bar{ }, t);
}

Translation unit:
import C2;
void k() {

j(0); // OK, dog found in instantiation context:// visible at end of module interface unit of C2
}

—end example]
13.9 Template instantiation and specialization [temp.spec]
13.9.1 General [temp.spec.general]

1 The act of instantiating a function, a variable, a class, a member of a class template, or a member template is referred toas template instantiation.
2 A function instantiated from a function template is called an instantiated function. A class instantiated from a classtemplate is called an instantiated class. A member function, a member class, a member enumeration, or a staticdata member of a class template instantiated from the member definition of the class template is called, respectively,an instantiated member function, member class, member enumeration, or static data member. A member functioninstantiated from a member function template is called an instantiated member function. A member class instantiatedfrom a member class template is called an instantiated member class. A variable instantiated from a variable templateis called an instantiated variable. A static data member instantiated from a static data member template is called aninstantiated static data member.
3 An explicit specialization may be declared for a function template, a variable template, a class template, a memberof a class template, or a member template. An explicit specialization declaration is introduced by template<>. In anexplicit specialization declaration for a variable template, a class template, a member of a class template, or a classmember template, the variable or class that is explicitly specialized shall be specified with a simple-template-id . Inthe explicit specialization declaration for a function template or a member function template, the function or memberfunction explicitly specialized may be specified using a template-id .
[Example 1:
template<class T = int> struct A {

static int x;
};
template<class U> void g(U) { }

template<> struct A<double> { }; // specialize for T == double
template<> struct A<> { }; // specialize for T == int
template<> void g(char) { } // specialize for U == char// U is deduced from the parameter type
template<> void g<int>(int) { } // specialize for U == int
template<> int A<char>::x = 0; // specialize for T == char

template<class T = int> struct B {
static int x;

};
template<> int B<>::x = 1; // specialize for T == int

—end example]
4 An instantiated template specialization can be either implicitly instantiated (13.9.2) for a given argument list orbe explicitly instantiated (13.9.3). A specialization is a class, variable, function, or class member that is eitherinstantiated (13.9.2) from a templated entity or is an explicit specialization (13.9.4) of a templated entity.
5 For a given template and a given set of template-arguments,
§ 13.9.1 397

© ISO/IEC N4910

—(5.1) an explicit instantiation definition shall appear at most once in a program,
—(5.2) an explicit specialization shall be defined at most once in a program, as specified in 6.3, and
—(5.3) both an explicit instantiation and a declaration of an explicit specialization shall not appear in a program unlessthe explicit specialization is reachable from the explicit instantiation.

An implementation is not required to diagnose a violation of this rule if neither declaration is reachable from the other.
6 The usual access checking rules do not apply to names in a declaration of an explicit instantiation or explicit specialization,with the exception of names appearing in a function body, default argument, base-clause, member-specification,

enumerator-list, or static data member or variable template initializer.
[Note 1: In particular, the template arguments and names used in the function declarator (including parameter types, return types andexception specifications) can be private types or objects that would normally not be accessible. —end note]

7 Each class template specialization instantiated from a template has its own copy of any static members.
[Example 2:
template<class T> class X {

static T s;
};
template<class T> T X<T>::s = 0;
X<int> aa;
X<char*> bb;

X<int> has a static member s of type int and X<char*> has a static member s of type char*. —end example]
8 If a function declaration acquired its function type through a dependent type (13.8.3.2) without using the syntactic formof a function declarator, the program is ill-formed.
[Example 3:
template<class T> struct A {

static T t;
};
typedef int function();
A<function> a; // error: would declare A<function>::t as a static member function
—end example]
13.9.2 Implicit instantiation [temp.inst]

1 A template specialization E is a declared specialization if there is a reachable explicit instantiation definition (13.9.3)or explicit specialization declaration (13.9.4) for E, or if there is a reachable explicit instantiation declaration for E and
E is not
—(1.1) an inline function,
—(1.2) declared with a type deduced from its initializer or return value (9.2.9.6),
—(1.3) a potentially-constant variable (7.7), or
—(1.4) a specialization of a templated class.

[Note 1: An implicit instantiation in an importing translation unit cannot use names with internal linkage from an imported translationunit (6.6). —end note]
2 Unless a class template specialization is a declared specialization, the class template specialization is implicitlyinstantiated when the specialization is referenced in a context that requires a completely-defined object type or whenthe completeness of the class type affects the semantics of the program.
[Note 2: In particular, if the semantics of an expression depend on the member or base class lists of a class template specialization,the class template specialization is implicitly generated. For instance, deleting a pointer to class type depends on whether or not theclass declares a destructor, and a conversion between pointers to class type depends on the inheritance relationship between the twoclasses involved. —end note]
[Example 1:
template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ };

void f(void*);
void f(B<int>*);

§ 13.9.2 398

© ISO/IEC N4910

void g(D<int>* p, D<char>* pp, D<double>* ppp) {
f(p); // instantiation of D<int> required: call f(B<int>*)
B<char>* q = pp; // instantiation of D<char> required: convert D<char>* to B<char>*
delete ppp; // instantiation of D<double> required

}

—end example]
If the template selected for the specialization (13.7.6.2) has been declared, but not defined, at the point of instantiation(13.8.4.1), the instantiation yields an incomplete class type (6.8.1).
[Example 2:
template<class T> class X;
X<char> ch; // error: incomplete type X<char>
—end example]
[Note 3: Within a template declaration, a local class (11.6) or enumeration and the members of a local class are never considered tobe entities that can be separately instantiated (this includes their default arguments, noexcept-specifiers, and non-static data memberinitializers, if any, but not their type-constraints or requires-clauses). As a result, the dependent names are looked up, the semanticconstraints are checked, and any templates used are instantiated as part of the instantiation of the entity within which the local classor enumeration is declared. —end note]

3 The implicit instantiation of a class template specialization causes
—(3.1) the implicit instantiation of the declarations, but not of the definitions, of the non-deleted class member functions,member classes, scoped member enumerations, static data members, member templates, and friends; and
—(3.2) the implicit instantiation of the definitions of deleted member functions, unscoped member enumerations, andmember anonymous unions.

The implicit instantiation of a class template specialization does not cause the implicit instantiation of default argumentsor noexcept-specifiers of the class member functions.
[Example 3:
template<class T>
struct C {

void f() { T x; }
void g() = delete;

};
C<void> c; // OK, definition of C<void>::f is not instantiated at this point
template<> void C<int>::g() { } // error: redefinition of C<int>::g
—end example]
However, for the purpose of determining whether an instantiated redeclaration is valid according to 6.3 and 11.4, adeclaration that corresponds to a definition in the template is considered to be a definition.
[Example 4:
template<class T, class U>
struct Outer {

template<class X, class Y> struct Inner;
template<class Y> struct Inner<T, Y>; // #1a
template<class Y> struct Inner<T, Y> { }; // #1b; OK, valid redeclaration of #1a
template<class Y> struct Inner<U, Y> { }; // #2

};

Outer<int, int> outer; // error at #2
Outer<int, int>::Inner<int, Y> is redeclared at #1b. (It is not defined but noted as being associated with a definition in Outer<T,
U>.) #2 is also a redeclaration of #1a. It is noted as associated with a definition, so it is an invalid redeclaration of the same partialspecialization.
template<typename T> struct Friendly {

template<typename U> friend int f(U) { return sizeof(T); }
};
Friendly<char> fc;
Friendly<float> ff; // error: produces second definition of f(U)
—end example]

§ 13.9.2 399

© ISO/IEC N4910

4 Unless a member of a templated class is a declared specialization, the specialization of the member is implicitlyinstantiated when the specialization is referenced in a context that requires the member definition to exist or if theexistence of the definition of the member affects the semantics of the program; in particular, the initialization (and anyassociated side effects) of a static data member does not occur unless the static data member is itself used in a way thatrequires the definition of the static data member to exist.
5 Unless a function template specialization is a declared specialization, the function template specialization is implicitlyinstantiated when the specialization is referenced in a context that requires a function definition to exist or if the existenceof the definition affects the semantics of the program. A function whose declaration was instantiated from a friendfunction definition is implicitly instantiated when it is referenced in a context that requires a function definition to existor if the existence of the definition affects the semantics of the program. Unless a call is to a function template explicitspecialization or to a member function of an explicitly specialized class template, a default argument for a functiontemplate or a member function of a class template is implicitly instantiated when the function is called in a context thatrequires the value of the default argument.
[Note 4: An inline function that is the subject of an explicit instantiation declaration is not a declared specialization; the intent is thatit still be implicitly instantiated when odr-used (6.3) so that the body can be considered for inlining, but that no out-of-line copy of itbe generated in the translation unit. —end note]

6 [Example 5:
template<class T> struct Z {

void f();
void g();

};

void h() {
Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required
a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and// instantiation of Z<char>::g() required

}

Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be implicitly instantiated. —end example]
7 Unless a variable template specialization is a declared specialization, the variable template specialization is implicitlyinstantiated when it is referenced in a context that requires a variable definition to exist or if the existence of the definitionaffects the semantics of the program. A default template argument for a variable template is implicitly instantiated whenthe variable template is referenced in a context that requires the value of the default argument.
8 The existence of a definition of a variable or function is considered to affect the semantics of the program if the variableor function is needed for constant evaluation by an expression (7.7), even if constant evaluation of the expression is notrequired or if constant expression evaluation does not use the definition.
[Example 6:
template<typename T> constexpr int f() { return T::value; }
template<bool B, typename T> void g(decltype(B ? f<T>() : 0));
template<bool B, typename T> void g(...);
template<bool B, typename T> void h(decltype(int{B ? f<T>() : 0}));
template<bool B, typename T> void h(...);
void x() {

g<false, int>(0); // OK, B ? f<T>() : 0 is not potentially constant evaluated
h<false, int>(0); // error, instantiates f<int> even though B evaluates to false and// list-initialization of int from int cannot be narrowing

}

—end example]
9 If the function selected by overload resolution (12.2) can be determined without instantiating a class template definition,it is unspecified whether that instantiation actually takes place.
[Example 7:
template <class T> struct S {

operator int();

§ 13.9.2 400

© ISO/IEC N4910

};

void f(int);
void f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
f(sr); // instantiation of S<int> allowed but not required// instantiation of S<float> allowed but not required

};

—end example]
10 If a function template or a member function template specialization is used in a way that involves overload resolution, adeclaration of the specialization is implicitly instantiated (13.10.4).
11 An implementation shall not implicitly instantiate a function template, a variable template, a member template, anon-virtual member function, a member class or static data member of a templated class, or a substatement of aconstexpr if statement (8.5.2), unless such instantiation is required.
[Note 5: The instantiation of a generic lambda does not require instantiation of substatements of a constexpr if statement within its
compound-statement unless the call operator template is instantiated. —end note]
It is unspecified whether or not an implementation implicitly instantiates a virtual member function of a class templateif the virtual member function would not otherwise be instantiated. The use of a template specialization in a defaultargument shall not cause the template to be implicitly instantiated except that a class template may be instantiated whereits complete type is needed to determine the correctness of the default argument. The use of a default argument in afunction call causes specializations in the default argument to be implicitly instantiated.

12 If a function template f is called in a way that requires a default argument to be used, the dependent names are lookedup, the semantics constraints are checked, and the instantiation of any template used in the default argument is doneas if the default argument had been an initializer used in a function template specialization with the same scope, thesame template parameters and the same access as that of the function template f used at that point, except that thescope in which a closure type is declared (7.5.5.2) – and therefore its associated namespaces – remain as determinedfrom the context of the definition for the default argument. This analysis is called default argument instantiation. Theinstantiated default argument is then used as the argument of f.
13 Each default argument is instantiated independently.
[Example 8:
template<class T> void f(T x, T y = ydef(T()), T z = zdef(T()));

class A { };

A zdef(A);

void g(A a, A b, A c) {
f(a, b, c); // no default argument instantiation
f(a, b); // default argument z = zdef(T()) instantiated
f(a); // error: ydef is not declared

}

—end example]
14 The noexcept-specifier of a function template specialization is not instantiated along with the function declaration;it is instantiated when needed (14.5). If such an noexcept-specifier is needed but has not yet been instantiated, thedependent names are looked up, the semantics constraints are checked, and the instantiation of any template used in the

noexcept-specifier is done as if it were being done as part of instantiating the declaration of the specialization at thatpoint.
15 [Note 6: 13.8.4.1 defines the point of instantiation of a template specialization. —end note]
16 There is an implementation-defined quantity that specifies the limit on the total depth of recursive instantiations (AnnexB), which could involve more than one template. The result of an infinite recursion in instantiation is undefined.
[Example 9:
template<class T> class X {

X<T>* p; // OK

§ 13.9.2 401

© ISO/IEC N4910

X<T*> a; // implicit generation of X<T> requires// the implicit instantiation of X<T*> which requires// the implicit instantiation of X<T**> which . . .
};

—end example]
17 The type-constraints and requires-clause of a template specialization or member function are not instantiated alongwith the specialization or function itself, even for a member function of a local class; substitution into the atomicconstraints formed from them is instead performed as specified in 13.5.3 and 13.5.2.3 when determining whether theconstraints are satisfied or as specified in 13.5.3 when comparing declarations.

[Note 7: The satisfaction of constraints is determined during template argument deduction (13.10.3) and overload resolution (12.2).—end note]
[Example 10:
template<typename T> concept C = sizeof(T) > 2;
template<typename T> concept D = C<T> && sizeof(T) > 4;

template<typename T> struct S {
S() requires C<T> { } // #1
S() requires D<T> { } // #2

};

S<char> s1; // error: no matching constructor
S<char[8]> s2; // OK, calls #2

When S<char> is instantiated, both constructors are part of the specialization. Their constraints are not satisfied, and they suppressthe implicit declaration of a default constructor for S<char> (11.4.5.2), so there is no viable constructor for s1. —end example]
[Example 11:
template<typename T> struct S1 {

template<typename U>
requires false

struct Inner1; // ill-formed, no diagnostic required
};

template<typename T> struct S2 {
template<typename U>

requires (sizeof(T[-(int)sizeof(T)]) > 1)
struct Inner2; // ill-formed, no diagnostic required

};

The class S1<T>::Inner1 is ill-formed, no diagnostic required, because it has no valid specializations. S2 is ill-formed, no diagnosticrequired, since no substitution into the constraints of its Inner2 template would result in a valid expression. —end example]
13.9.3 Explicit instantiation [temp.explicit]

1 A class, function, variable, or member template specialization can be explicitly instantiated from its template. Amember function, member class or static data member of a class template can be explicitly instantiated from the memberdefinition associated with its class template.
2 The syntax for explicit instantiation is:

explicit-instantiation :
externopt template declaration

There are two forms of explicit instantiation: an explicit instantiation definition and an explicit instantiation declaration.An explicit instantiation declaration begins with the extern keyword.
3 An explicit instantiation shall not use a storage-class-specifier (9.2.2) other than thread_local. An explicit instantiationof a function template, member function of a class template, or variable template shall not use the inline, constexpr,or consteval specifiers. No attribute-specifier-seq (9.12.1) shall appertain to an explicit instantiation.
4 If the explicit instantiation is for a class or member class, the elaborated-type-specifier in the declaration shall includea simple-template-id ; otherwise, the declaration shall be a simple-declaration whose init-declarator-list comprises asingle init-declarator that does not have an initializer . If the explicit instantiation is for a variable template specialization,the unqualified-id in the declarator shall be a simple-template-id .
[Example 1:
§ 13.9.3 402

© ISO/IEC N4910

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /* ... */ }
template void sort(Array<char>&); // argument is deduced here
namespace N {

template<class T> void f(T&) { }
}
template void N::f<int>(int&);

—end example]
5 An explicit instantiation does not introduce a name (6.4.1). A declaration of a function template, a variable template, amember function or static data member of a class template, or a member function template of a class or class templateshall be reachable from any explicit instantiation of that entity. A definition of a class template, a member class of aclass template, or a member class template of a class or class template shall be reachable from any explicit instantiationof that entity unless an explicit specialization of the entity with the same template arguments is reachable therefrom. Ifthe declaration of the explicit instantiation names an implicitly-declared special member function (11.4.4), the programis ill-formed.
6 The declaration in an explicit-instantiation and the declaration produced by the corresponding substitution into thetemplated function, variable, or class are two declarations of the same entity.
[Note 1: These declarations are required to have matching types as specified in 6.6, except as specified in 14.5.
[Example 2:
template<typename T> T var = {};
template float var<float>; // OK, instantiated variable has type float
template int var<int[16]>[]; // OK, absence of major array bound is permitted
template int *var<int>; // error: instantiated variable has type int
template<typename T> auto av = T();
template int av<int>; // OK, variable with type int can be redeclared with type auto
template<typename T> auto f() {}
template void f<int>(); // error: function with deduced return type// redeclared with non-deduced return type (9.2.9.6)
— end example]
—end note]
Despite its syntactic form, the declaration in an explicit-instantiation for a variable is not itself a definition and doesnot conflict with the definition instantiated by an explicit instantiation definition for that variable.

7 For a given set of template arguments, if an explicit instantiation of a template appears after a declaration of an explicitspecialization for that template, the explicit instantiation has no effect. Otherwise, for an explicit instantiation definition,the definition of a function template, a variable template, a member function template, or a member function or staticdata member of a class template shall be present in every translation unit in which it is explicitly instantiated.
8 A trailing template-argument can be left unspecified in an explicit instantiation of a function template specialization orof a member function template specialization provided it can be deduced (13.10.3.7). If all template arguments can bededuced, the empty template argument list <> may be omitted.
[Example 3:
template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

// instantiate sort(Array<int>&) – template-argument deduced
template void sort<>(Array<int>&);

—end example]
9 [Note 2: An explicit instantiation of a constrained template is required to satisfy that template’s associated constraints (13.5.3). Thesatisfaction of constraints is determined when forming the template name of an explicit instantiation in which all template argumentsare specified (13.3), or, for explicit instantiations of function templates, during template argument deduction (13.10.3.7) when one ormore trailing template arguments are left unspecified. —end note]
§ 13.9.3 403

© ISO/IEC N4910

10 An explicit instantiation that names a class template specialization is also an explicit instantiation of the same kind(declaration or definition) of each of its direct non-template members that has not been previously explicitly specializedin the translation unit containing the explicit instantiation, provided that the associated constraints, if any, of that memberare satisfied by the template arguments of the explicit instantiation (13.5.3, 13.5.2), except as described below.
[Note 3: In addition, it will typically be an explicit instantiation of certain implementation-dependent data about the class. —endnote]

11 An explicit instantiation definition that names a class template specialization explicitly instantiates the class templatespecialization and is an explicit instantiation definition of only those members that have been defined at the point ofinstantiation.
12 An explicit instantiation of a prospective destructor (11.4.7) shall correspond to the selected destructor of the class.
13 If an entity is the subject of both an explicit instantiation declaration and an explicit instantiation definition in the sametranslation unit, the definition shall follow the declaration. An entity that is the subject of an explicit instantiationdeclaration and that is also used in a way that would otherwise cause an implicit instantiation (13.9.2) in the translationunit shall be the subject of an explicit instantiation definition somewhere in the program; otherwise the program isill-formed, no diagnostic required.
[Note 4: This rule does apply to inline functions even though an explicit instantiation declaration of such an entity has no othernormative effect. This is needed to ensure that if the address of an inline function is taken in a translation unit in which theimplementation chose to suppress the out-of-line body, another translation unit will supply the body. —end note]
An explicit instantiation declaration shall not name a specialization of a template with internal linkage.

14 An explicit instantiation does not constitute a use of a default argument, so default argument instantiation is not done.
[Example 4:
char* p = 0;
template<class T> T g(T x = &p) { return x; }
template int g<int>(int); // OK even though &p isn’t an int.
— end example]
13.9.4 Explicit specialization [temp.expl.spec]

1 An explicit specialization of any of the following:
—(1.1) function template
—(1.2) class template
—(1.3) variable template
—(1.4) member function of a class template
—(1.5) static data member of a class template
—(1.6) member class of a class template
—(1.7) member enumeration of a class template
—(1.8) member class template of a class or class template
—(1.9) member function template of a class or class template

can be declared by a declaration introduced by template<>; that is:
explicit-specialization :

template < > declaration

[Example 1:
template<class T> class stream;

template<> class stream<char> { /* ... */ };

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

template<> void sort<char*>(Array<char*>&);

§ 13.9.4 404

© ISO/IEC N4910

Given these declarations, stream<char> will be used as the definition of streams of chars; other streams will be handled by classtemplate specializations instantiated from the class template. Similarly, sort<char*> will be used as the sort function for argumentsof type Array<char*>; other Array types will be sorted by functions generated from the template. —end example]
2 An explicit specialization shall not use a storage-class-specifier (9.2.2) other than thread_local.
3 An explicit specialization may be declared in any scope in which the corresponding primary template may be defined(9.3.4, 11.4, 13.7.3).
4 An explicit specialization does not introduce a name (6.4.1). A declaration of a function template, class template, orvariable template being explicitly specialized shall be reachable from the declaration of the explicit specialization.
[Note 1: A declaration, but not a definition of the template is required. —end note]
The definition of a class or class template shall be reachable from the declaration of an explicit specialization for amember template of the class or class template.
[Example 2:
template<> class X<int> { /* ... */ }; // error: X not a template
template<class T> class X;

template<> class X<char*> { /* ... */ }; // OK, X is a template
— end example]

5 A member function, a member function template, a member class, a member enumeration, a member class template,a static data member, or a static data member template of a class template may be explicitly specialized for a classspecialization that is implicitly instantiated; in this case, the definition of the class template shall be reachable from theexplicit specialization for the member of the class template. If such an explicit specialization for the member of a classtemplate names an implicitly-declared special member function (11.4.4), the program is ill-formed.
6 A member of an explicitly specialized class is not implicitly instantiated from the member declaration of the classtemplate; instead, the member of the class template specialization shall itself be explicitly defined if its definitionis required. The definition of the class template explicit specialization shall be reachable from the definition of anymember of it. The definition of an explicitly specialized class is unrelated to the definition of a generated specialization.That is, its members need not have the same names, types, etc. as the members of a generated specialization. Membersof an explicitly specialized class template are defined in the same manner as members of normal classes, and not usingthe template<> syntax. The same is true when defining a member of an explicitly specialized member class. However,

template<> is used in defining a member of an explicitly specialized member class template that is specialized as aclass template.
[Example 3:
template<class T> struct A {

struct B { };
template<class U> struct C { };

};

template<> struct A<int> {
void f(int);

};

void h() {
A<int> a;
a.f(16); // A<int>::f must be defined somewhere

}

// template<> not used for a member of an explicitly specialized class template
void A<int>::f(int) { /* ... */ }

template<> struct A<char>::B {
void f();

};// template<> also not used when defining a member of an explicitly specialized member class
void A<char>::B::f() { /* ... */ }

§ 13.9.4 405

© ISO/IEC N4910

template<> template<class U> struct A<char>::C {
void f();

};// template<> is used when defining a member of an explicitly specialized member class template// specialized as a class template
template<>
template<class U> void A<char>::C<U>::f() { /* ... */ }

template<> struct A<short>::B {
void f();

};
template<> void A<short>::B::f() { /* ... */ } // error: template<> not permitted
template<> template<class U> struct A<short>::C {

void f();
};
template<class U> void A<short>::C<U>::f() { /* ... */ } // error: template<> required
—end example]

7 If a template, a member template or a member of a class template is explicitly specialized, a declaration of thatspecialization shall be reachable from every use of that specialization that would cause an implicit instantiation to takeplace, in every translation unit in which such a use occurs; no diagnostic is required. If the program does not providea definition for an explicit specialization and either the specialization is used in a way that would cause an implicitinstantiation to take place or the member is a virtual member function, the program is ill-formed, no diagnostic required.An implicit instantiation is never generated for an explicit specialization that is declared but not defined.
[Example 4:
class String { };
template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

void f(Array<String>& v) {
sort(v); // use primary template sort(Array<T>&), T is String

}

template<> void sort<String>(Array<String>& v); // error: specialization after use of primary template
template<> void sort<>(Array<char*>& v); // OK, sort<char*> not yet used
template<class T> struct A {

enum E : T;
enum class S : T;

};
template<> enum A<int>::E : int { eint }; // OK
template<> enum class A<int>::S : int { sint }; // OK
template<class T> enum A<T>::E : T { eT };
template<class T> enum class A<T>::S : T { sT };
template<> enum A<char>::E : char { echar }; // error: A<char>::E was instantiated// when A<char> was instantiated
template<> enum class A<char>::S : char { schar }; // OK
—end example]

8 The placement of explicit specialization declarations for function templates, class templates, variable templates, memberfunctions of class templates, static data members of class templates, member classes of class templates, memberenumerations of class templates, member class templates of class templates, member function templates of classtemplates, static data member templates of class templates, member functions of member templates of class templates,member functions of member templates of non-template classes, static data member templates of non-template classes,member function templates of member classes of class templates, etc., and the placement of partial specializationdeclarations of class templates, variable templates, member class templates of non-template classes, static data membertemplates of non-template classes, member class templates of class templates, etc., can affect whether a program is well-formed according to the relative positioning of the explicit specialization declarations and their points of instantiation inthe translation unit as specified above and below. When writing a specialization, be careful about its location; or tomake it compile will be such a trial as to kindle its self-immolation.

§ 13.9.4 406

© ISO/IEC N4910

9 A simple-template-id that names a class template explicit specialization that has been declared but not defined can beused exactly like the names of other incompletely-defined classes (6.8).
[Example 5:
template<class T> class X; // X is a class template
template<> class X<int>;

X<int>* p; // OK, pointer to declared class X<int>
X<int> x; // error: object of incomplete class X<int>
—end example]

10 A trailing template-argument can be left unspecified in the template-id naming an explicit function template special-ization provided it can be deduced (13.10.3.7).
[Example 6:
template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v);

// explicit specialization for sort(Array<int>&)// with deduced template-argument of type int
template<> void sort(Array<int>&);

—end example]
11 [Note 2: An explicit specialization of a constrained template is required to satisfy that template’s associated constraints (13.5.3).The satisfaction of constraints is determined when forming the template name of an explicit specialization in which all templatearguments are specified (13.3), or, for explicit specializations of function templates, during template argument deduction (13.10.3.7)when one or more trailing template arguments are left unspecified. —end note]
12 A function with the same name as a template and a type that exactly matches that of a template specialization is not anexplicit specialization (13.7.7).
13 Whether an explicit specialization of a function or variable template is inline, constexpr, or an immediate function isdetermined by the explicit specialization and is independent of those properties of the template.
[Example 7:
template<class T> void f(T) { /* ... */ }
template<class T> inline T g(T) { /* ... */ }

template<> inline void f<>(int) { /* ... */ } // OK, inline
template<> int g<>(int) { /* ... */ } // OK, not inline
— end example]

14 An explicit specialization of a static data member of a template or an explicit specialization of a static data membertemplate is a definition if the declaration includes an initializer; otherwise, it is a declaration.
[Note 3: The definition of a static data member of a template for which default-initialization is desired can use functional castnotation (7.6.1.4):
template<> X Q<int>::x; // declaration
template<> X Q<int>::x (); // error: declares a function
template<> X Q<int>::x = X(); // definition
—end note]

15 A member or a member template of a class template may be explicitly specialized for a given implicit instantiationof the class template, even if the member or member template is defined in the class template definition. An explicitspecialization of a member or member template is specified using the syntax for explicit specialization.
[Example 8:
template<class T> struct A {

void f(T);
template<class X1> void g1(T, X1);
template<class X2> void g2(T, X2);
void h(T) { }

};

§ 13.9.4 407

© ISO/IEC N4910

// specialization
template<> void A<int>::f(int);

// out of class member template definition
template<class T> template<class X1> void A<T>::g1(T, X1) { }

// member template specialization
template<> template<class X1> void A<int>::g1(int, X1);

// member template specialization
template<> template<>

void A<int>::g1(int, char); // X1 deduced as char
template<> template<>

void A<int>::g2<char>(int, char); // X2 specified as char
// member specialization even if defined in class definition
template<> void A<int>::h(int) { }

—end example]
16 A member or a member template may be nested within many enclosing class templates. In an explicit specialization forsuch a member, the member declaration shall be preceded by a template<> for each enclosing class template that isexplicitly specialized.
[Example 9:
template<class T1> class A {

template<class T2> class B {
void mf();

};
};
template<> template<> class A<int>::B<double>;
template<> template<> void A<char>::B<char>::mf();

—end example]
17 In an explicit specialization declaration for a member of a class template or a member template that appears innamespace scope, the member template and some of its enclosing class templates may remain unspecialized, exceptthat the declaration shall not explicitly specialize a class member template if its enclosing class templates are notexplicitly specialized as well. In such an explicit specialization declaration, the keyword template followed by a

template-parameter-list shall be provided instead of the template<> preceding the explicit specialization declaration ofthe member. The types of the template-parameters in the template-parameter-list shall be the same as those specifiedin the primary template definition.
[Example 10:
template <class T1> class A {

template<class T2> class B {
template<class T3> void mf1(T3);
void mf2();

};
};
template <> template <class X>

class A<int>::B {
template <class T> void mf1(T);

};
template <> template <> template<class T>

void A<int>::B<double>::mf1(T t) { }
template <class Y> template <>

void A<Y>::B<double>::mf2() { } // error: B<double> is specialized but// its enclosing class template A is not
— end example]

18 A specialization of a member function template, member class template, or static data member template of a non-specialized class template is itself a template.
19 An explicit specialization declaration shall not be a friend declaration.

§ 13.9.4 408

© ISO/IEC N4910

20 Default function arguments shall not be specified in a declaration or a definition for one of the following explicitspecializations:
—(20.1) the explicit specialization of a function template;
—(20.2) the explicit specialization of a member function template;
—(20.3) the explicit specialization of a member function of a class template where the class template specialization towhich the member function specialization belongs is implicitly instantiated.

[Note 4: Default function arguments can be specified in the declaration or definition of a member function of a class templatespecialization that is explicitly specialized. —end note]
13.10 Function template specializations [temp.fct.spec]
13.10.1 General [temp.fct.spec.general]

1 A function instantiated from a function template is called a function template specialization; so is an explicit specializationof a function template. Template arguments can be explicitly specified when naming the function template specialization,deduced from the context (e.g., deduced from the function arguments in a call to the function template specialization,see 13.10.3), or obtained from default template arguments.
2 Each function template specialization instantiated from a template has its own copy of any static variable.
[Example 1:
template<class T> void f(T* p) {

static T s;
};

void g(int a, char* b) {
f(&a); // calls f<int>(int*)
f(&b); // calls f<char*>(char**)

}

Here f<int>(int*) has a static variable s of type int and f<char*>(char**) has a static variable s of type char*. —end example]
13.10.2 Explicit template argument specification [temp.arg.explicit]

1 Template arguments can be specified when referring to a function template specialization that is not a specialization ofa constructor template by qualifying the function template name with the list of template-arguments in the same wayas template-arguments are specified in uses of a class template specialization.
[Example 1:
template<class T> void sort(Array<T>& v);
void f(Array<dcomplex>& cv, Array<int>& ci) {

sort<dcomplex>(cv); // sort(Array<dcomplex>&)
sort<int>(ci); // sort(Array<int>&)

}

and
template<class U, class V> U convert(V v);

void g(double d) {
int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

—end example]
2 Template arguments shall not be specified when referring to a specialization of a constructor template (11.4.5, 6.5.5.2).
3 A template argument list may be specified when referring to a specialization of a function template

—(3.1) when a function is called,
—(3.2) when the address of a function is taken, when a function initializes a reference to function, or when a pointer tomember function is formed,
—(3.3) in an explicit specialization,
—(3.4) in an explicit instantiation, or

§ 13.10.2 409

© ISO/IEC N4910

—(3.5) in a friend declaration.
4 Trailing template arguments that can be deduced (13.10.3) or obtained from default template-arguments may be omittedfrom the list of explicit template-arguments.
[Note 1: A trailing template parameter pack (13.7.4) not otherwise deduced will be deduced as an empty sequence of templatearguments. —end note]
If all of the template arguments can be deduced, they may all be omitted; in this case, the empty template argument list
<> itself may also be omitted.
[Example 2:
template<class X, class Y> X f(Y);
template<class X, class Y, class ... Z> X g(Y);
void h() {

int i = f<int>(5.6); // Y deduced as double
int j = f(5.6); // error: X cannot be deduced
f<void>(f<int, bool>); // Y for outer f deduced as int (*)(bool)
f<void>(f<int>); // error: f<int> does not denote a single function template specialization
int k = g<int>(5.6); // Y deduced as double; Z deduced as an empty sequence
f<void>(g<int, bool>); // Y for outer f deduced as int (*)(bool),// Z deduced as an empty sequence

}

—end example]
5 [Note 2: An empty template argument list can be used to indicate that a given use refers to a specialization of a function templateeven when a non-template function (9.3.4.6) is visible that would otherwise be used. For example:

template <class T> int f(T); // #1
int f(int); // #2
int k = f(1); // uses #2
int l = f<>(1); // uses #1
—end note]

6 Template arguments that are present shall be specified in the declaration order of their corresponding template-
parameters. The template argument list shall not specify more template-arguments than there are corresponding
template-parameters unless one of the template-parameters is a template parameter pack.
[Example 3:
template<class X, class Y, class Z> X f(Y,Z);
template<class ... Args> void f2();
void g() {

f<int,const char*,double>("aa",3.0);
f<int,const char*>("aa",3.0); // Z deduced as double
f<int>("aa",3.0); // Y deduced as const char*; Z deduced as double
f("aa",3.0); // error: X cannot be deduced
f2<char, short, int, long>(); // OK

}

—end example]
7 Implicit conversions (7.3) will be performed on a function argument to convert it to the type of the corresponding functionparameter if the parameter type contains no template-parameters that participate in template argument deduction.
[Note 3: Template parameters do not participate in template argument deduction if they are explicitly specified. For example,
template<class T> void f(T);

class Complex {
Complex(double);

};

void g() {
f<Complex>(1); // OK, means f<Complex>(Complex(1))

}

—end note]

§ 13.10.2 410

© ISO/IEC N4910

8 [Note 4: Because the explicit template argument list follows the function template name, and because constructor templates (11.4.5)are named without using a function name (6.5.5.2), there is no way to provide an explicit template argument list for these functiontemplates. —end note]
9 Template argument deduction can extend the sequence of template arguments corresponding to a template parameterpack, even when the sequence contains explicitly specified template arguments.
[Example 4:
template<class ... Types> void f(Types ... values);

void g() {
f<int*, float*>(0, 0, 0); // Types deduced as the sequence int*, float*, int

}

—end example]
13.10.3 Template argument deduction [temp.deduct]
13.10.3.1 General [temp.deduct.general]

1 When a function template specialization is referenced, all of the template arguments shall have values. The values canbe explicitly specified or, in some cases, be deduced from the use or obtained from default template-arguments.
[Example 1:
void f(Array<dcomplex>& cv, Array<int>& ci) {

sort(cv); // calls sort(Array<dcomplex>&)
sort(ci); // calls sort(Array<int>&)

}

and
void g(double d) {

int i = convert<int>(d); // calls convert<int,double>(double)
int c = convert<char>(d); // calls convert<char,double>(double)

}

—end example]
2 When an explicit template argument list is specified, if the given template-id is not valid (13.3), type deduction fails.Otherwise, the specified template argument values are substituted for the corresponding template parameters as specifiedbelow.
3 After this substitution is performed, the function parameter type adjustments described in 9.3.4.6 are performed.
[Example 2: A parameter type of “void (const int, int[5])” becomes “void(*)(int,int*)”. —end example]
[Note 1: A top-level qualifier in a function parameter declaration does not affect the function type but still affects the type of thefunction parameter variable within the function. —end note]
[Example 3:
template <class T> void f(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);

int main() {// #1: function type is f(int), t is non const
f<int>(1);

// #2: function type is f(int), t is const
f<const int>(1);

// #3: function type is g(int), x is const
g<int>(1);

// #4: function type is g(int), x is const
g<const int>(1);

// #5: function type is h(int, const int*)
h<const int>(1,0);

}

§ 13.10.3.1 411

© ISO/IEC N4910

—end example]
4 [Note 2: f<int>(1) and f<const int>(1) call distinct functions even though both of the functions called have the same functiontype. —end note]
5 The resulting substituted and adjusted function type is used as the type of the function template for template argumentdeduction. If a template argument has not been deduced and its corresponding template parameter has a defaultargument, the template argument is determined by substituting the template arguments determined for precedingtemplate parameters into the default argument. If the substitution results in an invalid type, as described above, typededuction fails.
[Example 4:
template <class T, class U = double>
void f(T t = 0, U u = 0);

void g() {
f(1, 'c'); // f<int,char>(1,’c’)
f(1); // f<int,double>(1,0)
f(); // error: T cannot be deduced
f<int>(); // f<int,double>(0,0)
f<int,char>(); // f<int,char>(0,0)

}

—end example]
When all template arguments have been deduced or obtained from default template arguments, all uses of templateparameters in the template parameter list of the template are replaced with the corresponding deduced or defaultargument values. If the substitution results in an invalid type, as described above, type deduction fails. If the functiontemplate has associated constraints (13.5.3), those constraints are checked for satisfaction (13.5.2). If the constraintsare not satisfied, type deduction fails. In the context of a function call, if type deduction has not yet failed, then forthose function parameters for which the function call has arguments, each function parameter with a type that wasnon-dependent before substitution of any explicitly-specified template arguments is checked against its correspondingargument; if the corresponding argument cannot be implicitly converted to the parameter type, type deduction fails.
[Note 3: Overload resolution will check the other parameters, including parameters with dependent types in which no templateparameters participate in template argument deduction and parameters that became non-dependent due to substitution of explicitly-specified template arguments. —end note]
If type deduction has not yet failed, then all uses of template parameters in the function type are replaced with thecorresponding deduced or default argument values. If the substitution results in an invalid type, as described above,type deduction fails.
[Example 5:
template <class T> struct Z {

typedef typename T::x xx;
};
template <class T> concept C = requires { typename T::A; };
template <C T> typename Z<T>::xx f(void *, T); // #1
template <class T> void f(int, T); // #2
struct A {} a;
struct ZZ {

template <class T, class = typename Z<T>::xx> operator T *();
operator int();

};
int main() {

ZZ zz;
f(1, a); // OK, deduction fails for #1 because there is no conversion from int to void*
f(zz, 42); // OK, deduction fails for #1 because C<int> is not satisfied

}

—end example]
6 At certain points in the template argument deduction process it is necessary to take a function type that makes use oftemplate parameters and replace those template parameters with the corresponding template arguments. This is done atthe beginning of template argument deduction when any explicitly specified template arguments are substituted into thefunction type, and again at the end of template argument deduction when any template arguments that were deduced orobtained from default arguments are substituted.
§ 13.10.3.1 412

© ISO/IEC N4910

7 The substitution occurs in all types and expressions that are used in the function type and in template parameterdeclarations. The expressions include not only constant expressions such as those that appear in array bounds or asnontype template arguments but also general expressions (i.e., non-constant expressions) inside sizeof, decltype,and other contexts that allow non-constant expressions. The substitution proceeds in lexical order and stops when acondition that causes deduction to fail is encountered. If substitution into different declarations of the same functiontemplate would cause template instantiations to occur in a different order or not at all, the program is ill-formed; nodiagnostic required.
[Note 4: The equivalent substitution in exception specifications is done only when the noexcept-specifier is instantiated, at whichpoint a program is ill-formed if the substitution results in an invalid type or expression. —end note]
[Example 6:
template <class T> struct A { using X = typename T::X; };
template <class T> typename T::X f(typename A<T>::X);
template <class T> void f(...) { }
template <class T> auto g(typename A<T>::X) -> typename T::X;
template <class T> void g(...) { }
template <class T> typename T::X h(typename A<T>::X);
template <class T> auto h(typename A<T>::X) -> typename T::X; // redeclaration
template <class T> void h(...) { }

void x() {
f<int>(0); // OK, substituting return type causes deduction to fail
g<int>(0); // error, substituting parameter type instantiates A<int>
h<int>(0); // ill-formed, no diagnostic required

}

—end example]
8 If a substitution results in an invalid type or expression, type deduction fails. An invalid type or expression is one thatwould be ill-formed, with a diagnostic required, if written in the same context using the substituted arguments.
[Note 5: If no diagnostic is required, the program is still ill-formed. Access checking is done as part of the substitution process.—end note]
Only invalid types and expressions in the immediate context of the function type, its template parameter types, and its
explicit-specifier can result in a deduction failure.
[Note 6: The substitution into types and expressions can result in effects such as the instantiation of class template specializationsand/or function template specializations, the generation of implicitly-defined functions, etc. Such effects are not in the “immediatecontext” and can result in the program being ill-formed. —end note]

9 A lambda-expression appearing in a function type or a template parameter is not considered part of the immediatecontext for the purposes of template argument deduction.
[Note 7: The intent is to avoid requiring implementations to deal with substitution failure involving arbitrary statements.
[Example 7:
template <class T>

auto f(T) -> decltype([]() { T::invalid; } ());
void f(...);
f(0); // error: invalid expression not part of the immediate context
template <class T, std::size_t = sizeof([]() { T::invalid; })>

void g(T);
void g(...);
g(0); // error: invalid expression not part of the immediate context
template <class T>

auto h(T) -> decltype([x = T::invalid]() { });
void h(...);
h(0); // error: invalid expression not part of the immediate context
template <class T>

auto i(T) -> decltype([]() -> typename T::invalid { });
void i(...);
i(0); // error: invalid expression not part of the immediate context

§ 13.10.3.1 413

© ISO/IEC N4910

template <class T>
auto j(T t) -> decltype([](auto x) -> decltype(x.invalid) { } (t)); // #1

void j(...); // #2
j(0); // deduction fails on #1, calls #2
—end example]
—end note]

10 [Example 8:
struct X { };
struct Y {

Y(X) {}
};

template <class T> auto f(T t1, T t2) -> decltype(t1 + t2); // #1
X f(Y, Y); // #2
X x1, x2;
X x3 = f(x1, x2); // deduction fails on #1 (cannot add X+X), calls #2
—end example]

11 [Note 8: Type deduction can fail for the following reasons:
—(11.1) Attempting to instantiate a pack expansion containing multiple packs of differing lengths.
—(11.2) Attempting to create an array with an element type that is void, a function type, or a reference type, or attempting to create anarray with a size that is zero or negative.
[Example 9:
template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array
— end example]

—(11.3) Attempting to use a type that is not a class or enumeration type in a qualified name.
[Example 10:
template <class T> int f(typename T::B*);
int i = f<int>(0);

—end example]
—(11.4) Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain the specified member,or

—(11.4.1) the specified member is not a type where a type is required, or
—(11.4.2) the specified member is not a template where a template is required, or
—(11.4.3) the specified member is not a non-type where a non-type is required.

[Example 11:
template <int I> struct X { };
template <template <class T> class> struct Z { };
template <class T> void f(typename T::Y*) {}
template <class T> void g(X<T::N>*) {}
template <class T> void h(Z<T::TT>*) {}
struct A {};
struct B { int Y; };
struct C {
typedef int N;

};
struct D {
typedef int TT;

};

int main() {// Deduction fails in each of these cases:
f<A>(0); // A does not contain a member Y

§ 13.10.3.1 414

© ISO/IEC N4910

f(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type
h<D>(0); // The TT member of D is not a template

}

—end example]
—(11.5) Attempting to create a pointer to reference type.
—(11.6) Attempting to create a reference to void.
—(11.7) Attempting to create “pointer to member of T” when T is not a class type.
[Example 12:
template <class T> int f(int T::*);
int i = f<int>(0);

—end example]
—(11.8) Attempting to give an invalid type to a non-type template parameter.
[Example 13:
template <class T, T> struct S {};
template <class T> int f(S<T, T()>*);
struct X {};
int i0 = f<X>(0);

—end example]
—(11.9) Attempting to perform an invalid conversion in either a template argument expression, or an expression used in the functiondeclaration.
[Example 14:
template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can’t conv 1 to int*
—end example]

—(11.10) Attempting to create a function type in which a parameter has a type of void, or in which the return type is a function type orarray type.
—end note]

12 [Example 15: In the following example, assuming a signed char cannot represent the value 1000, a narrowing conversion (9.4.5)would be required to convert the template-argument of type int to signed char, therefore substitution fails for the secondtemplate (13.4.3).
template <int> int f(int);
template <signed char> int f(int);
int i1 = f<1000>(0); // OK
int i2 = f<1>(0); // ambiguous; not narrowing
—end example]
13.10.3.2 Deducing template arguments from a function call [temp.deduct.call]

1 Template argument deduction is done by comparing each function template parameter type (call it P) that contains
template-parameters that participate in template argument deduction with the type of the corresponding argument of thecall (call it A) as described below. If removing references and cv-qualifiers from P gives std::initializer_list<P′>or P′[N] for some P′ and N and the argument is a non-empty initializer list (9.4.5), then deduction is performed insteadfor each element of the initializer list independently, taking P′ as separate function template parameter types P′i andthe ith initializer element as the corresponding argument. In the P′[N] case, if N is a non-type template parameter, Nis deduced from the length of the initializer list. Otherwise, an initializer list argument causes the parameter to beconsidered a non-deduced context (13.10.3.6).
[Example 1:
template<class T> void f(std::initializer_list<T>);
f({1,2,3}); // T deduced as int
f({1,"asdf"}); // error: T deduced as both int and const char*

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

§ 13.10.3.2 415

© ISO/IEC N4910

template<class T, int N> void h(T const(&)[N]);
h({1,2,3}); // T deduced as int; N deduced as 3
template<class T> void j(T const(&)[3]);
j({42}); // T deduced as int; array bound not considered
struct Aggr { int i; int j; };
template<int N> void k(Aggr const(&)[N]);
k({1,2,3}); // error: deduction fails, no conversion from int to Aggr
k({{1},{2},{3}}); // OK, N deduced as 3
template<int M, int N> void m(int const(&)[M][N]);
m({{1,2},{3,4}}); // M and N both deduced as 2
template<class T, int N> void n(T const(&)[N], T);
n({{1},{2},{3}},Aggr()); // OK, T is Aggr, N is 3
template<typename T, int N> void o(T (* const (&)[N])(T)) { }
int f1(int);
int f4(int);
char f4(char);
o({ &f1, &f4 }); // OK, T deduced as int from first element, nothing// deduced from second element, N deduced as 2
o({ &f1, static_cast<char(*)(char)>(&f4) }); // error: conflicting deductions for T
—end example]
For a function parameter pack that occurs at the end of the parameter-declaration-list, deduction is performed for eachremaining argument of the call, taking the type P of the declarator-id of the function parameter pack as the correspondingfunction template parameter type. Each deduction deduces template arguments for subsequent positions in the templateparameter packs expanded by the function parameter pack. When a function parameter pack appears in a non-deducedcontext (13.10.3.6), the type of that pack is never deduced.
[Example 2:
template<class ... Types> void f(Types& ...);
template<class T1, class ... Types> void g(T1, Types ...);
template<class T1, class ... Types> void g1(Types ..., T1);

void h(int x, float& y) {
const int z = x;
f(x, y, z); // Types deduced as int, float, const int
g(x, y, z); // T1 deduced as int; Types deduced as float, int
g1(x, y, z); // error: Types is not deduced
g1<int, int, int>(x, y, z); // OK, no deduction occurs

}

—end example]
2 If P is not a reference type:

—(2.1) If A is an array type, the pointer type produced by the array-to-pointer standard conversion (7.3.3) is used in placeof A for type deduction; otherwise,
—(2.2) If A is a function type, the pointer type produced by the function-to-pointer standard conversion (7.3.4) is used inplace of A for type deduction; otherwise,
—(2.3) If A is a cv-qualified type, the top-level cv-qualifiers of A’s type are ignored for type deduction.

3 If P is a cv-qualified type, the top-level cv-qualifiers of P’s type are ignored for type deduction. If P is a reference type,the type referred to by P is used for type deduction.
[Example 3:
template<class T> int f(const T&);
int n1 = f(5); // calls f<int>(const int&)
const int i = 0;
int n2 = f(i); // calls f<int>(const int&)
template <class T> int g(volatile T&);
int n3 = g(i); // calls g<const int>(const volatile int&)

§ 13.10.3.2 416

© ISO/IEC N4910

—end example]
A forwarding reference is an rvalue reference to a cv-unqualified template parameter that does not represent a templateparameter of a class template (during class template argument deduction (12.2.2.9)). If P is a forwarding reference andthe argument is an lvalue, the type “lvalue reference to A” is used in place of A for type deduction.
[Example 4:
template <class T> int f(T&& heisenreference);
template <class T> int g(const T&&);
int i;
int n1 = f(i); // calls f<int&>(int&)
int n2 = f(0); // calls f<int>(int&&)
int n3 = g(i); // error: would call g<int>(const int&&), which// would bind an rvalue reference to an lvalue
template <class T> struct A {

template <class U>
A(T&&, U&&, int*); // #1: T&& is not a forwarding reference.// U&& is a forwarding reference.

A(T&&, int*); // #2
};

template <class T> A(T&&, int*) -> A<T>; // #3: T&& is a forwarding reference.
int *ip;
A a{i, 0, ip}; // error: cannot deduce from #1
A a0{0, 0, ip}; // uses #1 to deduce A<int> and #1 to initialize
A a2{i, ip}; // uses #3 to deduce A<int&> and #2 to initialize
— end example]

4 In general, the deduction process attempts to find template argument values that will make the deduced A identical to A(after the type A is transformed as described above). However, there are three cases that allow a difference:
—(4.1) If the original P is a reference type, the deduced A (i.e., the type referred to by the reference) can be morecv-qualified than the transformed A.
—(4.2) The transformed A can be another pointer or pointer-to-member type that can be converted to the deduced A via afunction pointer conversion (7.3.14) and/or qualification conversion (7.3.6).
—(4.3) If P is a class and P has the form simple-template-id , then the transformed A can be a derived class D of thededuced A. Likewise, if P is a pointer to a class of the form simple-template-id , the transformed A can be a pointerto a derived class D pointed to by the deduced A. However, if there is a class C that is a (direct or indirect) baseclass of D and derived (directly or indirectly) from a class B and that would be a valid deduced A, the deduced Acannot be B or pointer to B, respectively.

[Example 5:
template <typename... T> struct X;
template <> struct X<> {};
template <typename T, typename... Ts>
struct X<T, Ts...> : X<Ts...> {};

struct D : X<int> {};
struct E : X<>, X<int> {};

template <typename... T>
int f(const X<T...>&);
int x = f(D()); // calls f<int>, not f<>// B is X<>, C is X<int>
int z = f(E()); // calls f<int>, not f<>
—end example]

5 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one possiblededuced A, the type deduction fails.
[Note 1: If a template-parameter is not used in any of the function parameters of a function template, or is used only in a non-deducedcontext, its corresponding template-argument cannot be deduced from a function call and the template-argument must be explicitlyspecified. —end note]
§ 13.10.3.2 417

© ISO/IEC N4910

6 When P is a function type, function pointer type, or pointer-to-member-function type:
—(6.1) If the argument is an overload set containing one or more function templates, the parameter is treated as anon-deduced context.
—(6.2) If the argument is an overload set (not containing function templates), trial argument deduction is attempted usingeach of the members of the set. If deduction succeeds for only one of the overload set members, that member isused as the argument value for the deduction. If deduction succeeds for more than one member of the overloadset the parameter is treated as a non-deduced context.

7 [Example 6:
// Only one function of an overload set matches the call so the function parameter is a deduced context.
template <class T> int f(T (*p)(T));
int g(int);
int g(char);
int i = f(g); // calls f(int (*)(int))

—end example]
8 [Example 7:

// Ambiguous deduction causes the second function parameter to be a non-deduced context.
template <class T> int f(T, T (*p)(T));
int g(int);
char g(char);
int i = f(1, g); // calls f(int, int (*)(int))

—end example]
9 [Example 8:

// The overload set contains a template, causing the second function parameter to be a non-deduced context.
template <class T> int f(T, T (*p)(T));
char g(char);
template <class T> T g(T);
int i = f(1, g); // calls f(int, int (*)(int))

—end example]
13.10.3.3 Deducing template arguments taking the address of a function template [temp.deduct.funcaddr]

1 Template arguments can be deduced from the type specified when taking the address of an overload set (12.3). If thereis a target, the function template’s function type and the target type are used as the types of P and A, and the deduction isdone as described in 13.10.3.6. Otherwise, deduction is performed with empty sets of types P and A.
2 A placeholder type (9.2.9.6) in the return type of a function template is a non-deduced context. If template argumentdeduction succeeds for such a function, the return type is determined from instantiation of the function body.
13.10.3.4 Deducing conversion function template arguments [temp.deduct.conv]

1 Template argument deduction is done by comparing the return type of the conversion function template (call it P) with thetype specified by the conversion-type-id of the conversion-function-id being looked up (call it A) as described in 13.10.3.6.If the conversion-function-id is constructed during overload resolution (12.2.2), the following transformations apply.
2 If P is a reference type, the type referred to by P is used in place of P for type deduction and for any further references toor transformations of P in the remainder of this subclause.
3 If A is not a reference type:

—(3.1) If P is an array type, the pointer type produced by the array-to-pointer standard conversion (7.3.3) is used in placeof P for type deduction; otherwise,
—(3.2) If P is a function type, the pointer type produced by the function-to-pointer standard conversion (7.3.4) is used inplace of P for type deduction; otherwise,
—(3.3) If P is a cv-qualified type, the top-level cv-qualifiers of P’s type are ignored for type deduction.

4 If A is a cv-qualified type, the top-level cv-qualifiers of A’s type are ignored for type deduction. If A is a reference type,the type referred to by A is used for type deduction.
5 In general, the deduction process attempts to find template argument values that will make the deduced A identical to A.However, certain attributes of A may be ignored:

—(5.1) If the original A is a reference type, any cv-qualifiers of A (i.e., the type referred to by the reference).
§ 13.10.3.4 418

© ISO/IEC N4910

—(5.2) If the original A is a function pointer or pointer-to-member-function type, its noexcept.
—(5.3) Any cv-qualifiers in A that can be restored by a qualification conversion.

6 These attributes are ignored only if type deduction would otherwise fail. If ignoring them allows more than one possiblededuced A, the type deduction fails.
13.10.3.5 Deducing template arguments during partial ordering [temp.deduct.partial]

1 Template argument deduction is done by comparing certain types associated with the two function templates beingcompared.
2 Two sets of types are used to determine the partial ordering. For each of the templates involved there is the originalfunction type and the transformed function type.
[Note 1: The creation of the transformed type is described in 13.7.7.3. —end note]
The deduction process uses the transformed type as the argument template and the original type of the other template asthe parameter template. This process is done twice for each type involved in the partial ordering comparison: onceusing the transformed template-1 as the argument template and template-2 as the parameter template and again usingthe transformed template-2 as the argument template and template-1 as the parameter template.

3 The types used to determine the ordering depend on the context in which the partial ordering is done:
—(3.1) In the context of a function call, the types used are those function parameter types for which the function call hasarguments.130
—(3.2) In the context of a call to a conversion function, the return types of the conversion function templates are used.
—(3.3) In other contexts (13.7.7.3) the function template’s function type is used.

4 Each type nominated above from the parameter template and the corresponding type from the argument template areused as the types of P and A.
5 Before the partial ordering is done, certain transformations are performed on the types used for partial ordering:

—(5.1) If P is a reference type, P is replaced by the type referred to.
—(5.2) If A is a reference type, A is replaced by the type referred to.

6 If both P and A were reference types (before being replaced with the type referred to above), determine which of thetwo types (if any) is more cv-qualified than the other; otherwise the types are considered to be equally cv-qualified forpartial ordering purposes. The result of this determination will be used below.
7 Remove any top-level cv-qualifiers:

—(7.1) If P is a cv-qualified type, P is replaced by the cv-unqualified version of P.
—(7.2) If A is a cv-qualified type, A is replaced by the cv-unqualified version of A.

8 Using the resulting types P and A, the deduction is then done as described in 13.10.3.6. If P is a function parameter pack,the type A of each remaining parameter type of the argument template is compared with the type P of the declarator-idof the function parameter pack. Each comparison deduces template arguments for subsequent positions in the templateparameter packs expanded by the function parameter pack. Similarly, if A was transformed from a function parameterpack, it is compared with each remaining parameter type of the parameter template. If deduction succeeds for a giventype, the type from the argument template is considered to be at least as specialized as the type from the parametertemplate.
[Example 1:
template<class... Args> void f(Args... args); // #1
template<class T1, class... Args> void f(T1 a1, Args... args); // #2
template<class T1, class T2> void f(T1 a1, T2 a2); // #3
f(); // calls #1
f(1, 2, 3); // calls #2
f(1, 2); // calls #3; non-variadic template #3 is more specialized// than the variadic templates #1 and #2
—end example]

9 If, for a given type, the types are identical after the transformations above and both P and A were reference types (beforebeing replaced with the type referred to above):
130) Default arguments are not considered to be arguments in this context; they only become arguments after a function has been selected.
§ 13.10.3.5 419

© ISO/IEC N4910

—(9.1) if the type from the argument template was an lvalue reference and the type from the parameter template was not,the parameter type is not considered to be at least as specialized as the argument type; otherwise,
—(9.2) if the type from the argument template is more cv-qualified than the type from the parameter template (as describedabove), the parameter type is not considered to be at least as specialized as the argument type.

10 Function template F is at least as specialized as function template G if, for each pair of types used to determine theordering, the type from F is at least as specialized as the type from G. F is more specialized than G if F is at least asspecialized as G and G is not at least as specialized as F.
11 If, after considering the above, function template F is at least as specialized as function template G and vice-versa, and if

G has a trailing function parameter pack for which F does not have a corresponding parameter, and if F does not have atrailing function parameter pack, then F is more specialized than G.
12 In most cases, deduction fails if not all template parameters have values, but for partial ordering purposes a templateparameter may remain without a value provided it is not used in the types being used for partial ordering.
[Note 2: A template parameter used in a non-deduced context is considered used. —end note]
[Example 2:
template <class T> T f(int); // #1
template <class T, class U> T f(U); // #2
void g() {

f<int>(1); // calls #1
}

—end example]
13 [Note 3: Partial ordering of function templates containing template parameter packs is independent of the number of deducedarguments for those template parameter packs. —end note]
[Example 3:
template<class ...> struct Tuple { };
template<class ... Types> void g(Tuple<Types ...>); // #1
template<class T1, class ... Types> void g(Tuple<T1, Types ...>); // #2
template<class T1, class ... Types> void g(Tuple<T1, Types& ...>); // #3
g(Tuple<>()); // calls #1
g(Tuple<int, float>()); // calls #2
g(Tuple<int, float&>()); // calls #3
g(Tuple<int>()); // calls #3
—end example]
13.10.3.6 Deducing template arguments from a type [temp.deduct.type]

1 Template arguments can be deduced in several different contexts, but in each case a type that is specified in termsof template parameters (call it P) is compared with an actual type (call it A), and an attempt is made to find templateargument values (a type for a type parameter, a value for a non-type parameter, or a template for a template parameter)that will make P, after substitution of the deduced values (call it the deduced A), compatible with A.
2 In some cases, the deduction is done using a single set of types P and A, in other cases, there will be a set of correspondingtypes P and A. Type deduction is done independently for each P/A pair, and the deduced template argument values arethen combined. If type deduction cannot be done for any P/A pair, or if for any pair the deduction leads to more thanone possible set of deduced values, or if different pairs yield different deduced values, or if any template argumentremains neither deduced nor explicitly specified, template argument deduction fails. The type of a type parameter isonly deduced from an array bound if it is not otherwise deduced.
3 A given type P can be composed from a number of other types, templates, and non-type values:

—(3.1) A function type includes the types of each of the function parameters and the return type.
—(3.2) A pointer-to-member type includes the type of the class object pointed to and the type of the member pointed to.
—(3.3) A type that is a specialization of a class template (e.g., A<int>) includes the types, templates, and non-type valuesreferenced by the template argument list of the specialization.
—(3.4) An array type includes the array element type and the value of the array bound.

4 In most cases, the types, templates, and non-type values that are used to compose P participate in template argumentdeduction. That is, they may be used to determine the value of a template argument, and template argument deduction
§ 13.10.3.6 420

© ISO/IEC N4910

fails if the value so determined is not consistent with the values determined elsewhere. In certain contexts, however, thevalue does not participate in type deduction, but instead uses the values of template arguments that were either deducedelsewhere or explicitly specified. If a template parameter is used only in non-deduced contexts and is not explicitlyspecified, template argument deduction fails.
[Note 1: Under 13.10.3.2, if P contains no template-parameters that appear in deduced contexts, no deduction is done, so P and Aneed not have the same form. —end note]

5 The non-deduced contexts are:
—(5.1) The nested-name-specifier of a type that was specified using a qualified-id .
—(5.2) The expression of a decltype-specifier .
—(5.3) A non-type template argument or an array bound in which a subexpression references a template parameter.
—(5.4) A template parameter used in the parameter type of a function parameter that has a default argument that is beingused in the call for which argument deduction is being done.
—(5.5) A function parameter for which the associated argument is an overload set (12.3), and one or more of the followingapply:

—(5.5.1) more than one function matches the function parameter type (resulting in an ambiguous deduction), or
—(5.5.2) no function matches the function parameter type, or
—(5.5.3) the overload set supplied as an argument contains one or more function templates.

—(5.6) A function parameter for which the associated argument is an initializer list (9.4.5) but the parameter does nothave a type for which deduction from an initializer list is specified (13.10.3.2).
[Example 1:
template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T
—end example]

—(5.7) A function parameter pack that does not occur at the end of the parameter-declaration-list.
6 When a type name is specified in a way that includes a non-deduced context, all of the types that comprise that typename are also non-deduced. However, a compound type can include both deduced and non-deduced types.
[Example 2: If a type is specified as A<T>::B<T2>, both T and T2 are non-deduced. Likewise, if a type is specified as A<I+J>::X<T>,
I, J, and T are non-deduced. If a type is specified as void f(typename A<T>::B, A<T>), the T in A<T>::B is non-deduced but the T in
A<T> is deduced. —end example]

7 [Example 3: Here is an example in which different parameter/argument pairs produce inconsistent template argument deductions:
template<class T> void f(T x, T y) { /* ... */ }
struct A { /* ... */ };
struct B : A { /* ... */ };
void g(A a, B b) {

f(a,b); // error: T deduced as both A and B
f(b,a); // error: T deduced as both A and B
f(a,a); // OK, T is A
f(b,b); // OK, T is B

}

Here is an example where two template arguments are deduced from a single function parameter/argument pair. This can lead toconflicts that cause type deduction to fail:
template <class T, class U> void f(T (*)(T, U, U));

int g1(int, float, float);
char g2(int, float, float);
int g3(int, char, float);

void r() {
f(g1); // OK, T is int and U is float
f(g2); // error: T deduced as both char and int
f(g3); // error: U deduced as both char and float

}

§ 13.10.3.6 421

© ISO/IEC N4910

Here is an example where a qualification conversion applies between the argument type on the function call and the deduced templateargument type:
template<class T> void f(const T*) { }
int* p;
void s() {

f(p); // f(const int*)
}

Here is an example where the template argument is used to instantiate a derived class type of the corresponding function parametertype:
template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&) {}
void t() {

D<int> d;
D2 d2;
f(d); // calls f(B<int>&)
f(d2); // calls f(B<int>&)

}

—end example]
8 A template type argument T, a template template argument TT or a template non-type argument i can be deduced if Pand A have one of the following forms:

T
cv T
T*
T&
T&&
T[integer-constant]
template-name<T> (where template-name refers to a class template)
type(T)
T()
T(T)
T type::*
type T::*
T T::*
T (type::*)()
type (T::*)()
type (type::*)(T)
type (T::*)(T)
T (type::*)(T)
T (T::*)()
T (T::*)(T)
type[i]
template-name<i> (where template-name refers to a class template)
TT<T>
TT<i>
TT<>

where (T) represents a parameter-type-list (9.3.4.6) where at least one parameter type contains a T, and () represents aparameter-type-list where no parameter type contains a T. Similarly, <T> represents template argument lists where atleast one argument contains a T, <i> represents template argument lists where at least one argument contains an i and
<> represents template argument lists where no argument contains a T or an i.

9 If P has a form that contains <T> or <i>, then each argument Pi of the respective template argument list of P is comparedwith the corresponding argument Ai of the corresponding template argument list of A. If the template argument list of Pcontains a pack expansion that is not the last template argument, the entire template argument list is a non-deducedcontext. If Pi is a pack expansion, then the pattern of Pi is compared with each remaining argument in the templateargument list of A. Each comparison deduces template arguments for subsequent positions in the template parameterpacks expanded by Pi. During partial ordering (13.10.3.5), if Ai was originally a pack expansion:
—(9.1) if P does not contain a template argument corresponding to Ai then Ai is ignored;

§ 13.10.3.6 422

© ISO/IEC N4910

—(9.2) otherwise, if Pi is not a pack expansion, template argument deduction fails.
[Example 4:
template<class T1, class... Z> class S; // #1
template<class T1, class... Z> class S<T1, const Z&...> { }; // #2
template<class T1, class T2> class S<T1, const T2&> { }; // #3
S<int, const int&> s; // both #2 and #3 match; #3 is more specialized
template<class T, class... U> struct A { }; // #1
template<class T1, class T2, class... U> struct A<T1, T2*, U...> { }; // #2
template<class T1, class T2> struct A<T1, T2> { }; // #3
template struct A<int, int*>; // selects #2
—end example]

10 Similarly, if P has a form that contains (T), then each parameter type Pi of the respective parameter-type-list (9.3.4.6)of P is compared with the corresponding parameter type Ai of the corresponding parameter-type-list of A. If P and Aare function types that originated from deduction when taking the address of a function template (13.10.3.3) or whendeducing template arguments from a function declaration (13.10.3.7) and Pi and Ai are parameters of the top-levelparameter-type-list of P and A, respectively, Pi is adjusted if it is a forwarding reference (13.10.3.2) and Ai is an lvaluereference, in which case the type of Pi is changed to be the template parameter type (i.e., T&& is changed to simply T).
[Note 2: As a result, when Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be deduced as X&. —end note]
[Example 5:
template <class T> void f(T&&);
template <> void f(int&) { } // #1
template <> void f(int&&) { } // #2
void g(int i) {

f(i); // calls f<int&>(int&), i.e., #1
f(0); // calls f<int>(int&&), i.e., #2

}

—end example]
If the parameter-declaration corresponding to Pi is a function parameter pack, then the type of its declarator-id iscompared with each remaining parameter type in the parameter-type-list of A. Each comparison deduces templatearguments for subsequent positions in the template parameter packs expanded by the function parameter pack. Duringpartial ordering (13.10.3.5), if Ai was originally a function parameter pack:
—(10.1) if P does not contain a function parameter type corresponding to Ai then Ai is ignored;
—(10.2) otherwise, if Pi is not a function parameter pack, template argument deduction fails.

[Example 6:
template<class T, class... U> void f(T*, U...) { } // #1
template<class T> void f(T) { } // #2
template void f(int*); // selects #1
—end example]

11 These forms can be used in the same way as T is for further composition of types.
[Example 7:
X<int> (*)(char[6])

is of the form
template-name<T> (*)(type[i])

which is a variant of
type (*)(T)

where type is X<int> and T is char[6]. —end example]
12 Template arguments cannot be deduced from function arguments involving constructs other than the ones specifiedabove.
13 When the value of the argument corresponding to a non-type template parameter P that is declared with a dependenttype is deduced from an expression, the template parameters in the type of P are deduced from the type of the value.
[Example 8:
§ 13.10.3.6 423

© ISO/IEC N4910

template<long n> struct A { };

template<typename T> struct C;
template<typename T, T n> struct C<A<n>> {

using Q = T;
};

using R = long;
using R = C<A<2>>::Q; // OK; T was deduced as long from the// template argument value in the type A<2>
—end example]

14 The type of N in the type T[N] is std::size_t.
[Example 9:
template<typename T> struct S;
template<typename T, T n> struct S<int[n]> {

using Q = T;
};

using V = decltype(sizeof 0);
using V = S<int[42]>::Q; // OK; T was deduced as std::size_t from the type int[42]
—end example]

15 [Example 10:
template<class T, T i> void f(int (&a)[i]);
int v[10];
void g() {

f(v); // OK, T is std::size_t
}

—end example]
16 [Note 3: Except for reference and pointer types, a major array bound is not part of a function parameter type and cannot be deducedfrom an argument:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);

void g() {
int v[10][20];
f1(v); // OK, i deduced as 20
f1<20>(v); // OK
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // OK
f3(v); // OK, i deduced as 10

}

—end note]
17 [Note 4: If, in the declaration of a function template with a non-type template parameter, the non-type template parameter is used in asubexpression in the function parameter list, the expression is a non-deduced context as specified above.
[Example 11:
template <int i> class A { /* ... */ };
template <int i> void g(A<i+1>);
template <int i> void f(A<i>, A<i+1>);
void k() {

A<1> a1;
A<2> a2;
g(a1); // error: deduction fails for expression i+1
g<0>(a1); // OK
f(a1, a2); // OK

}

—end example]

§ 13.10.3.6 424

© ISO/IEC N4910

—end note]
18 [Note 5: Template parameters do not participate in template argument deduction if they are used only in non-deduced contexts. Forexample,

template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here

T t, // but T is deduced here
typename B<i>::Y y); // i is not deduced here

A<int> a;
B<77> b;

int x = deduce<77>(a.xm, 62, b.ym);// T deduced as int; a.xm must be convertible to A<int>::X// i is explicitly specified to be 77; b.ym must be convertible to B<77>::Y
—end note]

19 If P has a form that contains <i>, and if the type of i differs from the type of the corresponding template parameter ofthe template named by the enclosing simple-template-id , deduction fails. If P has a form that contains [i], and if thetype of i is not an integral type, deduction fails.131
[Example 12:
template<int i> class A { /* ... */ };
template<short s> void f(A<s>);
void k1() {

A<1> a;
f(a); // error: deduction fails for conversion from int to short
f<1>(a); // OK

}

template<const short cs> class B { };
template<short s> void g(B<s>);
void k2() {

B<1> b;
g(b); // OK, cv-qualifiers are ignored on template parameter types

}

—end example]
20 A template-argument can be deduced from a function, pointer to function, or pointer-to-member-function type.
[Example 13:
template<class T> void f(void(*)(T,int));
template<class T> void foo(T,int);
void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);
int m() {

f(&g); // error: ambiguous
f(&h); // OK, void h(char,int) is a unique match
f(&foo); // error: type deduction fails because foo is a template

}

—end example]
21 A template type-parameter cannot be deduced from the type of a function default argument.
[Example 14:
template <class T> void f(T = 5, T = 7);
void g() {

f(1); // OK, calls f<int>(1,7)
f(); // error: cannot deduce T

131) Although the template-argument corresponding to a template-parameter of type bool can be deduced from an array bound, the resultingvalue will always be true because the array bound will be nonzero.
§ 13.10.3.6 425

© ISO/IEC N4910

f<int>(); // OK, calls f<int>(5,7)
}

—end example]
22 The template-argument corresponding to a template template-parameter is deduced from the type of the template-

argument of a class template specialization used in the argument list of a function call.
[Example 15:
template <template <class T> class X> struct A { };
template <template <class T> class X> void f(A<X>) { }
template<class T> struct B { };
A ab;
f(ab); // calls f(A)
—end example]

23 [Note 6: Template argument deduction involving parameter packs (13.7.4) can deduce zero or more arguments for each parameterpack. —end note]
[Example 16:
template<class> struct X { };
template<class R, class ... ArgTypes> struct X<R(int, ArgTypes ...)> { };
template<class ... Types> struct Y { };
template<class T, class ... Types> struct Y<T, Types& ...> { };

template<class ... Types> int f(void (*)(Types ...));
void g(int, float);

X<int> x1; // uses primary template
X<int(int, float, double)> x2; // uses partial specialization; ArgTypes contains float, double
X<int(float, int)> x3; // uses primary template
Y<> y1; // use primary template; Types is empty
Y<int&, float&, double&> y2; // uses partial specialization; T is int&, Types contains float, double
Y<int, float, double> y3; // uses primary template; Types contains int, float, double
int fv = f(g); // OK; Types contains int, float
—end example]
13.10.3.7 Deducing template arguments from a function declaration [temp.deduct.decl]

1 In a declaration whose declarator-id refers to a specialization of a function template, template argument deductionis performed to identify the specialization to which the declaration refers. Specifically, this is done for explicitinstantiations (13.9.3), explicit specializations (13.9.4), and certain friend declarations (13.7.5). This is also doneto determine whether a deallocation function template specialization matches a placement operator new (6.7.5.5.3,7.6.2.8). In all these cases, P is the type of the function template being considered as a potential match and A is either thefunction type from the declaration or the type of the deallocation function that would match the placement operator
new as described in 7.6.2.8. The deduction is done as described in 13.10.3.6.

2 If, for the set of function templates so considered, there is either no match or more than one match after partial orderinghas been considered (13.7.7.3), deduction fails and, in the declaration cases, the program is ill-formed.
13.10.4 Overload resolution [temp.over]

1 When a call of a function or function template is written (explicitly, or implicitly using the operator notation), templateargument deduction (13.10.3) and checking of any explicit template arguments (13.4) are performed for each functiontemplate to find the template argument values (if any) that can be used with that function template to instantiate afunction template specialization that can be invoked with the call arguments or, for conversion function templates,that can convert to the required type. For each function template, if the argument deduction and checking succeeds,the template-arguments (deduced and/or explicit) are used to synthesize the declaration of a single function templatespecialization which is added to the candidate functions set to be used in overload resolution. If, for a given functiontemplate, argument deduction fails or the synthesized function template specialization would be ill-formed, no suchfunction is added to the set of candidate functions for that template. The complete set of candidate functions includes allthe synthesized declarations and all of the non-template functions found by name lookup. The synthesized declarationsare treated like any other functions in the remainder of overload resolution, except as explicitly noted in 12.2.4.132
132) The parameters of function template specializations contain no template parameter types. The set of conversions allowed on deduced argumentsis limited, because the argument deduction process produces function templates with parameters that either match the call arguments exactly or
§ 13.10.4 426

© ISO/IEC N4910

2 [Example 1:
template<class T> T max(T a, T b) { return a>b?a:b; }

void f(int a, int b, char c, char d) {
int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

Adding the non-template function
int max(int,int);

to the example above would resolve the third call, by providing a function that can be called for max(a,c) after using the standardconversion of char to int for c. —end example]
3 [Example 2: Here is an example involving conversions on a function argument involved in template-argument deduction:

template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T> { /* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di) {
f(bi); // f(bi)
f(di); // f((B<int>&)di)

}

—end example]
4 [Example 3: Here is an example involving conversions on a function argument not involved in template-parameter deduction:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2
void h(int* pi, int i, char c) {

f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)
f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

—end example]
5 Only the signature of a function template specialization is needed to enter the specialization in a set of candidatefunctions. Therefore only the function template declaration is needed to resolve a call for which a template specializationis a candidate.
[Example 4:
template<class T> void f(T); // declaration
void g() {

f("Annemarie"); // call of f<const char*>
}

The call of f is well-formed even if the template f is only declared and not defined at the point of the call. The program will beill-formed unless a specialization for f<const char*> is explicitly instantiated in some translation unit (13.1). —end example]

differ only in ways that can be bridged by the allowed limited conversions. Non-deduced arguments allow the full range of conversions. Note alsothat 12.2.4 specifies that a non-template function will be given preference over a template specialization if the two functions are otherwise equallygood candidates for an overload match.
§ 13.10.4 427

© ISO/IEC N4910

14 Exception handling [except]
14.1 Preamble [except.pre]

1 Exception handling provides a way of transferring control and information from a point in the execution of a thread toan exception handler associated with a point previously passed by the execution. A handler will be invoked only bythrowing an exception in code executed in the handler’s try block or in functions called from the handler’s try block.
try-block :

try compound-statement handler-seq

function-try-block :
try ctor-initializeropt compound-statement handler-seq

handler-seq :
handler handler-seqopt

handler :
catch (exception-declaration) compound-statement

exception-declaration :
attribute-specifier-seqopt type-specifier-seq declarator
attribute-specifier-seqopt type-specifier-seq abstract-declaratoropt
...

The optional attribute-specifier-seq in an exception-declaration appertains to the parameter of the catch clause (14.4).
2 A try-block is a statement (8.1).
[Note 1: Within this Clause “try block” is taken to mean both try-block and function-try-block . —end note]

3 A goto or switch statement shall not be used to transfer control into a try block or into a handler.
[Example 1:
void f() {

goto l1; // error
goto l2; // error
try {

goto l1; // OK
goto l2; // error
l1: ;

} catch (...) {
l2: ;
goto l1; // error
goto l2; // OK

}
}

—end example]
A goto, break, return, or continue statement can be used to transfer control out of a try block or handler. When thishappens, each variable declared in the try block will be destroyed in the context that directly contains its declaration.
[Example 2:
lab: try {

T1 t1;
try {
T2 t2;
if (condition)
goto lab;

} catch(...) { /* handler 2 */ }
} catch(...) { /* handler 1 */ }

Here, executing goto lab; will destroy first t2, then t1, assuming the condition does not declare a variable. Any exception thrownwhile destroying t2 will result in executing handler 2; any exception thrown while destroying t1 will result in executing handler
1. —end example]

§ 14.1 428

© ISO/IEC N4910

4 A function-try-block associates a handler-seq with the ctor-initializer , if present, and the compound-statement. Anexception thrown during the execution of the compound-statement or, for constructors and destructors, during theinitialization or destruction, respectively, of the class’s subobjects, transfers control to a handler in a function-try-blockin the same way as an exception thrown during the execution of a try-block transfers control to other handlers.
[Example 3:
int f(int);
class C {

int i;
double d;

public:
C(int, double);

};

C::C(int ii, double id)
try : i(f(ii)), d(id) {// constructor statements
} catch (...) {// handles exceptions thrown from the ctor-initializer and from the constructor statements
}

—end example]
5 In this Clause, “before” and “after” refer to the “sequenced before” relation (6.9.1).
14.2 Throwing an exception [except.throw]

1 Throwing an exception transfers control to a handler.
[Note 1: An exception can be thrown from one of the following contexts: throw-expressions (7.6.18), allocation functions (6.7.5.5.2),
dynamic_cast (7.6.1.7), typeid (7.6.1.8), new-expressions (7.6.2.8), and standard library functions (16.3.2.4). —end note]
An object is passed and the type of that object determines which handlers can catch it.
[Example 1:
throw "Help!";

can be caught by a handler of const char* type:
try {// ...
} catch(const char* p) {// handle character string exceptions here
}

and
class Overflow {
public:

Overflow(char,double,double);
};

void f(double x) {
throw Overflow('+',x,3.45e107);

}

can be caught by a handler for exceptions of type Overflow:
try {

f(1.2);
} catch(Overflow& oo) {// handle exceptions of type Overflow here
}

—end example]
2 When an exception is thrown, control is transferred to the nearest handler with a matching type (14.4); “nearest” meansthe handler for which the compound-statement or ctor-initializer following the try keyword was most recently enteredby the thread of control and not yet exited.

§ 14.2 429

© ISO/IEC N4910

3 Throwing an exception copy-initializes (9.4, 11.4.5.3) a temporary object, called the exception object. If the type of theexception object would be an incomplete type, an abstract class type (11.7.4), or a pointer to an incomplete type otherthan cv void the program is ill-formed.
4 The memory for the exception object is allocated in an unspecified way, except as noted in 6.7.5.5.2. If a handler exitsby rethrowing, control is passed to another handler for the same exception object. The points of potential destructionfor the exception object are:

—(4.1) when an active handler for the exception exits by any means other than rethrowing, immediately after thedestruction of the object (if any) declared in the exception-declaration in the handler;
—(4.2) when an object of type std::exception_ptr (17.9.7) that refers to the exception object is destroyed, before thedestructor of std::exception_ptr returns.

Among all points of potential destruction for the exception object, there is an unspecified last one where the exceptionobject is destroyed. All other points happen before that last one (6.9.2.2).
[Note 2: No other thread synchronization is implied in exception handling. —end note]
The implementation may then deallocate the memory for the exception object; any such deallocation is done in anunspecified way.
[Note 3: A thrown exception does not propagate to other threads unless caught, stored, and rethrown using appropriate libraryfunctions; see 17.9.7 and 33.10. —end note]

5 When the thrown object is a class object, the constructor selected for the copy-initialization as well as the constructorselected for a copy-initialization considering the thrown object as an lvalue shall be non-deleted and accessible, even ifthe copy/move operation is elided (11.9.6). The destructor is potentially invoked (11.4.7).
6 An exception is considered caught when a handler for that exception becomes active (14.4).
[Note 4: An exception can have active handlers and still be considered uncaught if it is rethrown. —end note]

7 If the exception handling mechanism handling an uncaught exception (14.6.3) directly invokes a function that exits viaan exception, the function std::terminate is invoked (14.6.2).
[Example 2:
struct C {

C() { }
C(const C&) {
if (std::uncaught_exceptions()) {

throw 0; // throw during copy to handler’s exception-declaration object (14.4)
}

}
};

int main() {
try {
throw C(); // calls std::terminate if construction of the handler’s// exception-declaration object is not elided (11.9.6)

} catch(C) { }
}

—end example]
[Note 5: If a destructor directly invoked by stack unwinding exits via an exception, std::terminate is invoked. —end note]
14.3 Constructors and destructors [except.ctor]

1 As control passes from the point where an exception is thrown to a handler, objects are destroyed by a process, specifiedin this subclause, called stack unwinding.
2 Each object with automatic storage duration is destroyed if it has been constructed, but not yet destroyed, since thetry block was entered. If an exception is thrown during the destruction of temporaries or local variables for a returnstatement (8.7.4), the destructor for the returned object (if any) is also invoked. The objects are destroyed in the reverseorder of the completion of their construction.
[Example 1:
struct A { };

struct Y { ~Y() noexcept(false) { throw 0; } };

§ 14.3 430

© ISO/IEC N4910

A f() {
try {
A a;
Y y;
A b;
return {}; // #1

} catch (...) {
}
return {}; // #2

}

At #1, the returned object of type A is constructed. Then, the local variable b is destroyed (8.7). Next, the local variable y is destroyed,causing stack unwinding, resulting in the destruction of the returned object, followed by the destruction of the local variable a.Finally, the returned object is constructed again at #2. —end example]
3 If the initialization or destruction of an object other than by delegating constructor is terminated by an exception, thedestructor is invoked for each of the object’s direct subobjects and, for a complete object, virtual base class subobjects,whose initialization has completed (9.4) and whose destructor has not yet begun execution, except that in the case ofdestruction, the variant members of a union-like class are not destroyed.
[Note 1: If such an object has a reference member that extends the lifetime of a temporary object, this ends the lifetime of thereference member, so the lifetime of the temporary object is effectively not extended. —end note]
The subobjects are destroyed in the reverse order of the completion of their construction. Such destruction is sequencedbefore entering a handler of the function-try-block of the constructor or destructor, if any.

4 If the compound-statement of the function-body of a delegating constructor for an object exits via an exception, theobject’s destructor is invoked. Such destruction is sequenced before entering a handler of the function-try-block of adelegating constructor for that object, if any.
5 [Note 2: If the object was allocated by a new-expression (7.6.2.8), the matching deallocation function (6.7.5.5.3), if any, is called tofree the storage occupied by the object. —end note]
14.4 Handling an exception [except.handle]

1 The exception-declaration in a handler describes the type(s) of exceptions that can cause that handler to be entered.The exception-declaration shall not denote an incomplete type, an abstract class type, or an rvalue reference type. The
exception-declaration shall not denote a pointer or reference to an incomplete type, other than “pointer to cv void”.

2 A handler of type “array of T” or function type T is adjusted to be of type “pointer to T”.
3 A handler is a match for an exception object of type E if

—(3.1) The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-level cv-qualifiers), or
—(3.2) the handler is of type cv T or cv T& and T is an unambiguous public base class of E, or
—(3.3) the handler is of type cv T or const T& where T is a pointer or pointer-to-member type and E is a pointer orpointer-to-member type that can be converted to T by one or more of

—(3.3.1) a standard pointer conversion (7.3.12) not involving conversions to pointers to private or protected orambiguous classes
—(3.3.2) a function pointer conversion (7.3.14)
—(3.3.3) a qualification conversion (7.3.6), or

—(3.4) the handler is of type cv T or const T& where T is a pointer or pointer-to-member type and E is std::nullptr_t.
[Note 1: A throw-expression whose operand is an integer literal with value zero does not match a handler of pointer or pointer-to-member type. A handler of reference to array or function type is never a match for any exception object (7.6.18). —endnote]
[Example 1:
class Matherr { /* ... */ virtual void vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f() {
try {
g();

§ 14.4 431

© ISO/IEC N4910

} catch (Overflow oo) {// ...
} catch (Matherr mm) {// ...
}

}

Here, the Overflow handler will catch exceptions of type Overflow and the Matherr handler will catch exceptions of type Matherrand of all types publicly derived from Matherr including exceptions of type Underflow and Zerodivide. —end example]
4 The handlers for a try block are tried in order of appearance.
[Note 2: This makes it possible to write handlers that can never be executed, for example by placing a handler for a final derivedclass after a handler for a corresponding unambiguous public base class. —end note]

5 A ... in a handler’s exception-declaration functions similarly to ... in a function parameter declaration; it specifies amatch for any exception. If present, a ... handler shall be the last handler for its try block.
6 If no match is found among the handlers for a try block, the search for a matching handler continues in a dynamicallysurrounding try block of the same thread.
7 A handler is considered active when initialization is complete for the parameter (if any) of the catch clause.
[Note 3: The stack will have been unwound at that point. —end note]
Also, an implicit handler is considered active when the function std::terminate is entered due to a throw. A handleris no longer considered active when the catch clause exits.

8 The exception with the most recently activated handler that is still active is called the currently handled exception.
9 If no matching handler is found, the function std::terminate is invoked; whether or not the stack is unwound beforethis invocation of std::terminate is implementation-defined (14.6.2).
10 Referring to any non-static member or base class of an object in the handler for a function-try-block of a constructor ordestructor for that object results in undefined behavior.
11 Exceptions thrown in destructors of objects with static storage duration or in constructors of objects associated withnon-block variables with static storage duration are not caught by a function-try-block on the main function (6.9.3.1).Exceptions thrown in destructors of objects with thread storage duration or in constructors of objects associated withnon-block variables with thread storage duration are not caught by a function-try-block on the initial function of thethread.
12 If a return statement (8.7.4) appears in a handler of the function-try-block of a constructor, the program is ill-formed.
13 The currently handled exception is rethrown if control reaches the end of a handler of the function-try-block of aconstructor or destructor. Otherwise, flowing off the end of the compound-statement of a handler of a function-try-

block is equivalent to flowing off the end of the compound-statement of that function (see 8.7.4).
14 The variable declared by the exception-declaration, of type cv T or cv T&, is initialized from the exception object, oftype E, as follows:

—(14.1) if T is a base class of E, the variable is copy-initialized (9.4) from an lvalue of type T designating the correspondingbase class subobject of the exception object;
—(14.2) otherwise, the variable is copy-initialized (9.4) from an lvalue of type E designating the exception object.

The lifetime of the variable ends when the handler exits, after the destruction of any objects with automatic storageduration initialized within the handler.
15 When the handler declares an object, any changes to that object will not affect the exception object. When the handlerdeclares a reference to an object, any changes to the referenced object are changes to the exception object and will haveeffect should that object be rethrown.
14.5 Exception specifications [except.spec]

1 The predicate indicating whether a function cannot exit via an exception is called the exception specification of thefunction. If the predicate is false, the function has a potentially-throwing exception specification, otherwise it has anon-throwing exception specification. The exception specification is either defined implicitly, or defined explicitly byusing a noexcept-specifier as a suffix of a function declarator (9.3.4.6).

§ 14.5 432

© ISO/IEC N4910

noexcept-specifier :
noexcept (constant-expression)
noexcept

2 In a noexcept-specifier , the constant-expression, if supplied, shall be a contextually converted constant expressionof type bool (7.7); that constant expression is the exception specification of the function type in which the noexcept-
specifier appears. A (token that follows noexcept is part of the noexcept-specifier and does not commence aninitializer (9.4). The noexcept-specifier noexcept without a constant-expression is equivalent to the noexcept-specifier
noexcept(true).
[Example 1:
void f() noexcept(sizeof(char[2])); // error: narrowing conversion of value 2 to type bool
void g() noexcept(sizeof(char)); // OK, conversion of value 1 to type bool is non-narrowing
—end example]

3 If a declaration of a function does not have a noexcept-specifier , the declaration has a potentially throwing exceptionspecification unless it is a destructor or a deallocation function or is defaulted on its first declaration, in which cases theexception specification is as specified below and no other declaration for that function shall have a noexcept-specifier .In an explicit instantiation (13.9.3) a noexcept-specifier may be specified, but is not required. If a noexcept-specifier isspecified in an explicit instantiation, the exception specification shall be the same as the exception specification of allother declarations of that function. A diagnostic is required only if the exception specifications are not the same withina single translation unit.
4 If a virtual function has a non-throwing exception specification, all declarations, including the definition, of any functionthat overrides that virtual function in any derived class shall have a non-throwing exception specification, unless theoverriding function is defined as deleted.
[Example 2:
struct B {

virtual void f() noexcept;
virtual void g();
virtual void h() noexcept = delete;

};

struct D: B {
void f(); // error
void g() noexcept; // OK
void h() = delete; // OK

};

The declaration of D::f is ill-formed because it has a potentially-throwing exception specification, whereas B::f has a non-throwingexception specification. —end example]
5 Whenever an exception is thrown and the search for a handler (14.4) encounters the outermost block of a function witha non-throwing exception specification, the function std::terminate is invoked (14.6.2).
[Note 1: An implementation is not permitted to reject an expression merely because, when executed, it throws or might throw anexception from a function with a non-throwing exception specification. —end note]
[Example 3:
extern void f(); // potentially-throwing
void g() noexcept {

f(); // valid, even if f throws
throw 42; // valid, effectively a call to std::terminate

}

The call to f is well-formed even though, when called, f might throw an exception. —end example]
6 An expression E is potentially-throwing if

—(6.1) E is a function call (7.6.1.3) whose postfix-expression has a function type, or a pointer-to-function type, with apotentially-throwing exception specification, or
—(6.2) E implicitly invokes a function (such as an overloaded operator, an allocation function in a new-expression, aconstructor for a function argument, or a destructor ifE is a full-expression (6.9.1)) that has a potentially-throwingexception specification, or

§ 14.5 433

© ISO/IEC N4910

—(6.3) E is a throw-expression (7.6.18), or
—(6.4) E is a dynamic_cast expression that casts to a reference type and requires a runtime check (7.6.1.7), or
—(6.5) E is a typeid expression applied to a (possibly parenthesized) built-in unary * operator applied to a pointer to apolymorphic class type (7.6.1.8), or
—(6.6) any of the immediate subexpressions (6.9.1) of E is potentially-throwing.

7 An implicitly-declared constructor for a class X, or a constructor without a noexcept-specifier that is defaulted on itsfirst declaration, has a potentially-throwing exception specification if and only if any of the following constructs ispotentially-throwing:
—(7.1) the invocation of a constructor selected by overload resolution in the implicit definition of the constructor forclass X to initialize a potentially constructed subobject, or
—(7.2) a subexpression of such an initialization, such as a default argument expression, or,
—(7.3) for a default constructor, a default member initializer.

[Note 2: Even though destructors for fully-constructed subobjects are invoked when an exception is thrown during the execution ofa constructor (14.3), their exception specifications do not contribute to the exception specification of the constructor, because anexception thrown from such a destructor would call the function std::terminate rather than escape the constructor (14.2, 14.6.2).—end note]
8 The exception specification for an implicitly-declared destructor, or a destructor without a noexcept-specifier , ispotentially-throwing if and only if any of the destructors for any of its potentially constructed subobjects has apotentially-throwing exception specification or the destructor is virtual and the destructor of any virtual base class has apotentially-throwing exception specification.
9 The exception specification for an implicitly-declared assignment operator, or an assignment-operator without a

noexcept-specifier that is defaulted on its first declaration, is potentially-throwing if and only if the invocation of anyassignment operator in the implicit definition is potentially-throwing.
10 A deallocation function (6.7.5.5.3) with no explicit noexcept-specifier has a non-throwing exception specification.
11 The exception specification for a comparison operator function (12.4.3) without a noexcept-specifier that is defaulted onits first declaration is potentially-throwing if and only if any expression in the implicit definition is potentially-throwing.
12 [Example 4:

struct A {
A(int = (A(5), 0)) noexcept;
A(const A&) noexcept;
A(A&&) noexcept;
~A();

};
struct B {

B() noexcept;
B(const B&) = default; // implicit exception specification is noexcept(true)
B(B&&, int = (throw 42, 0)) noexcept;
~B() noexcept(false);

};
int n = 7;
struct D : public A, public B {

int * p = new int[n];// D::D() potentially-throwing, as the new operator may throw bad_alloc or bad_array_new_length// D::D(const D&) non-throwing// D::D(D&&) potentially-throwing, as the default argument for B’s constructor may throw// D::~D() potentially-throwing
};

Furthermore, if A::~A() were virtual, the program would be ill-formed since a function that overrides a virtual function from abase class shall not have a potentially-throwing exception specification if the base class function has a non-throwing exceptionspecification. —end example]
13 An exception specification is considered to be needed when:

—(13.1) in an expression, the function is selected by overload resolution (12.2, 12.3);
—(13.2) the function is odr-used (6.3) or, if it appears in an unevaluated operand, would be odr-used if the expressionwere potentially-evaluated;

§ 14.5 434

© ISO/IEC N4910

—(13.3) the exception specification is compared to that of another declaration (e.g., an explicit specialization or anoverriding virtual function);
—(13.4) the function is defined; or
—(13.5) the exception specification is needed for a defaulted function that calls the function.

[Note 3: A defaulted declaration does not require the exception specification of a base member function to be evaluated untilthe implicit exception specification of the derived function is needed, but an explicit noexcept-specifier needs the implicitexception specification to compare against. —end note]
The exception specification of a defaulted function is evaluated as described above only when needed; similarly, the
noexcept-specifier of a specialization of a function template or member function of a class template is instantiated onlywhen needed.
14.6 Special functions [except.special]
14.6.1 General [except.special.general]

1 The function std::terminate (14.6.2) is used by the exception handling mechanism for coping with errors related to theexception handling mechanism itself. The function std::current_exception() (17.9.7) and the class std::nested_-
exception (17.9.8) can be used by a program to capture the currently handled exception.
14.6.2 The std::terminate function [except.terminate]

1 In some situations exception handling is abandoned for less subtle error handling techniques.
[Note 1: These situations are:
—(1.1) when the exception handling mechanism, after completing the initialization of the exception object but before activation of ahandler for the exception (14.2), calls a function that exits via an exception, or
—(1.2) when the exception handling mechanism cannot find a handler for a thrown exception (14.4), or
—(1.3) when the search for a handler (14.4) encounters the outermost block of a function with a non-throwing exception specification(14.5), or
—(1.4) when the destruction of an object during stack unwinding (14.3) terminates by throwing an exception, or
—(1.5) when initialization of a non-block variable with static or thread storage duration (6.9.3.3) exits via an exception, or
—(1.6) when destruction of an object with static or thread storage duration exits via an exception (6.9.3.4), or
—(1.7) when execution of a function registered with std::atexit or std::at_quick_exit exits via an exception (17.5), or
—(1.8) when a throw-expression (7.6.18) with no operand attempts to rethrow an exception and no exception is being handled (14.2),or
—(1.9) when the function std::nested_exception::rethrow_nested is called for an object that has captured no exception (17.9.8),or
—(1.10) when execution of the initial function of a thread exits via an exception (33.4.3.3), or
—(1.11) for a parallel algorithm whose ExecutionPolicy specifies such behavior (22.12.4, 22.12.5, 22.12.6), when execution of anelement access function (27.3.1) of the parallel algorithm exits via an exception (27.3.4), or
—(1.12) when the destructor or the move assignment operator is invoked on an object of type std::thread that refers to a joinablethread (33.4.3.4, 33.4.3.5), or
—(1.13) when a call to a wait(), wait_until(), or wait_for() function on a condition variable (33.7.4, 33.7.5) fails to meet apostcondition.

—end note]
2 In such cases, the function std::terminate is invoked (17.9.5). In the situation where no matching handler is found, itis implementation-defined whether or not the stack is unwound before std::terminate is invoked. In the situationwhere the search for a handler (14.4) encounters the outermost block of a function with a non-throwing exceptionspecification (14.5), it is implementation-defined whether the stack is unwound, unwound partially, or not unwound atall before the function std::terminate is invoked. In all other situations, the stack shall not be unwound before thefunction std::terminate is invoked. An implementation is not permitted to finish stack unwinding prematurely basedon a determination that the unwind process will eventually cause an invocation of the function std::terminate.
14.6.3 The std::uncaught_exceptions function [except.uncaught]

1 An exception is considered uncaught after completing the initialization of the exception object (14.2) until completingthe activation of a handler for the exception (14.4).
§ 14.6.3 435

© ISO/IEC N4910

[Note 1: As a consequence, an exception is considered uncaught during any stack unwinding resulting from it being thrown. —endnote]
If an exception is rethrown (7.6.18, 17.9.7), it is considered uncaught from the point of rethrow until the rethrownexception is caught. The function std::uncaught_exceptions (17.9.6) returns the number of uncaught exceptions inthe current thread.

§ 14.6.3 436

© ISO/IEC N4910

15 Preprocessing directives [cpp]
15.1 Preamble [cpp.pre]

preprocessing-file :
groupopt
module-file

module-file :
pp-global-module-fragmentopt pp-module groupopt pp-private-module-fragmentopt

pp-global-module-fragment :
module ; new-line groupopt

pp-private-module-fragment :
module : private ; new-line groupopt

group :
group-part
group group-part

group-part :
control-line
if-section
text-line
conditionally-supported-directive

control-line :
include pp-tokens new-line
pp-import
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

if-section :
if-group elif-groupsopt else-groupopt endif-line

if-group :
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups :
elif-group
elif-groups elif-group

elif-group :
elif constant-expression new-line groupopt
elifdef constant-expression new-line groupopt
elifndef constant-expression new-line groupopt

else-group :
else new-line groupopt

endif-line :
endif new-line

text-line :
pp-tokensopt new-line

conditionally-supported-directive :
pp-tokens new-line

§ 15.1 437

© ISO/IEC N4910

lparen :a (character not immediately preceded by whitespace
identifier-list :

identifier
identifier-list , identifier

replacement-list :
pp-tokensopt

pp-tokens :
preprocessing-token
pp-tokens preprocessing-token

new-line :the new-line character
1 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following constraints: At thestart of translation phase 4, the first token in the sequence, referred to as a directive-introducing token, begins with thefirst character in the source file (optionally after whitespace containing no new-line characters) or follows whitespacecontaining at least one new-line character, and is

—(1.1) a # preprocessing token, or
—(1.2) an import preprocessing token immediately followed on the same logical line by a header-name, <, identifier ,

string-literal , or : preprocessing token, or
—(1.3) a module preprocessing token immediately followed on the same logical line by an identifier , :, or ; preprocessingtoken, or
—(1.4) an export preprocessing token immediately followed on the same logical line by one of the two preceding forms.

The last token in the sequence is the first token within the sequence that is immediately followed by whitespacecontaining a new-line character.133
[Note 1: A new-line character ends the preprocessing directive even if it occurs within what would otherwise be an invocation of afunction-like macro. —end note]
[Example 1:
// preprocessing directive
module ; // preprocessing directive
export module leftpad; // preprocessing directive
import <string>; // preprocessing directive
export import "squee"; // preprocessing directive
import rightpad; // preprocessing directive
import :part; // preprocessing directive
module // not a preprocessing directive
; // not a preprocessing directive
export // not a preprocessing directive
import // not a preprocessing directive
foo; // not a preprocessing directive
export // not a preprocessing directive
import foo; // preprocessing directive (ill-formed at phase 7)
import :: // not a preprocessing directive
import -> // not a preprocessing directive
— end example]

2 A sequence of preprocessing tokens is only a text-line if it does not begin with a directive-introducing token. Asequence of preprocessing tokens is only a conditionally-supported-directive if it does not begin with any of thedirective names appearing after a # in the syntax. A conditionally-supported-directive is conditionally-supported withimplementation-defined semantics.

133) Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic significance, as all whitespace is equivalentexcept in certain situations during preprocessing (see the # character string literal creation operator in 15.6.3, for example).
§ 15.1 438

© ISO/IEC N4910

3 At the start of phase 4 of translation, the group of a pp-global-module-fragment shall contain neither a text-line nor a
pp-import.

4 When in a group that is skipped (15.2), the directive syntax is relaxed to allow any sequence of preprocessing tokens tooccur between the directive name and the following new-line character.
5 The only whitespace characters that shall appear between preprocessing tokens within a preprocessing directive(from just after the directive-introducing token through just before the terminating new-line character) are space andhorizontal-tab (including spaces that have replaced comments or possibly other whitespace characters in translationphase 3).
6 The implementation can process and skip sections of source files conditionally, include other source files, import macrosfrom header units, and replace macros. These capabilities are called preprocessing, because conceptually they occurbefore translation of the resulting translation unit.
7 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless otherwise stated.
[Example 2: In:
#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin with a # at thestart of translation phase 4, even though it will do so after the macro EMPTY has been replaced. —end example]
15.2 Conditional inclusion [cpp.cond]

defined-macro-expression :
defined identifier
defined (identifier)

h-preprocessing-token :any preprocessing-token other than >
h-pp-tokens :

h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens :
string-literal
< h-pp-tokens >

has-include-expression :
__has_include (header-name)
__has_include (header-name-tokens)

has-attribute-expression :
__has_cpp_attribute (pp-tokens)

1 The expression that controls conditional inclusion shall be an integral constant expression except that identifiers(including those lexically identical to keywords) are interpreted as described below134 and it may contain zero ormore defined-macro-expressions and/or has-include-expressions and/or has-attribute-expressions as unary operatorexpressions.
2 A defined-macro-expression evaluates to 1 if the identifier is currently defined as a macro name (that is, if it is predefinedor if it has one or more active macro definitions (15.5), for example because it has been the subject of a #definepreprocessing directive without an intervening #undef directive with the same subject identifier), 0 if it is not.
3 The second form of has-include-expression is considered only if the first form does not match, in which case thepreprocessing tokens are processed just as in normal text.
4 The header or source file identified by the parenthesized preprocessing token sequence in each contained has-include-

expression is searched for as if that preprocessing token sequence were the pp-tokens in a #include directive, exceptthat no further macro expansion is performed. If such a directive would not satisfy the syntactic requirements of a
#include directive, the program is ill-formed. The has-include-expression evaluates to 1 if the search for the source filesucceeds, and to 0 if the search fails.

5 Each has-attribute-expression is replaced by a non-zero pp-number matching the form of an integer-literal if theimplementation supports an attribute with the name specified by interpreting the pp-tokens , after macro expansion,
134) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names — theresimply are no keywords, enumeration constants, etc.
§ 15.2 439

© ISO/IEC N4910

as an attribute-token, and by 0 otherwise. The program is ill-formed if the pp-tokens do not match the form of an
attribute-token.

6 For an attribute specified in this document, the value of the has-attribute-expression is given by Table 20. For otherattributes recognized by the implementation, the value is implementation-defined.
[Note 1: It is expected that the availability of an attribute can be detected by any non-zero result. —end note]

Table 20: __has_cpp_attribute values [tab:cpp.cond.ha]
Attribute Value

carries_dependency 200809L
deprecated 201309L
fallthrough 201603L
likely 201803L
maybe_unused 201603L
no_unique_address 201803L
nodiscard 201907L
noreturn 200809L
unlikely 201803L

7 The #ifdef, #ifndef, #elifdef, and #elifndef directives, and the defined conditional inclusion operator, shall treat
__has_include and __has_cpp_attribute as if they were the names of defined macros. The identifiers __has_includeand __has_cpp_attribute shall not appear in any context not mentioned in this subclause.

8 Each preprocessing token that remains (in the list of preprocessing tokens that will become the controlling expression)after all macro replacements have occurred shall be in the lexical form of a token (5.6).
9 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.
10 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling constantexpression are replaced (except for those macro names modified by the defined unary operator), just as in normal text.If the token defined is generated as a result of this replacement process or use of the defined unary operator does notmatch one of the two specified forms prior to macro replacement, the behavior is undefined.
11 After all replacements due to macro expansion and evaluations of defined-macro-expressions, has-include-expressions,and has-attribute-expressions have been performed, all remaining identifiers and keywords, except for true and false,are replaced with the pp-number 0, and then each preprocessing token is converted into a token.

[Note 2: An alternative token (5.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore itis not subject to this replacement. —end note]
12 The resulting tokens comprise the controlling constant expression which is evaluated according to the rules of 7.7 usingarithmetic that has at least the ranges specified in 17.3. For the purposes of this token conversion and evaluation all signedand unsigned integer types act as if they have the same representation as, respectively, intmax_t or uintmax_t (17.4).
[Note 3: Thus on an implementation where std::numeric_limits<int>::max() is 0x7FFF and std::numeric_limits<unsigned
int>::max() is 0xFFFF, the integer literal 0x8000 is signed and positive within a #if expression even though it is unsigned intranslation phase 7 (5.2). —end note]
This includes interpreting character-literals according to the rules in 5.13.3.
[Note 4: The associated character encodings of literals are the same in #if and #elif directives and in any expression. —end note]
Each subexpression with type bool is subjected to integral promotion before processing continues.

13 Preprocessing directives of the forms
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt
elifdef identifier new-line groupopt
elifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent to #if
defined identifier , #if !defined identifier , #elif defined identifier , and #elif !defined identifier , respectively.
§ 15.2 440

© ISO/IEC N4910

14 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is skipped:directives are processed only through the name that determines the directive in order to keep track of the level of nestedconditionals; the rest of the directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in thegroup. Only the first group whose control condition evaluates to true (nonzero) is processed; any following groupsare skipped and their controlling directives are processed as if they were in a group that is skipped. If none of theconditions evaluates to true, and there is a #else directive, the group controlled by the #else is processed; lacking a
#else directive, all the groups until the #endif are skipped.135

15 [Example 1: This demonstrates a way to include a library optional facility only if it is available:
#if __has_include(<optional>)
include <optional>
if __cpp_lib_optional >= 201603
define have_optional 1
endif
#elif __has_include(<experimental/optional>)
include <experimental/optional>
if __cpp_lib_experimental_optional >= 201411
define have_optional 1
define experimental_optional 1
endif
#endif
#ifndef have_optional
define have_optional 0
#endif

—end example]
16 [Example 2: This demonstrates a way to use the attribute [[acme::deprecated]] only if it is available.

#if __has_cpp_attribute(acme::deprecated)
define ATTR_DEPRECATED(msg) [[acme::deprecated(msg)]]
#else
define ATTR_DEPRECATED(msg) [[deprecated(msg)]]
#endif
ATTR_DEPRECATED("This function is deprecated") void anvil();

—end example]
15.3 Source file inclusion [cpp.include]

1 A #include directive shall identify a header or source file that can be processed by the implementation.
2 A preprocessing directive of the form

include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified sequence betweenthe < and > delimiters, and causes the replacement of that directive by the entire contents of the header. How the placesare specified or the header identified is implementation-defined.
3 A preprocessing directive of the form

include " q-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified sequencebetween the " delimiters. The named source file is searched for in an implementation-defined manner. If this search isnot supported, or if the search fails, the directive is reprocessed as if it read
include < h-char-sequence > new-line

with the identical contained sequence (including > characters, if any) from the original directive.
4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include in the directiveare processed just as in normal text (i.e., each identifier currently defined as a macro name is replaced by its replacementlist of preprocessing tokens). If the directive resulting after all replacements does not match one of the two previous
135) As indicated by the syntax, a preprocessing token cannot follow a #else or #endif directive before the terminating new-line character. However,comments can appear anywhere in a source file, including within a preprocessing directive.
§ 15.3 441

© ISO/IEC N4910

forms, the behavior is undefined.136 The method by which a sequence of preprocessing tokens between a < and a
> preprocessing token pair or a pair of " characters is combined into a single header name preprocessing token isimplementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or more nondigits or digits (5.10)followed by a period (.) and a single nondigit. The first character shall not be a digit. The implementation may ignoredistinctions of alphabetical case.
6 A #include preprocessing directive may appear in a source file that has been read because of a #include directive inanother file, up to an implementation-defined nesting limit.
7 If the header identified by the header-name denotes an importable header (10.3), it is implementation-defined whetherthe #include preprocessing directive is instead replaced by an import directive (15.5) of the form

import header-name ; new-line
8 [Note 1: An implementation can provide a mechanism for making arbitrary source files available to the < > search. However, usingthe < > form for headers provided with the implementation and the " " form for sources outside the control of the implementationachieves wider portability. For instance:

#include <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"

—end note]
9 [Example 1: This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

—end example]
15.4 Module directive [cpp.module]

pp-module :
exportopt module pp-tokensopt ; new-line

1 A pp-module shall not appear in a context where module or (if it is the first token of the pp-module) export is anidentifier defined as an object-like macro.
2 Any preprocessing tokens after the module preprocessing token in the module directive are processed just as in normaltext.
[Note 1: Each identifier currently defined as a macro name is replaced by its replacement list of preprocessing tokens. —end note]

3 The module and export (if it exists) preprocessing tokens are replaced by the module-keyword and export-keywordpreprocessing tokens respectively.
[Note 2: This makes the line no longer a directive so it is not removed at the end of phase 4. —end note]
15.5 Header unit importation [cpp.import]

pp-import :
exportopt import header-name pp-tokensopt ; new-line
exportopt import header-name-tokens pp-tokensopt ; new-line
exportopt import pp-tokens ; new-line

1 A pp-import shall not appear in a context where import or (if it is the first token of the pp-import) export is an identifierdefined as an object-like macro.
2 The preprocessing tokens after the import preprocessing token in the import control-line are processed just as in normaltext (i.e., each identifier currently defined as a macro name is replaced by its replacement list of preprocessing tokens).

136) Note that adjacent string-literals are not concatenated into a single string-literal (see the translation phases in 5.2); thus, an expansion thatresults in two string-literals is an invalid directive.
§ 15.5 442

© ISO/IEC N4910

[Note 1: An import directive matching the first two forms of a pp-import instructs the preprocessor to import macros from theheader unit (10.3) denoted by the header-name, as described below. —end note]
The point of macro import for the first two forms of pp-import is immediately after the new-line terminating the
pp-import. The last form of pp-import is only considered if the first two forms did not match, and does not have apoint of macro import.

3 If a pp-import is produced by source file inclusion (including by the rewrite produced when a #include directive namesan importable header) while processing the group of a module-file, the program is ill-formed.
4 In all three forms of pp-import, the import and export (if it exists) preprocessing tokens are replaced by the import-

keyword and export-keyword preprocessing tokens respectively.
[Note 2: This makes the line no longer a directive so it is not removed at the end of phase 4. —end note]
Additionally, in the second form of pp-import, a header-name token is formed as if the header-name-tokens were the
pp-tokens of a #include directive. The header-name-tokens are replaced by the header-name token.
[Note 3: This ensures that imports are treated consistently by the preprocessor and later phases of translation. —end note]

5 Each #define directive encountered when preprocessing each translation unit in a program results in a distinct macrodefinition.
[Note 4: A predefined macro name (15.11) is not introduced by a #define directive. Implementations providing mechanisms topredefine additional macros are encouraged to not treat them as being introduced by a #define directive. —end note]
Each macro definition has at most one point of definition in each translation unit and at most one point of undefinition,as follows:
—(5.1) The point of definition of a macro definition within a translation unit T is

—(5.1.1) if the #define directive of the macro definition occurs within T , the point at which that directive occurs, orotherwise,
—(5.1.2) if the macro name is not lexically identical to a keyword (5.11) or to the identifiers module or import, thefirst point of macro import in T of a header unit containing a point of definition for the macro definition, ifany.
In the latter case, the macro is said to be imported from the header unit.

—(5.2) The point of undefinition of a macro definition within a translation unit is the first point at which a #undef directivenaming the macro occurs after its point of definition, or the first point of macro import of a header unit containinga point of undefinition for the macro definition, whichever (if any) occurs first.
6 Amacro directive is active at a source location if it has a point of definition in that translation unit preceding the location,and does not have a point of undefinition in that translation unit preceding the location.
7 If a macro would be replaced or redefined, and multiple macro definitions are active for that macro name, the activemacro definitions shall all be valid redefinitions of the same macro (15.6).
[Note 5: The relative order of pp-imports has no bearing on whether a particular macro definition is active. —end note]

8 [Example 1:
Importable header "a.h":
#define X 123 // #1
#define Y 45 // #2
#define Z a // #3
#undef X // point of undefinition of #1 in "a.h"
Importable header "b.h":
import "a.h"; // point of definition of #1, #2, and #3, point of undefinition of #1 in "b.h"
#define X 456 // OK, #1 is not active
#define Y 6 // error: #2 is active
Importable header "c.h":
#define Y 45 // #4
#define Z c // #5
Importable header "d.h":
import "c.h"; // point of definition of #4 and #5 in "d.h"

§ 15.5 443

© ISO/IEC N4910

Importable header "e.h":
import "a.h"; // point of definition of #1, #2, and #3, point of undefinition of #1 in "e.h"
import "d.h"; // point of definition of #4 and #5 in "e.h"
int a = Y; // OK, active macro definitions #2 and #4 are valid redefinitions
int c = Z; // error: active macro definitions #3 and #5 are not valid redefinitions of Z
—end example]
15.6 Macro replacement [cpp.replace]
15.6.1 General [cpp.replace.general]

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number, ordering,spelling, and whitespace separation, where all whitespace separations are considered identical.
2 An identifier currently defined as an object-like macro (see below) may be redefined by another #define preprocessingdirective provided that the second definition is an object-like macro definition and the two replacement lists are identical,otherwise the program is ill-formed. Likewise, an identifier currently defined as a function-like macro (see below) maybe redefined by another #define preprocessing directive provided that the second definition is a function-like macrodefinition that has the same number and spelling of parameters, and the two replacement lists are identical, otherwisethe program is ill-formed.
3 [Example 1: The following sequence is valid:

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* whitespace */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the whitespace */ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:
#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different whitespace
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling
— end example]

4 There shall be whitespace between the identifier and the replacement list in the definition of an object-like macro.
5 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments (including thosearguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal the number ofparameters in the macro definition. Otherwise, there shall be at least as many arguments in the invocation as there areparameters in the macro definition (excluding the ...). There shall exist a) preprocessing token that terminates theinvocation.
6 The identifiers __VA_ARGS__ and __VA_OPT__ shall occur only in the replacement-list of a function-like macro thatuses the ellipsis notation in the parameters.
7 A parameter identifier in a function-like macro shall be uniquely declared within its scope.
8 The identifier immediately following the define is called the macro name. There is one name space for macro names.Any whitespace characters preceding or following the replacement list of preprocessing tokens are not considered partof the replacement list for either form of macro.
9 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing directive canbegin, the identifier is not subject to macro replacement.
10 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name137 to be replaced by the replacementlist of preprocessing tokens that constitute the remainder of the directive.138 The replacement list is then rescanned formore macro names as specified below.
137) Since, by macro-replacement time, all character-literals and string-literals are preprocessing tokens, not sequences possibly containingidentifier-like subsequences (see 5.2, translation phases), they are never scanned for macro names or parameters.
138) An alternative token (5.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is not possible todefine a macro whose name is the same as that of an alternative token.
§ 15.6.1 444

© ISO/IEC N4910

11 [Example 2: The simplest use of this facility is to define a “manifest constant”, as in
#define TABSIZE 100
int table[TABSIZE];

—end example]
12 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The parameters arespecified by the optional list of identifiers. Each subsequent instance of the function-like macro name followed by a (as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced by the replacementlist in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is terminated by thematching) preprocessing token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens.Within the sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considereda normal whitespace character.
13 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of argumentsfor the function-like macro. The individual arguments within the list are separated by comma preprocessing tokens, butcomma preprocessing tokens between matching inner parentheses do not separate arguments. If there are sequences ofpreprocessing tokens within the list of arguments that would otherwise act as preprocessing directives,139 the behavioris undefined.
14 [Example 3: The following defines a function-like macro whose value is the maximum of its arguments. It has the disadvantagesof evaluating one or the other of its arguments a second time (including side effects) and generating more code than a function ifinvoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly. —end example]
15 If there is a ... immediately preceding the) in the function-like macro definition, then the trailing arguments (if any),including any separating comma preprocessing tokens, are merged to form a single item: the variable arguments. Thenumber of arguments so combined is such that, following merger, the number of arguments is either equal to or onemore than the number of parameters in the macro definition (excluding the ...).
15.6.2 Argument substitution [cpp.subst]

va-opt-replacement :
__VA_OPT__ (pp-tokensopt)

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution takes place.For each parameter in the replacement list that is neither preceded by a # or ## preprocessing token nor followed by a
preprocessing token, the preprocessing tokens naming the parameter are replaced by a token sequence determined asfollows:
—(1.1) If the parameter is of the form va-opt-replacement, the replacement preprocessing tokens are the preprocessingtoken sequence for the corresponding argument, as specified below.
—(1.2) Otherwise, the replacement preprocessing tokens are the preprocessing tokens of corresponding argument afterall macros contained therein have been expanded. The argument’s preprocessing tokens are completely macroreplaced before being substituted as if they formed the rest of the preprocessing file with no other preprocessingtokens being available.

[Example 1:
#define LPAREN() (
#define G(Q) 42
#define F(R, X, ...) __VA_OPT__(G R X))
int x = F(LPAREN(), 0, <:-); // replaced by int x = 42;

—end example]
2 An identifier __VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter, and the variablearguments shall form the preprocessing tokens used to replace it.
3 [Example 2:

139) A conditionally-supported-directive is a preprocessing directive regardless of whether the implementation supports it.
§ 15.6.2 445

© ISO/IEC N4910

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test) ? puts(#test) : printf(__VA_ARGS__))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in
fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y) ? puts("x>y") : printf("x is %d but y is %d", x, y));

—end example]
4 The identifier __VA_OPT__ shall always occur as part of the preprocessing token sequence va-opt-replacement; itsclosing) is determined by skipping intervening pairs of matching left and right parentheses in its pp-tokens . The pp-

tokens of a va-opt-replacement shall not contain __VA_OPT__. If the pp-tokens would be ill-formed as the replacementlist of the current function-like macro, the program is ill-formed. A va-opt-replacement is treated as if it were a parameter,and the preprocessing token sequence for the corresponding argument is defined as follows. If the substitution of
__VA_ARGS__ as neither an operand of # nor ## consists of no preprocessing tokens, the argument consists of a singleplacemarker preprocessing token (15.6.4, 15.6.5). Otherwise, the argument consists of the results of the expansionof the contained pp-tokens as the replacement list of the current function-like macro before removal of placemarkertokens, rescanning, and further replacement.
[Note 1: The placemarker tokens are removed before stringization (15.6.3), and can be removed by rescanning and further replacement(15.6.5). —end note]
[Example 3:
#define F(...) f(0 __VA_OPT__(,) __VA_ARGS__)
#define G(X, ...) f(0, X __VA_OPT__(,) __VA_ARGS__)
#define SDEF(sname, ...) S sname __VA_OPT__(= { __VA_ARGS__ })
#define EMP

F(a, b, c) // replaced by f(0, a, b, c)
F() // replaced by f(0)
F(EMP) // replaced by f(0)
G(a, b, c) // replaced by f(0, a, b, c)
G(a,) // replaced by f(0, a)
G(a) // replaced by f(0, a)

SDEF(foo); // replaced by S foo;
SDEF(bar, 1, 2); // replaced by S bar = { 1, 2 };

#define H1(X, ...) X __VA_OPT__(##) __VA_ARGS__ // error: ## may not appear at// the beginning of a replacement list (15.6.4)
#define H2(X, Y, ...) __VA_OPT__(X ## Y,) __VA_ARGS__
H2(a, b, c, d) // replaced by ab, c, d

#define H3(X, ...) #__VA_OPT__(X##X X##X)
H3(, 0) // replaced by ""
#define H4(X, ...) __VA_OPT__(a X ## X) ## b
H4(, 1) // replaced by a b

#define H5A(...) __VA_OPT__()/**/__VA_OPT__()
#define H5B(X) a ## X ## b
#define H5C(X) H5B(X)
H5C(H5A()) // replaced by ab
—end example]

§ 15.6.2 446

© ISO/IEC N4910

15.6.3 The # operator [cpp.stringize]
1 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a parameter as thenext preprocessing token in the replacement list.
2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is immediatelypreceded by a # preprocessing token, both are replaced by a single character string literal preprocessing token thatcontains the spelling of the preprocessing token sequence for the corresponding argument (excluding placemarkertokens). Let the stringizing argument be the preprocessing token sequence for the corresponding argument withplacemarker tokens removed. Each occurrence of whitespace between the stringizing argument’s preprocessing tokensbecomes a single space character in the character string literal. Whitespace before the first preprocessing token and afterthe last preprocessing token comprising the stringizing argument is deleted. Otherwise, the original spelling of eachpreprocessing token in the stringizing argument is retained in the character string literal, except for special handling forproducing the spelling of string-literals and character-literals: a \ character is inserted before each " and \ character ofa character-literal or string-literal (including the delimiting " characters). If the replacement that results is not a validcharacter string literal, the behavior is undefined. The character string literal corresponding to an empty stringizingargument is "". The order of evaluation of # and ## operators is unspecified.
15.6.4 The ## operator [cpp.concat]

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form of macrodefinition.
2 If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed by a ## preprocessingtoken, the parameter is replaced by the corresponding argument’s preprocessing token sequence; however, if an argumentconsists of no preprocessing tokens, the parameter is replaced by a placemarker preprocessing token instead.140
3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more macronames to replace, each instance of a ## preprocessing token in the replacement list (not from an argument) is deleted andthe preceding preprocessing token is concatenated with the following preprocessing token. Placemarker preprocessingtokens are handled specially: concatenation of two placemarkers results in a single placemarker preprocessing token, andconcatenation of a placemarker with a non-placemarker preprocessing token results in the non-placemarker preprocessingtoken. If the result begins with a sequence matching the syntax of universal-character-name, the behavior is undefined.
[Note 1: This determination does not consider the replacement of universal-character-names in translation phase 3 (5.2). —endnote]
If the result is not a valid preprocessing token, the behavior is undefined. The resulting token is available for furthermacro replacement. The order of evaluation of ## operators is unspecified.

4 [Example 1: The sequence
#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

140) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within translation phase 4.
§ 15.6.4 447

© ISO/IEC N4910

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional. —end example]
5 [Example 2: In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to char p[] = "x ## y";

The expansion produces, at various stages:
join(x, y)
in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## y)
"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is not the ##operator. —end example]
6 [Example 3: To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in
int j[] = { 123, 45, 67, 89,

10, 11, 12, };

—end example]
15.6.5 Rescanning and further replacement [cpp.rescan]

1 After all parameters in the replacement list have been substituted and # and ## processing has taken place, all placemarkerpreprocessing tokens are removed. Then the resulting preprocessing token sequence is rescanned, along with allsubsequent preprocessing tokens of the source file, for more macro names to replace.
2 [Example 1: The sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in
f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);

§ 15.6.5 448

© ISO/IEC N4910

f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

—end example]
3 If the name of the macro being replaced is found during this scan of the replacement list (not including the rest of thesource file’s preprocessing tokens), it is not replaced. Furthermore, if any nested replacements encounter the nameof the macro being replaced, it is not replaced. These nonreplaced macro name preprocessing tokens are no longeravailable for further replacement even if they are later (re)examined in contexts in which that macro name preprocessingtoken would otherwise have been replaced.
4 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing directiveeven if it resembles one, but all pragma unary operator expressions within it are then processed as specified in 15.12below.
15.6.6 Scope of macro definitions [cpp.scope]

1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is encountered or (ifnone is encountered) until the end of the translation unit. Macro definitions have no significance after translation phase4.
2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identifier is notcurrently defined as a macro name.
15.7 Line control [cpp.line]

1 The string-literal of a #line directive, if present, shall be a character string literal.
2 The line number of the current source line is one greater than the number of new-line characters read or introduced intranslation phase 1 (5.2) while processing the source file to the current token.
3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that has aline number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence specifies zero or anumber greater than 2147483647, the behavior is undefined.
4 A preprocessing directive of the form

line digit-sequence " s-char-sequenceopt " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the contents of thecharacter string literal.
5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the directiveare processed just as in normal text (each identifier currently defined as a macro name is replaced by its replacement listof preprocessing tokens). If the directive resulting after all replacements does not match one of the two previous forms,the behavior is undefined; otherwise, the result is processed as appropriate.
15.8 Error directive [cpp.error]

1 A preprocessing directive of the form
error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that should include the specified sequence of preprocessingtokens, and renders the program ill-formed.
15.9 Pragma directive [cpp.pragma]

1 A preprocessing directive of the form
pragma pp-tokensopt new-line

§ 15.9 449

© ISO/IEC N4910

causes the implementation to behave in an implementation-defined manner. The behavior may cause translation tofail or cause the translator or the resulting program to behave in a non-conforming manner. Any pragma that is notrecognized by the implementation is ignored.
15.10 Null directive [cpp.null]

1 A preprocessing directive of the form
new-line

has no effect.
15.11 Predefined macro names [cpp.predefined]

1 The following macro names shall be defined by the implementation:
__cplusplusThe integer literal 202002L.

[Note 1: Future revisions of C++ will replace the value of this macro with a greater value. —end note]
The names listed in Table 21.The macros defined in Table 21 shall be defined to the corresponding integer literal.

[Note 2: Future revisions of C++ might replace the values of these macros with greater values. —end note]
__DATE__The date of translation of the source file: a character string literal of the form "Mmm dd yyyy", where the namesof the months are the same as those generated by the asctime function, and the first character of dd is a spacecharacter if the value is less than 10. If the date of translation is not available, an implementation-defined validdate shall be supplied.
__FILE__The presumed name of the current source file (a character string literal).141
__LINE__The presumed line number (within the current source file) of the current source line (an integer literal).142
__STDC_HOSTED__The integer literal 1 if the implementation is a hosted implementation or the integer literal 0 if it is a freestandingimplementation (4.1).
__STDCPP_DEFAULT_NEW_ALIGNMENT__An integer literal of type std::size_twhose value is the alignment guaranteed by a call to operator new(std::size_-

t) or operator new[](std::size_t).
[Note 3: Larger alignments will be passed to operator new(std::size_t, std::align_val_t), etc. (7.6.2.8). —end note]

__TIME__The time of translation of the source file: a character string literal of the form "hh:mm:ss" as in the time generatedby the asctime function. If the time of translation is not available, an implementation-defined valid time shall besupplied.
Table 21: Feature-test macros [tab:cpp.predefined.ft]

Macro name Value
__cpp_aggregate_bases 201603L
__cpp_aggregate_nsdmi 201304L
__cpp_aggregate_paren_init 201902L
__cpp_alias_templates 200704L
__cpp_aligned_new 201606L
__cpp_attributes 200809L
__cpp_binary_literals 201304L

141) The presumed source file name can be changed by the #line directive.
142) The presumed line number can be changed by the #line directive.
§ 15.11 450

© ISO/IEC N4910

Table 21: Feature-test macros (continued)
Name Value

__cpp_capture_star_this 201603L
__cpp_char8_t 201811L
__cpp_concepts 202002L
__cpp_conditional_explicit 201806L
__cpp_constexpr 202110L
__cpp_constexpr_dynamic_alloc 201907L
__cpp_constexpr_in_decltype 201711L
__cpp_consteval 201811L
__cpp_constinit 201907L
__cpp_decltype 200707L
__cpp_decltype_auto 201304L
__cpp_deduction_guides 201907L
__cpp_delegating_constructors 200604L
__cpp_designated_initializers 201707L
__cpp_enumerator_attributes 201411L
__cpp_explicit_this_parameter 202110L
__cpp_fold_expressions 201603L
__cpp_generic_lambdas 201707L
__cpp_guaranteed_copy_elision 201606L
__cpp_hex_float 201603L
__cpp_if_consteval 202106L
__cpp_if_constexpr 201606L
__cpp_impl_coroutine 201902L
__cpp_impl_destroying_delete 201806L
__cpp_impl_three_way_comparison 201907L
__cpp_inheriting_constructors 201511L
__cpp_init_captures 201803L
__cpp_initializer_lists 200806L
__cpp_inline_variables 201606L
__cpp_lambdas 200907L
__cpp_modules 201907L
__cpp_multidimensional_subscript 202110L
__cpp_namespace_attributes 201411L
__cpp_noexcept_function_type 201510L
__cpp_nontype_template_args 201911L
__cpp_nontype_template_parameter_auto 201606L
__cpp_nsdmi 200809L
__cpp_range_based_for 201603L
__cpp_raw_strings 200710L
__cpp_ref_qualifiers 200710L
__cpp_return_type_deduction 201304L
__cpp_rvalue_references 200610L
__cpp_size_t_suffix 202011L
__cpp_sized_deallocation 201309L
__cpp_static_assert 201411L
__cpp_structured_bindings 201606L
__cpp_template_template_args 201611L
__cpp_threadsafe_static_init 200806L
__cpp_unicode_characters 200704L
__cpp_unicode_literals 200710L
__cpp_user_defined_literals 200809L
__cpp_using_enum 201907L
__cpp_variable_templates 201304L
__cpp_variadic_templates 200704L

§ 15.11 451

© ISO/IEC N4910

Table 21: Feature-test macros (continued)
Name Value

__cpp_variadic_using 201611L

2 The following macro names are conditionally defined by the implementation:
__STDC__Whether __STDC__ is predefined and if so, what its value is, are implementation-defined.
__STDC_MB_MIGHT_NEQ_WC__The integer literal 1, intended to indicate that, in the encoding for wchar_t, a member of the basic character setneed not have a code value equal to its value when used as the lone character in an ordinary character literal.
__STDC_VERSION__Whether __STDC_VERSION__ is predefined and if so, what its value is, are implementation-defined.
__STDC_ISO_10646__An integer literal of the form yyyymmL (for example, 199712L). If this symbol is defined, then every character inthe Unicode required set, when stored in an object of type wchar_t, has the same value as the code point of thatcharacter. The Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along withall amendments and technical corrigenda as of the specified year and month.
__STDCPP_THREADS__Defined, and has the value integer literal 1, if and only if a program can have more than one thread of execution(6.9.2).

3 The values of the predefined macros (except for __FILE__ and __LINE__) remain constant throughout the translationunit.
4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define or a

#undef preprocessing directive, the behavior is undefined. Any other predefined macro names shall begin with a leadingunderscore followed by an uppercase letter or a second underscore.
15.12 Pragma operator [cpp.pragma.op]

1 A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string-literal is destringized by deleting the L prefix, if present, deleting the leading andtrailing double-quotes, replacing each escape sequence \" by a double-quote, and replacing each escape sequence \\ by asingle backslash. The resulting sequence of characters is processed through translation phase 3 to produce preprocessingtokens that are executed as if they were the pp-tokens in a pragma directive. The original four preprocessing tokens inthe unary operator expression are removed.
2 [Example 1:

#pragma listing on "..\listing.dir"

can also be expressed as:
_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:
#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING(..\listing.dir)

—end example]

§ 15.12 452

© ISO/IEC N4910

16 Library introduction [library]
16.1 General [library.general]

1 This Clause describes the contents of the C++ standard library, how a well-formed C++ program makes use of the library,and how a conforming implementation may provide the entities in the library.
2 The following subclauses describe the method of description (16.3) and organization (16.4.2) of the library. 16.4, Clause17 through Clause 33, and Annex D specify the contents of the library, as well as library requirements and constraintson both well-formed C++ programs and conforming implementations.
3 Detailed specifications for each of the components in the library are in Clause 17–Clause 33, as shown in Table 22.

Table 22: Library categories [tab:library.categories]
Clause Category
Clause 17 Language support libraryClause 18 Concepts libraryClause 19 Diagnostics libraryClause 20 Memory management libraryClause 21 Metaprogramming libraryClause 22 General utilities libraryClause 23 Strings libraryClause 24 Containers libraryClause 25 Iterators libraryClause 26 Ranges libraryClause 27 Algorithms libraryClause 28 Numerics libraryClause 29 Time libraryClause 30 Localization libraryClause 31 Input/output libraryClause 32 Regular expressions libraryClause 33 Concurrency support library

4 The language support library (Clause 17) provides components that are required by certain parts of the C++ language,such as memory allocation (7.6.2.8, 7.6.2.9) and exception processing (Clause 14).
5 The concepts library (Clause 18) describes library components that C++ programs may use to perform compile-timevalidation of template arguments and perform function dispatch based on properties of types.
6 The diagnostics library (Clause 19) provides a consistent framework for reporting errors in a C++ program, includingpredefined exception classes.
7 The memory management library (Clause 20) provides components for memory management, including smart pointersand scoped allocators.
8 The metaprogramming library (Clause 21) describes facilities for use in templates and during constant evaluation,including type traits, integer sequences, and rational arithmetic.
9 The general utilities library (Clause 22) includes components used by other library elements, such as a predefinedstorage allocator for dynamic storage management (6.7.5.5), and components used as infrastructure in C++ programs,such as tuples and function wrappers.
10 The strings library (Clause 23) provides support for manipulating text represented as sequences of type char, sequencesof type char8_t, sequences of type char16_t, sequences of type char32_t, sequences of type wchar_t, and sequencesof any other character-like type.
11 The containers (Clause 24), iterators (Clause 25), ranges (Clause 26), and algorithms (Clause 27) libraries provide a C++program with access to a subset of the most widely used algorithms and data structures.

§ 16.1 453

© ISO/IEC N4910

12 The numerics library (Clause 28) provides numeric algorithms and complex number components that extend supportfor numeric processing. The valarray component provides support for n-at-a-time processing, potentially implementedas parallel operations on platforms that support such processing. The random number component provides facilities forgenerating pseudo-random numbers.
13 The time library (Clause 29) provides generally useful time utilities.
14 The localization library (Clause 30) provides extended internationalization support for text processing.
15 The input/output library (Clause 31) provides the iostream components that are the primary mechanism for C++ programinput and output. They can be used with other elements of the library, particularly strings, locales, and iterators.
16 The regular expressions library (Clause 32) provides regular expression matching and searching.
17 The thread support library (Clause 33) provides components to create and manage threads, including atomic operations,mutual exclusion, and interthread communication.
16.2 The C standard library [library.c]

1 The C++ standard library also makes available the facilities of the C standard library, suitably adjusted to ensure statictype safety.
2 The descriptions of many library functions rely on the C standard library for the semantics of those functions. Insome cases, the signatures specified in this document may be different from the signatures in the C standard library,and additional overloads may be declared in this document, but the behavior and the preconditions (including anypreconditions implied by the use of an ISO C restrict qualifier) are the same unless otherwise stated.
3 A call to a C standard library function is a non-constant library call (3.36) if it raises a floating-point exception other than

FE_INEXACT. The semantics of a call to a C standard library function evaluated as a core constant expression are thosespecified in Annex F of the C standard143 to the extent applicable to the floating-point types (6.8.2) that are parametertypes of the called function.
[Note 1: Annex F specifies the conditions under which floating-point exceptions are raised and the behavior when NaNs and/orinfinities are passed as arguments. —end note]
[Note 2: Equivalently, a call to a C standard library function is a non-constant library call if errno is set when math_errhandling &
MATH_ERRNO is true. —end note]
16.3 Method of description [description]
16.3.1 General [description.general]

1 Subclause 16.3 describes the conventions used to specify the C++ standard library. 16.3.2 describes the structure ofClause 17 through Clause 33 and Annex D. 16.3.3 describes other editorial conventions.
16.3.2 Structure of each clause [structure]
16.3.2.1 Elements [structure.elements]

1 Each library clause contains the following elements, as applicable:144
—(1.1) Summary
—(1.2) Requirements
—(1.3) Detailed specifications
—(1.4) References to the C standard library

16.3.2.2 Summary [structure.summary]
1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each subclause alsoprovides a summary, listing the headers specified in the subclause and the library entities provided in each header.
2 The contents of the summary and the detailed specifications include:

—(2.1) macros
—(2.2) values
—(2.3) types and alias templates

143) See also ISO/IEC 9899:2018 section 7.6.
144) To save space, items that do not apply to a Clause are omitted. For example, if a Clause does not specify any requirements, there will be no“Requirements” subclause.
§ 16.3.2.2 454

© ISO/IEC N4910

—(2.4) classes and class templates
—(2.5) functions and function templates
—(2.6) objects and variable templates
—(2.7) concepts

16.3.2.3 Requirements [structure.requirements]
1 Requirements describe constraints that shall be met by a C++ program that extends the standard library. Such extensionsare generally one of the following:

—(1.1) Template arguments
—(1.2) Derived classes
—(1.3) Containers, iterators, and algorithms that meet an interface convention or model a concept

2 The string and iostream components use an explicit representation of operations required of template arguments. Theyuse a class template char_traits to define these constraints.
3 Interface convention requirements are stated as generally as possible. Instead of stating “class X has to define a memberfunction operator++()”, the interface requires “for any object x of class X, ++x is defined”. That is, whether the operatoris a member is unspecified.
4 Requirements are stated in terms of well-defined expressions that define valid terms of the types that meet the require-ments. For every set of well-defined expression requirements there is either a named concept or a table that specifies aninitial set of the valid expressions and their semantics. Any generic algorithm (Clause 27) that uses the well-definedexpression requirements is described in terms of the valid expressions for its template type parameters.
5 The library specification uses a typographical convention for naming requirements. Names in italic type that begin withthe prefix Cpp17 refer to sets of well-defined expression requirements typically presented in tabular form, possiblywith additional prose semantic requirements. For example, Cpp17Destructible (Table 34) is such a named requirement.Names in constant width type refer to library concepts which are presented as a concept definition (Clause 13), possiblywith additional prose semantic requirements. For example, destructible (18.4.10) is such a named requirement.
6 Template argument requirements are sometimes referenced by name. See 16.3.3.3.
7 In some cases the semantic requirements are presented as C++ code. Such code is intended as a specification ofequivalence of a construct to another construct, not necessarily as the way the construct must be implemented.145
8 Required operations of any concept defined in this document need not be total functions; that is, some arguments to arequired operation may result in the required semantics failing to be met.
[Example 1: The required < operator of the totally_ordered concept (18.5.4) does not meet the semantic requirements of thatconcept when operating on NaNs. —end example]
This does not affect whether a type models the concept.

9 A declaration may explicitly impose requirements through its associated constraints (13.5.3). When the associatedconstraints refer to a concept (13.7.9), the semantic constraints specified for that concept are additionally imposed onthe use of the declaration.
16.3.2.4 Detailed specifications [structure.specifications]

1 The detailed specifications each contain the following elements:
—(1.1) name and brief description
—(1.2) synopsis (class definition or function declaration, as appropriate)
—(1.3) restrictions on template arguments, if any
—(1.4) description of class invariants
—(1.5) description of function semantics

2 Descriptions of class member functions follow the order (as appropriate):146
—(2.1) constructor(s) and destructor

145) Although in some cases the code given is unambiguously the optimum implementation.
146) To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison operator functions, therewill be no “Comparison operator functions” subclause.
§ 16.3.2.4 455

© ISO/IEC N4910

—(2.2) copying, moving & assignment functions
—(2.3) comparison operator functions
—(2.4) modifier functions
—(2.5) observer functions
—(2.6) operators and other non-member functions

3 Descriptions of function semantics contain the following elements (as appropriate):147
—(3.1) Constraints: the conditions for the function’s participation in overload resolution (12.2).

[Note 1: Failure to meet such a condition results in the function’s silent non-viability. —end note]
[Example 1: An implementation can express such a condition via a constraint-expression (13.5.3). —end example]

—(3.2) Mandates: the conditions that, if not met, render the program ill-formed.
[Example 2: An implementation can express such a condition via the constant-expression in a static_assert-declaration (9.1).If the diagnostic is to be emitted only after the function has been selected by overload resolution, an implementation canexpress such a condition via a constraint-expression (13.5.3) and also define the function as deleted. —end example]

—(3.3) Preconditions: the conditions that the function assumes to hold whenever it is called; violation of any preconditionsresults in undefined behavior.
—(3.4) Effects: the actions performed by the function.
—(3.5) Synchronization: the synchronization operations (6.9.2) applicable to the function.
—(3.6) Postconditions: the conditions (sometimes termed observable results) established by the function.
—(3.7) Result: for a typename-specifier , a description of the named type; for an expression, a description of the type ofthe expression; the expression is an lvalue if the type is an lvalue reference type, an xvalue if the type is an rvaluereference type, and a prvalue otherwise.
—(3.8) Returns: a description of the value(s) returned by the function.
—(3.9) Throws: any exceptions thrown by the function, and the conditions that would cause the exception.
—(3.10) Complexity: the time and/or space complexity of the function.
—(3.11) Remarks: additional semantic constraints on the function.
—(3.12) Error conditions: the error conditions for error codes reported by the function.

4 Whenever the Effects element specifies that the semantics of some function F are Equivalent to some code sequence, thenthe various elements are interpreted as follows. If F’s semantics specifies any Constraints or Mandates elements, thenthose requirements are logically imposed prior to the equivalent-to semantics. Next, the semantics of the code sequenceare determined by the Constraints,Mandates, Preconditions, Effects, Synchronization, Postconditions, Returns, Throws,Complexity, Remarks, and Error conditions specified for the function invocations contained in the code sequence. Thevalue returned from F is specified by F’s Returns element, or if F has no Returns element, a non-void return from F isspecified by the return statements (8.7.4) in the code sequence. If F’s semantics contains a Throws, Postconditions, orComplexity element, then that supersedes any occurrences of that element in the code sequence.
5 For non-reserved replacement and handler functions, Clause 17 specifies two behaviors for the functions in question:their required and default behavior. The default behavior describes a function definition provided by the implementation.The required behavior describes the semantics of a function definition provided by either the implementation or a C++program. Where no distinction is explicitly made in the description, the behavior described is the required behavior.
6 If the formulation of a complexity requirement calls for a negative number of operations, the actual requirement is zerooperations.148
7 Complexity requirements specified in the library clauses are upper bounds, and implementations that provide bettercomplexity guarantees meet the requirements.
8 Error conditions specify conditions where a function may fail. The conditions are listed, together with a suitableexplanation, as the enum class errc constants (19.5).

147) To save space, elements that do not apply to a function are omitted. For example, if a function specifies no preconditions, there will be noPreconditions: element.
148) This simplifies the presentation of complexity requirements in some cases.
§ 16.3.2.4 456

© ISO/IEC N4910

16.3.2.5 C library [structure.see.also]
1 Paragraphs labeled “See also” contain cross-references to the relevant portions of other standards (Clause 2).
16.3.3 Other conventions [conventions]
16.3.3.1 General [conventions.general]

1 Subclause 16.3.3 describes several editorial conventions used to describe the contents of the C++ standard library. Theseconventions are for describing implementation-defined types (16.3.3.3), and member functions (16.3.3.4).
16.3.3.2 Exposition-only functions [expos.only.func]

1 Several function templates defined in Clause 17 through Clause 33 and Annex D are only defined for the purpose ofexposition. The declaration of such a function is followed by a comment ending in exposition only.
2 The following are defined for exposition only to aid in the specification of the library:

namespace std {
template<class T> constexpr decay_t<T> decay-copy(T&& v)

noexcept(is_nothrow_convertible_v<T, decay_t<T>>) // exposition only
{ return std::forward<T>(v); }

constexpr auto synth-three-way =
[]<class T, class U>(const T& t, const U& u)

requires requires {
{ t < u } -> boolean-testable;
{ u < t } -> boolean-testable;

}
{

if constexpr (three_way_comparable_with<T, U>) {
return t <=> u;

} else {
if (t < u) return weak_ordering::less;
if (u < t) return weak_ordering::greater;
return weak_ordering::equivalent;

}
};

template<class T, class U=T>
using synth-three-way-result = decltype(synth-three-way(declval<T&>(), declval<U&>()));

}

16.3.3.3 Type descriptions [type.descriptions]
16.3.3.3.1 General [type.descriptions.general]

1 The Requirements subclauses may describe names that are used to specify constraints on template arguments.149 Thesenames are used in library Clauses to describe the types that may be supplied as arguments by a C++ program wheninstantiating template components from the library.
2 Certain types defined in Clause 31 are used to describe implementation-defined types. They are based on other types,but with added constraints.
16.3.3.3.2 Exposition-only types [expos.only.types]

1 Several types defined in Clause 17 through Clause 33 and Annex D are defined for the purpose of exposition. Thedeclaration of such a type is followed by a comment ending in exposition only.
[Example 1:
namespace std {

extern "C" using some-handler = int(int, void*, double); // exposition only
}

The type placeholder some-handler can now be used to specify a function that takes a callback parameter with C language linkage.—end example]

149) Examples from 16.4.4 include: Cpp17EqualityComparable, Cpp17LessThanComparable, Cpp17CopyConstructible. Examples from 25.3include: Cpp17InputIterator, Cpp17ForwardIterator.
§ 16.3.3.3.2 457

© ISO/IEC N4910

16.3.3.3.3 Enumerated types [enumerated.types]
1 Several types defined in Clause 31 are enumerated types. Each enumerated type may be implemented as an enumerationor as a synonym for an enumeration.150
2 The enumerated type enumerated can be written:

enum enumerated { V0, V1, V2, V3, . . . };

inline const enumerated C0(V0);
inline const enumerated C1(V1);
inline const enumerated C2(V2);
inline const enumerated C3(V3);

...

3 Here, the names C0, C1, etc. represent enumerated elements for this particular enumerated type. All such elements havedistinct values.
16.3.3.3.4 Bitmask types [bitmask.types]

1 Several types defined in Clause 17 through Clause 33 and Annex D are bitmask types. Each bitmask type can beimplemented as an enumerated type that overloads certain operators, as an integer type, or as a bitset (22.9.2).
2 The bitmask type bitmask can be written:

// For exposition only.// int_type is an integral type capable of representing all values of the bitmask type.
enum bitmask : int_type {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3, . . .

};

inline constexpr bitmask C0(V0);
inline constexpr bitmask C1(V1);
inline constexpr bitmask C2(V2);
inline constexpr bitmask C3(V3);

...

constexpr bitmask operator&(bitmask X, bitmask Y) {
return static_cast<bitmask>(
static_cast<int_type>(X) & static_cast<int_type>(Y));

}
constexpr bitmask operator|(bitmask X, bitmask Y) {
return static_cast<bitmask>(
static_cast<int_type>(X) | static_cast<int_type>(Y));

}
constexpr bitmask operator^(bitmask X, bitmask Y) {
return static_cast<bitmask>(
static_cast<int_type>(X) ^ static_cast<int_type>(Y));

}
constexpr bitmask operator~(bitmask X) {

return static_cast<bitmask>(~static_cast<int_type>(X));
}
bitmask& operator&=(bitmask& X, bitmask Y) {

X = X & Y; return X;
}
bitmask& operator|=(bitmask& X, bitmask Y) {

X = X | Y; return X;
}
bitmask& operator^=(bitmask& X, bitmask Y) {

X = X ^ Y; return X;
}

3 Here, the names C0, C1, etc. represent bitmask elements for this particular bitmask type. All such elements have distinct,nonzero values such that, for any pair Ci and Cj where i 6= j, Ci & Ci is nonzero and Ci & Cj is zero. Additionally, thevalue 0 is used to represent an empty bitmask, in which no bitmask elements are set.
150) Such as an integer type, with constant integer values (6.8.2).
§ 16.3.3.3.4 458

© ISO/IEC N4910

4 The following terms apply to objects and values of bitmask types:
—(4.1) To set a value Y in an object X is to evaluate the expression X |= Y.
—(4.2) To clear a value Y in an object X is to evaluate the expression X &= ~Y.
—(4.3) The value Y is set in the object X if the expression X & Y is nonzero.

16.3.3.3.5 Character sequences [character.seq]
16.3.3.3.5.1 General [character.seq.general]

1 The C standard library makes widespread use of characters and character sequences that follow a few uniform conven-tions:
—(1.1) Properties specified as locale-specific may change during program execution by a call to setlocale(int, const

char*) (30.5.1), or by a change to a locale object, as described in 30.3 and Clause 31.
—(1.2) The execution character set and the execution wide-character set are supersets of the basic literal character set (5.3).The encodings of the execution character sets and the sets of additional elements (if any) are locale-specific.

[Note 1: The encodings of the execution character sets can be unrelated to any literal encoding. —end note]
—(1.3) A letter is any of the 26 lowercase or 26 uppercase letters in the basic character set.
—(1.4) The decimal-point character is the locale-specific (single-byte) character used by functions that convert between a(single-byte) character sequence and a value of one of the floating-point types. It is used in the character sequenceto denote the beginning of a fractional part. It is represented in Clause 17 through Clause 33 and Annex D by aperiod, ’.’, which is also its value in the "C" locale.
—(1.5) A character sequence is an array object (9.3.4.5) A that can be declared as T A[N], where T is any of the types

char, unsigned char, or signed char (6.8.2), optionally qualified by any combination of const or volatile.The initial elements of the array have defined contents up to and including an element determined by somepredicate. A character sequence can be designated by a pointer value S that points to its first element.
16.3.3.3.5.2 Byte strings [byte.strings]

1 A null-terminated byte string, or ntbs, is a character sequence whose highest-addressed element with defined contenthas the value zero (the terminating null character); no other element in the sequence has the value zero.151
2 The length of an ntbs is the number of elements that precede the terminating null character. An empty ntbs has a lengthof zero.
3 The value of an ntbs is the sequence of values of the elements up to and including the terminating null character.
4 A static ntbs is an ntbs with static storage duration.152
16.3.3.3.5.3 Multibyte strings [multibyte.strings]

1 A null-terminated multibyte string, or ntmbs, is an ntbs that constitutes a sequence of valid multibyte characters,beginning and ending in the initial shift state.153
2 A static ntmbs is an ntmbs with static storage duration.
16.3.3.3.6 Customization Point Object types [customization.point.object]

1 A customization point object is a function object (22.10) with a literal class type that interacts with program-definedtypes while enforcing semantic requirements on that interaction.
2 The type of a customization point object, ignoring cv-qualifiers, shall model semiregular (18.6).
3 All instances of a specific customization point object type shall be equal (18.2). The effects of invoking differentinstances of a specific customization point object type on the same arguments are equivalent.
4 The type T of a customization point object, ignoring cv-qualifiers, shall model invocable<T&, Args...>, invocable<const

T&, Args...>, invocable<T, Args...>, and invocable<const T, Args...> (18.7.2) when the types in Args...meet the requirements specified in that customization point object’s definition. When the types of Args... do not meetthe customization point object’s requirements, T shall not have a function call operator that participates in overloadresolution.
151)Many of the objects manipulated by function signatures declared in <cstring> (23.5.3) are character sequences or ntbss. The size of some ofthese character sequences is limited by a length value, maintained separately from the character sequence.
152) A string-literal , such as "abc", is a static ntbs.
153) An ntbs that contains characters only from the basic literal character set is also an ntmbs. Each multibyte character then consists of a single byte.
§ 16.3.3.3.6 459

© ISO/IEC N4910

5 For a given customization point object o, let p be a variable initialized as if by auto p = o;. Then for any sequence ofarguments args..., the following expressions have effects equivalent to o(args...):
—(5.1) p(args...)

—(5.2) as_const(p)(args...)

—(5.3) std::move(p)(args...)

—(5.4) std::move(as_const(p))(args...)
6 Each customization point object type constrains its return type to model a particular concept.
7 [Note 1: Many of the customization point objects in the library evaluate function call expressions with an unqualified name whichresults in a call to a program-defined function found by argument dependent name lookup (6.5.4). To preclude such an expressionresulting in a call to unconstrained functions with the same name in namespace std, customization point objects specify that lookupfor these expressions is performed in a context that includes deleted overloads matching the signatures of overloads defined innamespace std. When the deleted overloads are viable, program-defined overloads need to be more specialized (13.7.7.3) or moreconstrained (13.5.5) to be used by a customization point object. —end note]
16.3.3.4 Functions within classes [functions.within.classes]

1 For the sake of exposition, Clause 17 through Clause 33 and Annex D do not describe copy/move constructors,assignment operators, or (non-virtual) destructors with the same apparent semantics as those that can be generated bydefault (11.4.5.3, 11.4.6, 11.4.7). It is unspecified whether the implementation provides explicit definitions for suchmember function signatures, or for virtual destructors that can be generated by default.
16.3.3.5 Private members [objects.within.classes]

1 Clause 17 through Clause 33 andAnnexD do not specify the representation of classes, and intentionally omit specificationof class members (11.4). An implementation may define static or non-static class members, or both, as needed toimplement the semantics of the member functions specified in Clause 17 through Clause 33 and Annex D.
2 For the sake of exposition, some subclauses provide representative declarations, and semantic requirements, for privatemembers of classes that meet the external specifications of the classes. The declarations for such members are followedby a comment that ends with exposition only, as in:

streambuf* sb; // exposition only
3 An implementation may use any technique that provides equivalent observable behavior.
16.4 Library-wide requirements [requirements]
16.4.1 General [requirements.general]

1 Subclause 16.4 specifies requirements that apply to the entire C++ standard library. Clause 17 through Clause 33 andAnnex D specify the requirements of individual entities within the library.
2 Requirements specified in terms of interactions between threads do not apply to programs having only a single threadof execution.
3 16.4.2 describes the library’s contents and organization, 16.4.3 describes how well-formed C++ programs gain access tolibrary entities, 16.4.4 describes constraints on types and functions used with the C++ standard library, 16.4.5 describesconstraints on well-formed C++ programs, and 16.4.6 describes constraints on conforming implementations.
16.4.2 Library contents and organization [organization]
16.4.2.1 General [organization.general]

1 16.4.2.2 describes the entities and macros defined in the C++ standard library. 16.4.2.3 lists the standard library headersand some constraints on those headers. 16.4.2.4 lists requirements for a freestanding implementation of the C++ standardlibrary.
16.4.2.2 Library contents [contents]

1 The C++ standard library provides definitions for the entities and macros described in the synopses of the C++ standardlibrary headers (16.4.2.3), unless otherwise specified.

§ 16.4.2.2 460

© ISO/IEC N4910

2 All library entities except operator new and operator delete are defined within the namespace std or namespacesnested within namespace std.154 It is unspecified whether names declared in a specific namespace are declared directlyin that namespace or in an inline namespace inside that namespace.155
3 Whenever an unqualified name other than swap is used in the specification of a declaration D in Clause 17 throughClause 33 or Annex D, its meaning is established as-if by performing unqualified name lookup (6.5.3) in the context of

D.
[Note 1: Argument-dependent lookup is not performed. —end note]
Similarly, the meaning of a qualified-id is established as-if by performing qualified name lookup (6.5.5) in the contextof D.
[Example 1: The reference to is_array_v in the specification of std::to_array (24.3.7.6) refers to ::std::is_array_v. —endexample]
[Note 2: Operators in expressions (12.2.2.3) are not so constrained; see 16.4.6.4. —end note]
The meaning of the unqualified name swap is established in an overload resolution context for swappable values(16.4.4.3).
16.4.2.3 Headers [headers]

1 Each element of the C++ standard library is declared or defined (as appropriate) in a header.156
2 The C++ standard library provides the C++ library headers, shown in Table 23.

Table 23: C++ library headers [tab:headers.cpp]
<algorithm>
<any>
<array>
<atomic>
<barrier>
<bit>
<bitset>
<charconv>
<chrono>
<codecvt>
<compare>
<complex>
<concepts>
<condition_variable>
<coroutine>
<deque>
<exception>
<execution>
<expected>
<filesystem>

<format>
<forward_list>
<fstream>
<functional>
<future>
<initializer_list>
<iomanip>
<ios>
<iosfwd>
<iostream>
<istream>
<iterator>
<latch>
<limits>
<list>
<locale>
<map>
<memory>
<memory_resource>
<mutex>

<new>
<numbers>
<numeric>
<optional>
<ostream>
<queue>
<random>
<ranges>
<ratio>
<regex>
<scoped_allocator>
<semaphore>
<set>
<shared_mutex>
<source_location>

<spanstream>
<sstream>
<stack>
<stacktrace>

<stdexcept>
<stop_token>
<streambuf>
<string>
<string_view>
<strstream>
<syncstream>
<system_error>
<thread>
<tuple>
<typeindex>
<typeinfo>
<type_traits>
<unordered_map>
<unordered_set>
<utility>
<valarray>
<variant>
<vector>
<version>

3 The facilities of the C standard library are provided in the additional headers shown in Table 24.157
Table 24: C++ headers for C library facilities [tab:headers.cpp.c]

<cassert>
<cctype>
<cerrno>

<cfenv>
<cfloat>
<cinttypes>

<climits>
<clocale>
<cmath>

<csetjmp>
<csignal>
<cstdarg>

<cstddef>
<cstdint>
<cstdio>

<cstdlib>
<cstring>
<ctime>

<cuchar>
<cwchar>
<cwctype>

154) The C standard library headers (17.14) also define names within the global namespace, while the C++ headers for C library facilities (16.4.2.3)can also define names within the global namespace.
155) This gives implementers freedom to use inline namespaces to support multiple configurations of the library.
156) A header is not necessarily a source file, nor are the sequences delimited by < and > in header names necessarily valid source file names (15.3).
157) It is intentional that there is no C++ header for any of these C headers: <stdnoreturn.h>, <threads.h>.
§ 16.4.2.3 461

© ISO/IEC N4910

4 The headers listed in Table 23, or, for a freestanding implementation, the subset of such headers that are provided bythe implementation, are collectively known as the importable C++ library headers.
[Note 1: Importable C++ library headers can be imported (10.3). —end note]
[Example 1:
import <vector>; // imports the <vector> header unit
std::vector<int> vi; // OK
—end example]

5 Except as noted in Clause 16 through Clause 33 and Annex D, the contents of each header cname is the same as thatof the corresponding header name.h as specified in the C standard library (Clause 2). In the C++ standard library,however, the declarations (except for names which are defined as macros in C) are within namespace scope (6.4.5) ofthe namespace std. It is unspecified whether these names (including any overloads added in Clause 17 through Clause33 and Annex D) are first declared within the global namespace scope and are then injected into namespace std byexplicit using-declarations (9.9).
6 Names which are defined as macros in C shall be defined as macros in the C++ standard library, even if C grants licensefor implementation as functions.
[Note 2: The names defined as macros in C include the following: assert, offsetof, setjmp, va_arg, va_end, and va_start. —endnote]

7 Names that are defined as functions in C shall be defined as functions in the C++ standard library.158
8 Identifiers that are keywords or operators in C++ shall not be defined as macros in C++ standard library headers.159
9 17.14, C standard library headers, describes the effects of using the name.h (C header) form in a C++ program.160
10 Annex K of the C standard describes a large number of functions, with associated types and macros, which “promotesafer, more secure programming” than many of the traditional C library functions. The names of the functions have asuffix of _s; most of them provide the same service as the C library function with the unsuffixed name, but generallytake an additional argument whose value is the size of the result array. If any C++ header is included, it is implementation-defined whether any of these names is declared in the global namespace. (None of them is declared in namespace

std.)
11 Table 25 lists the Annex K names that may be declared in some header. These names are also subject to the restrictionsof 16.4.5.3.3.
16.4.2.4 Freestanding implementations [compliance]

1 Two kinds of implementations are defined: hosted and freestanding (4.1); the kind of the implementation is implementation-defined. For a hosted implementation, this document describes the set of available headers.
2 A freestanding implementation has an implementation-defined set of headers. This set shall include at least the headersshown in Table 26.
3 The supplied version of the header <cstdlib> (17.2.2) shall declare at least the functions abort, atexit, at_quick_exit,

exit, and quick_exit (17.5). The supplied version of the header <atomic> (33.5.2) shall meet the same requirementsas for a hosted implementation except that support for always lock-free integral atomic types (33.5.5) is implementation-defined, and whether or not the type aliases atomic_signed_lock_free and atomic_unsigned_lock_free are defined(33.5.3) is implementation-defined. The other headers listed in this table shall meet the same requirements as for ahosted implementation.
16.4.3 Using the library [using]
16.4.3.1 Overview [using.overview]

1 Subclause 16.4.3 describes how a C++ program gains access to the facilities of the C++ standard library. 16.4.3.2 describeseffects during translation phase 4, while 16.4.3.3 describes effects during phase 8 (5.2).

158) This disallows the practice, allowed in C, of providing a masking macro in addition to the function prototype. The only way to achieveequivalent inline behavior in C++ is to provide a definition as an extern inline function.
159) In particular, including the standard header <iso646.h> has no effect.
160) The ".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace std. Therefore, thenewer forms are the preferred forms for all uses except for C++ programs which are intended to be strictly compatible with C.
§ 16.4.3.1 462

© ISO/IEC N4910

Table 25: C standard Annex K names [tab:c.annex.k.names]
abort_handler_s
asctime_s
bsearch_s
constraint_handler_t
ctime_s
errno_t
fopen_s
fprintf_s
freopen_s
fscanf_s
fwprintf_s
fwscanf_s
getenv_s
gets_s
gmtime_s
ignore_handler_s
localtime_s
L_tmpnam_s
mbsrtowcs_s

mbstowcs_s
memcpy_s
memmove_s
memset_s
printf_s
qsort_s
RSIZE_MAX
rsize_t
scanf_s
set_constraint_handler_s
snprintf_s
snwprintf_s
sprintf_s
sscanf_s
strcat_s
strcpy_s
strerrorlen_s
strerror_s
strlen_s

strncat_s
strncpy_s
strtok_s
swprintf_s
swscanf_s
tmpfile_s
TMP_MAX_S
tmpnam_s
vfprintf_s
vfscanf_s
vfwprintf_s
vfwscanf_s
vprintf_s
vscanf_s
vsnprintf_s
vsnwprintf_s
vsprintf_s
vsscanf_s
vswprintf_s

vswscanf_s
vwprintf_s
vwscanf_s
wcrtomb_s
wcscat_s
wcscpy_s
wcsncat_s
wcsncpy_s
wcsnlen_s
wcsrtombs_s
wcstok_s
wcstombs_s
wctomb_s
wmemcpy_s
wmemmove_s
wprintf_s
wscanf_s

Table 26: C++ headers for freestanding implementations [tab:headers.cpp.fs]
Subclause Header

17.2 Types <cstddef>17.3 Implementation properties <cfloat>, <climits>, <limits>, <version>17.4 Integer types <cstdint>17.5 Start and termination <cstdlib>17.6 Dynamic memory management <new>17.7 Type identification <typeinfo>17.8 Source location <source_location>17.9 Exception handling <exception>17.10 Initializer lists <initializer_list>17.11 Comparisons <compare>17.12 Coroutines support <coroutine>17.13 Other runtime support <cstdarg>Clause 18 Concepts library <concepts>21.3 Type traits <type_traits>22.15 Bit manipulation <bit>33.5 Atomics <atomic>

§ 16.4.3.1 463

© ISO/IEC N4910

16.4.3.2 Headers [using.headers]
1 The entities in the C++ standard library are defined in headers, whose contents are made available to a translation unitwhen it contains the appropriate #include preprocessing directive (15.3) or the appropriate import declaration (10.3).
2 A translation unit may include library headers in any order (5.1). Each may be included more than once, with noeffect different from being included exactly once, except that the effect of including either <cassert> (19.3.2) or
<assert.h> (17.14) depends each time on the lexically current definition of NDEBUG.161

3 A translation unit shall include a header only outside of any declaration or definition and, in the case of a module unit,only in its global-module-fragment, and shall include the header or import the corresponding header unit lexicallybefore the first reference in that translation unit to any of the entities declared in that header. No diagnostic is required.
16.4.3.3 Linkage [using.linkage]

1 Entities in the C++ standard library have external linkage (6.6). Unless otherwise specified, objects and functions havethe default extern "C++" linkage (9.11).
2 Whether a name from the C standard library declared with external linkage has extern "C" or extern "C++" linkageis implementation-defined. It is recommended that an implementation use extern "C++" linkage for this purpose.162
3 Objects and functions defined in the library and required by a C++ program are included in the program prior to programstartup.
4 See also replacement functions (16.4.5.6), runtime changes (16.4.5.7).
16.4.4 Requirements on types and expressions [utility.requirements]
16.4.4.1 General [utility.requirements.general]

1 16.4.4.2 describes requirements on types and expressions used to instantiate templates defined in the C++ standardlibrary. 16.4.4.3 describes the requirements on swappable types and swappable expressions. 16.4.4.4 describes therequirements on pointer-like types that support null values. 16.4.4.5 describes the requirements on hash function objects.16.4.4.6 describes the requirements on storage allocators.
16.4.4.2 Template argument requirements [utility.arg.requirements]

1 The template definitions in the C++ standard library refer to various named requirements whose details are set out inTables 27–34. In these tables, T is an object or reference type to be supplied by a C++ program instantiating a template;
a, b, and c are values of type (possibly const) T; s and t are modifiable lvalues of type T; u denotes an identifier; rv isan rvalue of type T; and v is an lvalue of type (possibly const) T or an rvalue of type const T.

2 In general, a default constructor is not required. Certain container class member function signatures specify T() asa default argument. T() shall be a well-defined expression (9.4) if one of those signatures is called using the defaultargument (9.3.4.7).
Table 27: Cpp17EqualityComparable requirements [tab:cpp17.equalitycomparable]

Expression Return type Requirement
a == b convertible to

bool
== is an equivalence relation, that is, it has the followingproperties:— For all a, a == a.— If a == b, then b == a.— If a == b and b == c, then a == c.

Table 28: Cpp17LessThanComparable requirements [tab:cpp17.lessthancomparable]
Expression Return type Requirement
a < b convertible to

bool
< is a strict weak ordering relation (27.8)

161) This is the same as the C standard library.
162) The only reliable way to declare an object or function signature from the C standard library is by including the header that declares it,notwithstanding the latitude granted in 7.1.4 of the C Standard.
§ 16.4.4.2 464

© ISO/IEC N4910

Table 29: Cpp17DefaultConstructible requirements [tab:cpp17.defaultconstructible]
Expression Post-condition
T t; object t is default-initialized
T u{}; object u is value-initialized or aggregate-initialized
T()
T{}

an object of type T is value-initialized or aggregate-initialized

Table 30: Cpp17MoveConstructible requirements [tab:cpp17.moveconstructible]
Expression Post-condition
T u = rv; u is equivalent to the value of rv before the construction
T(rv) T(rv) is equivalent to the value of rv before the construction
rv’s state is unspecified
[Note 1: rv must still meet the requirements of the library component that is using it. The operations listed
in those requirements must work as specified whether rv has been moved from or not. —end note]

Table 31: Cpp17CopyConstructible requirements (in addition to Cpp17MoveConstructible)[tab:cpp17.copyconstructible]
Expression Post-condition
T u = v; the value of v is unchanged and is equivalent to u
T(v) the value of v is unchanged and is equivalent to T(v)

Table 32: Cpp17MoveAssignable requirements [tab:cpp17.moveassignable]
Expression Return type Return value Post-condition
t = rv T& t If t and rv do not refer to the sameobject, t is equivalent to the valueof rv before the assignment
rv’s state is unspecified.
[Note 2: rv must still meet the requirements of the library component that is using it, whether or not t and
rv refer to the same object. The operations listed in those requirements must work as specified whether rv
has been moved from or not. —end note]

Table 33: Cpp17CopyAssignable requirements (in addition to Cpp17MoveAssignable) [tab:cpp17.copyassignable]
Expression Return type Return value Post-condition
t = v T& t t is equivalent to v, the value of vis unchanged

Table 34: Cpp17Destructible requirements [tab:cpp17.destructible]
Expression Post-condition
u.~T() All resources owned by u are reclaimed, no exception is propagated.
[Note 3: Array types and non-object types are not Cpp17Destructible. —end note]

§ 16.4.4.2 465

© ISO/IEC N4910

16.4.4.3 Swappable requirements [swappable.requirements]
1 This subclause provides definitions for swappable types and expressions. In these definitions, let t denote an expressionof type T, and let u denote an expression of type U.
2 An object t is swappable with an object u if and only if:

—(2.1) the expressions swap(t, u) and swap(u, t) are valid when evaluated in the context described below, and
—(2.2) these expressions have the following effects:

—(2.2.1) the object referred to by t has the value originally held by u and
—(2.2.2) the object referred to by u has the value originally held by t.

3 The context in which swap(t, u) and swap(u, t) are evaluated shall ensure that a binary non-member function named“swap” is selected via overload resolution (12.2) on a candidate set that includes:
—(3.1) the two swap function templates defined in <utility> (22.2.1) and
—(3.2) the lookup set produced by argument-dependent lookup (6.5.4).

[Note 1: If T and U are both fundamental types or arrays of fundamental types and the declarations from the header <utility>are in scope, the overall lookup set described above is equivalent to that of the qualified name lookup applied to the expression
std::swap(t, u) or std::swap(u, t) as appropriate. —end note]
[Note 2: It is unspecified whether a library component that has a swappable requirement includes the header <utility> to ensure anappropriate evaluation context. —end note]

4 An rvalue or lvalue t is swappable if and only if t is swappable with any rvalue or lvalue, respectively, of type T.
5 A type X meeting any of the iterator requirements (25.3) meets the Cpp17ValueSwappable requirements if, for anydereferenceable object x of type X, *x is swappable.
6 [Example 1: User code can ensure that the evaluation of swap calls is performed in an appropriate context under the various conditionsas follows:

#include <cassert>
#include <utility>

// Preconditions: std::forward<T>(t) is swappable with std::forward<U>(u).
template<class T, class U>
void value_swap(T&& t, U&& u) {

using std::swap;
swap(std::forward<T>(t), std::forward<U>(u)); // OK, uses “swappable with” conditions// for rvalues and lvalues

}

// Preconditions: lvalues of T are swappable.
template<class T>
void lv_swap(T& t1, T& t2) {

using std::swap;
swap(t1, t2); // OK, uses swappable conditions for lvalues of type T

}

namespace N {
struct A { int m; };
struct Proxy { A* a; };
Proxy proxy(A& a) { return Proxy{ &a }; }

void swap(A& x, Proxy p) {
std::swap(x.m, p.a->m); // OK, uses context equivalent to swappable// conditions for fundamental types

}
void swap(Proxy p, A& x) { swap(x, p); } // satisfy symmetry constraint

}

int main() {
int i = 1, j = 2;
lv_swap(i, j);
assert(i == 2 && j == 1);

§ 16.4.4.3 466

© ISO/IEC N4910

N::A a1 = { 5 }, a2 = { -5 };
value_swap(a1, proxy(a2));
assert(a1.m == -5 && a2.m == 5);

}

—end example]
16.4.4.4 Cpp17NullablePointer requirements [nullablepointer.requirements]

1 A Cpp17NullablePointer type is a pointer-like type that supports null values. A type P meets the Cpp17NullablePointerrequirements if:
—(1.1) P meets the Cpp17EqualityComparable, Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17Copy-Assignable, and Cpp17Destructible requirements,
—(1.2) lvalues of type P are swappable (16.4.4.3),
—(1.3) the expressions shown in Table 35 are valid and have the indicated semantics, and
—(1.4) P meets all the other requirements of this subclause.

2 A value-initialized object of type P produces the null value of the type. The null value shall be equivalent only to itself.A default-initialized object of type P may have an indeterminate value.
[Note 1: Operations involving indeterminate values can cause undefined behavior. —end note]

3 An object p of type P can be contextually converted to bool (7.3). The effect shall be as if p != nullptr had beenevaluated in place of p.
4 No operation which is part of the Cpp17NullablePointer requirements shall exit via an exception.
5 In Table 35, u denotes an identifier, t denotes a non-const lvalue of type P, a and b denote values of type (possibly

const) P, and np denotes a value of type (possibly const) std::nullptr_t.
Table 35: Cpp17NullablePointer requirements [tab:cpp17.nullablepointer]

Expression Return type Operational semantics
P u(np); Postconditions: u == nullptr
P u = np;
P(np) Postconditions: P(np) == nullptr
t = np P& Postconditions: t == nullptr
a != b contextually convertible to bool !(a == b)
a == np contextually convertible to bool a == P()
np == a
a != np contextually convertible to bool !(a == np)
np != a

16.4.4.5 Cpp17Hash requirements [hash.requirements]
1 A type H meets the Cpp17Hash requirements if:

—(1.1) it is a function object type (22.10),
—(1.2) it meets the Cpp17CopyConstructible (Table 31) and Cpp17Destructible (Table 34) requirements, and
—(1.3) the expressions shown in Table 36 are valid and have the indicated semantics.

2 Given Key is an argument type for function objects of type H, in Table 36 h is a value of type (possibly const) H, u is anlvalue of type Key, and k is a value of a type convertible to (possibly const) Key.
16.4.4.6 Cpp17Allocator requirements [allocator.requirements]
16.4.4.6.1 General [allocator.requirements.general]

1 The library describes a standard set of requirements for allocators, which are class-type objects that encapsulate theinformation about an allocation model. This information includes the knowledge of pointer types, the type of theirdifference, the type of the size of objects in this allocation model, as well as the memory allocation and deallocationprimitives for it. All of the string types (Clause 23), containers (Clause 24) (except array), string buffers and stringstreams (Clause 31), and match_results (Clause 32) are parameterized in terms of allocators.

§ 16.4.4.6.1 467

© ISO/IEC N4910

Table 36: Cpp17Hash requirements [tab:cpp17.hash]
Expression Return type Requirement
h(k) size_t The value returned shall depend only on the argument k for theduration of the program.[Note 1: Thus all evaluations of the expression h(k) with the same valuefor k yield the same result for a given execution of the program. —endnote]For two different values t1 and t2, the probability that h(t1) and

h(t2) compare equal should be very small, approaching 1.0 /
numeric_limits<size_t>::max().

h(u) size_t Shall not modify u.

2 In subclause 16.4.4.6,
—(2.1) T, U, C denote any cv-unqualified object type (6.8.1),
—(2.2) X denotes an allocator class for type T,
—(2.3) Y denotes the corresponding allocator class for type U,
—(2.4) XX denotes the type allocator_traits<X>,
—(2.5) YY denotes the type allocator_traits<Y>,
—(2.6) a, a1, a2 denote lvalues of type X,
—(2.7) u denotes the name of a variable being declared,
—(2.8) b denotes a value of type Y,
—(2.9) c denotes a pointer of type C* through which indirection is valid,
—(2.10) p denotes a value of type XX::pointer obtained by calling a1.allocate, where a1 == a,
—(2.11) q denotes a value of type XX::const_pointer obtained by conversion from a value p,
—(2.12) r denotes a value of type T& obtained by the expression *p,
—(2.13) w denotes a value of type XX::void_pointer obtained by conversion from a value p,
—(2.14) x denotes a value of type XX::const_void_pointer obtained by conversion from a value q or a value w,
—(2.15) y denotes a value of type XX::const_void_pointer obtained by conversion from a result value of YY::allocate,or else a value of type (possibly const) std::nullptr_t,
—(2.16) n denotes a value of type XX::size_type,
—(2.17) Args denotes a template parameter pack, and
—(2.18) args denotes a function parameter pack with the pattern Args&&.

3 The class template allocator_traits (20.2.8) supplies a uniform interface to all allocator types. This subclausedescribes the requirements on allocator types and thus on types used to instantiate allocator_traits. A requirement isoptional if a default for a given type or expression is specified. Within the standard library allocator_traits template,an optional requirement that is not supplied by an allocator is replaced by the specified default type or expression. A userspecialization of allocator_traits may provide different defaults and may provide defaults for different requirementsthan the primary template.
typename X::pointer

4 Remarks: Default: T*
typename X::const_pointer

5 Mandates: X::pointer is convertible to X::const_pointer.
6 Remarks: Default: pointer_traits<X::pointer>::rebind<const T>

typename X::void_pointer

§ 16.4.4.6.1 468

© ISO/IEC N4910

typename Y::void_pointer

7 Mandates: X::pointer is convertible to X::void_pointer. X::void_pointer and Y::void_pointer are thesame type.
8 Remarks: Default: pointer_traits<X::pointer>::rebind<void>

typename X::const_void_pointer
typename Y::const_void_pointer

9 Mandates: X::pointer, X::const_pointer, and X::void_pointer are convertible to X::const_void_pointer.
X::const_void_pointer and Y::const_void_pointer are the same type.

10 Remarks: Default: pointer_traits<X::pointer>::rebind<const void>

typename X::value_type

11 Result: Identical to T.
typename X::size_type

12 Result: An unsigned integer type that can represent the size of the largest object in the allocation model.
13 Remarks: Default: make_unsigned_t<X::difference_type>

typename X::difference_type

14 Result: A signed integer type that can represent the difference between any two pointers in the allocation model.
15 Remarks: Default: pointer_traits<X::pointer>::difference_type

typename X::template rebind<U>::other

16 Result: Y
17 Postconditions: For all U (including T), Y::template rebind<T>::other is X.
18 Remarks: If Allocator is a class template instantiation of the form SomeAllocator<T, Args>, where Args is zeroor more type arguments, and Allocator does not supply a rebind member template, the standard allocator_-

traits template uses SomeAllocator<U, Args> in place of Allocator::rebind<U>::other by default. Forallocator types that are not template instantiations of the above form, no default is provided.
19 [Note 1: The member class template rebind of X is effectively a typedef template. In general, if the name Allocator is bound to

SomeAllocator<T>, then Allocator::rebind<U>::other is the same type as SomeAllocator<U>, where SomeAllocator<T>::value_-
type is T and SomeAllocator<U>::value_type is U. —end note]

*p

20 Result: T&
*q

21 Result: const T&
22 Postconditions: *q refers to the same object as *p.

p->m

23 Result: Type of T::m.
24 Preconditions: (*p).m is well-defined.
25 Effects: Equivalent to (*p).m.

q->m

26 Result: Type of T::m.
27 Preconditions: (*q).m is well-defined.
28 Effects: Equivalent to (*q).m.

static_cast<X::pointer>(w)

29 Result: X::pointer
30 Postconditions: static_cast<X::pointer>(w) == p.
§ 16.4.4.6.1 469

© ISO/IEC N4910

static_cast<X::const_pointer>(x)

31 Result: X::const_pointer
32 Postconditions: static_cast<X::const_pointer>(x) == q.

pointer_traits<X::pointer>::pointer_to(r)

33 Result: X::pointer
34 Postconditions: Same as p.

a.allocate(n)

35 Result: X::pointer
36 Effects: Memory is allocated for an array of n T and such an object is created but array elements are not constructed.

[Example 1: When reusing storage denoted by some pointer value p, launder(reinterpret_cast<T*>(new (p) byte[n *
sizeof(T)])) can be used to implicitly create a suitable array object and obtain a pointer to it. —end example]

37 Throws: allocate may throw an appropriate exception.
38 [Note 2: It is intended that a.allocate be an efficient means of allocating a single object of type T, even when sizeof(T) issmall. That is, there is no need for a container to maintain its own free list. —end note]
39 Remarks: If n == 0, the return value is unspecified.

a.allocate(n, y)

40 Result: X::pointer
41 Effects: Same as a.allocate(n). The use of y is unspecified, but it is intended as an aid to locality.
42 Remarks: Default: a.allocate(n)

a.allocate_at_least(n)

43 Result: allocation_result<X::pointer>
44 Returns: allocation_result<X::pointer>{ptr, count} where ptr is memory allocated for an array of count

T and such an object is created but array elements are not constructed, such that count ≥ n. If n == 0, the returnvalue is unspecified.
45 Throws: allocate_at_least may throw an appropriate exception.
46 Remarks: An allocator need not support allocate_at_least, but no default is provided in allocator_traits.If an allocator has an allocate_at_least member, it shall satisfy the requirements.

a.deallocate(p, n)

47 Result: (not used)
48 Preconditions:

—(48.1) If p is memory that was obtained by a call to a.allocate_at_least, let ret be the value returned and
req be the value passed as the first argument of that call. p is equal to ret.ptr and n is a value such that
req ≤ n ≤ ret.count.

—(48.2) Otherwise, p is a pointer value obtained from allocate. n equals the value passed as the first argument tothe invocation of allocate which returned p.
p has not been invalidated by an intervening call to deallocate.

49 Throws: Nothing.
a.max_size()

50 Result: X::size_type
51 Returns: The largest value that can meaningfully be passed to X::allocate().
52 Remarks: Default: numeric_limits<size_type>::max() / sizeof(value_type)

a1 == a2

53 Result: bool

§ 16.4.4.6.1 470

© ISO/IEC N4910

54 Returns: true only if storage allocated from each can be deallocated via the other.
55 Throws: Nothing.
56 Remarks: operator== shall be reflexive, symmetric, and transitive.

a1 != a2

57 Result: bool
58 Returns: !(a1 == a2).

a == b

59 Result: bool
60 Returns: a == Y::rebind<T>::other(b).

a != b

61 Result: bool
62 Returns: !(a == b).

X u(a);
X u = a;

63 Postconditions: u == a
64 Throws: Nothing.

X u(b);

65 Postconditions: Y(u) == b and u == X(b).
66 Throws: Nothing.

X u(std::move(a));
X u = std::move(a);

67 Postconditions: The value of a is unchanged and is equal to u.
68 Throws: Nothing.

X u(std::move(b));

69 Postconditions: u is equal to the prior value of X(b).
70 Throws: Nothing.

a.construct(c, args)

71 Result: (not used)
72 Effects: Constructs an object of type C at c.
73 Remarks: Default: construct_at(c, std::forward<Args>(args)...)

a.destroy(c)

74 Result: (not used)
75 Effects: Destroys the object at c.
76 Remarks: Default: destroy_at(c)

a.select_on_container_copy_construction()

77 Result: X
78 Returns: Typically returns either a or X().
79 Remarks: Default: return a;

X::propagate_on_container_copy_assignment

80 Result: Identical to or derived from true_type or false_type.

§ 16.4.4.6.1 471

© ISO/IEC N4910

81 Returns: true_type only if an allocator of type X should be copied when the client container is copy-assigned;if so, X shall meet the Cpp17CopyAssignable requirements (Table 33) and the copy operation shall not throwexceptions.
82 Remarks: Default: false_type

X::propagate_on_container_move_assignment

83 Result: Identical to or derived from true_type or false_type.
84 Returns: true_type only if an allocator of type X should be moved when the client container is move-assigned;if so, X shall meet the Cpp17MoveAssignable requirements (Table 32) and the move operation shall not throwexceptions.
85 Remarks: Default: false_type

X::propagate_on_container_swap

86 Result: Identical to or derived from true_type or false_type.
87 Returns: true_type only if an allocator of type X should be swapped when the client container is swapped; if so,lvalues of type X shall be swappable (16.4.4.3) and the swap operation shall not throw exceptions.
88 Remarks: Default: false_type

X::is_always_equal

89 Result: Identical to or derived from true_type or false_type.
90 Returns: true_type only if the expression a1 == a2 is guaranteed to be true for any two (possibly const) values

a1, a2 of type X.
91 Remarks: Default: is_empty<X>::type
92 An allocator type X shall meet the Cpp17CopyConstructible requirements (Table 31). The X::pointer, X::const_-

pointer, X::void_pointer, and X::const_void_pointer types shall meet the Cpp17NullablePointer requirements(Table 35). No constructor, comparison operator function, copy operation, move operation, or swap operation on thesepointer types shall exit via an exception. X::pointer and X::const_pointer shall also meet the requirements for aCpp17RandomAccessIterator (25.3.5.7) and the additional requirement that, when a and (a + n) are dereferenceablepointer values for some integral value n,
addressof(*(a + n)) == addressof(*a) + n

is true.
93 Let x1 and x2 denote objects of (possibly different) types X::void_pointer, X::const_void_pointer, X::pointer,or X::const_pointer. Then, x1 and x2 are equivalently-valued pointer values, if and only if both x1 and x2 can beexplicitly converted to the two corresponding objects px1 and px2 of type X::const_pointer, using a sequence of

static_casts using only these four types, and the expression px1 == px2 evaluates to true.
94 Let w1 and w2 denote objects of type X::void_pointer. Then for the expressions

w1 == w2
w1 != w2

either or both objects may be replaced by an equivalently-valued object of type X::const_void_pointer with nochange in semantics.
95 Let p1 and p2 denote objects of type X::pointer. Then for the expressions

p1 == p2
p1 != p2
p1 < p2
p1 <= p2
p1 >= p2
p1 > p2
p1 - p2

either or both objects may be replaced by an equivalently-valued object of type X::const_pointer with no change insemantics.

§ 16.4.4.6.1 472

© ISO/IEC N4910

96 An allocator may constrain the types on which it can be instantiated and the arguments for which its construct or
destroy members may be called. If a type cannot be used with a particular allocator, the allocator class or the call to
construct or destroy may fail to instantiate.

97 If the alignment associated with a specific over-aligned type is not supported by an allocator, instantiation of the allocatorfor that type may fail. The allocator also may silently ignore the requested alignment.
[Note 3: Additionally, the member function allocate for that type can fail by throwing an object of type bad_alloc. —end note]

98 [Example 2: The following is an allocator class template supporting the minimal interface that meets the requirements of 16.4.4.6.1:
template<class Tp>
struct SimpleAllocator {

typedef Tp value_type;
SimpleAllocator(ctor args);

template<class T> SimpleAllocator(const SimpleAllocator<T>& other);

[[nodiscard]] Tp* allocate(std::size_t n);
void deallocate(Tp* p, std::size_t n);

};

template<class T, class U>
bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
template<class T, class U>
bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&);

—end example]
16.4.4.6.2 Allocator completeness requirements [allocator.requirements.completeness]

1 If X is an allocator class for type T, X additionally meets the allocator completeness requirements if, whether or not T is acomplete type:
—(1.1) X is a complete type, and
—(1.2) all the member types of allocator_traits<X> (20.2.8) other than value_type are complete types.

16.4.5 Constraints on programs [constraints]
16.4.5.1 Overview [constraints.overview]

1 Subclause 16.4.5 describes restrictions on C++ programs that use the facilities of the C++ standard library. The followingsubclauses specify constraints on the program’s use of namespaces (16.4.5.2.1), its use of various reserved names(16.4.5.3), its use of headers (16.4.5.4), its use of standard library classes as base classes (16.4.5.5), its definitions ofreplacement functions (16.4.5.6), and its installation of handler functions during execution (16.4.5.7).
16.4.5.2 Namespace use [namespace.constraints]
16.4.5.2.1 Namespace std [namespace.std]

1 Unless otherwise specified, the behavior of a C++ program is undefined if it adds declarations or definitions to namespace
std or to a namespace within namespace std.

2 Unless explicitly prohibited, a program may add a template specialization for any standard library class templateto namespace std provided that (a) the added declaration depends on at least one program-defined type and (b) thespecialization meets the standard library requirements for the original template.163
3 The behavior of a C++ program is undefined if it declares an explicit or partial specialization of any standard libraryvariable template, except where explicitly permitted by the specification of that variable template.
4 The behavior of a C++ program is undefined if it declares

—(4.1) an explicit specialization of any member function of a standard library class template, or
—(4.2) an explicit specialization of any member function template of a standard library class or class template, or
—(4.3) an explicit or partial specialization of any member class template of a standard library class or class template, or
—(4.4) a deduction guide for any standard library class template.

163) Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied specialization that meetsthe minimum requirements of this document.
§ 16.4.5.2.1 473

© ISO/IEC N4910

5 A program may explicitly instantiate a class template defined in the standard library only if the declaration (a) dependson the name of at least one program-defined type and (b) the instantiation meets the standard library requirements forthe original template.
6 Let F denote a standard library function (16.4.6.4), a standard library static member function, or an instantiation of astandard library function template. Unless F is designated an addressable function, the behavior of a C++ program isunspecified (possibly ill-formed) if it explicitly or implicitly attempts to form a pointer to F.
[Note 1: Possible means of forming such pointers include application of the unary & operator (7.6.2.2), addressof (20.2.10), or afunction-to-pointer standard conversion (7.3.4). —end note]
Moreover, the behavior of a C++ program is unspecified (possibly ill-formed) if it attempts to form a reference to F or ifit attempts to form a pointer-to-member designating either a standard library non-static member function (16.4.6.5) oran instantiation of a standard library member function template.

7 Other than in namespace std or in a namespace within namespace std, a program may provide an overload for anylibrary function template designated as a customization point, provided that (a) the overload’s declaration depends on atleast one user-defined type and (b) the overload meets the standard library requirements for the customization point.164
[Note 2: This permits a (qualified or unqualified) call to the customization point to invoke the most appropriate overload for thegiven arguments. —end note]

8 A translation unit shall not declare namespace std to be an inline namespace (9.8.2).
16.4.5.2.2 Namespace posix [namespace.posix]

1 The behavior of a C++ program is undefined if it adds declarations or definitions to namespace posix or to a namespacewithin namespace posix unless otherwise specified. The namespace posix is reserved for use by ISO/IEC/IEEE 9945and other POSIX standards.
16.4.5.2.3 Namespaces for future standardization [namespace.future]

1 Top-level namespaces whose namespace-name consists of std followed by one or more digits (5.10) are reservedfor future standardization. The behavior of a C++ program is undefined if it adds declarations or definitions to such anamespace.
[Example 1: The top-level namespace std2 is reserved for use by future revisions of this International Standard. —end example]
16.4.5.3 Reserved names [reserved.names]
16.4.5.3.1 General [reserved.names.general]

1 The C++ standard library reserves the following kinds of names:
—(1.1) macros
—(1.2) global names
—(1.3) names with external linkage

2 If a program declares or defines a name in a context where it is reserved, other than as explicitly allowed by Clause 16,its behavior is undefined.
16.4.5.3.2 Zombie names [zombie.names]

1 In namespace std, the following names are reserved for previous standardization:
—(1.1) auto_ptr,
—(1.2) auto_ptr_ref,
—(1.3) binary_function,
—(1.4) binary_negate,
—(1.5) bind1st,
—(1.6) bind2nd,
—(1.7) binder1st,

164) Any library customization point must be prepared to work adequately with any user-defined overload that meets the minimum requirements ofthis document. Therefore an implementation can elect, under the as-if rule (6.9.1), to provide any customization point in the form of an instantiatedfunction object (22.10) even though the customization point’s specification is in the form of a function template. The template parameters of eachsuch function object and the function parameters and return type of the object’s operator() must match those of the corresponding customizationpoint’s specification.
§ 16.4.5.3.2 474

© ISO/IEC N4910

—(1.8) binder2nd,
—(1.9) const_mem_fun1_ref_t,
—(1.10) const_mem_fun1_t,
—(1.11) const_mem_fun_ref_t,
—(1.12) const_mem_fun_t,
—(1.13) declare_no_pointers,
—(1.14) declare_reachable,
—(1.15) get_pointer_safety,
—(1.16) get_temporary_buffer,
—(1.17) get_unexpected,
—(1.18) gets,
—(1.19) is_literal_type,
—(1.20) is_literal_type_v,
—(1.21) mem_fun1_ref_t,
—(1.22) mem_fun1_t,
—(1.23) mem_fun_ref_t,
—(1.24) mem_fun_ref,
—(1.25) mem_fun_t,
—(1.26) mem_fun,
—(1.27) not1,
—(1.28) not2,
—(1.29) pointer_safety,
—(1.30) pointer_to_binary_function,
—(1.31) pointer_to_unary_function,
—(1.32) ptr_fun,
—(1.33) random_shuffle,
—(1.34) raw_storage_iterator,
—(1.35) result_of,
—(1.36) result_of_t,
—(1.37) return_temporary_buffer,
—(1.38) set_unexpected,
—(1.39) unary_function,
—(1.40) unary_negate,
—(1.41) uncaught_exception,
—(1.42) undeclare_no_pointers,
—(1.43) undeclare_reachable, and
—(1.44) unexpected_handler.

2 The following names are reserved as members for previous standardization, and may not be used as a name for object-likemacros in portable code:
—(2.1) argument_type,
—(2.2) first_argument_type,
—(2.3) io_state,
—(2.4) open_mode,

§ 16.4.5.3.2 475

© ISO/IEC N4910

—(2.5) preferred,
—(2.6) second_argument_type,
—(2.7) seek_dir, and.
—(2.8) strict.

3 The name stossc is reserved as a member function for previous standardization, and may not be used as a name forfunction-like macros in portable code.
4 The header names <ccomplex>, <ciso646>, <cstdalign>, <cstdbool>, and <ctgmath> are reserved for previousstandardization.
16.4.5.3.3 Macro names [macro.names]

1 A translation unit that includes a standard library header shall not #define or #undef names declared in any standardlibrary header.
2 A translation unit shall not #define or #undef names lexically identical to keywords, to the identifiers listed in Table 4,or to the attribute-tokens described in 9.12, except that the names likely and unlikelymay be defined as function-likemacros (15.6).
16.4.5.3.4 External linkage [extern.names]

1 Each name declared as an object with external linkage in a header is reserved to the implementation to designate thatlibrary object with external linkage,165 both in namespace std and in the global namespace.
2 Each global function signature declared with external linkage in a header is reserved to the implementation to designatethat function signature with external linkage.166
3 Each name from the C standard library declared with external linkage is reserved to the implementation for use as aname with extern "C" linkage, both in namespace std and in the global namespace.
4 Each function signature from the C standard library declared with external linkage is reserved to the implementation foruse as a function signature with both extern "C" and extern "C++" linkage,167 or as a name of namespace scope inthe global namespace.
16.4.5.3.5 Types [extern.types]

1 For each type T from the C standard library, the types ::T and std::T are reserved to the implementation and, whendefined, ::T shall be identical to std::T.
16.4.5.3.6 User-defined literal suffixes [usrlit.suffix]

1 Literal suffix identifiers (12.6) that do not start with an underscore are reserved for future standardization.
16.4.5.4 Headers [alt.headers]

1 If a file with a name equivalent to the derived file name for one of the C++ standard library headers is not providedas part of the implementation, and a file with that name is placed in any of the standard places for a source file to beincluded (15.3), the behavior is undefined.
16.4.5.5 Derived classes [derived.classes]

1 Virtual member function signatures defined for a base class in the C++ standard library may be overridden in a derivedclass defined in the program (11.7.3).
16.4.5.6 Replacement functions [replacement.functions]

1 Clause 17 through Clause 33 and Annex D describe the behavior of numerous functions defined by the C++ standardlibrary. Under some circumstances, however, certain of these function descriptions also apply to replacement functionsdefined in the program.
2 A C++ program may provide the definition for any of the following dynamic memory allocation function signaturesdeclared in header <new> (6.7.5.5, 17.6.2):

165) The list of such reserved names includes errno, declared or defined in <cerrno> (19.4.2).
166) The list of such reserved function signatures with external linkage includes setjmp(jmp_buf), declared or defined in <csetjmp> (17.13.3), and
va_end(va_list), declared or defined in <cstdarg> (17.13.2).
167) The function signatures declared in <cuchar> (23.5.5), <cwchar> (23.5.4), and <cwctype> (23.5.2) are always reserved, notwithstanding therestrictions imposed in subclause 4.5.1 of Amendment 1 to the C Standard for these headers.
§ 16.4.5.6 476

© ISO/IEC N4910

operator new(std::size_t)
operator new(std::size_t, std::align_val_t)
operator new(std::size_t, const std::nothrow_t&)
operator new(std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete(void*)
operator delete(void*, std::size_t)
operator delete(void*, std::align_val_t)
operator delete(void*, std::size_t, std::align_val_t)
operator delete(void*, const std::nothrow_t&)
operator delete(void*, std::align_val_t, const std::nothrow_t&)

operator new[](std::size_t)
operator new[](std::size_t, std::align_val_t)
operator new[](std::size_t, const std::nothrow_t&)
operator new[](std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete[](void*)
operator delete[](void*, std::size_t)
operator delete[](void*, std::align_val_t)
operator delete[](void*, std::size_t, std::align_val_t)
operator delete[](void*, const std::nothrow_t&)
operator delete[](void*, std::align_val_t, const std::nothrow_t&)

3 The program’s definitions are used instead of the default versions supplied by the implementation (17.6.3). Suchreplacement occurs prior to program startup (6.3, 6.9.3). The program’s declarations shall not be specified as inline.No diagnostic is required.
16.4.5.7 Handler functions [handler.functions]

1 The C++ standard library provides a default version of the following handler function (Clause 17):
—(1.1) terminate_handler

2 A C++ program may install different handler functions during execution, by supplying a pointer to a function defined inthe program or the library as an argument to (respectively):
—(2.1) set_new_handler

—(2.2) set_terminate

See also subclauses 17.6.4, Storage allocation errors, and 17.9, Exception handling.
3 A C++ program can get a pointer to the current handler function by calling the following functions:

—(3.1) get_new_handler

—(3.2) get_terminate
4 Calling the set_* and get_* functions shall not incur a data race. A call to any of the set_* functions shall synchronizewith subsequent calls to the same set_* function and to the corresponding get_* function.
16.4.5.8 Other functions [res.on.functions]

1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard librarytemplate components), the C++ standard library depends on components supplied by a C++ program. If these componentsdo not meet their requirements, this document places no requirements on the implementation.
2 In particular, the effects are undefined in the following cases:

—(2.1) For replacement functions (17.6.3), if the installed replacement function does not implement the semantics of theapplicable Required behavior: paragraph.
—(2.2) For handler functions (17.6.4.3, 17.9.5.1), if the installed handler function does not implement the semantics ofthe applicable Required behavior: paragraph.
—(2.3) For types used as template arguments when instantiating a template component, if the operations on the typedo not implement the semantics of the applicable Requirements subclause (16.4.4.6, 24.2, 25.3, 27.2, 28.2).Operations on such types can report a failure by throwing an exception unless otherwise specified.
—(2.4) If any replacement function or handler function or destructor operation exits via an exception, unless specificallyallowed in the applicable Required behavior: paragraph.

§ 16.4.5.8 477

© ISO/IEC N4910

—(2.5) If an incomplete type (6.8.1) is used as a template argument when instantiating a template component or evaluatinga concept, unless specifically allowed for that component.
16.4.5.9 Function arguments [res.on.arguments]

1 Each of the following applies to all arguments to functions defined in the C++ standard library, unless explicitly statedotherwise.
—(1.1) If an argument to a function has an invalid value (such as a value outside the domain of the function or a pointerinvalid for its intended use), the behavior is undefined.
—(1.2) If a function argument is described as being an array, the pointer actually passed to the function shall have a valuesuch that all address computations and accesses to objects (that would be valid if the pointer did point to the firstelement of such an array) are in fact valid.
—(1.3) If a function argument is bound to an rvalue reference parameter, the implementation may assume that thisparameter is a unique reference to this argument, except that the argument passed to a move-assignment operatormay be a reference to *this (16.4.6.15).

[Note 1: If the type of a parameter is a forwarding reference (13.10.3.2) that is deduced to an lvalue reference type, then theargument is not bound to an rvalue reference. —end note]
[Note 2: If a program casts an lvalue to an xvalue while passing that lvalue to a library function (e.g., by calling the functionwith the argument std::move(x)), the program is effectively asking that function to treat that lvalue as a temporary object.The implementation is free to optimize away aliasing checks which would possibly be needed if the argument was an lvalue.—end note]

16.4.5.10 Library object access [res.on.objects]
1 The behavior of a program is undefined if calls to standard library functions from different threads may introduce a datarace. The conditions under which this may occur are specified in 16.4.6.10.
[Note 1: Modifying an object of a standard library type that is shared between threads risks undefined behavior unless objects of thattype are explicitly specified as being shareable without data races or the user supplies a locking mechanism. —end note]

2 If an object of a standard library type is accessed, and the beginning of the object’s lifetime (6.7.3) does not happenbefore the access, or the access does not happen before the end of the object’s lifetime, the behavior is undefined unlessotherwise specified.
[Note 2: This applies even to objects such as mutexes intended for thread synchronization. —end note]
16.4.5.11 Semantic requirements [res.on.requirements]

1 A sequence Args of template arguments is said to model a concept C if Args satisfies C (13.5.3) and meets all semanticrequirements (if any) given in the specification of C.
2 If the validity or meaning of a program depends on whether a sequence of template arguments models a concept, andthe concept is satisfied but not modeled, the program is ill-formed, no diagnostic required.
3 If the semantic requirements of a declaration’s constraints (16.3.2.3) are not modeled at the point of use, the program isill-formed, no diagnostic required.
16.4.6 Conforming implementations [conforming]
16.4.6.1 Overview [conforming.overview]

1 Subclause 16.4.6 describes the constraints upon, and latitude of, implementations of the C++ standard library.
2 An implementation’s use of headers is discussed in 16.4.6.2, its use of macros in 16.4.6.3, non-member functionsin 16.4.6.4, member functions in 16.4.6.5, data race avoidance in 16.4.6.10, access specifiers in 16.4.6.11, class derivationin 16.4.6.12, and exceptions in 16.4.6.13.
16.4.6.2 Headers [res.on.headers]

1 A C++ header may include other C++ headers. A C++ header shall provide the declarations and definitions that appearin its synopsis. A C++ header shown in its synopsis as including other C++ headers shall provide the declarations anddefinitions that appear in the synopses of those other headers.
2 Certain types and macros are defined in more than one header. Every such entity shall be defined such that any headerthat defines it may be included after any other header that also defines it (6.3).
3 The C standard library headers (17.14) shall include only their corresponding C++ standard library header, as describedin 16.4.2.3.
§ 16.4.6.2 478

© ISO/IEC N4910

16.4.6.3 Restrictions on macro definitions [res.on.macro.definitions]
1 The names and global function signatures described in 16.4.2.2 are reserved to the implementation.
2 All object-like macros defined by the C standard library and described in this Clause as expanding to integral constantexpressions are also suitable for use in #if preprocessing directives, unless explicitly stated otherwise.
16.4.6.4 Non-member functions [global.functions]

1 It is unspecified whether any non-member functions in the C++ standard library are defined as inline (9.2.8).
2 A call to a non-member function signature described in Clause 17 through Clause 33 and Annex D shall behave as ifthe implementation declared no additional non-member function signatures.168
3 An implementation shall not declare a non-member function signature with additional default arguments.
4 Unless otherwise specified, calls made by functions in the standard library to non-operator, non-member functions donot use functions from another namespace which are found through argument-dependent name lookup (6.5.4).
[Note 1: The phrase “unless otherwise specified” applies to cases such as the swappable with requirements (16.4.4.3). The exceptionfor overloaded operators allows argument-dependent lookup in cases like that of ostream_iterator::operator= (25.6.3.3):
Effects:
*out_stream << value;
if (delim != 0)
*out_stream << delim;

return *this;

—end note]
16.4.6.5 Member functions [member.functions]

1 It is unspecified whether any member functions in the C++ standard library are defined as inline (9.2.8).
2 For a non-virtual member function described in the C++ standard library, an implementation may declare a different setof member function signatures, provided that any call to the member function that would select an overload from the setof declarations described in this document behaves as if that overload were selected.
[Note 1: For instance, an implementation can add parameters with default values, or replace a member function with default argumentswith two or more member functions with equivalent behavior, or add additional signatures for a member function name. —end note]
16.4.6.6 Friend functions [hidden.friends]

1 Whenever this document specifies a friend declaration of a function or function template within a class or classtemplate definition, that declaration shall be the only declaration of that function or function template provided by animplementation.
[Note 1: In particular, an implementation is not allowed to provide an additional declaration of that function or function template atnamespace scope. —end note]
[Note 2: Such a friend function or function template declaration is known as a hidden friend, as it is visible neither to ordinaryunqualified lookup (6.5.3) nor to qualified lookup (6.5.5). —end note]
16.4.6.7 Constexpr functions and constructors [constexpr.functions]

1 This document explicitly requires that certain standard library functions are constexpr (9.2.6). An implementationshall not declare any standard library function signature as constexpr except for those where it is explicitly required.Within any header that provides any non-defining declarations of constexpr functions or constructors an implementationshall provide corresponding definitions.
16.4.6.8 Requirements for stable algorithms [algorithm.stable]

1 When the requirements for an algorithm state that it is “stable” without further elaboration, it means:
—(1.1) For the sort algorithms the relative order of equivalent elements is preserved.
—(1.2) For the remove and copy algorithms the relative order of the elements that are not removed is preserved.
—(1.3) For the merge algorithms, for equivalent elements in the original two ranges, the elements from the first range(preserving their original order) precede the elements from the second range (preserving their original order).

168)A valid C++ program always calls the expected library non-member function. An implementation can also define additional non-memberfunctions that would otherwise not be called by a valid C++ program.
§ 16.4.6.8 479

© ISO/IEC N4910

16.4.6.9 Reentrancy [reentrancy]
1 Except where explicitly specified in this document, it is implementation-defined which functions in the C++ standardlibrary may be recursively reentered.
16.4.6.10 Data race avoidance [res.on.data.races]

1 This subclause specifies requirements that implementations shall meet to prevent data races (6.9.2). Every standardlibrary function shall meet each requirement unless otherwise specified. Implementations may prevent data races incases other than those specified below.
2 A C++ standard library function shall not directly or indirectly access objects (6.9.2) accessible by threads other than thecurrent thread unless the objects are accessed directly or indirectly via the function’s arguments, including this.
3 A C++ standard library function shall not directly or indirectly modify objects (6.9.2) accessible by threads other thanthe current thread unless the objects are accessed directly or indirectly via the function’s non-const arguments, including

this.
4 [Note 1: This means, for example, that implementations can’t use an object with static storage duration for internal purposes withoutsynchronization because doing so can cause a data race even in programs that do not explicitly share objects between threads. —endnote]
5 A C++ standard library function shall not access objects indirectly accessible via its arguments or via elements of itscontainer arguments except by invoking functions required by its specification on those container elements.
6 Operations on iterators obtained by calling a standard library container or string member function may access theunderlying container, but shall not modify it.
[Note 2: In particular, container operations that invalidate iterators conflict with operations on iterators associated with that container.—end note]

7 Implementations may share their own internal objects between threads if the objects are not visible to users and areprotected against data races.
8 Unless otherwise specified, C++ standard library functions shall perform all operations solely within the current thread ifthose operations have effects that are visible (6.9.2) to users.
9 [Note 3: This allows implementations to parallelize operations if there are no visible side effects. —end note]
16.4.6.11 Protection within classes [protection.within.classes]

1 It is unspecified whether any function signature or class described in Clause 17 through Clause 33 and Annex D is afriend of another class in the C++ standard library.
16.4.6.12 Derived classes [derivation]

1 An implementation may derive any class in the C++ standard library from a class with a name reserved to the implemen-tation.
2 Certain classes defined in the C++ standard library are required to be derived from other classes in the C++ standardlibrary. An implementation may derive such a class directly from the required base or indirectly through a hierarchy ofbase classes with names reserved to the implementation.
3 In any case:

—(3.1) Every base class described as virtual shall be virtual;
—(3.2) Every base class not specified as virtual shall not be virtual;
—(3.3) Unless explicitly stated otherwise, types with distinct names shall be distinct types.

[Note 1: There is an implicit exception to this rule for types that are described as synonyms (9.2.4, 9.9), such as size_t (17.2)and streamoff (31.2.2). —end note]
4 All types specified in the C++ standard library shall be non-final types unless otherwise specified.
16.4.6.13 Restrictions on exception handling [res.on.exception.handling]

1 Any of the functions defined in the C++ standard library can report a failure by throwing an exception of a type describedin its Throws: paragraph, or of a type derived from a type named in the Throws: paragraph that would be caught by anexception handler for the base type.

§ 16.4.6.13 480

© ISO/IEC N4910

2 Functions from the C standard library shall not throw exceptions169 except when such a function calls a program-suppliedfunction that throws an exception.170
3 Destructor operations defined in the C++ standard library shall not throw exceptions. Every destructor in the C++ standardlibrary shall behave as if it had a non-throwing exception specification.
4 Functions defined in the C++ standard library that do not have a Throws: paragraph but do have a potentially-throwingexception specification may throw implementation-defined exceptions.171 Implementations should report errors bythrowing exceptions of or derived from the standard exception classes (17.6.4.1, 17.9, 19.2).
5 An implementation may strengthen the exception specification for a non-virtual function by adding a non-throwingexception specification.
16.4.6.14 Value of error codes [value.error.codes]

1 Certain functions in the C++ standard library report errors via a std::error_code (19.5.4.1) object. That object’s
category() member shall return std::system_category() for errors originating from the operating system, or areference to an implementation-defined error_category object for errors originating elsewhere. The implementationshall define the possible values of value() for each of these error categories.
[Example 1: For operating systems that are based on POSIX, implementations should define the std::system_category() values asidentical to the POSIX errno values, with additional values as defined by the operating system’s documentation. Implementationsfor operating systems that are not based on POSIX should define values identical to the operating system’s values. For errors that donot originate from the operating system, the implementation may provide enums for the associated values. —end example]
16.4.6.15 Moved-from state of library types [lib.types.movedfrom]

1 Objects of types defined in the C++ standard library may be moved from (11.4.5.3). Move operations may be explicitlyspecified or implicitly generated. Unless otherwise specified, such moved-from objects shall be placed in a valid butunspecified state.
2 An object of a type defined in the C++ standard library may be move-assigned (11.4.6) to itself. Unless otherwisespecified, such an assignment places the object in a valid but unspecified state.

169) That is, the C library functions can all be treated as if they are marked noexcept. This allows implementations to make performance optimizationsbased on the absence of exceptions at runtime.
170) The functions qsort() and bsearch() (27.12) meet this condition.
171) In particular, they can report a failure to allocate storage by throwing an exception of type bad_alloc, or a class derived from bad_alloc(17.6.4.1).
§ 16.4.6.15 481

© ISO/IEC N4910

17 Language support library [support]
17.1 General [support.general]

1 This Clause describes the function signatures that are called implicitly, and the types of objects generated implicitly,during the execution of some C++ programs. It also describes the headers that declare these function signatures anddefine any related types.
2 The following subclauses describe common type definitions used throughout the library, characteristics of the predefinedtypes, functions supporting start and termination of a C++ program, support for dynamic memory management, supportfor dynamic type identification, support for exception processing, support for initializer lists, and other runtime support,as summarized in Table 37.

Table 37: Language support library summary [tab:support.summary]
Subclause Header

17.2 Common definitions <cstddef>, <cstdlib>17.3 Implementation properties <cfloat>, <climits>, <limits>, <version>17.4 Integer types <cstdint>17.5 Start and termination <cstdlib>17.6 Dynamic memory management <new>17.7 Type identification <typeinfo>17.8 Source location <source_location>17.9 Exception handling <exception>17.10 Initializer lists <initializer_list>17.11 Comparisons <compare>17.12 Coroutines <coroutine>17.13 Other runtime support <csetjmp>, <csignal>, <cstdarg>, <cstdlib>

17.2 Common definitions [support.types]
17.2.1 Header <cstddef> synopsis [cstddef.syn]
namespace std {

using ptrdiff_t = see below;
using size_t = see below;
using max_align_t = see below;
using nullptr_t = decltype(nullptr);

enum class byte : unsigned char {};

// 17.2.5, byte type operations
template<class IntType>
constexpr byte& operator<<=(byte& b, IntType shift) noexcept;

template<class IntType>
constexpr byte operator<<(byte b, IntType shift) noexcept;

template<class IntType>
constexpr byte& operator>>=(byte& b, IntType shift) noexcept;

template<class IntType>
constexpr byte operator>>(byte b, IntType shift) noexcept;

constexpr byte& operator|=(byte& l, byte r) noexcept;
constexpr byte operator|(byte l, byte r) noexcept;
constexpr byte& operator&=(byte& l, byte r) noexcept;
constexpr byte operator&(byte l, byte r) noexcept;
constexpr byte& operator^=(byte& l, byte r) noexcept;
constexpr byte operator^(byte l, byte r) noexcept;
constexpr byte operator~(byte b) noexcept;

§ 17.2.1 482

© ISO/IEC N4910

template<class IntType>
constexpr IntType to_integer(byte b) noexcept;

}

#define NULL see below
#define offsetof(P, D) see below

1 The contents and meaning of the header <cstddef> are the same as the C standard library header <stddef.h>, exceptthat it does not declare the type wchar_t, that it also declares the type byte and its associated operations (17.2.5), andas noted in 17.2.3 and 17.2.4.
See also: ISO C 7.19
17.2.2 Header <cstdlib> synopsis [cstdlib.syn]
namespace std {

using size_t = see below;
using div_t = see below;
using ldiv_t = see below;
using lldiv_t = see below;

}

#define NULL see below
#define EXIT_FAILURE see below
#define EXIT_SUCCESS see below
#define RAND_MAX see below
#define MB_CUR_MAX see below

namespace std {// Exposition-only function type aliases
extern "C" using c-atexit-handler = void(); // exposition only
extern "C++" using atexit-handler = void(); // exposition only
extern "C" using c-compare-pred = int(const void*, const void*); // exposition only
extern "C++" using compare-pred = int(const void*, const void*); // exposition only
// 17.5, start and termination
[[noreturn]] void abort() noexcept;
int atexit(c-atexit-handler* func) noexcept;
int atexit(atexit-handler* func) noexcept;
int at_quick_exit(c-atexit-handler* func) noexcept;
int at_quick_exit(atexit-handler* func) noexcept;
[[noreturn]] void exit(int status);
[[noreturn]] void _Exit(int status) noexcept;
[[noreturn]] void quick_exit(int status) noexcept;

char* getenv(const char* name);
int system(const char* string);

// 20.2.11, C library memory allocation
void* aligned_alloc(size_t alignment, size_t size);
void* calloc(size_t nmemb, size_t size);
void free(void* ptr);
void* malloc(size_t size);
void* realloc(void* ptr, size_t size);

double atof(const char* nptr);
int atoi(const char* nptr);
long int atol(const char* nptr);
long long int atoll(const char* nptr);
double strtod(const char* nptr, char** endptr);
float strtof(const char* nptr, char** endptr);
long double strtold(const char* nptr, char** endptr);
long int strtol(const char* nptr, char** endptr, int base);
long long int strtoll(const char* nptr, char** endptr, int base);
unsigned long int strtoul(const char* nptr, char** endptr, int base);

§ 17.2.2 483

© ISO/IEC N4910

unsigned long long int strtoull(const char* nptr, char** endptr, int base);

// 23.5.6, multibyte / wide string and character conversion functions
int mblen(const char* s, size_t n);
int mbtowc(wchar_t* pwc, const char* s, size_t n);
int wctomb(char* s, wchar_t wchar);
size_t mbstowcs(wchar_t* pwcs, const char* s, size_t n);
size_t wcstombs(char* s, const wchar_t* pwcs, size_t n);

// 27.12, C standard library algorithms
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,

c-compare-pred* compar);
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,

compare-pred* compar);
void qsort(void* base, size_t nmemb, size_t size, c-compare-pred* compar);
void qsort(void* base, size_t nmemb, size_t size, compare-pred* compar);

// 28.5.10, low-quality random number generation
int rand();
void srand(unsigned int seed);

// 28.7.2, absolute values
constexpr int abs(int j);
constexpr long int abs(long int j);
constexpr long long int abs(long long int j);
constexpr float abs(float j);
constexpr double abs(double j);
constexpr long double abs(long double j);

constexpr long int labs(long int j);
constexpr long long int llabs(long long int j);

constexpr div_t div(int numer, int denom);
constexpr ldiv_t div(long int numer, long int denom); // see 16.2
constexpr lldiv_t div(long long int numer, long long int denom); // see 16.2
constexpr ldiv_t ldiv(long int numer, long int denom);
constexpr lldiv_t lldiv(long long int numer, long long int denom);

}

1 The contents and meaning of the header <cstdlib> are the same as the C standard library header <stdlib.h>, exceptthat it does not declare the type wchar_t, and except as noted in 17.2.3, 17.2.4, 17.5, 20.2.11, 23.5.6, 27.12, 28.5.10,and 28.7.2.
[Note 1: Several functions have additional overloads in this document, but they have the same behavior as in the C standardlibrary (16.2). —end note]
See also: ISO C 7.22
17.2.3 Null pointers [support.types.nullptr]

1 The type nullptr_t is a synonym for the type of a nullptr expression, and it has the characteristics described in 6.8.2and 7.3.12.
[Note 1: Although nullptr’s address cannot be taken, the address of another nullptr_t object that is an lvalue can be taken. —endnote]

2 The macro NULL is an implementation-defined null pointer constant.172
See also: ISO C 7.19
17.2.4 Sizes, alignments, and offsets [support.types.layout]

1 The macro offsetof(type, member-designator) has the same semantics as the corresponding macro in the C standardlibrary header <stddef.h>, but accepts a restricted set of type arguments in this document. Use of the offsetof macrowith a type other than a standard-layout class (11.2) is conditionally-supported.173 The expression offsetof(type,
172) Possible definitions include 0 and 0L, but not (void*)0.
173) Note that offsetof is required to work as specified even if unary operator& is overloaded for any of the types involved.
§ 17.2.4 484

© ISO/IEC N4910

member-designator) is never type-dependent (13.8.3.3) and it is value-dependent (13.8.3.4) if and only if type is depen-dent. The result of applying the offsetofmacro to a static data member or a function member is undefined. No operationinvoked by the offsetofmacro shall throw an exception and noexcept(offsetof(type, member-designator)) shallbe true.
2 The type ptrdiff_t is an implementation-defined signed integer type that can hold the difference of two subscripts inan array object, as described in 7.6.6.
3 The type size_t is an implementation-defined unsigned integer type that is large enough to contain the size in bytes ofany object (7.6.2.5).
4 Recommended practice: An implementation should choose types for ptrdiff_t and size_t whose integer conversionranks (6.8.5) are no greater than that of signed long int unless a larger size is necessary to contain all the possiblevalues.
5 The type max_align_t is a trivial standard-layout type whose alignment requirement is at least as great as that of everyscalar type, and whose alignment requirement is supported in every context (6.7.6).
See also: ISO C 7.19
17.2.5 byte type operations [support.types.byteops]

template<class IntType>
constexpr byte& operator<<=(byte& b, IntType shift) noexcept;

1 Constraints: is_integral_v<IntType> is true.
2 Effects: Equivalent to: return b = b << shift;

template<class IntType>
constexpr byte operator<<(byte b, IntType shift) noexcept;

3 Constraints: is_integral_v<IntType> is true.
4 Effects: Equivalent to:

return static_cast<byte>(static_cast<unsigned int>(b) << shift);

template<class IntType>
constexpr byte& operator>>=(byte& b, IntType shift) noexcept;

5 Constraints: is_integral_v<IntType> is true.
6 Effects: Equivalent to: return b = b >> shift;

template<class IntType>
constexpr byte operator>>(byte b, IntType shift) noexcept;

7 Constraints: is_integral_v<IntType> is true.
8 Effects: Equivalent to:

return static_cast<byte>(static_cast<unsigned int>(b) >> shift);

constexpr byte& operator|=(byte& l, byte r) noexcept;

9 Effects: Equivalent to: return l = l | r;

constexpr byte operator|(byte l, byte r) noexcept;

10 Effects: Equivalent to:
return static_cast<byte>(static_cast<unsigned int>(l) | static_cast<unsigned int>(r));

constexpr byte& operator&=(byte& l, byte r) noexcept;

11 Effects: Equivalent to: return l = l & r;

constexpr byte operator&(byte l, byte r) noexcept;

12 Effects: Equivalent to:
return static_cast<byte>(static_cast<unsigned int>(l) & static_cast<unsigned int>(r));

§ 17.2.5 485

© ISO/IEC N4910

constexpr byte& operator^=(byte& l, byte r) noexcept;

13 Effects: Equivalent to: return l = l ^ r;

constexpr byte operator^(byte l, byte r) noexcept;

14 Effects: Equivalent to:
return static_cast<byte>(static_cast<unsigned int>(l) ^ static_cast<unsigned int>(r));

constexpr byte operator~(byte b) noexcept;

15 Effects: Equivalent to:
return static_cast<byte>(~static_cast<unsigned int>(b));

template<class IntType>
constexpr IntType to_integer(byte b) noexcept;

16 Constraints: is_integral_v<IntType> is true.
17 Effects: Equivalent to: return static_cast<IntType>(b);

17.3 Implementation properties [support.limits]
17.3.1 General [support.limits.general]

1 The headers <limits> (17.3.3), <climits> (17.3.6), and <cfloat> (17.3.7) supply characteristics of implementation-dependent arithmetic types (6.8.2).
17.3.2 Header <version> synopsis [version.syn]

1 The header <version> supplies implementation-dependent information about the C++ standard library (e.g., versionnumber and release date).
2 Each of the macros defined in <version> is also defined after inclusion of any member of the set of library headersindicated in the corresponding comment in this synopsis.
[Note 1: Future revisions of C++ might replace the values of these macros with greater values. —end note]
#define __cpp_lib_addressof_constexpr 201603L // also in <memory>
#define __cpp_lib_allocate_at_least 202106L // also in <memory>
#define __cpp_lib_allocator_traits_is_always_equal 201411L// also in <memory>, <scoped_allocator>, <string>, <deque>, <forward_list>, <list>, <vector>,// <map>, <set>, <unordered_map>, <unordered_set>
#define __cpp_lib_adaptor_iterator_pair_constructor 202106L // also in <stack>, <queue>
#define __cpp_lib_any 201606L // also in <any>
#define __cpp_lib_apply 201603L // also in <tuple>
#define __cpp_lib_array_constexpr 201811L // also in <iterator>, <array>
#define __cpp_lib_as_const 201510L // also in <utility>
#define __cpp_lib_associative_heterogeneous_erasure 202110L// also in <map>, <set>, <unordered_map>, <unordered_set>
#define __cpp_lib_assume_aligned 201811L // also in <memory>
#define __cpp_lib_atomic_flag_test 201907L // also in <atomic>
#define __cpp_lib_atomic_float 201711L // also in <atomic>
#define __cpp_lib_atomic_is_always_lock_free 201603L // also in <atomic>
#define __cpp_lib_atomic_lock_free_type_aliases 201907L // also in <atomic>
#define __cpp_lib_atomic_ref 201806L // also in <atomic>
#define __cpp_lib_atomic_shared_ptr 201711L // also in <memory>
#define __cpp_lib_atomic_value_initialization 201911L // also in <atomic>, <memory>
#define __cpp_lib_atomic_wait 201907L // also in <atomic>
#define __cpp_lib_barrier 201907L // also in <barrier>
#define __cpp_lib_bind_back 202202L // also in <functional>
#define __cpp_lib_bind_front 201907L // also in <functional>
#define __cpp_lib_bit_cast 201806L // also in <bit>
#define __cpp_lib_bitops 201907L // also in <bit>
#define __cpp_lib_bool_constant 201505L // also in <type_traits>
#define __cpp_lib_bounded_array_traits 201902L // also in <type_traits>
#define __cpp_lib_boyer_moore_searcher 201603L // also in <functional>
#define __cpp_lib_byte 201603L // also in <cstddef>
#define __cpp_lib_byteswap 202110L // also in <bit>
§ 17.3.2 486

© ISO/IEC N4910

#define __cpp_lib_char8_t 201907L// also in <atomic>, <filesystem>, <istream>, <limits>, <locale>, <ostream>, <string>, <string_view>
#define __cpp_lib_chrono 201907L // also in <chrono>
#define __cpp_lib_chrono_udls 201304L // also in <chrono>
#define __cpp_lib_clamp 201603L // also in <algorithm>
#define __cpp_lib_complex_udls 201309L // also in <complex>
#define __cpp_lib_concepts 202002L // also in <concepts>
#define __cpp_lib_constexpr_algorithms 201806L // also in <algorithm>
#define __cpp_lib_constexpr_cmath 202202L // also in <cmath>, <cstdlib>
#define __cpp_lib_constexpr_complex 201711L // also in <complex>
#define __cpp_lib_constexpr_dynamic_alloc 201907L // also in <memory>
#define __cpp_lib_constexpr_functional 201907L // also in <functional>
#define __cpp_lib_constexpr_iterator 201811L // also in <iterator>
#define __cpp_lib_constexpr_memory 202202L // also in <memory>
#define __cpp_lib_constexpr_numeric 201911L // also in <numeric>
#define __cpp_lib_constexpr_string 201907L // also in <string>
#define __cpp_lib_constexpr_string_view 201811L // also in <string_view>
#define __cpp_lib_constexpr_tuple 201811L // also in <tuple>
#define __cpp_lib_constexpr_typeinfo 202106L // also in <typeinfo>
#define __cpp_lib_constexpr_utility 201811L // also in <utility>
#define __cpp_lib_constexpr_vector 201907L // also in <vector>
#define __cpp_lib_containers_ranges 202202L// also in <vector>, <list>, <forward_list>, <map>, <set>, <unordered_map>, <unordered_set>,// <deque>, <queue>, <stack>, <string>
#define __cpp_lib_coroutine 201902L // also in <coroutine>
#define __cpp_lib_destroying_delete 201806L // also in <new>
#define __cpp_lib_enable_shared_from_this 201603L // also in <memory>
#define __cpp_lib_endian 201907L // also in <bit>
#define __cpp_lib_erase_if 202002L// also in <string>, <deque>, <forward_list>, <list>, <vector>, <map>, <set>, <unordered_map>,// <unordered_set>
#define __cpp_lib_exchange_function 201304L // also in <utility>
#define __cpp_lib_execution 201902L // also in <execution>
#define __cpp_lib_expected 202202L // also in <expected>
#define __cpp_lib_filesystem 201703L // also in <filesystem>
#define __cpp_lib_format 202110L // also in <format>
#define __cpp_lib_gcd_lcm 201606L // also in <numeric>
#define __cpp_lib_generic_associative_lookup 201304L // also in <map>, <set>
#define __cpp_lib_generic_unordered_lookup 201811L// also in <unordered_map>, <unordered_set>
#define __cpp_lib_hardware_interference_size 201703L // also in <new>
#define __cpp_lib_has_unique_object_representations 201606L // also in <type_traits>
#define __cpp_lib_hypot 201603L // also in <cmath>
#define __cpp_lib_incomplete_container_elements 201505L// also in <forward_list>, <list>, <vector>
#define __cpp_lib_int_pow2 202002L // also in <bit>
#define __cpp_lib_integer_comparison_functions 202002L // also in <utility>
#define __cpp_lib_integer_sequence 201304L // also in <utility>
#define __cpp_lib_integral_constant_callable 201304L // also in <type_traits>
#define __cpp_lib_interpolate 201902L // also in <cmath>, <numeric>
#define __cpp_lib_invoke 201411L // also in <functional>
#define __cpp_lib_invoke_r 202106L // also in <functional>
#define __cpp_lib_is_aggregate 201703L // also in <type_traits>
#define __cpp_lib_is_constant_evaluated 201811L // also in <type_traits>
#define __cpp_lib_is_final 201402L // also in <type_traits>
#define __cpp_lib_is_invocable 201703L // also in <type_traits>
#define __cpp_lib_is_layout_compatible 201907L // also in <type_traits>
#define __cpp_lib_is_nothrow_convertible 201806L // also in <type_traits>
#define __cpp_lib_is_null_pointer 201309L // also in <type_traits>
#define __cpp_lib_is_pointer_interconvertible 201907L // also in <type_traits>
#define __cpp_lib_is_scoped_enum 202011L // also in <type_traits>
#define __cpp_lib_is_swappable 201603L // also in <type_traits>
#define __cpp_lib_jthread 201911L // also in <stop_token>, <thread>
#define __cpp_lib_latch 201907L // also in <latch>
§ 17.3.2 487

© ISO/IEC N4910

#define __cpp_lib_launder 201606L // also in <new>
#define __cpp_lib_list_remove_return_type 201806L // also in <forward_list>, <list>
#define __cpp_lib_logical_traits 201510L // also in <type_traits>
#define __cpp_lib_make_from_tuple 201606L // also in <tuple>
#define __cpp_lib_make_reverse_iterator 201402L // also in <iterator>
#define __cpp_lib_make_unique 201304L // also in <memory>
#define __cpp_lib_map_try_emplace 201411L // also in <map>
#define __cpp_lib_math_constants 201907L // also in <numbers>
#define __cpp_lib_math_special_functions 201603L // also in <cmath>
#define __cpp_lib_memory_resource 201603L // also in <memory_resource>
#define __cpp_lib_move_only_function 202110L // also in <functional>
#define __cpp_lib_node_extract 201606L// also in <map>, <set>, <unordered_map>, <unordered_set>
#define __cpp_lib_nonmember_container_access 201411L// also in <array>, <deque>, <forward_list>, <iterator>, <list>, <map>, <regex>, <set>, <string>,// <unordered_map>, <unordered_set>, <vector>
#define __cpp_lib_not_fn 201603L // also in <functional>
#define __cpp_lib_null_iterators 201304L // also in <iterator>
#define __cpp_lib_optional 202110L // also in <optional>
#define __cpp_lib_out_ptr 202106L // also in <memory>
#define __cpp_lib_parallel_algorithm 201603L // also in <algorithm>, <numeric>
#define __cpp_lib_polymorphic_allocator 201902L // also in <memory_resource>
#define __cpp_lib_quoted_string_io 201304L // also in <iomanip>
#define __cpp_lib_ranges 202202L// also in <algorithm>, <functional>, <iterator>, <memory>, <ranges>
#define __cpp_lib_ranges_chunk 202202L // also in <ranges>
#define __cpp_lib_ranges_chunk_by 202202L // also in <ranges>
#define __cpp_lib_ranges_iota 202202L // also in <numeric>
#define __cpp_lib_ranges_join_with 202202L // also in <ranges>
#define __cpp_lib_ranges_slide 202202L // also in <ranges>
#define __cpp_lib_ranges_starts_ends_with 202106L // also in <algorithm>
#define __cpp_lib_ranges_to_container 202202L // also in <ranges>
#define __cpp_lib_ranges_zip 202110L // also in <ranges>, <tuple>, <utility>
#define __cpp_lib_raw_memory_algorithms 201606L // also in <memory>
#define __cpp_lib_reference_from_temporary 202202L // also in <type_traits>
#define __cpp_lib_remove_cvref 201711L // also in <type_traits>
#define __cpp_lib_result_of_sfinae 201210L // also in <functional>, <type_traits>
#define __cpp_lib_robust_nonmodifying_seq_ops 201304L // also in <algorithm>
#define __cpp_lib_sample 201603L // also in <algorithm>
#define __cpp_lib_scoped_lock 201703L // also in <mutex>
#define __cpp_lib_semaphore 201907L // also in <semaphore>
#define __cpp_lib_shared_mutex 201505L // also in <shared_mutex>
#define __cpp_lib_shared_ptr_arrays 201707L // also in <memory>
#define __cpp_lib_shared_ptr_weak_type 201606L // also in <memory>
#define __cpp_lib_shared_timed_mutex 201402L // also in <shared_mutex>
#define __cpp_lib_shift 202202L // also in <algorithm>
#define __cpp_lib_smart_ptr_for_overwrite 202002L // also in <memory>
#define __cpp_lib_source_location 201907L // also in <source_location>
#define __cpp_lib_span 202002L // also in
#define __cpp_lib_spanstream 202106L // also in <spanstream>
#define __cpp_lib_ssize 201902L // also in <iterator>
#define __cpp_lib_stacktrace 202011L // also in <stacktrace>
#define __cpp_lib_starts_ends_with 201711L // also in <string>, <string_view>
#define __cpp_lib_stdatomic_h 202011L // also in <stdatomic.h>
#define __cpp_lib_string_contains 202011L // also in <string>, <string_view>
#define __cpp_lib_string_resize_and_overwrite 202110L // also in <string>
#define __cpp_lib_string_udls 201304L // also in <string>
#define __cpp_lib_string_view 201803L // also in <string>, <string_view>
#define __cpp_lib_syncbuf 201803L // also in <syncstream>
#define __cpp_lib_three_way_comparison 201907L // also in <compare>
#define __cpp_lib_to_address 201711L // also in <memory>
#define __cpp_lib_to_array 201907L // also in <array>
#define __cpp_lib_to_chars 201611L // also in <charconv>
#define __cpp_lib_to_underlying 202102L // also in <utility>
§ 17.3.2 488

© ISO/IEC N4910

#define __cpp_lib_transformation_trait_aliases 201304L // also in <type_traits>
#define __cpp_lib_transparent_operators 201510L // also in <memory>, <functional>
#define __cpp_lib_tuple_element_t 201402L // also in <tuple>
#define __cpp_lib_tuples_by_type 201304L // also in <utility>, <tuple>
#define __cpp_lib_type_identity 201806L // also in <type_traits>
#define __cpp_lib_type_trait_variable_templates 201510L // also in <type_traits>
#define __cpp_lib_uncaught_exceptions 201411L // also in <exception>
#define __cpp_lib_unordered_map_try_emplace 201411L // also in <unordered_map>
#define __cpp_lib_unreachable 202202L // also in <utility>
#define __cpp_lib_unwrap_ref 201811L // also in <type_traits>
#define __cpp_lib_variant 202106L // also in <variant>
#define __cpp_lib_void_t 201411L // also in <type_traits>
17.3.3 Header <limits> synopsis [limits.syn]
namespace std {// 17.3.4, floating-point type properties

enum float_round_style;
enum float_denorm_style;

// 17.3.5, class template numeric_limits
template<class T> class numeric_limits;

template<class T> class numeric_limits<const T>;
template<class T> class numeric_limits<volatile T>;
template<class T> class numeric_limits<const volatile T>;

template<> class numeric_limits<bool>;

template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<char8_t>;
template<> class numeric_limits<char16_t>;
template<> class numeric_limits<char32_t>;
template<> class numeric_limits<wchar_t>;

template<> class numeric_limits<short>;
template<> class numeric_limits<int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<long long>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<unsigned long>;
template<> class numeric_limits<unsigned long long>;

template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

}

17.3.4 Floating-point type properties [fp.style]
17.3.4.1 Type float_round_style [round.style]
namespace std {

enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

1 The rounding mode for floating-point arithmetic is characterized by the values:
§ 17.3.4.1 489

© ISO/IEC N4910

—(1.1) round_indeterminate if the rounding style is indeterminable
—(1.2) round_toward_zero if the rounding style is toward zero
—(1.3) round_to_nearest if the rounding style is to the nearest representable value
—(1.4) round_toward_infinity if the rounding style is toward infinity
—(1.5) round_toward_neg_infinity if the rounding style is toward negative infinity

17.3.4.2 Type float_denorm_style [denorm.style]
namespace std {

enum float_denorm_style {
denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1

};
}

1 The presence or absence of subnormal numbers (variable number of exponent bits) is characterized by the values:
—(1.1) denorm_indeterminate if it cannot be determined whether or not the type allows subnormal values
—(1.2) denorm_absent if the type does not allow subnormal values
—(1.3) denorm_present if the type does allow subnormal values

17.3.5 Class template numeric_limits [numeric.limits]
17.3.5.1 General [numeric.limits.general]

1 The numeric_limits class template provides a C++ program with information about various properties of the imple-mentation’s representation of the arithmetic types.
namespace std {

template<class T> class numeric_limits {
public:
static constexpr bool is_specialized = false;
static constexpr T min() noexcept { return T(); }
static constexpr T max() noexcept { return T(); }
static constexpr T lowest() noexcept { return T(); }

static constexpr int digits = 0;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = false;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 0;
static constexpr T epsilon() noexcept { return T(); }
static constexpr T round_error() noexcept { return T(); }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity() noexcept { return T(); }
static constexpr T quiet_NaN() noexcept { return T(); }
static constexpr T signaling_NaN() noexcept { return T(); }
static constexpr T denorm_min() noexcept { return T(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;

§ 17.3.5.1 490

© ISO/IEC N4910

static constexpr bool is_modulo = false;

static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;

};
}

2 For all members declared static constexpr in the numeric_limits template, specializations shall define these valuesin such a way that they are usable as constant expressions.
3 For the numeric_limits primary template, all data members are value-initialized and all member functions return avalue-initialized object.
[Note 1: This means all members have zero or false values unless numeric_limits is specialized for a type. —end note]

4 Specializations shall be provided for each arithmetic type, both floating-point and integer, including bool. The member
is_specialized shall be true for all such specializations of numeric_limits.

5 The value of each member of a specialization of numeric_limits on a cv-qualified type cv T shall be equal to the valueof the corresponding member of the specialization on the unqualified type T.
6 Non-arithmetic standard types, such as complex<T> (28.4.3), shall not have specializations.
17.3.5.2 numeric_limits members [numeric.limits.members]

1 Each member function defined in this subclause is signal-safe (17.13.5).
static constexpr T min() noexcept;

2 Minimum finite value.174
3 For floating-point types with subnormal numbers, returns the minimum positive normalized value.
4 Meaningful for all specializations in which is_bounded != false, or is_bounded == false && is_signed ==

false.
static constexpr T max() noexcept;

5 Maximum finite value.175
6 Meaningful for all specializations in which is_bounded != false.

static constexpr T lowest() noexcept;

7 A finite value x such that there is no other finite value y where y < x.176
8 Meaningful for all specializations in which is_bounded != false.

static constexpr int digits;

9 Number of radix digits that can be represented without change.
10 For integer types, the number of non-sign bits in the representation.
11 For floating-point types, the number of radix digits in the mantissa.177

static constexpr int digits10;

12 Number of base 10 digits that can be represented without change.178
13 Meaningful for all specializations in which is_bounded != false.

static constexpr int max_digits10;

14 Number of base 10 digits required to ensure that values which differ are always differentiated.
15 Meaningful for all floating-point types.

174) Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.
175) Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL_MAX, etc.
176) lowest() is necessary because not all floating-point representations have a smallest (most negative) value that is the negative of the largest(most positive) finite value.
177) Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
178) Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.
§ 17.3.5.2 491

© ISO/IEC N4910

static constexpr bool is_signed;

16 true if the type is signed.
17 Meaningful for all specializations.

static constexpr bool is_integer;

18 true if the type is integer.
19 Meaningful for all specializations.

static constexpr bool is_exact;

20 true if the type uses an exact representation. All integer types are exact, but not all exact types are integer. Forexample, rational and fixed-exponent representations are exact but not integer.
21 Meaningful for all specializations.

static constexpr int radix;

22 For floating-point types, specifies the base or radix of the exponent representation (often 2).179
23 For integer types, specifies the base of the representation.180
24 Meaningful for all specializations.

static constexpr T epsilon() noexcept;

25 Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.181
26 Meaningful for all floating-point types.

static constexpr T round_error() noexcept;

27 Measure of the maximum rounding error.182
static constexpr int min_exponent;

28 Minimum negative integer such that radix raised to the power of one less than that integer is a normalizedfloating-point number.183
29 Meaningful for all floating-point types.

static constexpr int min_exponent10;

30 Minimum negative integer such that 10 raised to that power is in the range of normalized floating-point numbers.184
31 Meaningful for all floating-point types.

static constexpr int max_exponent;

32 Maximum positive integer such that radix raised to the power one less than that integer is a representable finitefloating-point number.185
33 Meaningful for all floating-point types.

static constexpr int max_exponent10;

34 Maximum positive integer such that 10 raised to that power is in the range of representable finite floating-pointnumbers.186
35 Meaningful for all floating-point types.

static constexpr bool has_infinity;

36 true if the type has a representation for positive infinity.
179) Equivalent to FLT_RADIX.
180) Distinguishes types with bases other than 2 (e.g. BCD).
181) Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
182) Rounding error is described in LIA-1 Section 5.2.4 and Annex C Rationale Section C.5.2.4 — Rounding and rounding constants.
183) Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
184) Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
185) Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.
186) Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
§ 17.3.5.2 492

© ISO/IEC N4910

37 Meaningful for all floating-point types.
38 Shall be true for all specializations in which is_iec559 != false.

static constexpr bool has_quiet_NaN;

39 true if the type has a representation for a quiet (non-signaling) “Not a Number”.187
40 Meaningful for all floating-point types.
41 Shall be true for all specializations in which is_iec559 != false.

static constexpr bool has_signaling_NaN;

42 true if the type has a representation for a signaling “Not a Number”.188
43 Meaningful for all floating-point types.
44 Shall be true for all specializations in which is_iec559 != false.

static constexpr float_denorm_style has_denorm;

45 denorm_present if the type allows subnormal values (variable number of exponent bits),189 denorm_absent ifthe type does not allow subnormal values, and denorm_indeterminate if it is indeterminate at compile timewhether the type allows subnormal values.
46 Meaningful for all floating-point types.

static constexpr bool has_denorm_loss;

47 true if loss of accuracy is detected as a denormalization loss, rather than as an inexact result.190
static constexpr T infinity() noexcept;

48 Representation of positive infinity, if available.191
49 Meaningful for all specializations for which has_infinity != false. Required in specializations for which

is_iec559 != false.
static constexpr T quiet_NaN() noexcept;

50 Representation of a quiet “Not a Number”, if available.192
51 Meaningful for all specializations for which has_quiet_NaN != false. Required in specializations for which

is_iec559 != false.
static constexpr T signaling_NaN() noexcept;

52 Representation of a signaling “Not a Number”, if available.193
53 Meaningful for all specializations for which has_signaling_NaN != false. Required in specializations forwhich is_iec559 != false.

static constexpr T denorm_min() noexcept;

54 Minimum positive subnormal value.194
55 Meaningful for all floating-point types.
56 In specializations for which has_denorm == false, returns the minimum positive normalized value.

static constexpr bool is_iec559;

57 true if and only if the type adheres to ISO/IEC/IEEE 60559.195
58 Meaningful for all floating-point types.

187) Required by LIA-1.
188) Required by LIA-1.
189) Required by LIA-1.
190) See ISO/IEC/IEEE 60559.
191) Required by LIA-1.
192) Required by LIA-1.
193) Required by LIA-1.
194) Required by LIA-1.
195) ISO/IEC/IEEE 60559:2011 is the same as IEEE 754-2008.
§ 17.3.5.2 493

© ISO/IEC N4910

static constexpr bool is_bounded;

59 true if the set of values representable by the type is finite.196
[Note 1: All fundamental types (6.8.2) are bounded. This member would be false for arbitrary precision types. —end note]

60 Meaningful for all specializations.
static constexpr bool is_modulo;

61 true if the type is modulo.197 A type is modulo if, for any operation involving +, -, or * on values of that typewhose result would fall outside the range [min(), max()], the value returned differs from the true value by aninteger multiple of max() - min() + 1.
62 [Example 1: is_modulo is false for signed integer types (6.8.2) unless an implementation, as an extension to this document,defines signed integer overflow to wrap. —end example]
63 Meaningful for all specializations.

static constexpr bool traps;

64 true if, at the start of the program, there exists a value of the type that would cause an arithmetic operation usingthat value to trap.198
65 Meaningful for all specializations.

static constexpr bool tinyness_before;

66 true if tinyness is detected before rounding.199
67 Meaningful for all floating-point types.

static constexpr float_round_style round_style;

68 The rounding style for the type.200
69 Meaningful for all floating-point types. Specializations for integer types shall return round_toward_zero.
17.3.5.3 numeric_limits specializations [numeric.special]

1 All members shall be provided for all specializations. However, many values are only required to be meaningfulunder certain conditions (for example, epsilon() is only meaningful if is_integer is false). Any value that is not“meaningful” shall be set to 0 or false.
2 [Example 1:

namespace std {
template<> class numeric_limits<float> {
public:
static constexpr bool is_specialized = true;

static constexpr float min() noexcept { return 1.17549435E-38F; }
static constexpr float max() noexcept { return 3.40282347E+38F; }
static constexpr float lowest() noexcept { return -3.40282347E+38F; }

static constexpr int digits = 24;
static constexpr int digits10 = 6;
static constexpr int max_digits10 = 9;

static constexpr bool is_signed = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;

static constexpr int radix = 2;
static constexpr float epsilon() noexcept { return 1.19209290E-07F; }
static constexpr float round_error() noexcept { return 0.5F; }

196) Required by LIA-1.
197) Required by LIA-1.
198) Required by LIA-1.
199) Refer to ISO/IEC/IEEE 60559. Required by LIA-1.
200) Equivalent to FLT_ROUNDS. Required by LIA-1.
§ 17.3.5.3 494

© ISO/IEC N4910

static constexpr int min_exponent = -125;
static constexpr int min_exponent10 = - 37;
static constexpr int max_exponent = +128;
static constexpr int max_exponent10 = + 38;

static constexpr bool has_infinity = true;
static constexpr bool has_quiet_NaN = true;
static constexpr bool has_signaling_NaN = true;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;

static constexpr float infinity() noexcept { return value; }
static constexpr float quiet_NaN() noexcept { return value; }
static constexpr float signaling_NaN() noexcept { return value; }
static constexpr float denorm_min() noexcept { return min(); }

static constexpr bool is_iec559 = true;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
static constexpr bool traps = true;
static constexpr bool tinyness_before = true;

static constexpr float_round_style round_style = round_to_nearest;
};

}

—end example]
3 The specialization for bool shall be provided as follows:

namespace std {
template<> class numeric_limits<bool> {
public:
static constexpr bool is_specialized = true;
static constexpr bool min() noexcept { return false; }
static constexpr bool max() noexcept { return true; }
static constexpr bool lowest() noexcept { return false; }

static constexpr int digits = 1;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;

static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr bool epsilon() noexcept { return 0; }
static constexpr bool round_error() noexcept { return 0; }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr bool infinity() noexcept { return 0; }
static constexpr bool quiet_NaN() noexcept { return 0; }
static constexpr bool signaling_NaN() noexcept { return 0; }
static constexpr bool denorm_min() noexcept { return 0; }

static constexpr bool is_iec559 = false;

§ 17.3.5.3 495

© ISO/IEC N4910

static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;

static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;

};
}

17.3.6 Header <climits> synopsis [climits.syn]
#define CHAR_BIT see below
#define SCHAR_MIN see below
#define SCHAR_MAX see below
#define UCHAR_MAX see below
#define CHAR_MIN see below
#define CHAR_MAX see below
#define MB_LEN_MAX see below
#define SHRT_MIN see below
#define SHRT_MAX see below
#define USHRT_MAX see below
#define INT_MIN see below
#define INT_MAX see below
#define UINT_MAX see below
#define LONG_MIN see below
#define LONG_MAX see below
#define ULONG_MAX see below
#define LLONG_MIN see below
#define LLONG_MAX see below
#define ULLONG_MAX see below

1 The header <climits> defines all macros the same as the C standard library header <limits.h>.
[Note 1: The types of the constants defined by macros in <climits> are not required to match the types to which the macros refer.—end note]
See also: ISO C 5.2.4.2.1
17.3.7 Header <cfloat> synopsis [cfloat.syn]
#define FLT_ROUNDS see below
#define FLT_EVAL_METHOD see below
#define FLT_HAS_SUBNORM see below
#define DBL_HAS_SUBNORM see below
#define LDBL_HAS_SUBNORM see below
#define FLT_RADIX see below
#define FLT_MANT_DIG see below
#define DBL_MANT_DIG see below
#define LDBL_MANT_DIG see below
#define FLT_DECIMAL_DIG see below
#define DBL_DECIMAL_DIG see below
#define LDBL_DECIMAL_DIG see below
#define DECIMAL_DIG see below
#define FLT_DIG see below
#define DBL_DIG see below
#define LDBL_DIG see below
#define FLT_MIN_EXP see below
#define DBL_MIN_EXP see below
#define LDBL_MIN_EXP see below
#define FLT_MIN_10_EXP see below
#define DBL_MIN_10_EXP see below
#define LDBL_MIN_10_EXP see below
#define FLT_MAX_EXP see below
#define DBL_MAX_EXP see below
#define LDBL_MAX_EXP see below
#define FLT_MAX_10_EXP see below
#define DBL_MAX_10_EXP see below

§ 17.3.7 496

© ISO/IEC N4910

#define LDBL_MAX_10_EXP see below
#define FLT_MAX see below
#define DBL_MAX see below
#define LDBL_MAX see below
#define FLT_EPSILON see below
#define DBL_EPSILON see below
#define LDBL_EPSILON see below
#define FLT_MIN see below
#define DBL_MIN see below
#define LDBL_MIN see below
#define FLT_TRUE_MIN see below
#define DBL_TRUE_MIN see below
#define LDBL_TRUE_MIN see below

1 The header <cfloat> defines all macros the same as the C standard library header <float.h>.
See also: ISO C 5.2.4.2.2
17.4 Integer types [cstdint]
17.4.1 General [cstdint.general]

1 The header <cstdint> (17.4.2) supplies integer types having specified widths, and macros that specify limits of integertypes.
17.4.2 Header <cstdint> synopsis [cstdint.syn]
namespace std {

using int8_t = signed integer type; // optional
using int16_t = signed integer type; // optional
using int32_t = signed integer type; // optional
using int64_t = signed integer type; // optional
using intN_t = see below; // optional
using int_fast8_t = signed integer type;
using int_fast16_t = signed integer type;
using int_fast32_t = signed integer type;
using int_fast64_t = signed integer type;
using int_fastN_t = see below; // optional
using int_least8_t = signed integer type;
using int_least16_t = signed integer type;
using int_least32_t = signed integer type;
using int_least64_t = signed integer type;
using int_leastN_t = see below; // optional
using intmax_t = signed integer type;
using intptr_t = signed integer type; // optional
using uint8_t = unsigned integer type; // optional
using uint16_t = unsigned integer type; // optional
using uint32_t = unsigned integer type; // optional
using uint64_t = unsigned integer type; // optional
using uintN_t = see below; // optional
using uint_fast8_t = unsigned integer type;
using uint_fast16_t = unsigned integer type;
using uint_fast32_t = unsigned integer type;
using uint_fast64_t = unsigned integer type;
using uint_fastN_t = see below; // optional
using uint_least8_t = unsigned integer type;
using uint_least16_t = unsigned integer type;
using uint_least32_t = unsigned integer type;
using uint_least64_t = unsigned integer type;
using uint_leastN_t = see below; // optional

§ 17.4.2 497

© ISO/IEC N4910

using uintmax_t = unsigned integer type;
using uintptr_t = unsigned integer type; // optional

}

#define INTN_MIN see below
#define INTN_MAX see below
#define UINTN_MAX see below

#define INT_FASTN_MIN see below
#define INT_FASTN_MAX see below
#define UINT_FASTN_MAX see below

#define INT_LEASTN_MIN see below
#define INT_LEASTN_MAX see below
#define UINT_LEASTN_MAX see below

#define INTMAX_MIN see below
#define INTMAX_MAX see below
#define UINTMAX_MAX see below

#define INTPTR_MIN see below // optional
#define INTPTR_MAX see below // optional
#define UINTPTR_MAX see below // optional
#define PTRDIFF_MIN see below
#define PTRDIFF_MAX see below
#define SIZE_MAX see below

#define SIG_ATOMIC_MIN see below
#define SIG_ATOMIC_MAX see below

#define WCHAR_MIN see below
#define WCHAR_MAX see below

#define WINT_MIN see below
#define WINT_MAX see below

#define INTN_C(value) see below
#define UINTN_C(value) see below
#define INTMAX_C(value) see below
#define UINTMAX_C(value) see below

1 The header defines all types and macros the same as the C standard library header <stdint.h>.
See also: ISO C 7.20

2 All types that use the placeholder N are optional when N is not 8, 16, 32, or 64. The exact-width types intN_t and
uintN_t for N = 8, 16, 32, and 64 are also optional; however, if an implementation defines integer types with thecorresponding width and no padding bits, it defines the corresponding typedef-names. Each of the macros listed in thissubclause is defined if and only if the implementation defines the corresponding typedef-name.
[Note 1: The macros INTN_C and UINTN_C correspond to the typedef-names int_leastN_t and uint_leastN_t, respectively. —endnote]
17.5 Startup and termination [support.start.term]

1 [Note 1: The header <cstdlib> (17.2.2) declares the functions described in this subclause. —end note]
[[noreturn]] void _Exit(int status) noexcept;

2 Effects: This function has the semantics specified in the C standard library.
3 Remarks: The program is terminatedwithout executing destructors for objects of automatic, thread, or static storageduration and without calling functions passed to atexit() (6.9.3.4). The function _Exit is signal-safe (17.13.5).

[[noreturn]] void abort() noexcept;

4 Effects: This function has the semantics specified in the C standard library.
§ 17.5 498

© ISO/IEC N4910

5 Remarks: The program is terminatedwithout executing destructors for objects of automatic, thread, or static storageduration and without calling functions passed to atexit() (6.9.3.4). The function abort is signal-safe (17.13.5).
int atexit(c-atexit-handler* f) noexcept;
int atexit(atexit-handler* f) noexcept;

6 Effects: The atexit() functions register the function pointed to by f to be called without arguments at normalprogram termination. It is unspecified whether a call to atexit() that does not happen before (6.9.2) a call to
exit() will succeed.
[Note 2: The atexit() functions do not introduce a data race (16.4.6.10). —end note]

7 Implementation limits: The implementation shall support the registration of at least 32 functions.
8 Returns: The atexit() function returns zero if the registration succeeds, nonzero if it fails.

[[noreturn]] void exit(int status);

9 Effects:
—(9.1) First, objects with thread storage duration and associated with the current thread are destroyed. Next,objects with static storage duration are destroyed and functions registered by calling atexit are called.201See 6.9.3.4 for the order of destructions and calls. (Objects with automatic storage duration are not destroyedas a result of calling exit().)202
If a registered function invoked by exit exits via an exception, the function std::terminate is invoked(14.6.2).

—(9.2) Next, all open C streams (as mediated by the function signatures declared in <cstdio> (31.13.1)) withunwritten buffered data are flushed, all open C streams are closed, and all files created by calling tmpfile()are removed.
—(9.3) Finally, control is returned to the host environment. If status is zero or EXIT_SUCCESS, an implementation-defined form of the status successful termination is returned. If status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is returned. Otherwise the status returned is implementation-defined.203

int at_quick_exit(c-atexit-handler* f) noexcept;
int at_quick_exit(atexit-handler* f) noexcept;

10 Effects: The at_quick_exit() functions register the function pointed to by f to be called without arguments when
quick_exit is called. It is unspecified whether a call to at_quick_exit() that does not happen before (6.9.2) allcalls to quick_exit will succeed.
[Note 3: The at_quick_exit() functions do not introduce a data race (16.4.6.10). —end note]
[Note 4: The order of registration could be indeterminate if at_quick_exit was called from more than one thread. —endnote]
[Note 5: The at_quick_exit registrations are distinct from the atexit registrations, and applications might need to call bothregistration functions with the same argument. —end note]

11 Implementation limits: The implementation shall support the registration of at least 32 functions.
12 Returns: Zero if the registration succeeds, nonzero if it fails.

[[noreturn]] void quick_exit(int status) noexcept;

13 Effects: Functions registered by calls to at_quick_exit are called in the reverse order of their registration, exceptthat a function shall be called after any previously registered functions that had already been called at the time itwas registered. Objects shall not be destroyed as a result of calling quick_exit. If a registered function invokedby quick_exit exits via an exception, the function std::terminate is invoked (14.6.2).
[Note 6: A function registered via at_quick_exit is invoked by the thread that calls quick_exit, which can be a differentthread than the one that registered it, so registered functions cannot rely on the identity of objects with thread storage duration.—end note]
After calling registered functions, quick_exit shall call _Exit(status).

201) A function is called for every time it is registered.
202) Objects with automatic storage duration are all destroyed in a program whose main function (6.9.3.1) contains no objects with automatic storageduration and executes the call to exit(). Control can be transferred directly to such a main function by throwing an exception that is caught in main.
203) The macros EXIT_FAILURE and EXIT_SUCCESS are defined in <cstdlib> (17.2.2).
§ 17.5 499

© ISO/IEC N4910

14 Remarks: The function quick_exit is signal-safe (17.13.5) when the functions registered with at_quick_exitare.
See also: ISO C 7.22.4
17.6 Dynamic memory management [support.dynamic]
17.6.1 General [support.dynamic.general]

1 The header <new> defines several functions that manage the allocation of dynamic storage in a program. It also definescomponents for reporting storage management errors.
17.6.2 Header <new> synopsis [new.syn]
namespace std {// 17.6.4, storage allocation errors

class bad_alloc;
class bad_array_new_length;

struct destroying_delete_t {
explicit destroying_delete_t() = default;

};
inline constexpr destroying_delete_t destroying_delete{};

// global operator new control
enum class align_val_t : size_t {};

struct nothrow_t { explicit nothrow_t() = default; };
extern const nothrow_t nothrow;

using new_handler = void (*)();
new_handler get_new_handler() noexcept;
new_handler set_new_handler(new_handler new_p) noexcept;

// 17.6.5, pointer optimization barrier
template<class T> [[nodiscard]] constexpr T* launder(T* p) noexcept;

// 17.6.6, hardware interference size
inline constexpr size_t hardware_destructive_interference_size = implementation-defined;
inline constexpr size_t hardware_constructive_interference_size = implementation-defined;

}

// 17.6.3, storage allocation and deallocation
[[nodiscard]] void* operator new(std::size_t size);
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment);
[[nodiscard]] void* operator new(std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

void operator delete(void* ptr) noexcept;
void operator delete(void* ptr, std::size_t size) noexcept;
void operator delete(void* ptr, std::align_val_t alignment) noexcept;
void operator delete(void* ptr, std::size_t size, std::align_val_t alignment) noexcept;
void operator delete(void* ptr, const std::nothrow_t&) noexcept;
void operator delete(void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

[[nodiscard]] void* operator new[](std::size_t size);
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment);
[[nodiscard]] void* operator new[](std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

void operator delete[](void* ptr) noexcept;
void operator delete[](void* ptr, std::size_t size) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment) noexcept;
void operator delete[](void* ptr, std::size_t size, std::align_val_t alignment) noexcept;

§ 17.6.2 500

© ISO/IEC N4910

void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

[[nodiscard]] void* operator new (std::size_t size, void* ptr) noexcept;
[[nodiscard]] void* operator new[](std::size_t size, void* ptr) noexcept;
void operator delete (void* ptr, void*) noexcept;
void operator delete[](void* ptr, void*) noexcept;

17.6.3 Storage allocation and deallocation [new.delete]
17.6.3.1 General [new.delete.general]

1 Except where otherwise specified, the provisions of 6.7.5.5 apply to the library versions of operator new and operator
delete. If the value of an alignment argument passed to any of these functions is not a valid alignment value, thebehavior is undefined.
17.6.3.2 Single-object forms [new.delete.single]

[[nodiscard]] void* operator new(std::size_t size);
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment);

1 Effects: The allocation functions (6.7.5.5.2) called by a new-expression (7.6.2.8) to allocate size bytes of storage.The second form is called for a type with new-extended alignment, and the first form is called otherwise.
2 Replaceable: A C++ program may define functions with either of these function signatures, and thereby displacethe default versions defined by the C++ standard library.
3 Required behavior: Return a non-null pointer to suitably aligned storage (6.7.5.5), or else throw a bad_allocexception. This requirement is binding on any replacement versions of these functions.
4 Default behavior:

—(4.1) Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether theattempt involves a call to the C standard library functions malloc or aligned_alloc is unspecified.
—(4.2) Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the current new_-

handler (17.6.4.5) is a null pointer value, throws bad_alloc.
—(4.3) Otherwise, the function calls the current new_handler function (17.6.4.3). If the called function returns, theloop repeats.
—(4.4) The loop terminates when an attempt to allocate the requested storage is successful or when a called

new_handler function does not return.
[[nodiscard]] void* operator new(std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

5 Effects: Same as above, except that these are called by a placement version of a new-expression when a C++program prefers a null pointer result as an error indication, instead of a bad_alloc exception.
6 Replaceable: A C++ program may define functions with either of these function signatures, and thereby displacethe default versions defined by the C++ standard library.
7 Required behavior: Return a non-null pointer to suitably aligned storage (6.7.5.5), or else return a null pointer.Each of these nothrow versions of operator new returns a pointer obtained as if acquired from the (possiblyreplaced) corresponding non-placement function. This requirement is binding on any replacement versions ofthese functions.
8 Default behavior: Calls operator new(size), or operator new(size, alignment), respectively. If the callreturns normally, returns the result of that call. Otherwise, returns a null pointer.
9 [Example 1:

T* p1 = new T; // throws bad_alloc if it fails
T* p2 = new(nothrow) T; // returns nullptr if it fails
— end example]

void operator delete(void* ptr) noexcept;
void operator delete(void* ptr, std::size_t size) noexcept;
void operator delete(void* ptr, std::align_val_t alignment) noexcept;

§ 17.6.3.2 501

© ISO/IEC N4910

void operator delete(void* ptr, std::size_t size, std::align_val_t alignment) noexcept;

10 Preconditions: ptr is a null pointer or its value represents the address of a block of memory allocated by an earliercall to a (possibly replaced) operator new(std::size_t) or operator new(std::size_t, std::align_val_-
t) which has not been invalidated by an intervening call to operator delete.

11 If the alignment parameter is not present, ptr was returned by an allocation function without an alignmentparameter. If present, the alignment argument is equal to the alignment argument passed to the allocationfunction that returned ptr. If present, the size argument is equal to the size argument passed to the allocationfunction that returned ptr.
12 Effects: The deallocation functions (6.7.5.5.3) called by a delete-expression (7.6.2.9) to render the value of ptrinvalid.
13 Replaceable: A C++ program may define functions with any of these function signatures, and thereby displacethe default versions defined by the C++ standard library. If a function without a size parameter is defined, theprogram should also define the corresponding function with a size parameter. If a function with a size parameteris defined, the program shall also define the corresponding version without the size parameter.

[Note 1: The default behavior below might change in the future, which will require replacing both deallocation functionswhen replacing the allocation function. —end note]
14 Required behavior: A call to an operator delete with a size parameter may be changed to a call to thecorresponding operator delete without a size parameter, without affecting memory allocation.

[Note 2: A conforming implementation is for operator delete(void* ptr, std::size_t size) to simply call operator
delete(ptr). —end note]

15 Default behavior: The functions that have a size parameter forward their other parameters to the correspondingfunction without a size parameter.
[Note 3: See the note in the above Replaceable: paragraph. —end note]

16 Default behavior: If ptr is null, does nothing. Otherwise, reclaims the storage allocated by the earlier call to
operator new.

17 Remarks: It is unspecified under what conditions part or all of such reclaimed storage will be allocated bysubsequent calls to operator new or any of aligned_alloc, calloc, malloc, or realloc, declared in <cstdlib>(17.2.2).
void operator delete(void* ptr, const std::nothrow_t&) noexcept;
void operator delete(void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

18 Preconditions: ptr is a null pointer or its value represents the address of a block of memory allocated by an earliercall to a (possibly replaced) operator new(std::size_t) or operator new(std::size_t, std::align_val_-
t) which has not been invalidated by an intervening call to operator delete.

19 If the alignment parameter is not present, ptr was returned by an allocation function without an alignmentparameter. If present, the alignment argument is equal to the alignment argument passed to the allocationfunction that returned ptr.
20 Effects: The deallocation functions (6.7.5.5.3) called by the implementation to render the value of ptr invalidwhen the constructor invoked from a nothrow placement version of the new-expression throws an exception.
21 Replaceable: A C++ program may define functions with either of these function signatures, and thereby displacethe default versions defined by the C++ standard library.
22 Default behavior: Calls operator delete(ptr), or operator delete(ptr, alignment), respectively.
17.6.3.3 Array forms [new.delete.array]

[[nodiscard]] void* operator new[](std::size_t size);
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment);

1 Effects: The allocation functions (6.7.5.5.2) called by the array form of a new-expression (7.6.2.8) to allocate
size bytes of storage. The second form is called for a type with new-extended alignment, and the first form iscalled otherwise.204

204) It is not the direct responsibility of operator new[] or operator delete[] to note the repetition count or element size of the array. Thoseoperations are performed elsewhere in the array new and delete expressions. The array new expression, can, however, increase the size argument to
operator new[] to obtain space to store supplemental information.
§ 17.6.3.3 502

© ISO/IEC N4910

2 Replaceable: A C++ program may define functions with either of these function signatures, and thereby displacethe default versions defined by the C++ standard library.
3 Required behavior: Same as for the corresponding single-object forms. This requirement is binding on anyreplacement versions of these functions.
4 Default behavior: Returns operator new(size), or operator new(size, alignment), respectively.

[[nodiscard]] void* operator new[](std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

5 Effects: Same as above, except that these are called by a placement version of a new-expression when a C++program prefers a null pointer result as an error indication, instead of a bad_alloc exception.
6 Replaceable: A C++ program may define functions with either of these function signatures, and thereby displacethe default versions defined by the C++ standard library.
7 Required behavior: Return a non-null pointer to suitably aligned storage (6.7.5.5), or else return a null pointer.Each of these nothrow versions of operator new[] returns a pointer obtained as if acquired from the (possiblyreplaced) corresponding non-placement function. This requirement is binding on any replacement versions ofthese functions.
8 Default behavior: Calls operator new[](size), or operator new[](size, alignment), respectively. If thecall returns normally, returns the result of that call. Otherwise, returns a null pointer.

void operator delete[](void* ptr) noexcept;
void operator delete[](void* ptr, std::size_t size) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment) noexcept;
void operator delete[](void* ptr, std::size_t size, std::align_val_t alignment) noexcept;

9 Preconditions: ptr is a null pointer or its value represents the address of a block of memory allocated by an earliercall to a (possibly replaced) operator new[](std::size_t) or operator new[](std::size_t, std::align_-
val_t) which has not been invalidated by an intervening call to operator delete[].

10 If the alignment parameter is not present, ptr was returned by an allocation function without an alignmentparameter. If present, the alignment argument is equal to the alignment argument passed to the allocationfunction that returned ptr. If present, the size argument is equal to the size argument passed to the allocationfunction that returned ptr.
11 Effects: The deallocation functions (6.7.5.5.3) called by the array form of a delete-expression to render the valueof ptr invalid.
12 Replaceable: A C++ program may define functions with any of these function signatures, and thereby displacethe default versions defined by the C++ standard library. If a function without a size parameter is defined, theprogram should also define the corresponding function with a size parameter. If a function with a size parameteris defined, the program shall also define the corresponding version without the size parameter.

[Note 1: The default behavior below might change in the future, which will require replacing both deallocation functionswhen replacing the allocation function. —end note]
13 Required behavior: A call to an operator delete[] with a size parameter may be changed to a call to thecorresponding operator delete[] without a size parameter, without affecting memory allocation.

[Note 2: A conforming implementation is for operator delete[](void* ptr, std::size_t size) to simply call operator
delete[](ptr). —end note]

14 Default behavior: The functions that have a size parameter forward their other parameters to the correspondingfunction without a size parameter. The functions that do not have a size parameter forward their parameters tothe corresponding operator delete (single-object) function.
void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

15 Preconditions: ptr is a null pointer or its value represents the address of a block of memory allocated by an earliercall to a (possibly replaced) operator new[](std::size_t) or operator new[](std::size_t, std::align_-
val_t) which has not been invalidated by an intervening call to operator delete[].

§ 17.6.3.3 503

© ISO/IEC N4910

16 If the alignment parameter is not present, ptr was returned by an allocation function without an alignmentparameter. If present, the alignment argument is equal to the alignment argument passed to the allocationfunction that returned ptr.
17 Effects: The deallocation functions (6.7.5.5.3) called by the implementation to render the value of ptr invalidwhen the constructor invoked from a nothrow placement version of the array new-expression throws an exception.
18 Replaceable: A C++ program may define functions with either of these function signatures, and thereby displacethe default versions defined by the C++ standard library.
19 Default behavior: Calls operator delete[](ptr), or operator delete[](ptr, alignment), respectively.
17.6.3.4 Non-allocating forms [new.delete.placement]

1 These functions are reserved; a C++ program may not define functions that displace the versions in the C++ standardlibrary (16.4.5). The provisions of 6.7.5.5 do not apply to these reserved placement forms of operator new and
operator delete.
[[nodiscard]] void* operator new(std::size_t size, void* ptr) noexcept;

2 Returns: ptr.
3 Remarks: Intentionally performs no other action.
4 [Example 1: This can be useful for constructing an object at a known address:

void* place = operator new(sizeof(Something));
Something* p = new (place) Something();

—end example]
[[nodiscard]] void* operator new[](std::size_t size, void* ptr) noexcept;

5 Returns: ptr.
6 Remarks: Intentionally performs no other action.

void operator delete(void* ptr, void*) noexcept;

7 Effects: Intentionally performs no action.
8 Remarks: Default function called when any part of the initialization in a placement new-expression that invokesthe library’s non-array placement operator new terminates by throwing an exception (7.6.2.8).

void operator delete[](void* ptr, void*) noexcept;

9 Effects: Intentionally performs no action.
10 Remarks: Default function called when any part of the initialization in a placement new-expression that invokesthe library’s array placement operator new terminates by throwing an exception (7.6.2.8).
17.6.3.5 Data races [new.delete.dataraces]

1 For purposes of determining the existence of data races, the library versions of operator new, user replacement versionsof global operator new, the C standard library functions aligned_alloc, calloc, and malloc, the library versions of
operator delete, user replacement versions of operator delete, the C standard library function free, and the Cstandard library function realloc shall not introduce a data race (16.4.6.10). Calls to these functions that allocate ordeallocate a particular unit of storage shall occur in a single total order, and each such deallocation call shall happenbefore (6.9.2) the next allocation (if any) in this order.
17.6.4 Storage allocation errors [alloc.errors]
17.6.4.1 Class bad_alloc [bad.alloc]
namespace std {

class bad_alloc : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_alloc defines the type of objects thrown as exceptions by the implementation to report a failure toallocate storage.
§ 17.6.4.1 504

© ISO/IEC N4910

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
17.6.4.2 Class bad_array_new_length [new.badlength]
namespace std {

class bad_array_new_length : public bad_alloc {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_array_new_length defines the type of objects thrown as exceptions by the implementation to report anattempt to allocate an array of size less than zero or greater than an implementation-defined limit (7.6.2.8).
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
17.6.4.3 Type new_handler [new.handler]

using new_handler = void (*)();

1 The type of a handler function to be called by operator new() or operator new[]() (17.6.3) when they cannotsatisfy a request for additional storage.
2 Required behavior: A new_handler shall perform one of the following:

—(2.1) make more storage available for allocation and then return;
—(2.2) throw an exception of type bad_alloc or a class derived from bad_alloc;
—(2.3) terminate execution of the program without returning to the caller.

17.6.4.4 set_new_handler [set.new.handler]

new_handler set_new_handler(new_handler new_p) noexcept;

1 Effects: Establishes the function designated by new_p as the current new_handler.
2 Returns: The previous new_handler.
3 Remarks: The initial new_handler is a null pointer.
17.6.4.5 get_new_handler [get.new.handler]

new_handler get_new_handler() noexcept;

1 Returns: The current new_handler.
[Note 1: This can be a null pointer value. —end note]

17.6.5 Pointer optimization barrier [ptr.launder]

template<class T> [[nodiscard]] constexpr T* launder(T* p) noexcept;

1 Mandates: !is_function_v<T> && !is_void_v<T> is true.
2 Preconditions: p represents the address A of a byte in memory. An object X that is within its lifetime (6.7.3) andwhose type is similar (7.3.6) to T is located at the address A. All bytes of storage that would be reachable throughthe result are reachable through p (see below).
3 Returns: A value of type T* that points to X.
4 Remarks: An invocation of this function may be used in a core constant expression if and only if the (converted)value of its argument may be used in place of the function invocation. A byte of storage b is reachable througha pointer value that points to an object Y if there is an object Z, pointer-interconvertible with Y, such that b iswithin the storage occupied by Z, or the immediately-enclosing array object if Z is an array element.
5 [Note 1: If a new object is created in storage occupied by an existing object of the same type, a pointer to the original objectcan be used to refer to the new object unless its complete object is a const object or it is a base class subobject; in the lattercases, this function can be used to obtain a usable pointer to the new object. See 6.7.3. —end note]

§ 17.6.5 505

© ISO/IEC N4910

6 [Example 1:
struct X { int n; };
const X *p = new const X{3};
const int a = p->n;
new (const_cast<X*>(p)) const X{5}; // p does not point to new object (6.7.3) because its type is const
const int b = p->n; // undefined behavior
const int c = std::launder(p)->n; // OK
—end example]

17.6.6 Hardware interference size [hardware.interference]

inline constexpr size_t hardware_destructive_interference_size = implementation-defined;

1 This number is the minimum recommended offset between two concurrently-accessed objects to avoid additionalperformance degradation due to contention introduced by the implementation. It shall be at least alignof(max_align_t).
[Example 1:
struct keep_apart {

alignas(hardware_destructive_interference_size) atomic<int> cat;
alignas(hardware_destructive_interference_size) atomic<int> dog;

};

—end example]
inline constexpr size_t hardware_constructive_interference_size = implementation-defined;

2 This number is the maximum recommended size of contiguous memory occupied by two objects accessed with temporallocality by concurrent threads. It shall be at least alignof(max_align_t).
[Example 2:
struct together {

atomic<int> dog;
int puppy;

};
struct kennel {// Other data members...

alignas(sizeof(together)) together pack;// Other data members...
};
static_assert(sizeof(together) <= hardware_constructive_interference_size);

—end example]
17.7 Type identification [support.rtti]
17.7.1 General [support.rtti.general]

1 The header <typeinfo> defines a type associated with type information generated by the implementation. It also definestwo types for reporting dynamic type identification errors.
17.7.2 Header <typeinfo> synopsis [typeinfo.syn]
namespace std {

class type_info;
class bad_cast;
class bad_typeid;

}

17.7.3 Class type_info [type.info]
namespace std {

class type_info {
public:
virtual ~type_info();
constexpr bool operator==(const type_info& rhs) const noexcept;
bool before(const type_info& rhs) const noexcept;
size_t hash_code() const noexcept;
const char* name() const noexcept;

§ 17.7.3 506

© ISO/IEC N4910

type_info(const type_info&) = delete; // cannot be copied
type_info& operator=(const type_info&) = delete; // cannot be copied

};
}

1 The class type_info describes type information generated by the implementation (7.6.1.8). Objects of this classeffectively store a pointer to a name for the type, and an encoded value suitable for comparing two types for equality orcollating order. The names, encoding rule, and collating sequence for types are all unspecified and may differ betweenprograms.
constexpr bool operator==(const type_info& rhs) const noexcept;

2 Effects: Compares the current object with rhs.
3 Returns: true if the two values describe the same type.

bool before(const type_info& rhs) const noexcept;

4 Effects: Compares the current object with rhs.
5 Returns: true if *this precedes rhs in the implementation’s collation order.

size_t hash_code() const noexcept;

6 Returns: An unspecified value, except that within a single execution of the program, it shall return the same valuefor any two type_info objects which compare equal.
7 Remarks: An implementation should return different values for two type_info objects which do not compareequal.

const char* name() const noexcept;

8 Returns: An implementation-defined ntbs.
9 Remarks: The message may be a null-terminated multibyte string (16.3.3.3.5.3), suitable for conversion anddisplay as a wstring (23.4, 30.4.2.5).
17.7.4 Class bad_cast [bad.cast]
namespace std {

class bad_cast : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_cast defines the type of objects thrown as exceptions by the implementation to report the execution ofan invalid dynamic_cast expression (7.6.1.7).
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
17.7.5 Class bad_typeid [bad.typeid]
namespace std {

class bad_typeid : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_typeid defines the type of objects thrown as exceptions by the implementation to report a null pointer ina typeid expression (7.6.1.8).
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

§ 17.7.5 507

© ISO/IEC N4910

17.8 Source location [support.srcloc]
17.8.1 Header <source_location> synopsis [source.location.syn]

1 The header <source_location> defines the class source_location that provides a means to obtain source locationinformation.
namespace std {

struct source_location;
}

17.8.2 Class source_location [support.srcloc.class]
17.8.2.1 General [support.srcloc.class.general]
namespace std {

struct source_location {// source location construction
static consteval source_location current() noexcept;
constexpr source_location() noexcept;

// source location field access
constexpr uint_least32_t line() const noexcept;
constexpr uint_least32_t column() const noexcept;
constexpr const char* file_name() const noexcept;
constexpr const char* function_name() const noexcept;

private:
uint_least32_t line_; // exposition only
uint_least32_t column_; // exposition only
const char* file_name_; // exposition only
const char* function_name_; // exposition only

};
}

1 The type source_location meets the Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17CopyAssignable,and Cpp17Destructible requirements (16.4.4.2). Lvalues of type source_location are swappable (16.4.4.3). All of thefollowing conditions are true:
—(1.1) is_nothrow_move_constructible_v<source_location>

—(1.2) is_nothrow_move_assignable_v<source_location>

—(1.3) is_nothrow_swappable_v<source_location>

[Note 1: The intent of source_location is to have a small size and efficient copying. It is unspecified whether the copy/moveconstructors and the copy/move assignment operators are trivial and/or constexpr. —end note]
2 The data members file_name_ and function_name_ always each refer to an ntbs.
3 The copy/move constructors and the copy/move assignment operators of source_location meet the following postcon-ditions: Given two objects lhs and rhs of type source_location, where lhs is a copy/move result of rhs, and where

rhs_p is a value denoting the state of rhs before the corresponding copy/move operation, then each of the followingconditions is true:
—(3.1) strcmp(lhs.file_name(), rhs_p.file_name()) == 0

—(3.2) strcmp(lhs.function_name(), rhs_p.function_name()) == 0

—(3.3) lhs.line() == rhs_p.line()

—(3.4) lhs.column() == rhs_p.column()

17.8.2.2 Creation [support.srcloc.cons]

static consteval source_location current() noexcept;

1 Returns:
—(1.1) When invoked by a function call whose postfix-expression is a (possibly parenthesized) id-expression naming

current, returns a source_location with an implementation-defined value. The value should be affectedby #line (15.7) in the same manner as for __LINE__ and __FILE__. The values of the exposition-only datamembers of the returned source_location object are indicated in Table 38.
§ 17.8.2.2 508

© ISO/IEC N4910

Table 38: Value of object returned by current [tab:support.srcloc.current]
Element Value

line_ A presumed line number (15.11). Line numbers are pre-sumed to be 1-indexed; however, an implementation isencouraged to use 0 when the line number is unknown.
column_ An implementation-defined value denoting some offsetfrom the start of the line denoted by line_. Columnnumbers are presumed to be 1-indexed; however, animplementation is encouraged to use 0 when the columnnumber is unknown.
file_name_ A presumed name of the current source file (15.11) asan ntbs.
function_name_ A name of the current function such as in __func__(9.5.1) if any, an empty string otherwise.

—(1.2) Otherwise, when invoked in some other way, returns a source_locationwhose data members are initializedwith valid but unspecified values.
2 Remarks: Any call to current that appears as a default member initializer (11.4), or as a subexpression thereof,should correspond to the location of the constructor definition or aggregate initialization that uses the defaultmember initializer. Any call to current that appears as a default argument (9.3.4.7), or as a subexpression thereof,should correspond to the location of the invocation of the function that uses the default argument (7.6.1.3).
3 [Example 1:

struct s {
source_location member = source_location::current();
int other_member;
s(source_location loc = source_location::current())
: member(loc) // values of member refer to the location of the calling function (9.3.4.7)

{}
s(int blather) : // values of member refer to this location

other_member(blather)
{}
s(double) // values of member refer to this location
{}

};
void f(source_location a = source_location::current()) {

source_location b = source_location::current(); // values in b refer to this line
}

void g() {
f(); // f’s first argument corresponds to this line of code
source_location c = source_location::current();
f(c); // f’s first argument gets the same values as c, above

}

—end example]
constexpr source_location() noexcept;

4 Effects: The data members are initialized with valid but unspecified values.
17.8.2.3 Observers [support.srcloc.obs]

constexpr uint_least32_t line() const noexcept;

1 Returns: line_.
constexpr uint_least32_t column() const noexcept;

2 Returns: column_.

§ 17.8.2.3 509

© ISO/IEC N4910

constexpr const char* file_name() const noexcept;

3 Returns: file_name_.
constexpr const char* function_name() const noexcept;

4 Returns: function_name_.
17.9 Exception handling [support.exception]
17.9.1 General [support.exception.general]

1 The header <exception> defines several types and functions related to the handling of exceptions in a C++ program.
17.9.2 Header <exception> synopsis [exception.syn]
namespace std {

class exception;
class bad_exception;
class nested_exception;

using terminate_handler = void (*)();
terminate_handler get_terminate() noexcept;
terminate_handler set_terminate(terminate_handler f) noexcept;
[[noreturn]] void terminate() noexcept;

int uncaught_exceptions() noexcept;

using exception_ptr = unspecified;

exception_ptr current_exception() noexcept;
[[noreturn]] void rethrow_exception(exception_ptr p);
template<class E> exception_ptr make_exception_ptr(E e) noexcept;

template<class T> [[noreturn]] void throw_with_nested(T&& t);
template<class E> void rethrow_if_nested(const E& e);

}

17.9.3 Class exception [exception]
namespace std {

class exception {
public:
exception() noexcept;
exception(const exception&) noexcept;
exception& operator=(const exception&) noexcept;
virtual ~exception();
virtual const char* what() const noexcept;

};
}

1 The class exception defines the base class for the types of objects thrown as exceptions by C++ standard librarycomponents, and certain expressions, to report errors detected during program execution.
2 Each standard library class T that derives from class exception has the following publicly accessible member functions,each of them having a non-throwing exception specification (14.5):

—(2.1) default constructor (unless the class synopsis shows other constructors)
—(2.2) copy constructor
—(2.3) copy assignment operator

The copy constructor and the copy assignment operator meet the following postcondition: If two objects lhs and rhsboth have dynamic type T and lhs is a copy of rhs, then strcmp(lhs.what(), rhs.what()) is equal to 0. The what()member function of each such T satisfies the constraints specified for exception::what() (see below).
exception(const exception& rhs) noexcept;

§ 17.9.3 510

© ISO/IEC N4910

exception& operator=(const exception& rhs) noexcept;

3 Postconditions: If *this and rhs both have dynamic type exception then the value of the expression strcmp(what(),
rhs.what()) shall equal 0.

virtual ~exception();
4 Effects: Destroys an object of class exception.

virtual const char* what() const noexcept;

5 Returns: An implementation-defined ntbs.
6 Remarks: The message may be a null-terminated multibyte string (16.3.3.3.5.3), suitable for conversion anddisplay as a wstring (23.4, 30.4.2.5). The return value remains valid until the exception object from which it isobtained is destroyed or a non-const member function of the exception object is called.
17.9.4 Class bad_exception [bad.exception]
namespace std {

class bad_exception : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_exception defines the type of the object referenced by the exception_ptr returned from a call to
current_exception (17.9.7) when the currently active exception object fails to copy.
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
17.9.5 Abnormal termination [exception.terminate]
17.9.5.1 Type terminate_handler [terminate.handler]

using terminate_handler = void (*)();

1 The type of a handler function to be invoked by terminate when terminating exception processing.
2 Required behavior: A terminate_handler shall terminate execution of the program without returning to thecaller.
3 Default behavior: The implementation’s default terminate_handler calls abort().
17.9.5.2 set_terminate [set.terminate]

terminate_handler set_terminate(terminate_handler f) noexcept;

1 Effects: Establishes the function designated by f as the current handler function for terminating exceptionprocessing.
2 Returns: The previous terminate_handler.
3 Remarks: It is unspecified whether a null pointer value designates the default terminate_handler.
17.9.5.3 get_terminate [get.terminate]

terminate_handler get_terminate() noexcept;

1 Returns: The current terminate_handler.
[Note 1: This can be a null pointer value. —end note]

17.9.5.4 terminate [terminate]

[[noreturn]] void terminate() noexcept;

1 Effects: Calls a terminate_handler function. It is unspecified which terminate_handler function will be calledif an exception is active during a call to set_terminate. Otherwise calls the current terminate_handler function.
[Note 1: A default terminate_handler is always considered a callable handler in this context. —end note]

§ 17.9.5.4 511

© ISO/IEC N4910

2 Remarks: Called by the implementation when exception handling must be abandoned for any of several reasons(14.6.2). May also be called directly by the program.
17.9.6 uncaught_exceptions [uncaught.exceptions]

int uncaught_exceptions() noexcept;

1 Returns: The number of uncaught exceptions (14.6.3).
2 Remarks: When uncaught_exceptions() > 0, throwing an exception can result in a call of the function

std::terminate (14.6.2).
17.9.7 Exception propagation [propagation]

using exception_ptr = unspecified;

1 The type exception_ptr can be used to refer to an exception object.
2 exception_ptr meets the requirements of Cpp17NullablePointer (Table 35).
3 Two non-null values of type exception_ptr are equivalent and compare equal if and only if they refer to thesame exception.
4 The default constructor of exception_ptr produces the null value of the type.
5 exception_ptr shall not be implicitly convertible to any arithmetic, enumeration, or pointer type.
6 [Note 1: An implementation can use a reference-counted smart pointer as exception_ptr. —end note]
7 For purposes of determining the presence of a data race, operations on exception_ptr objects shall accessand modify only the exception_ptr objects themselves and not the exceptions they refer to. Use of rethrow_-

exception on exception_ptr objects that refer to the same exception object shall not introduce a data race.
[Note 2: If rethrow_exception rethrows the same exception object (rather than a copy), concurrent access to that rethrownexception object can introduce a data race. Changes in the number of exception_ptr objects that refer to a particular exceptiondo not introduce a data race. —end note]

exception_ptr current_exception() noexcept;

8 Returns: An exception_ptr object that refers to the currently handled exception (14.4) or a copy of the currentlyhandled exception, or a null exception_ptr object if no exception is being handled. The referenced object shallremain valid at least as long as there is an exception_ptr object that refers to it. If the function needs to allocatememory and the attempt fails, it returns an exception_ptr object that refers to an instance of bad_alloc. It isunspecified whether the return values of two successive calls to current_exception refer to the same exceptionobject.
[Note 3: That is, it is unspecified whether current_exception creates a new copy each time it is called. —end note]
If the attempt to copy the current exception object throws an exception, the function returns an exception_ptrobject that refers to the thrown exception or, if this is not possible, to an instance of bad_exception.
[Note 4: The copy constructor of the thrown exception can also fail, so the implementation is allowed to substitute a
bad_exception object to avoid infinite recursion. —end note]

[[noreturn]] void rethrow_exception(exception_ptr p);

9 Preconditions: p is not a null pointer.
10 Effects: Let u be the exception object to which p refers, or a copy of that exception object. It is unspecifiedwhether a copy is made, and memory for the copy is allocated in an unspecified way.

—(10.1) If allocating memory to form u fails, throws an instance of bad_alloc;
—(10.2) otherwise, if copying the exception to which p refers to form u throws an exception, throws that exception;
—(10.3) otherwise, throws u.

template<class E> exception_ptr make_exception_ptr(E e) noexcept;

11 Effects: Creates an exception_ptr object that refers to a copy of e, as if:

§ 17.9.7 512

© ISO/IEC N4910

try {
throw e;

} catch(...) {
return current_exception();

}
12 [Note 5: This function is provided for convenience and efficiency reasons. —end note]
17.9.8 nested_exception [except.nested]
namespace std {

class nested_exception {
public:
nested_exception() noexcept;
nested_exception(const nested_exception&) noexcept = default;
nested_exception& operator=(const nested_exception&) noexcept = default;
virtual ~nested_exception() = default;

// access functions
[[noreturn]] void rethrow_nested() const;
exception_ptr nested_ptr() const noexcept;

};

template<class T> [[noreturn]] void throw_with_nested(T&& t);
template<class E> void rethrow_if_nested(const E& e);

}

1 The class nested_exception is designed for use as a mixin through multiple inheritance. It captures the currentlyhandled exception and stores it for later use.
2 [Note 1: nested_exception has a virtual destructor to make it a polymorphic class. Its presence can be tested for with dynamic_cast.—end note]

nested_exception() noexcept;

3 Effects: The constructor calls current_exception() and stores the returned value.
[[noreturn]] void rethrow_nested() const;

4 Effects: If nested_ptr() returns a null pointer, the function calls the function std::terminate. Otherwise, itthrows the stored exception captured by *this.
exception_ptr nested_ptr() const noexcept;

5 Returns: The stored exception captured by this nested_exception object.
template<class T> [[noreturn]] void throw_with_nested(T&& t);

6 Let U be decay_t<T>.
7 Preconditions: U meets the Cpp17CopyConstructible requirements.
8 Throws: If is_class_v<U> && !is_final_v<U> && !is_base_of_v<nested_exception, U> is true, an ex-ception of unspecified type that is publicly derived from both U and nested_exception and constructed from

std::forward<T>(t), otherwise std::forward<T>(t).
template<class E> void rethrow_if_nested(const E& e);

9 Effects: If E is not a polymorphic class type, or if nested_exception is an inaccessible or ambiguous base classof E, there is no effect. Otherwise, performs:
if (auto p = dynamic_cast<const nested_exception*>(addressof(e)))
p->rethrow_nested();

17.10 Initializer lists [support.initlist]
17.10.1 General [support.initlist.general]

1 The header <initializer_list> defines a class template and several support functions related to list-initialization (see9.4.5). All functions specified in 17.10 are signal-safe (17.13.5).

§ 17.10.1 513

© ISO/IEC N4910

17.10.2 Header <initializer_list> synopsis [initializer.list.syn]
namespace std {

template<class E> class initializer_list {
public:
using value_type = E;
using reference = const E&;
using const_reference = const E&;
using size_type = size_t;

using iterator = const E*;
using const_iterator = const E*;

constexpr initializer_list() noexcept;

constexpr size_t size() const noexcept; // number of elements
constexpr const E* begin() const noexcept; // first element
constexpr const E* end() const noexcept; // one past the last element

};

// 17.10.5, initializer list range access
template<class E> constexpr const E* begin(initializer_list<E> il) noexcept;
template<class E> constexpr const E* end(initializer_list<E> il) noexcept;

}

1 An object of type initializer_list<E> provides access to an array of objects of type const E.
[Note 1: A pair of pointers or a pointer plus a length would be obvious representations for initializer_list. initializer_list isused to implement initializer lists as specified in 9.4.5. Copying an initializer list does not copy the underlying elements. —end note]

2 If an explicit specialization or partial specialization of initializer_list is declared, the program is ill-formed.
17.10.3 Initializer list constructors [support.initlist.cons]

constexpr initializer_list() noexcept;

1 Postconditions: size() == 0.
17.10.4 Initializer list access [support.initlist.access]

constexpr const E* begin() const noexcept;

1 Returns: A pointer to the beginning of the array. If size() == 0 the values of begin() and end() are unspecifiedbut they shall be identical.
constexpr const E* end() const noexcept;

2 Returns: begin() + size().
constexpr size_t size() const noexcept;

3 Returns: The number of elements in the array.
4 Complexity: Constant time.
17.10.5 Initializer list range access [support.initlist.range]

template<class E> constexpr const E* begin(initializer_list<E> il) noexcept;

1 Returns: il.begin().
template<class E> constexpr const E* end(initializer_list<E> il) noexcept;

2 Returns: il.end().
17.11 Comparisons [cmp]
17.11.1 Header <compare> synopsis [compare.syn]

1 The header <compare> specifies types, objects, and functions for use primarily in connection with the three-waycomparison operator (7.6.8).

§ 17.11.1 514

© ISO/IEC N4910

namespace std {// 17.11.2, comparison category types
class partial_ordering;
class weak_ordering;
class strong_ordering;

// named comparison functions
constexpr bool is_eq (partial_ordering cmp) noexcept { return cmp == 0; }
constexpr bool is_neq (partial_ordering cmp) noexcept { return cmp != 0; }
constexpr bool is_lt (partial_ordering cmp) noexcept { return cmp < 0; }
constexpr bool is_lteq(partial_ordering cmp) noexcept { return cmp <= 0; }
constexpr bool is_gt (partial_ordering cmp) noexcept { return cmp > 0; }
constexpr bool is_gteq(partial_ordering cmp) noexcept { return cmp >= 0; }

// 17.11.3, common comparison category type
template<class... Ts>
struct common_comparison_category {
using type = see below;

};
template<class... Ts>
using common_comparison_category_t = typename common_comparison_category<Ts...>::type;

// 17.11.4, concept three_way_comparable
template<class T, class Cat = partial_ordering>
concept three_way_comparable = see below;

template<class T, class U, class Cat = partial_ordering>
concept three_way_comparable_with = see below;

// 17.11.5, result of three-way comparison
template<class T, class U = T> struct compare_three_way_result;

template<class T, class U = T>
using compare_three_way_result_t = typename compare_three_way_result<T, U>::type;

// 22.10.8.8, class compare_three_way
struct compare_three_way;

// 17.11.6, comparison algorithms
inline namespace unspecified {
inline constexpr unspecified strong_order = unspecified;
inline constexpr unspecified weak_order = unspecified;
inline constexpr unspecified partial_order = unspecified;
inline constexpr unspecified compare_strong_order_fallback = unspecified;
inline constexpr unspecified compare_weak_order_fallback = unspecified;
inline constexpr unspecified compare_partial_order_fallback = unspecified;

}
}

17.11.2 Comparison category types [cmp.categories]
17.11.2.1 Preamble [cmp.categories.pre]

1 The types partial_ordering, weak_ordering, and strong_ordering are collectively termed the comparison categorytypes. Each is specified in terms of an exposition-only data member named value whose value typically corresponds tothat of an enumerator from one of the following exposition-only enumerations:
enum class ord { equal = 0, equivalent = equal, less = -1, greater = 1 }; // exposition only
enum class ncmp { unordered = -127 }; // exposition only

2 [Note 1: The type strong_ordering corresponds to the term total ordering in mathematics. —end note]
3 The relational and equality operators for the comparison category types are specified with an anonymous parameter ofunspecified type. This type shall be selected by the implementation such that these parameters can accept literal 0 as acorresponding argument.
[Example 1: nullptr_t meets this requirement. —end example]

§ 17.11.2.1 515

© ISO/IEC N4910

In this context, the behavior of a program that supplies an argument other than a literal 0 is undefined.
4 For the purposes of subclause 17.11.2, substitutability is the property that f(a) == f(b) is true whenever a == b is

true, where f denotes a function that reads only comparison-salient state that is accessible via the argument’s publicconst members.
17.11.2.2 Class partial_ordering [cmp.partialord]

1 The partial_ordering type is typically used as the result type of a three-way comparison operator (7.6.8) that (a)admits all of the six two-way comparison operators (7.6.9, 7.6.10), (b) does not imply substitutability, and (c) permitstwo values to be incomparable.205
namespace std {

class partial_ordering {
int value; // exposition only
bool is_ordered; // exposition only
// exposition-only constructors
constexpr explicit

partial_ordering(ord v) noexcept : value(int(v)), is_ordered(true) {} // exposition only
constexpr explicit

partial_ordering(ncmp v) noexcept : value(int(v)), is_ordered(false) {} // exposition only
public:// valid values
static const partial_ordering less;
static const partial_ordering equivalent;
static const partial_ordering greater;
static const partial_ordering unordered;

// comparisons
friend constexpr bool operator==(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator==(partial_ordering v, partial_ordering w) noexcept = default;
friend constexpr bool operator< (partial_ordering v, unspecified) noexcept;
friend constexpr bool operator> (partial_ordering v, unspecified) noexcept;
friend constexpr bool operator<=(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator>=(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator< (unspecified, partial_ordering v) noexcept;
friend constexpr bool operator> (unspecified, partial_ordering v) noexcept;
friend constexpr bool operator<=(unspecified, partial_ordering v) noexcept;
friend constexpr bool operator>=(unspecified, partial_ordering v) noexcept;
friend constexpr partial_ordering operator<=>(partial_ordering v, unspecified) noexcept;
friend constexpr partial_ordering operator<=>(unspecified, partial_ordering v) noexcept;

};

// valid values’ definitions
inline constexpr partial_ordering partial_ordering::less(ord::less);
inline constexpr partial_ordering partial_ordering::equivalent(ord::equivalent);
inline constexpr partial_ordering partial_ordering::greater(ord::greater);
inline constexpr partial_ordering partial_ordering::unordered(ncmp::unordered);

}

constexpr bool operator==(partial_ordering v, unspecified) noexcept;
constexpr bool operator< (partial_ordering v, unspecified) noexcept;
constexpr bool operator> (partial_ordering v, unspecified) noexcept;
constexpr bool operator<=(partial_ordering v, unspecified) noexcept;
constexpr bool operator>=(partial_ordering v, unspecified) noexcept;

2 Returns: For operator@, v.is_ordered && v.value @ 0.
constexpr bool operator< (unspecified, partial_ordering v) noexcept;
constexpr bool operator> (unspecified, partial_ordering v) noexcept;
constexpr bool operator<=(unspecified, partial_ordering v) noexcept;

205) That is, a < b, a == b, and a > b might all be false.
§ 17.11.2.2 516

© ISO/IEC N4910

constexpr bool operator>=(unspecified, partial_ordering v) noexcept;

3 Returns: For operator@, v.is_ordered && 0 @ v.value.
constexpr partial_ordering operator<=>(partial_ordering v, unspecified) noexcept;

4 Returns: v.
constexpr partial_ordering operator<=>(unspecified, partial_ordering v) noexcept;

5 Returns: v < 0 ? partial_ordering::greater : v > 0 ? partial_ordering::less : v.
17.11.2.3 Class weak_ordering [cmp.weakord]

1 The weak_ordering type is typically used as the result type of a three-way comparison operator (7.6.8) that (a) admitsall of the six two-way comparison operators (7.6.9, 7.6.10), and (b) does not imply substitutability.
namespace std {

class weak_ordering {
int value; // exposition only
// exposition-only constructors
constexpr explicit weak_ordering(ord v) noexcept : value(int(v)) {} // exposition only

public:// valid values
static const weak_ordering less;
static const weak_ordering equivalent;
static const weak_ordering greater;

// conversions
constexpr operator partial_ordering() const noexcept;

// comparisons
friend constexpr bool operator==(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator==(weak_ordering v, weak_ordering w) noexcept = default;
friend constexpr bool operator< (weak_ordering v, unspecified) noexcept;
friend constexpr bool operator> (weak_ordering v, unspecified) noexcept;
friend constexpr bool operator<=(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator>=(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator< (unspecified, weak_ordering v) noexcept;
friend constexpr bool operator> (unspecified, weak_ordering v) noexcept;
friend constexpr bool operator<=(unspecified, weak_ordering v) noexcept;
friend constexpr bool operator>=(unspecified, weak_ordering v) noexcept;
friend constexpr weak_ordering operator<=>(weak_ordering v, unspecified) noexcept;
friend constexpr weak_ordering operator<=>(unspecified, weak_ordering v) noexcept;

};

// valid values’ definitions
inline constexpr weak_ordering weak_ordering::less(ord::less);
inline constexpr weak_ordering weak_ordering::equivalent(ord::equivalent);
inline constexpr weak_ordering weak_ordering::greater(ord::greater);

}

constexpr operator partial_ordering() const noexcept;

2 Returns:
value == 0 ? partial_ordering::equivalent :
value < 0 ? partial_ordering::less :

partial_ordering::greater

constexpr bool operator==(weak_ordering v, unspecified) noexcept;
constexpr bool operator< (weak_ordering v, unspecified) noexcept;
constexpr bool operator> (weak_ordering v, unspecified) noexcept;
constexpr bool operator<=(weak_ordering v, unspecified) noexcept;
constexpr bool operator>=(weak_ordering v, unspecified) noexcept;

3 Returns: v.value @ 0 for operator@.
§ 17.11.2.3 517

© ISO/IEC N4910

constexpr bool operator< (unspecified, weak_ordering v) noexcept;
constexpr bool operator> (unspecified, weak_ordering v) noexcept;
constexpr bool operator<=(unspecified, weak_ordering v) noexcept;
constexpr bool operator>=(unspecified, weak_ordering v) noexcept;

4 Returns: 0 @ v.value for operator@.
constexpr weak_ordering operator<=>(weak_ordering v, unspecified) noexcept;

5 Returns: v.
constexpr weak_ordering operator<=>(unspecified, weak_ordering v) noexcept;

6 Returns: v < 0 ? weak_ordering::greater : v > 0 ? weak_ordering::less : v.
17.11.2.4 Class strong_ordering [cmp.strongord]

1 The strong_ordering type is typically used as the result type of a three-way comparison operator (7.6.8) that (a) admitsall of the six two-way comparison operators (7.6.9, 7.6.10), and (b) does imply substitutability.
namespace std {

class strong_ordering {
int value; // exposition only
// exposition-only constructors
constexpr explicit strong_ordering(ord v) noexcept : value(int(v)) {} // exposition only

public:// valid values
static const strong_ordering less;
static const strong_ordering equal;
static const strong_ordering equivalent;
static const strong_ordering greater;

// conversions
constexpr operator partial_ordering() const noexcept;
constexpr operator weak_ordering() const noexcept;

// comparisons
friend constexpr bool operator==(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator==(strong_ordering v, strong_ordering w) noexcept = default;
friend constexpr bool operator< (strong_ordering v, unspecified) noexcept;
friend constexpr bool operator> (strong_ordering v, unspecified) noexcept;
friend constexpr bool operator<=(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator>=(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator< (unspecified, strong_ordering v) noexcept;
friend constexpr bool operator> (unspecified, strong_ordering v) noexcept;
friend constexpr bool operator<=(unspecified, strong_ordering v) noexcept;
friend constexpr bool operator>=(unspecified, strong_ordering v) noexcept;
friend constexpr strong_ordering operator<=>(strong_ordering v, unspecified) noexcept;
friend constexpr strong_ordering operator<=>(unspecified, strong_ordering v) noexcept;

};

// valid values’ definitions
inline constexpr strong_ordering strong_ordering::less(ord::less);
inline constexpr strong_ordering strong_ordering::equal(ord::equal);
inline constexpr strong_ordering strong_ordering::equivalent(ord::equivalent);
inline constexpr strong_ordering strong_ordering::greater(ord::greater);

}

constexpr operator partial_ordering() const noexcept;

2 Returns:
value == 0 ? partial_ordering::equivalent :
value < 0 ? partial_ordering::less :

partial_ordering::greater

§ 17.11.2.4 518

© ISO/IEC N4910

constexpr operator weak_ordering() const noexcept;

3 Returns:
value == 0 ? weak_ordering::equivalent :
value < 0 ? weak_ordering::less :

weak_ordering::greater

constexpr bool operator==(strong_ordering v, unspecified) noexcept;
constexpr bool operator< (strong_ordering v, unspecified) noexcept;
constexpr bool operator> (strong_ordering v, unspecified) noexcept;
constexpr bool operator<=(strong_ordering v, unspecified) noexcept;
constexpr bool operator>=(strong_ordering v, unspecified) noexcept;

4 Returns: v.value @ 0 for operator@.
constexpr bool operator< (unspecified, strong_ordering v) noexcept;
constexpr bool operator> (unspecified, strong_ordering v) noexcept;
constexpr bool operator<=(unspecified, strong_ordering v) noexcept;
constexpr bool operator>=(unspecified, strong_ordering v) noexcept;

5 Returns: 0 @ v.value for operator@.
constexpr strong_ordering operator<=>(strong_ordering v, unspecified) noexcept;

6 Returns: v.
constexpr strong_ordering operator<=>(unspecified, strong_ordering v) noexcept;

7 Returns: v < 0 ? strong_ordering::greater : v > 0 ? strong_ordering::less : v.
17.11.3 Class template common_comparison_category [cmp.common]

1 The type common_comparison_category provides an alias for the strongest comparison category to which all of thetemplate arguments can be converted.
[Note 1: A comparison category type is stronger than another if they are distinct types and an instance of the former can be convertedto an instance of the latter. —end note]
template<class... Ts>
struct common_comparison_category {

using type = see below;
};

2 Remarks: Themember typedef-name type denotes the common comparison type (11.10.3) of Ts..., the expandedparameter pack, or void if any element of Ts is not a comparison category type.
[Note 2: This is std::strong_ordering if the expansion is empty. —end note]

17.11.4 Concept three_way_comparable [cmp.concept]
template<class T, class Cat>

concept compares-as = // exposition only
same_as<common_comparison_category_t<T, Cat>, Cat>;

template<class T, class U>
concept partially-ordered-with = // exposition only

requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {
{ t < u } -> boolean-testable;
{ t > u } -> boolean-testable;
{ t <= u } -> boolean-testable;
{ t >= u } -> boolean-testable;
{ u < t } -> boolean-testable;
{ u > t } -> boolean-testable;
{ u <= t } -> boolean-testable;
{ u >= t } -> boolean-testable;

};

1 Let t and u be lvalues of types const remove_reference_t<T> and const remove_reference_t<U>, respectively. Tand U model partially-ordered-with<T, U> only if:

§ 17.11.4 519

© ISO/IEC N4910

—(1.1) t < u, t <= u, t > u, t >= u, u < t, u <= t, u > t, and u >= t have the same domain.
—(1.2) bool(t < u) == bool(u > t) is true,
—(1.3) bool(u < t) == bool(t > u) is true,
—(1.4) bool(t <= u) == bool(u >= t) is true, and
—(1.5) bool(u <= t) == bool(t >= u) is true.
template<class T, class Cat = partial_ordering>

concept three_way_comparable =
weakly-equality-comparable-with<T, T> &&
partially-ordered-with<T, T> &&
requires(const remove_reference_t<T>& a, const remove_reference_t<T>& b) {

{ a <=> b } -> compares-as<Cat>;
};

2 Let a and b be lvalues of type const remove_reference_t<T>. T and Cat model three_way_comparable<T, Cat>only if:
—(2.1) (a <=> b == 0) == bool(a == b) is true,
—(2.2) (a <=> b != 0) == bool(a != b) is true,
—(2.3) ((a <=> b) <=> 0) and (0 <=> (b <=> a)) are equal,
—(2.4) (a <=> b < 0) == bool(a < b) is true,
—(2.5) (a <=> b > 0) == bool(a > b) is true,
—(2.6) (a <=> b <= 0) == bool(a <= b) is true,
—(2.7) (a <=> b >= 0) == bool(a >= b) is true, and
—(2.8) if Cat is convertible to strong_ordering, T models totally_ordered (18.5.4).
template<class T, class U, class Cat = partial_ordering>

concept three_way_comparable_with =
three_way_comparable<T, Cat> &&
three_way_comparable<U, Cat> &&
common_reference_with<const remove_reference_t<T>&, const remove_reference_t<U>&> &&
three_way_comparable<

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>, Cat> &&
weakly-equality-comparable-with<T, U> &&
partially-ordered-with<T, U> &&
requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {

{ t <=> u } -> compares-as<Cat>;
{ u <=> t } -> compares-as<Cat>;

};

3 Let t and u be lvalues of types const remove_reference_t<T> and const remove_reference_t<U>, respectively.Let C be common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>. T, U, and Catmodel three_way_comparable_with<T, U, Cat> only if:
—(3.1) t <=> u and u <=> t have the same domain,
—(3.2) ((t <=> u) <=> 0) and (0 <=> (u <=> t)) are equal,
—(3.3) (t <=> u == 0) == bool(t == u) is true,
—(3.4) (t <=> u != 0) == bool(t != u) is true,
—(3.5) Cat(t <=> u) == Cat(C(t) <=> C(u)) is true,
—(3.6) (t <=> u < 0) == bool(t < u) is true,
—(3.7) (t <=> u > 0) == bool(t > u) is true,
—(3.8) (t <=> u <= 0) == bool(t <= u) is true,
—(3.9) (t <=> u >= 0) == bool(t >= u) is true, and
—(3.10) if Cat is convertible to strong_ordering, T and U model totally_ordered_with<T, U> (18.5.4).

§ 17.11.4 520

© ISO/IEC N4910

17.11.5 Result of three-way comparison [cmp.result]
1 The behavior of a program that adds specializations for the compare_three_way_result template defined in thissubclause is undefined.
2 For the compare_three_way_result type trait applied to the types T and U, let t and u denote lvalues of types const

remove_reference_t<T> and const remove_reference_t<U>, respectively. If the expression t <=> u is well-formedwhen treated as an unevaluated operand (7.2.3), the member typedef-name type denotes the type decltype(t <=> u).Otherwise, there is no member type.
17.11.6 Comparison algorithms [cmp.alg]

1 The name strong_order denotes a customization point object (16.3.3.3.6). Given subexpressions E and F, the expression
strong_order(E, F) is expression-equivalent (3.21) to the following:
—(1.1) If the decayed types of E and F differ, strong_order(E, F) is ill-formed.
—(1.2) Otherwise, strong_ordering(strong_order(E, F)) if it is a well-formed expression with overload resolutionperformed in a context that does not include a declaration of std::strong_order.
—(1.3) Otherwise, if the decayed type T of E is a floating-point type, yields a value of type strong_ordering that isconsistent with the ordering observed by T’s comparison operators, and if numeric_limits<T>::is_iec559 is

true, is additionally consistent with the totalOrder operation as specified in ISO/IEC/IEEE 60559.
—(1.4) Otherwise, strong_ordering(compare_three_way()(E, F)) if it is a well-formed expression.
—(1.5) Otherwise, strong_order(E, F) is ill-formed.

[Note 1: Ill-formed cases above result in substitution failure when strong_order(E, F) appears in the immediate context of atemplate instantiation. —end note]
2 The name weak_order denotes a customization point object (16.3.3.3.6). Given subexpressions E and F, the expression

weak_order(E, F) is expression-equivalent (3.21) to the following:
—(2.1) If the decayed types of E and F differ, weak_order(E, F) is ill-formed.
—(2.2) Otherwise, weak_ordering(weak_order(E, F)) if it is a well-formed expression with overload resolution per-formed in a context that does not include a declaration of std::weak_order.
—(2.3) Otherwise, if the decayed type T of E is a floating-point type, yields a value of type weak_ordering that is consistentwith the ordering observed by T’s comparison operators and strong_order, and if numeric_limits<T>::is_-

iec559 is true, is additionally consistent with the following equivalence classes, ordered from lesser to greater:
—(2.3.1) together, all negative NaN values;
—(2.3.2) negative infinity;
—(2.3.3) each normal negative value;
—(2.3.4) each subnormal negative value;
—(2.3.5) together, both zero values;
—(2.3.6) each subnormal positive value;
—(2.3.7) each normal positive value;
—(2.3.8) positive infinity;
—(2.3.9) together, all positive NaN values.

—(2.4) Otherwise, weak_ordering(compare_three_way()(E, F)) if it is a well-formed expression.
—(2.5) Otherwise, weak_ordering(strong_order(E, F)) if it is a well-formed expression.
—(2.6) Otherwise, weak_order(E, F) is ill-formed.

[Note 2: Ill-formed cases above result in substitution failure when weak_order(E, F) appears in the immediate context of a templateinstantiation. —end note]
3 The name partial_order denotes a customization point object (16.3.3.3.6). Given subexpressions E and F, theexpression partial_order(E, F) is expression-equivalent (3.21) to the following:

—(3.1) If the decayed types of E and F differ, partial_order(E, F) is ill-formed.
—(3.2) Otherwise, partial_ordering(partial_order(E, F)) if it is a well-formed expression with overload resolutionperformed in a context that does not include a declaration of std::partial_order.

§ 17.11.6 521

© ISO/IEC N4910

—(3.3) Otherwise, partial_ordering(compare_three_way()(E, F)) if it is a well-formed expression.
—(3.4) Otherwise, partial_ordering(weak_order(E, F)) if it is a well-formed expression.
—(3.5) Otherwise, partial_order(E, F) is ill-formed.

[Note 3: Ill-formed cases above result in substitution failure when partial_order(E, F) appears in the immediate context of atemplate instantiation. —end note]
4 The name compare_strong_order_fallback denotes a customization point object (16.3.3.3.6). Given subexpressions

E and F, the expression compare_strong_order_fallback(E, F) is expression-equivalent (3.21) to:
—(4.1) If the decayed types of E and F differ, compare_strong_order_fallback(E, F) is ill-formed.
—(4.2) Otherwise, strong_order(E, F) if it is a well-formed expression.
—(4.3) Otherwise, if the expressions E == F and E < F are both well-formed and convertible to bool,

E == F ? strong_ordering::equal :
E < F ? strong_ordering::less :

strong_ordering::greater

except that E and F are evaluated only once.
—(4.4) Otherwise, compare_strong_order_fallback(E, F) is ill-formed.

[Note 4: Ill-formed cases above result in substitution failure when compare_strong_order_fallback(E, F) appears in the immediatecontext of a template instantiation. —end note]
5 The name compare_weak_order_fallback denotes a customization point object (16.3.3.3.6). Given subexpressions Eand F, the expression compare_weak_order_fallback(E, F) is expression-equivalent (3.21) to:

—(5.1) If the decayed types of E and F differ, compare_weak_order_fallback(E, F) is ill-formed.
—(5.2) Otherwise, weak_order(E, F) if it is a well-formed expression.
—(5.3) Otherwise, if the expressions E == F and E < F are both well-formed and convertible to bool,

E == F ? weak_ordering::equivalent :
E < F ? weak_ordering::less :

weak_ordering::greater

except that E and F are evaluated only once.
—(5.4) Otherwise, compare_weak_order_fallback(E, F) is ill-formed.

[Note 5: Ill-formed cases above result in substitution failure when compare_weak_order_fallback(E, F) appears in the immediatecontext of a template instantiation. —end note]
6 The name compare_partial_order_fallback denotes a customization point object (16.3.3.3.6). Given subexpressions

E and F, the expression compare_partial_order_fallback(E, F) is expression-equivalent (3.21) to:
—(6.1) If the decayed types of E and F differ, compare_partial_order_fallback(E, F) is ill-formed.
—(6.2) Otherwise, partial_order(E, F) if it is a well-formed expression.
—(6.3) Otherwise, if the expressions E == F, E < F, and F < E are all well-formed and convertible to bool,

E == F ? partial_ordering::equivalent :
E < F ? partial_ordering::less :
F < E ? partial_ordering::greater :

partial_ordering::unordered

except that E and F are evaluated only once.
—(6.4) Otherwise, compare_partial_order_fallback(E, F) is ill-formed.

[Note 6: Ill-formed cases above result in substitution failure when compare_partial_order_fallback(E, F) appears in the imme-diate context of a template instantiation. —end note]
17.12 Coroutines [support.coroutine]
17.12.1 General [support.coroutine.general]

1 The header <coroutine> defines several types providing compile and run-time support for coroutines in a C++ program.
17.12.2 Header <coroutine> synopsis [coroutine.syn]
#include <compare> // see 17.11.1

§ 17.12.2 522

© ISO/IEC N4910

namespace std {// 17.12.3, coroutine traits
template<class R, class... ArgTypes>
struct coroutine_traits;

// 17.12.4, coroutine handle
template<class Promise = void>
struct coroutine_handle;

// 17.12.4.8, comparison operators
constexpr bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr strong_ordering operator<=>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

// 17.12.4.9, hash support
template<class T> struct hash;
template<class P> struct hash<coroutine_handle<P>>;

// 17.12.5, no-op coroutines
struct noop_coroutine_promise;

template<> struct coroutine_handle<noop_coroutine_promise>;
using noop_coroutine_handle = coroutine_handle<noop_coroutine_promise>;

noop_coroutine_handle noop_coroutine() noexcept;

// 17.12.6, trivial awaitables
struct suspend_never;
struct suspend_always;

}

17.12.3 Coroutine traits [coroutine.traits]
17.12.3.1 General [coroutine.traits.general]

1 Subclause 17.12.3 defines requirements on classes representing coroutine traits, and defines the class template
coroutine_traits that meets those requirements.
17.12.3.2 Class template coroutine_traits [coroutine.traits.primary]

1 The header <coroutine> defines the primary template coroutine_traits such that if ArgTypes is a parameter packof types and if the qualified-id R::promise_type is valid and denotes a type (13.10.3), then coroutine_traits<R,
ArgTypes...> has the following publicly accessible member:
using promise_type = typename R::promise_type;

Otherwise, coroutine_traits<R, ArgTypes...> has no members.
2 Program-defined specializations of this template shall define a publicly accessible nested type named promise_type.
17.12.4 Class template coroutine_handle [coroutine.handle]
17.12.4.1 General [coroutine.handle.general]
namespace std {

template<>
struct coroutine_handle<void>
{ // 17.12.4.2, construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 17.12.4.4, export/import
constexpr void* address() const noexcept;
static constexpr coroutine_handle from_address(void* addr);

// 17.12.4.5, observers
constexpr explicit operator bool() const noexcept;
bool done() const;

§ 17.12.4.1 523

© ISO/IEC N4910

// 17.12.4.6, resumption
void operator()() const;
void resume() const;
void destroy() const;

private:
void* ptr; // exposition only

};

template<class Promise>
struct coroutine_handle
{ // 17.12.4.2, construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
static coroutine_handle from_promise(Promise&);
coroutine_handle& operator=(nullptr_t) noexcept;

// 17.12.4.4, export/import
constexpr void* address() const noexcept;
static constexpr coroutine_handle from_address(void* addr);

// 17.12.4.3, conversion
constexpr operator coroutine_handle<>() const noexcept;

// 17.12.4.5, observers
constexpr explicit operator bool() const noexcept;
bool done() const;

// 17.12.4.6, resumption
void operator()() const;
void resume() const;
void destroy() const;

// 17.12.4.7, promise access
Promise& promise() const;

private:
void* ptr; // exposition only

};
}

1 An object of type coroutine_handle<T> is called a coroutine handle and can be used to refer to a suspended or executingcoroutine. A coroutine_handle object whose member address() returns a null pointer value does not refer to anycoroutine. Two coroutine_handle objects refer to the same coroutine if and only if their member address() returnsthe same non-null value.
2 If a program declares an explicit or partial specialization of coroutine_handle, the behavior is undefined.
17.12.4.2 Construct/reset [coroutine.handle.con]

constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;

1 Postconditions: address() == nullptr.
static coroutine_handle from_promise(Promise& p);

2 Preconditions: p is a reference to a promise object of a coroutine.
3 Postconditions: addressof(h.promise()) == addressof(p).
4 Returns: A coroutine handle h referring to the coroutine.

coroutine_handle& operator=(nullptr_t) noexcept;

5 Postconditions: address() == nullptr.

§ 17.12.4.2 524

© ISO/IEC N4910

6 Returns: *this.
17.12.4.3 Conversion [coroutine.handle.conv]

constexpr operator coroutine_handle<>() const noexcept;

1 Effects: Equivalent to: return coroutine_handle<>::from_address(address());

17.12.4.4 Export/import [coroutine.handle.export.import]

constexpr void* address() const noexcept;

1 Returns: ptr.
static constexpr coroutine_handle<> coroutine_handle<>::from_address(void* addr);

2 Preconditions: addr was obtained via a prior call to address on an object whose type is a specialization of
coroutine_handle.

3 Postconditions: from_address(address()) == *this.
static constexpr coroutine_handle<Promise> coroutine_handle<Promise>::from_address(void* addr);

4 Preconditions: addrwas obtained via a prior call to address on an object of type cv coroutine_handle<Promise>.
5 Postconditions: from_address(address()) == *this.
17.12.4.5 Observers [coroutine.handle.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: address() != nullptr.
bool done() const;

2 Preconditions: *this refers to a suspended coroutine.
3 Returns: true if the coroutine is suspended at its final suspend point, otherwise false.
17.12.4.6 Resumption [coroutine.handle.resumption]

1 Resuming a coroutine via resume, operator(), or destroy on an execution agent other than the one on which it wassuspended has implementation-defined behavior unless each execution agent either is an instance of std::thread or
std::jthread, or is the thread that executes main.
[Note 1: A coroutine that is resumed on a different execution agent should avoid relying on consistent thread identity throughout,such as holding a mutex object across a suspend point. —end note]
[Note 2: A concurrent resumption of the coroutine can result in a data race. —end note]
void operator()() const;
void resume() const;

2 Preconditions: *this refers to a suspended coroutine. The coroutine is not suspended at its final suspend point.
3 Effects: Resumes the execution of the coroutine.

void destroy() const;

4 Preconditions: *this refers to a suspended coroutine.
5 Effects: Destroys the coroutine (9.5.4).
17.12.4.7 Promise access [coroutine.handle.promise]

Promise& promise() const;

1 Preconditions: *this refers to a coroutine.
2 Returns: A reference to the promise of the coroutine.
17.12.4.8 Comparison operators [coroutine.handle.compare]

constexpr bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;

1 Returns: x.address() == y.address().
§ 17.12.4.8 525

© ISO/IEC N4910

constexpr strong_ordering operator<=>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

2 Returns: compare_three_way()(x.address(), y.address()).
17.12.4.9 Hash support [coroutine.handle.hash]

template<class P> struct hash<coroutine_handle<P>>;

1 The specialization is enabled (22.10.19).
17.12.5 No-op coroutines [coroutine.noop]
17.12.5.1 Class noop_coroutine_promise [coroutine.promise.noop]

struct noop_coroutine_promise {};

1 The class noop_coroutine_promise defines the promise type for the coroutine referred to by noop_coroutine_-
handle (17.12.2).

17.12.5.2 Class coroutine_handle<noop_coroutine_promise> [coroutine.handle.noop]
namespace std {

template<>
struct coroutine_handle<noop_coroutine_promise>
{ // 17.12.5.2.1, conversion
constexpr operator coroutine_handle<>() const noexcept;

// 17.12.5.2.2, observers
constexpr explicit operator bool() const noexcept;
constexpr bool done() const noexcept;

// 17.12.5.2.3, resumption
constexpr void operator()() const noexcept;
constexpr void resume() const noexcept;
constexpr void destroy() const noexcept;

// 17.12.5.2.4, promise access
noop_coroutine_promise& promise() const noexcept;

// 17.12.5.2.5, address
constexpr void* address() const noexcept;

private:
coroutine_handle(unspecified);
void* ptr; // exposition only

};
}

17.12.5.2.1 Conversion [coroutine.handle.noop.conv]

constexpr operator coroutine_handle<>() const noexcept;

1 Effects: Equivalent to: return coroutine_handle<>::from_address(address());

17.12.5.2.2 Observers [coroutine.handle.noop.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: true.
constexpr bool done() const noexcept;

2 Returns: false.
17.12.5.2.3 Resumption [coroutine.handle.noop.resumption]

constexpr void operator()() const noexcept;
constexpr void resume() const noexcept;

§ 17.12.5.2.3 526

© ISO/IEC N4910

constexpr void destroy() const noexcept;

1 Effects: None.
2 Remarks: If noop_coroutine_handle is converted to coroutine_handle<>, calls to operator(), resume and

destroy on that handle will also have no observable effects.
17.12.5.2.4 Promise access [coroutine.handle.noop.promise]

noop_coroutine_promise& promise() const noexcept;

1 Returns: A reference to the promise object associated with this coroutine handle.
17.12.5.2.5 Address [coroutine.handle.noop.address]

constexpr void* address() const noexcept;

1 Returns: ptr.
2 Remarks: A noop_coroutine_handle’s ptr is always a non-null pointer value.
17.12.5.3 Function noop_coroutine [coroutine.noop.coroutine]

noop_coroutine_handle noop_coroutine() noexcept;

1 Returns: A handle to a coroutine that has no observable effects when resumed or destroyed.
2 Remarks: A handle returned from noop_coroutine may or may not compare equal to a handle returned fromanother invocation of noop_coroutine.
17.12.6 Trivial awaitables [coroutine.trivial.awaitables]
namespace std {

struct suspend_never {
constexpr bool await_ready() const noexcept { return true; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};
struct suspend_always {
constexpr bool await_ready() const noexcept { return false; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};
}

1 [Note 1: The types suspend_never and suspend_always can be used to indicate that an await-expression either never suspends oralways suspends, and in either case does not produce a value. —end note]
17.13 Other runtime support [support.runtime]
17.13.1 General [support.runtime.general]

1 Headers <csetjmp> (nonlocal jumps), <csignal> (signal handling), <cstdarg> (variable arguments), and <cstdlib>(runtime environment getenv, system), provide further compatibility with C code.
2 Calls to the function getenv (17.2.2) shall not introduce a data race (16.4.6.10) provided that nothing modifies theenvironment.
[Note 1: Calls to the POSIX functions setenv and putenv modify the environment. —end note]

3 A call to the setlocale function (30.5) may introduce a data race with other calls to the setlocale function or withcalls to functions that are affected by the current C locale. The implementation shall behave as if no library functionother than locale::global calls the setlocale function.
17.13.2 Header <cstdarg> synopsis [cstdarg.syn]
namespace std {

using va_list = see below;
}

§ 17.13.2 527

© ISO/IEC N4910

#define va_arg(V, P) see below
#define va_copy(VDST, VSRC) see below
#define va_end(V) see below
#define va_start(V, P) see below

1 The contents of the header <cstdarg> are the same as the C standard library header <stdarg.h>, with the followingchanges: The restrictions that ISO C places on the second parameter to the va_start macro in header <stdarg.h>are different in this document. The parameter parmN is the rightmost parameter in the variable parameter list of thefunction definition (the one just before the ...).206 If the parameter parmN is a pack expansion (13.7.4) or an entityresulting from a lambda capture (7.5.5), the program is ill-formed, no diagnostic required. If the parameter parmN is of areference type, or of a type that is not compatible with the type that results when passing an argument for which there isno parameter, the behavior is undefined.
See also: ISO C 7.16.1.1
17.13.3 Header <csetjmp> synopsis [csetjmp.syn]
namespace std {

using jmp_buf = see below;
[[noreturn]] void longjmp(jmp_buf env, int val);

}

#define setjmp(env) see below

1 The contents of the header <csetjmp> are the same as the C standard library header <setjmp.h>.
2 The function signature longjmp(jmp_buf jbuf, int val) hasmore restricted behavior in this document. A setjmp/longjmpcall pair has undefined behavior if replacing the setjmp and longjmp by catch and throw would invoke any non-trivialdestructors for any objects with automatic storage duration. A call to setjmp or longjmp has undefined behavior ifinvoked in a suspension context of a coroutine (7.6.2.4).
See also: ISO C 7.13
17.13.4 Header <csignal> synopsis [csignal.syn]
namespace std {

using sig_atomic_t = see below;

// 17.13.5, signal handlers
extern "C" using signal-handler = void(int); // exposition only
signal-handler* signal(int sig, signal-handler* func);

int raise(int sig);
}

#define SIG_DFL see below
#define SIG_ERR see below
#define SIG_IGN see below
#define SIGABRT see below
#define SIGFPE see below
#define SIGILL see below
#define SIGINT see below
#define SIGSEGV see below
#define SIGTERM see below

1 The contents of the header <csignal> are the same as the C standard library header <signal.h>.
17.13.5 Signal handlers [support.signal]

1 A call to the function signal synchronizes with any resulting invocation of the signal handler so installed.
2 A plain lock-free atomic operation is an invocation of a function f from 33.5, such that:

—(2.1) f is the function atomic_is_lock_free(), or
—(2.2) f is the member function is_lock_free(), or
—(2.3) f is a non-static member function invoked on an object A, such that A.is_lock_free() yields true, or

206) Note that va_start is required to work as specified even if unary operator& is overloaded for the type of parmN.
§ 17.13.5 528

© ISO/IEC N4910

—(2.4) f is a non-member function, and for every pointer-to-atomic argument A passed to f, atomic_is_lock_free(A)yields true.
3 An evaluation is signal-safe unless it includes one of the following:

—(3.1) a call to any standard library function, except for plain lock-free atomic operations and functions explicitlyidentified as signal-safe;
[Note 1: This implicitly excludes the use of new and delete expressions that rely on a library-provided memory allocator.—end note]

—(3.2) an access to an object with thread storage duration;
—(3.3) a dynamic_cast expression;
—(3.4) throwing of an exception;
—(3.5) control entering a try-block or function-try-block;
—(3.6) initialization of a variable with static storage duration requiring dynamic initialization (6.9.3.3, 8.8)207 ; or
—(3.7) waiting for the completion of the initialization of a variable with static storage duration (8.8).

A signal handler invocation has undefined behavior if it includes an evaluation that is not signal-safe.
4 The function signal is signal-safe if it is invoked with the first argument equal to the signal number corresponding tothe signal that caused the invocation of the handler.
See also: ISO C 7.14
17.14 C headers [support.c.headers]
17.14.1 General [support.c.headers.general]

1 For compatibility with the C standard library, the C++ standard library provides the C headers shown in Table 39. Theintended use of these headers is for interoperability only. It is possible that C++ source files need to include one of theseheaders in order to be valid ISO C. Source files that are not intended to also be valid ISO C should not use any of the Cheaders.
[Note 1: The C headers either have no effect, such as <stdbool.h> (17.14.5) and <stdalign.h> (17.14.4), or otherwise thecorresponding header of the form <cname> provides the same facilities and assuredly defines them in namespace std. —end note]
[Example 1: The following source file is both valid C++ and valid ISO C. Viewed as C++, it declares a function with C languagelinkage; viewed as C it simply declares a function (and provides a prototype).
#include <stdbool.h> // for bool in C, no effect in C++
#include <stddef.h> // for size_t
#ifdef __cplusplus // see 15.11
extern "C" // see 9.11
#endif
void f(bool b[], size_t n);

—end example]
Table 39: C headers [tab:c.headers]

<assert.h>
<complex.h>
<ctype.h>
<errno.h>
<fenv.h>
<float.h>

<inttypes.h>
<iso646.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>

<signal.h>
<stdalign.h>
<stdarg.h>
<stdatomic.h>
<stdbool.h>
<stddef.h>

<stdint.h>
<stdio.h>
<stdlib.h>
<string.h>
<tgmath.h>
<time.h>

<uchar.h>
<wchar.h>
<wctype.h>

17.14.2 Header <complex.h> synopsis [complex.h.syn]
#include <complex>

1 The header <complex.h> behaves as if it simply includes the header <complex> (28.4.2).

207) Such initialization can occur because it is the first odr-use (6.3) of that variable.
§ 17.14.2 529

© ISO/IEC N4910

2 [Note 1: Names introduced by <complex> in namespace std are not placed into the global namespace scope by <complex.h>. —endnote]
17.14.3 Header <iso646.h> synopsis [iso646.h.syn]

1 The C++ header <iso646.h> is empty.
[Note 1: and, and_eq, bitand, bitor, compl, not_eq, not, or, or_eq, xor, and xor_eq are keywords in C++ (5.11). —end note]
17.14.4 Header <stdalign.h> synopsis [stdalign.h.syn]
#define __alignas_is_defined 1

1 The contents of the C++ header <stdalign.h> are the same as the C standard library header <stdalign.h>, with thefollowing changes: The header <stdalign.h> does not define a macro named alignas.
See also: ISO C 7.15
17.14.5 Header <stdbool.h> synopsis [stdbool.h.syn]
#define __bool_true_false_are_defined 1

1 The contents of the C++ header <stdbool.h> are the same as the C standard library header <stdbool.h>, with thefollowing changes: The header <stdbool.h> does not define macros named bool, true, or false.
See also: ISO C 7.18
17.14.6 Header <tgmath.h> synopsis [tgmath.h.syn]
#include <cmath>
#include <complex>

1 The header <tgmath.h> behaves as if it simply includes the headers <cmath> (28.7.1) and <complex> (28.4.2).
2 [Note 1: The overloads provided in C by type-generic macros are already provided in <complex> and <cmath> by “sufficient”additional overloads. —end note]
3 [Note 2: Names introduced by <cmath> or <complex> in namespace std are not placed into the global namespace scope by <tgmath.h>.—end note]
17.14.7 Other C headers [support.c.headers.other]

1 Every C header other than <complex.h> (17.14.2), <iso646.h> (17.14.3), <stdalign.h> (17.14.4),
<stdatomic.h> (33.5.12), <stdbool.h> (17.14.5), and <tgmath.h> (17.14.6), each of which has a name of the form
<name.h>, behaves as if each name placed in the standard library namespace by the corresponding <cname> header isplaced within the global namespace scope, except for the functions described in 28.7.6, the declaration of std::byte(17.2.1), and the functions and function templates described in 17.2.5. It is unspecified whether these names are firstdeclared or defined within namespace scope (6.4.5) of the namespace std and are then injected into the global namespacescope by explicit using-declarations (9.9).

2 [Example 1: The header <cstdlib> assuredly provides its declarations and definitions within the namespace std. It may also providethese names within the global namespace. The header <stdlib.h> assuredly provides the same declarations and definitions withinthe global namespace, much as in the C Standard. It may also provide these names within the namespace std. —end example]

§ 17.14.7 530

© ISO/IEC N4910

18 Concepts library [concepts]
18.1 General [concepts.general]

1 This Clause describes library components that C++ programs may use to perform compile-time validation of templatearguments and perform function dispatch based on properties of types. The purpose of these concepts is to establish afoundation for equational reasoning in programs.
2 The following subclauses describe language-related concepts, comparison concepts, object concepts, and callableconcepts as summarized in Table 40.

Table 40: Fundamental concepts library summary [tab:concepts.summary]
Subclause Header

18.2 Equality preservation18.4 Language-related concepts <concepts>18.5 Comparison concepts18.6 Object concepts18.7 Callable concepts

18.2 Equality preservation [concepts.equality]
1 An expression is equality-preserving if, given equal inputs, the expression results in equal outputs. The inputs to anexpression are the set of the expression’s operands. The output of an expression is the expression’s result and alloperands modified by the expression. For the purposes of this subclause, the operands of an expression are the largestsubexpressions that include only:

—(1.1) an id-expression (7.5.4), and
—(1.2) invocations of the library function templates std::move, std::forward, and std::declval (22.2.4, 22.2.6).

[Example 1: The operands of the expression a = std::move(b) are a and std::move(b). —end example]
2 Not all input values need be valid for a given expression.
[Example 2: For integers a and b, the expression a / b is not well-defined when b is 0. This does not preclude the expression a / bbeing equality-preserving. —end example]
The domain of an expression is the set of input values for which the expression is required to be well-defined.

3 Expressions required to be equality-preserving are further required to be stable: two evaluations of such an expressionwith the same input objects are required to have equal outputs absent any explicit intervening modification of thoseinput objects.
[Note 1: This requirement allows generic code to reason about the current values of objects based on knowledge of the prior valuesas observed via equality-preserving expressions. It effectively forbids spontaneous changes to an object, changes to an object fromanother thread of execution, changes to an object as side effects of non-modifying expressions, and changes to an object as sideeffects of modifying a distinct object if those changes could be observable to a library function via an equality-preserving expressionthat is required to be valid for that object. —end note]

4 Expressions declared in a requires-expression in the library clauses are required to be equality-preserving, exceptfor those annotated with the comment “not required to be equality-preserving.” An expression so annotated may beequality-preserving, but is not required to be so.
5 An expression that may alter the value of one or more of its inputs in a manner observable to equality-preservingexpressions is said to modify those inputs. The library clauses use a notational convention to specify which expressionsdeclared in a requires-expression modify which inputs: except where otherwise specified, an expression operand that isa non-constant lvalue or rvalue may be modified. Operands that are constant lvalues or rvalues are required to not bemodified. For the purposes of this subclause, the cv-qualification and value category of each operand are determined byassuming that each template type parameter denotes a cv-unqualified complete non-array object type.
6 Where a requires-expression declares an expression that is non-modifying for some constant lvalue operand, additionalvariations of that expression that accept a non-constant lvalue or (possibly constant) rvalue for the given operand are
§ 18.2 531

© ISO/IEC N4910

also required except where such an expression variation is explicitly required with differing semantics. These implicitexpression variations are required to meet the semantic requirements of the declared expression. The extent to which animplementation validates the syntax of the variations is unspecified.
7 [Example 3:

template<class T> concept C = requires(T a, T b, const T c, const T d) {
c == d; // #1
a = std::move(b); // #2
a = c; // #3

};

For the above example:
—(7.1) Expression #1 does not modify either of its operands, #2 modifies both of its operands, and #3 modifies only its first operand a.
—(7.2) Expression #1 implicitly requires additional expression variations that meet the requirements for c == d (including non-modification), as if the expressions

c == b;
c == std::move(d); c == std::move(b);

std::move(c) == d; std::move(c) == b;
std::move(c) == std::move(d); std::move(c) == std::move(b);

a == d; a == b;
a == std::move(d); a == std::move(b);

std::move(a) == d; std::move(a) == b;
std::move(a) == std::move(d); std::move(a) == std::move(b);

had been declared as well.
—(7.3) Expression #3 implicitly requires additional expression variations that meet the requirements for a = c (including non-modification of the second operand), as if the expressions a = b and a = std::move(c) had been declared. Expression #3does not implicitly require an expression variation with a non-constant rvalue second operand, since expression #2 alreadyspecifies exactly such an expression explicitly.

—end example]
8 [Example 4: The following type T meets the explicitly stated syntactic requirements of concept C above but does not meet theadditional implicit requirements:

struct T {
bool operator==(const T&) const { return true; }
bool operator==(T&) = delete;

};

T fails to meet the implicit requirements of C, so T satisfies but does not model C. Since implementations are not required to validatethe syntax of implicit requirements, it is unspecified whether an implementation diagnoses as ill-formed a program that requires
C<T>. —end example]
18.3 Header <concepts> synopsis [concepts.syn]
namespace std {// 18.4, language-related concepts// 18.4.2, concept same_as

template<class T, class U>
concept same_as = see below;

// 18.4.3, concept derived_from
template<class Derived, class Base>
concept derived_from = see below;

// 18.4.4, concept convertible_to
template<class From, class To>
concept convertible_to = see below;

// 18.4.5, concept common_reference_with
template<class T, class U>
concept common_reference_with = see below;

§ 18.3 532

© ISO/IEC N4910

// 18.4.6, concept common_with
template<class T, class U>
concept common_with = see below;

// 18.4.7, arithmetic concepts
template<class T>
concept integral = see below;

template<class T>
concept signed_integral = see below;

template<class T>
concept unsigned_integral = see below;

template<class T>
concept floating_point = see below;

// 18.4.8, concept assignable_from
template<class LHS, class RHS>
concept assignable_from = see below;

// 18.4.9, concept swappable
namespace ranges {
inline namespace unspecified {

inline constexpr unspecified swap = unspecified;
}

}
template<class T>
concept swappable = see below;

template<class T, class U>
concept swappable_with = see below;

// 18.4.10, concept destructible
template<class T>
concept destructible = see below;

// 18.4.11, concept constructible_from
template<class T, class... Args>
concept constructible_from = see below;

// 18.4.12, concept default_initializable
template<class T>
concept default_initializable = see below;

// 18.4.13, concept move_constructible
template<class T>
concept move_constructible = see below;

// 18.4.14, concept copy_constructible
template<class T>
concept copy_constructible = see below;

// 18.5, comparison concepts// 18.5.3, concept equality_comparable
template<class T>
concept equality_comparable = see below;

template<class T, class U>
concept equality_comparable_with = see below;

// 18.5.4, concept totally_ordered
template<class T>
concept totally_ordered = see below;

template<class T, class U>
concept totally_ordered_with = see below;

§ 18.3 533

© ISO/IEC N4910

// 18.6, object concepts
template<class T>
concept movable = see below;

template<class T>
concept copyable = see below;

template<class T>
concept semiregular = see below;

template<class T>
concept regular = see below;

// 18.7, callable concepts// 18.7.2, concept invocable
template<class F, class... Args>
concept invocable = see below;

// 18.7.3, concept regular_invocable
template<class F, class... Args>
concept regular_invocable = see below;

// 18.7.4, concept predicate
template<class F, class... Args>
concept predicate = see below;

// 18.7.5, concept relation
template<class R, class T, class U>
concept relation = see below;

// 18.7.6, concept equivalence_relation
template<class R, class T, class U>
concept equivalence_relation = see below;

// 18.7.7, concept strict_weak_order
template<class R, class T, class U>
concept strict_weak_order = see below;

}

18.4 Language-related concepts [concepts.lang]
18.4.1 General [concepts.lang.general]

1 Subclause 18.4 contains the definition of concepts corresponding to language features. These concepts expressrelationships between types, type classifications, and fundamental type properties.
18.4.2 Concept same_as [concept.same]

template<class T, class U>
concept same-as-impl = is_same_v<T, U>; // exposition only

template<class T, class U>
concept same_as = same-as-impl<T, U> && same-as-impl<U, T>;

1 [Note 1: same_as<T, U> subsumes same_as<U, T> and vice versa. —end note]
18.4.3 Concept derived_from [concept.derived]

template<class Derived, class Base>
concept derived_from =
is_base_of_v<Base, Derived> &&
is_convertible_v<const volatile Derived*, const volatile Base*>;

1 [Note 1: derived_from<Derived, Base> is satisfied if and only if Derived is publicly and unambiguously derived from Base,or Derived and Base are the same class type ignoring cv-qualifiers. —end note]

§ 18.4.3 534

© ISO/IEC N4910

18.4.4 Concept convertible_to [concept.convertible]
1 Given types From and To and an expression E whose type and value category are the same as those of declval<From>(),

convertible_to<From, To> requires E to be both implicitly and explicitly convertible to type To. The implicit andexplicit conversions are required to produce equal results.
template<class From, class To>

concept convertible_to =
is_convertible_v<From, To> &&
requires {

static_cast<To>(declval<From>());
};

2 Let FromR be add_rvalue_reference_t<From> and test be the invented function:
To test(FromR (&f)()) {
return f();

}

and let f be a function with no arguments and return type FromR such that f() is equality-preserving. Types Fromand To model convertible_to<From, To> only if:
—(2.1) To is not an object or reference-to-object type, or static_cast<To>(f()) is equal to test(f).
—(2.2) FromR is not a reference-to-object type, or

—(2.2.1) If FromR is an rvalue reference to a non const-qualified type, the resulting state of the object referencedby f() after either above expression is valid but unspecified (16.4.6.15).
—(2.2.2) Otherwise, the object referred to by f() is not modified by either above expression.

18.4.5 Concept common_reference_with [concept.commonref]
1 For two types T and U, if common_reference_t<T, U> is well-formed and denotes a type C such that both convertible_-

to<T, C> and convertible_to<U, C> are modeled, then T and U share a common reference type, C.
[Note 1: C can be the same as T or U, or can be a different type. C can be a reference type. —end note]
template<class T, class U>

concept common_reference_with =
same_as<common_reference_t<T, U>, common_reference_t<U, T>> &&
convertible_to<T, common_reference_t<T, U>> &&
convertible_to<U, common_reference_t<T, U>>;

2 Let C be common_reference_t<T, U>. Let t1 and t2 be equality-preserving expressions (18.2) such that
decltype((t1)) and decltype((t2)) are each T, and let u1 and u2 be equality-preserving expressions such that
decltype((u1)) and decltype((u2)) are each U. T and U model common_reference_with<T, U> only if:
—(2.1) C(t1) equals C(t2) if and only if t1 equals t2, and
—(2.2) C(u1) equals C(u2) if and only if u1 equals u2.

3 [Note 2: Users can customize the behavior of common_reference_with by specializing the basic_common_reference classtemplate (21.3.8.7). —end note]
18.4.6 Concept common_with [concept.common]

1 If T and U can both be explicitly converted to some third type, C, then T and U share a common type, C.
[Note 1: C can be the same as T or U, or can be a different type. C is not necessarily unique. —end note]
template<class T, class U>

concept common_with =
same_as<common_type_t<T, U>, common_type_t<U, T>> &&
requires {

static_cast<common_type_t<T, U>>(declval<T>());
static_cast<common_type_t<T, U>>(declval<U>());

} &&

§ 18.4.6 535

© ISO/IEC N4910

common_reference_with<
add_lvalue_reference_t<const T>,
add_lvalue_reference_t<const U>> &&

common_reference_with<
add_lvalue_reference_t<common_type_t<T, U>>,
common_reference_t<

add_lvalue_reference_t<const T>,
add_lvalue_reference_t<const U>>>;

2 Let C be common_type_t<T, U>. Let t1 and t2 be equality-preserving expressions (18.2) such that decltype((t1))and decltype((t2)) are each T, and let u1 and u2 be equality-preserving expressions such that decltype((u1))and decltype((u2)) are each U. T and U model common_with<T, U> only if:
—(2.1) C(t1) equals C(t2) if and only if t1 equals t2, and
—(2.2) C(u1) equals C(u2) if and only if u1 equals u2.

3 [Note 2: Users can customize the behavior of common_with by specializing the common_type class template (21.3.8.7). —endnote]
18.4.7 Arithmetic concepts [concepts.arithmetic]

template<class T>
concept integral = is_integral_v<T>;

template<class T>
concept signed_integral = integral<T> && is_signed_v<T>;

template<class T>
concept unsigned_integral = integral<T> && !signed_integral<T>;

template<class T>
concept floating_point = is_floating_point_v<T>;

1 [Note 1: signed_integral can be modeled even by types that are not signed integer types (6.8.2); for example, char. —endnote]
2 [Note 2: unsigned_integral can be modeled even by types that are not unsigned integer types (6.8.2); for example, bool.—end note]
18.4.8 Concept assignable_from [concept.assignable]

template<class LHS, class RHS>
concept assignable_from =
is_lvalue_reference_v<LHS> &&
common_reference_with<const remove_reference_t<LHS>&, const remove_reference_t<RHS>&> &&
requires(LHS lhs, RHS&& rhs) {

{ lhs = std::forward<RHS>(rhs) } -> same_as<LHS>;
};

1 Let:
—(1.1) lhs be an lvalue that refers to an object lcopy such that decltype((lhs)) is LHS,
—(1.2) rhs be an expression such that decltype((rhs)) is RHS, and
—(1.3) rcopy be a distinct object that is equal to rhs.

LHS and RHS model assignable_from<LHS, RHS> only if
—(1.4) addressof(lhs = rhs) == addressof(lcopy).
—(1.5) After evaluating lhs = rhs:

—(1.5.1) lhs is equal to rcopy, unless rhs is a non-const xvalue that refers to lcopy.
—(1.5.2) If rhs is a non-const xvalue, the resulting state of the object to which it refers is valid but unspecified(16.4.6.15).
—(1.5.3) Otherwise, if rhs is a glvalue, the object to which it refers is not modified.

2 [Note 1: Assignment need not be a total function (16.3.2.3); in particular, if assignment to an object x can result in amodification of some other object y, then x = y is likely not in the domain of =. —end note]

§ 18.4.8 536

© ISO/IEC N4910

18.4.9 Concept swappable [concept.swappable]
1 Let t1 and t2 be equality-preserving expressions that denote distinct equal objects of type T, and let u1 and u2 similarlydenote distinct equal objects of type U.
[Note 1: t1 and u1 can denote distinct objects, or the same object. —end note]
An operation exchanges the values denoted by t1 and u1 if and only if the operation modifies neither t2 nor u2 and:
—(1.1) If T and U are the same type, the result of the operation is that t1 equals u2 and u1 equals t2.
—(1.2) If T and U are different types and common_reference_with<decltype((t1)), decltype((u1))> is modeled,the result of the operation is that C(t1) equals C(u2) and C(u1) equals C(t2) where C is common_reference_-

t<decltype((t1)), decltype((u1))>.
2 The name ranges::swap denotes a customization point object (16.3.3.3.6). The expression ranges::swap(E1, E2) forsubexpressions E1 and E2 is expression-equivalent to an expression S determined as follows:

—(2.1) S is (void)swap(E1, E2)208 if E1 or E2 has class or enumeration type (6.8.3) and that expression is valid, withoverload resolution performed in a context that includes the declaration
template<class T>
void swap(T&, T&) = delete;

and does not include a declaration of ranges::swap. If the function selected by overload resolution does notexchange the values denoted by E1 and E2, the program is ill-formed, no diagnostic required.
—(2.2) Otherwise, if E1 and E2 are lvalues of array types (6.8.3) with equal extent and ranges::swap(*E1, *E2) is avalid expression, S is (void)ranges::swap_ranges(E1, E2), except that noexcept(S) is equal to noexcept(

ranges::swap(*E1, *E2)).
—(2.3) Otherwise, if E1 and E2 are lvalues of the same type T that models move_constructible<T> and assignable_-

from<T&, T>, S is an expression that exchanges the denoted values. S is a constant expression if
—(2.3.1) T is a literal type (6.8.1),
—(2.3.2) both E1 = std::move(E2) and E2 = std::move(E1) are constant subexpressions (3.14), and
—(2.3.3) the full-expressions of the initializers in the declarations

T t1(std::move(E1));
T t2(std::move(E2));

are constant subexpressions.
noexcept(S) is equal to is_nothrow_move_constructible_v<T> && is_nothrow_move_assignable_v<T>.

—(2.4) Otherwise, ranges::swap(E1, E2) is ill-formed.
[Note 2: This case can result in substitution failure when ranges::swap(E1, E2) appears in the immediate context of atemplate instantiation. —end note]

3 [Note 3: Whenever ranges::swap(E1, E2) is a valid expression, it exchanges the values denoted by E1 and E2 and has type void.—end note]
template<class T>

concept swappable = requires(T& a, T& b) { ranges::swap(a, b); };

template<class T, class U>
concept swappable_with =
common_reference_with<T, U> &&
requires(T&& t, U&& u) {

ranges::swap(std::forward<T>(t), std::forward<T>(t));
ranges::swap(std::forward<U>(u), std::forward<U>(u));
ranges::swap(std::forward<T>(t), std::forward<U>(u));
ranges::swap(std::forward<U>(u), std::forward<T>(t));

};
4 [Note 4: The semantics of the swappable and swappable_with concepts are fully defined by the ranges::swap customization pointobject. —end note]
5 [Example 1: User code can ensure that the evaluation of swap calls is performed in an appropriate context under the various conditionsas follows:

208) The name swap is used here unqualified.
§ 18.4.9 537

© ISO/IEC N4910

#include <cassert>
#include <concepts>
#include <utility>

namespace ranges = std::ranges;

template<class T, std::swappable_with<T> U>
void value_swap(T&& t, U&& u) {

ranges::swap(std::forward<T>(t), std::forward<U>(u));
}

template<std::swappable T>
void lv_swap(T& t1, T& t2) {

ranges::swap(t1, t2);
}

namespace N {
struct A { int m; };
struct Proxy {
A* a;
Proxy(A& a) : a{&a} {}
friend void swap(Proxy x, Proxy y) {

ranges::swap(*x.a, *y.a);
}

};
Proxy proxy(A& a) { return Proxy{ a }; }

}

int main() {
int i = 1, j = 2;
lv_swap(i, j);
assert(i == 2 && j == 1);

N::A a1 = { 5 }, a2 = { -5 };
value_swap(a1, proxy(a2));
assert(a1.m == -5 && a2.m == 5);

}

—end example]
18.4.10 Concept destructible [concept.destructible]

1 The destructible concept specifies properties of all types, instances of which can be destroyed at the end of theirlifetime, or reference types.
template<class T>

concept destructible = is_nothrow_destructible_v<T>;
2 [Note 1: Unlike the Cpp17Destructible requirements (Table 34), this concept forbids destructors that are potentially throwing,even if a particular invocation of the destructor does not actually throw. —end note]
18.4.11 Concept constructible_from [concept.constructible]

1 The constructible_from concept constrains the initialization of a variable of a given type with a particular set ofargument types.
template<class T, class... Args>

concept constructible_from = destructible<T> && is_constructible_v<T, Args...>;

18.4.12 Concept default_initializable [concept.default.init]

template<class T>
inline constexpr bool is-default-initializable = see below; // exposition only

template<class T>
concept default_initializable = constructible_from<T> &&

requires { T{}; } &&

§ 18.4.12 538

© ISO/IEC N4910

is-default-initializable<T>;

1 For a type T, is-default-initializable<T> is true if and only if the variable definition
T t;

is well-formed for some invented variable t; otherwise it is false. Access checking is performed as if in a contextunrelated to T. Only the validity of the immediate context of the variable initialization is considered.
18.4.13 Concept move_constructible [concept.moveconstructible]

template<class T>
concept move_constructible = constructible_from<T, T> && convertible_to<T, T>;

1 If T is an object type, then let rv be an rvalue of type T and u2 a distinct object of type T equal to rv. T models
move_constructible only if
—(1.1) After the definition T u = rv;, u is equal to u2.
—(1.2) T(rv) is equal to u2.
—(1.3) If T is not const, rv’s resulting state is valid but unspecified (16.4.6.15); otherwise, it is unchanged.

18.4.14 Concept copy_constructible [concept.copyconstructible]

template<class T>
concept copy_constructible =
move_constructible<T> &&
constructible_from<T, T&> && convertible_to<T&, T> &&
constructible_from<T, const T&> && convertible_to<const T&, T> &&
constructible_from<T, const T> && convertible_to<const T, T>;

1 If T is an object type, then let v be an lvalue of type (possibly const) T or an rvalue of type const T. T models
copy_constructible only if
—(1.1) After the definition T u = v;, u is equal to v (18.2) and v is not modified.
—(1.2) T(v) is equal to v and does not modify v.

18.5 Comparison concepts [concepts.compare]
18.5.1 General [concepts.compare.general]

1 Subclause 18.5 describes concepts that establish relationships and orderings on values of possibly differing object types.
18.5.2 Boolean testability [concept.booleantestable]

1 The exposition-only boolean-testable concept specifies the requirements on expressions that are convertible to booland for which the logical operators (7.6.14, 7.6.15, 7.6.2.2) have the conventional semantics.
template<class T>

concept boolean-testable-impl = convertible_to<T, bool>; // exposition only
2 Let e be an expression such that decltype((e)) is T. T models boolean-testable-impl only if:

—(2.1) either remove_cvref_t<T> is not a class type, or a search for the names operator&& and operator|| in the scopeof remove_cvref_t<T> finds nothing; and
—(2.2) argument-dependent lookup (6.5.4) for the names operator&& and operator|| with T as the only argument typefinds no disqualifying declaration (defined below).

3 A disqualifying parameter is a function parameter whose declared type P
—(3.1) is not dependent on a template parameter, and there exists an implicit conversion sequence (12.2.4.2) from e to P;or
—(3.2) is dependent on one or more template parameters, and either

—(3.2.1) P contains no template parameter that participates in template argument deduction (13.10.3.6), or
—(3.2.2) template argument deduction using the rules for deducing template arguments in a function call (13.10.3.2)and e as the argument succeeds.

§ 18.5.2 539

© ISO/IEC N4910

4 A key parameter of a function template D is a function parameter of type cv X or reference thereto, where X names aspecialization of a class template that has the same innermost enclosing non-inline namespace as D, and X contains atleast one template parameter that participates in template argument deduction.
[Example 1: In
namespace Z {

template<class> struct C {};
template<class T>
void operator&&(C<T> x, T y);

template<class T>
void operator||(C<type_identity_t<T>> x, T y);

}

the declaration of Z::operator&& contains one key parameter, C<T> x, and the declaration of Z::operator|| contains no keyparameters. —end example]
5 A disqualifying declaration is

—(5.1) a (non-template) function declaration that contains at least one disqualifying parameter; or
—(5.2) a function template declaration that contains at least one disqualifying parameter, where

—(5.2.1) at least one disqualifying parameter is a key parameter; or
—(5.2.2) the declaration contains no key parameters; or
—(5.2.3) the declaration declares a function template to which no name is bound (9.3.4).

6 [Note 1: The intention is to ensure that given two types T1 and T2 that each model boolean-testable-impl, the && and || operatorswithin the expressions declval<T1>() && declval<T2>() and declval<T1>() || declval<T2>() resolve to the correspondingbuilt-in operators. —end note]
template<class T>

concept boolean-testable = // exposition only
boolean-testable-impl<T> && requires(T&& t) {

{ !std::forward<T>(t) } -> boolean-testable-impl;
};

7 Let e be an expression such that decltype((e)) is T. T models boolean-testable only if bool(e) == !bool(!e).
8 [Example 2: The types bool, true_type (21.3.3), int*, and bitset<N>::reference (22.9.2) model boolean-testable. —endexample]
18.5.3 Concept equality_comparable [concept.equalitycomparable]

template<class T, class U>
concept weakly-equality-comparable-with = // exposition only
requires(const remove_reference_t<T>& t,

const remove_reference_t<U>& u) {
{ t == u } -> boolean-testable;
{ t != u } -> boolean-testable;
{ u == t } -> boolean-testable;
{ u != t } -> boolean-testable;

};

1 Given types T and U, let t and u be lvalues of types const remove_reference_t<T> and const remove_-
reference_t<U> respectively. T and U model weakly-equality-comparable-with<T, U> only if
—(1.1) t == u, u == t, t != u, and u != t have the same domain.
—(1.2) bool(u == t) == bool(t == u).
—(1.3) bool(t != u) == !bool(t == u).
—(1.4) bool(u != t) == bool(t != u).

template<class T>
concept equality_comparable = weakly-equality-comparable-with<T, T>;

2 Let a and b be objects of type T. T models equality_comparable only if bool(a == b) is true when a is equalto b (18.2), and false otherwise.

§ 18.5.3 540

© ISO/IEC N4910

3 [Note 1: The requirement that the expression a == b is equality-preserving implies that == is transitive and symmetric. —endnote]
template<class T, class U>

concept equality_comparable_with =
equality_comparable<T> && equality_comparable<U> &&
common_reference_with<const remove_reference_t<T>&, const remove_reference_t<U>&> &&
equality_comparable<

common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&

weakly-equality-comparable-with<T, U>;

4 Given types T and U, let t be an lvalue of type const remove_reference_t<T>, u be an lvalue of type const
remove_reference_t<U>, and C be:
common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>

T and U model equality_comparable_with<T, U> only if bool(t == u) == bool(C(t) == C(u)).
18.5.4 Concept totally_ordered [concept.totallyordered]

template<class T>
concept totally_ordered =
equality_comparable<T> && partially-ordered-with<T, T>;

1 Given a type T, let a, b, and c be lvalues of type const remove_reference_t<T>. T models totally_orderedonly if
—(1.1) Exactly one of bool(a < b), bool(a > b), or bool(a == b) is true.
—(1.2) If bool(a < b) and bool(b < c), then bool(a < c).
—(1.3) bool(a <= b) == !bool(b < a).
—(1.4) bool(a >= b) == !bool(a < b).

template<class T, class U>
concept totally_ordered_with =
totally_ordered<T> && totally_ordered<U> &&
equality_comparable_with<T, U> &&
totally_ordered<

common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&

partially-ordered-with<T, U>;

2 Given types T and U, let t be an lvalue of type const remove_reference_t<T>, u be an lvalue of type const
remove_reference_t<U>, and C be:
common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>

T and U model totally_ordered_with<T, U> only if
—(2.1) bool(t < u) == bool(C(t) < C(u)).

—(2.2) bool(t > u) == bool(C(t) > C(u)).

—(2.3) bool(t <= u) == bool(C(t) <= C(u)).

—(2.4) bool(t >= u) == bool(C(t) >= C(u)).

—(2.5) bool(u < t) == bool(C(u) < C(t)).

—(2.6) bool(u > t) == bool(C(u) > C(t)).

—(2.7) bool(u <= t) == bool(C(u) <= C(t)).

—(2.8) bool(u >= t) == bool(C(u) >= C(t)).

18.6 Object concepts [concepts.object]
1 This subclause describes concepts that specify the basis of the value-oriented programming style on which the library isbased.
§ 18.6 541

© ISO/IEC N4910

template<class T>
concept movable = is_object_v<T> && move_constructible<T> &&

assignable_from<T&, T> && swappable<T>;
template<class T>

concept copyable = copy_constructible<T> && movable<T> && assignable_from<T&, T&> &&
assignable_from<T&, const T&> && assignable_from<T&, const T>;

template<class T>
concept semiregular = copyable<T> && default_initializable<T>;

template<class T>
concept regular = semiregular<T> && equality_comparable<T>;

2 [Note 1: The semiregular concept is modeled by types that behave similarly to built-in types like int, except that they neednot be comparable with ==. —end note]
3 [Note 2: The regular concept is modeled by types that behave similarly to built-in types like int and that are comparablewith ==. —end note]
18.7 Callable concepts [concepts.callable]
18.7.1 General [concepts.callable.general]

1 The concepts in subclause 18.7 describe the requirements on function objects (22.10) and their arguments.
18.7.2 Concept invocable [concept.invocable]

1 The invocable concept specifies a relationship between a callable type (22.10.3) F and a set of argument types Args...which can be evaluated by the library function invoke (22.10.5).
template<class F, class... Args>

concept invocable = requires(F&& f, Args&&... args) {
invoke(std::forward<F>(f), std::forward<Args>(args)...); // not required to be equality-preserving

};
2 [Example 1: A function that generates random numbers can model invocable, since the invoke function call expression isnot required to be equality-preserving (18.2). —end example]
18.7.3 Concept regular_invocable [concept.regularinvocable]

template<class F, class... Args>
concept regular_invocable = invocable<F, Args...>;

1 The invoke function call expression shall be equality-preserving (18.2) and shall not modify the function objector the arguments.
[Note 1: This requirement supersedes the annotation in the definition of invocable. —end note]

2 [Example 1: A random number generator does not model regular_invocable. —end example]
3 [Note 2: The distinction between invocable and regular_invocable is purely semantic. —end note]
18.7.4 Concept predicate [concept.predicate]

template<class F, class... Args>
concept predicate =
regular_invocable<F, Args...> && boolean-testable<invoke_result_t<F, Args...>>;

18.7.5 Concept relation [concept.relation]

template<class R, class T, class U>
concept relation =
predicate<R, T, T> && predicate<R, U, U> &&
predicate<R, T, U> && predicate<R, U, T>;

18.7.6 Concept equivalence_relation [concept.equiv]

template<class R, class T, class U>
concept equivalence_relation = relation<R, T, U>;

1 A relation models equivalence_relation only if it imposes an equivalence relation on its arguments.

§ 18.7.6 542

© ISO/IEC N4910

18.7.7 Concept strict_weak_order [concept.strictweakorder]

template<class R, class T, class U>
concept strict_weak_order = relation<R, T, U>;

1 A relation models strict_weak_order only if it imposes a strict weak ordering on its arguments.
2 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term weak torequirements that are not as strong as those for a total ordering, but stronger than those for a partial ordering. Ifwe define equiv(a, b) as !comp(a, b) && !comp(b, a), then the requirements are that comp and equiv bothbe transitive relations:

—(2.1) comp(a, b) && comp(b, c) implies comp(a, c)

—(2.2) equiv(a, b) && equiv(b, c) implies equiv(a, c)
3 [Note 1: Under these conditions, it can be shown that

—(3.1) equiv is an equivalence relation,
—(3.2) comp induces a well-defined relation on the equivalence classes determined by equiv, and
—(3.3) the induced relation is a strict total ordering.
—end note]

§ 18.7.7 543

© ISO/IEC N4910

19 Diagnostics library [diagnostics]
19.1 General [diagnostics.general]

1 This Clause describes components that C++ programs may use to detect and report error conditions.
2 The following subclauses describe components for reporting several kinds of exceptional conditions, documentingprogram assertions, obtaining stacktraces, and a global variable for error number codes, as summarized in Table 41.

Table 41: Diagnostics library summary [tab:diagnostics.summary]
Subclause Header

19.2 Exception classes <stdexcept>19.3 Assertions <cassert>19.4 Error numbers <cerrno>19.5 System error support <system_error>19.6 Stacktrace <stacktrace>

19.2 Exception classes [std.exceptions]
19.2.1 General [std.exceptions.general]

1 The C++ standard library provides classes to be used to report certain errors (16.4.6.13) in C++ programs. In the errormodel reflected in these classes, errors are divided into two broad categories: logic errors and runtime errors.
2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the program. Intheory, they are preventable.
3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily predicted inadvance. The header <stdexcept> defines several types of predefined exceptions for reporting errors in a C++ program.These exceptions are related by inheritance.
19.2.2 Header <stdexcept> synopsis [stdexcept.syn]
namespace std {

class logic_error;
class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;
class underflow_error;

}

19.2.3 Class logic_error [logic.error]
namespace std {

class logic_error : public exception {
public:
explicit logic_error(const string& what_arg);
explicit logic_error(const char* what_arg);

};
}

1 The class logic_error defines the type of objects thrown as exceptions to report errors presumably detectable beforethe program executes, such as violations of logical preconditions or class invariants.
logic_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
§ 19.2.3 544

© ISO/IEC N4910

logic_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.4 Class domain_error [domain.error]
namespace std {

class domain_error : public logic_error {
public:
explicit domain_error(const string& what_arg);
explicit domain_error(const char* what_arg);

};
}

1 The class domain_error defines the type of objects thrown as exceptions by the implementation to report domain errors.
domain_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
domain_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.5 Class invalid_argument [invalid.argument]
namespace std {

class invalid_argument : public logic_error {
public:
explicit invalid_argument(const string& what_arg);
explicit invalid_argument(const char* what_arg);

};
}

1 The class invalid_argument defines the type of objects thrown as exceptions to report an invalid argument.
invalid_argument(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
invalid_argument(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.6 Class length_error [length.error]
namespace std {

class length_error : public logic_error {
public:
explicit length_error(const string& what_arg);
explicit length_error(const char* what_arg);

};
}

1 The class length_error defines the type of objects thrown as exceptions to report an attempt to produce an objectwhose length exceeds its maximum allowable size.
length_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
length_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.7 Class out_of_range [out.of.range]
namespace std {

class out_of_range : public logic_error {
public:
explicit out_of_range(const string& what_arg);
explicit out_of_range(const char* what_arg);

§ 19.2.7 545

© ISO/IEC N4910

};
}

1 The class out_of_range defines the type of objects thrown as exceptions to report an argument value not in its expectedrange.
out_of_range(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
out_of_range(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.8 Class runtime_error [runtime.error]
namespace std {

class runtime_error : public exception {
public:
explicit runtime_error(const string& what_arg);
explicit runtime_error(const char* what_arg);

};
}

1 The class runtime_error defines the type of objects thrown as exceptions to report errors presumably detectable onlywhen the program executes.
runtime_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
runtime_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.9 Class range_error [range.error]
namespace std {

class range_error : public runtime_error {
public:
explicit range_error(const string& what_arg);
explicit range_error(const char* what_arg);

};
}

1 The class range_error defines the type of objects thrown as exceptions to report range errors in internal computations.
range_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
range_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.10 Class overflow_error [overflow.error]
namespace std {

class overflow_error : public runtime_error {
public:
explicit overflow_error(const string& what_arg);
explicit overflow_error(const char* what_arg);

};
}

1 The class overflow_error defines the type of objects thrown as exceptions to report an arithmetic overflow error.
overflow_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

§ 19.2.10 546

© ISO/IEC N4910

overflow_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.2.11 Class underflow_error [underflow.error]
namespace std {

class underflow_error : public runtime_error {
public:
explicit underflow_error(const string& what_arg);
explicit underflow_error(const char* what_arg);

};
}

1 The class underflow_error defines the type of objects thrown as exceptions to report an arithmetic underflow error.
underflow_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
underflow_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
19.3 Assertions [assertions]
19.3.1 General [assertions.general]

1 The header <cassert> provides a macro for documenting C++ program assertions and a mechanism for disabling theassertion checks.
19.3.2 Header <cassert> synopsis [cassert.syn]
#define assert(E) see below

1 The contents are the same as the C standard library header <assert.h>, except that a macro named static_assert isnot defined.
See also: ISO C 7.2
19.3.3 The assert macro [assertions.assert]

1 An expression assert(E) is a constant subexpression (3.14), if
—(1.1) NDEBUG is defined at the point where assert is last defined or redefined, or
—(1.2) E contextually converted to bool (7.3) is a constant subexpression that evaluates to the value true.

19.4 Error numbers [errno]
19.4.1 General [errno.general]

1 The contents of the header <cerrno> are the same as the POSIX header <errno.h>, except that errno shall be definedas a macro.
[Note 1: The intent is to remain in close alignment with the POSIX standard. —end note]
A separate errno value shall be provided for each thread.
19.4.2 Header <cerrno> synopsis [cerrno.syn]
#define errno see below

#define E2BIG see below
#define EACCES see below
#define EADDRINUSE see below
#define EADDRNOTAVAIL see below
#define EAFNOSUPPORT see below
#define EAGAIN see below
#define EALREADY see below
#define EBADF see below
#define EBADMSG see below
#define EBUSY see below
#define ECANCELED see below

§ 19.4.2 547

© ISO/IEC N4910

#define ECHILD see below
#define ECONNABORTED see below
#define ECONNREFUSED see below
#define ECONNRESET see below
#define EDEADLK see below
#define EDESTADDRREQ see below
#define EDOM see below
#define EEXIST see below
#define EFAULT see below
#define EFBIG see below
#define EHOSTUNREACH see below
#define EIDRM see below
#define EILSEQ see below
#define EINPROGRESS see below
#define EINTR see below
#define EINVAL see below
#define EIO see below
#define EISCONN see below
#define EISDIR see below
#define ELOOP see below
#define EMFILE see below
#define EMLINK see below
#define EMSGSIZE see below
#define ENAMETOOLONG see below
#define ENETDOWN see below
#define ENETRESET see below
#define ENETUNREACH see below
#define ENFILE see below
#define ENOBUFS see below
#define ENODATA see below
#define ENODEV see below
#define ENOENT see below
#define ENOEXEC see below
#define ENOLCK see below
#define ENOLINK see below
#define ENOMEM see below
#define ENOMSG see below
#define ENOPROTOOPT see below
#define ENOSPC see below
#define ENOSR see below
#define ENOSTR see below
#define ENOSYS see below
#define ENOTCONN see below
#define ENOTDIR see below
#define ENOTEMPTY see below
#define ENOTRECOVERABLE see below
#define ENOTSOCK see below
#define ENOTSUP see below
#define ENOTTY see below
#define ENXIO see below
#define EOPNOTSUPP see below
#define EOVERFLOW see below
#define EOWNERDEAD see below
#define EPERM see below
#define EPIPE see below
#define EPROTO see below
#define EPROTONOSUPPORT see below
#define EPROTOTYPE see below
#define ERANGE see below
#define EROFS see below
#define ESPIPE see below
#define ESRCH see below
#define ETIME see below
#define ETIMEDOUT see below

§ 19.4.2 548

© ISO/IEC N4910

#define ETXTBSY see below
#define EWOULDBLOCK see below
#define EXDEV see below

1 The meaning of the macros in this header is defined by the POSIX standard.
See also: ISO C 7.5
19.5 System error support [syserr]
19.5.1 General [syserr.general]

1 Subclause 19.5 describes components that the standard library and C++ programs may use to report error conditionsoriginating from the operating system or other low-level application program interfaces.
2 Components described in 19.5 shall not change the value of errno (19.4). Implementations should leave the error statesprovided by other libraries unchanged.
19.5.2 Header <system_error> synopsis [system.error.syn]
#include <compare> // see 17.11.1
namespace std {

class error_category;
const error_category& generic_category() noexcept;
const error_category& system_category() noexcept;

class error_code;
class error_condition;
class system_error;

template<class T>
struct is_error_code_enum : public false_type {};

template<class T>
struct is_error_condition_enum : public false_type {};

enum class errc {
address_family_not_supported, // EAFNOSUPPORT
address_in_use, // EADDRINUSE
address_not_available, // EADDRNOTAVAIL
already_connected, // EISCONN
argument_list_too_long, // E2BIG
argument_out_of_domain, // EDOM
bad_address, // EFAULT
bad_file_descriptor, // EBADF
bad_message, // EBADMSG
broken_pipe, // EPIPE
connection_aborted, // ECONNABORTED
connection_already_in_progress, // EALREADY
connection_refused, // ECONNREFUSED
connection_reset, // ECONNRESET
cross_device_link, // EXDEV
destination_address_required, // EDESTADDRREQ
device_or_resource_busy, // EBUSY
directory_not_empty, // ENOTEMPTY
executable_format_error, // ENOEXEC
file_exists, // EEXIST
file_too_large, // EFBIG
filename_too_long, // ENAMETOOLONG
function_not_supported, // ENOSYS
host_unreachable, // EHOSTUNREACH
identifier_removed, // EIDRM
illegal_byte_sequence, // EILSEQ
inappropriate_io_control_operation, // ENOTTY
interrupted, // EINTR
invalid_argument, // EINVAL

§ 19.5.2 549

© ISO/IEC N4910

invalid_seek, // ESPIPE
io_error, // EIO
is_a_directory, // EISDIR
message_size, // EMSGSIZE
network_down, // ENETDOWN
network_reset, // ENETRESET
network_unreachable, // ENETUNREACH
no_buffer_space, // ENOBUFS
no_child_process, // ECHILD
no_link, // ENOLINK
no_lock_available, // ENOLCK
no_message_available, // ENODATA
no_message, // ENOMSG
no_protocol_option, // ENOPROTOOPT
no_space_on_device, // ENOSPC
no_stream_resources, // ENOSR
no_such_device_or_address, // ENXIO
no_such_device, // ENODEV
no_such_file_or_directory, // ENOENT
no_such_process, // ESRCH
not_a_directory, // ENOTDIR
not_a_socket, // ENOTSOCK
not_a_stream, // ENOSTR
not_connected, // ENOTCONN
not_enough_memory, // ENOMEM
not_supported, // ENOTSUP
operation_canceled, // ECANCELED
operation_in_progress, // EINPROGRESS
operation_not_permitted, // EPERM
operation_not_supported, // EOPNOTSUPP
operation_would_block, // EWOULDBLOCK
owner_dead, // EOWNERDEAD
permission_denied, // EACCES
protocol_error, // EPROTO
protocol_not_supported, // EPROTONOSUPPORT
read_only_file_system, // EROFS
resource_deadlock_would_occur, // EDEADLK
resource_unavailable_try_again, // EAGAIN
result_out_of_range, // ERANGE
state_not_recoverable, // ENOTRECOVERABLE
stream_timeout, // ETIME
text_file_busy, // ETXTBSY
timed_out, // ETIMEDOUT
too_many_files_open_in_system, // ENFILE
too_many_files_open, // EMFILE
too_many_links, // EMLINK
too_many_symbolic_link_levels, // ELOOP
value_too_large, // EOVERFLOW
wrong_protocol_type, // EPROTOTYPE

};

template<> struct is_error_condition_enum<errc> : true_type {};

// 19.5.4.5, non-member functions
error_code make_error_code(errc e) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const error_code& ec);

// 19.5.5.5, non-member functions
error_condition make_error_condition(errc e) noexcept;

§ 19.5.2 550

© ISO/IEC N4910

// 19.5.6, comparison operator functions
bool operator==(const error_code& lhs, const error_code& rhs) noexcept;
bool operator==(const error_code& lhs, const error_condition& rhs) noexcept;
bool operator==(const error_condition& lhs, const error_condition& rhs) noexcept;
strong_ordering operator<=>(const error_code& lhs, const error_code& rhs) noexcept;
strong_ordering operator<=>(const error_condition& lhs, const error_condition& rhs) noexcept;

// 19.5.7, hash support
template<class T> struct hash;
template<> struct hash<error_code>;
template<> struct hash<error_condition>;

// 19.5, system error support
template<class T>
inline constexpr bool is_error_code_enum_v = is_error_code_enum<T>::value;

template<class T>
inline constexpr bool is_error_condition_enum_v = is_error_condition_enum<T>::value;

}

1 The value of each enum errc constant shall be the same as the value of the <cerrno>macro shown in the above synopsis.Whether or not the <system_error> implementation exposes the <cerrno> macros is unspecified.
2 The is_error_code_enum and is_error_condition_enum templates may be specialized for program-defined typesto indicate that such types are eligible for class error_code and class error_condition implicit conversions,respectively.
19.5.3 Class error_category [syserr.errcat]
19.5.3.1 Overview [syserr.errcat.overview]

1 The class error_category serves as a base class for types used to identify the source and encoding of a particularcategory of error code. Classes may be derived from error_category to support categories of errors in addition tothose defined in this document. Such classes shall behave as specified in subclause 19.5.3.
[Note 1: error_category objects are passed by reference, and two such objects are equal if they have the same address. If thereis more than a single object of a custom error_category type, such equality comparisons can evaluate to false even for objectsholding the same value. —end note]
namespace std {

class error_category {
public:
constexpr error_category() noexcept;
virtual ~error_category();
error_category(const error_category&) = delete;
error_category& operator=(const error_category&) = delete;
virtual const char* name() const noexcept = 0;
virtual error_condition default_error_condition(int ev) const noexcept;
virtual bool equivalent(int code, const error_condition& condition) const noexcept;
virtual bool equivalent(const error_code& code, int condition) const noexcept;
virtual string message(int ev) const = 0;

bool operator==(const error_category& rhs) const noexcept;
strong_ordering operator<=>(const error_category& rhs) const noexcept;

};

const error_category& generic_category() noexcept;
const error_category& system_category() noexcept;

}

19.5.3.2 Virtual members [syserr.errcat.virtuals]

virtual const char* name() const noexcept = 0;

1 Returns: A string naming the error category.
virtual error_condition default_error_condition(int ev) const noexcept;

2 Returns: error_condition(ev, *this).
§ 19.5.3.2 551

© ISO/IEC N4910

virtual bool equivalent(int code, const error_condition& condition) const noexcept;

3 Returns: default_error_condition(code) == condition.
virtual bool equivalent(const error_code& code, int condition) const noexcept;

4 Returns: *this == code.category() && code.value() == condition.
virtual string message(int ev) const = 0;

5 Returns: A string that describes the error condition denoted by ev.
19.5.3.3 Non-virtual members [syserr.errcat.nonvirtuals]

bool operator==(const error_category& rhs) const noexcept;

1 Returns: this == &rhs.
strong_ordering operator<=>(const error_category& rhs) const noexcept;

2 Returns: compare_three_way()(this, &rhs).
[Note 1: compare_three_way (22.10.8.8) provides a total ordering for pointers. —end note]

19.5.3.4 Program-defined classes derived from error_category [syserr.errcat.derived]

virtual const char* name() const noexcept = 0;

1 Returns: A string naming the error category.
virtual error_condition default_error_condition(int ev) const noexcept;

2 Returns: An object of type error_condition that corresponds to ev.
virtual bool equivalent(int code, const error_condition& condition) const noexcept;

3 Returns: true if, for the category of error represented by *this, code is considered equivalent to condition;otherwise, false.
virtual bool equivalent(const error_code& code, int condition) const noexcept;

4 Returns: true if, for the category of error represented by *this, code is considered equivalent to condition;otherwise, false.
19.5.3.5 Error category objects [syserr.errcat.objects]

const error_category& generic_category() noexcept;

1 Returns: A reference to an object of a type derived from class error_category. All calls to this function shallreturn references to the same object.
2 Remarks: The object’s default_error_condition and equivalent virtual functions shall behave as specifiedfor the class error_category. The object’s name virtual function shall return a pointer to the string "generic".

const error_category& system_category() noexcept;

3 Returns: A reference to an object of a type derived from class error_category. All calls to this function shallreturn references to the same object.
4 Remarks: The object’s equivalent virtual functions shall behave as specified for class error_category. Theobject’s name virtual function shall return a pointer to the string "system". The object’s default_error_-

condition virtual function shall behave as follows:
If the argument ev is equal to 0, the function returns error_condition(0, generic_category()). Otherwise, if
ev corresponds to a POSIX errno value pxv, the function returns error_condition(pxv, generic_category()).Otherwise, the function returns error_condition(ev, system_category()). What constitutes correspondencefor any given operating system is unspecified.
[Note 1: The number of potential system error codes is large and unbounded, and some might not correspond to any POSIX
errno value. Thus implementations are given latitude in determining correspondence. —end note]

§ 19.5.3.5 552

© ISO/IEC N4910

19.5.4 Class error_code [syserr.errcode]
19.5.4.1 Overview [syserr.errcode.overview]

1 The class error_code describes an object used to hold error code values, such as those originating from the operatingsystem or other low-level application program interfaces.
[Note 1: Class error_code is an adjunct to error reporting by exception. —end note]
namespace std {

class error_code {
public:// 19.5.4.2, constructors

error_code() noexcept;
error_code(int val, const error_category& cat) noexcept;
template<class ErrorCodeEnum>
error_code(ErrorCodeEnum e) noexcept;

// 19.5.4.3, modifiers
void assign(int val, const error_category& cat) noexcept;
template<class ErrorCodeEnum>
error_code& operator=(ErrorCodeEnum e) noexcept;

void clear() noexcept;

// 19.5.4.4, observers
int value() const noexcept;
const error_category& category() const noexcept;
error_condition default_error_condition() const noexcept;
string message() const;
explicit operator bool() const noexcept;

private:
int val_; // exposition only
const error_category* cat_; // exposition only

};

// 19.5.4.5, non-member functions
error_code make_error_code(errc e) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const error_code& ec);

}

19.5.4.2 Constructors [syserr.errcode.constructors]

error_code() noexcept;

1 Postconditions: val_ == 0 and cat_ == &system_category().
error_code(int val, const error_category& cat) noexcept;

2 Postconditions: val_ == val and cat_ == &cat.
template<class ErrorCodeEnum>

error_code(ErrorCodeEnum e) noexcept;

3 Constraints: is_error_code_enum_v<ErrorCodeEnum> is true.
4 Postconditions: *this == make_error_code(e).
19.5.4.3 Modifiers [syserr.errcode.modifiers]

void assign(int val, const error_category& cat) noexcept;

1 Postconditions: val_ == val and cat_ == &cat.
template<class ErrorCodeEnum>

error_code& operator=(ErrorCodeEnum e) noexcept;

2 Constraints: is_error_code_enum_v<ErrorCodeEnum> is true.
§ 19.5.4.3 553

© ISO/IEC N4910

3 Postconditions: *this == make_error_code(e).
4 Returns: *this.

void clear() noexcept;

5 Postconditions: value() == 0 and category() == system_category().
19.5.4.4 Observers [syserr.errcode.observers]

int value() const noexcept;

1 Returns: val_.
const error_category& category() const noexcept;

2 Returns: *cat_.
error_condition default_error_condition() const noexcept;

3 Returns: category().default_error_condition(value()).
string message() const;

4 Returns: category().message(value()).
explicit operator bool() const noexcept;

5 Returns: value() != 0.
19.5.4.5 Non-member functions [syserr.errcode.nonmembers]

error_code make_error_code(errc e) noexcept;

1 Returns: error_code(static_cast<int>(e), generic_category()).
template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const error_code& ec);

2 Effects: Equivalent to: return os << ec.category().name() << ’:’ << ec.value();

19.5.5 Class error_condition [syserr.errcondition]
19.5.5.1 Overview [syserr.errcondition.overview]

1 The class error_condition describes an object used to hold values identifying error conditions.
[Note 1: error_condition values are portable abstractions, while error_code values (19.5.4) are implementation specific. —endnote]
namespace std {

class error_condition {
public:// 19.5.5.2, constructors
error_condition() noexcept;
error_condition(int val, const error_category& cat) noexcept;
template<class ErrorConditionEnum>

error_condition(ErrorConditionEnum e) noexcept;

// 19.5.5.3, modifiers
void assign(int val, const error_category& cat) noexcept;
template<class ErrorConditionEnum>

error_condition& operator=(ErrorConditionEnum e) noexcept;
void clear() noexcept;

// 19.5.5.4, observers
int value() const noexcept;
const error_category& category() const noexcept;
string message() const;
explicit operator bool() const noexcept;

§ 19.5.5.1 554

© ISO/IEC N4910

private:
int val_; // exposition only
const error_category* cat_; // exposition only

};
}

19.5.5.2 Constructors [syserr.errcondition.constructors]

error_condition() noexcept;

1 Postconditions: val_ == 0 and cat_ == &generic_category().
error_condition(int val, const error_category& cat) noexcept;

2 Postconditions: val_ == val and cat_ == &cat.
template<class ErrorConditionEnum>

error_condition(ErrorConditionEnum e) noexcept;

3 Constraints: is_error_condition_enum_v<ErrorConditionEnum> is true.
4 Postconditions: *this == make_error_condition(e).
19.5.5.3 Modifiers [syserr.errcondition.modifiers]

void assign(int val, const error_category& cat) noexcept;

1 Postconditions: val_ == val and cat_ == &cat.
template<class ErrorConditionEnum>

error_condition& operator=(ErrorConditionEnum e) noexcept;

2 Constraints: is_error_condition_enum_v<ErrorConditionEnum> is true.
3 Postconditions: *this == make_error_condition(e).
4 Returns: *this.

void clear() noexcept;

5 Postconditions: value() == 0 and category() == generic_category().
19.5.5.4 Observers [syserr.errcondition.observers]

int value() const noexcept;

1 Returns: val_.
const error_category& category() const noexcept;

2 Returns: *cat_.
string message() const;

3 Returns: category().message(value()).
explicit operator bool() const noexcept;

4 Returns: value() != 0.
19.5.5.5 Non-member functions [syserr.errcondition.nonmembers]

error_condition make_error_condition(errc e) noexcept;

1 Returns: error_condition(static_cast<int>(e), generic_category()).
19.5.6 Comparison operator functions [syserr.compare]

bool operator==(const error_code& lhs, const error_code& rhs) noexcept;

1 Returns:
lhs.category() == rhs.category() && lhs.value() == rhs.value()

§ 19.5.6 555

© ISO/IEC N4910

bool operator==(const error_code& lhs, const error_condition& rhs) noexcept;

2 Returns:
lhs.category().equivalent(lhs.value(), rhs) || rhs.category().equivalent(lhs, rhs.value())

bool operator==(const error_condition& lhs, const error_condition& rhs) noexcept;

3 Returns:
lhs.category() == rhs.category() && lhs.value() == rhs.value()

strong_ordering operator<=>(const error_code& lhs, const error_code& rhs) noexcept;

4 Effects: Equivalent to:
if (auto c = lhs.category() <=> rhs.category(); c != 0) return c;
return lhs.value() <=> rhs.value();

strong_ordering operator<=>(const error_condition& lhs, const error_condition& rhs) noexcept;

5 Returns:
if (auto c = lhs.category() <=> rhs.category(); c != 0) return c;
return lhs.value() <=> rhs.value();

19.5.7 System error hash support [syserr.hash]

template<> struct hash<error_code>;
template<> struct hash<error_condition>;

1 The specializations are enabled (22.10.19).
19.5.8 Class system_error [syserr.syserr]
19.5.8.1 Overview [syserr.syserr.overview]

1 The class system_error describes an exception object used to report error conditions that have an associated error code.Such error conditions typically originate from the operating system or other low-level application program interfaces.
2 [Note 1: If an error represents an out-of-memory condition, implementations are encouraged to throw an exception object of type

bad_alloc (17.6.4.1) rather than system_error. —end note]
namespace std {

class system_error : public runtime_error {
public:
system_error(error_code ec, const string& what_arg);
system_error(error_code ec, const char* what_arg);
system_error(error_code ec);
system_error(int ev, const error_category& ecat, const string& what_arg);
system_error(int ev, const error_category& ecat, const char* what_arg);
system_error(int ev, const error_category& ecat);
const error_code& code() const noexcept;
const char* what() const noexcept override;

};
}

19.5.8.2 Members [syserr.syserr.members]

system_error(error_code ec, const string& what_arg);

1 Postconditions: code() == ec and
string_view(what()).find(what_arg.c_str()) != string_view::npos.

system_error(error_code ec, const char* what_arg);

2 Postconditions: code() == ec and string_view(what()).find(what_arg) != string_view::npos.
system_error(error_code ec);

3 Postconditions: code() == ec.

§ 19.5.8.2 556

© ISO/IEC N4910

system_error(int ev, const error_category& ecat, const string& what_arg);

4 Postconditions: code() == error_code(ev, ecat) and
string_view(what()).find(what_arg.c_str()) != string_view::npos.

system_error(int ev, const error_category& ecat, const char* what_arg);

5 Postconditions: code() == error_code(ev, ecat) and
string_view(what()).find(what_arg) != string_view::npos.

system_error(int ev, const error_category& ecat);

6 Postconditions: code() == error_code(ev, ecat).
const error_code& code() const noexcept;

7 Returns: ec or error_code(ev, ecat), from the constructor, as appropriate.
const char* what() const noexcept override;

8 Returns: An ntbs incorporating the arguments supplied in the constructor.
[Note 1: The returned ntbs might be the contents of what_arg + ": " + code.message(). —end note]

19.6 Stacktrace [stacktrace]
19.6.1 General [stacktrace.general]

1 Subclause 19.6 describes components that C++ programs may use to store the stacktrace of the current thread of executionand query information about the stored stacktrace at runtime.
2 The invocation sequence of the current evaluation x0 in the current thread of execution is a sequence (x0, . . . , xn) ofevaluations such that, for i ≥ 0, xi is within the function invocation xi+1 (6.9.1).
3 A stacktrace is an approximate representation of an invocation sequence and consists of stacktrace entries. A stacktraceentry represents an evaluation in a stacktrace.
19.6.2 Header <stacktrace> synopsis [stacktrace.syn]
namespace std {// 19.6.3, class stacktrace_entry

class stacktrace_entry;

// 19.6.4, class template basic_stacktrace
template<class Allocator>
class basic_stacktrace;

// basic_stacktrace typedef-names
using stacktrace = basic_stacktrace<allocator<stacktrace_entry>>;

// 19.6.4.6, non-member functions
template<class Allocator>

void swap(basic_stacktrace<Allocator>& a, basic_stacktrace<Allocator>& b)
noexcept(noexcept(a.swap(b)));

string to_string(const stacktrace_entry& f);

template<class Allocator>
string to_string(const basic_stacktrace<Allocator>& st);

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const stacktrace_entry& f);

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const basic_stacktrace<Allocator>& st);

§ 19.6.2 557

© ISO/IEC N4910

namespace pmr {
using stacktrace = basic_stacktrace<polymorphic_allocator<stacktrace_entry>>;

}

// 19.6.4.7, hash support
template<class T> struct hash;
template<> struct hash<stacktrace_entry>;
template<class Allocator> struct hash<basic_stacktrace<Allocator>>;

}

19.6.3 Class stacktrace_entry [stacktrace.entry]
19.6.3.1 Overview [stacktrace.entry.overview]
namespace std {

class stacktrace_entry {
public:
using native_handle_type = implementation-defined;

// 19.6.3.2, constructors
constexpr stacktrace_entry() noexcept;
constexpr stacktrace_entry(const stacktrace_entry& other) noexcept;
constexpr stacktrace_entry& operator=(const stacktrace_entry& other) noexcept;

~stacktrace_entry();

// 19.6.3.3, observers
constexpr native_handle_type native_handle() const noexcept;
constexpr explicit operator bool() const noexcept;

// 19.6.3.4, query
string description() const;
string source_file() const;
uint_least32_t source_line() const;

// 19.6.3.5, comparison
friend constexpr bool operator==(const stacktrace_entry& x,

const stacktrace_entry& y) noexcept;
friend constexpr strong_ordering operator<=>(const stacktrace_entry& x,

const stacktrace_entry& y) noexcept;
};

}

1 An object of type stacktrace_entry is either empty, or represents a stacktrace entry and provides operations for queryinginformation about it. The class stacktrace_entry models regular (18.6) and three_way_comparable<strong_-
ordering> (17.11.4).
19.6.3.2 Constructors [stacktrace.entry.ctor]

constexpr stacktrace_entry() noexcept;

1 Postconditions: *this is empty.
19.6.3.3 Observers [stacktrace.entry.obs]

constexpr native_handle_type native_handle() const noexcept;

1 The semantics of this function are implementation-defined.
2 Remarks: Successive invocations of the native_handle function for an unchanged stacktrace_entry objectreturn identical values.

constexpr explicit operator bool() const noexcept;

3 Returns: false if and only if *this is empty.

§ 19.6.3.3 558

© ISO/IEC N4910

19.6.3.4 Query [stacktrace.entry.query]
1 [Note 1: All the stacktrace_entry query functions treat errors other than memory allocation errors as “no information available”and do not throw in that case. —end note]

string description() const;

2 Returns: A description of the evaluation represented by *this, or an empty string.
3 Throws: bad_alloc if memory for the internal data structures or the resulting string cannot be allocated.

string source_file() const;

4 Returns: The presumed or actual name of the source file (15.11) that lexically contains the expression or statementwhose evaluation is represented by *this, or an empty string.
5 Throws: bad_alloc if memory for the internal data structures or the resulting string cannot be allocated.

uint_least32_t source_line() const;

6 Returns: 0, or a 1-based line number that lexically relates to the evaluation represented by *this. If source_filereturns the presumed name of the source file, returns the presumed line number; if source_file returns the actualname of the source file, returns the actual line number.
7 Throws: bad_alloc if memory for the internal data structures cannot be allocated.
19.6.3.5 Comparison [stacktrace.entry.cmp]

friend constexpr bool operator==(const stacktrace_entry& x, const stacktrace_entry& y) noexcept;

1 Returns: true if and only if x and y represent the same stacktrace entry or both x and y are empty.
19.6.4 Class template basic_stacktrace [stacktrace.basic]
19.6.4.1 Overview [stacktrace.basic.overview]
namespace std {

template<class Allocator>
class basic_stacktrace {
public:

using value_type = stacktrace_entry;
using const_reference = const value_type&;
using reference = value_type&;
using const_iterator = implementation-defined; // see 19.6.4.3
using iterator = const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using difference_type = implementation-defined;
using size_type = implementation-defined;
using allocator_type = Allocator;

// 19.6.4.2, creation and assignment
static basic_stacktrace current(const allocator_type& alloc = allocator_type()) noexcept;
static basic_stacktrace current(size_type skip,

const allocator_type& alloc = allocator_type()) noexcept;
static basic_stacktrace current(size_type skip, size_type max_depth,

const allocator_type& alloc = allocator_type()) noexcept;

basic_stacktrace() noexcept(is_nothrow_default_constructible_v<allocator_type>);
explicit basic_stacktrace(const allocator_type& alloc) noexcept;

basic_stacktrace(const basic_stacktrace& other);
basic_stacktrace(basic_stacktrace&& other) noexcept;
basic_stacktrace(const basic_stacktrace& other, const allocator_type& alloc);
basic_stacktrace(basic_stacktrace&& other, const allocator_type& alloc);
basic_stacktrace& operator=(const basic_stacktrace& other);
basic_stacktrace& operator=(basic_stacktrace&& other)
noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||

allocator_traits<Allocator>::is_always_equal::value);

§ 19.6.4.1 559

© ISO/IEC N4910

~basic_stacktrace();

// 19.6.4.3, observers
allocator_type get_allocator() const noexcept;

const_iterator begin() const noexcept;
const_iterator end() const noexcept;
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

const_reference operator[](size_type) const;
const_reference at(size_type) const;

// 19.6.4.4, comparisons
template<class Allocator2>
friend bool operator==(const basic_stacktrace& x,

const basic_stacktrace<Allocator2>& y) noexcept;
template<class Allocator2>
friend strong_ordering operator<=>(const basic_stacktrace& x,

const basic_stacktrace<Allocator2>& y) noexcept;

// 19.6.4.5, modifiers
void swap(basic_stacktrace& other)

noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

private:
vector<value_type, allocator_type> frames_; // exposition only

};
}

1 The class template basic_stacktrace satisfies the requirements of a reversible container (24.2.2.3), of an allocator-aware container (24.2.2.5), and of a sequence container (24.2.4), except that
—(1.1) only move, assignment, swap, and operations defined for const-qualified sequence containers are supported and,
—(1.2) the semantics of comparison functions are different from those required for a container.

19.6.4.2 Creation and assignment [stacktrace.basic.ctor]

static basic_stacktrace current(const allocator_type& alloc = allocator_type()) noexcept;

1 Returns: A basic_stacktrace object with frames_ storing the stacktrace of the current evaluation in the currentthread of execution, or an empty basic_stacktrace object if the initialization of frames_ failed. alloc is passedto the constructor of the frames_ object.
[Note 1: If the stacktrace was successfully obtained, then frames_.front() is the stacktrace_entry representing approxi-mately the current evaluation, and frames_.back() is the stacktrace_entry representing approximately the initial functionof the current thread of execution. —end note]

static basic_stacktrace current(size_type skip,
const allocator_type& alloc = allocator_type()) noexcept;

2 Let t be a stacktrace as-if obtained via basic_stacktrace::current(alloc). Let n be t.size().
3 Returns: A basic_stacktrace object where frames_ is direct-non-list-initialized from arguments t.begin() +

min(n, skip), t.end(), and alloc, or an empty basic_stacktrace object if the initialization of frames_ failed.

§ 19.6.4.2 560

© ISO/IEC N4910

static basic_stacktrace current(size_type skip, size_type max_depth,
const allocator_type& alloc = allocator_type()) noexcept;

4 Let t be a stacktrace as-if obtained via basic_stacktrace::current(alloc). Let n be t.size().
5 Preconditions: skip <= skip + max_depth is true.
6 Returns: A basic_stacktrace object where frames_ is direct-non-list-initialized from arguments t.begin() +

min(n, skip), t.begin() + min(n, skip + max_depth), and alloc, or an empty basic_stacktrace objectif the initialization of frames_ failed.
basic_stacktrace() noexcept(is_nothrow_default_constructible_v<allocator_type>);

7 Postconditions: empty() is true.
explicit basic_stacktrace(const allocator_type& alloc) noexcept;

8 Effects: alloc is passed to the frames_ constructor.
9 Postconditions: empty() is true.

basic_stacktrace(const basic_stacktrace& other);
basic_stacktrace(const basic_stacktrace& other, const allocator_type& alloc);
basic_stacktrace(basic_stacktrace&& other, const allocator_type& alloc);
basic_stacktrace& operator=(const basic_stacktrace& other);
basic_stacktrace& operator=(basic_stacktrace&& other)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

10 Remarks: Implementations may strengthen the exception specification for these functions (16.4.6.13) by ensuringthat empty() is true on failed allocation.
19.6.4.3 Observers [stacktrace.basic.obs]

using const_iterator = implementation-defined;

1 The type models random_access_iterator (25.3.4.13) and meets the Cpp17RandomAccessIterator requirements(25.3.5.7).
allocator_type get_allocator() const noexcept;

2 Returns: frames_.get_allocator().
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

3 Returns: An iterator referring to the first element in frames_. If empty() is true, then it returns the same valueas end().
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

4 Returns: The end iterator.
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator crbegin() const noexcept;

5 Returns: reverse_iterator(cend()).
const_reverse_iterator rend() const noexcept;
const_reverse_iterator crend() const noexcept;

6 Returns: reverse_iterator(cbegin()).
[[nodiscard]] bool empty() const noexcept;

7 Returns: frames_.empty().
size_type size() const noexcept;

8 Returns: frames_.size().

§ 19.6.4.3 561

© ISO/IEC N4910

size_type max_size() const noexcept;

9 Returns: frames_.max_size().
const_reference operator[](size_type frame_no) const;

10 Preconditions: frame_no < size() is true.
11 Returns: frames_[frame_no].
12 Throws: Nothing.

const_reference at(size_type frame_no) const;

13 Returns: frames_[frame_no].
14 Throws: out_of_range if frame_no >= size().
19.6.4.4 Comparisons [stacktrace.basic.cmp]

template<class Allocator2>
friend bool operator==(const basic_stacktrace& x, const basic_stacktrace<Allocator2>& y) noexcept;

1 Returns: equal(x.begin(), x.end(), y.begin(), y.end()).
template<class Allocator2>
friend strong_ordering
operator<=>(const basic_stacktrace& x, const basic_stacktrace<Allocator2>& y) noexcept;

2 Returns: x.size() <=> y.size() if x.size() != y.size(); lexicographical_compare_three_way(x.begin(),
x.end(), y.begin(), y.end()) otherwise.

19.6.4.5 Modifiers [stacktrace.basic.mod]

void swap(basic_stacktrace& other)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

1 Effects: Exchanges the contents of *this and other.
19.6.4.6 Non-member functions [stacktrace.basic.nonmem]

template<class Allocator>
void swap(basic_stacktrace<Allocator>& a, basic_stacktrace<Allocator>& b)

noexcept(noexcept(a.swap(b)));

1 Effects: Equivalent to a.swap(b).
string to_string(const stacktrace_entry& f);

2 Returns: A string with a description of f.
Recommended practice: The description should provide information about the contained evaluation, includinginformation from f.source_file() and f.source_line().

template<class Allocator>
string to_string(const basic_stacktrace<Allocator>& st);

3 Returns: A string with a description of st.
[Note 1: The number of lines is not guaranteed to be equal to st.size(). —end note]

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const stacktrace_entry& f);

4 Effects: Equivalent to: return os << to_string(f);

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const basic_stacktrace<Allocator>& st);

5 Effects: Equivalent to: return os << to_string(st);

§ 19.6.4.6 562

© ISO/IEC N4910

19.6.4.7 Hash support [stacktrace.basic.hash]

template<> struct hash<stacktrace_entry>;
template<class Allocator> struct hash<basic_stacktrace<Allocator>>;

1 The specializations are enabled (22.10.19).

§ 19.6.4.7 563

© ISO/IEC N4910

20 Memory management library [mem]
20.1 General [mem.general]

1 This Clause describes components for memory management.
2 The following subclauses describe general memory management facilities, smart pointers, memory resources, andscoped allocators, as summarized in Table 42.

Table 42: Memory management library summary [tab:mem.summary]
Subclause Header

20.2 Memory <cstdlib>, <memory>20.3 Smart pointers <memory>20.4 Memory resources <memory_resource>20.5 Scoped allocators <scoped_allocator>

20.2 Memory [memory]
20.2.1 In general [memory.general]

1 Subclause 20.2 describes the contents of the header <memory> (20.2.2) and some of the contents of the header <cstdlib>(17.2.2).
20.2.2 Header <memory> synopsis [memory.syn]

1 The header <memory> defines several types and function templates that describe properties of pointers and pointer-liketypes, manage memory for containers and other template types, destroy objects, and construct objects in uninitializedmemory buffers (20.2.3–20.2.10 and 27.11). The header also defines the templates unique_ptr, shared_ptr, weak_ptr,
out_ptr_t, inout_ptr_t, and various function templates that operate on objects of these types (20.3).

2 Let POINTER_OF(T) denote a type that is
—(2.1) T::pointer if the qualified-id T::pointer is valid and denotes a type,
—(2.2) otherwise, T::element_type* if the qualified-id T::element_type is valid and denotes a type,
—(2.3) otherwise, pointer_traits<T>::element_type*.

3 Let POINTER_OF_OR(T, U) denote a type that is:
—(3.1) POINTER_OF(T) if POINTER_OF(T) is valid and denotes a type,
—(3.2) otherwise, U.
#include <compare> // see 17.11.1
namespace std {// 20.2.3, pointer traits

template<class Ptr> struct pointer_traits;
template<class T> struct pointer_traits<T*>;

// 20.2.4, pointer conversion
template<class T>

constexpr T* to_address(T* p) noexcept;
template<class Ptr>

constexpr auto to_address(const Ptr& p) noexcept;

// 20.2.5, pointer alignment
void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
template<size_t N, class T>

[[nodiscard]] constexpr T* assume_aligned(T* ptr);

§ 20.2.2 564

© ISO/IEC N4910

// 20.2.6, allocator argument tag
struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};

// 20.2.7, uses_allocator
template<class T, class Alloc> struct uses_allocator;

// 20.2.7.1, uses_allocator
template<class T, class Alloc>
inline constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value;

// 20.2.7.2, uses-allocator construction
template<class T, class Alloc, class... Args>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

Args&&... args) noexcept;
template<class T, class Alloc, class Tuple1, class Tuple2>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t,

Tuple1&& x, Tuple2&& y) noexcept;
template<class T, class Alloc>
constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept;

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

U&& u, V&& v) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

const pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

pair<U, V>&& pr) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

const pair<U, V>&& pr) noexcept;
template<class T, class Alloc, class U>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, U&& u) noexcept;

template<class T, class Alloc, class... Args>
constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args);

template<class T, class Alloc, class... Args>
constexpr T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc,

Args&&... args);

// 20.2.8, allocator traits
template<class Alloc> struct allocator_traits;

template<class Pointer>
struct allocation_result {
Pointer ptr;
size_t count;

};

template<class Allocator>
[[nodiscard] constexpr allocation_result<typename allocator_traits<Allocator>::pointer>

allocate_at_least(Allocator& a, size_t n);

// 20.2.9, the default allocator
template<class T> class allocator;
template<class T, class U>
constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;

// 20.2.10, addressof
template<class T>
constexpr T* addressof(T& r) noexcept;

§ 20.2.2 565

© ISO/IEC N4910

template<class T>
const T* addressof(const T&&) = delete;

// 27.11, specialized algorithms// 27.11.2, special memory concepts
template<class I>
concept nothrow-input-iterator = see below; // exposition only

template<class I>
concept nothrow-forward-iterator = see below; // exposition only

template<class S, class I>
concept nothrow-sentinel-for = see below; // exposition only

template<class R>
concept nothrow-input-range = see below; // exposition only

template<class R>
concept nothrow-forward-range = see below; // exposition only

template<class NoThrowForwardIterator>
void uninitialized_default_construct(NoThrowForwardIterator first,

NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>
void uninitialized_default_construct(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first,
NoThrowForwardIterator last);

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator

uninitialized_default_construct_n(NoThrowForwardIterator first, Size n);
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator

uninitialized_default_construct_n(ExecutionPolicy&& exec, // see 27.3.5
NoThrowForwardIterator first, Size n);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S>
requires default_initializable<iter_value_t<I>>

I uninitialized_default_construct(I first, S last);
template<nothrow-forward-range R>

requires default_initializable<range_value_t<R>>
borrowed_iterator_t<R> uninitialized_default_construct(R&& r);

template<nothrow-forward-iterator I>
requires default_initializable<iter_value_t<I>>

I uninitialized_default_construct_n(I first, iter_difference_t<I> n);
}

template<class NoThrowForwardIterator>
void uninitialized_value_construct(NoThrowForwardIterator first,

NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>
void uninitialized_value_construct(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first,
NoThrowForwardIterator last);

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator

uninitialized_value_construct_n(NoThrowForwardIterator first, Size n);
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator

uninitialized_value_construct_n(ExecutionPolicy&& exec, // see 27.3.5
NoThrowForwardIterator first, Size n);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S>
requires default_initializable<iter_value_t<I>>

I uninitialized_value_construct(I first, S last);

§ 20.2.2 566

© ISO/IEC N4910

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>

borrowed_iterator_t<R> uninitialized_value_construct(R&& r);

template<nothrow-forward-iterator I>
requires default_initializable<iter_value_t<I>>

I uninitialized_value_construct_n(I first, iter_difference_t<I> n);
}

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy(InputIterator first, InputIterator last,

NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);

template<class InputIterator, class Size, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(InputIterator first, Size n,

NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,

class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n,
NoThrowForwardIterator result);

namespace ranges {
template<class I, class O>

using uninitialized_copy_result = in_out_result<I, O>;
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for<O> S2>
requires constructible_from<iter_value_t<O>, iter_reference_t<I>>

uninitialized_copy_result<I, O>
uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast);

template<input_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_reference_t<IR>>

uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_copy(IR&& in_range, OR&& out_range);

template<class I, class O>
using uninitialized_copy_n_result = in_out_result<I, O>;

template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for<O> S>
requires constructible_from<iter_value_t<O>, iter_reference_t<I>>

uninitialized_copy_n_result<I, O>
uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);

}

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(InputIterator first, InputIterator last,

NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);

template<class InputIterator, class Size, class NoThrowForwardIterator>
pair<InputIterator, NoThrowForwardIterator>

uninitialized_move_n(InputIterator first, Size n, NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,

class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>

uninitialized_move_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, Size n, NoThrowForwardIterator result);

§ 20.2.2 567

© ISO/IEC N4910

namespace ranges {
template<class I, class O>

using uninitialized_move_result = in_out_result<I, O>;
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for<O> S2>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>

uninitialized_move_result<I, O>
uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast);

template<input_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>

uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move(IR&& in_range, OR&& out_range);

template<class I, class O>
using uninitialized_move_n_result = in_out_result<I, O>;

template<input_iterator I,
nothrow-forward-iterator O, nothrow-sentinel-for<O> S>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, O>

uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}

template<class NoThrowForwardIterator, class T>
void uninitialized_fill(NoThrowForwardIterator first, NoThrowForwardIterator last,

const T& x);
template<class ExecutionPolicy, class NoThrowForwardIterator, class T>
void uninitialized_fill(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, NoThrowForwardIterator last,
const T& x);

template<class NoThrowForwardIterator, class Size, class T>
NoThrowForwardIterator

uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x);
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size, class T>
NoThrowForwardIterator

uninitialized_fill_n(ExecutionPolicy&& exec, // see 27.3.5
NoThrowForwardIterator first, Size n, const T& x);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S, class T>
requires constructible_from<iter_value_t<I>, const T&>

I uninitialized_fill(I first, S last, const T& x);
template<nothrow-forward-range R, class T>

requires constructible_from<range_value_t<R>, const T&>
borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x);

template<nothrow-forward-iterator I, class T>
requires constructible_from<iter_value_t<I>, const T&>

I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x);
}

// 27.11.8, construct_at
template<class T, class... Args>
constexpr T* construct_at(T* location, Args&&... args);

namespace ranges {
template<class T, class... Args>

constexpr T* construct_at(T* location, Args&&... args);
}

// 27.11.9, destroy
template<class T>
constexpr void destroy_at(T* location);

template<class NoThrowForwardIterator>
constexpr void destroy(NoThrowForwardIterator first, NoThrowForwardIterator last);

§ 20.2.2 568

© ISO/IEC N4910

template<class ExecutionPolicy, class NoThrowForwardIterator>
void destroy(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, NoThrowForwardIterator last);
template<class NoThrowForwardIterator, class Size>
constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, Size n);

template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator destroy_n(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, Size n);

namespace ranges {
template<destructible T>

constexpr void destroy_at(T* location) noexcept;

template<nothrow-input-iterator I, nothrow-sentinel-for<I> S>
requires destructible<iter_value_t<I>>

constexpr I destroy(I first, S last) noexcept;
template<nothrow-input-range R>

requires destructible<range_value_t<R>>
constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept;

template<nothrow-input-iterator I>
requires destructible<iter_value_t<I>>

constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept;
}

// 20.3.1, class template unique_ptr
template<class T> struct default_delete;
template<class T> struct default_delete<T[]>;
template<class T, class D = default_delete<T>> class unique_ptr;
template<class T, class D> class unique_ptr<T[], D>;

template<class T, class... Args>
constexpr unique_ptr<T> make_unique(Args&&... args); // T is not array

template<class T>
constexpr unique_ptr<T> make_unique(size_t n); // T is U[]

template<class T, class... Args>
unspecified make_unique(Args&&...) = delete; // T is U[N]

template<class T>
constexpr unique_ptr<T> make_unique_for_overwrite(); // T is not array

template<class T>
constexpr unique_ptr<T> make_unique_for_overwrite(size_t n); // T is U[]

template<class T, class... Args>
unspecified make_unique_for_overwrite(Args&&...) = delete; // T is U[N]

template<class T, class D>
constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept;

template<class T1, class D1, class T2, class D2>
constexpr bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer,

typename unique_ptr<T2, D2>::pointer>
compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer,

typename unique_ptr<T2, D2>::pointer>
operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

§ 20.2.2 569

© ISO/IEC N4910

template<class T, class D>
constexpr bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;

template<class T, class D>
constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& y);

template<class T, class D>
constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& y);

template<class T, class D>
constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& y);

template<class T, class D>
constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& y);

template<class T, class D>
requires three_way_comparable<typename unique_ptr<T, D>::pointer>
constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer>

operator<=>(const unique_ptr<T, D>& x, nullptr_t);

template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);

// 20.3.2.1, class bad_weak_ptr
class bad_weak_ptr;

// 20.3.2.2, class template shared_ptr
template<class T> class shared_ptr;

// 20.3.2.2.7, shared_ptr creation
template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args); // T is not array

template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array

template<class T>
shared_ptr<T> make_shared(size_t N); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[]

template<class T>
shared_ptr<T> make_shared(); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a); // T is U[N]

template<class T>
shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N,

const remove_extent_t<T>& u); // T is U[]
template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N]

template<class T>
shared_ptr<T> make_shared_for_overwrite(); // T is not U[]

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a); // T is not U[]

§ 20.2.2 570

© ISO/IEC N4910

template<class T>
shared_ptr<T> make_shared_for_overwrite(size_t N); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // T is U[]

// 20.3.2.2.8, shared_ptr comparisons
template<class T, class U>
bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

template<class T, class U>
strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

template<class T>
bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;

template<class T>
strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept;

// 20.3.2.2.9, shared_ptr specialized algorithms
template<class T>
void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;

// 20.3.2.2.10, shared_ptr casts
template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;

template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;

// 20.3.2.2.11, shared_ptr get_deleter
template<class D, class T>
D* get_deleter(const shared_ptr<T>& p) noexcept;

// 20.3.2.2.12, shared_ptr I/O
template<class E, class T, class Y>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);

// 20.3.2.3, class template weak_ptr
template<class T> class weak_ptr;

// 20.3.2.3.7, weak_ptr specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;

// 20.3.2.4, class template owner_less
template<class T = void> struct owner_less;

// 20.3.2.5, class template enable_shared_from_this
template<class T> class enable_shared_from_this;

// 20.3.3, hash support
template<class T> struct hash;
template<class T, class D> struct hash<unique_ptr<T, D>>;
template<class T> struct hash<shared_ptr<T>>;

§ 20.2.2 571

© ISO/IEC N4910

// 33.5.8.7, atomic smart pointers
template<class T> struct atomic;
template<class T> struct atomic<shared_ptr<T>>;
template<class T> struct atomic<weak_ptr<T>>;

// 20.3.4.1, class template out_ptr_t
template<class Smart, class Pointer, class... Args>
class out_ptr_t;

// 20.3.4.2, function template out_ptr
template<class Pointer = void, class Smart, class... Args>
auto out_ptr(Smart& s, Args&&... args);

// 20.3.4.3, class template inout_ptr_t
template<class Smart, class Pointer, class... Args>

class inout_ptr_t;

// 20.3.4.4, function template inout_ptr
template<class Pointer = void, class Smart, class... Args>

auto inout_ptr(Smart& s, Args&&... args);
}

20.2.3 Pointer traits [pointer.traits]
20.2.3.1 General [pointer.traits.general]

1 The class template pointer_traits supplies a uniform interface to certain attributes of pointer-like types.
namespace std {

template<class Ptr> struct pointer_traits {
using pointer = Ptr;
using element_type = see below;
using difference_type = see below;

template<class U> using rebind = see below;

static pointer pointer_to(see below r);
};

template<class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;

template<class U> using rebind = U*;

static constexpr pointer pointer_to(see below r) noexcept;
};

}

20.2.3.2 Member types [pointer.traits.types]

using element_type = see below;

1 Type: Ptr::element_type if the qualified-id Ptr::element_type is valid and denotes a type (13.10.3); otherwise,
T if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more typearguments; otherwise, the specialization is ill-formed.

using difference_type = see below;

2 Type: Ptr::difference_type if the qualified-id Ptr::difference_type is valid and denotes a type (13.10.3);otherwise, ptrdiff_t.
template<class U> using rebind = see below;

3 Alias template: Ptr::rebind<U> if the qualified-id Ptr::rebind<U> is valid and denotes a type (13.10.3);otherwise, SomePointer<U, Args> if Ptr is a class template instantiation of the form SomePointer<T, Args>,where Args is zero or more type arguments; otherwise, the instantiation of rebind is ill-formed.
§ 20.2.3.2 572

© ISO/IEC N4910

20.2.3.3 Member functions [pointer.traits.functions]

static pointer pointer_traits::pointer_to(see below r);
static constexpr pointer pointer_traits<T*>::pointer_to(see below r) noexcept;

1 Mandates: For the first member function, Ptr::pointer_to(r) is well-formed.
2 Preconditions: For the first member function, Ptr::pointer_to(r) returns a pointer to r through which indirec-tion is valid.
3 Returns: The first member function returns Ptr::pointer_to(r). The secondmember function returns addressof(r).
4 Remarks: If element_type is cv void, the type of r is unspecified; otherwise, it is element_type&.
20.2.3.4 Optional members [pointer.traits.optmem]

1 Specializations of pointer_traits may define the member declared in this subclause to customize the behavior of thestandard library.
static element_type* to_address(pointer p) noexcept;

2 Returns: A pointer of type element_type* that references the same location as the argument p.
3 [Note 1: This function is intended to be the inverse of pointer_to. If defined, it customizes the behavior of the non-memberfunction to_address (20.2.4). —end note]
20.2.4 Pointer conversion [pointer.conversion]

template<class T> constexpr T* to_address(T* p) noexcept;

1 Mandates: T is not a function type.
2 Returns: p.

template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept;

3 Returns: pointer_traits<Ptr>::to_address(p) if that expression is well-formed (see 20.2.3.4), otherwise
to_address(p.operator->()).

20.2.5 Pointer alignment [ptr.align]

void* align(size_t alignment, size_t size, void*& ptr, size_t& space);

1 Preconditions:
—(1.1) alignment is a power of two
—(1.2) ptr represents the address of contiguous storage of at least space bytes

2 Effects: If it is possible to fit size bytes of storage aligned by alignment into the buffer pointed to by ptr withlength space, the function updates ptr to represent the first possible address of such storage and decreases spaceby the number of bytes used for alignment. Otherwise, the function does nothing.
3 Returns: A null pointer if the requested aligned buffer would not fit into the available space, otherwise the adjustedvalue of ptr.
4 [Note 1: The function updates its ptr and space arguments so that it can be called repeatedly with possibly different alignmentand size arguments for the same buffer. —end note]

template<size_t N, class T>
[[nodiscard]] constexpr T* assume_aligned(T* ptr);

5 Mandates: N is a power of two.
6 Preconditions: ptr points to an object X of a type similar (7.3.6) to T, where X has alignment N (6.7.6).
7 Returns: ptr.
8 Throws: Nothing.
9 [Note 2: The alignment assumption on an object X expressed by a call to assume_aligned might result in generation of moreefficient code. It is up to the program to ensure that the assumption actually holds. The call does not cause the implementationto verify or enforce this. An implementation might only make the assumption for those operations on X that access X throughthe pointer returned by assume_aligned. —end note]

§ 20.2.5 573

© ISO/IEC N4910

20.2.6 Allocator argument tag [allocator.tag]

namespace std {
struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};

}

1 The allocator_arg_t struct is an empty class type used as a unique type to disambiguate constructor and functionoverloading. Specifically, several types (see tuple 22.4) have constructors with allocator_arg_t as the first argument,immediately followed by an argument of a type that meets the Cpp17Allocator requirements (16.4.4.6.1).
20.2.7 uses_allocator [allocator.uses]
20.2.7.1 uses_allocator trait [allocator.uses.trait]

template<class T, class Alloc> struct uses_allocator;

1 Remarks: Automatically detects whether T has a nested allocator_type that is convertible from Alloc. Meets theCpp17BinaryTypeTrait requirements (21.3.2). The implementation shall provide a definition that is derived from
true_type if the qualified-id T::allocator_type is valid and denotes a type (13.10.3) and is_convertible_-
v<Alloc, T::allocator_type> != false, otherwise it shall be derived from false_type. A program mayspecialize this template to derive from true_type for a program-defined type T that does not have a nested
allocator_type but nonetheless can be constructed with an allocator where either:
—(1.1) the first argument of a constructor has type allocator_arg_t and the second argument has type Alloc or
—(1.2) the last argument of a constructor has type Alloc.

20.2.7.2 Uses-allocator construction [allocator.uses.construction]
1 Uses-allocator construction with allocator alloc and constructor arguments args... refers to the construction of anobject of type T such that alloc is passed to the constructor of T if T uses an allocator type compatible with alloc.When applied to the construction of an object of type T, it is equivalent to initializing it with the value of the expression

make_obj_using_allocator<T>(alloc, args...), described below.
2 The following utility functions support three conventions for passing alloc to a constructor:

—(2.1) If T does not use an allocator compatible with alloc, then alloc is ignored.
—(2.2) Otherwise, if T has a constructor invocable as T(allocator_arg, alloc, args...) (leading-allocator conven-tion), then uses-allocator construction chooses this constructor form.
—(2.3) Otherwise, if T has a constructor invocable as T(args..., alloc) (trailing-allocator convention), then uses-allocator construction chooses this constructor form.

3 The uses_allocator_construction_args function template takes an allocator and argument list and produces (as atuple) a new argument list matching one of the above conventions. Additionally, overloads are provided that treatspecializations of pair such that uses-allocator construction is applied individually to the first and second datamembers. The make_obj_using_allocator and uninitialized_construct_using_allocator function templatesapply the modified constructor arguments to construct an object of type T as a return value or in-place, respectively.
[Note 1: For uses_allocator_construction_args and make_obj_using_allocator, type T is not deduced and must therefore bespecified explicitly by the caller. —end note]
template<class T, class Alloc, class... Args>

constexpr auto uses_allocator_construction_args(const Alloc& alloc,
Args&&... args) noexcept;

4 Constraints: T is not a specialization of pair.
5 Returns: A tuple value determined as follows:

—(5.1) If uses_allocator_v<T, Alloc> is false and is_constructible_v<T, Args...> is true, return forward_-
as_tuple(std::forward<Args>(args)...).

—(5.2) Otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T, allocator_arg_t, const
Alloc&, Args...> is true, return
tuple<allocator_arg_t, const Alloc&, Args&&...>(

allocator_arg, alloc, std::forward<Args>(args)...)

§ 20.2.7.2 574

© ISO/IEC N4910

—(5.3) Otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T, Args..., const Alloc&>is true, return forward_as_tuple(std::forward<Args>(args)..., alloc).
—(5.4) Otherwise, the program is ill-formed.

[Note 2: This definition prevents a silent failure to pass the allocator to a constructor of a type for which uses_allocator_v<T,
Alloc> is true. —end note]

template<class T, class Alloc, class Tuple1, class Tuple2>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t,

Tuple1&& x, Tuple2&& y) noexcept;

6 Constraints: T is a specialization of pair.
7 Effects: For T specified as pair<T1, T2>, equivalent to:

return make_tuple(
piecewise_construct,
apply([&alloc](auto&&... args1) {

return uses_allocator_construction_args<T1>(
alloc, std::forward<decltype(args1)>(args1)...);

}, std::forward<Tuple1>(x)),
apply([&alloc](auto&&... args2) {

return uses_allocator_construction_args<T2>(
alloc, std::forward<decltype(args2)>(args2)...);

}, std::forward<Tuple2>(y)));

template<class T, class Alloc>
constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept;

8 Constraints: T is a specialization of pair.
9 Effects: Equivalent to:

return uses_allocator_construction_args<T>(alloc, piecewise_construct,
tuple<>{}, tuple<>{});

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

U&& u, V&& v) noexcept;

10 Constraints: T is a specialization of pair.
11 Effects: Equivalent to:

return uses_allocator_construction_args<T>(alloc, piecewise_construct,
forward_as_tuple(std::forward<U>(u)),
forward_as_tuple(std::forward<V>(v)));

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>

constexpr auto uses_allocator_construction_args(const Alloc& alloc,
const pair<U, V>& pr) noexcept;

12 Constraints: T is a specialization of pair.
13 Effects: Equivalent to:

return uses_allocator_construction_args<T>(alloc, piecewise_construct,
forward_as_tuple(pr.first),
forward_as_tuple(pr.second));

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

pair<U, V>&& pr) noexcept;
template<class T, class Alloc, class U, class V>

constexpr auto uses_allocator_construction_args(const Alloc& alloc,
const pair<U, V>&& pr) noexcept;

14 Constraints: T is a specialization of pair.

§ 20.2.7.2 575

© ISO/IEC N4910

15 Effects: Equivalent to:
return uses_allocator_construction_args<T>(alloc, piecewise_construct,

forward_as_tuple(get<0>(std::move(pr))),
forward_as_tuple(get<1>(std::move(pr))));

template<class T, class Alloc, class U>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, U&& u) noexcept;

16 Let FUN be the function template:
template<class A, class B>
void FUN(const pair<A, B>&);

17 Constraints: T is a specialization of pair, and the expression FUN(u) is not well-formed when considered as anunevaluated operand.
18 Let pair-constructor be an exposition-only class defined as follows:

class pair-constructor {
using pair-type = remove_cv_t<T>; // exposition only
constexpr auto do-construct(const pair-type& p) const { // exposition only

return make_obj_using_allocator<pair-type>(alloc_, p);
}
constexpr auto do-construct(pair-type&& p) const { // exposition only

return make_obj_using_allocator<pair-type>(alloc_, std::move(p));
}

const Alloc& alloc_; // exposition only
U& u_; // exposition only

public:
constexpr operator pair-type() const {

return do-construct(std::forward<U>(u_));
}

};

19 Returns: make_tuple(pc), where pc is a pair-constructor object whose alloc_ member is initialized with
alloc and whose u_ member is initialized with u.

template<class T, class Alloc, class... Args>
constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args);

20 Effects: Equivalent to:
return make_from_tuple<T>(uses_allocator_construction_args<T>(

alloc, std::forward<Args>(args)...));

template<class T, class Alloc, class... Args>
constexpr T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args);

21 Effects: Equivalent to:
return apply([&]<class... U>(U&&... xs) {

return construct_at(p, std::forward<U>(xs)...);
}, uses_allocator_construction_args<T>(alloc, std::forward<Args>(args)...));

20.2.8 Allocator traits [allocator.traits]
20.2.8.1 General [allocator.traits.general]

1 The class template allocator_traits supplies a uniform interface to all allocator types. An allocator cannot be anon-class type, however, even if allocator_traits supplies the entire required interface.
[Note 1: Thus, it is always possible to create a derived class from an allocator. —end note]
namespace std {

template<class Alloc> struct allocator_traits {
using allocator_type = Alloc;

using value_type = typename Alloc::value_type;

§ 20.2.8.1 576

© ISO/IEC N4910

using pointer = see below;
using const_pointer = see below;
using void_pointer = see below;
using const_void_pointer = see below;

using difference_type = see below;
using size_type = see below;

using propagate_on_container_copy_assignment = see below;
using propagate_on_container_move_assignment = see below;
using propagate_on_container_swap = see below;
using is_always_equal = see below;

template<class T> using rebind_alloc = see below;
template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>;

[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n);
[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n,

const_void_pointer hint);

static constexpr void deallocate(Alloc& a, pointer p, size_type n);

template<class T, class... Args>
static constexpr void construct(Alloc& a, T* p, Args&&... args);

template<class T>
static constexpr void destroy(Alloc& a, T* p);

static constexpr size_type max_size(const Alloc& a) noexcept;

static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs);
};

}

20.2.8.2 Member types [allocator.traits.types]

using pointer = see below;

1 Type: Alloc::pointer if the qualified-id Alloc::pointer is valid and denotes a type (13.10.3); otherwise,
value_type*.

using const_pointer = see below;

2 Type: Alloc::const_pointer if the qualified-id Alloc::const_pointer is valid and denotes a type (13.10.3);otherwise, pointer_traits<pointer>::rebind<const value_type>.
using void_pointer = see below;

3 Type: Alloc::void_pointer if the qualified-id Alloc::void_pointer is valid and denotes a type (13.10.3);otherwise, pointer_traits<pointer>::rebind<void>.
using const_void_pointer = see below;

4 Type: Alloc::const_void_pointer if the qualified-id Alloc::const_void_pointer is valid and denotes atype (13.10.3); otherwise, pointer_traits<pointer>::rebind<const void>.
using difference_type = see below;

5 Type: Alloc::difference_type if the qualified-id Alloc::difference_type is valid and denotes a type (13.10.3);otherwise, pointer_traits<pointer>::difference_type.
using size_type = see below;

6 Type: Alloc::size_type if the qualified-id Alloc::size_type is valid and denotes a type (13.10.3); otherwise,
make_unsigned_t<difference_type>.

§ 20.2.8.2 577

© ISO/IEC N4910

using propagate_on_container_copy_assignment = see below;

7 Type: Alloc::propagate_on_container_copy_assignment if the qualified-id Alloc::propagate_on_container_-
copy_assignment is valid and denotes a type (13.10.3); otherwise false_type.

using propagate_on_container_move_assignment = see below;

8 Type: Alloc::propagate_on_container_move_assignment if the qualified-id Alloc::propagate_on_container_-
move_assignment is valid and denotes a type (13.10.3); otherwise false_type.

using propagate_on_container_swap = see below;

9 Type: Alloc::propagate_on_container_swap if the qualified-id Alloc::propagate_on_container_swap isvalid and denotes a type (13.10.3); otherwise false_type.
using is_always_equal = see below;

10 Type: Alloc::is_always_equal if the qualified-id Alloc::is_always_equal is valid and denotes a type (13.10.3);otherwise is_empty<Alloc>::type.
template<class T> using rebind_alloc = see below;

11 Alias template: Alloc::rebind<T>::other if the qualified-id Alloc::rebind<T>::other is valid and denotes atype (13.10.3); otherwise, Alloc<T, Args> if Alloc is a class template instantiation of the form Alloc<U, Args>,where Args is zero or more type arguments; otherwise, the instantiation of rebind_alloc is ill-formed.
20.2.8.3 Static member functions [allocator.traits.members]

[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n);

1 Returns: a.allocate(n).
[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n, const_void_pointer hint);

2 Returns: a.allocate(n, hint) if that expression is well-formed; otherwise, a.allocate(n).
static constexpr void deallocate(Alloc& a, pointer p, size_type n);

3 Effects: Calls a.deallocate(p, n).
4 Throws: Nothing.

template<class T, class... Args>
static constexpr void construct(Alloc& a, T* p, Args&&... args);

5 Effects: Calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise, invokes
construct_at(p, std::forward<Args>(args)...).

template<class T>
static constexpr void destroy(Alloc& a, T* p);

6 Effects: Calls a.destroy(p) if that call is well-formed; otherwise, invokes destroy_at(p).
static constexpr size_type max_size(const Alloc& a) noexcept;

7 Returns: a.max_size() if that expression is well-formed; otherwise, numeric_limits<size_type>::max()/sizeof(value_-
type).

static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs);

8 Returns: rhs.select_on_container_copy_construction() if that expression is well-formed; otherwise, rhs.
20.2.8.4 Other [allocator.traits.other]

1 The class template allocation_result has the template parameters, data members, and special members specifiedabove. It has no base classes or members other than those specified.
template<class Allocator>
[[nodiscard]] constexpr allocation_result<typename allocator_traits<Allocator>::pointer>

allocate_at_least(Allocator& a, size_t n);

2 Returns: a.allocate_at_least(n) if that expression is well-formed; otherwise, {a.allocate(n), n}.

§ 20.2.8.4 578

© ISO/IEC N4910

20.2.9 The default allocator [default.allocator]
20.2.9.1 General [default.allocator.general]

1 All specializations of the default allocator meet the allocator completeness requirements (16.4.4.6.2).
namespace std {

template<class T> class allocator {
public:
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using propagate_on_container_move_assignment = true_type;

constexpr allocator() noexcept;
constexpr allocator(const allocator&) noexcept;
template<class U> constexpr allocator(const allocator<U>&) noexcept;
constexpr ~allocator();
constexpr allocator& operator=(const allocator&) = default;

[[nodiscard]] constexpr T* allocate(size_t n);
[[nodiscard]] constexpr allocation_result<T*> allocate_at_least(size_t n);
constexpr void deallocate(T* p, size_t n);

};
}

2 allocator_traits<allocator<T>>::is_always_equal::value is true for any T.
20.2.9.2 Members [allocator.members]

1 Except for the destructor, member functions of the default allocator shall not introduce data races (6.9.2) as a result ofconcurrent calls to those member functions from different threads. Calls to these functions that allocate or deallocate aparticular unit of storage shall occur in a single total order, and each such deallocation call shall happen before the nextallocation (if any) in this order.
[[nodiscard]] constexpr T* allocate(size_t n);

2 Mandates: T is not an incomplete type (6.8.1).
3 Returns: A pointer to the initial element of an array of n T.
4 Throws: bad_array_new_length if numeric_limits<size_t>::max() / sizeof(T) < n, or bad_alloc if thestorage cannot be obtained.
5 Remarks: The storage for the array is obtained by calling ::operator new (17.6.3), but it is unspecified when orhow often this function is called. This function starts the lifetime of the array object, but not that of any of thearray elements.

[[nodiscard]] constexpr allocation_result<T*> allocate_at_least(size_t n);

6 Mandates: T is not an incomplete type (6.8.1).
7 Returns: allocation_result<T*>{ptr, count}, where ptr is a pointer to the initial element of an array of

count T and count ≥ n.
8 Throws: bad_array_new_length if numeric_limits<size_t>::max() / sizeof(T) < n, or bad_alloc if thestorage cannot be obtained.
9 Remarks: The storage for the array is obtained by calling ::operator new, but it is unspecified when or howoften this function is called. This function starts the lifetime of the array object, but not that of any of the arrayelements.

constexpr void deallocate(T* p, size_t n);

10 Preconditions:
—(10.1) If p is memory that was obtained by a call to allocate_at_least, let ret be the value returned and reqbe the value passed as the first argument to that call. p is equal to ret.ptr and n is a value such that

req ≤ n ≤ ret.count.
—(10.2) Otherwise, p is a pointer value obtained from allocate. n equals the value passed as the first argument tothe invocation of allocate which returned p.

§ 20.2.9.2 579

© ISO/IEC N4910

11 Effects: Deallocates the storage referenced by p.
12 Remarks: Uses ::operator delete (17.6.3), but it is unspecified when this function is called.
20.2.9.3 Operators [allocator.globals]

template<class T, class U>
constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;

1 Returns: true.
20.2.10 addressof [specialized.addressof]

template<class T> constexpr T* addressof(T& r) noexcept;

1 Returns: The actual address of the object or function referenced by r, even in the presence of an overloaded
operator&.

2 Remarks: An expression addressof(E) is a constant subexpression (3.14) if E is an lvalue constant subexpression.
20.2.11 C library memory allocation [c.malloc]

1 [Note 1: The header <cstdlib> (17.2.2) declares the functions described in this subclause. —end note]
void* aligned_alloc(size_t alignment, size_t size);
void* calloc(size_t nmemb, size_t size);
void* malloc(size_t size);
void* realloc(void* ptr, size_t size);

2 Effects: These functions have the semantics specified in the C standard library.
3 Remarks: These functions do not attempt to allocate storage by calling ::operator new() (17.6.3).
4 These functions implicitly create objects (6.7.2) in the returned region of storage and return a pointer to a suitablecreated object. In the case of calloc and realloc, the objects are created before the storage is zeroed or copied,respectively.

void free(void* ptr);

5 Effects: This function has the semantics specified in the C standard library.
6 Remarks: This function does not attempt to deallocate storage by calling ::operator delete().
See also: ISO C 7.22.3
20.3 Smart pointers [smartptr]
20.3.1 Unique-ownership pointers [unique.ptr]
20.3.1.1 General [unique.ptr.general]

1 A unique pointer is an object that owns another object and manages that other object through a pointer. More precisely,a unique pointer is an object u that stores a pointer to a second object p and will dispose of p when u is itself destroyed(e.g., when leaving block scope (8.8)). In this context, u is said to own p.
2 The mechanism by which u disposes of p is known as p’s associated deleter, a function object whose correct invocationresults in p’s appropriate disposition (typically its deletion).
3 Let the notation u.p denote the pointer stored by u, and let u.d denote the associated deleter. Upon request, u can reset(replace) u.p and u.d with another pointer and deleter, but properly disposes of its owned object via the associateddeleter before such replacement is considered completed.
4 Each object of a type U instantiated from the unique_ptr template specified in 20.3.1 has the strict ownership semantics,specified above, of a unique pointer. In partial satisfaction of these semantics, each such U is Cpp17MoveConstructibleand Cpp17MoveAssignable, but is not Cpp17CopyConstructible nor Cpp17CopyAssignable. The template parameter Tof unique_ptr may be an incomplete type.
5 [Note 1: The uses of unique_ptr include providing exception safety for dynamically allocated memory, passing ownership ofdynamically allocated memory to a function, and returning dynamically allocated memory from a function. —end note]

§ 20.3.1.1 580

© ISO/IEC N4910

20.3.1.2 Default deleters [unique.ptr.dltr]
20.3.1.2.1 In general [unique.ptr.dltr.general]

1 The class template default_delete serves as the default deleter (destruction policy) for the class template unique_ptr.
2 The template parameter T of default_delete may be an incomplete type.
20.3.1.2.2 default_delete [unique.ptr.dltr.dflt]
namespace std {

template<class T> struct default_delete {
constexpr default_delete() noexcept = default;
template<class U> constexpr default_delete(const default_delete<U>&) noexcept;
constexpr void operator()(T*) const;

};
}

template<class U> constexpr default_delete(const default_delete<U>& other) noexcept;

1 Constraints: U* is implicitly convertible to T*.
2 Effects: Constructs a default_delete object from another default_delete<U> object.

constexpr void operator()(T* ptr) const;

3 Mandates: T is a complete type.
4 Effects: Calls delete on ptr.
20.3.1.2.3 default_delete<T[]> [unique.ptr.dltr.dflt1]
namespace std {

template<class T> struct default_delete<T[]> {
constexpr default_delete() noexcept = default;
template<class U> constexpr default_delete(const default_delete<U[]>&) noexcept;
template<class U> constexpr void operator()(U* ptr) const;

};
}

template<class U> constexpr default_delete(const default_delete<U[]>& other) noexcept;

1 Constraints: U(*)[] is convertible to T(*)[].
2 Effects: Constructs a default_delete object from another default_delete<U[]> object.

template<class U> constexpr void operator()(U* ptr) const;

3 Constraints: U(*)[] is convertible to T(*)[].
4 Mandates: U is a complete type.
5 Effects: Calls delete[] on ptr.
20.3.1.3 unique_ptr for single objects [unique.ptr.single]
20.3.1.3.1 General [unique.ptr.single.general]
namespace std {

template<class T, class D = default_delete<T>> class unique_ptr {
public:

using pointer = see below;
using element_type = T;
using deleter_type = D;

// 20.3.1.3.2, constructors
constexpr unique_ptr() noexcept;
constexpr explicit unique_ptr(type_identity_t<pointer> p) noexcept;
constexpr unique_ptr(type_identity_t<pointer> p, see below d1) noexcept;
constexpr unique_ptr(type_identity_t<pointer> p, see below d2) noexcept;
constexpr unique_ptr(unique_ptr&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
template<class U, class E>
constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

§ 20.3.1.3.1 581

© ISO/IEC N4910

// 20.3.1.3.3, destructor
constexpr ~unique_ptr();

// 20.3.1.3.4, assignment
constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>

constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
constexpr unique_ptr& operator=(nullptr_t) noexcept;

// 20.3.1.3.5, observers
constexpr add_lvalue_reference_t<T> operator*() const noexcept(see below);
constexpr pointer operator->() const noexcept;
constexpr pointer get() const noexcept;
constexpr deleter_type& get_deleter() noexcept;
constexpr const deleter_type& get_deleter() const noexcept;
constexpr explicit operator bool() const noexcept;

// 20.3.1.3.6, modifiers
constexpr pointer release() noexcept;
constexpr void reset(pointer p = pointer()) noexcept;
constexpr void swap(unique_ptr& u) noexcept;

// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

};
}

1 The default type for the template parameter D is default_delete. A client-supplied template argument D shall be afunction object type (22.10), lvalue reference to function, or lvalue reference to function object type for which, givena value d of type D and a value ptr of type unique_ptr<T, D>::pointer, the expression d(ptr) is valid and has theeffect of disposing of the pointer as appropriate for that deleter.
2 If the deleter’s type D is not a reference type, D shall meet the Cpp17Destructible requirements (Table 34).
3 If the qualified-id remove_reference_t<D>::pointer is valid and denotes a type (13.10.3), then unique_ptr<T,

D>::pointer shall be a synonym for remove_reference_t<D>::pointer. Otherwise unique_ptr<T, D>::pointershall be a synonym for element_type*. The type unique_ptr<T, D>::pointer shall meet the Cpp17NullablePointerrequirements (Table 35).
4 [Example 1: Given an allocator type X (16.4.4.6.1) and letting A be a synonym for allocator_traits<X>, the types A::pointer,

A::const_pointer, A::void_pointer, and A::const_void_pointer may be used as unique_ptr<T, D>::pointer. —end exam-ple]
20.3.1.3.2 Constructors [unique.ptr.single.ctor]

constexpr unique_ptr() noexcept;
constexpr unique_ptr(nullptr_t) noexcept;

1 Constraints: is_pointer_v<deleter_type> is false and is_default_constructible_v<deleter_type> is
true.

2 Preconditions: D meets the Cpp17DefaultConstructible requirements (Table 29), and that construction does notthrow an exception.
3 Effects: Constructs a unique_ptr object that owns nothing, value-initializing the stored pointer and the storeddeleter.
4 Postconditions: get() == nullptr. get_deleter() returns a reference to the stored deleter.

constexpr explicit unique_ptr(type_identity_t<pointer> p) noexcept;

5 Constraints: is_pointer_v<deleter_type> is false and is_default_constructible_v<deleter_type> is
true.

6 Preconditions: D meets the Cpp17DefaultConstructible requirements (Table 29), and that construction does notthrow an exception.

§ 20.3.1.3.2 582

© ISO/IEC N4910

7 Effects: Constructs a unique_ptr which owns p, initializing the stored pointer with p and value-initializing thestored deleter.
8 Postconditions: get() == p. get_deleter() returns a reference to the stored deleter.

constexpr unique_ptr(type_identity_t<pointer> p, const D& d) noexcept;
constexpr unique_ptr(type_identity_t<pointer> p, remove_reference_t<D>&& d) noexcept;

9 Constraints: is_constructible_v<D, decltype(d)> is true.
10 Preconditions: For the first constructor, if D is not a reference type, D meets the Cpp17CopyConstructiblerequirements and such construction does not exit via an exception. For the second constructor, if D is not areference type, D meets the Cpp17MoveConstructible requirements and such construction does not exit via anexception.
11 Effects: Constructs a unique_ptr object which owns p, initializing the stored pointer with p and initializing thedeleter from std::forward<decltype(d)>(d).
12 Postconditions: get() == p. get_deleter() returns a reference to the stored deleter. If D is a reference typethen get_deleter() returns a reference to the lvalue d.
13 Remarks: If D is a reference type, the second constructor is defined as deleted.
14 [Example 1:

D d;
unique_ptr<int, D> p1(new int, D()); // D must be Cpp17MoveConstructible
unique_ptr<int, D> p2(new int, d); // D must be Cpp17CopyConstructible
unique_ptr<int, D&> p3(new int, d); // p3 holds a reference to d
unique_ptr<int, const D&> p4(new int, D()); // error: rvalue deleter object combined// with reference deleter type
— end example]

constexpr unique_ptr(unique_ptr&& u) noexcept;

15 Constraints: is_move_constructible_v<D> is true.
16 Preconditions: If D is not a reference type, D meets the Cpp17MoveConstructible requirements (Table 30).Construction of the deleter from an rvalue of type D does not throw an exception.
17 Effects: Constructs a unique_ptr from u. If D is a reference type, this deleter is copy constructed from u’s deleter;otherwise, this deleter is move constructed from u’s deleter.

[Note 1: The construction of the deleter can be implemented with std::forward<D>. —end note]
18 Postconditions: get() yields the value u.get() yielded before the construction. u.get() == nullptr. get_-

deleter() returns a reference to the stored deleter that was constructed from u.get_deleter(). If D is a referencetype then get_deleter() and u.get_deleter() both reference the same lvalue deleter.
template<class U, class E> constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

19 Constraints:
—(19.1) unique_ptr<U, E>::pointer is implicitly convertible to pointer,
—(19.2) U is not an array type, and
—(19.3) either D is a reference type and E is the same type as D, or D is not a reference type and E is implicitlyconvertible to D.

20 Preconditions: If E is not a reference type, construction of the deleter from an rvalue of type E is well-formed anddoes not throw an exception. Otherwise, E is a reference type and construction of the deleter from an lvalue oftype E is well-formed and does not throw an exception.
21 Effects: Constructs a unique_ptr from u. If E is a reference type, this deleter is copy constructed from u’s deleter;otherwise, this deleter is move constructed from u’s deleter.

[Note 2: The deleter constructor can be implemented with std::forward<E>. —end note]
22 Postconditions: get() yields the value u.get() yielded before the construction. u.get() == nullptr. get_-

deleter() returns a reference to the stored deleter that was constructed from u.get_deleter().

§ 20.3.1.3.2 583

© ISO/IEC N4910

20.3.1.3.3 Destructor [unique.ptr.single.dtor]

constexpr ~unique_ptr();
1 Effects: Equivalent to: if (get()) get_deleter()(get());

[Note 1: The use of default_delete requires T to be a complete type. —end note]
2 Remarks: The behavior is undefined if the evaluation of get_deleter()(get()) throws an exception.
20.3.1.3.4 Assignment [unique.ptr.single.asgn]

constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;

1 Constraints: is_move_assignable_v<D> is true.
2 Preconditions: If D is not a reference type, D meets the Cpp17MoveAssignable requirements (Table 32) andassignment of the deleter from an rvalue of type D does not throw an exception. Otherwise, D is a reference type;

remove_reference_t<D> meets the Cpp17CopyAssignable requirements and assignment of the deleter from anlvalue of type D does not throw an exception.
3 Effects: Calls reset(u.release()) followed by get_deleter() = std::forward<D>(u.get_deleter()).
4 Postconditions: If this != addressof(u), u.get() == nullptr, otherwise u.get() is unchanged.
5 Returns: *this.

template<class U, class E> constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;

6 Constraints:
—(6.1) unique_ptr<U, E>::pointer is implicitly convertible to pointer, and
—(6.2) U is not an array type, and
—(6.3) is_assignable_v<D&, E&&> is true.

7 Preconditions: If E is not a reference type, assignment of the deleter from an rvalue of type E is well-formed anddoes not throw an exception. Otherwise, E is a reference type and assignment of the deleter from an lvalue oftype E is well-formed and does not throw an exception.
8 Effects: Calls reset(u.release()) followed by get_deleter() = std::forward<E>(u.get_deleter()).
9 Postconditions: u.get() == nullptr.
10 Returns: *this.

constexpr unique_ptr& operator=(nullptr_t) noexcept;

11 Effects: As if by reset().
12 Postconditions: get() == nullptr.
13 Returns: *this.
20.3.1.3.5 Observers [unique.ptr.single.observers]

constexpr add_lvalue_reference_t<T> operator*() const noexcept(noexcept(*declval<pointer>()));

1 Preconditions: get() != nullptr.
2 Returns: *get().

constexpr pointer operator->() const noexcept;

3 Preconditions: get() != nullptr.
4 Returns: get().
5 [Note 1: The use of this function typically requires that T be a complete type. —end note]

constexpr pointer get() const noexcept;

6 Returns: The stored pointer.
constexpr deleter_type& get_deleter() noexcept;

§ 20.3.1.3.5 584

© ISO/IEC N4910

constexpr const deleter_type& get_deleter() const noexcept;

7 Returns: A reference to the stored deleter.
constexpr explicit operator bool() const noexcept;

8 Returns: get() != nullptr.
20.3.1.3.6 Modifiers [unique.ptr.single.modifiers]

constexpr pointer release() noexcept;

1 Postconditions: get() == nullptr.
2 Returns: The value get() had at the start of the call to release.

constexpr void reset(pointer p = pointer()) noexcept;

3 Effects: Assigns p to the stored pointer, and then, with the old value of the stored pointer, old_p, evaluates if
(old_p) get_deleter()(old_p);

[Note 1: The order of these operations is significant because the call to get_deleter() might destroy *this. —end note]
4 Postconditions: get() == p.

[Note 2: The postcondition does not hold if the call to get_deleter() destroys *this since this->get() is no longer a validexpression. —end note]
5 Remarks: The behavior is undefined if the evaluation of get_deleter()(old_p) throws an exception.

constexpr void swap(unique_ptr& u) noexcept;

6 Preconditions: get_deleter() is swappable (16.4.4.3) and does not throw an exception under swap.
7 Effects: Invokes swap on the stored pointers and on the stored deleters of *this and u.
20.3.1.4 unique_ptr for array objects with a runtime length [unique.ptr.runtime]
20.3.1.4.1 General [unique.ptr.runtime.general]
namespace std {

template<class T, class D> class unique_ptr<T[], D> {
public:

using pointer = see below;
using element_type = T;
using deleter_type = D;

// 20.3.1.4.2, constructors
constexpr unique_ptr() noexcept;
template<class U> constexpr explicit unique_ptr(U p) noexcept;
template<class U> constexpr unique_ptr(U p, see below d) noexcept;
template<class U> constexpr unique_ptr(U p, see below d) noexcept;
constexpr unique_ptr(unique_ptr&& u) noexcept;
template<class U, class E>
constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

constexpr unique_ptr(nullptr_t) noexcept;

// destructor
constexpr ~unique_ptr();

// assignment
constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>
constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;

constexpr unique_ptr& operator=(nullptr_t) noexcept;

// 20.3.1.4.4, observers
constexpr T& operator[](size_t i) const;
constexpr pointer get() const noexcept;
constexpr deleter_type& get_deleter() noexcept;
constexpr const deleter_type& get_deleter() const noexcept;
constexpr explicit operator bool() const noexcept;

§ 20.3.1.4.1 585

© ISO/IEC N4910

// 20.3.1.4.5, modifiers
constexpr pointer release() noexcept;
template<class U> constexpr void reset(U p) noexcept;
constexpr void reset(nullptr_t = nullptr) noexcept;
constexpr void swap(unique_ptr& u) noexcept;

// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

};
}

1 A specialization for array types is provided with a slightly altered interface.
—(1.1) Conversions between different types of unique_ptr<T[], D> that would be disallowed for the correspondingpointer-to-array types, and conversions to or from the non-array forms of unique_ptr, produce an ill-formedprogram.
—(1.2) Pointers to types derived from T are rejected by the constructors, and by reset.
—(1.3) The observers operator* and operator-> are not provided.
—(1.4) The indexing observer operator[] is provided.
—(1.5) The default deleter will call delete[].

2 Descriptions are provided below only for members that differ from the primary template.
3 The template argument T shall be a complete type.
20.3.1.4.2 Constructors [unique.ptr.runtime.ctor]

template<class U> constexpr explicit unique_ptr(U p) noexcept;

1 This constructor behaves the same as the constructor in the primary template that takes a single parameter of type
pointer.

2 Constraints:
—(2.1) U is the same type as pointer, or
—(2.2) pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is convertible to element_-

type(*)[].
template<class U> constexpr unique_ptr(U p, see below d) noexcept;
template<class U> constexpr unique_ptr(U p, see below d) noexcept;

3 These constructors behave the same as the constructors in the primary template that take a parameter of type
pointer and a second parameter.

4 Constraints:
—(4.1) U is the same type as pointer,
—(4.2) U is nullptr_t, or
—(4.3) pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is convertible to element_-

type(*)[].
template<class U, class E> constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

5 This constructor behaves the same as in the primary template.
6 Constraints: Where UP is unique_ptr<U, E>:

—(6.1) U is an array type, and
—(6.2) pointer is the same type as element_type*, and
—(6.3) UP::pointer is the same type as UP::element_type*, and
—(6.4) UP::element_type(*)[] is convertible to element_type(*)[], and
—(6.5) either D is a reference type and E is the same type as D, or D is not a reference type and E is implicitlyconvertible to D.

§ 20.3.1.4.2 586

© ISO/IEC N4910

[Note 1: This replaces the Constraints: specification of the primary template. —end note]
20.3.1.4.3 Assignment [unique.ptr.runtime.asgn]

template<class U, class E> constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;

1 This operator behaves the same as in the primary template.
2 Constraints: Where UP is unique_ptr<U, E>:

—(2.1) U is an array type, and
—(2.2) pointer is the same type as element_type*, and
—(2.3) UP::pointer is the same type as UP::element_type*, and
—(2.4) UP::element_type(*)[] is convertible to element_type(*)[], and
—(2.5) is_assignable_v<D&, E&&> is true.
[Note 1: This replaces the Constraints: specification of the primary template. —end note]

20.3.1.4.4 Observers [unique.ptr.runtime.observers]

constexpr T& operator[](size_t i) const;

1 Preconditions: i < the number of elements in the array to which the stored pointer points.
2 Returns: get()[i].
20.3.1.4.5 Modifiers [unique.ptr.runtime.modifiers]

constexpr void reset(nullptr_t p = nullptr) noexcept;

1 Effects: Equivalent to reset(pointer()).
constexpr template<class U> void reset(U p) noexcept;

2 This function behaves the same as the reset member of the primary template.
3 Constraints:

—(3.1) U is the same type as pointer, or
—(3.2) pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is convertible to element_-

type(*)[].
20.3.1.5 Creation [unique.ptr.create]

template<class T, class... Args> constexpr unique_ptr<T> make_unique(Args&&... args);

1 Constraints: T is not an array type.
2 Returns: unique_ptr<T>(new T(std::forward<Args>(args)...)).

template<class T> constexpr unique_ptr<T> make_unique(size_t n);

3 Constraints: T is an array of unknown bound.
4 Returns: unique_ptr<T>(new remove_extent_t<T>[n]()).

template<class T, class... Args> unspecified make_unique(Args&&...) = delete;

5 Constraints: T is an array of known bound.
template<class T> constexpr unique_ptr<T> make_unique_for_overwrite();

6 Constraints: T is not an array type.
7 Returns: unique_ptr<T>(new T).

template<class T> constexpr unique_ptr<T> make_unique_for_overwrite(size_t n);

8 Constraints: T is an array of unknown bound.
9 Returns: unique_ptr<T>(new remove_extent_t<T>[n]).

§ 20.3.1.5 587

© ISO/IEC N4910

template<class T, class... Args> unspecified make_unique_for_overwrite(Args&&...) = delete;

10 Constraints: T is an array of known bound.
20.3.1.6 Specialized algorithms [unique.ptr.special]

template<class T, class D> constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept;

1 Constraints: is_swappable_v<D> is true.
2 Effects: Calls x.swap(y).

template<class T1, class D1, class T2, class D2>
constexpr bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

3 Returns: x.get() == y.get().
template<class T1, class D1, class T2, class D2>

bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

4 Let CT denote
common_type_t<typename unique_ptr<T1, D1>::pointer,

typename unique_ptr<T2, D2>::pointer>

5 Mandates:
—(5.1) unique_ptr<T1, D1>::pointer is implicitly convertible to CT and
—(5.2) unique_ptr<T2, D2>::pointer is implicitly convertible to CT.

6 Preconditions: The specialization less<CT> is a function object type (22.10) that induces a strict weak ordering(27.8) on the pointer values.
7 Returns: less<CT>()(x.get(), y.get()).

template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

8 Returns: y < x.
template<class T1, class D1, class T2, class D2>

bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

9 Returns: !(y < x).
template<class T1, class D1, class T2, class D2>

bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

10 Returns: !(x < y).
template<class T1, class D1, class T2, class D2>

requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>

compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>

operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

11 Returns: compare_three_way()(x.get(), y.get()).
template<class T, class D>

constexpr bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;

12 Returns: !x.
template<class T, class D>

constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>

constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& x);

13 Preconditions: The specialization less<unique_ptr<T, D>::pointer> is a function object type (22.10) thatinduces a strict weak ordering (27.8) on the pointer values.
14 Returns: The first function template returns
§ 20.3.1.6 588

© ISO/IEC N4910

less<unique_ptr<T, D>::pointer>()(x.get(), nullptr)

The second function template returns
less<unique_ptr<T, D>::pointer>()(nullptr, x.get())

template<class T, class D>
constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& x);

15 Returns: The first function template returns nullptr < x. The second function template returns x < nullptr.
template<class T, class D>

constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>

constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& x);

16 Returns: The first function template returns !(nullptr < x). The second function template returns !(x <
nullptr).

template<class T, class D>
constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& x);

17 Returns: The first function template returns !(x < nullptr). The second function template returns !(nullptr
< x).

template<class T, class D>
requires three_way_comparable<typename unique_ptr<T, D>::pointer>
constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer>
operator<=>(const unique_ptr<T, D>& x, nullptr_t);

18 Returns:
compare_three_way()(x.get(), static_cast<typename unique_ptr<T, D>::pointer>(nullptr)).

20.3.1.7 I/O [unique.ptr.io]

template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);

1 Constraints: os << p.get() is a valid expression.
2 Effects: Equivalent to: os << p.get();
3 Returns: os.
20.3.2 Shared-ownership pointers [util.sharedptr]
20.3.2.1 Class bad_weak_ptr [util.smartptr.weak.bad]
namespace std {

class bad_weak_ptr : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 An exception of type bad_weak_ptr is thrown by the shared_ptr constructor taking a weak_ptr.
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
20.3.2.2 Class template shared_ptr [util.smartptr.shared]
20.3.2.2.1 General [util.smartptr.shared.general]

1 The shared_ptr class template stores a pointer, usually obtained via new. shared_ptr implements semantics of sharedownership; the last remaining owner of the pointer is responsible for destroying the object, or otherwise releasing theresources associated with the stored pointer. A shared_ptr is said to be empty if it does not own a pointer.
§ 20.3.2.2.1 589

© ISO/IEC N4910

namespace std {
template<class T> class shared_ptr {
public:
using element_type = remove_extent_t<T>;
using weak_type = weak_ptr<T>;

// 20.3.2.2.2, constructors
constexpr shared_ptr() noexcept;
constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { }
template<class Y>

explicit shared_ptr(Y* p);
template<class Y, class D>

shared_ptr(Y* p, D d);
template<class Y, class D, class A>

shared_ptr(Y* p, D d, A a);
template<class D>

shared_ptr(nullptr_t p, D d);
template<class D, class A>

shared_ptr(nullptr_t p, D d, A a);
template<class Y>

shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
template<class Y>

shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept;
shared_ptr(const shared_ptr& r) noexcept;
template<class Y>

shared_ptr(const shared_ptr<Y>& r) noexcept;
shared_ptr(shared_ptr&& r) noexcept;
template<class Y>

shared_ptr(shared_ptr<Y>&& r) noexcept;
template<class Y>

explicit shared_ptr(const weak_ptr<Y>& r);
template<class Y, class D>

shared_ptr(unique_ptr<Y, D>&& r);

// 20.3.2.2.3, destructor
~shared_ptr();

// 20.3.2.2.4, assignment
shared_ptr& operator=(const shared_ptr& r) noexcept;
template<class Y>

shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;
shared_ptr& operator=(shared_ptr&& r) noexcept;
template<class Y>

shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;
template<class Y, class D>

shared_ptr& operator=(unique_ptr<Y, D>&& r);

// 20.3.2.2.5, modifiers
void swap(shared_ptr& r) noexcept;
void reset() noexcept;
template<class Y>

void reset(Y* p);
template<class Y, class D>

void reset(Y* p, D d);
template<class Y, class D, class A>

void reset(Y* p, D d, A a);

// 20.3.2.2.6, observers
element_type* get() const noexcept;
T& operator*() const noexcept;
T* operator->() const noexcept;
element_type& operator[](ptrdiff_t i) const;
long use_count() const noexcept;
explicit operator bool() const noexcept;

§ 20.3.2.2.1 590

© ISO/IEC N4910

template<class U>
bool owner_before(const shared_ptr<U>& b) const noexcept;

template<class U>
bool owner_before(const weak_ptr<U>& b) const noexcept;

};

template<class T>
shared_ptr(weak_ptr<T>) -> shared_ptr<T>;

template<class T, class D>
shared_ptr(unique_ptr<T, D>) -> shared_ptr<T>;

}

2 Specializations of shared_ptr shall beCpp17CopyConstructible,Cpp17CopyAssignable, andCpp17LessThanComparable,allowing their use in standard containers. Specializations of shared_ptr shall be contextually convertible to bool,allowing their use in boolean expressions and declarations in conditions.
3 The template parameter T of shared_ptr may be an incomplete type.
[Note 1: T can be a function type. —end note]

4 [Example 1:
if (shared_ptr<X> px = dynamic_pointer_cast<X>(py)) {// do something with px
}

—end example]
5 For purposes of determining the presence of a data race, member functions shall access and modify only the shared_ptrand weak_ptr objects themselves and not objects they refer to. Changes in use_count() do not reflect modificationsthat can introduce data races.
6 For the purposes of subclause 20.3, a pointer type Y* is said to be compatible with a pointer type T* when either Y* isconvertible to T* or Y is U[N] and T is cv U[].
20.3.2.2.2 Constructors [util.smartptr.shared.const]

1 In the constructor definitions below, enables shared_from_this with p, for a pointer p of type Y*, means that if Yhas an unambiguous and accessible base class that is a specialization of enable_shared_from_this (20.3.2.5), then
remove_cv_t<Y>* shall be implicitly convertible to T* and the constructor evaluates the statement:
if (p != nullptr && p->weak_this.expired())

p->weak_this = shared_ptr<remove_cv_t<Y>>(*this, const_cast<remove_cv_t<Y>*>(p));

The assignment to the weak_this member is not atomic and conflicts with any potentially concurrent access to the sameobject (6.9.2).
constexpr shared_ptr() noexcept;

2 Postconditions: use_count() == 0 && get() == nullptr.
template<class Y> explicit shared_ptr(Y* p);

3 Constraints: When T is an array type, the expression delete[] p is well-formed and either T is U[N] and Y(*)[N]is convertible to T*, or T is U[] and Y(*)[] is convertible to T*. When T is not an array type, the expression
delete p is well-formed and Y* is convertible to T*.

4 Mandates: Y is a complete type.
5 Preconditions: The expression delete[] p, when T is an array type, or delete p, when T is not an array type,has well-defined behavior, and does not throw exceptions.
6 Effects: When T is not an array type, constructs a shared_ptr object that owns the pointer p. Otherwise, constructsa shared_ptr that owns p and a deleter of an unspecified type that calls delete[] p. When T is not an array type,enables shared_from_this with p. If an exception is thrown, delete p is called when T is not an array type,

delete[] p otherwise.
7 Postconditions: use_count() == 1 && get() == p.
8 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory cannot beobtained.

§ 20.3.2.2.2 591

© ISO/IEC N4910

template<class Y, class D> shared_ptr(Y* p, D d);
template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
template<class D> shared_ptr(nullptr_t p, D d);
template<class D, class A> shared_ptr(nullptr_t p, D d, A a);

9 Constraints: is_move_constructible_v<D> is true, and d(p) is a well-formed expression. For the first twooverloads:
—(9.1) If T is an array type, then either T is U[N] and Y(*)[N] is convertible to T*, or T is U[] and Y(*)[] isconvertible to T*.
—(9.2) If T is not an array type, then Y* is convertible to T*.

10 Preconditions: Construction of d and a deleter of type D initialized with std::move(d) do not throw exceptions.The expression d(p) has well-defined behavior and does not throw exceptions. A meets the Cpp17Allocatorrequirements (16.4.4.6.1).
11 Effects: Constructs a shared_ptr object that owns the object p and the deleter d. When T is not an array type, thefirst and second constructors enable shared_from_this with p. The second and fourth constructors shall use acopy of a to allocate memory for internal use. If an exception is thrown, d(p) is called.
12 Postconditions: use_count() == 1 && get() == p.
13 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory cannot beobtained.

template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
template<class Y> shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept;

14 Effects: Constructs a shared_ptr instance that stores p and shares ownership with the initial value of r.
15 Postconditions: get() == p. For the second overload, r is empty and r.get() == nullptr.
16 [Note 1: Use of this constructor leads to a dangling pointer unless p remains valid at least until the ownership group of r isdestroyed. —end note]
17 [Note 2: This constructor allows creation of an empty shared_ptr instance with a non-null stored pointer. —end note]

shared_ptr(const shared_ptr& r) noexcept;
template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept;

18 Constraints: For the second constructor, Y* is compatible with T*.
19 Effects: If r is empty, constructs an empty shared_ptr object; otherwise, constructs a shared_ptr object thatshares ownership with r.
20 Postconditions: get() == r.get() && use_count() == r.use_count().

shared_ptr(shared_ptr&& r) noexcept;
template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept;

21 Constraints: For the second constructor, Y* is compatible with T*.
22 Effects: Move constructs a shared_ptr instance from r.
23 Postconditions: *this contains the old value of r. r is empty, and r.get() == nullptr.

template<class Y> explicit shared_ptr(const weak_ptr<Y>& r);

24 Constraints: Y* is compatible with T*.
25 Effects: Constructs a shared_ptr object that shares ownership with r and stores a copy of the pointer stored in r.If an exception is thrown, the constructor has no effect.
26 Postconditions: use_count() == r.use_count().
27 Throws: bad_weak_ptr when r.expired().

template<class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);

28 Constraints: Y* is compatible with T* and unique_ptr<Y, D>::pointer is convertible to element_type*.
29 Effects: If r.get() == nullptr, equivalent to shared_ptr(). Otherwise, if D is not a reference type, equivalent to

shared_ptr(r.release(), std::move(r.get_deleter())). Otherwise, equivalent to shared_ptr(r.release(),
ref(r.get_deleter())). If an exception is thrown, the constructor has no effect.

§ 20.3.2.2.2 592

© ISO/IEC N4910

20.3.2.2.3 Destructor [util.smartptr.shared.dest]

~shared_ptr();
1 Effects:

—(1.1) If *this is empty or shares ownership with another shared_ptr instance (use_count() > 1), there are noside effects.
—(1.2) Otherwise, if *this owns an object p and a deleter d, d(p) is called.
—(1.3) Otherwise, *this owns a pointer p, and delete p is called.

2 [Note 1: Since the destruction of *this decreases the number of instances that share ownership with *this by one, after *thishas been destroyed all shared_ptr instances that shared ownership with *this will report a use_count() that is one less than itsprevious value. —end note]
20.3.2.2.4 Assignment [util.smartptr.shared.assign]

shared_ptr& operator=(const shared_ptr& r) noexcept;
template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;

1 Effects: Equivalent to shared_ptr(r).swap(*this).
2 Returns: *this.
3 [Note 1: The use count updates caused by the temporary object construction and destruction are not observable side effects, sothe implementation can meet the effects (and the implied guarantees) via different means, without creating a temporary. Inparticular, in the example:

shared_ptr<int> p(new int);
shared_ptr<void> q(p);
p = p;
q = p;

both assignments can be no-ops. —end note]
shared_ptr& operator=(shared_ptr&& r) noexcept;
template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;

4 Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).
5 Returns: *this.

template<class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r);

6 Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).
7 Returns: *this.
20.3.2.2.5 Modifiers [util.smartptr.shared.mod]

void swap(shared_ptr& r) noexcept;

1 Effects: Exchanges the contents of *this and r.
void reset() noexcept;

2 Effects: Equivalent to shared_ptr().swap(*this).
template<class Y> void reset(Y* p);

3 Effects: Equivalent to shared_ptr(p).swap(*this).
template<class Y, class D> void reset(Y* p, D d);

4 Effects: Equivalent to shared_ptr(p, d).swap(*this).
template<class Y, class D, class A> void reset(Y* p, D d, A a);

5 Effects: Equivalent to shared_ptr(p, d, a).swap(*this).
20.3.2.2.6 Observers [util.smartptr.shared.obs]

element_type* get() const noexcept;

1 Returns: The stored pointer.
§ 20.3.2.2.6 593

© ISO/IEC N4910

T& operator*() const noexcept;

2 Preconditions: get() != 0.
3 Returns: *get().
4 Remarks: When T is an array type or cv void, it is unspecified whether this member function is declared. Ifit is declared, it is unspecified what its return type is, except that the declaration (although not necessarily thedefinition) of the function shall be well-formed.

T* operator->() const noexcept;

5 Preconditions: get() != 0.
6 Returns: get().
7 Remarks: When T is an array type, it is unspecified whether this member function is declared. If it is declared, itis unspecified what its return type is, except that the declaration (although not necessarily the definition) of thefunction shall be well-formed.

element_type& operator[](ptrdiff_t i) const;

8 Preconditions: get() != 0 && i >= 0. If T is U[N], i < N.
9 Returns: get()[i].
10 Throws: Nothing.
11 Remarks: When T is not an array type, it is unspecified whether this member function is declared. If it is declared,it is unspecified what its return type is, except that the declaration (although not necessarily the definition) of thefunction shall be well-formed.

long use_count() const noexcept;

12 Synchronization: None.
13 Returns: The number of shared_ptr objects, *this included, that share ownership with *this, or 0 when *thisis empty.
14 [Note 1: get() == nullptr does not imply a specific return value of use_count(). —end note]
15 [Note 2: weak_ptr<T>::lock() can affect the return value of use_count(). —end note]
16 [Note 3: When multiple threads might affect the return value of use_count(), the result is approximate. In particular,

use_count() == 1 does not imply that accesses through a previously destroyed shared_ptr have in any sense completed.—end note]
explicit operator bool() const noexcept;

17 Returns: get() != 0.
template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept;

18 Returns: An unspecified value such that
—(18.1) x.owner_before(y) defines a strict weak ordering as defined in 27.8;
—(18.2) under the equivalence relation defined by owner_before, !a.owner_before(b) && !b.owner_before(a),two shared_ptr or weak_ptr instances are equivalent if and only if they share ownership or are both empty.

20.3.2.2.7 Creation [util.smartptr.shared.create]
1 The common requirements that apply to all make_shared, allocate_shared, make_shared_for_overwrite, and

allocate_shared_for_overwrite overloads, unless specified otherwise, are described below.
template<class T, ...>

shared_ptr<T> make_shared(args);
template<class T, class A, ...>

shared_ptr<T> allocate_shared(const A& a, args);
template<class T, ...>

shared_ptr<T> make_shared_for_overwrite(args);

§ 20.3.2.2.7 594

© ISO/IEC N4910

template<class T, class A, ...>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, args);

2 Preconditions: A meets the Cpp17Allocator requirements (16.4.4.6.1).
3 Effects: Allocates memory for an object of type T (or U[N] when T is U[], where N is determined from args asspecified by the concrete overload). The object is initialized from args as specified by the concrete overload. The

allocate_shared and allocate_shared_for_overwrite templates use a copy of a (rebound for an unspecified
value_type) to allocate memory. If an exception is thrown, the functions have no effect.

4 Postconditions: r.get() != 0 && r.use_count() == 1, where r is the return value.
5 Returns: A shared_ptr instance that stores and owns the address of the newly constructed object.
6 Throws: bad_alloc, or an exception thrown from allocate or from the initialization of the object.
7 Remarks:

—(7.1) Implementations should perform no more than one memory allocation.
[Note 1: This provides efficiency equivalent to an intrusive smart pointer. —end note]

—(7.2) When an object of an array type U is specified to have an initial value of u (of the same type), this shall beinterpreted to mean that each array element of the object has as its initial value the corresponding elementfrom u.
—(7.3) When an object of an array type is specified to have a default initial value, this shall be interpreted to meanthat each array element of the object has a default initial value.
—(7.4) When a (sub)object of a non-array type U is specified to have an initial value of v, or U(l...), where l...is a list of constructor arguments, make_shared shall initialize this (sub)object via the expression ::new(pv)

U(v) or ::new(pv) U(l...) respectively, where pv has type void* and points to storage suitable to holdan object of type U.
—(7.5) When a (sub)object of a non-array type U is specified to have an initial value of v, or U(l...), where l...is a list of constructor arguments, allocate_shared shall initialize this (sub)object via the expression

—(7.5.1) allocator_traits<A2>::construct(a2, pv, v) or
—(7.5.2) allocator_traits<A2>::construct(a2, pv, l...)

respectively, where pv points to storage suitable to hold an object of type U and a2 of type A2 is a reboundcopy of the allocator a passed to allocate_shared such that its value_type is remove_cv_t<U>.
—(7.6) When a (sub)object of non-array type U is specified to have a default initial value, make_shared shallinitialize this (sub)object via the expression ::new(pv) U(), where pv has type void* and points to storagesuitable to hold an object of type U.
—(7.7) When a (sub)object of non-array type U is specified to have a default initial value, allocate_shared shallinitialize this (sub)object via the expression allocator_traits<A2>::construct(a2, pv), where pv pointsto storage suitable to hold an object of type U and a2 of type A2 is a rebound copy of the allocator a passedto allocate_shared such that its value_type is remove_cv_t<U>.
—(7.8) When a (sub)object of non-array type U is initialized by make_shared_for_overwrite or

allocate_shared_for_overwrite, it is initialized via the expression ::new(pv) U, where pv has type
void* and points to storage suitable to hold an object of type U.

—(7.9) Array elements are initialized in ascending order of their addresses.
—(7.10) When the lifetime of the object managed by the return value ends, or when the initialization of an arrayelement throws an exception, the initialized elements are destroyed in the reverse order of their originalconstruction.
—(7.11) When a (sub)object of non-array type U that was initialized by make_shared is to be destroyed, it is destroyedvia the expression pv->~U() where pv points to that object of type U.
—(7.12) When a (sub)object of non-array type U that was initialized by allocate_shared is to be destroyed, it isdestroyed via the expression allocator_traits<A2>::destroy(a2, pv) where pv points to that object oftype remove_cv_t<U> and a2 of type A2 is a rebound copy of the allocator a passed to allocate_sharedsuch that its value_type is remove_cv_t<U>.
[Note 2: These functions will typically allocate more memory than sizeof(T) to allow for internal bookkeeping structuressuch as reference counts. —end note]

§ 20.3.2.2.7 595

© ISO/IEC N4910

template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args); // T is not array

template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array

8 Constraints: T is not an array type.
9 Returns: A shared_ptr to an object of type T with an initial value T(forward<Args>(args)...).
10 Remarks: The shared_ptr constructors called by these functions enable shared_from_this with the address ofthe newly constructed object of type T.
11 [Example 1:

shared_ptr<int> p = make_shared<int>(); // shared_ptr to int()
shared_ptr<vector<int>> q = make_shared<vector<int>>(16, 1);// shared_ptr to vector of 16 elements with value 1
—end example]

template<class T> shared_ptr<T>
make_shared(size_t N); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[]

12 Constraints: T is of the form U[].
13 Returns: A shared_ptr to an object of type U[N] with a default initial value, where U is remove_extent_t<T>.
14 [Example 2:

shared_ptr<double[]> p = make_shared<double[]>(1024);// shared_ptr to a value-initialized double[1024]
shared_ptr<double[][2][2]> q = make_shared<double[][2][2]>(6);// shared_ptr to a value-initialized double[6][2][2]
—end example]

template<class T>
shared_ptr<T> make_shared(); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a); // T is U[N]

15 Constraints: T is of the form U[N].
16 Returns: A shared_ptr to an object of type T with a default initial value.
17 [Example 3:

shared_ptr<double[1024]> p = make_shared<double[1024]>();// shared_ptr to a value-initialized double[1024]
shared_ptr<double[6][2][2]> q = make_shared<double[6][2][2]>();// shared_ptr to a value-initialized double[6][2][2]
—end example]

template<class T>
shared_ptr<T> make_shared(size_t N,

const remove_extent_t<T>& u); // T is U[]
template<class T, class A>

shared_ptr<T> allocate_shared(const A& a, size_t N,
const remove_extent_t<T>& u); // T is U[]

18 Constraints: T is of the form U[].
19 Returns: A shared_ptr to an object of type U[N], where U is remove_extent_t<T> and each array element hasan initial value of u.
20 [Example 4:

shared_ptr<double[]> p = make_shared<double[]>(1024, 1.0);// shared_ptr to a double[1024], where each element is 1.0
shared_ptr<double[][2]> q = make_shared<double[][2]>(6, {1.0, 0.0});// shared_ptr to a double[6][2], where each double[2] element is {1.0, 0.0}
shared_ptr<vector<int>[]> r = make_shared<vector<int>[]>(4, {1, 2});

§ 20.3.2.2.7 596

© ISO/IEC N4910

// shared_ptr to a vector<int>[4], where each vector has contents {1, 2}

—end example]
template<class T>

shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N]
template<class T, class A>

shared_ptr<T> allocate_shared(const A& a,
const remove_extent_t<T>& u); // T is U[N]

21 Constraints: T is of the form U[N].
22 Returns: A shared_ptr to an object of type T, where each array element of type remove_extent_t<T> has aninitial value of u.
23 [Example 5:

shared_ptr<double[1024]> p = make_shared<double[1024]>(1.0);// shared_ptr to a double[1024], where each element is 1.0
shared_ptr<double[6][2]> q = make_shared<double[6][2]>({1.0, 0.0});// shared_ptr to a double[6][2], where each double[2] element is {1.0, 0.0}
shared_ptr<vector<int>[4]> r = make_shared<vector<int>[4]>({1, 2});// shared_ptr to a vector<int>[4], where each vector has contents {1, 2}

—end example]
template<class T>

shared_ptr<T> make_shared_for_overwrite();
template<class T, class A>

shared_ptr<T> allocate_shared_for_overwrite(const A& a);

24 Constraints: T is not an array of unknown bound.
25 Returns: A shared_ptr to an object of type T.
26 [Example 6:

struct X { double data[1024]; };
shared_ptr<X> p = make_shared_for_overwrite<X>();// shared_ptr to a default-initialized X, where each element in X::data has an indeterminate value
shared_ptr<double[1024]> q = make_shared_for_overwrite<double[1024]>();// shared_ptr to a default-initialized double[1024], where each element has an indeterminate value
— end example]

template<class T>
shared_ptr<T> make_shared_for_overwrite(size_t N);

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N);

27 Constraints: T is an array of unknown bound.
28 Returns: A shared_ptr to an object of type U[N], where U is remove_extent_t<T>.
29 [Example 7:

shared_ptr<double[]> p = make_shared_for_overwrite<double[]>(1024);// shared_ptr to a default-initialized double[1024], where each element has an indeterminate value
— end example]

20.3.2.2.8 Comparison [util.smartptr.shared.cmp]

template<class T, class U>
bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

1 Returns: a.get() == b.get().
template<class T>

bool operator==(const shared_ptr<T>& a, nullptr_t) noexcept;

2 Returns: !a.

§ 20.3.2.2.8 597

© ISO/IEC N4910

template<class T, class U>
strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

3 Returns: compare_three_way()(a.get(), b.get()).
4 [Note 1: Defining a comparison operator function allows shared_ptr objects to be used as keys in associative containers.—end note]

template<class T>
strong_ordering operator<=>(const shared_ptr<T>& a, nullptr_t) noexcept;

5 Returns:
compare_three_way()(a.get(), static_cast<typename shared_ptr<T>::element_type*>(nullptr).

20.3.2.2.9 Specialized algorithms [util.smartptr.shared.spec]

template<class T>
void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;

1 Effects: Equivalent to a.swap(b).
20.3.2.2.10 Casts [util.smartptr.shared.cast]

template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;

1 Mandates: The expression static_cast<T*>((U*)nullptr) is well-formed.
2 Returns:

shared_ptr<T>(R, static_cast<typename shared_ptr<T>::element_type*>(r.get()))

where R is r for the first overload, and std::move(r) for the second.
3 [Note 1: The seemingly equivalent expression shared_ptr<T>(static_cast<T*>(r.get())) will eventually result in unde-fined behavior, attempting to delete the same object twice. —end note]

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;

4 Mandates: The expression dynamic_cast<T*>((U*)nullptr) is well-formed. The expression dynamic_cast<typename
shared_ptr<T>::element_type*>(r.get()) is well-formed.

5 Preconditions: The expression dynamic_cast<typename shared_ptr<T>::element_type*>(r.get()) has well-defined behavior.
6 Returns:

—(6.1) When dynamic_cast<typename shared_ptr<T>::element_type*>(r.get()) returns a non-null value p,
shared_ptr<T>(R, p), where R is r for the first overload, and std::move(r) for the second.

—(6.2) Otherwise, shared_ptr<T>().
7 [Note 2: The seemingly equivalent expression shared_ptr<T>(dynamic_cast<T*>(r.get())) will eventually result inundefined behavior, attempting to delete the same object twice. —end note]

template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;

8 Mandates: The expression const_cast<T*>((U*)nullptr) is well-formed.
9 Returns:

shared_ptr<T>(R, const_cast<typename shared_ptr<T>::element_type*>(r.get()))

where R is r for the first overload, and std::move(r) for the second.
10 [Note 3: The seemingly equivalent expression shared_ptr<T>(const_cast<T*>(r.get()))will eventually result in undefinedbehavior, attempting to delete the same object twice. —end note]
§ 20.3.2.2.10 598

© ISO/IEC N4910

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;

11 Mandates: The expression reinterpret_cast<T*>((U*)nullptr) is well-formed.
12 Returns:

shared_ptr<T>(R, reinterpret_cast<typename shared_ptr<T>::element_type*>(r.get()))

where R is r for the first overload, and std::move(r) for the second.
13 [Note 4: The seemingly equivalent expression shared_ptr<T>(reinterpret_cast<T*>(r.get())) will eventually result inundefined behavior, attempting to delete the same object twice. —end note]
20.3.2.2.11 get_deleter [util.smartptr.getdeleter]

template<class D, class T>
D* get_deleter(const shared_ptr<T>& p) noexcept;

1 Returns: If p owns a deleter d of type cv-unqualified D, returns addressof(d); otherwise returns nullptr. Thereturned pointer remains valid as long as there exists a shared_ptr instance that owns d.
[Note 1: It is unspecified whether the pointer remains valid longer than that. This can happen if the implementation doesn’tdestroy the deleter until all weak_ptr instances that share ownership with p have been destroyed. —end note]

20.3.2.2.12 I/O [util.smartptr.shared.io]

template<class E, class T, class Y>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);

1 Effects: As if by: os << p.get();
2 Returns: os.
20.3.2.3 Class template weak_ptr [util.smartptr.weak]
20.3.2.3.1 General [util.smartptr.weak.general]

1 The weak_ptr class template stores a weak reference to an object that is already managed by a shared_ptr. To accessthe object, a weak_ptr can be converted to a shared_ptr using the member function lock.
namespace std {

template<class T> class weak_ptr {
public:
using element_type = remove_extent_t<T>;

// 20.3.2.3.2, constructors
constexpr weak_ptr() noexcept;
template<class Y>

weak_ptr(const shared_ptr<Y>& r) noexcept;
weak_ptr(const weak_ptr& r) noexcept;
template<class Y>

weak_ptr(const weak_ptr<Y>& r) noexcept;
weak_ptr(weak_ptr&& r) noexcept;
template<class Y>

weak_ptr(weak_ptr<Y>&& r) noexcept;

// 20.3.2.3.3, destructor
~weak_ptr();

// 20.3.2.3.4, assignment
weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y>

weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y>

weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y>

weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;

§ 20.3.2.3.1 599

© ISO/IEC N4910

// 20.3.2.3.5, modifiers
void swap(weak_ptr& r) noexcept;
void reset() noexcept;

// 20.3.2.3.6, observers
long use_count() const noexcept;
bool expired() const noexcept;
shared_ptr<T> lock() const noexcept;
template<class U>

bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U>

bool owner_before(const weak_ptr<U>& b) const noexcept;
};

template<class T>
weak_ptr(shared_ptr<T>) -> weak_ptr<T>;

}

2 Specializations of weak_ptr shall beCpp17CopyConstructible andCpp17CopyAssignable, allowing their use in standardcontainers. The template parameter T of weak_ptr may be an incomplete type.
20.3.2.3.2 Constructors [util.smartptr.weak.const]

constexpr weak_ptr() noexcept;

1 Effects: Constructs an empty weak_ptr object that stores a null pointer value.
2 Postconditions: use_count() == 0.

weak_ptr(const weak_ptr& r) noexcept;
template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept;

3 Constraints: For the second and third constructors, Y* is compatible with T*.
4 Effects: If r is empty, constructs an empty weak_ptr object that stores a null pointer value; otherwise, constructsa weak_ptr object that shares ownership with r and stores a copy of the pointer stored in r.
5 Postconditions: use_count() == r.use_count().

weak_ptr(weak_ptr&& r) noexcept;
template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept;

6 Constraints: For the second constructor, Y* is compatible with T*.
7 Effects: Move constructs a weak_ptr instance from r.
8 Postconditions: *this contains the old value of r. r is empty, stores a null pointer value, and r.use_count() ==

0.
20.3.2.3.3 Destructor [util.smartptr.weak.dest]

~weak_ptr();
1 Effects: Destroys this weak_ptr object but has no effect on the object its stored pointer points to.
20.3.2.3.4 Assignment [util.smartptr.weak.assign]

weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;

1 Effects: Equivalent to weak_ptr(r).swap(*this).
2 Returns: *this.
3 Remarks: The implementation may meet the effects (and the implied guarantees) via different means, withoutcreating a temporary object.

§ 20.3.2.3.4 600

© ISO/IEC N4910

weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;

4 Effects: Equivalent to weak_ptr(std::move(r)).swap(*this).
5 Returns: *this.
20.3.2.3.5 Modifiers [util.smartptr.weak.mod]

void swap(weak_ptr& r) noexcept;

1 Effects: Exchanges the contents of *this and r.
void reset() noexcept;

2 Effects: Equivalent to weak_ptr().swap(*this).
20.3.2.3.6 Observers [util.smartptr.weak.obs]

long use_count() const noexcept;

1 Returns: 0 if *this is empty; otherwise, the number of shared_ptr instances that share ownership with *this.
bool expired() const noexcept;

2 Returns: use_count() == 0.
shared_ptr<T> lock() const noexcept;

3 Returns: expired() ? shared_ptr<T>() : shared_ptr<T>(*this), executed atomically.
template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept;

4 Returns: An unspecified value such that
—(4.1) x.owner_before(y) defines a strict weak ordering as defined in 27.8;
—(4.2) under the equivalence relation defined by owner_before, !a.owner_before(b) && !b.owner_before(a),two shared_ptr or weak_ptr instances are equivalent if and only if they share ownership or are both empty.

20.3.2.3.7 Specialized algorithms [util.smartptr.weak.spec]

template<class T>
void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;

1 Effects: Equivalent to a.swap(b).
20.3.2.4 Class template owner_less [util.smartptr.ownerless]

1 The class template owner_less allows ownership-based mixed comparisons of shared and weak pointers.
namespace std {

template<class T = void> struct owner_less;

template<class T> struct owner_less<shared_ptr<T>> {
bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;

};

template<class T> struct owner_less<weak_ptr<T>> {
bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;

};

template<> struct owner_less<void> {
template<class T, class U>
bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept;

template<class T, class U>
bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept;

§ 20.3.2.4 601

© ISO/IEC N4910

template<class T, class U>
bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept;

template<class T, class U>
bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept;

using is_transparent = unspecified;
};

}

2 operator()(x, y) returns x.owner_before(y).
[Note 1: Note that
—(2.1) operator() defines a strict weak ordering as defined in 27.8;
—(2.2) two shared_ptr or weak_ptr instances are equivalent under the equivalence relation defined by operator(), !operator()(a,

b) && !operator()(b, a), if and only if they share ownership or are both empty.
—end note]
20.3.2.5 Class template enable_shared_from_this [util.smartptr.enab]

1 A class T can inherit from enable_shared_from_this<T> to inherit the shared_from_this member functions thatobtain a shared_ptr instance pointing to *this.
2 [Example 1:

struct X: public enable_shared_from_this<X> { };

int main() {
shared_ptr<X> p(new X);
shared_ptr<X> q = p->shared_from_this();
assert(p == q);
assert(!p.owner_before(q) && !q.owner_before(p)); // p and q share ownership

}

—end example]
namespace std {

template<class T> class enable_shared_from_this {
protected:
constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this&) noexcept;
enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
~enable_shared_from_this();

public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;

private:
mutable weak_ptr<T> weak_this; // exposition only

};
}

3 The template parameter T of enable_shared_from_this may be an incomplete type.
constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this<T>&) noexcept;

4 Effects: Value-initializes weak_this.
enable_shared_from_this<T>& operator=(const enable_shared_from_this<T>&) noexcept;

5 Returns: *this.
6 [Note 1: weak_this is not changed. —end note]

shared_ptr<T> shared_from_this();

§ 20.3.2.5 602

© ISO/IEC N4910

shared_ptr<T const> shared_from_this() const;

7 Returns: shared_ptr<T>(weak_this).
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;

8 Returns: weak_this.
20.3.3 Smart pointer hash support [util.smartptr.hash]

template<class T, class D> struct hash<unique_ptr<T, D>>;

1 Letting UP be unique_ptr<T, D>, the specialization hash<UP> is enabled (22.10.19) if and only if hash<typename
UP::pointer> is enabled. When enabled, for an object p of type UP, hash<UP>()(p) evaluates to the same valueas hash<typename UP::pointer>()(p.get()). The member functions are not guaranteed to be noexcept.

template<class T> struct hash<shared_ptr<T>>;

2 For an object p of type shared_ptr<T>, hash<shared_ptr<T>>()(p) evaluates to the same value as hash<typename
shared_ptr<T>::element_type*>()(p.get()).

20.3.4 Smart pointer adaptors [smartptr.adapt]
20.3.4.1 Class template out_ptr_t [out.ptr.t]

1 out_ptr_t is a class template used to adapt types such as smart pointers (20.3) for functions that use output pointerparameters.
2 [Example 1:

#include <memory>
#include <cstdio>

int fopen_s(std::FILE** f, const char* name, const char* mode);

struct fclose_deleter {
void operator()(std::FILE* f) const noexcept {
std::fclose(f);

}
};

int main(int, char*[]) {
constexpr const char* file_name = "ow.o";
std::unique_ptr<std::FILE, fclose_deleter> file_ptr;
int err = fopen_s(std::out_ptr<std::FILE*>(file_ptr), file_name, "r+b");
if (err != 0)
return 1;// *file_ptr is valid

return 0;
}

unique_ptr can be used with out_ptr to be passed into an output pointer-style function, without needing to hold onto an intermediatepointer value and manually delete it on error or failure. —end example]
namespace std {

template<class Smart, class Pointer, class... Args>
class out_ptr_t {
public:
explicit out_ptr_t(Smart&, Args...);
out_ptr_t(const out_ptr_t&) = delete;

~out_ptr_t();

operator Pointer*() const noexcept;
operator void**() const noexcept;

private:
Smart& s; // exposition only
tuple<Args...> a; // exposition only

§ 20.3.4.1 603

© ISO/IEC N4910

Pointer p; // exposition only
};

}

3 Pointer shall meet theCpp17NullablePointer requirements. If Smart is a specialization of shared_ptr and sizeof...(Args)
== 0, the program is ill-formed.
[Note 1: It is typically a user error to reset a shared_ptr without specifying a deleter, as shared_ptr will replace a custom deleterupon usage of reset, as specified in 20.3.2.2.5. —end note]

4 Program-defined specializations of out_ptr_t that depend on at least one program-defined type need not meet therequirements for the primary template.
5 Evaluations of the conversion functions on the same object may conflict (6.9.2.2).

explicit out_ptr_t(Smart& smart, Args... args);

6 Effects: Initializes s with smart, a with std::forward<Args>(args)..., and value-initializes p.
7 [Note 2: The constructor is not noexcept to allow for a variety of non-terminating and safe implementation strategies. Forexample, an implementation can allocate a shared_ptr’s internal node in the constructor and let implementation-definedexceptions escape safely. The destructor can then move the allocated control block in directly and avoid any other exceptions.—end note]
~out_ptr_t();

8 Let SP be POINTER_OF_OR(Smart, Pointer) (20.2.1).
9 Effects: Equivalent to:

—(9.1) if (p) {
apply([&](auto&&... args) {

s.reset(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));
}

if the expression s.reset(static_cast<SP>(p), std::forward<Args>(args)...) is well-formed;
—(9.2) otherwise,

if (p) {
apply([&](auto&&... args) {
s = Smart(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));

}

if is_constructible_v<Smart, SP, Args...> is true;
—(9.3) otherwise, the program is ill-formed.

operator Pointer*() const noexcept;

10 Preconditions: operator void**() has not been called on *this.
11 Returns: addressof(const_cast<Pointer&>(p)).

operator void**() const noexcept;

12 Constraints: is_same_v<Pointer, void*> is false.
13 Mandates: is_pointer_v<Pointer> is true.
14 Preconditions: operator Pointer*() has not been called on *this.
15 Returns: A pointer value v such that:

—(15.1) the initial value *v is equivalent to static_cast<void*>(p) and
—(15.2) any modification of *v that is not followed by a subsequent modification of *this affects the value of pduring the destruction of *this, such that static_cast<void*>(p) == *v.

16 Remarks: Accessing *v outside the lifetime of *this has undefined behavior.
17 [Note 3: reinterpret_cast<void**>(static_cast<Pointer*>(*this)) can be a viable implementation strategy for someimplementations. —end note]

§ 20.3.4.1 604

© ISO/IEC N4910

20.3.4.2 Function template out_ptr [out.ptr]

template<class Pointer = void, class Smart, class... Args>
auto out_ptr(Smart& s, Args&&... args);

1 Let P be Pointer if is_void_v<Pointer> is false, otherwise POINTER_OF(Smart).
2 Returns: out_ptr_t<Smart, P, Args&&...>(s, std::forward<Args>(args)...)

20.3.4.3 Class template inout_ptr_t [inout.ptr.t]
1 inout_ptr_t is a class template used to adapt types such as smart pointers (20.3) for functions that use output pointerparameters whose dereferenced values may first be deleted before being set to another allocated value.
2 [Example 1:

#include <memory>

struct star_fish* star_fish_alloc();
int star_fish_populate(struct star_fish** ps, const char* description);

struct star_fish_deleter {
void operator() (struct star_fish* c) const noexcept;

};

using star_fish_ptr = std::unique_ptr<star_fish, star_fish_deleter>;

int main(int, char*[]) {
star_fish_ptr peach(star_fish_alloc());// ...// used, need to re-make
int err = star_fish_populate(std::inout_ptr(peach), "caring clown-fish liker");
return err;

}

A unique_ptr can be used with inout_ptr to be passed into an output pointer-style function. The original value will be properlydeleted according to the function it is used with and a new value reset in its place. —end example]
namespace std {

template<class Smart, class Pointer, class... Args>
class inout_ptr_t {
public:
explicit inout_ptr_t(Smart&, Args...);
inout_ptr_t(const inout_ptr_t&) = delete;

~inout_ptr_t();

operator Pointer*() const noexcept;
operator void**() const noexcept;

private:
Smart& s; // exposition only
tuple<Args...> a; // exposition only
Pointer p; // exposition only

};
}

3 Pointer shall meet the Cpp17NullablePointer requirements. If Smart is a specialization of shared_ptr, the program isill-formed.
[Note 1: It is impossible to properly acquire unique ownership of the managed resource from a shared_ptr given its shared ownershipmodel. —end note]

4 Program-defined specializations of inout_ptr_t that depend on at least one program-defined type need not meet therequirements for the primary template.
5 Evaluations of the conversion functions on the same object may conflict (6.9.2.2).

explicit inout_ptr_t(Smart& smart, Args... args);

6 Effects: Initializes s with smart, a with std::forward<Args>(args)..., and p to either
§ 20.3.4.3 605

© ISO/IEC N4910

—(6.1) smart if is_pointer_v<Smart> is true,
—(6.2) otherwise, smart.get().

7 Remarks: An implementation can call s.release().
8 [Note 2: The constructor is not noexcept to allow for a variety of non-terminating and safe implementation strategies. Forexample, an intrusive pointer implementation with a control block can allocate in the constructor and safely fail with anexception. —end note]
~inout_ptr_t();

9 Let SP be POINTER_OF_OR(Smart, Pointer) (20.2.1).
10 Let release-statement be s.release(); if an implementation does not call s.release() in the constructor.Otherwise, it is empty.
11 Effects: Equivalent to:

—(11.1) if (p) {
apply([&](auto&&... args) {

s = Smart(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));
}

if is_pointer_v<Smart> is true;
—(11.2) otherwise,

if (p) {
apply([&](auto&&... args) {
release-statement;
s.reset(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));

}

if the expression s.reset(static_cast<SP>(p), std::forward<Args>(args)...) is well-formed;
—(11.3) otherwise,

if (p) {
apply([&](auto&&... args) {
release-statement;
s = Smart(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));

}

if is_constructible_v<Smart, SP, Args...> is true;
—(11.4) otherwise, the program is ill-formed.

operator Pointer*() const noexcept;

12 Preconditions: operator void**() has not been called on *this.
13 Returns: addressof(const_cast<Pointer&>(p)).

operator void**() const noexcept;

14 Constraints: is_same_v<Pointer, void*> is false.
15 Mandates: is_pointer_v<Pointer> is true.
16 Preconditions: operator Pointer*() has not been called on *this.
17 Returns: A pointer value v such that:

—(17.1) the initial value *v is equivalent to static_cast<void*>(p) and
—(17.2) any modification of *v that is not followed by subsequent modification of *this affects the value of p duringthe destruction of *this, such that static_cast<void*>(p) == *v.

18 Remarks: Accessing *v outside the lifetime of *this has undefined behavior.
19 [Note 3: reinterpret_cast<void**>(static_cast<Pointer*>(*this)) can be a viable implementation strategy for someimplementations. —end note]

§ 20.3.4.3 606

© ISO/IEC N4910

20.3.4.4 Function template inout_ptr [inout.ptr]

template<class Pointer = void, class Smart, class... Args>
auto inout_ptr(Smart& s, Args&&... args);

1 Let P be Pointer if is_void_v<Pointer> is false, otherwise POINTER_OF(Smart).
2 Returns: inout_ptr_t<Smart, P, Args&&...>(s, std::forward<Args>(args)...).
20.4 Memory resources [mem.res]
20.4.1 Header <memory_resource> synopsis [mem.res.syn]
namespace std::pmr {// 20.4.2, class memory_resource

class memory_resource;

bool operator==(const memory_resource& a, const memory_resource& b) noexcept;

// 20.4.3, class template polymorphic_allocator
template<class Tp = byte> class polymorphic_allocator;

template<class T1, class T2>
bool operator==(const polymorphic_allocator<T1>& a,

const polymorphic_allocator<T2>& b) noexcept;

// 20.4.4, global memory resources
memory_resource* new_delete_resource() noexcept;
memory_resource* null_memory_resource() noexcept;
memory_resource* set_default_resource(memory_resource* r) noexcept;
memory_resource* get_default_resource() noexcept;

// 20.4.5, pool resource classes
struct pool_options;
class synchronized_pool_resource;
class unsynchronized_pool_resource;
class monotonic_buffer_resource;

}

20.4.2 Class memory_resource [mem.res.class]
20.4.2.1 General [mem.res.class.general]

1 The memory_resource class is an abstract interface to an unbounded set of classes encapsulating memory resources.
namespace std::pmr {

class memory_resource {
static constexpr size_t max_align = alignof(max_align_t); // exposition only

public:
memory_resource() = default;
memory_resource(const memory_resource&) = default;
virtual ~memory_resource();

memory_resource& operator=(const memory_resource&) = default;

[[nodiscard]] void* allocate(size_t bytes, size_t alignment = max_align);
void deallocate(void* p, size_t bytes, size_t alignment = max_align);

bool is_equal(const memory_resource& other) const noexcept;

private:
virtual void* do_allocate(size_t bytes, size_t alignment) = 0;
virtual void do_deallocate(void* p, size_t bytes, size_t alignment) = 0;

virtual bool do_is_equal(const memory_resource& other) const noexcept = 0;
};

}

§ 20.4.2.1 607

© ISO/IEC N4910

20.4.2.2 Public member functions [mem.res.public]

~memory_resource();
1 Effects: Destroys this memory_resource.

[[nodiscard]] void* allocate(size_t bytes, size_t alignment = max_align);

2 Effects: Allocates storage by calling do_allocate(bytes, alignment) and implicitly creates objects within theallocated region of storage.
3 Returns: A pointer to a suitable created object (6.7.2) in the allocated region of storage.
4 Throws: What and when the call to do_allocate throws.

void deallocate(void* p, size_t bytes, size_t alignment = max_align);

5 Effects: Equivalent to do_deallocate(p, bytes, alignment).
bool is_equal(const memory_resource& other) const noexcept;

6 Effects: Equivalent to: return do_is_equal(other);

20.4.2.3 Private virtual member functions [mem.res.private]

virtual void* do_allocate(size_t bytes, size_t alignment) = 0;

1 Preconditions: alignment is a power of two.
2 Returns: A derived class shall implement this function to return a pointer to allocated storage (6.7.5.5.2) with asize of at least bytes, aligned to the specified alignment.
3 Throws: A derived class implementation shall throw an appropriate exception if it is unable to allocate memorywith the requested size and alignment.

virtual void do_deallocate(void* p, size_t bytes, size_t alignment) = 0;

4 Preconditions: p was returned from a prior call to allocate(bytes, alignment) on a memory resource equal to
*this, and the storage at p has not yet been deallocated.

5 Effects: A derived class shall implement this function to dispose of allocated storage.
6 Throws: Nothing.

virtual bool do_is_equal(const memory_resource& other) const noexcept = 0;

7 Returns: A derived class shall implement this function to return true if memory allocated from this can bedeallocated from other and vice-versa, otherwise false.
[Note 1: It is possible that the most-derived type of other does not match the type of this. For a derived class D, animplementation of this function can immediately return false if dynamic_cast<const D*>(&other) == nullptr. —endnote]

20.4.2.4 Equality [mem.res.eq]

bool operator==(const memory_resource& a, const memory_resource& b) noexcept;

1 Returns: &a == &b || a.is_equal(b).
20.4.3 Class template polymorphic_allocator [mem.poly.allocator.class]
20.4.3.1 General [mem.poly.allocator.class.general]

1 A specialization of class template pmr::polymorphic_allocator meets the Cpp17Allocator requirements (16.4.4.6.1).Constructed with different memory resources, different instances of the same specialization of pmr::polymorphic_-
allocator can exhibit entirely different allocation behavior. This runtime polymorphism allows objects that use
polymorphic_allocator to behave as if they used different allocator types at run time even though they use the samestatic allocator type.

2 All specializations of class template pmr::polymorphic_allocator meet the allocator completeness requirements(16.4.4.6.2).
namespace std::pmr {

template<class Tp = byte> class polymorphic_allocator {
memory_resource* memory_rsrc; // exposition only

§ 20.4.3.1 608

© ISO/IEC N4910

public:
using value_type = Tp;

// 20.4.3.2, constructors
polymorphic_allocator() noexcept;
polymorphic_allocator(memory_resource* r);

polymorphic_allocator(const polymorphic_allocator& other) = default;

template<class U>
polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

polymorphic_allocator& operator=(const polymorphic_allocator&) = delete;

// 20.4.3.3, member functions
[[nodiscard]] Tp* allocate(size_t n);
void deallocate(Tp* p, size_t n);

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));
void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof(max_align_t));
template<class T> [[nodiscard]] T* allocate_object(size_t n = 1);
template<class T> void deallocate_object(T* p, size_t n = 1);
template<class T, class... CtorArgs> [[nodiscard]] T* new_object(CtorArgs&&... ctor_args);
template<class T> void delete_object(T* p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

polymorphic_allocator select_on_container_copy_construction() const;

memory_resource* resource() const;
};

}

20.4.3.2 Constructors [mem.poly.allocator.ctor]

polymorphic_allocator() noexcept;

1 Effects: Sets memory_rsrc to get_default_resource().
polymorphic_allocator(memory_resource* r);

2 Preconditions: r is non-null.
3 Effects: Sets memory_rsrc to r.
4 Throws: Nothing.
5 [Note 1: This constructor provides an implicit conversion from memory_resource*. —end note]

template<class U> polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

6 Effects: Sets memory_rsrc to other.resource().
20.4.3.3 Member functions [mem.poly.allocator.mem]

[[nodiscard]] Tp* allocate(size_t n);

1 Effects: If numeric_limits<size_t>::max() / sizeof(Tp) < n, throws bad_array_new_length. Otherwiseequivalent to:
return static_cast<Tp*>(memory_rsrc->allocate(n * sizeof(Tp), alignof(Tp)));

void deallocate(Tp* p, size_t n);

2 Preconditions: p was allocated from a memory resource x, equal to *memory_rsrc, using x.allocate(n *
sizeof(Tp), alignof(Tp)).

3 Effects: Equivalent to memory_rsrc->deallocate(p, n * sizeof(Tp), alignof(Tp)).
4 Throws: Nothing.
§ 20.4.3.3 609

© ISO/IEC N4910

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));

5 Effects: Equivalent to: return memory_rsrc->allocate(nbytes, alignment);
6 [Note 1: The return type is void* (rather than, e.g., byte*) to support conversion to an arbitrary pointer type U* by static_-

cast<U*>, thus facilitating construction of a U object in the allocated memory. —end note]
void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof(max_align_t));

7 Effects: Equivalent to memory_rsrc->deallocate(p, nbytes, alignment).
template<class T>

[[nodiscard]] T* allocate_object(size_t n = 1);

8 Effects: Allocates memory suitable for holding an array of n objects of type T, as follows:
—(8.1) if numeric_limits<size_t>::max() / sizeof(T) < n, throws bad_array_new_length,
—(8.2) otherwise equivalent to:

return static_cast<T*>(allocate_bytes(n*sizeof(T), alignof(T)));
9 [Note 2: T is not deduced and must therefore be provided as a template argument. —end note]

template<class T>
void deallocate_object(T* p, size_t n = 1);

10 Effects: Equivalent to deallocate_bytes(p, n*sizeof(T), alignof(T)).
template<class T, class... CtorArgs>

[[nodiscard]] T* new_object(CtorArgs&&... ctor_args);

11 Effects: Allocates and constructs an object of type T, as follows.Equivalent to:
T* p = allocate_object<T>();
try {
construct(p, std::forward<CtorArgs>(ctor_args)...);

} catch (...) {
deallocate_object(p);
throw;

}
return p;

12 [Note 3: T is not deduced and must therefore be provided as a template argument. —end note]
template<class T>

void delete_object(T* p);

13 Effects: Equivalent to:
allocator_traits<polymorphic_allocator>::destroy(*this, p);
deallocate_object(p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

14 Mandates: Uses-allocator construction of T with allocator *this (see 20.2.7.2) and constructor arguments
std::forward<Args>(args)... is well-formed.

15 Effects: Construct a T object in the storage whose address is represented by p by uses-allocator construction withallocator *this and constructor arguments std::forward<Args>(args)....
16 Throws: Nothing unless the constructor for T throws.

polymorphic_allocator select_on_container_copy_construction() const;

17 Returns: polymorphic_allocator().
18 [Note 4: The memory resource is not propagated. —end note]

memory_resource* resource() const;

19 Returns: memory_rsrc.

§ 20.4.3.3 610

© ISO/IEC N4910

20.4.3.4 Equality [mem.poly.allocator.eq]

template<class T1, class T2>
bool operator==(const polymorphic_allocator<T1>& a,

const polymorphic_allocator<T2>& b) noexcept;

1 Returns: *a.resource() == *b.resource().
20.4.4 Access to program-wide memory_resource objects [mem.res.global]

memory_resource* new_delete_resource() noexcept;

1 Returns: A pointer to a static-duration object of a type derived from memory_resource that can serve as a resourcefor allocating memory using ::operator new and ::operator delete. The same value is returned every timethis function is called. For a return value p and a memory resource r, p->is_equal(r) returns &r == p.
memory_resource* null_memory_resource() noexcept;

2 Returns: A pointer to a static-duration object of a type derived from memory_resource for which allocate()always throws bad_alloc and for which deallocate() has no effect. The same value is returned every time thisfunction is called. For a return value p and a memory resource r, p->is_equal(r) returns &r == p.
3 The default memory resource pointer is a pointer to a memory resource that is used by certain facilities when an explicitmemory resource is not supplied through the interface. Its initial value is the return value of new_delete_resource().

memory_resource* set_default_resource(memory_resource* r) noexcept;

4 Effects: If r is non-null, sets the value of the default memory resource pointer to r, otherwise sets the defaultmemory resource pointer to new_delete_resource().
5 Returns: The previous value of the default memory resource pointer.
6 Remarks: Calling the set_default_resource and get_default_resource functions shall not incur a data race.A call to the set_default_resource function shall synchronize with subsequent calls to the set_default_-

resource and get_default_resource functions.
memory_resource* get_default_resource() noexcept;

7 Returns: The current value of the default memory resource pointer.
20.4.5 Pool resource classes [mem.res.pool]
20.4.5.1 Classes synchronized_pool_resource and unsynchronized_pool_resource [mem.res.pool.overview]

1 The synchronized_pool_resource and unsynchronized_pool_resource classes (collectively called pool resourceclasses) are general-purpose memory resources having the following qualities:
—(1.1) Each resource frees its allocated memory on destruction, even if deallocate has not been called for some of theallocated blocks.
—(1.2) A pool resource consists of a collection of pools, serving requests for different block sizes. Each individualpool manages a collection of chunks that are in turn divided into blocks of uniform size, returned via calls to

do_allocate. Each call to do_allocate(size, alignment) is dispatched to the pool serving the smallest blocksaccommodating at least size bytes.
—(1.3) When a particular pool is exhausted, allocating a block from that pool results in the allocation of an additionalchunk of memory from the upstream allocator (supplied at construction), thus replenishing the pool. With eachsuccessive replenishment, the chunk size obtained increases geometrically.

[Note 1: By allocating memory in chunks, the pooling strategy increases the chance that consecutive allocations will be closetogether in memory. —end note]
—(1.4) Allocation requests that exceed the largest block size of any pool are fulfilled directly from the upstream allocator.
—(1.5) A pool_options struct may be passed to the pool resource constructors to tune the largest block size and themaximum chunk size.

2 A synchronized_pool_resource may be accessed from multiple threads without external synchronization and mayhave thread-specific pools to reduce synchronization costs. An unsynchronized_pool_resource class may not beaccessed from multiple threads simultaneously and thus avoids the cost of synchronization entirely in single-threadedapplications.

§ 20.4.5.1 611

© ISO/IEC N4910

namespace std::pmr {
struct pool_options {
size_t max_blocks_per_chunk = 0;
size_t largest_required_pool_block = 0;

};

class synchronized_pool_resource : public memory_resource {
public:
synchronized_pool_resource(const pool_options& opts, memory_resource* upstream);

synchronized_pool_resource()
: synchronized_pool_resource(pool_options(), get_default_resource()) {}

explicit synchronized_pool_resource(memory_resource* upstream)
: synchronized_pool_resource(pool_options(), upstream) {}

explicit synchronized_pool_resource(const pool_options& opts)
: synchronized_pool_resource(opts, get_default_resource()) {}

synchronized_pool_resource(const synchronized_pool_resource&) = delete;
virtual ~synchronized_pool_resource();

synchronized_pool_resource& operator=(const synchronized_pool_resource&) = delete;

void release();
memory_resource* upstream_resource() const;
pool_options options() const;

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;

bool do_is_equal(const memory_resource& other) const noexcept override;
};

class unsynchronized_pool_resource : public memory_resource {
public:
unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream);

unsynchronized_pool_resource()
: unsynchronized_pool_resource(pool_options(), get_default_resource()) {}

explicit unsynchronized_pool_resource(memory_resource* upstream)
: unsynchronized_pool_resource(pool_options(), upstream) {}

explicit unsynchronized_pool_resource(const pool_options& opts)
: unsynchronized_pool_resource(opts, get_default_resource()) {}

unsynchronized_pool_resource(const unsynchronized_pool_resource&) = delete;
virtual ~unsynchronized_pool_resource();

unsynchronized_pool_resource& operator=(const unsynchronized_pool_resource&) = delete;

void release();
memory_resource* upstream_resource() const;
pool_options options() const;

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;

bool do_is_equal(const memory_resource& other) const noexcept override;
};

}

§ 20.4.5.1 612

© ISO/IEC N4910

20.4.5.2 pool_options data members [mem.res.pool.options]
1 The members of pool_options comprise a set of constructor options for pool resources. The effect of each option onthe pool resource behavior is described below:

size_t max_blocks_per_chunk;

2 The maximum number of blocks that will be allocated at once from the upstream memory resource (20.4.6) toreplenish a pool. If the value of max_blocks_per_chunk is zero or is greater than an implementation-definedlimit, that limit is used instead. The implementation may choose to use a smaller value than is specified in thisfield and may use different values for different pools.
size_t largest_required_pool_block;

3 The largest allocation size that is required to be fulfilled using the pooling mechanism. Attempts to allocate asingle block larger than this threshold will be allocated directly from the upstream memory resource. If largest_-
required_pool_block is zero or is greater than an implementation-defined limit, that limit is used instead. Theimplementation may choose a pass-through threshold larger than specified in this field.

20.4.5.3 Constructors and destructors [mem.res.pool.ctor]

synchronized_pool_resource(const pool_options& opts, memory_resource* upstream);
unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream);

1 Preconditions: upstream is the address of a valid memory resource.
2 Effects: Constructs a pool resource object that will obtain memory from upstream whenever the pool resource isunable to satisfy a memory request from its own internal data structures. The resulting object will hold a copy of

upstream, but will not own the resource to which upstream points.
[Note 1: The intention is that calls to upstream->allocate() will be substantially fewer than calls to this->allocate() inmost cases. —end note]
The behavior of the pooling mechanism is tuned according to the value of the opts argument.

3 Throws: Nothing unless upstream->allocate() throws. It is unspecified if, or under what conditions, thisconstructor calls upstream->allocate().
virtual ~synchronized_pool_resource();
virtual ~unsynchronized_pool_resource();

4 Effects: Calls release().
20.4.5.4 Members [mem.res.pool.mem]

void release();

1 Effects: Calls upstream_resource()->deallocate() as necessary to release all allocated memory.
[Note 1: The memory is released back to upstream_resource() even if deallocate has not been called for some of theallocated blocks. —end note]

memory_resource* upstream_resource() const;

2 Returns: The value of the upstream argument provided to the constructor of this object.
pool_options options() const;

3 Returns: The options that control the pooling behavior of this resource. The values in the returned structmay differ from those supplied to the pool resource constructor in that values of zero will be replaced withimplementation-defined defaults, and sizes may be rounded to unspecified granularity.
void* do_allocate(size_t bytes, size_t alignment) override;

4 Effects: If the pool selected for a block of size bytes is unable to satisfy the memory request from its own internaldata structures, it will call upstream_resource()->allocate() to obtain more memory. If bytes is larger thanthat which the largest pool can handle, then memory will be allocated using upstream_resource()->allocate().
5 Returns: A pointer to allocated storage (6.7.5.5.2) with a size of at least bytes. The size and alignment of theallocated memory shall meet the requirements for a class derived from memory_resource (20.4.2).
6 Throws: Nothing unless upstream_resource()->allocate() throws.

§ 20.4.5.4 613

© ISO/IEC N4910

void do_deallocate(void* p, size_t bytes, size_t alignment) override;

7 Effects: Returns the memory at p to the pool. It is unspecified if, or under what circumstances, this operation willresult in a call to upstream_resource()->deallocate().
8 Throws: Nothing.

bool do_is_equal(const memory_resource& other) const noexcept override;

9 Returns: this == &other.
20.4.6 Class monotonic_buffer_resource [mem.res.monotonic.buffer]
20.4.6.1 General [mem.res.monotonic.buffer.general]

1 A monotonic_buffer_resource is a special-purpose memory resource intended for very fast memory allocations insituations where memory is used to build up a few objects and then is released all at once when the memory resourceobject is destroyed.
namespace std::pmr {

class monotonic_buffer_resource : public memory_resource {
memory_resource* upstream_rsrc; // exposition only
void* current_buffer; // exposition only
size_t next_buffer_size; // exposition only

public:
explicit monotonic_buffer_resource(memory_resource* upstream);
monotonic_buffer_resource(size_t initial_size, memory_resource* upstream);
monotonic_buffer_resource(void* buffer, size_t buffer_size, memory_resource* upstream);

monotonic_buffer_resource()
: monotonic_buffer_resource(get_default_resource()) {}

explicit monotonic_buffer_resource(size_t initial_size)
: monotonic_buffer_resource(initial_size, get_default_resource()) {}

monotonic_buffer_resource(void* buffer, size_t buffer_size)
: monotonic_buffer_resource(buffer, buffer_size, get_default_resource()) {}

monotonic_buffer_resource(const monotonic_buffer_resource&) = delete;

virtual ~monotonic_buffer_resource();

monotonic_buffer_resource& operator=(const monotonic_buffer_resource&) = delete;

void release();
memory_resource* upstream_resource() const;

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;

bool do_is_equal(const memory_resource& other) const noexcept override;
};

}

20.4.6.2 Constructors and destructor [mem.res.monotonic.buffer.ctor]

explicit monotonic_buffer_resource(memory_resource* upstream);
monotonic_buffer_resource(size_t initial_size, memory_resource* upstream);

1 Preconditions: upstream is the address of a valid memory resource. initial_size, if specified, is greater thanzero.
2 Effects: Sets upstream_rsrc to upstream and current_buffer to nullptr. If initial_size is specified, sets

next_buffer_size to at least initial_size; otherwise sets next_buffer_size to an implementation-definedsize.

§ 20.4.6.2 614

© ISO/IEC N4910

monotonic_buffer_resource(void* buffer, size_t buffer_size, memory_resource* upstream);

3 Preconditions: upstream is the address of a valid memory resource. buffer_size is no larger than the number ofbytes in buffer.
4 Effects: Sets upstream_rsrc to upstream, current_buffer to buffer, and next_buffer_size to buffer_size(but not less than 1), then increases next_buffer_size by an implementation-defined growth factor (which neednot be integral).
~monotonic_buffer_resource();

5 Effects: Calls release().
20.4.6.3 Members [mem.res.monotonic.buffer.mem]

void release();

1 Effects: Calls upstream_rsrc->deallocate() as necessary to release all allocated memory. Resets current_-
buffer and next_buffer_size to their initial values at construction.

2 [Note 1: The memory is released back to upstream_rsrc even if some blocks that were allocated from this have not beendeallocated from this. —end note]
memory_resource* upstream_resource() const;

3 Returns: The value of upstream_rsrc.
void* do_allocate(size_t bytes, size_t alignment) override;

4 Effects: If the unused space in current_buffer can fit a block with the specified bytes and alignment, thenallocate the return block from current_buffer; otherwise set current_buffer to upstream_rsrc->allocate(n,
m), where n is not less than max(bytes, next_buffer_size) and m is not less than alignment, and increase
next_buffer_size by an implementation-defined growth factor (which need not be integral), then allocate thereturn block from the newly-allocated current_buffer.

5 Returns: A pointer to allocated storage (6.7.5.5.2) with a size of at least bytes. The size and alignment of theallocated memory shall meet the requirements for a class derived from memory_resource (20.4.2).
6 Throws: Nothing unless upstream_rsrc->allocate() throws.

void do_deallocate(void* p, size_t bytes, size_t alignment) override;

7 Effects: None.
8 Throws: Nothing.
9 Remarks: Memory used by this resource increases monotonically until its destruction.

bool do_is_equal(const memory_resource& other) const noexcept override;

10 Returns: this == &other.
20.5 Class template scoped_allocator_adaptor [allocator.adaptor]
20.5.1 Header <scoped_allocator> synopsis [allocator.adaptor.syn]
namespace std {// class template scoped allocator adaptor
template<class OuterAlloc, class... InnerAlloc>

class scoped_allocator_adaptor;

// 20.5.5, scoped allocator operators
template<class OuterA1, class OuterA2, class... InnerAllocs>

bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,
const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b) noexcept;

}

1 The class template scoped_allocator_adaptor is an allocator template that specifies an allocator resource (the outerallocator) to be used by a container (as any other allocator does) and also specifies an inner allocator resource to be passedto the constructor of every element within the container. This adaptor is instantiated with one outer and zero or moreinner allocator types. If instantiated with only one allocator type, the inner allocator becomes the scoped_allocator_-
adaptor itself, thus using the same allocator resource for the container and every element within the container and, if
§ 20.5.1 615

© ISO/IEC N4910

the elements themselves are containers, each of their elements recursively. If instantiated with more than one allocator,the first allocator is the outer allocator for use by the container, the second allocator is passed to the constructors ofthe container’s elements, and, if the elements themselves are containers, the third allocator is passed to the elements’elements, and so on. If containers are nested to a depth greater than the number of allocators, the last allocator is usedrepeatedly, as in the single-allocator case, for any remaining recursions.
[Note 1: The scoped_allocator_adaptor is derived from the outer allocator type so it can be substituted for the outer allocator typein most expressions. —end note]
namespace std {

template<class OuterAlloc, class... InnerAllocs>
class scoped_allocator_adaptor : public OuterAlloc {
private:
using OuterTraits = allocator_traits<OuterAlloc>; // exposition only
scoped_allocator_adaptor<InnerAllocs...> inner; // exposition only

public:
using outer_allocator_type = OuterAlloc;
using inner_allocator_type = see below;

using value_type = typename OuterTraits::value_type;
using size_type = typename OuterTraits::size_type;
using difference_type = typename OuterTraits::difference_type;
using pointer = typename OuterTraits::pointer;
using const_pointer = typename OuterTraits::const_pointer;
using void_pointer = typename OuterTraits::void_pointer;
using const_void_pointer = typename OuterTraits::const_void_pointer;

using propagate_on_container_copy_assignment = see below;
using propagate_on_container_move_assignment = see below;
using propagate_on_container_swap = see below;
using is_always_equal = see below;

template<class Tp> struct rebind {
using other = scoped_allocator_adaptor<

OuterTraits::template rebind_alloc<Tp>, InnerAllocs...>;
};

scoped_allocator_adaptor();
template<class OuterA2>

scoped_allocator_adaptor(OuterA2&& outerAlloc,
const InnerAllocs&... innerAllocs) noexcept;

scoped_allocator_adaptor(const scoped_allocator_adaptor& other) noexcept;
scoped_allocator_adaptor(scoped_allocator_adaptor&& other) noexcept;

template<class OuterA2>
scoped_allocator_adaptor(

const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& other) noexcept;
template<class OuterA2>

scoped_allocator_adaptor(
scoped_allocator_adaptor<OuterA2, InnerAllocs...>&& other) noexcept;

scoped_allocator_adaptor& operator=(const scoped_allocator_adaptor&) = default;
scoped_allocator_adaptor& operator=(scoped_allocator_adaptor&&) = default;

~scoped_allocator_adaptor();

inner_allocator_type& inner_allocator() noexcept;
const inner_allocator_type& inner_allocator() const noexcept;
outer_allocator_type& outer_allocator() noexcept;
const outer_allocator_type& outer_allocator() const noexcept;

[[nodiscard]] pointer allocate(size_type n);
[[nodiscard]] pointer allocate(size_type n, const_void_pointer hint);

§ 20.5.1 616

© ISO/IEC N4910

void deallocate(pointer p, size_type n);
size_type max_size() const;

template<class T, class... Args>
void construct(T* p, Args&&... args);

template<class T>
void destroy(T* p);

scoped_allocator_adaptor select_on_container_copy_construction() const;
};

template<class OuterAlloc, class... InnerAllocs>
scoped_allocator_adaptor(OuterAlloc, InnerAllocs...)

-> scoped_allocator_adaptor<OuterAlloc, InnerAllocs...>;
}

20.5.2 Member types [allocator.adaptor.types]

using inner_allocator_type = see below;

1 Type: scoped_allocator_adaptor<OuterAlloc> if sizeof...(InnerAllocs) is zero; otherwise,
scoped_allocator_adaptor<InnerAllocs...>.

using propagate_on_container_copy_assignment = see below;

2 Type: true_type if allocator_traits<A>::propagate_on_container_copy_assignment::value is true forany A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.
using propagate_on_container_move_assignment = see below;

3 Type: true_type if allocator_traits<A>::propagate_on_container_move_assignment::value is true forany A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.
using propagate_on_container_swap = see below;

4 Type: true_type if allocator_traits<A>::propagate_on_container_swap::value is true for any A in theset of OuterAlloc and InnerAllocs...; otherwise, false_type.
using is_always_equal = see below;

5 Type: true_type if allocator_traits<A>::is_always_equal::value is true for every A in the set of OuterAllocand InnerAllocs...; otherwise, false_type.
20.5.3 Constructors [allocator.adaptor.cnstr]

scoped_allocator_adaptor();

1 Effects: Value-initializes the OuterAlloc base class and the inner allocator object.
template<class OuterA2>

scoped_allocator_adaptor(OuterA2&& outerAlloc, const InnerAllocs&... innerAllocs) noexcept;

2 Constraints: is_constructible_v<OuterAlloc, OuterA2> is true.
3 Effects: Initializes the OuterAlloc base class with std::forward<OuterA2>(outerAlloc) and inner with

innerAllocs... (hence recursively initializing each allocator within the adaptor with the corresponding allocatorfrom the argument list).
scoped_allocator_adaptor(const scoped_allocator_adaptor& other) noexcept;

4 Effects: Initializes each allocator within the adaptor with the corresponding allocator from other.
scoped_allocator_adaptor(scoped_allocator_adaptor&& other) noexcept;

5 Effects: Move constructs each allocator within the adaptor with the corresponding allocator from other.

§ 20.5.3 617

© ISO/IEC N4910

template<class OuterA2>
scoped_allocator_adaptor(
const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& other) noexcept;

6 Constraints: is_constructible_v<OuterAlloc, const OuterA2&> is true.
7 Effects: Initializes each allocator within the adaptor with the corresponding allocator from other.

template<class OuterA2>
scoped_allocator_adaptor(scoped_allocator_adaptor<OuterA2, InnerAllocs...>&& other) noexcept;

8 Constraints: is_constructible_v<OuterAlloc, OuterA2> is true.
9 Effects: Initializes each allocator within the adaptor with the corresponding allocator rvalue from other.
20.5.4 Members [allocator.adaptor.members]

1 In the construct member functions, OUTERMOST(x) is OUTERMOST(x.outer_allocator()) if the expression x.outer_-
allocator() is valid (13.10.3) and x otherwise; OUTERMOST_ALLOC_TRAITS(x) is allocator_traits<remove_reference_-
t<decltype(OUTERMOST(x))>>.
[Note 1: OUTERMOST(x) and OUTERMOST_ALLOC_TRAITS(x) are recursive operations. It is incumbent upon the definition of outer_-
allocator() to ensure that the recursion terminates. It will terminate for all instantiations of scoped_allocator_adaptor. —endnote]
inner_allocator_type& inner_allocator() noexcept;
const inner_allocator_type& inner_allocator() const noexcept;

2 Returns: *this if sizeof...(InnerAllocs) is zero; otherwise, inner.
outer_allocator_type& outer_allocator() noexcept;

3 Returns: static_cast<OuterAlloc&>(*this).
const outer_allocator_type& outer_allocator() const noexcept;

4 Returns: static_cast<const OuterAlloc&>(*this).
[[nodiscard]] pointer allocate(size_type n);

5 Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(), n).
[[nodiscard]] pointer allocate(size_type n, const_void_pointer hint);

6 Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(), n, hint).
void deallocate(pointer p, size_type n) noexcept;

7 Effects: As if by: allocator_traits<OuterAlloc>::deallocate(outer_allocator(), p, n);

size_type max_size() const;

8 Returns: allocator_traits<OuterAlloc>::max_size(outer_allocator()).
template<class T, class... Args>

void construct(T* p, Args&&... args);

9 Effects: Equivalent to:
apply([p, this](auto&&... newargs) {

OUTERMOST_ALLOC_TRAITS(*this)::construct(
OUTERMOST(*this), p,
std::forward<decltype(newargs)>(newargs)...);

},
uses_allocator_construction_args<T>(inner_allocator(),

std::forward<Args>(args)...));

template<class T>
void destroy(T* p);

10 Effects: Calls OUTERMOST_ALLOC_TRAITS(*this)::destroy(OUTERMOST(*this), p).

§ 20.5.4 618

© ISO/IEC N4910

scoped_allocator_adaptor select_on_container_copy_construction() const;

11 Returns: A new scoped_allocator_adaptor object where each allocator a1 within the adaptor is initialized with
allocator_traits<A1>::select_on_container_copy_construction(a2), where A1 is the type of a1 and a2is the corresponding allocator in *this.

20.5.5 Operators [scoped.adaptor.operators]

template<class OuterA1, class OuterA2, class... InnerAllocs>
bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,

const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b) noexcept;

1 Returns: If sizeof...(InnerAllocs) is zero,
a.outer_allocator() == b.outer_allocator()

otherwise
a.outer_allocator() == b.outer_allocator() && a.inner_allocator() == b.inner_allocator()

§ 20.5.5 619

© ISO/IEC N4910

21 Metaprogramming library [meta]
21.1 General [meta.general]

1 This Clause describes metaprogramming facilities. These facilities are summarized in Table 43.
Table 43: Metaprogramming library summary [tab:meta.summary]

Subclause Header
21.2 Integer sequences <utility>21.3 Type traits <type_traits>21.4 Rational arithmetic <ratio>

21.2 Compile-time integer sequences [intseq]
21.2.1 In general [intseq.general]

1 The library provides a class template that can represent an integer sequence. When used as an argument to a functiontemplate the template parameter pack defining the sequence can be deduced and used in a pack expansion.
[Note 1: The index_sequence alias template is provided for the common case of an integer sequence of type size_t; see also 22.4.5.—end note]
21.2.2 Class template integer_sequence [intseq.intseq]
namespace std {

template<class T, T... I> struct integer_sequence {
using value_type = T;
static constexpr size_t size() noexcept { return sizeof...(I); }

};
}

1 Mandates: T is an integer type.
21.2.3 Alias template make_integer_sequence [intseq.make]

template<class T, T N>
using make_integer_sequence = integer_sequence<T, see below>;

1 Mandates: N ≥ 0.
2 The alias template make_integer_sequence denotes a specialization of integer_sequence with N non-typetemplate arguments. The type make_integer_sequence<T, N> is an alias for the type integer_sequence<T, 0,

1, ..., N-1>.
[Note 1: make_integer_sequence<int, 0> is an alias for the type integer_sequence<int>. —end note]

21.3 Metaprogramming and type traits [type.traits]
21.3.1 General [type.traits.general]

1 Subclause 21.3 describes components used by C++ programs, particularly in templates, to support the widest possiblerange of types, optimize template code usage, detect type related user errors, and perform type inference and transfor-mation at compile time. It includes type classification traits, type property inspection traits, and type transformations.The type classification traits describe a complete taxonomy of all possible C++ types, and state where in that taxonomy agiven type belongs. The type property inspection traits allow important characteristics of types or of combinations oftypes to be inspected. The type transformations allow certain properties of types to be manipulated.
2 All functions specified in 21.3 are signal-safe (17.13.5).

§ 21.3.1 620

© ISO/IEC N4910

21.3.2 Requirements [meta.rqmts]
1 A Cpp17UnaryTypeTrait describes a property of a type. It shall be a class template that takes one template type argumentand, optionally, additional arguments that help define the property being described. It shall beCpp17DefaultConstructible,Cpp17CopyConstructible, and publicly and unambiguously derived, directly or indirectly, from its base characteristic,which is a specialization of the template integral_constant (21.3.4), with the arguments to the template integral_-

constant determined by the requirements for the particular property being described. The member names of the basecharacteristic shall not be hidden and shall be unambiguously available in the Cpp17UnaryTypeTrait.
2 A Cpp17BinaryTypeTrait describes a relationship between two types. It shall be a class template that takes twotemplate type arguments and, optionally, additional arguments that help define the relationship being described. Itshall be Cpp17DefaultConstructible, Cpp17CopyConstructible, and publicly and unambiguously derived, directly orindirectly, from its base characteristic, which is a specialization of the template integral_constant (21.3.4), with thearguments to the template integral_constant determined by the requirements for the particular relationship beingdescribed. The member names of the base characteristic shall not be hidden and shall be unambiguously available inthe Cpp17BinaryTypeTrait.
3 A Cpp17TransformationTrait modifies a property of a type. It shall be a class template that takes one template typeargument and, optionally, additional arguments that help define the modification. It shall define a publicly accessiblenested type named type, which shall be a synonym for the modified type.
4 Unless otherwise specified, the behavior of a program that adds specializations for any of the templates specified in21.3 is undefined.
5 Unless otherwise specified, an incomplete type may be used to instantiate a template specified in 21.3. The behavior ofa program is undefined if:

—(5.1) an instantiation of a template specified in 21.3 directly or indirectly depends on an incompletely-defined objecttype T, and
—(5.2) that instantiation could yield a different result were T hypothetically completed.

21.3.3 Header <type_traits> synopsis [meta.type.synop]
namespace std {// 21.3.4, helper class

template<class T, T v> struct integral_constant;

template<bool B>
using bool_constant = integral_constant<bool, B>;

using true_type = bool_constant<true>;
using false_type = bool_constant<false>;

// 21.3.5.2, primary type categories
template<class T> struct is_void;
template<class T> struct is_null_pointer;
template<class T> struct is_integral;
template<class T> struct is_floating_point;
template<class T> struct is_array;
template<class T> struct is_pointer;
template<class T> struct is_lvalue_reference;
template<class T> struct is_rvalue_reference;
template<class T> struct is_member_object_pointer;
template<class T> struct is_member_function_pointer;
template<class T> struct is_enum;
template<class T> struct is_union;
template<class T> struct is_class;
template<class T> struct is_function;

// 21.3.5.3, composite type categories
template<class T> struct is_reference;
template<class T> struct is_arithmetic;
template<class T> struct is_fundamental;
template<class T> struct is_object;
template<class T> struct is_scalar;
template<class T> struct is_compound;
template<class T> struct is_member_pointer;

§ 21.3.3 621

© ISO/IEC N4910

// 21.3.5.4, type properties
template<class T> struct is_const;
template<class T> struct is_volatile;
template<class T> struct is_trivial;
template<class T> struct is_trivially_copyable;
template<class T> struct is_standard_layout;
template<class T> struct is_empty;
template<class T> struct is_polymorphic;
template<class T> struct is_abstract;
template<class T> struct is_final;
template<class T> struct is_aggregate;

template<class T> struct is_signed;
template<class T> struct is_unsigned;
template<class T> struct is_bounded_array;
template<class T> struct is_unbounded_array;
template<class T> struct is_scoped_enum;

template<class T, class... Args> struct is_constructible;
template<class T> struct is_default_constructible;
template<class T> struct is_copy_constructible;
template<class T> struct is_move_constructible;

template<class T, class U> struct is_assignable;
template<class T> struct is_copy_assignable;
template<class T> struct is_move_assignable;

template<class T, class U> struct is_swappable_with;
template<class T> struct is_swappable;

template<class T> struct is_destructible;

template<class T, class... Args> struct is_trivially_constructible;
template<class T> struct is_trivially_default_constructible;
template<class T> struct is_trivially_copy_constructible;
template<class T> struct is_trivially_move_constructible;

template<class T, class U> struct is_trivially_assignable;
template<class T> struct is_trivially_copy_assignable;
template<class T> struct is_trivially_move_assignable;
template<class T> struct is_trivially_destructible;

template<class T, class... Args> struct is_nothrow_constructible;
template<class T> struct is_nothrow_default_constructible;
template<class T> struct is_nothrow_copy_constructible;
template<class T> struct is_nothrow_move_constructible;

template<class T, class U> struct is_nothrow_assignable;
template<class T> struct is_nothrow_copy_assignable;
template<class T> struct is_nothrow_move_assignable;

template<class T, class U> struct is_nothrow_swappable_with;
template<class T> struct is_nothrow_swappable;

template<class T> struct is_nothrow_destructible;

template<class T> struct has_virtual_destructor;

template<class T> struct has_unique_object_representations;

template<class T, class U> struct reference_constructs_from_temporary;
template<class T, class U> struct reference_converts_from_temporary;

§ 21.3.3 622

© ISO/IEC N4910

// 21.3.6, type property queries
template<class T> struct alignment_of;
template<class T> struct rank;
template<class T, unsigned I = 0> struct extent;

// 21.3.7, type relations
template<class T, class U> struct is_same;
template<class Base, class Derived> struct is_base_of;
template<class From, class To> struct is_convertible;
template<class From, class To> struct is_nothrow_convertible;
template<class T, class U> struct is_layout_compatible;
template<class Base, class Derived> struct is_pointer_interconvertible_base_of;

template<class Fn, class... ArgTypes> struct is_invocable;
template<class R, class Fn, class... ArgTypes> struct is_invocable_r;

template<class Fn, class... ArgTypes> struct is_nothrow_invocable;
template<class R, class Fn, class... ArgTypes> struct is_nothrow_invocable_r;

// 21.3.8.2, const-volatile modifications
template<class T> struct remove_const;
template<class T> struct remove_volatile;
template<class T> struct remove_cv;
template<class T> struct add_const;
template<class T> struct add_volatile;
template<class T> struct add_cv;

template<class T>
using remove_const_t = typename remove_const<T>::type;

template<class T>
using remove_volatile_t = typename remove_volatile<T>::type;

template<class T>
using remove_cv_t = typename remove_cv<T>::type;

template<class T>
using add_const_t = typename add_const<T>::type;

template<class T>
using add_volatile_t = typename add_volatile<T>::type;

template<class T>
using add_cv_t = typename add_cv<T>::type;

// 21.3.8.3, reference modifications
template<class T> struct remove_reference;
template<class T> struct add_lvalue_reference;
template<class T> struct add_rvalue_reference;

template<class T>
using remove_reference_t = typename remove_reference<T>::type;

template<class T>
using add_lvalue_reference_t = typename add_lvalue_reference<T>::type;

template<class T>
using add_rvalue_reference_t = typename add_rvalue_reference<T>::type;

// 21.3.8.4, sign modifications
template<class T> struct make_signed;
template<class T> struct make_unsigned;

template<class T>
using make_signed_t = typename make_signed<T>::type;

template<class T>
using make_unsigned_t = typename make_unsigned<T>::type;

// 21.3.8.5, array modifications
template<class T> struct remove_extent;
template<class T> struct remove_all_extents;

§ 21.3.3 623

© ISO/IEC N4910

template<class T>
using remove_extent_t = typename remove_extent<T>::type;

template<class T>
using remove_all_extents_t = typename remove_all_extents<T>::type;

// 21.3.8.6, pointer modifications
template<class T> struct remove_pointer;
template<class T> struct add_pointer;

template<class T>
using remove_pointer_t = typename remove_pointer<T>::type;

template<class T>
using add_pointer_t = typename add_pointer<T>::type;

// 21.3.8.7, other transformations
template<class T> struct type_identity;
template<class T> struct remove_cvref;
template<class T> struct decay;
template<bool, class T = void> struct enable_if;
template<bool, class T, class F> struct conditional;
template<class... T> struct common_type;
template<class T, class U, template<class> class TQual, template<class> class UQual>
struct basic_common_reference { };

template<class... T> struct common_reference;
template<class T> struct underlying_type;
template<class Fn, class... ArgTypes> struct invoke_result;
template<class T> struct unwrap_reference;
template<class T> struct unwrap_ref_decay;

template<class T>
using type_identity_t = typename type_identity<T>::type;

template<class T>
using remove_cvref_t = typename remove_cvref<T>::type;

template<class T>
using decay_t = typename decay<T>::type;

template<bool b, class T = void>
using enable_if_t = typename enable_if<b, T>::type;

template<bool b, class T, class F>
using conditional_t = typename conditional<b, T, F>::type;

template<class... T>
using common_type_t = typename common_type<T...>::type;

template<class... T>
using common_reference_t = typename common_reference<T...>::type;

template<class T>
using underlying_type_t = typename underlying_type<T>::type;

template<class Fn, class... ArgTypes>
using invoke_result_t = typename invoke_result<Fn, ArgTypes...>::type;

template<class T>
using unwrap_reference_t = typename unwrap_reference<T>::type;

template<class T>
using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;

template<class...>
using void_t = void;

// 21.3.9, logical operator traits
template<class... B> struct conjunction;
template<class... B> struct disjunction;
template<class B> struct negation;

// 21.3.5.2, primary type categories
template<class T>
inline constexpr bool is_void_v = is_void<T>::value;

template<class T>
inline constexpr bool is_null_pointer_v = is_null_pointer<T>::value;

§ 21.3.3 624

© ISO/IEC N4910

template<class T>
inline constexpr bool is_integral_v = is_integral<T>::value;

template<class T>
inline constexpr bool is_floating_point_v = is_floating_point<T>::value;

template<class T>
inline constexpr bool is_array_v = is_array<T>::value;

template<class T>
inline constexpr bool is_pointer_v = is_pointer<T>::value;

template<class T>
inline constexpr bool is_lvalue_reference_v = is_lvalue_reference<T>::value;

template<class T>
inline constexpr bool is_rvalue_reference_v = is_rvalue_reference<T>::value;

template<class T>
inline constexpr bool is_member_object_pointer_v = is_member_object_pointer<T>::value;

template<class T>
inline constexpr bool is_member_function_pointer_v = is_member_function_pointer<T>::value;

template<class T>
inline constexpr bool is_enum_v = is_enum<T>::value;

template<class T>
inline constexpr bool is_union_v = is_union<T>::value;

template<class T>
inline constexpr bool is_class_v = is_class<T>::value;

template<class T>
inline constexpr bool is_function_v = is_function<T>::value;

// 21.3.5.3, composite type categories
template<class T>
inline constexpr bool is_reference_v = is_reference<T>::value;

template<class T>
inline constexpr bool is_arithmetic_v = is_arithmetic<T>::value;

template<class T>
inline constexpr bool is_fundamental_v = is_fundamental<T>::value;

template<class T>
inline constexpr bool is_object_v = is_object<T>::value;

template<class T>
inline constexpr bool is_scalar_v = is_scalar<T>::value;

template<class T>
inline constexpr bool is_compound_v = is_compound<T>::value;

template<class T>
inline constexpr bool is_member_pointer_v = is_member_pointer<T>::value;

// 21.3.5.4, type properties
template<class T>
inline constexpr bool is_const_v = is_const<T>::value;

template<class T>
inline constexpr bool is_volatile_v = is_volatile<T>::value;

template<class T>
inline constexpr bool is_trivial_v = is_trivial<T>::value;

template<class T>
inline constexpr bool is_trivially_copyable_v = is_trivially_copyable<T>::value;

template<class T>
inline constexpr bool is_standard_layout_v = is_standard_layout<T>::value;

template<class T>
inline constexpr bool is_empty_v = is_empty<T>::value;

template<class T>
inline constexpr bool is_polymorphic_v = is_polymorphic<T>::value;

template<class T>
inline constexpr bool is_abstract_v = is_abstract<T>::value;

template<class T>
inline constexpr bool is_final_v = is_final<T>::value;

template<class T>
inline constexpr bool is_aggregate_v = is_aggregate<T>::value;

template<class T>
inline constexpr bool is_signed_v = is_signed<T>::value;

§ 21.3.3 625

© ISO/IEC N4910

template<class T>
inline constexpr bool is_unsigned_v = is_unsigned<T>::value;

template<class T>
inline constexpr bool is_bounded_array_v = is_bounded_array<T>::value;

template<class T>
inline constexpr bool is_unbounded_array_v = is_unbounded_array<T>::value;

template<class T>
inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;

template<class T, class... Args>
inline constexpr bool is_constructible_v = is_constructible<T, Args...>::value;

template<class T>
inline constexpr bool is_default_constructible_v = is_default_constructible<T>::value;

template<class T>
inline constexpr bool is_copy_constructible_v = is_copy_constructible<T>::value;

template<class T>
inline constexpr bool is_move_constructible_v = is_move_constructible<T>::value;

template<class T, class U>
inline constexpr bool is_assignable_v = is_assignable<T, U>::value;

template<class T>
inline constexpr bool is_copy_assignable_v = is_copy_assignable<T>::value;

template<class T>
inline constexpr bool is_move_assignable_v = is_move_assignable<T>::value;

template<class T, class U>
inline constexpr bool is_swappable_with_v = is_swappable_with<T, U>::value;

template<class T>
inline constexpr bool is_swappable_v = is_swappable<T>::value;

template<class T>
inline constexpr bool is_destructible_v = is_destructible<T>::value;

template<class T, class... Args>
inline constexpr bool is_trivially_constructible_v

= is_trivially_constructible<T, Args...>::value;
template<class T>
inline constexpr bool is_trivially_default_constructible_v

= is_trivially_default_constructible<T>::value;
template<class T>
inline constexpr bool is_trivially_copy_constructible_v

= is_trivially_copy_constructible<T>::value;
template<class T>
inline constexpr bool is_trivially_move_constructible_v

= is_trivially_move_constructible<T>::value;
template<class T, class U>
inline constexpr bool is_trivially_assignable_v = is_trivially_assignable<T, U>::value;

template<class T>
inline constexpr bool is_trivially_copy_assignable_v

= is_trivially_copy_assignable<T>::value;
template<class T>
inline constexpr bool is_trivially_move_assignable_v

= is_trivially_move_assignable<T>::value;
template<class T>
inline constexpr bool is_trivially_destructible_v = is_trivially_destructible<T>::value;

template<class T, class... Args>
inline constexpr bool is_nothrow_constructible_v

= is_nothrow_constructible<T, Args...>::value;
template<class T>
inline constexpr bool is_nothrow_default_constructible_v

= is_nothrow_default_constructible<T>::value;
template<class T>
inline constexpr bool is_nothrow_copy_constructible_v

= is_nothrow_copy_constructible<T>::value;
template<class T>
inline constexpr bool is_nothrow_move_constructible_v

= is_nothrow_move_constructible<T>::value;
template<class T, class U>
inline constexpr bool is_nothrow_assignable_v = is_nothrow_assignable<T, U>::value;

§ 21.3.3 626

© ISO/IEC N4910

template<class T>
inline constexpr bool is_nothrow_copy_assignable_v = is_nothrow_copy_assignable<T>::value;

template<class T>
inline constexpr bool is_nothrow_move_assignable_v = is_nothrow_move_assignable<T>::value;

template<class T, class U>
inline constexpr bool is_nothrow_swappable_with_v = is_nothrow_swappable_with<T, U>::value;

template<class T>
inline constexpr bool is_nothrow_swappable_v = is_nothrow_swappable<T>::value;

template<class T>
inline constexpr bool is_nothrow_destructible_v = is_nothrow_destructible<T>::value;

template<class T>
inline constexpr bool has_virtual_destructor_v = has_virtual_destructor<T>::value;

template<class T>
inline constexpr bool has_unique_object_representations_v

= has_unique_object_representations<T>::value;
template<class T, class U>
inline constexpr bool reference_constructs_from_temporary_v

= reference_constructs_from_temporary<T, U>::value;
template<class T, class U>
inline constexpr bool reference_converts_from_temporary_v

= reference_converts_from_temporary<T, U>::value;

// 21.3.6, type property queries
template<class T>
inline constexpr size_t alignment_of_v = alignment_of<T>::value;

template<class T>
inline constexpr size_t rank_v = rank<T>::value;

template<class T, unsigned I = 0>
inline constexpr size_t extent_v = extent<T, I>::value;

// 21.3.7, type relations
template<class T, class U>
inline constexpr bool is_same_v = is_same<T, U>::value;

template<class Base, class Derived>
inline constexpr bool is_base_of_v = is_base_of<Base, Derived>::value;

template<class From, class To>
inline constexpr bool is_convertible_v = is_convertible<From, To>::value;

template<class From, class To>
inline constexpr bool is_nothrow_convertible_v = is_nothrow_convertible<From, To>::value;

template<class T, class U>
inline constexpr bool is_layout_compatible_v = is_layout_compatible<T, U>::value;

template<class Base, class Derived>
inline constexpr bool is_pointer_interconvertible_base_of_v

= is_pointer_interconvertible_base_of<Base, Derived>::value;
template<class Fn, class... ArgTypes>
inline constexpr bool is_invocable_v = is_invocable<Fn, ArgTypes...>::value;

template<class R, class Fn, class... ArgTypes>
inline constexpr bool is_invocable_r_v = is_invocable_r<R, Fn, ArgTypes...>::value;

template<class Fn, class... ArgTypes>
inline constexpr bool is_nothrow_invocable_v = is_nothrow_invocable<Fn, ArgTypes...>::value;

template<class R, class Fn, class... ArgTypes>
inline constexpr bool is_nothrow_invocable_r_v

= is_nothrow_invocable_r<R, Fn, ArgTypes...>::value;

// 21.3.9, logical operator traits
template<class... B>
inline constexpr bool conjunction_v = conjunction<B...>::value;

template<class... B>
inline constexpr bool disjunction_v = disjunction<B...>::value;

template<class B>
inline constexpr bool negation_v = negation::value;

§ 21.3.3 627

© ISO/IEC N4910

// 21.3.10, member relationships
template<class S, class M>
constexpr bool is_pointer_interconvertible_with_class(M S::*m) noexcept;

template<class S1, class S2, class M1, class M2>
constexpr bool is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

// 21.3.11, constant evaluation context
constexpr bool is_constant_evaluated() noexcept;

}

21.3.4 Helper classes [meta.help]
namespace std {

template<class T, T v> struct integral_constant {
static constexpr T value = v;

using value_type = T;
using type = integral_constant<T, v>;

constexpr operator value_type() const noexcept { return value; }
constexpr value_type operator()() const noexcept { return value; }

};
}

1 The class template integral_constant, alias template bool_constant, and its associated typedef-names true_typeand false_type are used as base classes to define the interface for various type traits.
21.3.5 Unary type traits [meta.unary]
21.3.5.1 General [meta.unary.general]

1 Subclause 21.3.5 contains templates that may be used to query the properties of a type at compile time.
2 Each of these templates shall be a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of true_type if thecorresponding condition is true, otherwise false_type.
21.3.5.2 Primary type categories [meta.unary.cat]

1 The primary type categories correspond to the descriptions given in subclause 6.8 of the C++ standard.
2 For any given type T, the result of applying one of these templates to T and to cv T shall yield the same result.
3 [Note 1: For any given type T, exactly one of the primary type categories has a value member that evaluates to true. —end note]

Table 44: Primary type category predicates [tab:meta.unary.cat]
Template Condition Comments

template<class T>
struct is_void;

T is void
template<class T>
struct is_null_pointer;

T is nullptr_t (6.8.2)
template<class T>
struct is_integral;

T is an integral type (6.8.2)
template<class T>
struct is_floating_point;

T is a floating-point type (6.8.2)
template<class T>
struct is_array;

T is an array type (6.8.3) ofknown or unknown extent Class template array (24.3.7)is not an array type.
template<class T>
struct is_pointer;

T is a pointer type (6.8.3) Includes pointers to functionsbut not pointers to non-staticmembers.
template<class T>
struct is_lvalue_reference;

T is an lvalue referencetype (9.3.4.3)
template<class T>
struct is_rvalue_reference;

T is an rvalue referencetype (9.3.4.3)
template<class T>
struct is_member_object_pointer;

T is a pointer to data member

§ 21.3.5.2 628

© ISO/IEC N4910

Table 44: Primary type category predicates (continued)
Template Condition Comments

template<class T>
struct is_member_function_pointer;

T is a pointer to memberfunction
template<class T>
struct is_enum;

T is an enumeration type (6.8.3)
template<class T>
struct is_union;

T is a union type (6.8.3)
template<class T>
struct is_class;

T is a non-union classtype (6.8.3)
template<class T>
struct is_function;

T is a function type (6.8.3)

21.3.5.3 Composite type traits [meta.unary.comp]
1 These templates provide convenient compositions of the primary type categories, corresponding to the descriptionsgiven in subclause 6.8.
2 For any given type T, the result of applying one of these templates to T and to cv T shall yield the same result.

Table 45: Composite type category predicates [tab:meta.unary.comp]
Template Condition Comments

template<class T>
struct is_reference;

T is an lvalue reference or anrvalue reference
template<class T>
struct is_arithmetic;

T is an arithmetic type (6.8.2)
template<class T>
struct is_fundamental;

T is a fundamentaltype (6.8.2)
template<class T>
struct is_object;

T is an object type (6.8.1)
template<class T>
struct is_scalar;

T is a scalar type (6.8.1)
template<class T>
struct is_compound;

T is a compound type (6.8.3)
template<class T>
struct is_member_pointer;

T is a pointer-to-membertype (6.8.3)
21.3.5.4 Type properties [meta.unary.prop]

1 These templates provide access to some of the more important properties of types.
2 It is unspecified whether the library defines any full or partial specializations of any of these templates.
3 For all of the class templates X declared in this subclause, instantiating that template with a template-argument thatis a class template specialization may result in the implicit instantiation of the template argument if and only if thesemantics of X require that the argument is a complete type.
4 For the purpose of defining the templates in this subclause, a function call expression declval<T>() for any type Tis considered to be a trivial (6.8.1, 11.4.4) function call that is not an odr-use (6.3) of declval in the context of thecorresponding definition notwithstanding the restrictions of 22.2.6.
5 For the purpose of defining the templates in this subclause, let VAL<T> for some type T be an expression defined asfollows:

—(5.1) If T is a reference or function type, VAL<T> is an expression with the same type and value category as declval<T>().
—(5.2) Otherwise, VAL<T> is a prvalue that initially has type T.

[Note 1: If T is cv-qualified, the cv-qualification is subject to adjustment (7.2.2). —end note]

§ 21.3.5.4 629

© ISO/IEC N4910

Table 46: Type property predicates [tab:meta.unary.prop]
Template Condition Preconditions

template<class T>
struct is_const;

T is const-qualified (6.8.4)
template<class T>
struct is_volatile;

T is volatile-qualified (6.8.4)
template<class T>
struct is_trivial;

T is a trivial type (6.8.1) remove_all_extents_t<T>shall be a complete type orcv void.
template<class T>
struct is_trivially_copyable;

T is a trivially copyabletype (6.8.1) remove_all_extents_t<T>shall be a complete type orcv void.
template<class T>
struct is_standard_layout;

T is a standard-layouttype (6.8.1) remove_all_extents_t<T>shall be a complete type orcv void.
template<class T>
struct is_empty;

T is a class type, but not aunion type, with no non-staticdata members other thansubobjects of zero size, novirtual member functions, novirtual base classes, and nobase class B for which
is_empty_v is false.

If T is a non-union class type,
T shall be a complete type.

template<class T>
struct is_polymorphic;

T is a polymorphicclass (11.7.3) If T is a non-union class type,
T shall be a complete type.

template<class T>
struct is_abstract;

T is an abstract class (11.7.4) If T is a non-union class type,
T shall be a complete type.

template<class T>
struct is_final;

T is a class type marked withthe class-virt-specifier
final (11.1).
[Note 2: A union is a class type
that can be marked with final.
—end note]

If T is a class type, T shall bea complete type.

template<class T>
struct is_aggregate;

T is an aggregate type (9.4.2) remove_all_extents_t<T>shall be a complete type orcv void.
template<class T>
struct is_signed;

If is_arithmetic_v<T> is
true, the same result as
T(-1) < T(0); otherwise,
false

template<class T>
struct is_unsigned;

If is_arithmetic_v<T> is
true, the same result as T(0)
< T(-1); otherwise, false

template<class T>
struct is_bounded_array;

T is an array type of knownbound (9.3.4.5)
template<class T>
struct is_unbounded_array;

T is an array type of unknownbound (9.3.4.5)
template<class T>
struct is_scoped_enum;

T is a scopedenumeration (9.7.1)
template<class T, class... Args>
struct is_constructible;

For a function type T or for acv void type T,
is_constructible_v<T,
Args...> is false, otherwise
see below

T and all types in the templateparameter pack Args shall becomplete types, cv void, orarrays of unknown bound.
template<class T>
struct is_default_constructible;

is_constructible_v<T> is
true. T shall be a complete type,cv void, or an array ofunknown bound.

§ 21.3.5.4 630

© ISO/IEC N4910

Table 46: Type property predicates (continued)
Template Condition Preconditions

template<class T>
struct is_copy_constructible;

For a referenceable type
T (3.46), the same result as
is_constructible_v<T,
const T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T>
struct is_move_constructible;

For a referenceable type T,the same result as
is_constructible_v<T,
T&&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T, class U>
struct is_assignable;

The expression
declval<T>() =
declval<U>() is well-formedwhen treated as anunevaluated operand (7.2.3).Access checking is performedas if in a context unrelated to
T and U. Only the validity ofthe immediate context of theassignment expression isconsidered.
[Note 3: The compilation of the
expression can result in side
effects such as the instantiation
of class template specializations
and function template
specializations, the generation of
implicitly-defined functions, and
so on. Such side effects are not
in the “immediate context” and
can result in the program being
ill-formed. —end note]

T and U shall be completetypes, cv void, or arrays ofunknown bound.

template<class T>
struct is_copy_assignable;

For a referenceable type T,the same result as
is_assignable_v<T&,
const T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T>
struct is_move_assignable;

For a referenceable type T,the same result as
is_assignable_v<T&, T&&>,otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

§ 21.3.5.4 631

© ISO/IEC N4910

Table 46: Type property predicates (continued)
Template Condition Preconditions

template<class T, class U>
struct is_swappable_with;

The expressions
swap(declval<T>(),
declval<U>()) and
swap(declval<U>(),
declval<T>()) are eachwell-formed when treated asan unevaluatedoperand (7.2.3) in anoverload-resolution contextfor swappablevalues (16.4.4.3). Accesschecking is performed as if ina context unrelated to T and U.Only the validity of theimmediate context of the
swap expressions isconsidered.
[Note 4: The compilation of the
expressions can result in side
effects such as the instantiation
of class template specializations
and function template
specializations, the generation of
implicitly-defined functions, and
so on. Such side effects are not
in the “immediate context” and
can result in the program being
ill-formed. —end note]

T and U shall be completetypes, cv void, or arrays ofunknown bound.

template<class T>
struct is_swappable;

For a referenceable type T,the same result as
is_swappable_with_v<T&,
T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T>
struct is_destructible;

Either T is a reference type,or T is a complete object typefor which the expression
declval<U&>().~U() iswell-formed when treated asan unevaluatedoperand (7.2.3), where U is
remove_all_extents_t<T>.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T, class... Args>
struct
is_trivially_constructible;

is_constructible_v<T,
Args...> is true and thevariable definition for
is_constructible, asdefined below, is known tocall no operation that is nottrivial (6.8.1, 11.4.4).

T and all types in the templateparameter pack Args shall becomplete types, cv void, orarrays of unknown bound.

template<class T>
struct
is_trivially_default_constructible;

is_trivially_-
constructible_v<T> is
true.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T>
struct is_trivially_copy_constructible;

For a referenceable type T,the same result as
is_trivially_-
constructible_v<T, const
T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

§ 21.3.5.4 632

© ISO/IEC N4910

Table 46: Type property predicates (continued)
Template Condition Preconditions

template<class T>
struct is_trivially_move_constructible;

For a referenceable type T,the same result as
is_trivially_-
constructible_v<T, T&&>,otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T, class U>
struct is_trivially_assignable;

is_assignable_v<T, U> is
true and the assignment, asdefined by is_assignable, isknown to call no operationthat is not trivial (6.8.1,11.4.4).

T and U shall be completetypes, cv void, or arrays ofunknown bound.

template<class T>
struct is_trivially_copy_assignable;

For a referenceable type T,the same result as
is_trivially_-
assignable_v<T&, const
T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T>
struct is_trivially_move_assignable;

For a referenceable type T,the same result as
is_trivially_-
assignable_v<T&, T&&>,otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T>
struct is_trivially_destructible;

is_destructible_v<T> is
true and
remove_all_extents_t<T>is either a non-class type or aclass type with a trivialdestructor.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T, class... Args>
struct is_nothrow_constructible;

is_constructible_v<T,
Args...> is true and thevariable definition for
is_constructible, asdefined below, is known notto throw anyexceptions (7.6.2.7).

T and all types in the templateparameter pack Args shall becomplete types, cv void, orarrays of unknown bound.

template<class T>
struct
is_nothrow_default_constructible;

is_nothrow_-
constructible_v<T> is
true.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T>
struct is_nothrow_copy_constructible;

For a referenceable type T,the same result as
is_nothrow_-
constructible_v<T, const
T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T>
struct is_nothrow_move_constructible;

For a referenceable type T,the same result as
is_nothrow_-
constructible_v<T, T&&>,otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T, class U>
struct is_nothrow_assignable;

is_assignable_v<T, U> is
true and the assignment isknown not to throw anyexceptions (7.6.2.7).

T and U shall be completetypes, cv void, or arrays ofunknown bound.
template<class T>
struct is_nothrow_copy_assignable;

For a referenceable type T,the same result as is_-
nothrow_assignable_v<T&,
const T&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.

§ 21.3.5.4 633

© ISO/IEC N4910

Table 46: Type property predicates (continued)
Template Condition Preconditions

template<class T>
struct is_nothrow_move_assignable;

For a referenceable type T,the same result as is_-
nothrow_assignable_v<T&,
T&&>, otherwise false.

T shall be a complete type,cv void, or an array ofunknown bound.
template<class T, class U>
struct is_nothrow_swappable_with;

is_swappable_with_v<T,
U> is true and each swapexpression of the definition of
is_swappable_with<T, U>is known not to throw anyexceptions (7.6.2.7).

T and U shall be completetypes, cv void, or arrays ofunknown bound.

template<class T>
struct is_nothrow_swappable;

For a referenceable type T,the same result as
is_nothrow_swappable_-
with_v<T&, T&>, otherwise
false.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T>
struct is_nothrow_destructible;

is_destructible_v<T> is
true and the indicateddestructor is known not tothrow anyexceptions (7.6.2.7).

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T>
struct has_virtual_destructor;

T has a virtualdestructor (11.4.7) If T is a non-union class type,
T shall be a complete type.

template<class T>
struct
has_unique_object_representations;

For an array type T, the sameresult as has_unique_-
object_representations_-
v<remove_all_extents_-
t<T>>, otherwise see
below.

T shall be a complete type,cv void, or an array ofunknown bound.

template<class T, class U>
struct
reference_constructs_from_temporary;

conjunction_v<is_-
reference<T>,
is_constructible<T, U>>is true, and the initialization
T t(VAL<U>); binds t to atemporary object whoselifetime is extended (6.7.7).

T and U shall be completetypes, cv void, or arrays ofunknown bound.

template<class T, class U>
struct
reference_converts_from_temporary;

conjunction_v<is_-
reference<T>,
is_convertible<U, T>> is
true, and the initialization T
t = VAL<U>; binds t to atemporary object whoselifetime is extended (6.7.7).

T and U shall be completetypes, cv void, or arrays ofunknown bound.

6 [Example 1:
is_const_v<const volatile int> // true
is_const_v<const int*> // false
is_const_v<const int&> // false
is_const_v<int[3]> // false
is_const_v<const int[3]> // true
—end example]

7 [Example 2:
remove_const_t<const volatile int> // volatile int
remove_const_t<const int* const> // const int*
remove_const_t<const int&> // const int&
remove_const_t<const int[3]> // int[3]
§ 21.3.5.4 634

© ISO/IEC N4910

—end example]
8 [Example 3:

// Given:
struct P final { };
union U1 { };
union U2 final { };

// the following assertions hold:
static_assert(!is_final_v<int>);
static_assert(is_final_v<P>);
static_assert(!is_final_v<U1>);
static_assert(is_final_v<U2>);

—end example]
9 The predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if and only ifthe following variable definition would be well-formed for some invented variable t:

T t(declval<Args>()...);

[Note 5: These tokens are never interpreted as a function declaration. —end note]
Access checking is performed as if in a context unrelated to T and any of the Args. Only the validity of the immediatecontext of the variable initialization is considered.
[Note 6: The evaluation of the initialization can result in side effects such as the instantiation of class template specializationsand function template specializations, the generation of implicitly-defined functions, and so on. Such side effects are not in the“immediate context” and can result in the program being ill-formed. —end note]

10 The predicate condition for a template specialization has_unique_object_representations<T> shall be satisfied ifand only if:
—(10.1) T is trivially copyable, and
—(10.2) any two objects of type T with the same value have the same object representation, where two objects of array ornon-union class type are considered to have the same value if their respective sequences of direct subobjects havethe same values, and two objects of union type are considered to have the same value if they have the same activemember and the corresponding members have the same value.

The set of scalar types for which this condition holds is implementation-defined.
[Note 7: If a type has padding bits, the condition does not hold; otherwise, the condition holds true for integral types. —end note]
21.3.6 Type property queries [meta.unary.prop.query]

1 This subclause contains templates that may be used to query properties of types at compile time.
Table 47: Type property queries [tab:meta.unary.prop.query]

Template Value
template<class T>
struct alignment_of;

alignof(T).Mandates: alignof(T) is a valid expression (7.6.2.6)
template<class T>
struct rank;

If T names an array type, an integer value representing the number ofdimensions of T; otherwise, 0.
template<class T,
unsigned I = 0>
struct extent;

If T is not an array type, or if it has rank less than or equal to I, or if I is 0and T has type “array of unknown bound of U”, then 0; otherwise, thebound (9.3.4.5) of the Ith dimension of T, where indexing of I is zero-based
2 Each of these templates shall be aCpp17UnaryTypeTrait (21.3.2) with a base characteristic of integral_constant<size_-

t, Value>.
3 [Example 1:

// the following assertions hold:
assert(rank_v<int> == 0);
assert(rank_v<int[2]> == 1);
assert(rank_v<int[][4]> == 2);

—end example]
§ 21.3.6 635

© ISO/IEC N4910

4 [Example 2:
// the following assertions hold:
assert(extent_v<int> == 0);
assert(extent_v<int[2]> == 2);
assert(extent_v<int[2][4]> == 2);
assert(extent_v<int[][4]> == 0);
assert((extent_v<int, 1>) == 0);
assert((extent_v<int[2], 1>) == 0);
assert((extent_v<int[2][4], 1>) == 4);
assert((extent_v<int[][4], 1>) == 4);

—end example]
21.3.7 Relationships between types [meta.rel]

1 This subclause contains templates that may be used to query relationships between types at compile time.
2 Each of these templates shall be a Cpp17BinaryTypeTrait (21.3.2) with a base characteristic of true_type if thecorresponding condition is true, otherwise false_type.

Table 48: Type relationship predicates [tab:meta.rel]
Template Condition Comments

template<class T, class U>
struct is_same;

T and U name the same type withthe same cv-qualifications
template<class Base, class
Derived>
struct is_base_of;

Base is a base class of
Derived (11.7) without regard tocv-qualifiers or Base and
Derived are not unions andname the same class type withoutregard to cv-qualifiers

If Base and Derived arenon-union class types and are notpossibly cv-qualified versions ofthe same type, Derived shall be acomplete type.
[Note 1: Base classes that are private,
protected, or ambiguous are,
nonetheless, base classes. —end
note]

template<class From, class To>
struct is_convertible;

see below From and To shall be completetypes, cv void, or arrays ofunknown bound.
template<class From, class To>
struct is_nothrow_convertible;

is_convertible_v<From, To>is true and the conversion, asdefined by is_convertible, isknown not to throw anyexceptions (7.6.2.7)

From and To shall be completetypes, cv void, or arrays ofunknown bound.

template<class T, class U>
struct is_layout_compatible;

T and U arelayout-compatible (6.8.1) T and U shall be complete types,cv void, or arrays of unknownbound.
template<class Base, class
Derived>
struct is_pointer_-
interconvertible_base_of;

Derived is unambiguouslyderived from Base withoutregard to cv-qualifiers, and eachobject of type Derived ispointer-interconvertible (6.8.3)with its Base subobject, or Baseand Derived are not unions andname the same class type withoutregard to cv-qualifiers.

If Base and Derived arenon-union class types and are not(possibly cv-qualified versions of)the same type, Derived shall be acomplete type.

template<class Fn, class...
ArgTypes>
struct is_invocable;

The expression
INVOKE(declval<Fn>(),
declval<ArgTypes>()...) iswell-formed when treated as anunevaluated operand (7.2.3)

Fn and all types in the templateparameter pack ArgTypes shall becomplete types, cv void, or arraysof unknown bound.

§ 21.3.7 636

© ISO/IEC N4910

Table 48: Type relationship predicates (continued)
Template Condition Comments

template<class R, class Fn,
class... ArgTypes>
struct is_invocable_r;

The expression
INVOKE<R>(declval<Fn>(),
declval<ArgTypes>()...) iswell-formed when treated as anunevaluated operand

Fn, R, and all types in the templateparameter pack ArgTypes shall becomplete types, cv void, or arraysof unknown bound.
template<class Fn, class...
ArgTypes>
struct is_nothrow_invocable;

is_invocable_v<
Fn, ArgTypes...> is true andthe expression
INVOKE(declval<Fn>(),
declval<ArgTypes>()...) isknown not to throw anyexceptions (7.6.2.7)

Fn and all types in the templateparameter pack ArgTypes shall becomplete types, cv void, or arraysof unknown bound.

template<class R, class Fn,
class... ArgTypes>
struct is_nothrow_invocable_r;

is_invocable_r_v<
R, Fn, ArgTypes...> is trueand the expression
INVOKE<R>(declval<Fn>(),
declval<ArgTypes>()...) isknown not to throw anyexceptions (7.6.2.7)

Fn, R, and all types in the templateparameter pack ArgTypes shall becomplete types, cv void, or arraysof unknown bound.

3 For the purpose of defining the templates in this subclause, a function call expression declval<T>() for any type Tis considered to be a trivial (6.8.1, 11.4.4) function call that is not an odr-use (6.3) of declval in the context of thecorresponding definition notwithstanding the restrictions of 22.2.6.
4 [Example 1:

struct B {};
struct B1 : B {};
struct B2 : B {};
struct D : private B1, private B2 {};

is_base_of_v<B, D> // true
is_base_of_v<const B, D> // true
is_base_of_v<B, const D> // true
is_base_of_v<B, const B> // true
is_base_of_v<D, B> // false
is_base_of_v<B&, D&> // false
is_base_of_v<B[3], D[3]> // false
is_base_of_v<int, int> // false
—end example]

5 The predicate condition for a template specialization is_convertible<From, To> shall be satisfied if and only if thereturn expression in the following code would be well-formed, including any implicit conversions to the return type ofthe function:
To test() {

return declval<From>();
}

[Note 2: This requirement gives well-defined results for reference types, array types, function types, and cv void. —end note]
Access checking is performed in a context unrelated to To and From. Only the validity of the immediate context of the
expression of the return statement (8.7.4) (including initialization of the returned object or reference) is considered.
[Note 3: The initialization can result in side effects such as the instantiation of class template specializations and function templatespecializations, the generation of implicitly-defined functions, and so on. Such side effects are not in the “immediate context” andcan result in the program being ill-formed. —end note]
21.3.8 Transformations between types [meta.trans]
21.3.8.1 General [meta.trans.general]

1 Subclause 21.3.8 contains templates that may be used to transform one type to another following some predefined rule.
§ 21.3.8.1 637

© ISO/IEC N4910

2 Each of the templates in 21.3.8 shall be a Cpp17TransformationTrait (21.3.2).
21.3.8.2 Const-volatile modifications [meta.trans.cv]

Table 49: Const-volatile modifications [tab:meta.trans.cv]
Template Comments

template<class T>
struct remove_const;

The member typedef type names the same type as T except that anytop-level const-qualifier has been removed.
[Example 1: remove_const_t<const volatile int> evaluates to volatile int,
whereas remove_const_t<const int*> evaluates to const int*. —end example]

template<class T>
struct remove_volatile;

The member typedef type names the same type as T except that anytop-level volatile-qualifier has been removed.
[Example 2: remove_volatile_t<const volatile int> evaluates to const int,
whereas remove_volatile_t<volatile int*> evaluates to volatile int*. —end
example]

template<class T>
struct remove_cv;

The member typedef type shall be the same as T except that any top-levelcv-qualifier has been removed.
[Example 3: remove_cv_t<const volatile int> evaluates to int, whereas
remove_cv_t<const volatile int*> evaluates to const volatile int*. —end
example]

template<class T>
struct add_const;

If T is a reference, function, or top-level const-qualified type, then typenames the same type as T, otherwise T const.
template<class T>
struct add_volatile;

If T is a reference, function, or top-level volatile-qualified type, then typenames the same type as T, otherwise T volatile.
template<class T>
struct add_cv;

The member typedef type names the same type as
add_const_t<add_volatile_t<T>>.

21.3.8.3 Reference modifications [meta.trans.ref]

Table 50: Reference modifications [tab:meta.trans.ref]
Template Comments

template<class T>
struct remove_reference;

If T has type “reference to T1” then the member typedef type names T1;otherwise, type names T.
template<class T>
struct add_lvalue_reference;

If T names a referenceable type (3.46) then the member typedef type names
T&; otherwise, type names T.
[Note 1: This rule reflects the semantics of reference collapsing (9.3.4.3). —end
note]

template<class T>
struct add_rvalue_reference;

If T names a referenceable type then the member typedef type names T&&;otherwise, type names T.
[Note 2: This rule reflects the semantics of reference collapsing (9.3.4.3). For
example, when a type T names a type T1&, the type add_rvalue_reference_t<T> is
not an rvalue reference. —end note]

21.3.8.4 Sign modifications [meta.trans.sign]

Table 51: Sign modifications [tab:meta.trans.sign]
Template Comments

template<class T>
struct make_signed;

If T names a (possibly cv-qualified) signed integer type (6.8.2) then themember typedef type names the type T; otherwise, if T names a (possiblycv-qualified) unsigned integer type then type names the correspondingsigned integer type, with the same cv-qualifiers as T; otherwise, type namesthe signed integer type with smallest rank (6.8.5) for which sizeof(T) ==
sizeof(type), with the same cv-qualifiers as T.Mandates: T is an integral or enumeration type other than cv bool.

§ 21.3.8.4 638

© ISO/IEC N4910

Table 51: Sign modifications (continued)
Template Comments

template<class T>
struct make_unsigned;

If T names a (possibly cv-qualified) unsigned integer type (6.8.2) then themember typedef type names the type T; otherwise, if T names a (possiblycv-qualified) signed integer type then type names the correspondingunsigned integer type, with the same cv-qualifiers as T; otherwise, typenames the unsigned integer type with smallest rank (6.8.5) for which
sizeof(T) == sizeof(type), with the same cv-qualifiers as T.Mandates: T is an integral or enumeration type other than cv bool.

21.3.8.5 Array modifications [meta.trans.arr]

Table 52: Array modifications [tab:meta.trans.arr]
Template Comments

template<class T>
struct remove_extent;

If T names a type “array of U”, the member typedef type shall be U,otherwise T.
[Note 1: For multidimensional arrays, only the first array dimension is removed. For
a type “array of const U”, the resulting type is const U. —end note]

template<class T>
struct remove_all_extents;

If T is “multi-dimensional array of U”, the resulting member typedef type is
U, otherwise T.

1 [Example 1:
// the following assertions hold:
assert((is_same_v<remove_extent_t<int>, int>));
assert((is_same_v<remove_extent_t<int[2]>, int>));
assert((is_same_v<remove_extent_t<int[2][3]>, int[3]>));
assert((is_same_v<remove_extent_t<int[][3]>, int[3]>));

—end example]
2 [Example 2:

// the following assertions hold:
assert((is_same_v<remove_all_extents_t<int>, int>));
assert((is_same_v<remove_all_extents_t<int[2]>, int>));
assert((is_same_v<remove_all_extents_t<int[2][3]>, int>));
assert((is_same_v<remove_all_extents_t<int[][3]>, int>));

—end example]
21.3.8.6 Pointer modifications [meta.trans.ptr]

Table 53: Pointer modifications [tab:meta.trans.ptr]
Template Comments

template<class T>
struct remove_pointer;

If T has type “(possibly cv-qualified) pointer to T1” then the member typedef
type names T1; otherwise, it names T.

template<class T>
struct add_pointer;

If T names a referenceable type (3.46) or a cv void type then the membertypedef type names the same type as remove_reference_t<T>*; otherwise,
type names T.

21.3.8.7 Other transformations [meta.trans.other]

Table 54: Other transformations [tab:meta.trans.other]
Template Comments

template<class T>
struct type_identity;

The member typedef type names the type T.
template<class T>
struct remove_cvref;

The member typedef type names the same type as
remove_cv_t<remove_reference_t<T>>.

§ 21.3.8.7 639

© ISO/IEC N4910

Table 54: Other transformations (continued)
Template Comments

template<class T>
struct decay;

Let U be remove_reference_t<T>. If is_array_v<U> is true, the membertypedef type equals remove_extent_t<U>*. If is_function_v<U> is true,the member typedef type equals add_pointer_t<U>. Otherwise themember typedef type equals remove_cv_t<U>.
[Note 1: This behavior is similar to the lvalue-to-rvalue (7.3.2),
array-to-pointer (7.3.3), and function-to-pointer (7.3.4) conversions applied when an
lvalue is used as an rvalue, but also strips cv-qualifiers from class types in order to
more closely model by-value argument passing. —end note]

template<bool B, class T =
void> struct enable_if;

If B is true, the member typedef type shall equal T; otherwise, there shallbe no member type.
template<bool B, class T,
class F>
struct conditional;

If B is true, the member typedef type shall equal T. If B is false, themember typedef type shall equal F.
template<class... T> struct
common_type;

Unless this trait is specialized (as specified in Note B, below), the member
type is defined or omitted as specified in Note A, below. If it is omitted,there shall be no member type. Each type in the template parameter pack Tshall be complete, cv void, or an array of unknown bound.

template<class, class,
template<class> class,
template<class> class>

struct
basic_common_reference;

Unless this trait is specialized (as specified in Note D, below), there shall beno member type.

template<class... T> struct
common_reference;

The member typedef-name type is defined or omitted as specified in NoteC, below. Each type in the parameter pack T shall be complete or cv void.
template<class T>
struct underlying_type;

If T is an enumeration type, the member typedef type names the underlyingtype of T (9.7.1); otherwise, there is no member type.Mandates: T is not an incomplete enumeration type.
template<class Fn,
class... ArgTypes>
struct invoke_result;

If the expression INVOKE(declval<Fn>(), declval<ArgTypes>()...) iswell-formed when treated as an unevaluated operand (7.2.3), the membertypedef type names the type decltype(INVOKE(declval<Fn>(),
declval<ArgTypes>()...)); otherwise, there shall be no member type.Access checking is performed as if in a context unrelated to Fn and
ArgTypes. Only the validity of the immediate context of the expression isconsidered.[Note 2: The compilation of the expression can result in side effects such as theinstantiation of class template specializations and function template specializations,the generation of implicitly-defined functions, and so on. Such side effects are not inthe “immediate context” and can result in the program being ill-formed. —end note]Preconditions: Fn and all types in the template parameter pack ArgTypes arecomplete types, cv void, or arrays of unknown bound.

template<class T> struct
unwrap_reference;

If T is a specialization reference_wrapper<X> for some type X, the membertypedef type of unwrap_reference<T> is X&, otherwise it is T.
template<class T>
unwrap_ref_decay;

The member typedef type of unwrap_ref_decay<T> denotes the type
unwrap_reference_t<decay_t<T>>.

1 In addition to being available via inclusion of the <type_traits> header, the templates unwrap_reference, unwrap_-
ref_decay, unwrap_reference_t, and unwrap_ref_decay_t are available when the header <functional> (22.10.2) isincluded.

2 Let:
—(2.1) CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>,
—(2.2) XREF(A) denote a unary alias template T such that T<U> denotes the same type as U with the addition of A’s cv andreference qualifiers, for a non-reference cv-unqualified type U,
—(2.3) COPYCV(FROM, TO) be an alias for type TO with the addition of FROM’s top-level cv-qualifiers,

[Example 1: COPYCV(const int, volatile short) is an alias for const volatile short. —end example]
§ 21.3.8.7 640

© ISO/IEC N4910

—(2.4) COND-RES(X, Y) be decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()()).
Given types A and B, let X be remove_reference_t<A>, let Y be remove_reference_t, and let COMMON-REF(A, B)be:
—(2.5) If A and B are both lvalue reference types, COMMON-REF(A, B) is COND-RES(COPYCV(X, Y) &, COPYCV(Y, X) &)if that type exists and is a reference type.
—(2.6) Otherwise, let C be remove_reference_t<COMMON-REF(X&, Y&)>&&. If A and B are both rvalue reference types, Cis well-formed, and is_convertible_v<A, C> && is_convertible_v<B, C> is true, then COMMON-REF(A, B)is C.
—(2.7) Otherwise, let D be COMMON-REF(const X&, Y&). If A is an rvalue reference and B is an lvalue reference and D iswell-formed and is_convertible_v<A, D> is true, then COMMON-REF(A, B) is D.
—(2.8) Otherwise, if A is an lvalue reference and B is an rvalue reference, then COMMON-REF(A, B) is COMMON-REF(B, A).
—(2.9) Otherwise, COMMON-REF(A, B) is ill-formed.

If any of the types computed above is ill-formed, then COMMON-REF(A, B) is ill-formed.
3 Note A: For the common_type trait applied to a template parameter pack T of types, the member type shall be eitherdefined or not present as follows:

—(3.1) If sizeof...(T) is zero, there shall be no member type.
—(3.2) If sizeof...(T) is one, let T0 denote the sole type constituting the pack T. The member typedef-name type shalldenote the same type, if any, as common_type_t<T0, T0>; otherwise there shall be no member type.
—(3.3) If sizeof...(T) is two, let the first and second types constituting T be denoted by T1 and T2, respectively, andlet D1 and D2 denote the same types as decay_t<T1> and decay_t<T2>, respectively.

—(3.3.1) If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote the same type, if any, as
common_type_t<D1, D2>.

—(3.3.2) [Note 3: None of the following will apply if there is a specialization common_type<D1, D2>. —end note]
—(3.3.3) Otherwise, if

decay_t<decltype(false ? declval<D1>() : declval<D2>())>

denotes a valid type, let C denote that type.
—(3.3.4) Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type, let C denote the type decay_t<COND-RES(CREF(D1),

CREF(D2))>.
In either case, the member typedef-name type shall denote the same type, if any, as C. Otherwise, there shall beno member type.

—(3.4) If sizeof...(T) is greater than two, let T1, T2, and R, respectively, denote the first, second, and (pack of) remainingtypes constituting T. Let C denote the same type, if any, as common_type_t<T1, T2>. If there is such a type C, themember typedef-name type shall denote the same type, if any, as common_type_t<C, R...>. Otherwise, thereshall be no member type.
4 Note B: Notwithstanding the provisions of 21.3.3, and pursuant to 16.4.5.2.1, a program may specialize common_-

type<T1, T2> for types T1 and T2 such that is_same_v<T1, decay_t<T1>> and is_same_v<T2, decay_t<T2>> areeach true.
[Note 4: Such specializations are needed when only explicit conversions are desired between the template arguments. —end note]
Such a specialization need not have a member named type, but if it does, the qualified-id common_type<T1, T2>::typeshall denote a cv-unqualified non-reference type to which each of the types T1 and T2 is explicitly convertible. Moreover,
common_type_t<T1, T2> shall denote the same type, if any, as does common_type_t<T2, T1>. No diagnostic is requiredfor a violation of this Note’s rules.

5 Note C: For the common_reference trait applied to a parameter pack T of types, the member type shall be either definedor not present as follows:
—(5.1) If sizeof...(T) is zero, there shall be no member type.
—(5.2) Otherwise, if sizeof...(T) is one, let T0 denote the sole type in the pack T. The member typedef type shalldenote the same type as T0.
—(5.3) Otherwise, if sizeof...(T) is two, let T1 and T2 denote the two types in the pack T. Then

§ 21.3.8.7 641

© ISO/IEC N4910

—(5.3.1) If T1 and T2 are reference types and COMMON-REF(T1, T2) is well-formed, then the member typedef typedenotes that type.
—(5.3.2) Otherwise, if basic_common_reference<remove_cvref_t<T1>, remove_cvref_t<T2>, XREF(T1), XREF(T2)>::typeis well-formed, then the member typedef type denotes that type.
—(5.3.3) Otherwise, if COND-RES(T1, T2) is well-formed, then the member typedef type denotes that type.
—(5.3.4) Otherwise, if common_type_t<T1, T2> is well-formed, then the member typedef type denotes that type.
—(5.3.5) Otherwise, there shall be no member type.

—(5.4) Otherwise, if sizeof...(T) is greater than two, let T1, T2, and Rest, respectively, denote the first, second, and(pack of) remaining types comprising T. Let C be the type common_reference_t<T1, T2>. Then:
—(5.4.1) If there is such a type C, the member typedef type shall denote the same type, if any, as common_reference_-

t<C, Rest...>.
—(5.4.2) Otherwise, there shall be no member type.

6 Note D: Notwithstanding the provisions of 21.3.3, and pursuant to 16.4.5.2.1, a program may partially specialize basic_-
common_reference<T, U, TQual, UQual> for types T and U such that is_same_v<T, decay_t<T>> and is_same_v<U,
decay_t<U>> are each true.
[Note 5: Such specializations can be used to influence the result of common_reference, and are needed when only explicit conversionsare desired between the template arguments. —end note]
Such a specialization need not have a member named type, but if it does, the qualified-id basic_common_reference<T,
U, TQual, UQual>::type shall denote a type to which each of the types TQual<T> and UQual<U> is convertible.Moreover, basic_common_reference<T, U, TQual, UQual>::type shall denote the same type, if any, as does basic_-
common_reference<U, T, UQual, TQual>::type. No diagnostic is required for a violation of these rules.

7 [Example 2: Given these definitions:
using PF1 = bool (&)();
using PF2 = short (*)(long);

struct S {
operator PF2() const;
double operator()(char, int&);
void fn(long) const;
char data;

};

using PMF = void (S::*)(long) const;
using PMD = char S::*;

the following assertions will hold:
static_assert(is_same_v<invoke_result_t<S, int>, short>);
static_assert(is_same_v<invoke_result_t<S&, unsigned char, int&>, double>);
static_assert(is_same_v<invoke_result_t<PF1>, bool>);
static_assert(is_same_v<invoke_result_t<PMF, unique_ptr<S>, int>, void>);
static_assert(is_same_v<invoke_result_t<PMD, S>, char&&>);
static_assert(is_same_v<invoke_result_t<PMD, const S*>, const char&>);

—end example]
21.3.9 Logical operator traits [meta.logical]

1 This subclause describes type traits for applying logical operators to other type traits.
template<class... B> struct conjunction : see below { };

2 The class template conjunction forms the logical conjunction of its template type arguments.
3 For a specialization conjunction<B1, . . . , BN>, if there is a template type argument Bi for which bool(Bi::value)is false, then instantiating conjunction<B1, . . . , BN>::value does not require the instantiation of Bj::valuefor j > i.

[Note 1: This is analogous to the short-circuiting behavior of the built-in operator &&. —end note]

§ 21.3.9 642

© ISO/IEC N4910

4 Every template type argument for which Bi::value is instantiated shall be usable as a base class and shall have amember value which is convertible to bool, is not hidden, and is unambiguously available in the type.
5 The specialization conjunction<B1, . . . , BN> has a public and unambiguous base that is either

—(5.1) the first type Bi in the list true_type, B1, . . . , BN for which bool(Bi::value) is false, or
—(5.2) if there is no such Bi, the last type in the list.
[Note 2: This means a specialization of conjunction does not necessarily inherit from either true_type or false_type.—end note]

6 The member names of the base class, other than conjunction and operator=, shall not be hidden and shall beunambiguously available in conjunction.
template<class... B> struct disjunction : see below { };

7 The class template disjunction forms the logical disjunction of its template type arguments.
8 For a specialization disjunction<B1, . . . , BN>, if there is a template type argument Bi for which bool(Bi::value)is true, then instantiating disjunction<B1, . . . , BN>::value does not require the instantiation of Bj::valuefor j > i.

[Note 3: This is analogous to the short-circuiting behavior of the built-in operator ||. —end note]
9 Every template type argument for which Bi::value is instantiated shall be usable as a base class and shall have amember value which is convertible to bool, is not hidden, and is unambiguously available in the type.
10 The specialization disjunction<B1, . . . , BN> has a public and unambiguous base that is either

—(10.1) the first type Bi in the list false_type, B1, . . . , BN for which bool(Bi::value) is true, or
—(10.2) if there is no such Bi, the last type in the list.
[Note 4: This means a specialization of disjunction does not necessarily inherit from either true_type or false_type.—end note]

11 The member names of the base class, other than disjunction and operator=, shall not be hidden and shall beunambiguously available in disjunction.
template<class B> struct negation : see below { };

12 The class template negation forms the logical negation of its template type argument. The type negation isa Cpp17UnaryTypeTrait with a base characteristic of bool_constant<!bool(B::value)>.
21.3.10 Member relationships [meta.member]

template<class S, class M>
constexpr bool is_pointer_interconvertible_with_class(M S::*m) noexcept;

1 Mandates: S is a complete type.
2 Returns: true if and only if S is a standard-layout type, M is an object type, m is not null, and each object s of type

S is pointer-interconvertible (6.8.3) with its subobject s.*m.
template<class S1, class S2, class M1, class M2>

constexpr bool is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

3 Mandates: S1 and S2 are complete types.
4 Returns: true if and only if S1 and S2 are standard-layout struct (11.2) types, M1 and M2 are object types, m1 and

m2 are not null, and m1 and m2 point to corresponding members of the common initial sequence (11.4) of S1 and
S2.

5 [Note 1: The type of a pointer-to-member expression &C::b is not always a pointer to member of C, leading to potentially surprisingresults when using these functions in conjunction with inheritance.
[Example 1:
struct A { int a; }; // a standard-layout class
struct B { int b; }; // a standard-layout class
struct C: public A, public B { }; // not a standard-layout class
static_assert(is_pointer_interconvertible_with_class(&C::b));

§ 21.3.10 643

© ISO/IEC N4910

// Succeeds because, despite its appearance, &C::b has type// “pointer to member of B of type int”.
static_assert(is_pointer_interconvertible_with_class<C>(&C::b));// Forces the use of class C, and fails.
static_assert(is_corresponding_member(&C::a, &C::b));// Succeeds because, despite its appearance, &C::a and &C::b have types// “pointer to member of A of type int” and// “pointer to member of B of type int”, respectively.
static_assert(is_corresponding_member<C, C>(&C::a, &C::b));// Forces the use of class C, and fails.
— end example]
—end note]
21.3.11 Constant evaluation context [meta.const.eval]

constexpr bool is_constant_evaluated() noexcept;

1 Effects: Equivalent to:
if consteval {
return true;

} else {
return false;

}
2 [Example 1:

constexpr void f(unsigned char *p, int n) {
if (std::is_constant_evaluated()) { // should not be a constexpr if statement
for (int k = 0; k<n; ++k) p[k] = 0;

} else {
memset(p, 0, n); // not a core constant expression

}
}

—end example]
21.4 Compile-time rational arithmetic [ratio]
21.4.1 In general [ratio.general]

1 Subclause 21.4 describes the ratio library. It provides a class template ratio which exactly represents any finite rationalnumber with a numerator and denominator representable by compile-time constants of type intmax_t.
2 Throughout subclause 21.4, the names of template parameters are used to express type requirements. If a templateparameter is named R1 or R2, and the template argument is not a specialization of the ratio template, the program isill-formed.
21.4.2 Header <ratio> synopsis [ratio.syn]
namespace std {// 21.4.3, class template ratio

template<intmax_t N, intmax_t D = 1> class ratio;

// 21.4.4, ratio arithmetic
template<class R1, class R2> using ratio_add = see below;
template<class R1, class R2> using ratio_subtract = see below;
template<class R1, class R2> using ratio_multiply = see below;
template<class R1, class R2> using ratio_divide = see below;

// 21.4.5, ratio comparison
template<class R1, class R2> struct ratio_equal;
template<class R1, class R2> struct ratio_not_equal;
template<class R1, class R2> struct ratio_less;
template<class R1, class R2> struct ratio_less_equal;
template<class R1, class R2> struct ratio_greater;
template<class R1, class R2> struct ratio_greater_equal;

§ 21.4.2 644

© ISO/IEC N4910

template<class R1, class R2>
inline constexpr bool ratio_equal_v = ratio_equal<R1, R2>::value;

template<class R1, class R2>
inline constexpr bool ratio_not_equal_v = ratio_not_equal<R1, R2>::value;

template<class R1, class R2>
inline constexpr bool ratio_less_v = ratio_less<R1, R2>::value;

template<class R1, class R2>
inline constexpr bool ratio_less_equal_v = ratio_less_equal<R1, R2>::value;

template<class R1, class R2>
inline constexpr bool ratio_greater_v = ratio_greater<R1, R2>::value;

template<class R1, class R2>
inline constexpr bool ratio_greater_equal_v = ratio_greater_equal<R1, R2>::value;

// 21.4.6, convenience SI typedefs
using yocto = ratio<1, 1'000'000'000'000'000'000'000'000>; // see below
using zepto = ratio<1, 1'000'000'000'000'000'000'000>; // see below
using atto = ratio<1, 1'000'000'000'000'000'000>;
using femto = ratio<1, 1'000'000'000'000'000>;
using pico = ratio<1, 1'000'000'000'000>;
using nano = ratio<1, 1'000'000'000>;
using micro = ratio<1, 1'000'000>;
using milli = ratio<1, 1'000>;
using centi = ratio<1, 100>;
using deci = ratio<1, 10>;
using deca = ratio< 10, 1>;
using hecto = ratio< 100, 1>;
using kilo = ratio< 1'000, 1>;
using mega = ratio< 1'000'000, 1>;
using giga = ratio< 1'000'000'000, 1>;
using tera = ratio< 1'000'000'000'000, 1>;
using peta = ratio< 1'000'000'000'000'000, 1>;
using exa = ratio< 1'000'000'000'000'000'000, 1>;
using zetta = ratio< 1'000'000'000'000'000'000'000, 1>; // see below
using yotta = ratio<1'000'000'000'000'000'000'000'000, 1>; // see below

}

21.4.3 Class template ratio [ratio.ratio]
namespace std {

template<intmax_t N, intmax_t D = 1> class ratio {
public:

static constexpr intmax_t num;
static constexpr intmax_t den;
using type = ratio<num, den>;

};
}

1 If the template argument D is zero or the absolute values of either of the template arguments N and D is not representableby type intmax_t, the program is ill-formed.
[Note 1: These rules ensure that infinite ratios are avoided and that for any negative input, there exists a representable value of itsabsolute value which is positive. This excludes the most negative value. —end note]

2 The static data members num and den shall have the following values, where gcd represents the greatest common divisorof the absolute values of N and D:
—(2.1) num shall have the value sign(N) * sign(D) * abs(N) / gcd.
—(2.2) den shall have the value abs(D) / gcd.

21.4.4 Arithmetic on ratios [ratio.arithmetic]
1 Each of the alias templates ratio_add, ratio_subtract, ratio_multiply, and ratio_divide denotes the result of anarithmetic computation on two ratios R1 and R2. With X and Y computed (in the absence of arithmetic overflow) asspecified by Table 55, each alias denotes a ratio<U, V> such that U is the same as ratio<X, Y>::num and V is the sameas ratio<X, Y>::den.

§ 21.4.4 645

© ISO/IEC N4910

2 If it is not possible to represent U or V with intmax_t, the program is ill-formed. Otherwise, an implementation shouldyield correct values of U and V. If it is not possible to represent X or Y with intmax_t, the program is ill-formed unlessthe implementation yields correct values of U and V.
Table 55: Expressions used to perform ratio arithmetic [tab:ratio.arithmetic]

Type Value of X Value of Y
ratio_add<R1, R2> R1::num * R2::den + R1::den * R2::den

R2::num * R1::den
ratio_subtract<R1, R2> R1::num * R2::den - R1::den * R2::den

R2::num * R1::den
ratio_multiply<R1, R2> R1::num * R2::num R1::den * R2::den
ratio_divide<R1, R2> R1::num * R2::den R1::den * R2::num

3 [Example 1:
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::num == 1, "1/3+1/6 == 1/2");
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::den == 2, "1/3+1/6 == 1/2");
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::num == 1, "1/3*3/2 == 1/2");
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::den == 2, "1/3*3/2 == 1/2");

// The following cases may cause the program to be ill-formed under some implementations
static_assert(ratio_add<ratio<1, INT_MAX>, ratio<1, INT_MAX>>::num == 2,

"1/MAX+1/MAX == 2/MAX");
static_assert(ratio_add<ratio<1, INT_MAX>, ratio<1, INT_MAX>>::den == INT_MAX,

"1/MAX+1/MAX == 2/MAX");
static_assert(ratio_multiply<ratio<1, INT_MAX>, ratio<INT_MAX, 2>>::num == 1,

"1/MAX * MAX/2 == 1/2");
static_assert(ratio_multiply<ratio<1, INT_MAX>, ratio<INT_MAX, 2>>::den == 2,

"1/MAX * MAX/2 == 1/2");

—end example]
21.4.5 Comparison of ratios [ratio.comparison]

template<class R1, class R2>
struct ratio_equal : bool_constant<R1::num == R2::num && R1::den == R2::den> { };

template<class R1, class R2>
struct ratio_not_equal : bool_constant<!ratio_equal_v<R1, R2>> { };

template<class R1, class R2>
struct ratio_less : bool_constant<see below> { };

1 If R1::num × R2::den is less than R2::num × R1::den, ratio_less<R1, R2> shall be derived from bool_-
constant<true>; otherwise it shall be derived from bool_constant<false>. Implementations may use otheralgorithms to compute this relationship to avoid overflow. If overflow occurs, the program is ill-formed.

template<class R1, class R2>
struct ratio_less_equal : bool_constant<!ratio_less_v<R2, R1>> { };

template<class R1, class R2>
struct ratio_greater : bool_constant<ratio_less_v<R2, R1>> { };

template<class R1, class R2>
struct ratio_greater_equal : bool_constant<!ratio_less_v<R1, R2>> { };

21.4.6 SI types for ratio [ratio.si]
1 For each of the typedef-names yocto, zepto, zetta, and yotta, if both of the constants used in its specification arerepresentable by intmax_t, the typedef is defined; if either of the constants is not representable by intmax_t, the typedefis not defined.

§ 21.4.6 646

© ISO/IEC N4910

22 General utilities library [utilities]
22.1 General [utilities.general]

1 This Clause describes utilities that are generally useful in C++ programs; some of these utilities are used by otherelements of the C++ standard library. These utilities are summarized in Table 56.
Table 56: General utilities library summary [tab:utilities.summary]

Subclause Header
22.2 Utility components <utility>22.3 Pairs22.4 Tuples <tuple>22.5 Optional objects <optional>22.6 Variants <variant>22.7 Storage for any type <any>22.8 Expected objects <expected>22.9 Fixed-size sequences of bits <bitset>22.10 Function objects <functional>22.11 Type indexes <typeindex>22.12 Execution policies <execution>22.13 Primitive numeric conversions <charconv>22.14 Formatting <format>22.15 Bit manipulation <bit>

22.2 Utility components [utility]
22.2.1 Header <utility> synopsis [utility.syn]

1 The header <utility> contains some basic function and class templates that are used throughout the rest of the library.
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 22.2.2, swap

template<class T>
constexpr void swap(T& a, T& b) noexcept(see below);

template<class T, size_t N>
constexpr void swap(T (&a)[N], T (&b)[N]) noexcept(is_nothrow_swappable_v<T>);

// 22.2.3, exchange
template<class T, class U = T>
constexpr T exchange(T& obj, U&& new_val) noexcept(see below);

// 22.2.4, forward/move
template<class T>
constexpr T&& forward(remove_reference_t<T>& t) noexcept;

template<class T>
constexpr T&& forward(remove_reference_t<T>&& t) noexcept;

template<class T>
constexpr remove_reference_t<T>&& move(T&&) noexcept;

template<class T>
constexpr conditional_t<

!is_nothrow_move_constructible_v<T> && is_copy_constructible_v<T>, const T&, T&&>
move_if_noexcept(T& x) noexcept;

§ 22.2.1 647

© ISO/IEC N4910

// 22.2.5, as_const
template<class T>
constexpr add_const_t<T>& as_const(T& t) noexcept;

template<class T>
void as_const(const T&&) = delete;

// 22.2.6, declval
template<class T>
add_rvalue_reference_t<T> declval() noexcept; // as unevaluated operand

// 22.2.7, integer comparison functions
template<class T, class U>
constexpr bool cmp_equal(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_not_equal(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_less(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_greater(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_less_equal(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_greater_equal(T t, U u) noexcept;

template<class R, class T>
constexpr bool in_range(T t) noexcept;

// 22.2.8, to_underlying
template<class T>
constexpr underlying_type_t<T> to_underlying(T value) noexcept;

// 22.2.9, unreachable
[[noreturn]] void unreachable();

// 21.2, compile-time integer sequences
template<class T, T...>
struct integer_sequence;

template<size_t... I>
using index_sequence = integer_sequence<size_t, I...>;

template<class T, T N>
using make_integer_sequence = integer_sequence<T, see below>;

template<size_t N>
using make_index_sequence = make_integer_sequence<size_t, N>;

template<class... T>
using index_sequence_for = make_index_sequence<sizeof...(T)>;

// 22.3, class template pair
template<class T1, class T2>
struct pair;

template<class T1, class T2, class U1, class U2,
template<class> class TQual, template<class> class UQual>

requires requires { typename pair<common_reference_t<TQual<T1>, UQual<U1>>,
common_reference_t<TQual<T2>, UQual<U2>>>; }

struct basic_common_reference<pair<T1, T2>, pair<U1, U2>, TQual, UQual> {
using type = pair<common_reference_t<TQual<T1>, UQual<U1>>,

common_reference_t<TQual<T2>, UQual<U2>>>;
};

template<class T1, class T2, class U1, class U2>
requires requires { typename pair<common_type_t<T1, U1>, common_type_t<T2, U2>>; }

§ 22.2.1 648

© ISO/IEC N4910

struct common_type<pair<T1, T2>, pair<U1, U2>> {
using type = pair<common_type_t<T1, U1>, common_type_t<T2, U2>>;

};

// 22.3.3, pair specialized algorithms
template<class T1, class T2>
constexpr bool operator==(const pair<T1, T2>&, const pair<T1, T2>&);

template<class T1, class T2>
constexpr common_comparison_category_t<synth-three-way-result<T1>,

synth-three-way-result<T2>>
operator<=>(const pair<T1, T2>&, const pair<T1, T2>&);

template<class T1, class T2>
constexpr void swap(pair<T1, T2>& x, pair<T1, T2>& y) noexcept(noexcept(x.swap(y)));

template<class T1, class T2>
constexpr void swap(const pair<T1, T2>& x, const pair<T1, T2>& y)

noexcept(noexcept(x.swap(y)));

template<class T1, class T2>
constexpr see below make_pair(T1&&, T2&&);

// 22.3.4, tuple-like access to pair
template<class T> struct tuple_size;
template<size_t I, class T> struct tuple_element;

template<class T1, class T2> struct tuple_size<pair<T1, T2>>;
template<size_t I, class T1, class T2> struct tuple_element<I, pair<T1, T2>>;

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>& get(pair<T1, T2>&) noexcept;

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>&& get(pair<T1, T2>&&) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>& get(const pair<T1, T2>&) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>&& get(const pair<T1, T2>&&) noexcept;

template<class T1, class T2>
constexpr T1& get(pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr const T1& get(const pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr T1&& get(pair<T1, T2>&& p) noexcept;

template<class T1, class T2>
constexpr const T1&& get(const pair<T1, T2>&& p) noexcept;

template<class T2, class T1>
constexpr T2& get(pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr const T2& get(const pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr T2&& get(pair<T1, T2>&& p) noexcept;

template<class T2, class T1>
constexpr const T2&& get(const pair<T1, T2>&& p) noexcept;

// 22.3.5, pair piecewise construction
struct piecewise_construct_t {
explicit piecewise_construct_t() = default;

};
inline constexpr piecewise_construct_t piecewise_construct{};
template<class... Types> class tuple; // defined in <tuple> (22.4.2)
// in-place construction
struct in_place_t {
explicit in_place_t() = default;

};

§ 22.2.1 649

© ISO/IEC N4910

inline constexpr in_place_t in_place{};

template<class T>
struct in_place_type_t {

explicit in_place_type_t() = default;
};

template<class T> inline constexpr in_place_type_t<T> in_place_type{};

template<size_t I>
struct in_place_index_t {

explicit in_place_index_t() = default;
};

template<size_t I> inline constexpr in_place_index_t<I> in_place_index{};
}

22.2.2 swap [utility.swap]

template<class T>
constexpr void swap(T& a, T& b) noexcept(see below);

1 Constraints: is_move_constructible_v<T> is true and is_move_assignable_v<T> is true.
2 Preconditions: Type T meets the Cpp17MoveConstructible (Table 30) and Cpp17MoveAssignable (Table 32)requirements.
3 Effects: Exchanges values stored in two locations.
4 Remarks: This function is a designated customization point (16.4.5.2.1). The exception specification is equivalentto:

is_nothrow_move_constructible_v<T> && is_nothrow_move_assignable_v<T>

template<class T, size_t N>
constexpr void swap(T (&a)[N], T (&b)[N]) noexcept(is_nothrow_swappable_v<T>);

5 Constraints: is_swappable_v<T> is true.
6 Preconditions: a[i] is swappable with (16.4.4.3) b[i] for all i in the range [0, N).
7 Effects: As if by swap_ranges(a, a + N, b).
22.2.3 exchange [utility.exchange]

template<class T, class U = T>
constexpr T exchange(T& obj, U&& new_val) noexcept(see below);

1 Effects: Equivalent to:
T old_val = std::move(obj);
obj = std::forward<U>(new_val);
return old_val;

2 Remarks: The exception specification is equivalent to:
is_nothrow_move_constructible_v<T> && is_nothrow_assignable_v<T&, U>

22.2.4 Forward/move helpers [forward]
1 The library provides templated helper functions to simplify applying move semantics to an lvalue and to simplify theimplementation of forwarding functions. All functions specified in this subclause are signal-safe (17.13.5).

template<class T> constexpr T&& forward(remove_reference_t<T>& t) noexcept;
template<class T> constexpr T&& forward(remove_reference_t<T>&& t) noexcept;

2 Mandates: For the second overload, is_lvalue_reference_v<T> is false.
3 Returns: static_cast<T&&>(t).
4 [Example 1:

§ 22.2.4 650

© ISO/IEC N4910

template<class T, class A1, class A2>
shared_ptr<T> factory(A1&& a1, A2&& a2) {
return shared_ptr<T>(new T(std::forward<A1>(a1), std::forward<A2>(a2)));

}

struct A {
A(int&, const double&);

};

void g() {
shared_ptr<A> sp1 = factory<A>(2, 1.414); // error: 2 will not bind to int&
int i = 2;
shared_ptr<A> sp2 = factory<A>(i, 1.414); // OK

}

In the first call to factory, A1 is deduced as int, so 2 is forwarded to A’s constructor as an rvalue. In the second call to
factory, A1 is deduced as int&, so i is forwarded to A’s constructor as an lvalue. In both cases, A2 is deduced as double, so1.414 is forwarded to A’s constructor as an rvalue. —end example]

template<class T> constexpr remove_reference_t<T>&& move(T&& t) noexcept;

5 Returns: static_cast<remove_reference_t<T>&&>(t).
6 [Example 2:

template<class T, class A1>
shared_ptr<T> factory(A1&& a1) {
return shared_ptr<T>(new T(std::forward<A1>(a1)));

}

struct A {
A();
A(const A&); // copies from lvalues
A(A&&); // moves from rvalues

};

void g() {
A a;
shared_ptr<A> sp1 = factory<A>(a); // “a” binds to A(const A&)
shared_ptr<A> sp2 = factory<A>(std::move(a)); // “a” binds to A(A&&)

}

In the first call to factory, A1 is deduced as A&, so a is forwarded as a non-const lvalue. This binds to the constructor A(const
A&), which copies the value from a. In the second call to factory, because of the call std::move(a), A1 is deduced as A, so ais forwarded as an rvalue. This binds to the constructor A(A&&), which moves the value from a. —end example]

template<class T> constexpr conditional_t<
!is_nothrow_move_constructible_v<T> && is_copy_constructible_v<T>, const T&, T&&>

move_if_noexcept(T& x) noexcept;

7 Returns: std::move(x).
22.2.5 Function template as_const [utility.as.const]

template<class T> constexpr add_const_t<T>& as_const(T& t) noexcept;

1 Returns: t.
22.2.6 Function template declval [declval]

1 The library provides the function template declval to simplify the definition of expressions which occur as unevaluatedoperands (7.2.3).
template<class T> add_rvalue_reference_t<T> declval() noexcept; // as unevaluated operand

2 Mandates: This function is not odr-used (6.3).
3 Remarks: The template parameter T of declval may be an incomplete type.
4 [Example 1:

§ 22.2.6 651

© ISO/IEC N4910

template<class To, class From> decltype(static_cast<To>(declval<From>())) convert(From&&);

declares a function template convertwhich only participates in overload resolution if the type From can be explicitly convertedto type To. For another example see class template common_type (21.3.8.7). —end example]
22.2.7 Integer comparison functions [utility.intcmp]

template<class T, class U>
constexpr bool cmp_equal(T t, U u) noexcept;

1 Mandates: Both T and U are standard integer types or extended integer types (6.8.2).
2 Effects: Equivalent to:

using UT = make_unsigned_t<T>;
using UU = make_unsigned_t<U>;
if constexpr (is_signed_v<T> == is_signed_v<U>)
return t == u;

else if constexpr (is_signed_v<T>)
return t < 0 ? false : UT(t) == u;

else
return u < 0 ? false : t == UU(u);

template<class T, class U>
constexpr bool cmp_not_equal(T t, U u) noexcept;

3 Effects: Equivalent to: return !cmp_equal(t, u);

template<class T, class U>
constexpr bool cmp_less(T t, U u) noexcept;

4 Mandates: Both T and U are standard integer types or extended integer types (6.8.2).
5 Effects: Equivalent to:

using UT = make_unsigned_t<T>;
using UU = make_unsigned_t<U>;
if constexpr (is_signed_v<T> == is_signed_v<U>)
return t < u;

else if constexpr (is_signed_v<T>)
return t < 0 ? true : UT(t) < u;

else
return u < 0 ? false : t < UU(u);

template<class T, class U>
constexpr bool cmp_greater(T t, U u) noexcept;

6 Effects: Equivalent to: return cmp_less(u, t);

template<class T, class U>
constexpr bool cmp_less_equal(T t, U u) noexcept;

7 Effects: Equivalent to: return !cmp_greater(t, u);

template<class T, class U>
constexpr bool cmp_greater_equal(T t, U u) noexcept;

8 Effects: Equivalent to: return !cmp_less(t, u);

template<class R, class T>
constexpr bool in_range(T t) noexcept;

9 Mandates: Both T and R are standard integer types or extended integer types (6.8.2).
10 Effects: Equivalent to:

return cmp_greater_equal(t, numeric_limits<R>::min()) &&
cmp_less_equal(t, numeric_limits<R>::max());

11 [Note 1: These function templates cannot be used to compare byte, char, char8_t, char16_t, char32_t, wchar_t, and bool. —endnote]

§ 22.2.7 652

© ISO/IEC N4910

22.2.8 Function template to_underlying [utility.underlying]

template<class T>
constexpr underlying_type_t<T> to_underlying(T value) noexcept;

1 Returns: static_cast<underlying_type_t<T>>(value).
22.2.9 Function unreachable [utility.unreachable]

[[noreturn]] void unreachable();

1 Preconditions: false is true.
[Note 1: This precondition cannot be satisfied, thus the behavior of calling unreachable is undefined. —end note]

2 [Example 1:
int f(int x) {
switch (x) {
case 0:
case 1:

return x;
default:

std::unreachable();
}

}
int a = f(1); // OK, a has value 1
int b = f(3); // undefined behavior
— end example]

22.3 Pairs [pairs]
22.3.1 In general [pairs.general]

1 The library provides a template for heterogeneous pairs of values. The library also provides a matching functiontemplate to simplify their construction and several templates that provide access to pair objects as if they were tupleobjects (see 22.4.6 and 22.4.7).
22.3.2 Class template pair [pairs.pair]
namespace std {

template<class T1, class T2>
struct pair {
using first_type = T1;
using second_type = T2;

T1 first;
T2 second;

pair(const pair&) = default;
pair(pair&&) = default;
constexpr explicit(see below) pair();
constexpr explicit(see below) pair(const T1& x, const T2& y);
template<class U1 = T1, class U2 = T2>

constexpr explicit(see below) pair(U1&& x, U2&& y);
template<class U1, class U2>

constexpr explicit(see below) pair(pair<U1, U2>& p);
template<class U1, class U2>

constexpr explicit(see below) pair(const pair<U1, U2>& p);
template<class U1, class U2>

constexpr explicit(see below) pair(pair<U1, U2>&& p);
template<class U1, class U2>

constexpr explicit(see below) pair(const pair<U1, U2>&& p);
template<class... Args1, class... Args2>

constexpr pair(piecewise_construct_t,
tuple<Args1...> first_args, tuple<Args2...> second_args);

§ 22.3.2 653

© ISO/IEC N4910

constexpr pair& operator=(const pair& p);
constexpr const pair& operator=(const pair& p) const;
template<class U1, class U2>

constexpr pair& operator=(const pair<U1, U2>& p);
template<class U1, class U2>

constexpr const pair& operator=(const pair<U1, U2>& p) const;
constexpr pair& operator=(pair&& p) noexcept(see below);
constexpr const pair& operator=(pair&& p) const;
template<class U1, class U2>

constexpr pair& operator=(pair<U1, U2>&& p);
template<class U1, class U2>

constexpr const pair& operator=(pair<U1, U2>&& p) const;

constexpr void swap(pair& p) noexcept(see below);
constexpr void swap(const pair& p) const noexcept(see below);

};

template<class T1, class T2>
pair(T1, T2) -> pair<T1, T2>;

}

1 Constructors and member functions of pair do not throw exceptions unless one of the element-wise operations specifiedto be called for that operation throws an exception.
2 The defaulted move and copy constructor, respectively, of pair is a constexpr function if and only if all requiredelement-wise initializations for move and copy, respectively, would satisfy the requirements for a constexpr function.
3 If (is_trivially_destructible_v<T1> && is_trivially_destructible_v<T2>) is true, then the destructor of

pair is trivial.
4 pair<T, U> is a structural type (13.2) if T and U are both structural types. Two values p1 and p2 of type pair<T, U>are template-argument-equivalent (13.6) if and only if p1.first and p2.first are template-argument-equivalent and

p1.second and p2.second are template-argument-equivalent.
constexpr explicit(see below) pair();

5 Constraints:
—(5.1) is_default_constructible_v<T1> is true and
—(5.2) is_default_constructible_v<T2> is true.

6 Effects: Value-initializes first and second.
7 Remarks: The expression inside explicit evaluates to true if and only if either T1 or T2 is not implicitlydefault-constructible.

[Note 1: This behavior can be implemented with a trait that checks whether a const T1& or a const T2& can be initializedwith {}. —end note]
constexpr explicit(see below) pair(const T1& x, const T2& y);

8 Constraints:
—(8.1) is_copy_constructible_v<T1> is true and
—(8.2) is_copy_constructible_v<T2> is true.

9 Effects: Initializes first with x and second with y.
10 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<const T1&, T1> || !is_convertible_v<const T2&, T2>

template<class U1 = T1, class U2 = T2> constexpr explicit(see below) pair(U1&& x, U2&& y);

11 Constraints:
—(11.1) is_constructible_v<T1, U1> is true and
—(11.2) is_constructible_v<T2, U2> is true.

12 Effects: Initializes first with std::forward<U1>(x) and second with std::forward<U2>(y).

§ 22.3.2 654

© ISO/IEC N4910

13 Remarks: The expression inside explicit is equivalent to:
!is_convertible_v<U1, T1> || !is_convertible_v<U2, T2>

This constructor is defined as deleted if reference_constructs_from_temporary_v<first_type, U1&&> is
true or reference_constructs_from_temporary_v<second_type, U2&&> is true.

template<class U1, class U2> constexpr explicit(see below) pair(pair<U1, U2>& p);
template<class U1, class U2> constexpr explicit(see below) pair(const pair<U1, U2>& p);
template<class U1, class U2> constexpr explicit(see below) pair(pair<U1, U2>&& p);
template<class U1, class U2> constexpr explicit(see below) pair(const pair<U1, U2>&& p);

14 Let FWD(u) be static_cast<decltype(u)>(u).
15 Constraints:

—(15.1) is_constructible_v<T1, decltype(get<0>(FWD(p)))> is true and
—(15.2) is_constructible_v<T2, decltype(get<1>(FWD(p)))> is true.

16 Effects: Initializes first with get<0>(FWD(p)) and second with get<1>(FWD(p)).
17 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<decltype(get<0>(FWD(p))), T1> ||
!is_convertible_v<decltype(get<1>(FWD(p))), T2>

The constructor is defined as deleted if
reference_constructs_from_temporary_v<first_type, decltype(get<0>(FWD(p)))> ||
reference_constructs_from_temporary_v<second_type, decltype(get<1>(FWD(p)))>

is true.
template<class... Args1, class... Args2>

constexpr pair(piecewise_construct_t,
tuple<Args1...> first_args, tuple<Args2...> second_args);

18 Mandates:
—(18.1) is_constructible_v<T1, Args1...> is true and
—(18.2) is_constructible_v<T2, Args2...> is true.

19 Effects: Initializes first with arguments of types Args1... obtained by forwarding the elements of first_argsand initializes second with arguments of types Args2... obtained by forwarding the elements of second_args.(Here, forwarding an element x of type U within a tuple object means calling std::forward<U>(x).) This formof construction, whereby constructor arguments for first and second are each provided in a separate tupleobject, is called piecewise construction.
[Note 2: If a data member of pair is of reference type and its initialization binds it to a temporary object, the program isill-formed (11.9.3). —end note]

constexpr pair& operator=(const pair& p);

20 Effects: Assigns p.first to first and p.second to second.
21 Returns: *this.
22 Remarks: This operator is defined as deleted unless is_copy_assignable_v<T1> is true and is_copy_assignable_-

v<T2> is true.
constexpr const pair& operator=(const pair& p) const;

23 Constraints:
—(23.1) is_copy_assignable_v<const T1> is true and
—(23.2) is_copy_assignable_v<const T2> is true.

24 Effects: Assigns p.first to first and p.second to second.
25 Returns: *this.

template<class U1, class U2> constexpr pair& operator=(const pair<U1, U2>& p);

26 Constraints:
§ 22.3.2 655

© ISO/IEC N4910

—(26.1) is_assignable_v<T1&, const U1&> is true and
—(26.2) is_assignable_v<T2&, const U2&> is true.

27 Effects: Assigns p.first to first and p.second to second.
28 Returns: *this.

template<class U1, class U2> constexpr const pair& operator=(const pair<U1, U2>& p) const;

29 Constraints:
—(29.1) is_assignable_v<const T1&, const U1&> is true, and
—(29.2) is_assignable_v<const T2&, const U2&> is true.

30 Effects: Assigns p.first to first and p.second to second.
31 Returns: *this.

constexpr pair& operator=(pair&& p) noexcept(see below);

32 Constraints:
—(32.1) is_move_assignable_v<T1> is true and
—(32.2) is_move_assignable_v<T2> is true.

33 Effects: Assigns to firstwith std::forward<T1>(p.first) and to secondwith std::forward<T2>(p.second).
34 Returns: *this.
35 Remarks: The exception specification is equivalent to:

is_nothrow_move_assignable_v<T1> && is_nothrow_move_assignable_v<T2>

constexpr const pair& operator=(pair&& p) const;

36 Constraints:
—(36.1) is_assignable_v<const T1&, T1> is true and
—(36.2) is_assignable_v<const T2&, T2> is true.

37 Effects: Assigns std::forward<T1>(p.first) to first and std::forward<T2>(p.second) to second.
38 Returns: *this.

template<class U1, class U2> constexpr pair& operator=(pair<U1, U2>&& p);

39 Constraints:
—(39.1) is_assignable_v<T1&, U1> is true and
—(39.2) is_assignable_v<T2&, U2> is true.

40 Effects: Assigns to first with std::forward<U1>(p.first) and to second with
std::forward<U2>(p.second).

41 Returns: *this.
template<class U1, class U2> constexpr const pair& operator=(pair<U1, U2>&& p) const;

42 Constraints:
—(42.1) is_assignable_v<const T1&, U1> is true, and
—(42.2) is_assignable_v<const T2&, U2> is true.

43 Effects: Assigns std::forward<U1>(p.first) to first and std::forward<U2>(u.second) to second.
44 Returns: *this.

constexpr void swap(pair& p) noexcept(see below);
constexpr void swap(const pair& p) const noexcept(see below);

45 Mandates:
—(45.1) For the first overload, is_swappable_v<T1> is true and is_swappable_v<T2> is true.
—(45.2) For the second overload, is_swappable_v<const T1> is true and is_swappable_v<const T2> is true.

§ 22.3.2 656

© ISO/IEC N4910

46 Preconditions: first is swappable with (16.4.4.3) p.first and second is swappable with p.second.
47 Effects: Swaps first with p.first and second with p.second.
48 Remarks: The exception specification is equivalent to:

—(48.1) is_nothrow_swappable_v<T1> && is_nothrow_swappable_v<T2> for the first overload, and
—(48.2) is_nothrow_swappable_v<const T1> && is_nothrow_swappable_v<const T2> for the second overload.

22.3.3 Specialized algorithms [pairs.spec]

template<class T1, class T2>
constexpr bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y);

1 Returns: x.first == y.first && x.second == y.second.
template<class T1, class T2>

constexpr common_comparison_category_t<synth-three-way-result<T1>,
synth-three-way-result<T2>>

operator<=>(const pair<T1, T2>& x, const pair<T1, T2>& y);

2 Effects: Equivalent to:
if (auto c = synth-three-way(x.first, y.first); c != 0) return c;
return synth-three-way(x.second, y.second);

template<class T1, class T2>
constexpr void swap(pair<T1, T2>& x, pair<T1, T2>& y) noexcept(noexcept(x.swap(y)));

template<class T1, class T2>
constexpr void swap(const pair<T1, T2>& x, const pair<T1, T2>& y) noexcept(noexcept(x.swap(y)));

3 Constraints:
—(3.1) For the first overload, is_swappable_v<T1> is true and is_swappable_v<T2> is true.
—(3.2) For the second overload, is_swappable_v<const T1> is true and is_swappable_v<const T2> is true.

4 Effects: Equivalent to x.swap(y).
template<class T1, class T2>

constexpr pair<unwrap_ref_decay_t<T1>, unwrap_ref_decay_t<T2>> make_pair(T1&& x, T2&& y);

5 Returns:
pair<unwrap_ref_decay_t<T1>,

unwrap_ref_decay_t<T2>>(std::forward<T1>(x), std::forward<T2>(y))
6 [Example 1: In place of:

return pair<int, double>(5, 3.1415926); // explicit types
a C++ program may contain:
return make_pair(5, 3.1415926); // types are deduced
—end example]
22.3.4 Tuple-like access to pair [pair.astuple]

template<class T1, class T2>
struct tuple_size<pair<T1, T2>> : integral_constant<size_t, 2> { };

template<size_t I, class T1, class T2>
struct tuple_element<I, pair<T1, T2>> {
using type = see below ;

};

1 Mandates: I < 2.
2 Type: The type T1 if I is 0, otherwise the type T2.

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>& get(pair<T1, T2>& p) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>& get(const pair<T1, T2>& p) noexcept;

§ 22.3.4 657

© ISO/IEC N4910

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>&& get(pair<T1, T2>&& p) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>&& get(const pair<T1, T2>&& p) noexcept;

3 Mandates: I < 2.
4 Returns:

—(4.1) If I is 0, returns a reference to p.first.
—(4.2) If I is 1, returns a reference to p.second.

template<class T1, class T2>
constexpr T1& get(pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr const T1& get(const pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr T1&& get(pair<T1, T2>&& p) noexcept;

template<class T1, class T2>
constexpr const T1&& get(const pair<T1, T2>&& p) noexcept;

5 Mandates: T1 and T2 are distinct types.
6 Returns: A reference to p.first.

template<class T2, class T1>
constexpr T2& get(pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr const T2& get(const pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr T2&& get(pair<T1, T2>&& p) noexcept;

template<class T2, class T1>
constexpr const T2&& get(const pair<T1, T2>&& p) noexcept;

7 Mandates: T1 and T2 are distinct types.
8 Returns: A reference to p.second.
22.3.5 Piecewise construction [pair.piecewise]

struct piecewise_construct_t {
explicit piecewise_construct_t() = default;

};
inline constexpr piecewise_construct_t piecewise_construct{};

1 The struct piecewise_construct_t is an empty class type used as a unique type to disambiguate constructor and func-tion overloading. Specifically, pair has a constructor with piecewise_construct_t as the first argument, immediatelyfollowed by two tuple (22.4) arguments used for piecewise construction of the elements of the pair object.
22.4 Tuples [tuple]
22.4.1 In general [tuple.general]

1 Subclause 22.4 describes the tuple library that provides a tuple type as the class template tuple that can be instantiatedwith any number of arguments. Each template argument specifies the type of an element in the tuple. Consequently,tuples are heterogeneous, fixed-size collections of values. An instantiation of tuple with two arguments is similar to aninstantiation of pair with the same two arguments. See 22.3.
22.4.2 Header <tuple> synopsis [tuple.syn]
#include <compare> // see 17.11.1
namespace std {// 22.4.3, class template tuple

template<class... Types>
class tuple;

§ 22.4.2 658

© ISO/IEC N4910

template<class... TTypes, class... UTypes, template<class> class TQual,
template<class> class UQual>

requires requires { typename tuple<common_reference_t<TQual<TTypes>, UQual<UTypes>>...>; }
struct basic_common_reference<tuple<TTypes...>, tuple<UTypes...>, TQual, UQual> {
using type = tuple<common_reference_t<TQual<TTypes>, UQual<UTypes>>...>;

};

template<class... TTypes, class... UTypes>
requires requires { typename tuple<common_type_t<TTypes, UTypes>...>; }

struct common_type<tuple<TTypes...>, tuple<UTypes...>> {
using type = tuple<common_type_t<TTypes, UTypes>...>;

};

// 22.4.4, tuple creation functions
inline constexpr unspecified ignore;

template<class... TTypes>
constexpr tuple<unwrap_ref_decay_t<TTypes>...> make_tuple(TTypes&&...);

template<class... TTypes>
constexpr tuple<TTypes&&...> forward_as_tuple(TTypes&&...) noexcept;

template<class... TTypes>
constexpr tuple<TTypes&...> tie(TTypes&...) noexcept;

template<class... Tuples>
constexpr tuple<CTypes...> tuple_cat(Tuples&&...);

// 22.4.5, calling a function with a tuple of arguments
template<class F, class Tuple>
constexpr decltype(auto) apply(F&& f, Tuple&& t);

template<class T, class Tuple>
constexpr T make_from_tuple(Tuple&& t);

// 22.4.6, tuple helper classes
template<class T> struct tuple_size; // not defined
template<class T> struct tuple_size<const T>;

template<class... Types> struct tuple_size<tuple<Types...>>;

template<size_t I, class T> struct tuple_element; // not defined
template<size_t I, class T> struct tuple_element<I, const T>;

template<size_t I, class... Types>
struct tuple_element<I, tuple<Types...>>;

template<size_t I, class T>
using tuple_element_t = typename tuple_element<I, T>::type;

// 22.4.7, element access
template<size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>& get(tuple<Types...>&) noexcept;

template<size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>&& get(tuple<Types...>&&) noexcept;

template<size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>& get(const tuple<Types...>&) noexcept;

template<size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>&& get(const tuple<Types...>&&) noexcept;

template<class T, class... Types>
constexpr T& get(tuple<Types...>& t) noexcept;

template<class T, class... Types>
constexpr T&& get(tuple<Types...>&& t) noexcept;

§ 22.4.2 659

© ISO/IEC N4910

template<class T, class... Types>
constexpr const T& get(const tuple<Types...>& t) noexcept;

template<class T, class... Types>
constexpr const T&& get(const tuple<Types...>&& t) noexcept;

// 22.4.8, relational operators
template<class... TTypes, class... UTypes>
constexpr bool operator==(const tuple<TTypes...>&, const tuple<UTypes...>&);

template<class... TTypes, class... UTypes>
constexpr common_comparison_category_t<synth-three-way-result<TTypes, UTypes>...>

operator<=>(const tuple<TTypes...>&, const tuple<UTypes...>&);

// 22.4.9, allocator-related traits
template<class... Types, class Alloc>
struct uses_allocator<tuple<Types...>, Alloc>;

// 22.4.10, specialized algorithms
template<class... Types>
constexpr void swap(tuple<Types...>& x, tuple<Types...>& y) noexcept(see below);

template<class... Types>
constexpr void swap(const tuple<Types...>& x, const tuple<Types...>& y) noexcept(see below);

// 22.4.6, tuple helper classes
template<class T>
inline constexpr size_t tuple_size_v = tuple_size<T>::value;

}

22.4.3 Class template tuple [tuple.tuple]
namespace std {

template<class... Types>
class tuple {
public:// 22.4.3.1, tuple construction
constexpr explicit(see below) tuple();
constexpr explicit(see below) tuple(const Types&...); // only if sizeof...(Types) >= 1
template<class... UTypes>

constexpr explicit(see below) tuple(UTypes&&...); // only if sizeof...(Types) >= 1

tuple(const tuple&) = default;
tuple(tuple&&) = default;

template<class... UTypes>
constexpr explicit(see below) tuple(tuple<UTypes...>&);

template<class... UTypes>
constexpr explicit(see below) tuple(const tuple<UTypes...>&);

template<class... UTypes>
constexpr explicit(see below) tuple(tuple<UTypes...>&&);

template<class... UTypes>
constexpr explicit(see below) tuple(const tuple<UTypes...>&&);

template<class U1, class U2>
constexpr explicit(see below) tuple(pair<U1, U2>&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr explicit(see below) tuple(const pair<U1, U2>&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr explicit(see below) tuple(pair<U1, U2>&&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr explicit(see below) tuple(const pair<U1, U2>&&); // only if sizeof...(Types) == 2

// allocator-extended constructors
template<class Alloc>

constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a);

§ 22.4.3 660

© ISO/IEC N4910

template<class Alloc>
constexpr explicit(see below)

tuple(allocator_arg_t, const Alloc& a, const Types&...);
template<class Alloc, class... UTypes>

constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, UTypes&&...);

template<class Alloc>
constexpr tuple(allocator_arg_t, const Alloc& a, const tuple&);

template<class Alloc>
constexpr tuple(allocator_arg_t, const Alloc& a, tuple&&);

template<class Alloc, class... UTypes>
constexpr explicit(see below)

tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&);
template<class Alloc, class... UTypes>

constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);

template<class Alloc, class... UTypes>
constexpr explicit(see below)

tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
template<class Alloc, class... UTypes>

constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below)

tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&);
template<class Alloc, class U1, class U2>

constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below)

tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);
template<class Alloc, class U1, class U2>

constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&&);

// 22.4.3.2, tuple assignment
constexpr tuple& operator=(const tuple&);
constexpr const tuple& operator=(const tuple&) const;
constexpr tuple& operator=(tuple&&) noexcept(see below);
constexpr const tuple& operator=(tuple&&) const;

template<class... UTypes>
constexpr tuple& operator=(const tuple<UTypes...>&);

template<class... UTypes>
constexpr const tuple& operator=(const tuple<UTypes...>&) const;

template<class... UTypes>
constexpr tuple& operator=(tuple<UTypes...>&&);

template<class... UTypes>
constexpr const tuple& operator=(tuple<UTypes...>&&) const;

template<class U1, class U2>
constexpr tuple& operator=(const pair<U1, U2>&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr const tuple& operator=(const pair<U1, U2>&) const;// only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr tuple& operator=(pair<U1, U2>&&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr const tuple& operator=(pair<U1, U2>&&) const; // only if sizeof...(Types) == 2

// 22.4.3.3, tuple swap
constexpr void swap(tuple&) noexcept(see below);
constexpr void swap(const tuple&) const noexcept(see below);

};

§ 22.4.3 661

© ISO/IEC N4910

template<class... UTypes>
tuple(UTypes...) -> tuple<UTypes...>;

template<class T1, class T2>
tuple(pair<T1, T2>) -> tuple<T1, T2>;

template<class Alloc, class... UTypes>
tuple(allocator_arg_t, Alloc, UTypes...) -> tuple<UTypes...>;

template<class Alloc, class T1, class T2>
tuple(allocator_arg_t, Alloc, pair<T1, T2>) -> tuple<T1, T2>;

template<class Alloc, class... UTypes>
tuple(allocator_arg_t, Alloc, tuple<UTypes...>) -> tuple<UTypes...>;

}

22.4.3.1 Construction [tuple.cnstr]
1 In the descriptions that follow, let i be in the range [0, sizeof...(Types)) in order, Ti be the ith type in Types, and Uibe the ith type in a template parameter pack named UTypes, where indexing is zero-based.
2 For each tuple constructor, an exception is thrown only if the construction of one of the types in Types throws anexception.
3 The defaulted move and copy constructor, respectively, of tuple is a constexpr function if and only if all requiredelement-wise initializations for move and copy, respectively, would satisfy the requirements for a constexpr function.The defaulted move and copy constructor of tuple<> are constexpr functions.
4 If is_trivially_destructible_v<Ti> is true for all Ti, then the destructor of tuple is trivial.
5 The default constructor of tuple<> is trivial.

constexpr explicit(see below) tuple();

6 Constraints: is_default_constructible_v<Ti> is true for all i.
7 Effects: Value-initializes each element.
8 Remarks: The expression inside explicit evaluates to true if and only if Ti is not copy-list-initializable from anempty list for at least one i.

[Note 1: This behavior can be implemented with a trait that checks whether a const Ti& can be initialized with {}. —endnote]
constexpr explicit(see below) tuple(const Types&...);

9 Constraints: sizeof...(Types) ≥ 1 and is_copy_constructible_v<Ti> is true for all i.
10 Effects: Initializes each element with the value of the corresponding parameter.
11 Remarks: The expression inside explicit is equivalent to:

!conjunction_v<is_convertible<const Types&, Types>...>

template<class... UTypes> constexpr explicit(see below) tuple(UTypes&&... u);

12 Let disambiguating-constraint be:
—(12.1) negation<is_same<remove_cvref_t<U0>, tuple>> if sizeof...(Types) is 1;
—(12.2) otherwise, bool_constant<!is_same_v<remove_cvref_t<U0>, allocator_arg_t> || is_-

same_v<remove_cvref_t<T0>, allocator_arg_t>> if sizeof...(Types) is 2 or 3;
—(12.3) otherwise, true_type.

13 Constraints:
—(13.1) sizeof...(Types) equals sizeof...(UTypes),
—(13.2) sizeof...(Types) ≥ 1, and
—(13.3) conjunction_v<disambiguating-constraint, is_constructible<Types, UTypes>...> is

true.
14 Effects: Initializes the elements in the tuple with the corresponding value in std::forward<UTypes>(u).
15 Remarks: The expression inside explicit is equivalent to:

!conjunction_v<is_convertible<UTypes, Types>...>

§ 22.4.3.1 662

© ISO/IEC N4910

This constructor is defined as deleted if
(reference_constructs_from_temporary_v<Types, UTypes\&\&> || ...)

is true.
tuple(const tuple& u) = default;

16 Mandates: is_copy_constructible_v<Ti> is true for all i.
17 Effects: Initializes each element of *this with the corresponding element of u.

tuple(tuple&& u) = default;

18 Constraints: is_move_constructible_v<Ti> is true for all i.
19 Effects: For all i, initializes the ith element of *this with std::forward<Ti>(get<i>(u)).

template<class... UTypes> constexpr explicit(see below) tuple(tuple<UTypes...>& u);
template<class... UTypes> constexpr explicit(see below) tuple(const tuple<UTypes...>& u);
template<class... UTypes> constexpr explicit(see below) tuple(tuple<UTypes...>&& u);
template<class... UTypes> constexpr explicit(see below) tuple(const tuple<UTypes...>&& u);

20 Let I be the pack 0, 1, ..., (sizeof...(Types) - 1).Let FWD(u) be static_cast<decltype(u)>(u).
21 Constraints:

—(21.1) sizeof...(Types) equals sizeof...(UTypes), and
—(21.2) (is_constructible_v<Types, decltype(get<I>(FWD(u)))> && ...) is true, and
—(21.3) either sizeof...(Types) is not 1, or (when Types... expands to T and UTypes... expands to U) is_-

convertible_v<decltype(u), T>, is_constructible_v<T, decltype(u)>, and is_same_v<T, U> areall false.
22 Effects: For all i, initializes the ith element of *this with get<i>(FWD(u)).
23 Remarks: The expression inside explicit is equivalent to:

!(is_convertible_v<decltype(get<I>(FWD(u))), Types> && ...)

The constructor is defined as deleted if
(reference_constructs_from_temporary_v<Types, decltype(get<I>(FWD(u)))> || ...)

is true.
template<class U1, class U2> constexpr explicit(see below) tuple(pair<U1, U2>& u);
template<class U1, class U2> constexpr explicit(see below) tuple(const pair<U1, U2>& u);
template<class U1, class U2> constexpr explicit(see below) tuple(pair<U1, U2>&& u);
template<class U1, class U2> constexpr explicit(see below) tuple(const pair<U1, U2>&& u);

24 Let FWD(u) be static_cast<decltype(u)>(u).
25 Constraints:

—(25.1) sizeof...(Types) is 2,
—(25.2) is_constructible_v<T0, decltype(get<0>(FWD(u)))> is true, and
—(25.3) is_constructible_v<T1, decltype(get<1>(FWD(u)))> is true.

26 Effects: Initializes the first element with get<0>(FWD(u)) and the second element with get<1>(FWD(u)).
27 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<decltype(get<0>(FWD(u))), T0> ||
!is_convertible_v<decltype(get<1>(FWD(u))), T1>

The constructor is defined as deleted if
reference_constructs_from_temporary_v<T0, decltype(get<0>(FWD(u)))> ||
reference_constructs_from_temporary_v<T1, decltype(get<1>(FWD(u)))>

is true.

§ 22.4.3.1 663

© ISO/IEC N4910

template<class Alloc>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a);

template<class Alloc>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const Types&...);

template<class Alloc, class... UTypes>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, UTypes&&...);

template<class Alloc>
constexpr tuple(allocator_arg_t, const Alloc& a, const tuple&);

template<class Alloc>
constexpr tuple(allocator_arg_t, const Alloc& a, tuple&&);

template<class Alloc, class... UTypes>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&);

template<class Alloc, class... UTypes>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);

template<class Alloc, class... UTypes>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);

template<class Alloc, class... UTypes>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below)
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&&);

28 Preconditions: Alloc meets the Cpp17Allocator requirements (16.4.4.6.1).
29 Effects: Equivalent to the preceding constructors except that each element is constructed with uses-allocatorconstruction (20.2.7.2).
22.4.3.2 Assignment [tuple.assign]

1 For each tuple assignment operator, an exception is thrown only if the assignment of one of the types in Types throwsan exception. In the function descriptions that follow, let i be in the range [0, sizeof...(Types)) in order, Ti be the ithtype in Types, and Ui be the ith type in a template parameter pack named UTypes, where indexing is zero-based.
constexpr tuple& operator=(const tuple& u);

2 Effects: Assigns each element of u to the corresponding element of *this.
3 Returns: *this.
4 Remarks: This operator is defined as deleted unless is_copy_assignable_v<Ti> is true for all i.

constexpr const tuple& operator=(const tuple& u) const;

5 Constraints: (is_copy_assignable_v<const Types> && ...) is true.
6 Effects: Assigns each element of u to the corresponding element of *this.
7 Returns: *this.

constexpr tuple& operator=(tuple&& u) noexcept(see below);

8 Constraints: is_move_assignable_v<Ti> is true for all i.
9 Effects: For all i, assigns std::forward<Ti>(get<i>(u)) to get<i>(*this).
§ 22.4.3.2 664

© ISO/IEC N4910

10 Returns: *this.
11 Remarks: The exception specification is equivalent to the logical AND of the following expressions:

is_nothrow_move_assignable_v<Ti>

where Ti is the ith type in Types.
constexpr const tuple& operator=(tuple&& u) const;

12 Constraints: (is_assignable_v<const Types&, Types> && ...) is true.
13 Effects: For all i, assigns std::forward<Ti>(get<i>(u)) to get<i>(*this).
14 Returns: *this.

template<class... UTypes> constexpr tuple& operator=(const tuple<UTypes...>& u);

15 Constraints:
—(15.1) sizeof...(Types) equals sizeof...(UTypes) and
—(15.2) is_assignable_v<Ti&, const Ui&> is true for all i.

16 Effects: Assigns each element of u to the corresponding element of *this.
17 Returns: *this.

template<class... UTypes> constexpr const tuple& operator=(const tuple<UTypes...>& u) const;

18 Constraints:
—(18.1) sizeof...(Types) equals sizeof...(UTypes) and
—(18.2) (is_assignable_v<const Types&, const UTypes&> && ...) is true.

19 Effects: Assigns each element of u to the corresponding element of *this.
20 Returns: *this.

template<class... UTypes> constexpr tuple& operator=(tuple<UTypes...>&& u);

21 Constraints:
—(21.1) sizeof...(Types) equals sizeof...(UTypes) and
—(21.2) is_assignable_v<Ti&, Ui> is true for all i.

22 Effects: For all i, assigns std::forward<Ui>(get<i>(u)) to get<i>(*this).
23 Returns: *this.

template<class... UTypes> constexpr const tuple& operator=(tuple<UTypes...>&& u) const;

24 Constraints:
—(24.1) sizeof...(Types) equals sizeof...(UTypes) and
—(24.2) (is_assignable_v<const Types&, UTypes> && ...) is true.

25 Effects: For all i, assigns std::forward<Ui>(get<i>(u)) to get<i>(*this).
26 Returns: *this.

template<class U1, class U2> constexpr tuple& operator=(const pair<U1, U2>& u);

27 Constraints:
—(27.1) sizeof...(Types) is 2 and
—(27.2) is_assignable_v<T0&, const U1&> is true, and
—(27.3) is_assignable_v<T1&, const U2&> is true.

28 Effects: Assigns u.first to the first element of *this and u.second to the second element of *this.
29 Returns: *this.

template<class U1, class U2> constexpr const tuple& operator=(const pair<U1, U2>& u) const;

30 Constraints:
§ 22.4.3.2 665

© ISO/IEC N4910

—(30.1) sizeof...(Types) is 2,
—(30.2) is_assignable_v<const T0&, const U1&> is true, and
—(30.3) is_assignable_v<const T1&, const U2&> is true.

31 Effects: Assigns u.first to the first element and u.second to the second element.
32 Returns: *this.

template<class U1, class U2> constexpr tuple& operator=(pair<U1, U2>&& u);

33 Constraints:
—(33.1) sizeof...(Types) is 2 and
—(33.2) is_assignable_v<T0&, U1> is true, and
—(33.3) is_assignable_v<T1&, U2> is true.

34 Effects: Assigns std::forward<U1>(u.first) to the first element of *this and
std::forward<U2>(u.second) to the second element of *this.

35 Returns: *this.
template<class U1, class U2> constexpr const tuple& operator=(pair<U1, U2>&& u) const;

36 Constraints:
—(36.1) sizeof...(Types) is 2,
—(36.2) is_assignable_v<const T0&, U1> is true, and
—(36.3) is_assignable_v<const T1&, U2> is true.

37 Effects: Assigns std::forward<U1>(u.first) to the first element and
std::forward<U2>(u.second) to the second element.

38 Returns: *this.
22.4.3.3 swap [tuple.swap]

constexpr void swap(tuple& rhs) noexcept(see below);
constexpr void swap(const tuple& rhs) const noexcept(see below);

1 Mandates:
—(1.1) For the first overload, (is_swappable_v<Types> && ...) is true.
—(1.2) For the second overload, (is_swappable_v<const Types> && ...) is true.

2 Preconditions: Each element in *this is swappable with (16.4.4.3) the corresponding element in rhs.
3 Effects: Calls swap for each element in *this and its corresponding element in rhs.
4 Throws: Nothing unless one of the element-wise swap calls throws an exception.
5 Remarks: The exception specification is equivalent to

—(5.1) (is_nothrow_swappable_v<Types> && ...) for the first overload and
—(5.2) (is_nothrow_swappable_v<const Types> && ...) for the second overload.

22.4.4 Tuple creation functions [tuple.creation]

template<class... TTypes>
constexpr tuple<unwrap_ref_decay_t<TTypes>...> make_tuple(TTypes&&... t);

1 Returns: tuple<unwrap_ref_decay_t<TTypes>...>(std::forward<TTypes>(t)...).
2 [Example 1:

int i; float j;
make_tuple(1, ref(i), cref(j))

creates a tuple of type tuple<int, int&, const float&>. —end example]

§ 22.4.4 666

© ISO/IEC N4910

template<class... TTypes>
constexpr tuple<TTypes&&...> forward_as_tuple(TTypes&&... t) noexcept;

3 Effects: Constructs a tuple of references to the arguments in t suitable for forwarding as arguments to a function.Because the result may contain references to temporary objects, a program shall ensure that the return value ofthis function does not outlive any of its arguments (e.g., the program should typically not store the result in anamed variable).
4 Returns: tuple<TTypes&&...>(std::forward<TTypes>(t)...).

template<class... TTypes>
constexpr tuple<TTypes&...> tie(TTypes&... t) noexcept;

5 Returns: tuple<TTypes&...>(t...). When an argument in t is ignore, assigning any value to the correspondingtuple element has no effect.
6 [Example 2: tie functions allow one to create tuples that unpack tuples into variables. ignore can be used for elements thatare not needed:

int i; std::string s;
tie(i, ignore, s) = make_tuple(42, 3.14, "C++");// i == 42, s == "C++"

—end example]
template<class... Tuples>

constexpr tuple<CTypes...> tuple_cat(Tuples&&... tpls);

7 In the following paragraphs, let Ti be the ith type in Tuples, Ui be remove_reference_t<Ti>, and tpi be the ithparameter in the function parameter pack tpls, where all indexing is zero-based.
8 Preconditions: For all i, Ui is the type cv i tuple<Argsi...>, where cv i is the (possibly empty) ith cv-qualifier-seqand Argsi is the template parameter pack representing the element types in Ui. Let Aik be the kth type in Argsi.For all Aik the following requirements are met:

—(8.1) If Ti is deduced as an lvalue reference type, then is_constructible_v<Aik, cv i Aik&> == true, otherwise
—(8.2) is_constructible_v<Aik, cv i Aik&&> == true.

9 Remarks: The types in CTypes are equal to the ordered sequence of the extended types Args0..., Args1...,
. . . , Argsn−1..., where n is equal to sizeof...(Tuples). Let ei... be the ith ordered sequence of tupleelements of the resulting tuple object corresponding to the type sequence Argsi.

10 Returns: A tuple object constructed by initializing the kith type element eik in ei... with
get<ki>(std::forward<Ti>(tpi))

for each valid ki and each group ei in order.
11 [Note 1: An implementation can support additional types in the template parameter pack Tuples that support the tuple-likeprotocol, such as pair and array. —end note]
22.4.5 Calling a function with a tuple of arguments [tuple.apply]

template<class F, class Tuple>
constexpr decltype(auto) apply(F&& f, Tuple&& t);

1 Effects: Given the exposition-only function:
namespace std {
template<class F, class Tuple, size_t... I>
constexpr decltype(auto) apply-impl(F&& f, Tuple&& t, index_sequence<I...>) {// exposition only
return INVOKE(std::forward<F>(f), get<I>(std::forward<Tuple>(t))...); // see 22.10.4

}
}

Equivalent to:
return apply-impl(std::forward<F>(f), std::forward<Tuple>(t),

make_index_sequence<tuple_size_v<remove_reference_t<Tuple>>>{});

§ 22.4.5 667

© ISO/IEC N4910

template<class T, class Tuple>
constexpr T make_from_tuple(Tuple&& t);

2 Mandates: If tuple_size_v<remove_reference_t<Tuple>> is 1, then reference_constructs_from_temporary_-
v<T, decltype(get<0>(declval<Tuple>()))> is false.

3 Effects: Given the exposition-only function:
namespace std {
template<class T, class Tuple, size_t... I>

requires is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...>
constexpr T make-from-tuple-impl(Tuple&& t, index_sequence<I...>) { // exposition only

return T(get<I>(std::forward<Tuple>(t))...);
}

}

Equivalent to:
return make-from-tuple-impl<T>(

std::forward<Tuple>(t),
make_index_sequence<tuple_size_v<remove_reference_t<Tuple>>>{});

[Note 1: The type of T must be supplied as an explicit template parameter, as it cannot be deduced from the argument list.—end note]
22.4.6 Tuple helper classes [tuple.helper]

template<class T> struct tuple_size;

1 All specializations of tuple_sizemeet the Cpp17UnaryTypeTrait requirements (21.3.2) with a base characteristicof integral_constant<size_t, N> for some N.
template<class... Types>

struct tuple_size<tuple<Types...>> : public integral_constant<size_t, sizeof...(Types)> { };

template<size_t I, class... Types>
struct tuple_element<I, tuple<Types...>> {
using type = TI;

};

2 Mandates: I < sizeof...(Types).
3 Type: TI is the type of the Ith element of Types, where indexing is zero-based.

template<class T> struct tuple_size<const T>;

4 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-formed whentreated as an unevaluated operand (7.2.3), then each specialization of the template meets theCpp17UnaryTypeTraitrequirements (21.3.2) with a base characteristic of
integral_constant<size_t, TS::value>

Otherwise, it has no member value.
5 Access checking is performed as if in a context unrelated to TS and T. Only the validity of the immediate contextof the expression is considered.

[Note 1: The compilation of the expression can result in side effects such as the instantiation of class template specializationsand function template specializations, the generation of implicitly-defined functions, and so on. Such side effects are not inthe “immediate context” and can result in the program being ill-formed. —end note]
6 In addition to being available via inclusion of the <tuple> header, the template is available when any of theheaders <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are included.

template<size_t I, class T> struct tuple_element<I, const T>;

7 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then each specialization of the templatemeets the Cpp17TransformationTrait requirements (21.3.2) with a member typedef type that names the type
add_const_t<TE>.

8 In addition to being available via inclusion of the <tuple> header, the template is available when any of theheaders <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are included.

§ 22.4.6 668

© ISO/IEC N4910

22.4.7 Element access [tuple.elem]

template<size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>&
get(tuple<Types...>& t) noexcept;

template<size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>&&
get(tuple<Types...>&& t) noexcept; // Note A

template<size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>&
get(const tuple<Types...>& t) noexcept; // Note B

template<size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>&& get(const tuple<Types...>&& t) noexcept;

1 Mandates: I < sizeof...(Types).
2 Returns: A reference to the Ith element of t, where indexing is zero-based.
3 [Note 1: [Note A] If a type T in Types is some reference type X&, the return type is X&, not X&&. However, if the element typeis a non-reference type T, the return type is T&&. —end note]
4 [Note 2: [Note B] Constness is shallow. If a type T in Types is some reference type X&, the return type is X&, not const X&.However, if the element type is a non-reference type T, the return type is const T&. This is consistent with how constness isdefined to work for non-static data members of reference type. —end note]

template<class T, class... Types>
constexpr T& get(tuple<Types...>& t) noexcept;

template<class T, class... Types>
constexpr T&& get(tuple<Types...>&& t) noexcept;

template<class T, class... Types>
constexpr const T& get(const tuple<Types...>& t) noexcept;

template<class T, class... Types>
constexpr const T&& get(const tuple<Types...>&& t) noexcept;

5 Mandates: The type T occurs exactly once in Types.
6 Returns: A reference to the element of t corresponding to the type T in Types.
7 [Example 1:

const tuple<int, const int, double, double> t(1, 2, 3.4, 5.6);
const int& i1 = get<int>(t); // OK, i1 has value 1
const int& i2 = get<const int>(t); // OK, i2 has value 2
const double& d = get<double>(t); // error: type double is not unique within t
—end example]

8 [Note 3: The reason get is a non-member function is that if this functionality had been provided as a member function, code wherethe type depended on a template parameter would have required using the template keyword. —end note]
22.4.8 Relational operators [tuple.rel]

template<class... TTypes, class... UTypes>
constexpr bool operator==(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

1 Mandates: For all i, where 0 ≤ i < sizeof...(TTypes), get<i>(t) == get<i>(u) is a valid expressionreturning a type that is convertible to bool. sizeof...(TTypes) equals sizeof...(UTypes).
2 Returns: true if get<i>(t) == get<i>(u) for all i, otherwise false. For any two zero-length tuples e and f, e

== f returns true.
3 Remarks: The elementary comparisons are performed in order from the zeroth index upwards. No comparisonsor element accesses are performed after the first equality comparison that evaluates to false.

template<class... TTypes, class... UTypes>
constexpr common_comparison_category_t<synth-three-way-result<TTypes, UTypes>...>
operator<=>(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

4 Effects: Performs a lexicographical comparison between t and u. For any two zero-length tuples t and u, t <=>
u returns strong_ordering::equal. Otherwise, equivalent to:
if (auto c = synth-three-way(get<0>(t), get<0>(u)); c != 0) return c;

§ 22.4.8 669

© ISO/IEC N4910

return ttail <=> utail;

where rtail for some tuple r is a tuple containing all but the first element of r.
5 [Note 1: The above definition does not require ttail (or utail) to be constructed. It might not even be possible, as t and u are notrequired to be copy constructible. Also, all comparison operator functions are short circuited; they do not perform element accessesbeyond what is required to determine the result of the comparison. —end note]
22.4.9 Tuple traits [tuple.traits]

template<class... Types, class Alloc>
struct uses_allocator<tuple<Types...>, Alloc> : true_type { };

1 Preconditions: Alloc meets the Cpp17Allocator requirements (16.4.4.6.1).
2 [Note 1: Specialization of this trait informs other library components that tuple can be constructed with an allocator, eventhough it does not have a nested allocator_type. —end note]
22.4.10 Tuple specialized algorithms [tuple.special]

template<class... Types>
constexpr void swap(tuple<Types...>& x, tuple<Types...>& y) noexcept(see below);

template<class... Types>
constexpr void swap(const tuple<Types...>& x, const tuple<Types...>& y) noexcept(see below);

1 Constraints:
—(1.1) For the first overload, (is_swappable_v<Types> && ...) is true.
—(1.2) For the second overload, (is_swappable_v<const Types> && ...) is true.

2 Effects: As if by x.swap(y).
3 Remarks: The exception specification is equivalent to:

noexcept(x.swap(y))

22.5 Optional objects [optional]
22.5.1 In general [optional.general]

1 Subclause 22.5 describes class template optional that represents optional objects. An optional object is an object thatcontains the storage for another object and manages the lifetime of this contained object, if any. The contained objectmay be initialized after the optional object has been initialized, and may be destroyed before the optional object hasbeen destroyed. The initialization state of the contained object is tracked by the optional object.
22.5.2 Header <optional> synopsis [optional.syn]
#include <compare> // see 17.11.1
namespace std {// 22.5.3, class template optional

template<class T>
class optional;

template<class T>
constexpr bool is-optional = false; // exposition only

template<class T>
constexpr bool is-optional<optional<T>> = true; // exposition only

// 22.5.4, no-value state indicator
struct nullopt_t{see below};
inline constexpr nullopt_t nullopt(unspecified);

// 22.5.5, class bad_optional_access
class bad_optional_access;

// 22.5.6, relational operators
template<class T, class U>

constexpr bool operator==(const optional<T>&, const optional<U>&);

§ 22.5.2 670

© ISO/IEC N4910

template<class T, class U>
constexpr bool operator!=(const optional<T>&, const optional<U>&);

template<class T, class U>
constexpr bool operator<(const optional<T>&, const optional<U>&);

template<class T, class U>
constexpr bool operator>(const optional<T>&, const optional<U>&);

template<class T, class U>
constexpr bool operator<=(const optional<T>&, const optional<U>&);

template<class T, class U>
constexpr bool operator>=(const optional<T>&, const optional<U>&);

template<class T, three_way_comparable_with<T> U>
constexpr compare_three_way_result_t<T, U>

operator<=>(const optional<T>&, const optional<U>&);

// 22.5.7, comparison with nullopt
template<class T> constexpr bool operator==(const optional<T>&, nullopt_t) noexcept;
template<class T>
constexpr strong_ordering operator<=>(const optional<T>&, nullopt_t) noexcept;

// 22.5.8, comparison with T
template<class T, class U> constexpr bool operator==(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator==(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator!=(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator!=(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator<(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator<(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator>(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator>(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator<=(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator<=(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator>=(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator>=(const T&, const optional<U>&);
template<class T, class U> requires (!is-optional<U>) && three_way_comparable_with<T, U>
constexpr compare_three_way_result_t<T, U>

operator<=>(const optional<T>&, const U&);

// 22.5.9, specialized algorithms
template<class T>
constexpr void swap(optional<T>&, optional<T>&) noexcept(see below);

template<class T>
constexpr optional<see below> make_optional(T&&);

template<class T, class... Args>
constexpr optional<T> make_optional(Args&&... args);

template<class T, class U, class... Args>
constexpr optional<T> make_optional(initializer_list<U> il, Args&&... args);

// 22.5.10, hash support
template<class T> struct hash;
template<class T> struct hash<optional<T>>;

}

22.5.3 Class template optional [optional.optional]
22.5.3.1 General [optional.optional.general]
namespace std {

template<class T>
class optional {
public:
using value_type = T;

// 22.5.3.2, constructors
constexpr optional() noexcept;
constexpr optional(nullopt_t) noexcept;

§ 22.5.3.1 671

© ISO/IEC N4910

constexpr optional(const optional&);
constexpr optional(optional&&) noexcept(see below);
template<class... Args>

constexpr explicit optional(in_place_t, Args&&...);
template<class U, class... Args>

constexpr explicit optional(in_place_t, initializer_list<U>, Args&&...);
template<class U = T>

constexpr explicit(see below) optional(U&&);
template<class U>

constexpr explicit(see below) optional(const optional<U>&);
template<class U>

constexpr explicit(see below) optional(optional<U>&&);

// 22.5.3.3, destructor
constexpr ~optional();

// 22.5.3.4, assignment
constexpr optional& operator=(nullopt_t) noexcept;
constexpr optional& operator=(const optional&);
constexpr optional& operator=(optional&&) noexcept(see below);
template<class U = T> constexpr optional& operator=(U&&);
template<class U> constexpr optional& operator=(const optional<U>&);
template<class U> constexpr optional& operator=(optional<U>&&);
template<class... Args> constexpr T& emplace(Args&&...);
template<class U, class... Args> constexpr T& emplace(initializer_list<U>, Args&&...);

// 22.5.3.5, swap
constexpr void swap(optional&) noexcept(see below);

// 22.5.3.6, observers
constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;
constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;
constexpr T&& operator*() && noexcept;
constexpr const T&& operator*() const && noexcept;
constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;
constexpr const T& value() const &;
constexpr T& value() &;
constexpr T&& value() &&;
constexpr const T&& value() const &&;
template<class U> constexpr T value_or(U&&) const &;
template<class U> constexpr T value_or(U&&) &&;

// 22.5.3.7, monadic operations
template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &;
template<class F> constexpr auto and_then(F&& f) const &&;
template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &;
template<class F> constexpr auto transform(F&& f) const &&;
template<class F> constexpr optional or_else(F&& f) &&;
template<class F> constexpr optional or_else(F&& f) const &;

// 22.5.3.8, modifiers
constexpr void reset() noexcept;

private:
T *val; // exposition only

};

§ 22.5.3.1 672

© ISO/IEC N4910

template<class T>
optional(T) -> optional<T>;

}

1 Any instance of optional<T> at any given time either contains a value or does not contain a value. When an instance of
optional<T> contains a value, it means that an object of type T, referred to as the optional object’s contained value, isallocated within the storage of the optional object. Implementations are not permitted to use additional storage, such asdynamic memory, to allocate its contained value. The contained value shall be allocated in a region of the optional<T>storage suitably aligned for the type T. When an object of type optional<T> is contextually converted to bool, theconversion returns true if the object contains a value; otherwise the conversion returns false.

2 Member val is provided for exposition only. When an optional<T> object contains a value, val points to the containedvalue.
3 T shall be a type other than cv in_place_t or cv nullopt_t that meets the Cpp17Destructible requirements (Table 34).
22.5.3.2 Constructors [optional.ctor]

constexpr optional() noexcept;
constexpr optional(nullopt_t) noexcept;

1 Postconditions: *this does not contain a value.
2 Remarks: No contained value is initialized. For every object type T these constructors are constexpr constructors(9.2.6).

constexpr optional(const optional& rhs);

3 Effects: If rhs contains a value, direct-non-list-initializes the contained value with *rhs.
4 Postconditions: rhs.has_value() == this->has_value().
5 Throws: Any exception thrown by the selected constructor of T.
6 Remarks: This constructor is defined as deleted unless is_copy_constructible_v<T> is true. If is_trivially_-

copy_constructible_v<T> is true, this constructor is trivial.
constexpr optional(optional&& rhs) noexcept(see below);

7 Constraints: is_move_constructible_v<T> is true.
8 Effects: If rhs contains a value, direct-non-list-initializes the contained value with std::move(*rhs). rhs.has_-

value() is unchanged.
9 Postconditions: rhs.has_value() == this->has_value().
10 Throws: Any exception thrown by the selected constructor of T.
11 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<T>. If is_trivially_-

move_constructible_v<T> is true, this constructor is trivial.
template<class... Args> constexpr explicit optional(in_place_t, Args&&... args);

12 Constraints: is_constructible_v<T, Args...> is true.
13 Effects: Direct-non-list-initializes the contained value with std::forward<Args>(args)....
14 Postconditions: *this contains a value.
15 Throws: Any exception thrown by the selected constructor of T.
16 Remarks: If T’s constructor selected for the initialization is a constexpr constructor, this constructor is a constexprconstructor.

template<class U, class... Args>
constexpr explicit optional(in_place_t, initializer_list<U> il, Args&&... args);

17 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true.
18 Effects: Direct-non-list-initializes the contained value with il, std::forward<Args>(args)....
19 Postconditions: *this contains a value.
20 Throws: Any exception thrown by the selected constructor of T.

§ 22.5.3.2 673

© ISO/IEC N4910

21 Remarks: If T’s constructor selected for the initialization is a constexpr constructor, this constructor is a constexprconstructor.
template<class U = T> constexpr explicit(see below) optional(U&& v);

22 Constraints: is_constructible_v<T, U> is true, is_same_v<remove_cvref_t<U>, in_place_t> is false, and
is_same_v<remove_cvref_t<U>, optional> is false.

23 Effects: Direct-non-list-initializes the contained value with std::forward<U>(v).
24 Postconditions: *this contains a value.
25 Throws: Any exception thrown by the selected constructor of T.
26 Remarks: If T’s selected constructor is a constexpr constructor, this constructor is a constexpr constructor. Theexpression inside explicit is equivalent to:

!is_convertible_v<U, T>

template<class U> constexpr explicit(see below) optional(const optional<U>& rhs);

27 Constraints:
—(27.1) is_constructible_v<T, const U&> is true,
—(27.2) is_constructible_v<T, optional<U>&> is false,
—(27.3) is_constructible_v<T, optional<U>&&> is false,
—(27.4) is_constructible_v<T, const optional<U>&> is false,
—(27.5) is_constructible_v<T, const optional<U>&&> is false,
—(27.6) is_convertible_v<optional<U>&, T> is false,
—(27.7) is_convertible_v<optional<U>&&, T> is false,
—(27.8) is_convertible_v<const optional<U>&, T> is false, and
—(27.9) is_convertible_v<const optional<U>&&, T> is false.

28 Effects: If rhs contains a value, direct-non-list-initializes the contained value with *rhs.
29 Postconditions: rhs.has_value() == this->has_value().
30 Throws: Any exception thrown by the selected constructor of T.
31 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<const U&, T>

template<class U> constexpr explicit(see below) optional(optional<U>&& rhs);

32 Constraints:
—(32.1) is_constructible_v<T, U> is true,
—(32.2) is_constructible_v<T, optional<U>&> is false,
—(32.3) is_constructible_v<T, optional<U>&&> is false,
—(32.4) is_constructible_v<T, const optional<U>&> is false,
—(32.5) is_constructible_v<T, const optional<U>&&> is false,
—(32.6) is_convertible_v<optional<U>&, T> is false,
—(32.7) is_convertible_v<optional<U>&&, T> is false,
—(32.8) is_convertible_v<const optional<U>&, T> is false, and
—(32.9) is_convertible_v<const optional<U>&&, T> is false.

33 Effects: If rhs contains a value, direct-non-list-initializes the contained value with std::move(*rhs). rhs.has_-
value() is unchanged.

34 Postconditions: rhs.has_value() == this->has_value().
35 Throws: Any exception thrown by the selected constructor of T.
36 Remarks: The expression inside explicit is equivalent to:
§ 22.5.3.2 674

© ISO/IEC N4910

!is_convertible_v<U, T>

22.5.3.3 Destructor [optional.dtor]

constexpr ~optional();
1 Effects: If is_trivially_destructible_v<T> != true and *this contains a value, calls

val->T::~T()
2 Remarks: If is_trivially_destructible_v<T> is true, then this destructor is trivial.
22.5.3.4 Assignment [optional.assign]

constexpr optional<T>& operator=(nullopt_t) noexcept;

1 Effects: If *this contains a value, calls val->T::~T() to destroy the contained value; otherwise no effect.
2 Postconditions: *this does not contain a value.
3 Returns: *this.

constexpr optional<T>& operator=(const optional& rhs);

4 Effects: See Table 57.
Table 57: optional::operator=(const optional&) effects [tab:optional.assign.copy]

*this contains a value *this does not contain a value

rhs contains a value assigns *rhs to the containedvalue direct-non-list-initializes the con-tained value with *rhs
rhs does not contain

a value
destroys the contained value bycalling val->T::~T() no effect

5 Postconditions: rhs.has_value() == this->has_value().
6 Returns: *this.
7 Remarks: If any exception is thrown, the result of the expression this->has_value() remains unchanged. Ifan exception is thrown during the call to T’s copy constructor, no effect. If an exception is thrown during thecall to T’s copy assignment, the state of its contained value is as defined by the exception safety guarantee of

T’s copy assignment. This operator is defined as deleted unless is_copy_constructible_v<T> is true and
is_copy_assignable_v<T> is true. If is_trivially_copy_constructible_v<T> && is_trivially_copy_-
assignable_v<T> && is_trivially_destructible_v<T> is true, this assignment operator is trivial.

constexpr optional& operator=(optional&& rhs) noexcept(see below);

8 Constraints: is_move_constructible_v<T> is true and is_move_assignable_v<T> is true.
9 Effects: See Table 58. The result of the expression rhs.has_value() remains unchanged.

Table 58: optional::operator=(optional&&) effects [tab:optional.assign.move]
*this contains a value *this does not contain a value

rhs contains a value assigns std::move(*rhs) to thecontained value
direct-non-list-initializesthe contained value with
std::move(*rhs)

rhs does not contain
a value

destroys the contained value bycalling val->T::~T() no effect

10 Postconditions: rhs.has_value() == this->has_value().
11 Returns: *this.
12 Remarks: The exception specification is equivalent to:

is_nothrow_move_assignable_v<T> && is_nothrow_move_constructible_v<T>

§ 22.5.3.4 675

© ISO/IEC N4910

13 If any exception is thrown, the result of the expression this->has_value() remains unchanged. If an exceptionis thrown during the call to T’s move constructor, the state of *rhs.val is determined by the exception safetyguarantee of T’s move constructor. If an exception is thrown during the call to T’s move assignment, the state of
*val and *rhs.val is determined by the exception safety guarantee of T’s move assignment. If is_trivially_-
move_constructible_v<T> && is_trivially_move_assignable_v<T> && is_trivially_destructible_v<T>is true, this assignment operator is trivial.

template<class U = T> constexpr optional<T>& operator=(U&& v);

14 Constraints: is_same_v<remove_cvref_t<U>, optional> is false, conjunction_v<is_scalar<T>, is_same<T,
decay_t<U>>> is false, is_constructible_v<T, U> is true, and is_assignable_v<T&, U> is true.

15 Effects: If *this contains a value, assigns std::forward<U>(v) to the contained value; otherwise direct-non-list-initializes the contained value with std::forward<U>(v).
16 Postconditions: *this contains a value.
17 Returns: *this.
18 Remarks: If any exception is thrown, the result of the expression this->has_value() remains unchanged. Ifan exception is thrown during the call to T’s constructor, the state of v is determined by the exception safetyguarantee of T’s constructor. If an exception is thrown during the call to T’s assignment, the state of *val and v isdetermined by the exception safety guarantee of T’s assignment.

template<class U> constexpr optional<T>& operator=(const optional<U>& rhs);

19 Constraints:
—(19.1) is_constructible_v<T, const U&> is true,
—(19.2) is_assignable_v<T&, const U&> is true,
—(19.3) is_constructible_v<T, optional<U>&> is false,
—(19.4) is_constructible_v<T, optional<U>&&> is false,
—(19.5) is_constructible_v<T, const optional<U>&> is false,
—(19.6) is_constructible_v<T, const optional<U>&&> is false,
—(19.7) is_convertible_v<optional<U>&, T> is false,
—(19.8) is_convertible_v<optional<U>&&, T> is false,
—(19.9) is_convertible_v<const optional<U>&, T> is false,
—(19.10) is_convertible_v<const optional<U>&&, T> is false,
—(19.11) is_assignable_v<T&, optional<U>&> is false,
—(19.12) is_assignable_v<T&, optional<U>&&> is false,
—(19.13) is_assignable_v<T&, const optional<U>&> is false, and
—(19.14) is_assignable_v<T&, const optional<U>&&> is false.

20 Effects: See Table 59.
Table 59: optional::operator=(const optional<U>&) effects [tab:optional.assign.copy.templ]

*this contains a value *this does not contain a value

rhs contains a value assigns *rhs to the containedvalue direct-non-list-initializes the con-tained value with *rhs
rhs does not contain

a value
destroys the contained value bycalling val->T::~T() no effect

21 Postconditions: rhs.has_value() == this->has_value().
22 Returns: *this.
23 Remarks: If any exception is thrown, the result of the expression this->has_value() remains unchanged. If anexception is thrown during the call to T’s constructor, the state of *rhs.val is determined by the exception safety

§ 22.5.3.4 676

© ISO/IEC N4910

guarantee of T’s constructor. If an exception is thrown during the call to T’s assignment, the state of *val and
*rhs.val is determined by the exception safety guarantee of T’s assignment.

template<class U> constexpr optional<T>& operator=(optional<U>&& rhs);

24 Constraints:
—(24.1) is_constructible_v<T, U> is true,
—(24.2) is_assignable_v<T&, U> is true,
—(24.3) is_constructible_v<T, optional<U>&> is false,
—(24.4) is_constructible_v<T, optional<U>&&> is false,
—(24.5) is_constructible_v<T, const optional<U>&> is false,
—(24.6) is_constructible_v<T, const optional<U>&&> is false,
—(24.7) is_convertible_v<optional<U>&, T> is false,
—(24.8) is_convertible_v<optional<U>&&, T> is false,
—(24.9) is_convertible_v<const optional<U>&, T> is false,
—(24.10) is_convertible_v<const optional<U>&&, T> is false,
—(24.11) is_assignable_v<T&, optional<U>&> is false,
—(24.12) is_assignable_v<T&, optional<U>&&> is false,
—(24.13) is_assignable_v<T&, const optional<U>&> is false, and
—(24.14) is_assignable_v<T&, const optional<U>&&> is false.

25 Effects: See Table 60. The result of the expression rhs.has_value() remains unchanged.
Table 60: optional::operator=(optional<U>&&) effects [tab:optional.assign.move.templ]

*this contains a value *this does not contain a value

rhs contains a value assigns std::move(*rhs) to thecontained value
direct-non-list-initializesthe contained value with
std::move(*rhs)

rhs does not contain
a value

destroys the contained value bycalling val->T::~T() no effect

26 Postconditions: rhs.has_value() == this->has_value().
27 Returns: *this.
28 Remarks: If any exception is thrown, the result of the expression this->has_value() remains unchanged. If anexception is thrown during the call to T’s constructor, the state of *rhs.val is determined by the exception safetyguarantee of T’s constructor. If an exception is thrown during the call to T’s assignment, the state of *val and

*rhs.val is determined by the exception safety guarantee of T’s assignment.
template<class... Args> constexpr T& emplace(Args&&... args);

29 Mandates: is_constructible_v<T, Args...> is true.
30 Effects: Calls *this = nullopt. Then direct-non-list-initializes the contained valuewith std::forward<Args>(args)....
31 Postconditions: *this contains a value.
32 Returns: A reference to the new contained value.
33 Throws: Any exception thrown by the selected constructor of T.
34 Remarks: If an exception is thrown during the call to T’s constructor, *this does not contain a value, and theprevious *val (if any) has been destroyed.

template<class U, class... Args> constexpr T& emplace(initializer_list<U> il, Args&&... args);

35 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true.
36 Effects: Calls *this = nullopt. Then direct-non-list-initializes the contained valuewith il, std::forward<Args>(args)....
§ 22.5.3.4 677

© ISO/IEC N4910

37 Postconditions: *this contains a value.
38 Returns: A reference to the new contained value.
39 Throws: Any exception thrown by the selected constructor of T.
40 Remarks: If an exception is thrown during the call to T’s constructor, *this does not contain a value, and theprevious *val (if any) has been destroyed.
22.5.3.5 Swap [optional.swap]

constexpr void swap(optional& rhs) noexcept(see below);

1 Mandates: is_move_constructible_v<T> is true.
2 Preconditions: Lvalues of type T are swappable.
3 Effects: See Table 61.

Table 61: optional::swap(optional&) effects [tab:optional.swap]
*this contains a value *this does not contain a value

rhs contains a value calls swap(*(*this), *rhs)

direct-non-list-initializes thecontained value of *this with
std::move(*rhs), followed by
rhs.val->T::~T(); postcon-dition is that *this contains avalue and rhs does not contain avalue

rhs does not contain
a value

direct-non-list-initializes thecontained value of rhs with
std::move(*(*this)), fol-lowed by val->T::~T();postcondition is that *this doesnot contain a value and rhscontains a value

no effect

4 Throws: Any exceptions thrown by the operations in the relevant part of Table 61.
5 Remarks: The exception specification is equivalent to:

is_nothrow_move_constructible_v<T> && is_nothrow_swappable_v<T>

6 If any exception is thrown, the results of the expressions this->has_value() and rhs.has_value() remainunchanged. If an exception is thrown during the call to function swap, the state of *val and *rhs.val isdetermined by the exception safety guarantee of swap for lvalues of T. If an exception is thrown during the callto T’s move constructor, the state of *val and *rhs.val is determined by the exception safety guarantee of T’smove constructor.
22.5.3.6 Observers [optional.observe]

constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;

1 Preconditions: *this contains a value.
2 Returns: val.
3 Remarks: These functions are constexpr functions.

constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;

4 Preconditions: *this contains a value.
5 Returns: *val.
6 Remarks: These functions are constexpr functions.

§ 22.5.3.6 678

© ISO/IEC N4910

constexpr T&& operator*() && noexcept;
constexpr const T&& operator*() const && noexcept;

7 Preconditions: *this contains a value.
8 Effects: Equivalent to: return std::move(*val);

constexpr explicit operator bool() const noexcept;

9 Returns: true if and only if *this contains a value.
10 Remarks: This function is a constexpr function.

constexpr bool has_value() const noexcept;

11 Returns: true if and only if *this contains a value.
12 Remarks: This function is a constexpr function.

constexpr const T& value() const &;
constexpr T& value() &;

13 Effects: Equivalent to:
return has_value() ? *val : throw bad_optional_access();

constexpr T&& value() &&;
constexpr const T&& value() const &&;

14 Effects: Equivalent to:
return has_value() ? std::move(*val) : throw bad_optional_access();

template<class U> constexpr T value_or(U&& v) const &;

15 Mandates: is_copy_constructible_v<T> && is_convertible_v<U&&, T> is true.
16 Effects: Equivalent to:

return has_value() ? **this : static_cast<T>(std::forward<U>(v));

template<class U> constexpr T value_or(U&& v) &&;

17 Mandates: is_move_constructible_v<T> && is_convertible_v<U&&, T> is true.
18 Effects: Equivalent to:

return has_value() ? std::move(**this) : static_cast<T>(std::forward<U>(v));

22.5.3.7 Monadic operations [optional.monadic]

template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) const &;

1 Let U be invoke_result_t<F, decltype(value())>.
2 Mandates: remove_cvref_t<U> is a specialization of optional.
3 Effects: Equivalent to:

if (*this) {
return invoke(std::forward<F>(f), value());

} else {
return remove_cvref_t<U>();

}

template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &&;

4 Let U be invoke_result_t<F, decltype(std::move(value()))>.
5 Mandates: remove_cvref_t<U> is a specialization of optional.
6 Effects: Equivalent to:

if (*this) {
return invoke(std::forward<F>(f), std::move(value()));

} else {

§ 22.5.3.7 679

© ISO/IEC N4910

return remove_cvref_t<U>();
}

template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) const &;

7 Let U be remove_cv_t<invoke_result_t<F, decltype(value())>>.
8 Mandates: U is a non-array object type other than in_place_t or nullopt_t. The declaration

U u(invoke(std::forward<F>(f), value()));

is well-formed for some invented variable u.
[Note 1: There is no requirement that U is movable (9.4.1). —end note]

9 Returns: If *this contains a value, an optional<U> object whose contained value is direct-non-list-initializedwith invoke(std::forward<F>(f), value()); otherwise, optional<U>().
template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &&;

10 Let U be remove_cv_t<invoke_result_t<F, decltype(std::move(value()))>>.
11 Mandates: U is a non-array object type other than in_place_t or nullopt_t. The declaration

U u(invoke(std::forward<F>(f), std::move(value())));

is well-formed for some invented variable u.
[Note 2: There is no requirement that U is movable (9.4.1). —end note]

12 Returns: If *this contains a value, an optional<U> object whose contained value is direct-non-list-initializedwith invoke(std::forward<F>(f), std::move(value())); otherwise, optional<U>().
template<class F> constexpr optional or_else(F&& f) const &;

13 Constraints: F models invocable<> and T models copy_constructible.
14 Mandates: is_same_v<remove_cvref_t<invoke_result_t<F>>, optional> is true.
15 Effects: Equivalent to:

if (*this) {
return *this;

} else {
return std::forward<F>(f)();

}

template<class F> constexpr optional or_else(F&& f) &&;

16 Constraints: F models invocable<> and T models move_constructible.
17 Mandates: is_same_v<remove_cvref_t<invoke_result_t<F>>, optional> is true.
18 Effects: Equivalent to:

if (*this) {
return std::move(*this);

} else {
return std::forward<F>(f)();

}

22.5.3.8 Modifiers [optional.mod]

constexpr void reset() noexcept;

1 Effects: If *this contains a value, calls val->T::~T() to destroy the contained value; otherwise no effect.
2 Postconditions: *this does not contain a value.
22.5.4 No-value state indicator [optional.nullopt]

struct nullopt_t{see below};
inline constexpr nullopt_t nullopt(unspecified);

§ 22.5.4 680

© ISO/IEC N4910

1 The struct nullopt_t is an empty class type used as a unique type to indicate the state of not containing a value for
optional objects. In particular, optional<T> has a constructor with nullopt_t as a single argument; this indicates thatan optional object not containing a value shall be constructed.

2 Type nullopt_t shall not have a default constructor or an initializer-list constructor, and shall not be an aggregate.
22.5.5 Class bad_optional_access [optional.bad.access]
namespace std {

class bad_optional_access : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_optional_access defines the type of objects thrown as exceptions to report the situation where anattempt is made to access the value of an optional object that does not contain a value.
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
22.5.6 Relational operators [optional.relops]

template<class T, class U> constexpr bool operator==(const optional<T>& x, const optional<U>& y);

1 Mandates: The expression *x == *y is well-formed and its result is convertible to bool.
[Note 1: T need not be Cpp17EqualityComparable. —end note]

2 Returns: If x.has_value() != y.has_value(), false; otherwise if x.has_value() == false, true; otherwise
*x == *y.

3 Remarks: Specializations of this function template for which *x == *y is a core constant expression are constexprfunctions.
template<class T, class U> constexpr bool operator!=(const optional<T>& x, const optional<U>& y);

4 Mandates: The expression *x != *y is well-formed and its result is convertible to bool.
5 Returns: If x.has_value() != y.has_value(), true; otherwise, if x.has_value() == false, false; otherwise

*x != *y.
6 Remarks: Specializations of this function template for which *x != *y is a core constant expression are constexprfunctions.

template<class T, class U> constexpr bool operator<(const optional<T>& x, const optional<U>& y);

7 Mandates: *x < *y is well-formed and its result is convertible to bool.
8 Returns: If !y, false; otherwise, if !x, true; otherwise *x < *y.
9 Remarks: Specializations of this function template for which *x < *y is a core constant expression are constexprfunctions.

template<class T, class U> constexpr bool operator>(const optional<T>& x, const optional<U>& y);

10 Mandates: The expression *x > *y is well-formed and its result is convertible to bool.
11 Returns: If !x, false; otherwise, if !y, true; otherwise *x > *y.
12 Remarks: Specializations of this function template for which *x > *y is a core constant expression are constexprfunctions.

template<class T, class U> constexpr bool operator<=(const optional<T>& x, const optional<U>& y);

13 Mandates: The expression *x <= *y is well-formed and its result is convertible to bool.
14 Returns: If !x, true; otherwise, if !y, false; otherwise *x <= *y.
15 Remarks: Specializations of this function template for which *x <= *y is a core constant expression are constexprfunctions.

§ 22.5.6 681

© ISO/IEC N4910

template<class T, class U> constexpr bool operator>=(const optional<T>& x, const optional<U>& y);

16 Mandates: The expression *x >= *y is well-formed and its result is convertible to bool.
17 Returns: If !y, true; otherwise, if !x, false; otherwise *x >= *y.
18 Remarks: Specializations of this function template for which *x >= *y is a core constant expression are constexprfunctions.

template<class T, three_way_comparable_with<T> U>
constexpr compare_three_way_result_t<T, U>
operator<=>(const optional<T>& x, const optional<U>& y);

19 Returns: If x && y, *x <=> *y; otherwise x.has_value() <=> y.has_value().
20 Remarks: Specializations of this function template for which *x <=> *y is a core constant expression are constexprfunctions.
22.5.7 Comparison with nullopt [optional.nullops]

template<class T> constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept;

1 Returns: !x.
template<class T> constexpr strong_ordering operator<=>(const optional<T>& x, nullopt_t) noexcept;

2 Returns: x.has_value() <=> false.
22.5.8 Comparison with T [optional.comp.with.t]

template<class T, class U> constexpr bool operator==(const optional<T>& x, const U& v);

1 Mandates: The expression *x == v is well-formed and its result is convertible to bool.
[Note 1: T need not be Cpp17EqualityComparable. —end note]

2 Effects: Equivalent to: return x.has_value() ? *x == v : false;

template<class T, class U> constexpr bool operator==(const T& v, const optional<U>& x);

3 Mandates: The expression v == *x is well-formed and its result is convertible to bool.
4 Effects: Equivalent to: return x.has_value() ? v == *x : false;

template<class T, class U> constexpr bool operator!=(const optional<T>& x, const U& v);

5 Mandates: The expression *x != v is well-formed and its result is convertible to bool.
6 Effects: Equivalent to: return x.has_value() ? *x != v : true;

template<class T, class U> constexpr bool operator!=(const T& v, const optional<U>& x);

7 Mandates: The expression v != *x is well-formed and its result is convertible to bool.
8 Effects: Equivalent to: return x.has_value() ? v != *x : true;

template<class T, class U> constexpr bool operator<(const optional<T>& x, const U& v);

9 Mandates: The expression *x < v is well-formed and its result is convertible to bool.
10 Effects: Equivalent to: return x.has_value() ? *x < v : true;

template<class T, class U> constexpr bool operator<(const T& v, const optional<U>& x);

11 Mandates: The expression v < *x is well-formed and its result is convertible to bool.
12 Effects: Equivalent to: return x.has_value() ? v < *x : false;

template<class T, class U> constexpr bool operator>(const optional<T>& x, const U& v);

13 Mandates: The expression *x > v is well-formed and its result is convertible to bool.
14 Effects: Equivalent to: return x.has_value() ? *x > v : false;

template<class T, class U> constexpr bool operator>(const T& v, const optional<U>& x);

15 Mandates: The expression v > *x is well-formed and its result is convertible to bool.
§ 22.5.8 682

© ISO/IEC N4910

16 Effects: Equivalent to: return x.has_value() ? v > *x : true;

template<class T, class U> constexpr bool operator<=(const optional<T>& x, const U& v);

17 Mandates: The expression *x <= v is well-formed and its result is convertible to bool.
18 Effects: Equivalent to: return x.has_value() ? *x <= v : true;

template<class T, class U> constexpr bool operator<=(const T& v, const optional<U>& x);

19 Mandates: The expression v <= *x is well-formed and its result is convertible to bool.
20 Effects: Equivalent to: return x.has_value() ? v <= *x : false;

template<class T, class U> constexpr bool operator>=(const optional<T>& x, const U& v);

21 Mandates: The expression *x >= v is well-formed and its result is convertible to bool.
22 Effects: Equivalent to: return x.has_value() ? *x >= v : false;

template<class T, class U> constexpr bool operator>=(const T& v, const optional<U>& x);

23 Mandates: The expression v >= *x is well-formed and its result is convertible to bool.
24 Effects: Equivalent to: return x.has_value() ? v >= *x : true;

template<class T, class U> requires (!is-optional<U>) && three_way_comparable_with<T, U>
constexpr compare_three_way_result_t<T, U>
operator<=>(const optional<T>& x, const U& v);

25 Effects: Equivalent to: return x.has_value() ? *x <=> v : strong_ordering::less;

22.5.9 Specialized algorithms [optional.specalg]

template<class T>
constexpr void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_move_constructible_v<T> is true and is_swappable_v<T> is true.
2 Effects: Calls x.swap(y).

template<class T> constexpr optional<decay_t<T>> make_optional(T&& v);

3 Returns: optional<decay_t<T>>(std::forward<T>(v)).
template<class T, class...Args>

constexpr optional<T> make_optional(Args&&... args);

4 Effects: Equivalent to: return optional<T>(in_place, std::forward<Args>(args)...);

template<class T, class U, class... Args>
constexpr optional<T> make_optional(initializer_list<U> il, Args&&... args);

5 Effects: Equivalent to: return optional<T>(in_place, il, std::forward<Args>(args)...);

22.5.10 Hash support [optional.hash]

template<class T> struct hash<optional<T>>;

1 The specialization hash<optional<T>> is enabled (22.10.19) if and only if hash<remove_const_t<T>> is enabled.When enabled, for an object o of type optional<T>, if o.has_value() == true, then hash<optional<T>>()(o)evaluates to the same value as hash<remove_const_t<T>>()(*o); otherwise it evaluates to an unspecified value.The member functions are not guaranteed to be noexcept.
22.6 Variants [variant]
22.6.1 In general [variant.general]

1 A variant object holds and manages the lifetime of a value. If the variant holds a value, that value’s type has to be oneof the template argument types given to variant. These template arguments are called alternatives.
22.6.2 Header <variant> synopsis [variant.syn]
#include <compare> // see 17.11.1

§ 22.6.2 683

© ISO/IEC N4910

namespace std {// 22.6.3, class template variant
template<class... Types>
class variant;

// 22.6.4, variant helper classes
template<class T> struct variant_size; // not defined
template<class T> struct variant_size<const T>;
template<class T>

inline constexpr size_t variant_size_v = variant_size<T>::value;

template<class... Types>
struct variant_size<variant<Types...>>;

template<size_t I, class T> struct variant_alternative; // not defined
template<size_t I, class T> struct variant_alternative<I, const T>;
template<size_t I, class T>

using variant_alternative_t = typename variant_alternative<I, T>::type;

template<size_t I, class... Types>
struct variant_alternative<I, variant<Types...>>;

inline constexpr size_t variant_npos = -1;

// 22.6.5, value access
template<class T, class... Types>

constexpr bool holds_alternative(const variant<Types...>&) noexcept;

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get(variant<Types...>&);

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get(variant<Types...>&&);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get(const variant<Types...>&);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get(const variant<Types...>&&);

template<class T, class... Types>
constexpr T& get(variant<Types...>&);

template<class T, class... Types>
constexpr T&& get(variant<Types...>&&);

template<class T, class... Types>
constexpr const T& get(const variant<Types...>&);

template<class T, class... Types>
constexpr const T&& get(const variant<Types...>&&);

template<size_t I, class... Types>
constexpr add_pointer_t<variant_alternative_t<I, variant<Types...>>>
get_if(variant<Types...>*) noexcept;

template<size_t I, class... Types>
constexpr add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>*) noexcept;

template<class T, class... Types>
constexpr add_pointer_t<T>
get_if(variant<Types...>*) noexcept;

template<class T, class... Types>
constexpr add_pointer_t<const T>
get_if(const variant<Types...>*) noexcept;

// 22.6.6, relational operators
template<class... Types>

constexpr bool operator==(const variant<Types...>&, const variant<Types...>&);

§ 22.6.2 684

© ISO/IEC N4910

template<class... Types>
constexpr bool operator!=(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator<(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator>(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator<=(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator>=(const variant<Types...>&, const variant<Types...>&);

template<class... Types> requires (three_way_comparable<Types> && ...)
constexpr common_comparison_category_t<compare_three_way_result_t<Types>...>

operator<=>(const variant<Types...>&, const variant<Types...>&);

// 22.6.7, visitation
template<class Visitor, class... Variants>
constexpr see below visit(Visitor&&, Variants&&...);

template<class R, class Visitor, class... Variants>
constexpr R visit(Visitor&&, Variants&&...);

// 22.6.8, class monostate
struct monostate;

// 22.6.9, monostate relational operators
constexpr bool operator==(monostate, monostate) noexcept;
constexpr strong_ordering operator<=>(monostate, monostate) noexcept;

// 22.6.10, specialized algorithms
template<class... Types>
constexpr void swap(variant<Types...>&, variant<Types...>&) noexcept(see below);

// 22.6.11, class bad_variant_access
class bad_variant_access;

// 22.6.12, hash support
template<class T> struct hash;
template<class... Types> struct hash<variant<Types...>>;
template<> struct hash<monostate>;

}

22.6.3 Class template variant [variant.variant]
22.6.3.1 General [variant.variant.general]
namespace std {

template<class... Types>
class variant {
public:// 22.6.3.2, constructors
constexpr variant() noexcept(see below);
constexpr variant(const variant&);
constexpr variant(variant&&) noexcept(see below);

template<class T>
constexpr variant(T&&) noexcept(see below);

template<class T, class... Args>
constexpr explicit variant(in_place_type_t<T>, Args&&...);

template<class T, class U, class... Args>
constexpr explicit variant(in_place_type_t<T>, initializer_list<U>, Args&&...);

template<size_t I, class... Args>
constexpr explicit variant(in_place_index_t<I>, Args&&...);

template<size_t I, class U, class... Args>
constexpr explicit variant(in_place_index_t<I>, initializer_list<U>, Args&&...);

§ 22.6.3.1 685

© ISO/IEC N4910

// 22.6.3.3, destructor
constexpr ~variant();

// 22.6.3.4, assignment
constexpr variant& operator=(const variant&);
constexpr variant& operator=(variant&&) noexcept(see below);

template<class T> constexpr variant& operator=(T&&) noexcept(see below);

// 22.6.3.5, modifiers
template<class T, class... Args>

constexpr T& emplace(Args&&...);
template<class T, class U, class... Args>

constexpr T& emplace(initializer_list<U>, Args&&...);
template<size_t I, class... Args>

constexpr variant_alternative_t<I, variant<Types...>>& emplace(Args&&...);
template<size_t I, class U, class... Args>

constexpr variant_alternative_t<I, variant<Types...>>&
emplace(initializer_list<U>, Args&&...);

// 22.6.3.6, value status
constexpr bool valueless_by_exception() const noexcept;
constexpr size_t index() const noexcept;

// 22.6.3.7, swap
constexpr void swap(variant&) noexcept(see below);

};
}

1 Any instance of variant at any given time either holds a value of one of its alternative types or holds no value. Whenan instance of variant holds a value of alternative type T, it means that a value of type T, referred to as the variantobject’s contained value, is allocated within the storage of the variant object. Implementations are not permitted touse additional storage, such as dynamic memory, to allocate the contained value. The contained value shall be allocatedin a region of the variant storage suitably aligned for all types in Types.
2 All types in Types shall meet the Cpp17Destructible requirements (Table 34).
3 A program that instantiates the definition of variant with no template arguments is ill-formed.
22.6.3.2 Constructors [variant.ctor]

1 In the descriptions that follow, let i be in the range [0, sizeof...(Types)), and Ti be the ith type in Types.
constexpr variant() noexcept(see below);

2 Constraints: is_default_constructible_v<T0> is true.
3 Effects: Constructs a variant holding a value-initialized value of type T0.
4 Postconditions: valueless_by_exception() is false and index() is 0.
5 Throws: Any exception thrown by the value-initialization of T0.
6 Remarks: This function is constexpr if and only if the value-initialization of the alternative type T0 would satisfythe requirements for a constexpr function. The exception specification is equivalent to is_nothrow_default_-

constructible_v<T0>.
[Note 1: See also class monostate. —end note]

constexpr variant(const variant& w);

7 Effects: If w holds a value, initializes the variant to hold the same alternative as w and direct-initializes thecontained value with get<j>(w), where j is w.index(). Otherwise, initializes the variant to not hold a value.
8 Throws: Any exception thrown by direct-initializing any Ti for all i.
9 Remarks: This constructor is defined as deleted unless is_copy_constructible_v<Ti> is true for all i. If

is_trivially_copy_constructible_v<Ti> is true for all i, this constructor is trivial.

§ 22.6.3.2 686

© ISO/IEC N4910

constexpr variant(variant&& w) noexcept(see below);

10 Constraints: is_move_constructible_v<Ti> is true for all i.
11 Effects: If w holds a value, initializes the variant to hold the same alternative as w and direct-initializes thecontained value with get<j>(std::move(w)), where j is w.index(). Otherwise, initializes the variant to nothold a value.
12 Throws: Any exception thrown by move-constructing any Ti for all i.
13 Remarks: The exception specification is equivalent to the logical AND of is_nothrow_move_constructible_-

v<Ti> for all i. If is_trivially_move_constructible_v<Ti> is true for all i, this constructor is trivial.
template<class T> constexpr variant(T&& t) noexcept(see below);

14 Let Tj be a type that is determined as follows: build an imaginary function FUN(Ti) for each alternative type Tifor which Ti x[] = {std::forward<T>(t)}; is well-formed for some invented variable x. The overload FUN(Tj)selected by overload resolution for the expression FUN(std::forward<T>(t)) defines the alternative Tj which isthe type of the contained value after construction.
15 Constraints:

—(15.1) sizeof...(Types) is nonzero,
—(15.2) is_same_v<remove_cvref_t<T>, variant> is false,
—(15.3) remove_cvref_t<T> is neither a specialization of in_place_type_t nor a specialization of in_place_-

index_t,
—(15.4) is_constructible_v<Tj, T> is true, and
—(15.5) the expression FUN(std::forward<T>(t)) (with FUN being the above-mentioned set of imaginary functions)is well-formed.

[Note 2:
variant<string, string> v("abc");

is ill-formed, as both alternative types have an equally viable constructor for the argument. —end note]
16 Effects: Initializes *this to hold the alternative type Tj and direct-non-list-initializes the contained value with

std::forward<T>(t).
17 Postconditions: holds_alternative<Tj>(*this) is true.
18 Throws: Any exception thrown by the initialization of the selected alternative Tj .
19 Remarks: The exception specification is equivalent to is_nothrow_constructible_v<Tj, T>. If Tj’s selectedconstructor is a constexpr constructor, this constructor is a constexpr constructor.

template<class T, class... Args> constexpr explicit variant(in_place_type_t<T>, Args&&... args);

20 Constraints:
—(20.1) There is exactly one occurrence of T in Types... and
—(20.2) is_constructible_v<T, Args...> is true.

21 Effects: Direct-non-list-initializes the contained value of type T with std::forward<Args>(args)....
22 Postconditions: holds_alternative<T>(*this) is true.
23 Throws: Any exception thrown by calling the selected constructor of T.
24 Remarks: If T’s selected constructor is a constexpr constructor, this constructor is a constexpr constructor.

template<class T, class U, class... Args>
constexpr explicit variant(in_place_type_t<T>, initializer_list<U> il, Args&&... args);

25 Constraints:
—(25.1) There is exactly one occurrence of T in Types... and
—(25.2) is_constructible_v<T, initializer_list<U>&, Args...> is true.

26 Effects: Direct-non-list-initializes the contained value of type T with il, std::forward<Args>(args)....
27 Postconditions: holds_alternative<T>(*this) is true.

§ 22.6.3.2 687

© ISO/IEC N4910

28 Throws: Any exception thrown by calling the selected constructor of T.
29 Remarks: If T’s selected constructor is a constexpr constructor, this constructor is a constexpr constructor.

template<size_t I, class... Args> constexpr explicit variant(in_place_index_t<I>, Args&&... args);

30 Constraints:
—(30.1) I is less than sizeof...(Types) and
—(30.2) is_constructible_v<TI, Args...> is true.

31 Effects: Direct-non-list-initializes the contained value of type TI with std::forward<Args>(args)....
32 Postconditions: index() is I.
33 Throws: Any exception thrown by calling the selected constructor of TI .
34 Remarks: If TI ’s selected constructor is a constexpr constructor, this constructor is a constexpr constructor.

template<size_t I, class U, class... Args>
constexpr explicit variant(in_place_index_t<I>, initializer_list<U> il, Args&&... args);

35 Constraints:
—(35.1) I is less than sizeof...(Types) and
—(35.2) is_constructible_v<TI, initializer_list<U>&, Args...> is true.

36 Effects: Direct-non-list-initializes the contained value of type TI with il, std::forward<Args>(args)....
37 Postconditions: index() is I.
38 Remarks: If TI ’s selected constructor is a constexpr constructor, this constructor is a constexpr constructor.
22.6.3.3 Destructor [variant.dtor]

constexpr ~variant();
1 Effects: If valueless_by_exception() is false, destroys the currently contained value.
2 Remarks: If is_trivially_destructible_v<Ti> is true for all Ti, then this destructor is trivial.
22.6.3.4 Assignment [variant.assign]

constexpr variant& operator=(const variant& rhs);

1 Let j be rhs.index().
2 Effects:

—(2.1) If neither *this nor rhs holds a value, there is no effect.
—(2.2) Otherwise, if *this holds a value but rhs does not, destroys the value contained in *this and sets *this tonot hold a value.
—(2.3) Otherwise, if index() == j, assigns the value contained in rhs to the value contained in *this.
—(2.4) Otherwise, if either is_nothrow_copy_constructible_v<Tj> is true or is_nothrow_move_constructible_-

v<Tj> is false, equivalent to emplace<j>(get<j>(rhs)).
—(2.5) Otherwise, equivalent to operator=(variant(rhs)).

3 Postconditions: index() == rhs.index().
4 Returns: *this.
5 Remarks: This operator is defined as deleted unless is_copy_constructible_v<Ti> && is_copy_assignable_-

v<Ti> is true for all i. If is_trivially_copy_constructible_v<Ti> && is_trivially_copy_assignable_-
v<Ti> && is_trivially_destructible_v<Ti> is true for all i, this assignment operator is trivial.

constexpr variant& operator=(variant&& rhs) noexcept(see below);

6 Let j be rhs.index().
7 Constraints: is_move_constructible_v<Ti> && is_move_assignable_v<Ti> is true for all i.
8 Effects:

—(8.1) If neither *this nor rhs holds a value, there is no effect.
§ 22.6.3.4 688

© ISO/IEC N4910

—(8.2) Otherwise, if *this holds a value but rhs does not, destroys the value contained in *this and sets *this tonot hold a value.
—(8.3) Otherwise, if index() == j, assigns get<j>(std::move(rhs)) to the value contained in *this.
—(8.4) Otherwise, equivalent to emplace<j>(get<j>(std::move(rhs))).

9 Returns: *this.
10 Remarks: If is_trivially_move_constructible_v<Ti> && is_trivially_move_assignable_v<Ti> && is_-

trivially_destructible_v<Ti> is true for all i, this assignment operator is trivial. The exception specificationis equivalent to is_nothrow_move_constructible_v<Ti> && is_nothrow_move_assignable_v<Ti> for all i.
—(10.1) If an exception is thrown during the call to Tj’s move construction (with j being rhs.index()), the variantwill hold no value.
—(10.2) If an exception is thrown during the call to Tj’s move assignment, the state of the contained value is asdefined by the exception safety guarantee of Tj’s move assignment; index() will be j.

template<class T> constexpr variant& operator=(T&& t) noexcept(see below);

11 Let Tj be a type that is determined as follows: build an imaginary function FUN(Ti) for each alternative type Tifor which Ti x[] = {std::forward<T>(t)}; is well-formed for some invented variable x. The overload FUN(Tj)selected by overload resolution for the expression FUN(std::forward<T>(t)) defines the alternative Tj which isthe type of the contained value after assignment.
12 Constraints:

—(12.1) is_same_v<remove_cvref_t<T>, variant> is false,
—(12.2) is_assignable_v<Tj&, T> && is_constructible_v<Tj, T> is true, and
—(12.3) the expression FUN(std::forward<T>(t)) (with FUN being the above-mentioned set of imaginary functions)is well-formed.

[Note 1:
variant<string, string> v;
v = "abc";

is ill-formed, as both alternative types have an equally viable constructor for the argument. —end note]
13 Effects:

—(13.1) If *this holds a Tj , assigns std::forward<T>(t) to the value contained in *this.
—(13.2) Otherwise, if is_nothrow_constructible_v<Tj, T> || !is_nothrow_move_constructible_v<Tj> is true,equivalent to emplace<j>(std::forward<T>(t)).
—(13.3) Otherwise, equivalent to emplace<j>(Tj(std::forward<T>(t))).

14 Postconditions: holds_alternative<Tj>(*this) is true, with Tj selected by the imaginary function overloadresolution described above.
15 Returns: *this.
16 Remarks: The exception specification is equivalent to:

is_nothrow_assignable_v<Tj&, T> && is_nothrow_constructible_v<Tj, T>

—(16.1) If an exception is thrown during the assignment of std::forward<T>(t) to the value contained in *this,the state of the contained value and t are as defined by the exception safety guarantee of the assignmentexpression; valueless_by_exception() will be false.
—(16.2) If an exception is thrown during the initialization of the contained value, the variant object is permitted tonot hold a value.

22.6.3.5 Modifiers [variant.mod]

template<class T, class... Args> constexpr T& emplace(Args&&... args);

1 Constraints: is_constructible_v<T, Args...> is true, and T occurs exactly once in Types.
2 Effects: Equivalent to:

return emplace<I>(std::forward<Args>(args)...);

§ 22.6.3.5 689

© ISO/IEC N4910

where I is the zero-based index of T in Types.
template<class T, class U, class... Args>

constexpr T& emplace(initializer_list<U> il, Args&&... args);

3 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true, and T occurs exactly oncein Types.
4 Effects: Equivalent to:

return emplace<I>(il, std::forward<Args>(args)...);

where I is the zero-based index of T in Types.
template<size_t I, class... Args>

constexpr variant_alternative_t<I, variant<Types...>>& emplace(Args&&... args);

5 Mandates: I < sizeof...(Types).
6 Constraints: is_constructible_v<TI, Args...> is true.
7 Effects: Destroys the currently contained value if valueless_by_exception() is false. Then direct-non-list-initializes the contained value of type TI with the arguments std::forward<Args>(args)....
8 Postconditions: index() is I.
9 Returns: A reference to the new contained value.
10 Throws: Any exception thrown during the initialization of the contained value.
11 Remarks: If an exception is thrown during the initialization of the contained value, the variant is permitted tonot hold a value.

template<size_t I, class U, class... Args>
constexpr variant_alternative_t<I, variant<Types...>>&
emplace(initializer_list<U> il, Args&&... args);

12 Mandates: I < sizeof...(Types).
13 Constraints: is_constructible_v<TI, initializer_list<U>&, Args...> is true.
14 Effects: Destroys the currently contained value if valueless_by_exception() is false. Then direct-non-list-initializes the contained value of type TI with il, std::forward<Args>(args)....
15 Postconditions: index() is I.
16 Returns: A reference to the new contained value.
17 Throws: Any exception thrown during the initialization of the contained value.
18 Remarks: If an exception is thrown during the initialization of the contained value, the variant is permitted tonot hold a value.
22.6.3.6 Value status [variant.status]

constexpr bool valueless_by_exception() const noexcept;

1 Effects: Returns false if and only if the variant holds a value.
2 [Note 1: It is possible for a variant to hold no value if an exception is thrown during a type-changing assignment oremplacement. The latter means that even a variant<float, int> can become valueless_by_exception(), for instance by

struct S { operator int() { throw 42; }};
variant<float, int> v{12.f};
v.emplace<1>(S());

—end note]
constexpr size_t index() const noexcept;

3 Effects: If valueless_by_exception() is true, returns variant_npos. Otherwise, returns the zero-based indexof the alternative of the contained value.

§ 22.6.3.6 690

© ISO/IEC N4910

22.6.3.7 Swap [variant.swap]

constexpr void swap(variant& rhs) noexcept(see below);

1 Mandates: is_move_constructible_v<Ti> is true for all i.
2 Preconditions: Lvalues of type Ti are swappable (16.4.4.3).
3 Effects:

—(3.1) If valueless_by_exception() && rhs.valueless_by_exception() no effect.
—(3.2) Otherwise, if index() == rhs.index(), calls swap(get<i>(*this), get<i>(rhs)) where i is index().
—(3.3) Otherwise, exchanges values of rhs and *this.

4 Throws: If index() == rhs.index(), any exception thrown by swap(get<i>(*this), get<i>(rhs)) with ibeing index(). Otherwise, any exception thrown by the move constructor of Ti or Tj with i being index() and jbeing rhs.index().
5 Remarks: If an exception is thrown during the call to function swap(get<i>(*this), get<i>(rhs)), the states ofthe contained values of *this and of rhs are determined by the exception safety guarantee of swap for lvalues of

Ti with i being index(). If an exception is thrown during the exchange of the values of *this and rhs, the statesof the values of *this and of rhs are determined by the exception safety guarantee of variant’s move constructor.The exception specification is equivalent to the logical AND of is_nothrow_move_constructible_v<Ti> &&
is_nothrow_swappable_v<Ti> for all i.

22.6.4 variant helper classes [variant.helper]

template<class T> struct variant_size;

1 All specializations of variant_size meet the Cpp17UnaryTypeTrait requirements (21.3.2) with a base character-istic of integral_constant<size_t, N> for some N.
template<class T> struct variant_size<const T>;

2 Let VS denote variant_size<T> of the cv-unqualified type T. Then each specialization of the template meetsthe Cpp17UnaryTypeTrait requirements (21.3.2) with a base characteristic of integral_constant<size_t,
VS::value>.

template<class... Types>
struct variant_size<variant<Types...>> : integral_constant<size_t, sizeof...(Types)> { };

template<size_t I, class T> struct variant_alternative<I, const T>;

3 Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then each specialization of the templatemeets the Cpp17TransformationTrait requirements (21.3.2) with a member typedef type that names the type
add_const_t<VA::type>.

variant_alternative<I, variant<Types...>>::type

4 Mandates: I < sizeof...(Types).
5 Type: The type TI .
22.6.5 Value access [variant.get]

template<class T, class... Types>
constexpr bool holds_alternative(const variant<Types...>& v) noexcept;

1 Mandates: The type T occurs exactly once in Types.
2 Returns: true if index() is equal to the zero-based index of T in Types.

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get(variant<Types...>& v);

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get(variant<Types...>&& v);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get(const variant<Types...>& v);

§ 22.6.5 691

© ISO/IEC N4910

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get(const variant<Types...>&& v);

3 Mandates: I < sizeof...(Types).
4 Effects: If v.index() is I, returns a reference to the object stored in the variant. Otherwise, throws an exceptionof type bad_variant_access.

template<class T, class... Types> constexpr T& get(variant<Types...>& v);
template<class T, class... Types> constexpr T&& get(variant<Types...>&& v);
template<class T, class... Types> constexpr const T& get(const variant<Types...>& v);
template<class T, class... Types> constexpr const T&& get(const variant<Types...>&& v);

5 Mandates: The type T occurs exactly once in Types.
6 Effects: If v holds a value of type T, returns a reference to that value. Otherwise, throws an exception of type

bad_variant_access.
template<size_t I, class... Types>

constexpr add_pointer_t<variant_alternative_t<I, variant<Types...>>>
get_if(variant<Types...>* v) noexcept;

template<size_t I, class... Types>
constexpr add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>* v) noexcept;

7 Mandates: I < sizeof...(Types).
8 Returns: A pointer to the value stored in the variant, if v != nullptr and v->index() == I. Otherwise, returns

nullptr.
template<class T, class... Types>

constexpr add_pointer_t<T>
get_if(variant<Types...>* v) noexcept;

template<class T, class... Types>
constexpr add_pointer_t<const T>
get_if(const variant<Types...>* v) noexcept;

9 Mandates: The type T occurs exactly once in Types.
10 Effects: Equivalent to: return get_if<i>(v); with i being the zero-based index of T in Types.
22.6.6 Relational operators [variant.relops]

template<class... Types>
constexpr bool operator==(const variant<Types...>& v, const variant<Types...>& w);

1 Mandates: get<i>(v) == get<i>(w) is a valid expression that is convertible to bool, for all i.
2 Returns: If v.index() != w.index(), false; otherwise if v.valueless_by_exception(), true; otherwise

get<i>(v) == get<i>(w) with i being v.index().
template<class... Types>

constexpr bool operator!=(const variant<Types...>& v, const variant<Types...>& w);

3 Mandates: get<i>(v) != get<i>(w) is a valid expression that is convertible to bool, for all i.
4 Returns: If v.index() != w.index(), true; otherwise if v.valueless_by_exception(), false; otherwise

get<i>(v) != get<i>(w) with i being v.index().
template<class... Types>

constexpr bool operator<(const variant<Types...>& v, const variant<Types...>& w);

5 Mandates: get<i>(v) < get<i>(w) is a valid expression that is convertible to bool, for all i.
6 Returns: If w.valueless_by_exception(), false; otherwise if v.valueless_by_exception(), true; other-wise, if v.index() < w.index(), true; otherwise if v.index() > w.index(), false; otherwise get<i>(v) <

get<i>(w) with i being v.index().
template<class... Types>

constexpr bool operator>(const variant<Types...>& v, const variant<Types...>& w);

7 Mandates: get<i>(v) > get<i>(w) is a valid expression that is convertible to bool, for all i.
§ 22.6.6 692

© ISO/IEC N4910

8 Returns: If v.valueless_by_exception(), false; otherwise if w.valueless_by_exception(), true; other-wise, if v.index() > w.index(), true; otherwise if v.index() < w.index(), false; otherwise get<i>(v) >
get<i>(w) with i being v.index().

template<class... Types>
constexpr bool operator<=(const variant<Types...>& v, const variant<Types...>& w);

9 Mandates: get<i>(v) <= get<i>(w) is a valid expression that is convertible to bool, for all i.
10 Returns: If v.valueless_by_exception(), true; otherwise if w.valueless_by_exception(), false; other-wise, if v.index() < w.index(), true; otherwise if v.index() > w.index(), false; otherwise get<i>(v) <=

get<i>(w) with i being v.index().
template<class... Types>

constexpr bool operator>=(const variant<Types...>& v, const variant<Types...>& w);

11 Mandates: get<i>(v) >= get<i>(w) is a valid expression that is convertible to bool, for all i.
12 Returns: If w.valueless_by_exception(), true; otherwise if v.valueless_by_exception(), false; other-wise, if v.index() > w.index(), true; otherwise if v.index() < w.index(), false; otherwise get<i>(v) >=

get<i>(w) with i being v.index().
template<class... Types> requires (three_way_comparable<Types> && ...)

constexpr common_comparison_category_t<compare_three_way_result_t<Types>...>
operator<=>(const variant<Types...>& v, const variant<Types...>& w);

13 Effects: Equivalent to:
if (v.valueless_by_exception() && w.valueless_by_exception())
return strong_ordering::equal;

if (v.valueless_by_exception()) return strong_ordering::less;
if (w.valueless_by_exception()) return strong_ordering::greater;
if (auto c = v.index() <=> w.index(); c != 0) return c;
return get<i>(v) <=> get<i>(w);

with i being v.index().
22.6.7 Visitation [variant.visit]

template<class Visitor, class... Variants>
constexpr see below visit(Visitor&& vis, Variants&&... vars);

template<class R, class Visitor, class... Variants>
constexpr R visit(Visitor&& vis, Variants&&... vars);

1 Let as-variant denote the following exposition-only function templates:
template<class... Ts>
auto&& as-variant(variant<Ts...>& var) { return var; }

template<class... Ts>
auto&& as-variant(const variant<Ts...>& var) { return var; }

template<class... Ts>
auto&& as-variant(variant<Ts...>&& var) { return std::move(var); }

template<class... Ts>
auto&& as-variant(const variant<Ts...>&& var) { return std::move(var); }

Let n be sizeof...(Variants). For each 0 ≤ i < n, let Vi denote the type
decltype(as-variant(std::forward<Variantsi>(varsi))).

2 Constraints: Vi is a valid type for all 0 ≤ i < n.
3 Let V denote the pack of types Vi.
4 Letm be a pack of n values of type size_t. Such a pack is valid if

0 ≤ mi < variant_size_v<remove_reference_t<Vi>> for all 0 ≤ i < n. For each valid pack m, let e(m)denote the expression:
INVOKE(std::forward<Visitor>(vis), get<m>(std::forward<V>(vars))...) // see 22.10.4
for the first form and
INVOKE<R>(std::forward<Visitor>(vis), get<m>(std::forward<V>(vars))...) // see 22.10.4

§ 22.6.7 693

© ISO/IEC N4910

for the second form.
5 Mandates: For each valid pack m, e(m) is a valid expression. All such expressions are of the same type andvalue category.
6 Returns: e(m), wherem is the pack for whichmi is as-variant(varsi).index() for all 0 ≤ i < n. The returntype is decltype(e(m)) for the first form.
7 Throws: bad_variant_access if (as-variant(vars).valueless_by_exception() || ...) is true.
8 Complexity: For n ≤ 1, the invocation of the callable object is implemented in constant time, i.e., for n = 1, itdoes not depend on the number of alternative types of V0. For n > 1, the invocation of the callable object has nocomplexity requirements.
22.6.8 Class monostate [variant.monostate]

struct monostate{};

1 The class monostate can serve as a first alternative type for a variant to make the variant type default con-structible.
22.6.9 monostate relational operators [variant.monostate.relops]

constexpr bool operator==(monostate, monostate) noexcept { return true; }
constexpr strong_ordering operator<=>(monostate, monostate) noexcept
{ return strong_ordering::equal; }

1 [Note 1: monostate objects have only a single state; they thus always compare equal. —end note]
22.6.10 Specialized algorithms [variant.specalg]

template<class... Types>
constexpr void swap(variant<Types...>& v, variant<Types...>& w) noexcept(see below);

1 Constraints: is_move_constructible_v<Ti> && is_swappable_v<Ti> is true for all i.
2 Effects: Equivalent to v.swap(w).
3 Remarks: The exception specification is equivalent to noexcept(v.swap(w)).
22.6.11 Class bad_variant_access [variant.bad.access]
namespace std {

class bad_variant_access : public exception {
public:// see 17.9.3 for the specification of the special member functions

const char* what() const noexcept override;
};

}

1 Objects of type bad_variant_access are thrown to report invalid accesses to the value of a variant object.
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
22.6.12 Hash support [variant.hash]

template<class... Types> struct hash<variant<Types...>>;

1 The specialization hash<variant<Types...>> is enabled (22.10.19) if and only if every specialization in
hash<remove_const_t<Types>>... is enabled. The member functions are not guaranteed to be noexcept.

template<> struct hash<monostate>;

2 The specialization is enabled (22.10.19).
22.7 Storage for any type [any]
22.7.1 General [any.general]

1 Subclause 22.7 describes components that C++ programs may use to perform operations on objects of a discriminatedtype.
§ 22.7.1 694

© ISO/IEC N4910

2 [Note 1: The discriminated type can contain values of different types but does not attempt conversion between them, i.e., 5 is heldstrictly as an int and is not implicitly convertible either to "5" or to 5.0. This indifference to interpretation but awareness of typeeffectively allows safe, generic containers of single values, with no scope for surprises from ambiguous conversions. —end note]
22.7.2 Header <any> synopsis [any.synop]
namespace std {// 22.7.3, class bad_any_cast

class bad_any_cast;

// 22.7.4, class any
class any;

// 22.7.5, non-member functions
void swap(any& x, any& y) noexcept;

template<class T, class... Args>
any make_any(Args&&... args);

template<class T, class U, class... Args>
any make_any(initializer_list<U> il, Args&&... args);

template<class T>
T any_cast(const any& operand);

template<class T>
T any_cast(any& operand);

template<class T>
T any_cast(any&& operand);

template<class T>
const T* any_cast(const any* operand) noexcept;

template<class T>
T* any_cast(any* operand) noexcept;

}

22.7.3 Class bad_any_cast [any.bad.any.cast]
namespace std {

class bad_any_cast : public bad_cast {
public:// see 17.9.3 for the specification of the special member functions

const char* what() const noexcept override;
};

}

1 Objects of type bad_any_cast are thrown by a failed any_cast (22.7.5).
const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.
22.7.4 Class any [any.class]
22.7.4.1 General [any.class.general]
namespace std {

class any {
public:// 22.7.4.2, construction and destruction

constexpr any() noexcept;

any(const any& other);
any(any&& other) noexcept;

template<class T>
any(T&& value);

§ 22.7.4.1 695

© ISO/IEC N4910

template<class T, class... Args>
explicit any(in_place_type_t<T>, Args&&...);

template<class T, class U, class... Args>
explicit any(in_place_type_t<T>, initializer_list<U>, Args&&...);

~any();

// 22.7.4.3, assignments
any& operator=(const any& rhs);
any& operator=(any&& rhs) noexcept;

template<class T>
any& operator=(T&& rhs);

// 22.7.4.4, modifiers
template<class T, class... Args>

decay_t<T>& emplace(Args&&...);
template<class T, class U, class... Args>

decay_t<T>& emplace(initializer_list<U>, Args&&...);
void reset() noexcept;
void swap(any& rhs) noexcept;

// 22.7.4.5, observers
bool has_value() const noexcept;
const type_info& type() const noexcept;

};
}

1 An object of class any stores an instance of any type that meets the constructor requirements or it has no value, andthis is referred to as the state of the class any object. The stored instance is called the contained value. Two states areequivalent if either they both have no value, or they both have a value and the contained values are equivalent.
2 The non-member any_cast functions provide type-safe access to the contained value.
3 Implementations should avoid the use of dynamically allocated memory for a small contained value. However, any suchsmall-object optimization shall only be applied to types T for which is_nothrow_move_constructible_v<T> is true.
[Example 1: A contained value of type int could be stored in an internal buffer, not in separately-allocated memory. —end example]
22.7.4.2 Construction and destruction [any.cons]

constexpr any() noexcept;

1 Postconditions: has_value() is false.
any(const any& other);

2 Effects: If other.has_value() is false, constructs an object that has no value. Otherwise, equivalent to any(in_-
place_type<T>, any_cast<const T&>(other)) where T is the type of the contained value.

3 Throws: Any exceptions arising from calling the selected constructor for the contained value.
any(any&& other) noexcept;

4 Effects: If other.has_value() is false, constructs an object that has no value. Otherwise, constructs an objectof type any that contains either the contained value of other, or contains an object of the same type constructedfrom the contained value of other considering that contained value as an rvalue.
template<class T>

any(T&& value);

5 Let VT be decay_t<T>.
6 Constraints: VT is not the same type as any, VT is not a specialization of in_place_type_t, and is_copy_-

constructible_v<VT> is true.
7 Preconditions: VT meets the Cpp17CopyConstructible requirements.
8 Effects: Constructs an object of type any that contains an object of type VT direct-initializedwith std::forward<T>(value).
9 Throws: Any exception thrown by the selected constructor of VT.
§ 22.7.4.2 696

© ISO/IEC N4910

template<class T, class... Args>
explicit any(in_place_type_t<T>, Args&&... args);

10 Let VT be decay_t<T>.
11 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, Args...> is true.
12 Preconditions: VT meets the Cpp17CopyConstructible requirements.
13 Effects: Direct-non-list-initializes the contained value of type VT with std::forward<Args>(args)....
14 Postconditions: *this contains a value of type VT.
15 Throws: Any exception thrown by the selected constructor of VT.

template<class T, class U, class... Args>
explicit any(in_place_type_t<T>, initializer_list<U> il, Args&&... args);

16 Let VT be decay_t<T>.
17 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, initializer_list<U>&,

Args...> is true.
18 Preconditions: VT meets the Cpp17CopyConstructible requirements.
19 Effects: Direct-non-list-initializes the contained value of type VT with il, std::forward<Args>(args)....
20 Postconditions: *this contains a value.
21 Throws: Any exception thrown by the selected constructor of VT.

~any();
22 Effects: As if by reset().
22.7.4.3 Assignment [any.assign]

any& operator=(const any& rhs);

1 Effects: As if by any(rhs).swap(*this). No effects if an exception is thrown.
2 Returns: *this.
3 Throws: Any exceptions arising from the copy constructor for the contained value.

any& operator=(any&& rhs) noexcept;

4 Effects: As if by any(std::move(rhs)).swap(*this).
5 Postconditions: The state of *this is equivalent to the original state of rhs.
6 Returns: *this.

template<class T>
any& operator=(T&& rhs);

7 Let VT be decay_t<T>.
8 Constraints: VT is not the same type as any and is_copy_constructible_v<VT> is true.
9 Preconditions: VT meets the Cpp17CopyConstructible requirements.
10 Effects: Constructs an object tmp of type any that contains an object of type VT direct-initializedwith std::forward<T>(rhs),and tmp.swap(*this). No effects if an exception is thrown.
11 Returns: *this.
12 Throws: Any exception thrown by the selected constructor of VT.
22.7.4.4 Modifiers [any.modifiers]

template<class T, class... Args>
decay_t<T>& emplace(Args&&... args);

1 Let VT be decay_t<T>.
2 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, Args...> is true.
3 Preconditions: VT meets the Cpp17CopyConstructible requirements.
§ 22.7.4.4 697

© ISO/IEC N4910

4 Effects: Calls reset(). Then direct-non-list-initializes the contained value of type VTwith std::forward<Args>(args)....
5 Postconditions: *this contains a value.
6 Returns: A reference to the new contained value.
7 Throws: Any exception thrown by the selected constructor of VT.
8 Remarks: If an exception is thrown during the call to VT’s constructor, *this does not contain a value, and anypreviously contained value has been destroyed.

template<class T, class U, class... Args>
decay_t<T>& emplace(initializer_list<U> il, Args&&... args);

9 Let VT be decay_t<T>.
10 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, initializer_list<U>&,

Args...> is true.
11 Preconditions: VT meets the Cpp17CopyConstructible requirements.
12 Effects: Calls reset(). Then direct-non-list-initializes the contained value of type VTwith il, std::forward<Args>(args)....
13 Postconditions: *this contains a value.
14 Returns: A reference to the new contained value.
15 Throws: Any exception thrown by the selected constructor of VT.
16 Remarks: If an exception is thrown during the call to VT’s constructor, *this does not contain a value, and anypreviously contained value has been destroyed.

void reset() noexcept;

17 Effects: If has_value() is true, destroys the contained value.
18 Postconditions: has_value() is false.

void swap(any& rhs) noexcept;

19 Effects: Exchanges the states of *this and rhs.
22.7.4.5 Observers [any.observers]

bool has_value() const noexcept;

1 Returns: true if *this contains an object, otherwise false.
const type_info& type() const noexcept;

2 Returns: typeid(T) if *this has a contained value of type T, otherwise typeid(void).
3 [Note 1: Useful for querying against types known either at compile time or only at runtime. —end note]
22.7.5 Non-member functions [any.nonmembers]

void swap(any& x, any& y) noexcept;

1 Effects: Equivalent to x.swap(y).
template<class T, class... Args>

any make_any(Args&&... args);

2 Effects: Equivalent to: return any(in_place_type<T>, std::forward<Args>(args)...);

template<class T, class U, class... Args>
any make_any(initializer_list<U> il, Args&&... args);

3 Effects: Equivalent to: return any(in_place_type<T>, il, std::forward<Args>(args)...);

template<class T>
T any_cast(const any& operand);

template<class T>
T any_cast(any& operand);

§ 22.7.5 698

© ISO/IEC N4910

template<class T>
T any_cast(any&& operand);

4 Let U be the type remove_cvref_t<T>.
5 Mandates: For the first overload, is_constructible_v<T, const U&> is true. For the second overload, is_-

constructible_v<T, U&> is true. For the third overload, is_constructible_v<T, U> is true.
6 Returns: For the first and second overload, static_cast<T>(*any_cast<U>(&operand)). For the third overload,

static_cast<T>(std::move(*any_cast<U>(&operand))).
7 Throws: bad_any_cast if operand.type() != typeid(remove_reference_t<T>).
8 [Example 1:

any x(5); // x holds int
assert(any_cast<int>(x) == 5); // cast to value
any_cast<int&>(x) = 10; // cast to reference
assert(any_cast<int>(x) == 10);

x = "Meow"; // x holds const char*
assert(strcmp(any_cast<const char*>(x), "Meow") == 0);
any_cast<const char*&>(x) = "Harry";
assert(strcmp(any_cast<const char*>(x), "Harry") == 0);

x = string("Meow"); // x holds string
string s, s2("Jane");
s = move(any_cast<string&>(x)); // move from any
assert(s == "Meow");
any_cast<string&>(x) = move(s2); // move to any
assert(any_cast<const string&>(x) == "Jane");

string cat("Meow");
const any y(cat); // const y holds string
assert(any_cast<const string&>(y) == cat);

any_cast<string&>(y); // error: cannot any_cast away const
— end example]

template<class T>
const T* any_cast(const any* operand) noexcept;

template<class T>
T* any_cast(any* operand) noexcept;

9 Returns: If operand != nullptr && operand->type() == typeid(T), a pointer to the object contained by
operand; otherwise, nullptr.

10 [Example 2:
bool is_string(const any& operand) {
return any_cast<string>(&operand) != nullptr;

}

—end example]
22.8 Expected objects [expected]
22.8.1 In general [expected.general]

1 Subclause 22.8 describes the class template expected that represents expected objects. An expected<T, E> objectholds an object of type T or an object of type unexpected<E> and manages the lifetime of the contained objects.
22.8.2 Header <expected> synopsis [expected.syn]
namespace std {// 22.8.3.2, class template unexpected
template<class E> class unexpected;

// 22.8.4, class template bad_expected_access
template<class E> class bad_expected_access;

§ 22.8.2 699

© ISO/IEC N4910

// 22.8.5, specialization for void
template<> class bad_expected_access<void>;

// in-place construction of unexpected values
struct unexpect_t {
explicit unexpect_t() = default;

};
inline constexpr unexpect_t unexpect{};

// 22.8.6, class template expected
template<class T, class E> class expected;

// 22.8.7, partial specialization of expected for void types
template<class T, class E> requires is_void_v<T> class expected<T, E>;

}

22.8.3 Unexpected objects [expected.unexpected]
22.8.3.1 General [expected.un.general]

1 Subclause 22.8.3 describes the class template unexpected that represents unexpected objects stored in expected objects.
22.8.3.2 Class template unexpected [expected.un.object]
22.8.3.2.1 General [expected.un.object.general]
namespace std {

template<class E>
class unexpected {
public:
constexpr unexpected(const unexpected&) = default;
constexpr unexpected(unexpected&&) = default;
template<class... Args>

constexpr explicit unexpected(in_place_t, Args&&...);
template<class U, class... Args>

constexpr explicit unexpected(in_place_t, initializer_list<U>, Args&&...);
template<class Err = E>

constexpr explicit unexpected(Err&&);

constexpr unexpected& operator=(const unexpected&) = default;
constexpr unexpected& operator=(unexpected&&) = default;

constexpr const E& value() const & noexcept;
constexpr E& value() & noexcept;
constexpr const E&& value() const && noexcept;
constexpr E&& value() && noexcept;

constexpr void swap(unexpected& other) noexcept(see below);

template<class E2>
friend constexpr bool operator==(const unexpected&, const unexpected<E2>&);

friend constexpr void swap(unexpected& x, unexpected& y) noexcept(noexcept(x.swap(y)));

private:
E val; // exposition only

};

template<class E> unexpected(E) -> unexpected<E>;
}

1 A program that instantiates the definition of unexpected for a non-object type, an array type, a specialization of
unexpected, or a cv-qualified type is ill-formed.

§ 22.8.3.2.1 700

© ISO/IEC N4910

22.8.3.2.2 Constructors [expected.un.ctor]

template<class Err = E>
constexpr explicit unexpected(Err&& e);

1 Constraints:
—(1.1) is_same_v<remove_cvref_t<Err>, unexpected> is false; and
—(1.2) is_same_v<remove_cvref_t<Err>, in_place_t> is false; and
—(1.3) is_constructible_v<E, Err> is true.

2 Effects: Direct-non-list-initializes val with std::forward<Err>(e).
3 Throws: Any exception thrown by the initialization of val.

template<class... Args>
constexpr explicit unexpected(in_place_t, Args&&... args);

4 Constraints: is_constructible_v<E, Args...> is true.
5 Effects: Direct-non-list-initializes val with std::forward<Args>(args)....
6 Throws: Any exception thrown by the initialization of val.

template<class U, class... Args>
constexpr explicit unexpected(in_place_t, initializer_list<U> il, Args&&... args);

7 Constraints: is_constructible_v<E, initializer_list<U>&, Args...> is true.
8 Effects: Direct-non-list-initializes val with il, std::forward<Args>(args)....
9 Throws: Any exception thrown by the initialization of val.
22.8.3.2.3 Observers [expected.un.obs]

constexpr const E& value() const & noexcept;
constexpr E& value() & noexcept;

1 Returns: val.
constexpr E&& value() && noexcept;
constexpr const E&& value() const && noexcept;

2 Returns: std::move(val).
22.8.3.2.4 Swap [expected.un.swap]

constexpr void swap(unexpected& other) noexcept(is_nothrow_swappable_v<E>);

1 Mandates: is_swappable_v<E> is true.
2 Effects: Equivalent to: using std::swap; swap(val, other.val);

friend constexpr void swap(unexpected& x, unexpected& y) noexcept(noexcept(x.swap(y)));

3 Constraints: is_swappable_v<E> is true.
4 Effects: Equivalent to x.swap(y).
22.8.3.2.5 Equality operator [expected.un.eq]

template<class E2>
friend constexpr bool operator==(const unexpected& x, const unexpected<E2>& y);

1 Mandates: The expression x.value() == y.value() is well-formed and its result is convertible to bool.
2 Returns: x.value() == y.value().
22.8.4 Class template bad_expected_access [expected.bad]
namespace std {

template<class E>
class bad_expected_access : public bad_expected_access<void> {
public:
explicit bad_expected_access(E);

§ 22.8.4 701

© ISO/IEC N4910

const char* what() const noexcept override;
E& error() & noexcept;
const E& error() const & noexcept;
E&& error() && noexcept;
const E&& error() const && noexcept;

private:
E val; // exposition only

};
}

1 The class template bad_expected_access defines the type of objects thrown as exceptions to report the situation wherean attempt is made to access the value of an expected<T, E> object for which has_value() is false.
explicit bad_expected_access(E e);

2 Effects: Initializes val with std::move(e).
const E& error() const & noexcept;
E& error() & noexcept;

3 Returns: val.
E&& error() && noexcept;
const E&& error() const && noexcept;

4 Returns: std::move(val).
const char* what() const noexcept override;

5 Returns: An implementation-defined ntbs.
22.8.5 Class template specialization bad_expected_access<void> [expected.bad.void]
namespace std {

template<>
class bad_expected_access<void> : public exception {
protected:
bad_expected_access() noexcept;
bad_expected_access(const bad_expected_access&);
bad_expected_access(bad_expected_access&&);
bad_expected_access& operator=(const bad_expected_access&);
bad_expected_access& operator=(bad_expected_access&&);
~bad_expected_access();

public:
const char* what() const noexcept override;

};
}

const char* what() const noexcept override;

1 Returns: An implementation-defined ntbs.
22.8.6 Class template expected [expected.expected]
22.8.6.1 General [expected.object.general]
namespace std {

template<class T, class E>
class expected {
public:
using value_type = T;
using error_type = E;
using unexpected_type = unexpected<E>;

template<class U>
using rebind = expected<U, error_type>;

// 22.8.6.2, constructors
constexpr expected();

§ 22.8.6.1 702

© ISO/IEC N4910

constexpr explicit(see below) expected(const expected&);
constexpr explicit(see below) expected(expected&&) noexcept(see below);
template<class U, class G>

constexpr explicit(see below) expected(const expected<U, G>&);
template<class U, class G>

constexpr explicit(see below) expected(expected<U, G>&&);

template<class U = T>
constexpr explicit(see below) expected(U&& v);

template<class G>
constexpr expected(const unexpected<G>&);

template<class G>
constexpr expected(unexpected<G>&&);

template<class... Args>
constexpr explicit expected(in_place_t, Args&&...);

template<class U, class... Args>
constexpr explicit expected(in_place_t, initializer_list<U>, Args&&...);

template<class... Args>
constexpr explicit expected(unexpect_t, Args&&...);

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U>, Args&&...);

// 22.8.6.3, destructor
constexpr ~expected();

// 22.8.6.4, assignment
constexpr expected& operator=(const expected&);
constexpr expected& operator=(expected&&) noexcept(see below);
template<class U = T> constexpr expected& operator=(U&&);
template<class G>

constexpr expected& operator=(const unexpected<G>&);
template<class G>

constexpr expected& operator=(unexpected<G>&&);

template<class... Args>
constexpr T& emplace(Args&&...) noexcept;

template<class U, class... Args>
constexpr T& emplace(initializer_list<U>, Args&&...) noexcept;

// 22.8.6.5, swap
constexpr void swap(expected&) noexcept(see below);
friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

// 22.8.6.6, observers
constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;
constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;
constexpr const T&& operator*() const && noexcept;
constexpr T&& operator*() && noexcept;
constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;
constexpr const T& value() const &;
constexpr T& value() &;
constexpr const T&& value() const &&;
constexpr T&& value() &&;
constexpr const E& error() const &;
constexpr E& error() &;
constexpr const E&& error() const &&;
constexpr E&& error() &&;
template<class U> constexpr T value_or(U&&) const &;
template<class U> constexpr T value_or(U&&) &&;

§ 22.8.6.1 703

© ISO/IEC N4910

// 22.8.6.7, equality operators
template<class T2, class E2> requires (!is_void_v<T2>)

friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);
template<class T2>

friend constexpr bool operator==(const expected&, const T2&);
template<class E2>

friend constexpr bool operator==(const expected&, const unexpected<E2>&);

private:
bool has_val; // exposition only
union {

T val; // exposition only
E unex; // exposition only

};
};

}

1 Any object of type expected<T, E> either contains a value of type T or a value of type E within its own storage.Implementations are not permitted to use additional storage, such as dynamic memory, to allocate the object of type
T or the object of type E. These objects are allocated in a region of the expected<T, E> storage suitably aligned forthe types T and E. Members has_val, val, and unex are provided for exposition only. has_val indicates whether the
expected<T, E> object contains an object of type T.

2 A program that instantiates the definition of template expected<T, E> for a reference type, a function type, or forpossibly cv-qualified types in_place_t, unexpect_t, or a specialization of unexpected for the T parameter is ill-formed.A program that instantiates the definition of the template expected<T, E> with a type for the E parameter that is not avalid template argument for unexpected is ill-formed.
3 When T is not cv void, it shall meet the Cpp17Destructible requirements (Table 34). E shall meet the Cpp17Destructiblerequirements.
22.8.6.2 Constructors [expected.object.ctor]

constexpr expected();

1 Constraints: is_default_constructible_v<T> is true.
2 Effects: Value-initializes val.
3 Postconditions: has_value() is true.
4 Throws: Any exception thrown by the initialization of val.

constexpr expected(const expected& rhs);

5 Effects: If rhs.has_value() is true, direct-non-list-initializes val with *rhs. Otherwise, direct-non-list-initializes unex with rhs.error().
6 Postconditions: rhs.has_value() == this->has_value().
7 Throws: Any exception thrown by the initialization of val or unex.
8 Remarks: This constructor is defined as deleted unless

—(8.1) is_copy_constructible_v<T> is true and
—(8.2) is_copy_constructible_v<E> is true.

9 This constructor is trivial if
—(9.1) is_trivially_copy_constructible_v<T> is true and
—(9.2) is_trivially_copy_constructible_v<E> is true.

constexpr expected(expected&& rhs) noexcept(see below);

10 Constraints:
—(10.1) is_move_constructible_v<T> is true and
—(10.2) is_move_constructible_v<E> is true.

§ 22.8.6.2 704

© ISO/IEC N4910

11 Effects: If rhs.has_value() is true, direct-non-list-initializes val with std::move(*rhs). Otherwise, direct-non-list-initializes unex with std::move(rhs.error()).
12 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
13 Throws: Any exception thrown by the initialization of val or unex.
14 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<T> && is_nothrow_-

move_constructible_v<E>.
15 This constructor is trivial if

—(15.1) is_trivially_move_constructible_v<T> is true and
—(15.2) is_trivially_move_constructible_v<E> is true.

template<class U, class G>
constexpr explicit(see below) expected(const expected<U, G>& rhs);

template<class U, class G>
constexpr explicit(see below) expected(expected<U, G>&& rhs);

16 Let:
—(16.1) UF be const U& for the first overload and U for the second overload.
—(16.2) GF be const G& for the first overload and G for the second overload.

17 Constraints:
—(17.1) is_constructible_v<T, UF> is true; and
—(17.2) is_constructible_v<E, GF> is true; and
—(17.3) is_constructible_v<T, expected<U, G>&> is false; and
—(17.4) is_constructible_v<T, expected<U, G>> is false; and
—(17.5) is_constructible_v<T, const expected<U, G>&> is false; and
—(17.6) is_constructible_v<T, const expected<U, G>> is false; and
—(17.7) is_convertible_v<expected<U, G>&, T> is false; and
—(17.8) is_convertible_v<expected<U, G>&&, T> is false; and
—(17.9) is_convertible_v<const expected<U, G>&, T> is false; and
—(17.10) is_convertible_v<const expected<U, G>&&, T> is false; and
—(17.11) is_constructible_v<unexpected<E>, expected<U, G>&> is false; and
—(17.12) is_constructible_v<unexpected<E>, expected<U, G>> is false; and
—(17.13) is_constructible_v<unexpected<E>, const expected<U, G>&> is false; and
—(17.14) is_constructible_v<unexpected<E>, const expected<U, G>> is false.

18 Effects: If rhs.has_value(), direct-non-list-initializes val with std::forward<UF>(*rhs). Otherwise, direct-non-list-initializes unex with std::forward<GF>(rhs.error()).
19 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
20 Throws: Any exception thrown by the initialization of val or unex.
21 Remarks: The expression inside explicit is equivalent to !is_convertible_v<UF, T> || !is_convertible_-

v<GF, E>.
template<class U = T>

constexpr explicit(!is_convertible_v<U, T>) expected(U&& v);

22 Constraints:
—(22.1) is_same_v<remove_cvref_t<U>, in_place_t> is false; and
—(22.2) is_same_v<expected<T, E>, remove_cvref_t<U>> is false; and
—(22.3) remove_cvref_t<U> is not a specialization of unexpected; and
—(22.4) is_constructible_v<T, U> is true.

§ 22.8.6.2 705

© ISO/IEC N4910

23 Effects: Direct-non-list-initializes val with std::forward<U>(v).
24 Postconditions: has_value() is true.
25 Throws: Any exception thrown by the initialization of val.

template<class G>
constexpr explicit(!is_convertible_v<const G&, E>) expected(const unexpected<G>& e);

template<class G>
constexpr explicit(!is_convertible_v<G, E>) expected(unexpected<G>&& e);

26 Let GF be const G& for the first overload and G for the second overload.
27 Constraints: is_constructible_v<E, GF> is true.
28 Effects: Direct-non-list-initializes unex with std::forward<GF>(e.value()).
29 Postconditions: has_value() is false.
30 Throws: Any exception thrown by the initialization of unex.

template<class... Args>
constexpr explicit expected(in_place_t, Args&&... args);

31 Constraints: is_constructible_v<T, Args...> is true.
32 Effects: Direct-non-list-initializes val with std::forward<Args>(args)....
33 Postconditions: has_value() is true.
34 Throws: Any exception thrown by the initialization of val.

template<class U, class... Args>
constexpr explicit expected(in_place_t, initializer_list<U> il, Args&&... args);

35 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true.
36 Effects: Direct-non-list-initializes val with il, std::forward<Args>(args)....
37 Postconditions: has_value() is true.
38 Throws: Any exception thrown by the initialization of val.

template<class... Args>
constexpr explicit expected(unexpect_t, Args&&... args);

39 Constraints: is_constructible_v<E, Args...> is true.
40 Effects: Direct-non-list-initializes unex with std::forward<Args>(args)....
41 Postconditions: has_value() is false.
42 Throws: Any exception thrown by the initialization of unex.

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U> il, Args&&... args);

43 Constraints: is_constructible_v<E, initializer_list<U>&, Args...> is true.
44 Effects: Direct-non-list-initializes unex with il, std::forward<Args>(args)....
45 Postconditions: has_value() is false.
46 Throws: Any exception thrown by the initialization of unex.
22.8.6.3 Destructor [expected.object.dtor]

constexpr ~expected();
1 Effects: If has_value() is true, destroys val, otherwise destroys unex.
2 Remarks: If is_trivially_destructible_v<T> is true, and is_trivially_destructible_v<E> is true, thenthis destructor is a trivial destructor.
22.8.6.4 Assignment [expected.object.assign]

1 This subclause makes use of the following exposition-only function:

§ 22.8.6.4 706

© ISO/IEC N4910

template<class T, class U, class... Args>
constexpr void reinit-expected(T& newval, U& oldval, Args&&... args) { // exposition only

if constexpr (is_nothrow_constructible_v<T, Args...>) {
destroy_at(addressof(oldval));
construct_at(addressof(newval), std::forward<Args>(args)...);

} else if constexpr (is_nothrow_move_constructible_v<T>) {
T tmp(std::forward<Args>(args)...);
destroy_at(addressof(oldval));
construct_at(addressof(newval), std::move(tmp));

} else {
U tmp(std::move(oldval));
destroy_at(addressof(oldval));
try {

construct_at(addressof(newval), std::forward<Args>(args)...);
} catch (...) {

construct_at(addressof(oldval), std::move(tmp));
throw;

}
}

}

constexpr expected& operator=(const expected& rhs);

2 Effects:
—(2.1) If this->has_value() && rhs.has_value() is true, equivalent to val = *rhs.
—(2.2) Otherwise, if this->has_value() is true, equivalent to:

reinit-expected(unex, val, rhs.error())

—(2.3) Otherwise, if rhs.has_value() is true, equivalent to:
reinit-expected(val, unex, *rhs)

—(2.4) Otherwise, equivalent to unex = rhs.error().
Then, if no exception was thrown, equivalent to: has_val = rhs.has_value(); return *this;

3 Remarks: This operator is defined as deleted unless:
—(3.1) is_copy_assignable_v<T> is true and
—(3.2) is_copy_constructible_v<T> is true and
—(3.3) is_copy_assignable_v<E> is true and
—(3.4) is_copy_constructible_v<E> is true and
—(3.5) is_nothrow_move_constructible_v<T> || is_nothrow_move_constructible_v<E> is true.

constexpr expected& operator=(expected&& rhs) noexcept(see below);

4 Constraints:
—(4.1) is_move_constructible_v<T> is true and
—(4.2) is_move_assignable_v<T> is true and
—(4.3) is_move_constructible_v<E> is true and
—(4.4) is_move_assignable_v<E> is true and
—(4.5) is_nothrow_move_constructible_v<T> || is_nothrow_move_constructible_v<E> is true.

5 Effects:
—(5.1) If this->has_value() && rhs.has_value() is true, equivalent to val = std::move(*rhs).
—(5.2) Otherwise, if this->has_value() is true, equivalent to:

reinit-expected(unex, val, std::move(rhs.error()))

—(5.3) Otherwise, if rhs.has_value() is true, equivalent to:
reinit-expected(val, unex, std::move(*rhs))

—(5.4) Otherwise, equivalent to unex = std::move(rhs.error()).
§ 22.8.6.4 707

© ISO/IEC N4910

Then, if no exception was thrown, equivalent to: has_val = rhs.has_value(); return *this;
6 Remarks: The exception specification is equivalent to:

is_nothrow_move_assignable_v<T> && is_nothrow_move_constructible_v<T> &&
is_nothrow_move_assignable_v<E> && is_nothrow_move_constructible_v<E>

template<class U = T>
constexpr expected& operator=(U&& v);

7 Constraints:
—(7.1) is_same_v<expected, remove_cvref_t<U>> is false; and
—(7.2) remove_cvref_t<U> is not a specialization of unexpected; and
—(7.3) is_constructible_v<T, U> is true; and
—(7.4) is_assignable_v<T&, U> is true; and
—(7.5) is_nothrow_constructible_v<T, U> || is_nothrow_move_constructible_v<T> ||

is_nothrow_move_constructible_v<E> is true.
8 Effects:

—(8.1) If has_value() is true, equivalent to: val = std::forward<U>(v);

—(8.2) Otherwise, equivalent to:
reinit-expected(val, unex, std::forward<U>(v));
has_val = true;

9 Returns: *this.
template<class G>
constexpr expected& operator=(const unexpected<G>& e);

template<class G>
constexpr expected& operator=(unexpected<G>&& e);

10 Let GF be const G& for the first overload and G for the second overload.
11 Constraints:

—(11.1) is_constructible_v<E, GF> is true; and
—(11.2) is_assignable_v<E&, GF> is true; and
—(11.3) is_nothrow_constructible_v<E, GF> || is_nothrow_move_constructible_v<T> ||

is_nothrow_move_constructible_v<E> is true.
12 Effects:

—(12.1) If has_value() is true, equivalent to:
reinit-expected(unex, val, std::forward<GF>(e.value()));
has_val = false;

—(12.2) Otherwise, equivalent to: unex = std::forward<GF>(e.value());
13 Returns: *this.

template<class... Args>
constexpr T& emplace(Args&&... args) noexcept;

14 Constraints: is_nothrow_constructible_v<T, Args...> is true.
15 Effects: Equivalent to:

if (has_value()) {
destroy_at(addressof(val));

} else {
destroy_at(addressof(unex));
has_val = true;

}
return *construct_at(addressof(val), std::forward<Args>(args)...);

§ 22.8.6.4 708

© ISO/IEC N4910

template<class U, class... Args>
constexpr T& emplace(initializer_list<U> il, Args&&... args) noexcept;

16 Constraints: is_nothrow_constructible_v<T, initializer_list<U>&, Args...> is true.
17 Effects: Equivalent to:

if (has_value()) {
destroy_at(addressof(val));

} else {
destroy_at(addressof(unex));
has_val = true;

}
return *construct_at(addressof(val), il, std::forward<Args>(args)...);

22.8.6.5 Swap [expected.object.swap]

constexpr void swap(expected& rhs) noexcept(see below);

1 Constraints:
—(1.1) is_swappable_v<T> is true and
—(1.2) is_swappable_v<E> is true and
—(1.3) is_move_constructible_v<T> && is_move_constructible_v<E> is true, and
—(1.4) is_nothrow_move_constructible_v<T> || is_nothrow_move_constructible_v<E> is true.

2 Effects: See Table 62.
Table 62: swap(expected&) effects [tab:expected.object.swap]

this->has_value() !this->has_value()

rhs.has_value() equivalent to: using std::swap;
swap(val, rhs.val);

calls rhs.swap(*this)
!rhs.has_value() see below equivalent to: using std::swap;

swap(unex, rhs.unex);

For the case where rhs.value() is false and this->has_value() is true, equivalent to:
if constexpr (is_nothrow_move_constructible_v<E>) {
E tmp(std::move(rhs.unex));
destroy_at(addressof(rhs.unex));
try {

construct_at(addressof(rhs.val), std::move(val));
destroy_at(addressof(val));
construct_at(addressof(unex), std::move(tmp));

} catch(...) {
construct_at(addressof(rhs.unex), std::move(tmp));
throw;

}
} else {
T tmp(std::move(val));
destroy_at(addressof(val));
try {

construct_at(addressof(unex), std::move(rhs.unex));
destroy_at(addressof(rhs.unex));
construct_at(addressof(rhs.val), std::move(tmp));

} catch (...) {
construct_at(addressof(val), std::move(tmp));
throw;

}
}
has_val = false;
rhs.has_val = true;

§ 22.8.6.5 709

© ISO/IEC N4910

3 Throws: Any exception thrown by the expressions in the Effects.
4 Remarks: The exception specification is equivalent to:

is_nothrow_move_constructible_v<T> && is_nothrow_swappable_v<T> &&
is_nothrow_move_constructible_v<E> && is_nothrow_swappable_v<E>

friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

5 Effects: Equivalent to x.swap(y).
22.8.6.6 Observers [expected.object.obs]

constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;

1 Preconditions: has_value() is true.
2 Returns: addressof(val).

constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;

3 Preconditions: has_value() is true.
4 Returns: val.

constexpr T&& operator*() && noexcept;
constexpr const T&& operator*() const && noexcept;

5 Preconditions: has_value() is true.
6 Returns: std::move(val).

constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;

7 Returns: has_val.
constexpr const T& value() const &;
constexpr T& value() &;

8 Returns: val, if has_value() is true.
9 Throws: bad_expected_access(error()) if has_value() is false.

constexpr T&& value() &&;
constexpr const T&& value() const &&;

10 Returns: std::move(val), if has_value() is true.
11 Throws: bad_expected_access(std::move(error())) if has_value() is false.

constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;

12 Preconditions: has_value() is false.
13 Returns: unex.

constexpr E&& error() && noexcept;
constexpr const E&& error() const && noexcept;

14 Preconditions: has_value() is false.
15 Returns: std::move(unex).

template<class U> constexpr T value_or(U&& v) const &;

16 Mandates: is_copy_constructible_v<T> is true and is_convertible_v<U, T> is true.
17 Returns: has_value() ? **this : static_cast<T>(std::forward<U>(v)).

template<class U> constexpr T value_or(U&& v) &&;

18 Mandates: is_move_constructible_v<T> is true and is_convertible_v<U, T> is true.
§ 22.8.6.6 710

© ISO/IEC N4910

19 Returns: has_value() ? std::move(**this) : static_cast<T>(std::forward<U>(v)).
22.8.6.7 Equality operators [expected.object.eq]

template<class T2, class E2> requires (!is_void_v<T2>)
friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);

1 Mandates: The expressions *x == *y and x.error() == y.error() are well-formed and their results are con-vertible to bool.
2 Returns: If x.has_value() does not equal y.has_value(), false; otherwise if x.has_value() is true, *x ==

*y; otherwise x.error() == y.error().
template<class T2> friend constexpr bool operator==(const expected& x, const T2& v);

3 Mandates: The expression *x == v is well-formed and its result is convertible to bool.
[Note 1: T1 need not be Cpp17EqualityComparable. —end note]

4 Returns: x.has_value() && static_cast<bool>(*x == v).
template<class E2> friend constexpr bool operator==(const expected& x, const unexpected<E2>& e);

5 Mandates: The expression x.error() == e.value() is well-formed and its result is convertible to bool.
6 Returns: !x.has_value() && static_cast<bool>(x.error() == e.value()).
22.8.7 Partial specialization of expected for void types [expected.void]
22.8.7.1 General [expected.void.general]
template<class T, class E> requires is_void_v<T>
class expected<T, E> {
public:

using value_type = T;
using error_type = E;
using unexpected_type = unexpected<E>;

template<class U>
using rebind = expected<U, error_type>;

// 22.8.7.2, constructors
constexpr expected() noexcept;
constexpr explicit(see below) expected(const expected&);
constexpr explicit(see below) expected(expected&&) noexcept(see below);
template<class U, class G>
constexpr explicit(see below) expected(const expected<U, G>&);

template<class U, class G>
constexpr explicit(see below) expected(expected<U, G>&&);

template<class G>
constexpr expected(const unexpected<G>&);

template<class G>
constexpr expected(unexpected<G>&&);

constexpr explicit expected(in_place_t) noexcept;
template<class... Args>
constexpr explicit expected(unexpect_t, Args&&...);

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U>, Args&&...);

// 22.8.7.3, destructor
constexpr ~expected();

// 22.8.7.4, assignment
constexpr expected& operator=(const expected&);
constexpr expected& operator=(expected&&) noexcept(see below);

§ 22.8.7.1 711

© ISO/IEC N4910

template<class G>
constexpr expected& operator=(const unexpected<G>&);

template<class G>
constexpr expected& operator=(unexpected<G>&&);

constexpr void emplace() noexcept;

// 22.8.7.5, swap
constexpr void swap(expected&) noexcept(see below);
friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

// 22.8.7.6, observers
constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;
constexpr void operator*() const noexcept;
constexpr void value() const &;
constexpr void value() &&;
constexpr const E& error() const &;
constexpr E& error() &;
constexpr const E&& error() const &&;
constexpr E&& error() &&;

// 22.8.7.7, equality operators
template<class T2, class E2> requires is_void_v<T2>
friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);

template<class E2>
friend constexpr bool operator==(const expected&, const unexpected<E2>&);

private:
bool has_val; // exposition only
union {
E unex; // exposition only

};
};

1 E shall meet the requirements of Cpp17Destructible (Table 34).
22.8.7.2 Constructors [expected.void.ctor]

constexpr expected() noexcept;

1 Postconditions: has_value() is true.
constexpr expected(const expected& rhs);

2 Effects: If rhs.has_value() is false, direct-non-list-initializes unex with rhs.error().
3 Postconditions: rhs.has_value() == this->has_value().
4 Throws: Any exception thrown by the initialization of unex.
5 Remarks: This constructor is defined as deleted unless is_copy_constructible_v<E> is true.
6 This constructor is trivial if is_trivially_copy_constructible_v<E> is true.

constexpr expected(expected&& rhs) noexcept(is_nothrow_move_constructible_v<E>);

7 Constraints: is_move_constructible_v<E> is true.
8 Effects: If rhs.has_value() is false, direct-non-list-initializes unex with std::move(rhs.error()).
9 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
10 Throws: Any exception thrown by the initialization of unex.
11 Remarks: This constructor is trivial if is_trivially_move_constructible_v<E> is true.

template<class U, class G>
constexpr explicit(!is_convertible_v<const G&, E>) expected(const expected<U, G>& rhs);

§ 22.8.7.2 712

© ISO/IEC N4910

template<class U, class G>
constexpr explicit(!is_convertible_v<G, E>) expected(expected<U, G>&& rhs);

12 Let GF be const G& for the first overload and G for the second overload.
13 Constraints:

—(13.1) is_void_v<U> is true; and
—(13.2) is_constructible_v<E, GF> is true; and
—(13.3) is_constructible_v<unexpected<E>, expected<U, G>&> is false; and
—(13.4) is_constructible_v<unexpected<E>, expected<U, G>> is false; and
—(13.5) is_constructible_v<unexpected<E>, const expected<U, G>&> is false; and
—(13.6) is_constructible_v<unexpected<E>, const expected<U, G>> is false.

14 Effects: If rhs.has_value() is false, direct-non-list-initializes unex with std::forward<GF>(rhs.error()).
15 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
16 Throws: Any exception thrown by the initialization of unex.

template<class G>
constexpr explicit(!is_convertible_v<const G&, E>) expected(const unexpected<G>& e);

template<class G>
constexpr explicit(!is_convertible_v<G, E>) expected(unexpected<G>&& e);

17 Let GF be const G& for the first overload and G for the second overload.
18 Constraints: is_constructible_v<E, GF> is true.
19 Effects: Direct-non-list-initializes unex with std::forward<GF>(e.value()).
20 Postconditions: has_value() is false.
21 Throws: Any exception thrown by the initialization of unex.

constexpr explicit expected(in_place_t) noexcept;

22 Postconditions: has_value() is true.
template<class... Args>
constexpr explicit expected(unexpect_t, Args&&... args);

23 Constraints: is_constructible_v<E, Args...> is true.
24 Effects: Direct-non-list-initializes unex with std::forward<Args>(args)....
25 Postconditions: has_value() is false.
26 Throws: Any exception thrown by the initialization of unex.

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U> il, Args&&... args);

27 Constraints: is_constructible_v<E, initializer_list<U>&, Args...> is true.
28 Effects: Direct-non-list-initializes unex with il, std::forward<Args>(args)....
29 Postconditions: has_value() is false.
30 Throws: Any exception thrown by the initialization of unex.
22.8.7.3 Destructor [expected.void.dtor]

constexpr ~expected();
1 Effects: If has_value() is false, destroys unex.
2 Remarks: If is_trivially_destructible_v<E> is true, then this destructor is a trivial destructor.
22.8.7.4 Assignment [expected.void.assign]

constexpr expected& operator=(const expected& rhs);

1 Effects:
§ 22.8.7.4 713

© ISO/IEC N4910

—(1.1) If this->has_value() && rhs.has_value() is true, no effects.
—(1.2) Otherwise, if this->has_value() is true, equivalent to: construct_at(addressof(unex), rhs.unex);

has_val = false;

—(1.3) Otherwise, if rhs.has_value() is true, destroys unex and sets has_val to true.
—(1.4) Otherwise, equivalent to unex = rhs.error().

2 Returns: *this.
3 Remarks: This operator is defined as deleted unless is_copy_assignable_v<E> is true and is_copy_constructible_-

v<E> is true.
constexpr expected& operator=(expected&& rhs) noexcept(see below);

4 Effects:
—(4.1) If this->has_value() && rhs.has_value() is true, no effects.
—(4.2) Otherwise, if this->has_value() is true, equivalent to:

construct_at(addressof(unex), std::move(rhs.unex));
has_val = false;

—(4.3) Otherwise, if rhs.has_value() is true, destroys unex and sets has_val to true.
—(4.4) Otherwise, equivalent to unex = rhs.error().

5 Returns: *this.
6 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<E> && is_nothrow_-

move_assignable_v<E>.
7 This operator is defined as deleted unless is_move_constructible_v<E> is true and is_move_assignable_v<E>is true.

template<class G>
constexpr expected& operator=(const unexpected<G>& e);

template<class G>
constexpr expected& operator=(unexpected<G>&& e);

8 Let GF be const G& for the first overload and G for the second overload.
9 Constraints: is_constructible_v<E, GF> is true and is_assignable_v<E&, GF> is true.
10 Effects:

—(10.1) If has_value() is true, equivalent to:
construct_at(addressof(unex), std::forward<GF>(e.value()));
has_val = false;

—(10.2) Otherwise, equivalent to: unex = std::forward<GF>(e.value());
11 Returns: *this.

constexpr void emplace() noexcept;

12 Effects: If has_value() is false, destroys unex and sets has_val to true.
22.8.7.5 Swap [expected.void.swap]

constexpr void swap(expected& rhs) noexcept(see below);

1 Constraints: is_swappable_v<E> is true and is_move_constructible_v<E> is true.
2 Effects: See Table 63.

Table 63: swap(expected&) effects [tab:expected.void.swap]
this->has_value() !this->has_value()

rhs.has_value() no effects calls rhs.swap(*this)
!rhs.has_value() see below equivalent to: using std::swap;

swap(unex, rhs.unex);

§ 22.8.7.5 714

© ISO/IEC N4910

For the case where rhs.value() is false and this->has_value() is true, equivalent to:
construct_at(addressof(unex), std::move(rhs.unex));
destroy_at(addressof(rhs.unex));
has_val = false;
rhs.has_val = true;

3 Throws: Any exception thrown by the expressions in the Effects.
4 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<E> && is_nothrow_-

swappable_v<E>.
friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

5 Effects: Equivalent to x.swap(y).
22.8.7.6 Observers [expected.void.obs]

constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;

1 Returns: has_val.
constexpr void operator*() const noexcept;

2 Preconditions: has_value() is true.
constexpr void value() const &;

3 Throws: bad_expected_access(error()) if has_value() is false.
constexpr void value() &&;

4 Throws: bad_expected_access(std::move(error())) if has_value() is false.
constexpr const E& error() const &;
constexpr E& error() &;

5 Preconditions: has_value() is false.
6 Returns: unex.

constexpr E&& error() &&;
constexpr const E&& error() const &&;

7 Preconditions: has_value() is false.
8 Returns: std::move(unex).
22.8.7.7 Equality operators [expected.void.eq]

template<class T2, class E2> requires is_void_v<T2>
friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);

1 Mandates: The expression x.error() == y.error() is well-formed and its result is convertible to bool.
2 Returns: If x.has_value() does not equal y.has_value(), false; otherwise x.has_value() || static_-

cast<bool>(x.error() == y.error()).
template<class E2>

friend constexpr bool operator==(const expected& x, const unexpected<E2>& e);

3 Mandates: The expression x.error() == e.value() is well-formed and its result is convertible to bool.
4 Returns: !x.has_value() && static_cast<bool>(x.error() == e.value()).
22.9 Bitsets [bitset]
22.9.1 Header <bitset> synopsis [bitset.syn]

1 The header <bitset> defines a class template and several related functions for representing and manipulating fixed-sizesequences of bits.
#include <string>
#include <iosfwd> // for istream (31.7.1), ostream (31.7.2), see 31.3.1

§ 22.9.1 715

© ISO/IEC N4910

namespace std {
template<size_t N> class bitset;

// 22.9.4, bitset operators
template<size_t N>
bitset<N> operator&(const bitset<N>&, const bitset<N>&) noexcept;

template<size_t N>
bitset<N> operator|(const bitset<N>&, const bitset<N>&) noexcept;

template<size_t N>
bitset<N> operator^(const bitset<N>&, const bitset<N>&) noexcept;

template<class charT, class traits, size_t N>
basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, bitset<N>& x);
template<class charT, class traits, size_t N>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);
}

22.9.2 Class template bitset [template.bitset]
22.9.2.1 General [template.bitset.general]
namespace std {

template<size_t N> class bitset {
public:// bit reference
class reference {

friend class bitset;
reference() noexcept;

public:
reference(const reference&) = default;
~reference();
reference& operator=(bool x) noexcept; // for b[i] = x;
reference& operator=(const reference&) noexcept; // for b[i] = b[j];
bool operator~() const noexcept; // flips the bit
operator bool() const noexcept; // for x = b[i];
reference& flip() noexcept; // for b[i].flip();

};

// 22.9.2.2, constructors
constexpr bitset() noexcept;
constexpr bitset(unsigned long long val) noexcept;
template<class charT, class traits, class Allocator>

explicit bitset(
const basic_string<charT, traits, Allocator>& str,
typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n

= basic_string<charT, traits, Allocator>::npos,
charT zero = charT('0'),
charT one = charT('1'));

template<class charT>
explicit bitset(

const charT* str,
typename basic_string<charT>::size_type n = basic_string<charT>::npos,
charT zero = charT('0'),
charT one = charT('1'));

// 22.9.2.3, bitset operations
bitset& operator&=(const bitset& rhs) noexcept;
bitset& operator|=(const bitset& rhs) noexcept;
bitset& operator^=(const bitset& rhs) noexcept;
bitset& operator<<=(size_t pos) noexcept;
bitset& operator>>=(size_t pos) noexcept;
bitset& set() noexcept;

§ 22.9.2.1 716

© ISO/IEC N4910

bitset& set(size_t pos, bool val = true);
bitset& reset() noexcept;
bitset& reset(size_t pos);
bitset operator~() const noexcept;
bitset& flip() noexcept;
bitset& flip(size_t pos);

// element access
constexpr bool operator[](size_t pos) const; // for b[i];
reference operator[](size_t pos); // for b[i];
unsigned long to_ulong() const;
unsigned long long to_ullong() const;
template<class charT = char,

class traits = char_traits<charT>,
class Allocator = allocator<charT>>

basic_string<charT, traits, Allocator>
to_string(charT zero = charT('0'), charT one = charT('1')) const;

size_t count() const noexcept;
constexpr size_t size() const noexcept;
bool operator==(const bitset& rhs) const noexcept;
bool test(size_t pos) const;
bool all() const noexcept;
bool any() const noexcept;
bool none() const noexcept;
bitset operator<<(size_t pos) const noexcept;
bitset operator>>(size_t pos) const noexcept;

};

// 22.9.3, hash support
template<class T> struct hash;
template<size_t N> struct hash<bitset<N>>;

}

1 The class template bitset<N> describes an object that can store a sequence consisting of a fixed number of bits, N.
2 Each bit represents either the value zero (reset) or one (set). To toggle a bit is to change the value zero to one, or thevalue one to zero. Each bit has a non-negative position pos. When converting between an object of class bitset<N> anda value of some integral type, bit position pos corresponds to the bit value 1 << pos. The integral value correspondingto two or more bits is the sum of their bit values.
3 The functions described in 22.9.2 can report three kinds of errors, each associated with a distinct exception:

—(3.1) an invalid-argument error is associated with exceptions of type invalid_argument (19.2.5);
—(3.2) an out-of-range error is associated with exceptions of type out_of_range (19.2.7);
—(3.3) an overflow error is associated with exceptions of type overflow_error (19.2.10).

22.9.2.2 Constructors [bitset.cons]

constexpr bitset() noexcept;

1 Effects: Initializes all bits in *this to zero.
constexpr bitset(unsigned long long val) noexcept;

2 Effects: Initializes the first M bit positions to the corresponding bit values in val. M is the smaller of N and thenumber of bits in the value representation (6.8.1) of unsigned long long. If M < N, the remaining bit positionsare initialized to zero.
template<class charT, class traits, class Allocator>

explicit bitset(
const basic_string<charT, traits, Allocator>& str,
typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n

= basic_string<charT, traits, Allocator>::npos,

§ 22.9.2.2 717

© ISO/IEC N4910

charT zero = charT(’0’),
charT one = charT(’1’));

3 Effects: Determines the effective length rlen of the initializing string as the smaller of n and str.size() - pos.Initializes the first M bit positions to values determined from the corresponding characters in the string str. M isthe smaller of N and rlen.
4 An element of the constructed object has value zero if the corresponding character in str, beginning at position

pos, is zero. Otherwise, the element has the value one. Character position pos + M - 1 corresponds to bitposition zero. Subsequent decreasing character positions correspond to increasing bit positions.
5 If M < N, remaining bit positions are initialized to zero.
6 The function uses traits::eq to compare the character values.
7 Throws: out_of_range if pos > str.size() or invalid_argument if any of the rlen characters in str beginningat position pos is other than zero or one.

template<class charT>
explicit bitset(
const charT* str,
typename basic_string<charT>::size_type n = basic_string<charT>::npos,
charT zero = charT(’0’),
charT one = charT(’1’));

8 Effects: As if by:
bitset(n == basic_string<charT>::npos

? basic_string<charT>(str)
: basic_string<charT>(str, n),

0, n, zero, one)

22.9.2.3 Members [bitset.members]

bitset& operator&=(const bitset& rhs) noexcept;

1 Effects: Clears each bit in *this for which the corresponding bit in rhs is clear, and leaves all other bits unchanged.
2 Returns: *this.

bitset& operator|=(const bitset& rhs) noexcept;

3 Effects: Sets each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits unchanged.
4 Returns: *this.

bitset& operator^=(const bitset& rhs) noexcept;

5 Effects: Toggles each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits unchanged.
6 Returns: *this.

bitset& operator<<=(size_t pos) noexcept;

7 Effects: Replaces each bit at position I in *this with a value determined as follows:
—(7.1) If I < pos, the new value is zero;
—(7.2) If I >= pos, the new value is the previous value of the bit at position I - pos.

8 Returns: *this.
bitset& operator>>=(size_t pos) noexcept;

9 Effects: Replaces each bit at position I in *this with a value determined as follows:
—(9.1) If pos >= N - I, the new value is zero;
—(9.2) If pos < N - I, the new value is the previous value of the bit at position I + pos.

10 Returns: *this.
bitset& set() noexcept;

11 Effects: Sets all bits in *this.

§ 22.9.2.3 718

© ISO/IEC N4910

12 Returns: *this.
bitset& set(size_t pos, bool val = true);

13 Effects: Stores a new value in the bit at position pos in *this. If val is true, the stored value is one, otherwise itis zero.
14 Returns: *this.
15 Throws: out_of_range if pos does not correspond to a valid bit position.

bitset& reset() noexcept;

16 Effects: Resets all bits in *this.
17 Returns: *this.

bitset& reset(size_t pos);

18 Effects: Resets the bit at position pos in *this.
19 Returns: *this.
20 Throws: out_of_range if pos does not correspond to a valid bit position.

bitset operator~() const noexcept;

21 Effects: Constructs an object x of class bitset and initializes it with *this.
22 Returns: x.flip().

bitset& flip() noexcept;

23 Effects: Toggles all bits in *this.
24 Returns: *this.

bitset& flip(size_t pos);

25 Effects: Toggles the bit at position pos in *this.
26 Returns: *this.
27 Throws: out_of_range if pos does not correspond to a valid bit position.

unsigned long to_ulong() const;

28 Returns: x.
29 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be represented as type

unsigned long.
unsigned long long to_ullong() const;

30 Returns: x.
31 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be represented as type

unsigned long long.
template<class charT = char,

class traits = char_traits<charT>,
class Allocator = allocator<charT>>

basic_string<charT, traits, Allocator>
to_string(charT zero = charT(’0’), charT one = charT(’1’)) const;

32 Effects: Constructs a string object of the appropriate type and initializes it to a string of length N characters.Each character is determined by the value of its corresponding bit position in *this. Character position N - 1corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.Bit value zero becomes the character zero, bit value one becomes the character one.
33 Returns: The created object.

size_t count() const noexcept;

34 Returns: A count of the number of bits set in *this.

§ 22.9.2.3 719

© ISO/IEC N4910

constexpr size_t size() const noexcept;

35 Returns: N.
bool operator==(const bitset& rhs) const noexcept;

36 Returns: true if the value of each bit in *this equals the value of the corresponding bit in rhs.
bool test(size_t pos) const;

37 Returns: true if the bit at position pos in *this has the value one.
38 Throws: out_of_range if pos does not correspond to a valid bit position.

bool all() const noexcept;

39 Returns: count() == size().
bool any() const noexcept;

40 Returns: count() != 0.
bool none() const noexcept;

41 Returns: count() == 0.
bitset operator<<(size_t pos) const noexcept;

42 Returns: bitset(*this) <<= pos.
bitset operator>>(size_t pos) const noexcept;

43 Returns: bitset(*this) >>= pos.
constexpr bool operator[](size_t pos) const;

44 Preconditions: pos is valid.
45 Returns: true if the bit at position pos in *this has the value one, otherwise false.
46 Throws: Nothing.

bitset::reference operator[](size_t pos);

47 Preconditions: pos is valid.
48 Returns: An object of type bitset::reference such that (*this)[pos] == this->test(pos), and such that

(*this)[pos] = val is equivalent to this->set(pos, val).
49 Throws: Nothing.
50 Remarks: For the purpose of determining the presence of a data race (6.9.2), any access or update through theresulting reference potentially accesses or modifies, respectively, the entire underlying bitset.
22.9.3 bitset hash support [bitset.hash]

template<size_t N> struct hash<bitset<N>>;

1 The specialization is enabled (22.10.19).
22.9.4 bitset operators [bitset.operators]

template<size_t N>
bitset<N> operator&(const bitset<N>& lhs, const bitset<N>& rhs) noexcept;

1 Returns: bitset<N>(lhs) &= rhs.
template<size_t N>

bitset<N> operator|(const bitset<N>& lhs, const bitset<N>& rhs) noexcept;

2 Returns: bitset<N>(lhs) |= rhs.
template<size_t N>

bitset<N> operator^(const bitset<N>& lhs, const bitset<N>& rhs) noexcept;

3 Returns: bitset<N>(lhs) ^= rhs.
§ 22.9.4 720

© ISO/IEC N4910

template<class charT, class traits, size_t N>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

4 A formatted input function (31.7.4.3).
5 Effects: Extracts up to N characters from is. Stores these characters in a temporary object str of type basic_-

string<charT, traits>, then evaluates the expression x = bitset<N>(str). Characters are extracted andstored until any of the following occurs:
—(5.1) N characters have been extracted and stored;
—(5.2) end-of-file occurs on the input sequence;
—(5.3) the next input character is neither is.widen(’0’) nor is.widen(’1’) (in which case the input character isnot extracted).

6 If N > 0 and no characters are stored in str, calls is.setstate(ios_base::failbit) (which may throw ios_-
base::failure (31.5.4.4)).

7 Returns: is.
template<class charT, class traits, size_t N>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);

8 Returns:
os << x.template to_string<charT, traits, allocator<charT>>(
use_facet<ctype<charT>>(os.getloc()).widen('0'),
use_facet<ctype<charT>>(os.getloc()).widen('1'))

(see 31.7.5.3).
22.10 Function objects [function.objects]
22.10.1 General [function.objects.general]

1 A function object type is an object type (6.8.1) that can be the type of the postfix-expression in a function call (7.6.1.3,12.2.2.2).209 A function object is an object of a function object type. In the places where one would expect to pass apointer to a function to an algorithmic template (Clause 27), the interface is specified to accept a function object. Thisnot only makes algorithmic templates work with pointers to functions, but also enables them to work with arbitraryfunction objects.
22.10.2 Header <functional> synopsis [functional.syn]
namespace std {// 22.10.5, invoke

template<class F, class... Args>
constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)

noexcept(is_nothrow_invocable_v<F, Args...>);

template<class R, class F, class... Args>
constexpr R invoke_r(F&& f, Args&&... args)

noexcept(is_nothrow_invocable_r_v<R, F, Args...>);

// 22.10.6, reference_wrapper
template<class T> class reference_wrapper;

template<class T> constexpr reference_wrapper<T> ref(T&) noexcept;
template<class T> constexpr reference_wrapper<const T> cref(const T&) noexcept;
template<class T> void ref(const T&&) = delete;
template<class T> void cref(const T&&) = delete;

template<class T> constexpr reference_wrapper<T> ref(reference_wrapper<T>) noexcept;
template<class T> constexpr reference_wrapper<const T> cref(reference_wrapper<T>) noexcept;

209) Such a type is a function pointer or a class type which has a member operator() or a class type which has a conversion to a pointer to function.
§ 22.10.2 721

© ISO/IEC N4910

// 22.10.7, arithmetic operations
template<class T = void> struct plus;
template<class T = void> struct minus;
template<class T = void> struct multiplies;
template<class T = void> struct divides;
template<class T = void> struct modulus;
template<class T = void> struct negate;
template<> struct plus<void>;
template<> struct minus<void>;
template<> struct multiplies<void>;
template<> struct divides<void>;
template<> struct modulus<void>;
template<> struct negate<void>;

// 22.10.8, comparisons
template<class T = void> struct equal_to;
template<class T = void> struct not_equal_to;
template<class T = void> struct greater;
template<class T = void> struct less;
template<class T = void> struct greater_equal;
template<class T = void> struct less_equal;
template<> struct equal_to<void>;
template<> struct not_equal_to<void>;
template<> struct greater<void>;
template<> struct less<void>;
template<> struct greater_equal<void>;
template<> struct less_equal<void>;

// 22.10.8.8, class compare_three_way
struct compare_three_way;

// 22.10.10, logical operations
template<class T = void> struct logical_and;
template<class T = void> struct logical_or;
template<class T = void> struct logical_not;
template<> struct logical_and<void>;
template<> struct logical_or<void>;
template<> struct logical_not<void>;

// 22.10.11, bitwise operations
template<class T = void> struct bit_and;
template<class T = void> struct bit_or;
template<class T = void> struct bit_xor;
template<class T = void> struct bit_not;
template<> struct bit_and<void>;
template<> struct bit_or<void>;
template<> struct bit_xor<void>;
template<> struct bit_not<void>;

// 22.10.12, identity
struct identity;

// 22.10.13, function template not_fn
template<class F> constexpr unspecified not_fn(F&& f);

// 22.10.14, function templates bind_front and bind_back
template<class F, class... Args> constexpr unspecified bind_front(F&&, Args&&...);
template<class F, class... Args> constexpr unspecified bind_back(F&&, Args&&...);

// 22.10.15, bind
template<class T> struct is_bind_expression;
template<class T>
inline constexpr bool is_bind_expression_v = is_bind_expression<T>::value;

template<class T> struct is_placeholder;

§ 22.10.2 722

© ISO/IEC N4910

template<class T>
inline constexpr int is_placeholder_v = is_placeholder<T>::value;

template<class F, class... BoundArgs>
constexpr unspecified bind(F&&, BoundArgs&&...);

template<class R, class F, class... BoundArgs>
constexpr unspecified bind(F&&, BoundArgs&&...);

namespace placeholders {// M is the implementation-defined number of placeholders
see below _1;
see below _2;

.

.

.
see below _M;

}

// 22.10.16, member function adaptors
template<class R, class T>
constexpr unspecified mem_fn(R T::*) noexcept;

// 22.10.17, polymorphic function wrappers
class bad_function_call;

template<class> class function; // not defined
template<class R, class... ArgTypes> class function<R(ArgTypes...)>;

// 22.10.17.3.8, specialized algorithms
template<class R, class... ArgTypes>
void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;

// 22.10.17.3.7, null pointer comparison operator functions
template<class R, class... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;

// 22.10.17.4, move only wrapper
template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

// 22.10.18, searchers
template<class ForwardIterator, class BinaryPredicate = equal_to<>>
class default_searcher;

template<class RandomAccessIterator,
class Hash = hash<typename iterator_traits<RandomAccessIterator>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_searcher;

template<class RandomAccessIterator,
class Hash = hash<typename iterator_traits<RandomAccessIterator>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_horspool_searcher;

// 22.10.19, class template hash
template<class T>
struct hash;

namespace ranges {// 22.10.9, concept-constrained comparisons
struct equal_to;
struct not_equal_to;
struct greater;

§ 22.10.2 723

© ISO/IEC N4910

struct less;
struct greater_equal;
struct less_equal;

}
}

1 [Example 1: If a C++ program wants to have a by-element addition of two vectors a and b containing double and put the result into a,it can do:
transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());

—end example]
2 [Example 2: To negate every element of a:

transform(a.begin(), a.end(), a.begin(), negate<double>());

—end example]
22.10.3 Definitions [func.def]

1 The following definitions apply to this Clause:
2 A call signature is the name of a return type followed by a parenthesized comma-separated list of zero or more argumenttypes.
3 A callable type is a function object type (22.10) or a pointer to member.
4 A callable object is an object of a callable type.
5 A call wrapper type is a type that holds a callable object and supports a call operation that forwards to that object.
6 A call wrapper is an object of a call wrapper type.
7 A target object is the callable object held by a call wrapper.
8 A call wrapper type may additionally hold a sequence of objects and references that may be passed as arguments to thetarget object. These entities are collectively referred to as bound argument entities.
9 The target object and bound argument entities of the call wrapper are collectively referred to as state entities.
22.10.4 Requirements [func.require]

1 Define INVOKE(f, t1, t2, . . . , tN) as follows:
—(1.1) (t1.*f)(t2, . . . , tN) when f is a pointer to a member function of a class T and is_base_of_v<T, remove_-

reference_t<decltype(t1)>> is true;
—(1.2) (t1.get().*f)(t2, . . . , tN) when f is a pointer to a member function of a class T and remove_cvref_-

t<decltype(t1)> is a specialization of reference_wrapper;
—(1.3) ((*t1).*f)(t2, . . . , tN) when f is a pointer to a member function of a class T and t1 does not satisfy theprevious two items;
—(1.4) t1.*f when N == 1 and f is a pointer to data member of a class T and is_base_of_v<T, remove_reference_-

t<decltype(t1)>> is true;
—(1.5) t1.get().*f when N == 1 and f is a pointer to data member of a class T and remove_cvref_t<decltype(t1)>is a specialization of reference_wrapper;
—(1.6) (*t1).*f when N == 1 and f is a pointer to data member of a class T and t1 does not satisfy the previous twoitems;
—(1.7) f(t1, t2, . . . , tN) in all other cases.

2 Define INVOKE<R>(f, t1, t2, . . . , tN) as static_cast<void>(INVOKE(f, t1, t2, . . . , tN)) if R is cv void,otherwise INVOKE(f, t1, t2, . . . , tN) implicitly converted to R. If reference_converts_from_temporary_v<R,
decltype(INVOKE(f, t1, t2, . . . , tN))> is true, INVOKE<R>(f, t1, t2, . . . , tN) is ill-formed.

3 Every call wrapper (22.10.3) meets the Cpp17MoveConstructible and Cpp17Destructible requirements. An argumentforwarding call wrapper is a call wrapper that can be called with an arbitrary argument list and delivers the arguments tothe target object as references. This forwarding step delivers rvalue arguments as rvalue references and lvalue argumentsas lvalue references.
[Note 1: In a typical implementation, argument forwarding call wrappers have an overloaded function call operator of the form

§ 22.10.4 724

© ISO/IEC N4910

template<class... UnBoundArgs>
constexpr R operator()(UnBoundArgs&&... unbound_args) cv-qual;

—end note]
4 A perfect forwarding call wrapper is an argument forwarding call wrapper that forwards its state entities to the underlyingcall expression. This forwarding step delivers a state entity of type T as cv T& when the call is performed on an lvalue ofthe call wrapper type and as cv T&& otherwise, where cv represents the cv-qualifiers of the call wrapper and where cvshall be neither volatile nor const volatile.
5 A call pattern defines the semantics of invoking a perfect forwarding call wrapper. A postfix call performed on aperfect forwarding call wrapper is expression-equivalent (3.21) to an expression e determined from its call pattern cpby replacing all occurrences of the arguments of the call wrapper and its state entities with references as described inthe corresponding forwarding steps.
6 A simple call wrapper is a perfect forwarding call wrapper that meets theCpp17CopyConstructible andCpp17CopyAssignablerequirements and whose copy constructor, move constructor, and assignment operators are constexpr functions that donot throw exceptions.
7 The copy/move constructor of an argument forwarding call wrapper has the same apparent semantics as if memberwisecopy/move of its state entities were performed (11.4.5.3).
[Note 2: This implies that each of the copy/move constructors has the same exception-specification as the corresponding implicitdefinition and is declared as constexpr if the corresponding implicit definition would be considered to be constexpr. —end note]

8 Argument forwarding call wrappers returned by a given standard library function template have the same type if thetypes of their corresponding state entities are the same.
22.10.5 invoke functions [func.invoke]

template<class F, class... Args>
constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)
noexcept(is_nothrow_invocable_v<F, Args...>);

1 Constraints: is_invocable_v<F, Args...> is true.
2 Returns: INVOKE(std::forward<F>(f), std::forward<Args>(args)...) (22.10.4).

template<class R, class F, class... Args>
constexpr R invoke_r(F&& f, Args&&... args)
noexcept(is_nothrow_invocable_r_v<R, F, Args...>);

3 Constraints: is_invocable_r_v<R, F, Args...> is true.
4 Returns: INVOKE<R>(std::forward<F>(f), std::forward<Args>(args)...) (22.10.4).
22.10.6 Class template reference_wrapper [refwrap]
22.10.6.1 General [refwrap.general]
namespace std {

template<class T> class reference_wrapper {
public:// types
using type = T;

// 22.10.6.2, constructors
template<class U>

constexpr reference_wrapper(U&&) noexcept(see below);
constexpr reference_wrapper(const reference_wrapper& x) noexcept;

// 22.10.6.3, assignment
constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept;

// 22.10.6.4, access
constexpr operator T& () const noexcept;
constexpr T& get() const noexcept;

§ 22.10.6.1 725

© ISO/IEC N4910

// 22.10.6.5, invocation
template<class... ArgTypes>

constexpr invoke_result_t<T&, ArgTypes...> operator()(ArgTypes&&...) const;
};

template<class T>
reference_wrapper(T&) -> reference_wrapper<T>;

}

1 reference_wrapper<T> is a Cpp17CopyConstructible and Cpp17CopyAssignable wrapper around a reference to anobject or function of type T.
2 reference_wrapper<T> is a trivially copyable type (6.8.1).
3 The template parameter T of reference_wrapper may be an incomplete type.
22.10.6.2 Constructors [refwrap.const]

template<class U>
constexpr reference_wrapper(U&& u) noexcept(see below);

1 Let FUN denote the exposition-only functions
void FUN(T&) noexcept;
void FUN(T&&) = delete;

2 Constraints: The expression FUN(declval<U>()) is well-formed and is_same_v<remove_cvref_t<U>, reference_-
wrapper> is false.

3 Effects: Creates a variable r as if by T& r = std::forward<U>(u), then constructs a reference_wrapper objectthat stores a reference to r.
4 Remarks: The exception specification is equivalent to noexcept(FUN(declval<U>())).

constexpr reference_wrapper(const reference_wrapper& x) noexcept;

5 Effects: Constructs a reference_wrapper object that stores a reference to x.get().
22.10.6.3 Assignment [refwrap.assign]

constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept;

1 Postconditions: *this stores a reference to x.get().
22.10.6.4 Access [refwrap.access]

constexpr operator T& () const noexcept;

1 Returns: The stored reference.
constexpr T& get() const noexcept;

2 Returns: The stored reference.
22.10.6.5 Invocation [refwrap.invoke]

template<class... ArgTypes>
constexpr invoke_result_t<T&, ArgTypes...>
operator()(ArgTypes&&... args) const;

1 Mandates: T is a complete type.
2 Returns: INVOKE(get(), std::forward<ArgTypes>(args)...). (22.10.4)
22.10.6.6 Helper functions [refwrap.helpers]

1 The template parameter T of the following ref and cref function templates may be an incomplete type.
template<class T> constexpr reference_wrapper<T> ref(T& t) noexcept;

2 Returns: reference_wrapper<T>(t).
template<class T> constexpr reference_wrapper<T> ref(reference_wrapper<T> t) noexcept;

3 Returns: t.
§ 22.10.6.6 726

© ISO/IEC N4910

template<class T> constexpr reference_wrapper<const T> cref(const T& t) noexcept;

4 Returns: reference_wrapper <const T>(t).
template<class T> constexpr reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept;

5 Returns: t.
22.10.7 Arithmetic operations [arithmetic.operations]
22.10.7.1 General [arithmetic.operations.general]

1 The library provides basic function object classes for all of the arithmetic operators in the language (7.6.5, 7.6.6).
22.10.7.2 Class template plus [arithmetic.operations.plus]

template<class T = void> struct plus {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x + y.
template<> struct plus<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) + std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) + std::forward<U>(u));

2 Returns: std::forward<T>(t) + std::forward<U>(u).
22.10.7.3 Class template minus [arithmetic.operations.minus]

template<class T = void> struct minus {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x - y.
template<> struct minus<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) - std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) - std::forward<U>(u));

2 Returns: std::forward<T>(t) - std::forward<U>(u).
22.10.7.4 Class template multiplies [arithmetic.operations.multiplies]

template<class T = void> struct multiplies {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x * y.

§ 22.10.7.4 727

© ISO/IEC N4910

template<> struct multiplies<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) * std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) * std::forward<U>(u));

2 Returns: std::forward<T>(t) * std::forward<U>(u).
22.10.7.5 Class template divides [arithmetic.operations.divides]

template<class T = void> struct divides {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x / y.
template<> struct divides<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) / std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) / std::forward<U>(u));

2 Returns: std::forward<T>(t) / std::forward<U>(u).
22.10.7.6 Class template modulus [arithmetic.operations.modulus]

template<class T = void> struct modulus {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x % y.
template<> struct modulus<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) % std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) % std::forward<U>(u));

2 Returns: std::forward<T>(t) % std::forward<U>(u).
22.10.7.7 Class template negate [arithmetic.operations.negate]

template<class T = void> struct negate {
constexpr T operator()(const T& x) const;

};

constexpr T operator()(const T& x) const;

1 Returns: -x.
template<> struct negate<void> {

template<class T> constexpr auto operator()(T&& t) const
-> decltype(-std::forward<T>(t));

§ 22.10.7.7 728

© ISO/IEC N4910

using is_transparent = unspecified;
};

template<class T> constexpr auto operator()(T&& t) const
-> decltype(-std::forward<T>(t));

2 Returns: -std::forward<T>(t).
22.10.8 Comparisons [comparisons]
22.10.8.1 General [comparisons.general]

1 The library provides basic function object classes for all of the comparison operators in the language (7.6.9, 7.6.10).
2 For templates less, greater, less_equal, and greater_equal, the specializations for any pointer type yield a resultconsistent with the implementation-defined strict total order over pointers (3.27).
[Note 1: If a < b is well-defined for pointers a and b of type P, then (a < b) == less<P>()(a, b), (a > b) == greater<P>()(a,
b), and so forth. —end note]
For template specializations less<void>, greater<void>, less_equal<void>, and greater_equal<void>, if the calloperator calls a built-in operator comparing pointers, the call operator yields a result consistent with the implementation-defined strict total order over pointers.
22.10.8.2 Class template equal_to [comparisons.equal.to]

template<class T = void> struct equal_to {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x == y.
template<> struct equal_to<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) == std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) == std::forward<U>(u));

2 Returns: std::forward<T>(t) == std::forward<U>(u).
22.10.8.3 Class template not_equal_to [comparisons.not.equal.to]

template<class T = void> struct not_equal_to {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x != y.
template<> struct not_equal_to<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) != std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) != std::forward<U>(u));

2 Returns: std::forward<T>(t) != std::forward<U>(u).

§ 22.10.8.3 729

© ISO/IEC N4910

22.10.8.4 Class template greater [comparisons.greater]

template<class T = void> struct greater {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x > y.
template<> struct greater<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) > std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) > std::forward<U>(u));

2 Returns: std::forward<T>(t) > std::forward<U>(u).
22.10.8.5 Class template less [comparisons.less]

template<class T = void> struct less {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x < y.
template<> struct less<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) < std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) < std::forward<U>(u));

2 Returns: std::forward<T>(t) < std::forward<U>(u).
22.10.8.6 Class template greater_equal [comparisons.greater.equal]

template<class T = void> struct greater_equal {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x >= y.
template<> struct greater_equal<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) >= std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) >= std::forward<U>(u));

2 Returns: std::forward<T>(t) >= std::forward<U>(u).

§ 22.10.8.6 730

© ISO/IEC N4910

22.10.8.7 Class template less_equal [comparisons.less.equal]

template<class T = void> struct less_equal {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x <= y.
template<> struct less_equal<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) <= std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) <= std::forward<U>(u));

2 Returns: std::forward<T>(t) <= std::forward<U>(u).
22.10.8.8 Class compare_three_way [comparisons.three.way]
namespace std {

struct compare_three_way {
template<class T, class U>
constexpr auto operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

}

template<class T, class U>
constexpr auto operator()(T&& t, U&& u) const;

1 Constraints: T and U satisfy three_way_comparable_with.
2 Preconditions: If the expression std::forward<T>(t) <=> std::forward<U>(u) results in a call to a built-inoperator <=> comparing pointers of type P, the conversion sequences from both T and U to P are equality-preserving (18.2); otherwise, T and U model three_way_comparable_with.
3 Effects:

—(3.1) If the expression std::forward<T>(t) <=> std::forward<U>(u) results in a call to a built-in operator
<=> comparing pointers of type P, returns strong_ordering::less if (the converted value of) t precedes
u in the implementation-defined strict total order over pointers (3.27), strong_ordering::greater if uprecedes t, and otherwise strong_ordering::equal.

—(3.2) Otherwise, equivalent to: return std::forward<T>(t) <=> std::forward<U>(u);

22.10.9 Concept-constrained comparisons [range.cmp]
struct ranges::equal_to {

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

1 Constraints: T and U satisfy equality_comparable_with.
2 Preconditions: If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a built-in operator == comparing pointers of type P, the conversion sequences from both T and U to P are equality-preserving (18.2); otherwise, T and U model equality_comparable_with.
3 Effects:

§ 22.10.9 731

© ISO/IEC N4910

—(3.1) If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a built-in operator ==comparing pointers: returns false if either (the converted value of) t precedes u or u precedes t in theimplementation-defined strict total order over pointers (3.27) and otherwise true.
—(3.2) Otherwise, equivalent to: return std::forward<T>(t) == std::forward<U>(u);

struct ranges::not_equal_to {
template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

4 Constraints: T and U satisfy equality_comparable_with.
5 Effects: Equivalent to:

return !ranges::equal_to{}(std::forward<T>(t), std::forward<U>(u));

struct ranges::greater {
template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

6 Constraints: T and U satisfy totally_ordered_with.
7 Effects: Equivalent to:

return ranges::less{}(std::forward<U>(u), std::forward<T>(t));

struct ranges::less {
template<class T, class U>

constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

8 Constraints: T and U satisfy totally_ordered_with.
9 Preconditions: If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a built-in oper-ator < comparing pointers of type P, the conversion sequences from both T and U to P are equality-preserving (18.2);otherwise, T and U model totally_ordered_with. For any expressions ET and EU such that decltype((ET)) is Tand decltype((EU)) is U, exactly one of ranges::less{}(ET, EU), ranges::less{}(EU, ET), or ranges::equal_-

to{}(ET, EU) is true.
10 Effects:

—(10.1) If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a built-in operator <comparing pointers: returns true if (the converted value of) t precedes u in the implementation-definedstrict total order over pointers (3.27) and otherwise false.
—(10.2) Otherwise, equivalent to: return std::forward<T>(t) < std::forward<U>(u);

struct ranges::greater_equal {
template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

§ 22.10.9 732

© ISO/IEC N4910

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

11 Constraints: T and U satisfy totally_ordered_with.
12 Effects: Equivalent to:

return !ranges::less{}(std::forward<T>(t), std::forward<U>(u));

struct ranges::less_equal {
template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

13 Constraints: T and U satisfy totally_ordered_with.
14 Effects: Equivalent to:

return !ranges::less{}(std::forward<U>(u), std::forward<T>(t));

22.10.10 Logical operations [logical.operations]
22.10.10.1 General [logical.operations.general]

1 The library provides basic function object classes for all of the logical operators in the language (7.6.14, 7.6.15, 7.6.2.2).
22.10.10.2 Class template logical_and [logical.operations.and]

template<class T = void> struct logical_and {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x && y.
template<> struct logical_and<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) && std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) && std::forward<U>(u));

2 Returns: std::forward<T>(t) && std::forward<U>(u).
22.10.10.3 Class template logical_or [logical.operations.or]

template<class T = void> struct logical_or {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x || y.
template<> struct logical_or<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) || std::forward<U>(u));

using is_transparent = unspecified;
};

§ 22.10.10.3 733

© ISO/IEC N4910

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) || std::forward<U>(u));

2 Returns: std::forward<T>(t) || std::forward<U>(u).
22.10.10.4 Class template logical_not [logical.operations.not]

template<class T = void> struct logical_not {
constexpr bool operator()(const T& x) const;

};

constexpr bool operator()(const T& x) const;

1 Returns: !x.
template<> struct logical_not<void> {

template<class T> constexpr auto operator()(T&& t) const
-> decltype(!std::forward<T>(t));

using is_transparent = unspecified;
};

template<class T> constexpr auto operator()(T&& t) const
-> decltype(!std::forward<T>(t));

2 Returns: !std::forward<T>(t).
22.10.11 Bitwise operations [bitwise.operations]
22.10.11.1 General [bitwise.operations.general]

1 The library provides basic function object classes for all of the bitwise operators in the language (7.6.11, 7.6.13, 7.6.12,7.6.2.2).
22.10.11.2 Class template bit_and [bitwise.operations.and]

template<class T = void> struct bit_and {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x & y.
template<> struct bit_and<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) & std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) & std::forward<U>(u));

2 Returns: std::forward<T>(t) & std::forward<U>(u).
22.10.11.3 Class template bit_or [bitwise.operations.or]

template<class T = void> struct bit_or {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x | y.
template<> struct bit_or<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) | std::forward<U>(u));

§ 22.10.11.3 734

© ISO/IEC N4910

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) | std::forward<U>(u));

2 Returns: std::forward<T>(t) | std::forward<U>(u).
22.10.11.4 Class template bit_xor [bitwise.operations.xor]

template<class T = void> struct bit_xor {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x ^ y.
template<> struct bit_xor<void> {

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) ^ std::forward<U>(u));

using is_transparent = unspecified;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) ^ std::forward<U>(u));

2 Returns: std::forward<T>(t) ^ std::forward<U>(u).
22.10.11.5 Class template bit_not [bitwise.operations.not]

template<class T = void> struct bit_not {
constexpr T operator()(const T& x) const;

};

constexpr T operator()(const T& x) const;

1 Returns: ~x.
template<> struct bit_not<void> {

template<class T> constexpr auto operator()(T&& t) const
-> decltype(~std::forward<T>(t));

using is_transparent = unspecified;
};

template<class T> constexpr auto operator()(T&&) const
-> decltype(~std::forward<T>(t));

2 Returns: ~std::forward<T>(t).
22.10.12 Class identity [func.identity]

struct identity {
template<class T>
constexpr T&& operator()(T&& t) const noexcept;

using is_transparent = unspecified;
};

template<class T>
constexpr T&& operator()(T&& t) const noexcept;

1 Effects: Equivalent to: return std::forward<T>(t);

§ 22.10.12 735

© ISO/IEC N4910

22.10.13 Function template not_fn [func.not.fn]

template<class F> constexpr unspecified not_fn(F&& f);

1 In the text that follows:
—(1.1) g is a value of the result of a not_fn invocation,
—(1.2) FD is the type decay_t<F>,
—(1.3) fd is the target object of g (22.10.3) of type FD, direct-non-list-initialized with std::forward<F>(f),
—(1.4) call_args is an argument pack used in a function call expression (7.6.1.3) of g.

2 Mandates: is_constructible_v<FD, F> && is_move_constructible_v<FD> is true.
3 Preconditions: FD meets the Cpp17MoveConstructible requirements.
4 Returns: A perfect forwarding call wrapper (22.10.4) g with call pattern !invoke(fd, call_args...).
5 Throws: Any exception thrown by the initialization of fd.
22.10.14 Function templates bind_front and bind_back [func.bind.partial]

template<class F, class... Args>
constexpr unspecified bind_front(F&& f, Args&&... args);

template<class F, class... Args>
constexpr unspecified bind_back(F&& f, Args&&... args);

1 Within this subclause:
—(1.1) g is a value of the result of a bind_front or bind_back invocation,
—(1.2) FD is the type decay_t<F>,
—(1.3) fd is the target object of g (22.10.3) of type FD, direct-non-list-initialized with std::forward<F>(f),
—(1.4) BoundArgs is a pack that denotes decay_t<Args>...,
—(1.5) bound_args is a pack of bound argument entities of g (22.10.3) of types BoundArgs..., direct-non-list-initialized with std::forward<Args>(args)..., respectively, and
—(1.6) call_args is an argument pack used in a function call expression (7.6.1.3) of g.

2 Mandates:
is_constructible_v<FD, F> &&
is_move_constructible_v<FD> &&
(is_constructible_v<BoundArgs, Args> && ...) &&
(is_move_constructible_v<BoundArgs> && ...)

is true.
3 Preconditions: FD meets the Cpp17MoveConstructible requirements. For each Ti in BoundArgs, if Ti is an objecttype, Ti meets the Cpp17MoveConstructible requirements.
4 Returns: A perfect forwarding call wrapper (22.10.4) g with call pattern:

—(4.1) invoke(fd, bound_args..., call_args...) for a bind_front invocation, or
—(4.2) invoke(fd, call_args..., bound_args...) for a bind_back invocation.

5 Throws: Any exception thrown by the initialization of the state entities of g (22.10.3).
22.10.15 Function object binders [func.bind]
22.10.15.1 General [func.bind.general]

1 Subclause 22.10.15 describes a uniform mechanism for binding arguments of callable objects.
22.10.15.2 Class template is_bind_expression [func.bind.isbind]
namespace std {

template<class T> struct is_bind_expression; // see below
}

1 The class template is_bind_expression can be used to detect function objects generated by bind. The functiontemplate bind uses is_bind_expression to detect subexpressions.

§ 22.10.15.2 736

© ISO/IEC N4910

2 Specializations of the is_bind_expression template shall meet the Cpp17UnaryTypeTrait requirements (21.3.2). Theimplementation provides a definition that has a base characteristic of true_type if T is a type returned from bind,otherwise it has a base characteristic of false_type. A program may specialize this template for a program-definedtype T to have a base characteristic of true_type to indicate that T should be treated as a subexpression in a bind call.
22.10.15.3 Class template is_placeholder [func.bind.isplace]
namespace std {

template<class T> struct is_placeholder; // see below
}

1 The class template is_placeholder can be used to detect the standard placeholders _1, _2, and so on. The functiontemplate bind uses is_placeholder to detect placeholders.
2 Specializations of the is_placeholder template shall meet the Cpp17UnaryTypeTrait requirements (21.3.2). Theimplementation provides a definition that has the base characteristic of integral_constant<int, J> if T is the typeof std::placeholders::_J, otherwise it has a base characteristic of integral_constant<int, 0>. A program mayspecialize this template for a program-defined type T to have a base characteristic of integral_constant<int, N> with

N > 0 to indicate that T should be treated as a placeholder type.
22.10.15.4 Function template bind [func.bind.bind]

1 In the text that follows:
—(1.1) g is a value of the result of a bind invocation,
—(1.2) FD is the type decay_t<F>,
—(1.3) fd is an lvalue that is a target object of g (22.10.3) of type FD direct-non-list-initialized with std::forward<F>(f),
—(1.4) Ti is the ith type in the template parameter pack BoundArgs,
—(1.5) TDi is the type decay_t<Ti>,
—(1.6) ti is the ith argument in the function parameter pack bound_args,
—(1.7) tdi is a bound argument entity of g (22.10.3) of type TDi direct-non-list-initialized with std::forward<Ti>(ti),
—(1.8) Uj is the jth deduced type of the UnBoundArgs&&... parameter of the argument forwarding call wrapper, and
—(1.9) uj is the jth argument associated with Uj .

template<class F, class... BoundArgs>
constexpr unspecified bind(F&& f, BoundArgs&&... bound_args);

template<class R, class F, class... BoundArgs>
constexpr unspecified bind(F&& f, BoundArgs&&... bound_args);

2 Mandates: is_constructible_v<FD, F> is true. For each Ti in BoundArgs, is_constructible_v<TDi, Ti> is
true.

3 Preconditions: FD and each TDimeet theCpp17MoveConstructible andCpp17Destructible requirements. INVOKE(fd,
w1, w2, . . . , wN) (22.10.4) is a valid expression for some values w1, w2, . . . , wN , where N has the value
sizeof...(bound_args).

4 Returns: An argument forwarding call wrapper g (22.10.4). A program that attempts to invoke a volatile-qualified gis ill-formed. When g is not volatile-qualified, invocation of g(u1, u2, . . . , uM) is expression-equivalent (3.21)to
INVOKE(static_cast<Vfd>(vfd),

static_cast<V1>(v1), static_cast<V2>(v2), . . . , static_cast<VN>(vN))

for the first overload, and
INVOKE<R>(static_cast<Vfd>(vfd),

static_cast<V1>(v1), static_cast<V2>(v2), . . . , static_cast<VN>(vN))

for the second overload, where the values and types of the target argument vfd and of the bound arguments v1, v2,
. . . , vN are determined as specified below.

5 Throws: Any exception thrown by the initialization of the state entities of g.
6 [Note 1: If all of FD and TDi meet the requirements of Cpp17CopyConstructible, then the return type meets the requirementsof Cpp17CopyConstructible. —end note]

§ 22.10.15.4 737

© ISO/IEC N4910

7 The values of the bound arguments v1, v2, . . . , vN and their corresponding types V1, V2, . . . , VN depend on the types
TDi derived from the call to bind and the cv-qualifiers cv of the call wrapper g as follows:
—(7.1) if TDi is reference_wrapper<T>, the argument is tdi.get() and its type Vi is T&;
—(7.2) if the value of is_bind_expression_v<TDi> is true, the argument is

static_cast<cv TDi&>(tdi)(std::forward<Uj>(uj)...)

and its type Vi is invoke_result_t<cv TDi&, Uj...>&&;
—(7.3) if the value j of is_placeholder_v<TDi> is not zero, the argument is std::forward<Uj>(uj) and its type Vi is

Uj&&;
—(7.4) otherwise, the value is tdi and its type Vi is cv TDi&.

8 The value of the target argument vfd is fd and its corresponding type Vfd is cv FD&.
22.10.15.5 Placeholders [func.bind.place]
namespace std::placeholders {// M is the implementation-defined number of placeholders

see below _1;
see below _2;

.

.

.
see below _M;

}

1 All placeholder types meet the Cpp17DefaultConstructible and Cpp17CopyConstructible requirements, and their defaultconstructors and copy/move constructors are constexpr functions that do not throw exceptions. It is implementation-defined whether placeholder types meet the Cpp17CopyAssignable requirements, but if so, their copy assignmentoperators are constexpr functions that do not throw exceptions.
2 Placeholders should be defined as:

inline constexpr unspecified _1{};

If they are not, they are declared as:
extern unspecified _1;

22.10.16 Function template mem_fn [func.memfn]

template<class R, class T> constexpr unspecified mem_fn(R T::* pm) noexcept;

1 Returns: A simple call wrapper (22.10.4) fn with call pattern invoke(pmd, call_args...), where pmd is thetarget object of fn of type R T::* direct-non-list-initialized with pm, and call_args is an argument pack used ina function call expression (7.6.1.3) of fn.
22.10.17 Polymorphic function wrappers [func.wrap]
22.10.17.1 General [func.wrap.general]

1 Subclause 22.10.17 describes polymorphic wrapper classes that encapsulate arbitrary callable objects.
22.10.17.2 Class bad_function_call [func.wrap.badcall]

1 An exception of type bad_function_call is thrown by function::operator() (22.10.17.3.5) when the functionwrapper object has no target.
namespace std {

class bad_function_call : public exception {
public:// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

§ 22.10.17.2 738

© ISO/IEC N4910

22.10.17.3 Class template function [func.wrap.func]
22.10.17.3.1 General [func.wrap.func.general]
namespace std {

template<class> class function; // not defined
template<class R, class... ArgTypes>
class function<R(ArgTypes...)> {
public:
using result_type = R;

// 22.10.17.3.2, construct/copy/destroy
function() noexcept;
function(nullptr_t) noexcept;
function(const function&);
function(function&&) noexcept;
template<class F> function(F&&);

function& operator=(const function&);
function& operator=(function&&);
function& operator=(nullptr_t) noexcept;
template<class F> function& operator=(F&&);
template<class F> function& operator=(reference_wrapper<F>) noexcept;

~function();

// 22.10.17.3.3, function modifiers
void swap(function&) noexcept;

// 22.10.17.3.4, function capacity
explicit operator bool() const noexcept;

// 22.10.17.3.5, function invocation
R operator()(ArgTypes...) const;

// 22.10.17.3.6, function target access
const type_info& target_type() const noexcept;
template<class T> T* target() noexcept;
template<class T> const T* target() const noexcept;

};

template<class R, class... ArgTypes>
function(R(*)(ArgTypes...)) -> function<R(ArgTypes...)>;

template<class F> function(F) -> function<see below>;
}

1 The function class template provides polymorphic wrappers that generalize the notion of a function pointer. Wrapperscan store, copy, and call arbitrary callable objects (22.10.3), given a call signature (22.10.3).
2 A callable type (22.10.3) F is Lvalue-Callable for argument types ArgTypes and return type R if the expression

INVOKE<R>(declval<F&>(), declval<ArgTypes>()...), considered as an unevaluated operand (7.2.3), is well-formed(22.10.4).
3 The function class template is a call wrapper (22.10.3) whose call signature (22.10.3) is R(ArgTypes...).
4 [Note 1: The types deduced by the deduction guides for function might change in future revisions of C++. —end note]
22.10.17.3.2 Constructors and destructor [func.wrap.func.con]

function() noexcept;

1 Postconditions: !*this.
function(nullptr_t) noexcept;

2 Postconditions: !*this.

§ 22.10.17.3.2 739

© ISO/IEC N4910

function(const function& f);

3 Postconditions: !*this if !f; otherwise, the target object of *this is a copy of f.target().
4 Throws: Nothing if f’s target is a specialization of reference_wrapper or a function pointer. Otherwise, maythrow bad_alloc or any exception thrown by the copy constructor of the stored callable object.
5 Recommended practice: Implementations should avoid the use of dynamically allocated memory for smallcallable objects, for example, where f’s target is an object holding only a pointer or reference to an object and amember function pointer.

function(function&& f) noexcept;

6 Postconditions: If !f, *this has no target; otherwise, the target of *this is equivalent to the target of f beforethe construction, and f is in a valid state with an unspecified value.
7 Recommended practice: Implementations should avoid the use of dynamically allocated memory for smallcallable objects, for example, where f’s target is an object holding only a pointer or reference to an object and amember function pointer.

template<class F> function(F&& f);

8 Let FD be decay_t<F>.
9 Constraints:

—(9.1) is_same_v<remove_cvref_t<F>, function> is false, and
—(9.2) FD is Lvalue-Callable (22.10.17.3) for argument types ArgTypes... and return type R.

10 Mandates:
—(10.1) is_copy_constructible_v<FD> is true, and
—(10.2) is_constructible_v<FD, F> is true.

11 Preconditions: FD meets the Cpp17CopyConstructible requirements.
12 Postconditions: !*this is true if any of the following hold:

—(12.1) f is a null function pointer value.
—(12.2) f is a null member pointer value.
—(12.3) remove_cvref_t<F> is a specialization of the function class template, and !f is true.

13 Otherwise, *this has a target object of type FD direct-non-list-initialized with std::forward<F>(f).
14 Throws: Nothing if FD is a specialization of reference_wrapper or a function pointer type. Otherwise, maythrow bad_alloc or any exception thrown by the initialization of the target object.
15 Recommended practice: Implementations should avoid the use of dynamically allocated memory for smallcallable objects, for example, where f refers to an object holding only a pointer or reference to an object and amember function pointer.

template<class F> function(F) -> function<see below>;

16 Constraints: &F::operator() is well-formedwhen treated as an unevaluated operand and decltype(&F::operator())is of the form R(G::*)(A...) cv &opt noexceptopt for a class type G.
17 Remarks: The deduced type is function<R(A...)>.
18 [Example 1:

void f() {
int i{5};
function g = [&](double) { return i; }; // deduces function<int(double)>

}

—end example]
function& operator=(const function& f);

19 Effects: As if by function(f).swap(*this);
20 Returns: *this.

§ 22.10.17.3.2 740

© ISO/IEC N4910

function& operator=(function&& f);

21 Effects: Replaces the target of *this with the target of f.
22 Returns: *this.

function& operator=(nullptr_t) noexcept;

23 Effects: If *this != nullptr, destroys the target of this.
24 Postconditions: !(*this).
25 Returns: *this.

template<class F> function& operator=(F&& f);

26 Constraints: decay_t<F> is Lvalue-Callable (22.10.17.3) for argument types ArgTypes... and return type R.
27 Effects: As if by: function(std::forward<F>(f)).swap(*this);
28 Returns: *this.

template<class F> function& operator=(reference_wrapper<F> f) noexcept;

29 Effects: As if by: function(f).swap(*this);
30 Returns: *this.

~function();
31 Effects: If *this != nullptr, destroys the target of this.
22.10.17.3.3 Modifiers [func.wrap.func.mod]

void swap(function& other) noexcept;

1 Effects: Interchanges the target objects of *this and other.
22.10.17.3.4 Capacity [func.wrap.func.cap]

explicit operator bool() const noexcept;

1 Returns: true if *this has a target, otherwise false.
22.10.17.3.5 Invocation [func.wrap.func.inv]

R operator()(ArgTypes... args) const;

1 Returns: INVOKE<R>(f, std::forward<ArgTypes>(args)...) (22.10.4), where f is the target object (22.10.3)of *this.
2 Throws: bad_function_call if !*this; otherwise, any exception thrown by the target object.
22.10.17.3.6 Target access [func.wrap.func.targ]

const type_info& target_type() const noexcept;

1 Returns: If *this has a target of type T, typeid(T); otherwise, typeid(void).
template<class T> T* target() noexcept;
template<class T> const T* target() const noexcept;

2 Returns: If target_type() == typeid(T) a pointer to the stored function target; otherwise a null pointer.
22.10.17.3.7 Null pointer comparison operator functions [func.wrap.func.nullptr]

template<class R, class... ArgTypes>
bool operator==(const function<R(ArgTypes...)>& f, nullptr_t) noexcept;

1 Returns: !f.
22.10.17.3.8 Specialized algorithms [func.wrap.func.alg]

template<class R, class... ArgTypes>
void swap(function<R(ArgTypes...)>& f1, function<R(ArgTypes...)>& f2) noexcept;

1 Effects: As if by: f1.swap(f2);
§ 22.10.17.3.8 741

© ISO/IEC N4910

22.10.17.4 Move only wrapper [func.wrap.move]
22.10.17.4.1 General [func.wrap.move.general]

1 The header provides partial specializations of move_only_function for each combination of the possible replacementsof the placeholders cv, ref, and noex where
—(1.1) cv is either const or empty,
—(1.2) ref is either &, &&, or empty, and
—(1.3) noex is either true or false.

2 For each of the possible combinations of the placeholders mentioned above, there is a placeholder inv-quals defined asfollows:
—(2.1) If ref is empty, let inv-quals be cv&,
—(2.2) otherwise, let inv-quals be cv ref.

22.10.17.4.2 Class template move_only_function [func.wrap.move.class]
namespace std {

template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex)> {
public:
using result_type = R;

// 22.10.17.4.3, constructors, assignment, and destructor
move_only_function() noexcept;
move_only_function(nullptr_t) noexcept;
move_only_function(move_only_function&&) noexcept;
template<class F> move_only_function(F&&);
template<class T, class... Args>

explicit move_only_function(in_place_type_t<T>, Args&&...);
template<class T, class U, class... Args>

explicit move_only_function(in_place_type_t<T>, initializer_list<U>, Args&&...);

move_only_function& operator=(move_only_function&&);
move_only_function& operator=(nullptr_t) noexcept;
template<class F> move_only_function& operator=(F&&);

~move_only_function();

// 22.10.17.4.4, invocation
explicit operator bool() const noexcept;
R operator()(ArgTypes...) cv ref noexcept(noex);

// 22.10.17.4.5, utility
void swap(move_only_function&) noexcept;
friend void swap(move_only_function&, move_only_function&) noexcept;
friend bool operator==(const move_only_function&, nullptr_t) noexcept;

private:
template<class VT>

static constexpr bool is-callable-from = see below; // exposition only
};

}

1 The move_only_function class template provides polymorphic wrappers that generalize the notion of a callableobject (22.10.3). These wrappers can store, move, and call arbitrary callable objects, given a call signature.
2 Recommended practice: Implementations should avoid the use of dynamically allocated memory for a small containedvalue.
[Note 1: Such small-object optimization can only be applied to a type T for which is_nothrow_move_constructible_v<T> is true.—end note]

§ 22.10.17.4.2 742

© ISO/IEC N4910

22.10.17.4.3 Constructors, assignment, and destructor [func.wrap.move.ctor]

template<class VT>
static constexpr bool is-callable-from = see below;

1 If noex is true, is-callable-from<VT> is equal to:
is_nothrow_invocable_r_v<R, VT cv ref, ArgTypes...> &&
is_nothrow_invocable_r_v<R, VT inv-quals, ArgTypes...>

Otherwise, is-callable-from<VT> is equal to:
is_invocable_r_v<R, VT cv ref, ArgTypes...> &&
is_invocable_r_v<R, VT inv-quals, ArgTypes...>

move_only_function() noexcept;
move_only_function(nullptr_t) noexcept;

2 Postconditions: *this has no target object.
move_only_function(move_only_function&& f) noexcept;

3 Postconditions: The target object of *this is the target object f had before construction, and f is in a valid statewith an unspecified value.
template<class F> move_only_function(F&& f);

4 Let VT be decay_t<F>.
5 Constraints:

—(5.1) remove_cvref_t<F> is not the same type as move_only_function, and
—(5.2) remove_cvref_t<F> is not a specialization of in_place_type_t, and
—(5.3) is-callable-from<VT> is true.

6 Mandates: is_constructible_v<VT, F> is true.
7 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VTmeets the Cpp17MoveConstructible requirements.
8 Postconditions: *this has no target object if any of the following hold:

—(8.1) f is a null function pointer value, or
—(8.2) f is a null member pointer value, or
—(8.3) remove_cvref_t<F> is a specialization of the move_only_function class template, and f has no targetobject.
Otherwise, *this has a target object of type VT direct-non-list-initialized with std::forward<F>(f).

9 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is afunction pointer or a specialization of reference_wrapper.
template<class T, class... Args>

explicit move_only_function(in_place_type_t<T>, Args&&... args);

10 Let VT be decay_t<T>.
11 Constraints:

—(11.1) is_constructible_v<VT, Args...> is true, and
—(11.2) is-callable-from<VT> is true.

12 Mandates: VT is the same type as T.
13 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VTmeets the Cpp17MoveConstructible requirements.
14 Postconditions: *this has a target object of type VT direct-non-list-initializedwith std::forward<Args>(args)....
15 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is afunction pointer or a specialization of reference_wrapper.

§ 22.10.17.4.3 743

© ISO/IEC N4910

template<class T, class U, class... Args>
explicit move_only_function(in_place_type_t<T>, initializer_list<U> ilist, Args&&... args);

16 Let VT be decay_t<T>.
17 Constraints:

—(17.1) is_constructible_v<VT, initializer_list<U>&, ArgTypes...> is true, and
—(17.2) is-callable-from<VT> is true.

18 Mandates: VT is the same type as T.
19 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VTmeets the Cpp17MoveConstructible requirements.
20 Postconditions: *this has a target object of type VT direct-non-list-initializedwith ilist, std::forward<ArgTypes>(args)....
21 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is afunction pointer or a specialization of reference_wrapper.

move_only_function& operator=(move_only_function&& f);

22 Effects: Equivalent to: move_only_function(std::move(f)).swap(*this);
23 Returns: *this.

move_only_function& operator=(nullptr_t) noexcept;

24 Effects: Destroys the target object of *this, if any.
25 Returns: *this.

template<class F> move_only_function& operator=(F&& f);

26 Effects: Equivalent to: move_only_function(std::forward<F>(f)).swap(*this);
27 Returns: *this.

~move_only_function();
28 Effects: Destroys the target object of *this, if any.
22.10.17.4.4 Invocation [func.wrap.move.inv]

explicit operator bool() const noexcept;

1 Returns: true if *this has a target object, otherwise false.
R operator()(ArgTypes... args) cv ref noexcept(noex);

2 Preconditions: *this has a target object.
3 Effects: Equivalent to:

return INVOKE<R>(static_cast<F inv-quals>(f), std::forward<ArgTypes>(args)...);

where f is an lvalue designating the target object of *this and F is the type of f.
22.10.17.4.5 Utility [func.wrap.move.util]

void swap(move_only_function& other) noexcept;

1 Effects: Exchanges the target objects of *this and other.
friend void swap(move_only_function& f1, move_only_function& f2) noexcept;

2 Effects: Equivalent to f1.swap(f2).
friend bool operator==(const move_only_function& f, nullptr_t) noexcept;

3 Returns: true if f has no target object, otherwise false.

§ 22.10.17.4.5 744

© ISO/IEC N4910

22.10.18 Searchers [func.search]
22.10.18.1 General [func.search.general]

1 Subclause 22.10.18 provides function object types (22.10) for operations that search for a sequence [pat_first, pat_-
last) in another sequence [first, last) that is provided to the object’s function call operator. The first sequence (thepattern to be searched for) is provided to the object’s constructor, and the second (the sequence to be searched) isprovided to the function call operator.

2 Each specialization of a class template specified in 22.10.18 shall meet theCpp17CopyConstructible andCpp17CopyAssignablerequirements. Template parameters named
—(2.1) ForwardIterator,
—(2.2) ForwardIterator1,
—(2.3) ForwardIterator2,
—(2.4) RandomAccessIterator,
—(2.5) RandomAccessIterator1,
—(2.6) RandomAccessIterator2, and
—(2.7) BinaryPredicate

of templates specified in 22.10.18 shall meet the same requirements and semantics as specified in 27.1. Templateparameters named Hash shall meet the Cpp17Hash requirements (Table 36).
3 The Boyer-Moore searcher implements the Boyer-Moore search algorithm. The Boyer-Moore-Horspool searcherimplements the Boyer-Moore-Horspool search algorithm. In general, the Boyer-Moore searcher will use more memoryand give better runtime performance than Boyer-Moore-Horspool.
22.10.18.2 Class template default_searcher [func.search.default]
namespace std {

template<class ForwardIterator1, class BinaryPredicate = equal_to<>>
class default_searcher {
public:
constexpr default_searcher(ForwardIterator1 pat_first, ForwardIterator1 pat_last,

BinaryPredicate pred = BinaryPredicate());

template<class ForwardIterator2>
constexpr pair<ForwardIterator2, ForwardIterator2>

operator()(ForwardIterator2 first, ForwardIterator2 last) const;

private:
ForwardIterator1 pat_first_; // exposition only
ForwardIterator1 pat_last_; // exposition only
BinaryPredicate pred_; // exposition only

};
}

constexpr default_searcher(ForwardIterator pat_first, ForwardIterator pat_last,
BinaryPredicate pred = BinaryPredicate());

1 Effects: Constructs a default_searcher object, initializing pat_first_ with pat_first, pat_last_ with pat_-
last, and pred_ with pred.

2 Throws: Any exception thrown by the copy constructor of BinaryPredicate or ForwardIterator1.
template<class ForwardIterator2>

constexpr pair<ForwardIterator2, ForwardIterator2>
operator()(ForwardIterator2 first, ForwardIterator2 last) const;

3 Effects: Returns a pair of iterators i and j such that
—(3.1) i == search(first, last, pat_first_, pat_last_, pred_), and
—(3.2) if i == last, then j == last, otherwise j == next(i, distance(pat_first_, pat_last_)).

§ 22.10.18.2 745

© ISO/IEC N4910

22.10.18.3 Class template boyer_moore_searcher [func.search.bm]
namespace std {

template<class RandomAccessIterator1,
class Hash = hash<typename iterator_traits<RandomAccessIterator1>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_searcher {
public:
boyer_moore_searcher(RandomAccessIterator1 pat_first,

RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>

operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

private:
RandomAccessIterator1 pat_first_; // exposition only
RandomAccessIterator1 pat_last_; // exposition only
Hash hash_; // exposition only
BinaryPredicate pred_; // exposition only

};
}

boyer_moore_searcher(RandomAccessIterator1 pat_first,
RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

1 Preconditions: The value type of RandomAccessIterator1meets theCpp17DefaultConstructible, theCpp17Copy-Constructible, and the Cpp17CopyAssignable requirements.
2 Let V be iterator_traits<RandomAccessIterator1>::value_type. For any two values A and B of type V, if

pred(A, B) == true, then hf(A) == hf(B) is true.
3 Effects: Initializes pat_first_ with pat_first, pat_last_ with pat_last, hash_ with hf, and pred_ with pred.
4 Throws: Any exception thrown by the copy constructor of RandomAccessIterator1, or by the default constructor,copy constructor, or the copy assignment operator of the value type of RandomAccessIterator1, or the copyconstructor or operator() of BinaryPredicate or Hash. May throw bad_alloc if additional memory neededfor internal data structures cannot be allocated.

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>
operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

5 Mandates: RandomAccessIterator1 and RandomAccessIterator2 have the same value type.
6 Effects: Finds a subsequence of equal values in a sequence.
7 Returns: A pair of iterators i and j such that

—(7.1) i is the first iterator in the range [first, last - (pat_last_ - pat_first_)) such that for every non-negative integer n less than pat_last_ - pat_first_ the following condition holds: pred(*(i + n),
*(pat_first_ + n)) != false, and

—(7.2) j == next(i, distance(pat_first_, pat_last_)).
Returns make_pair(first, first) if [pat_first_, pat_last_) is empty, otherwise returns make_pair(last,
last) if no such iterator is found.

8 Complexity: At most (last - first) * (pat_last_ - pat_first_) applications of the predicate.
22.10.18.4 Class template boyer_moore_horspool_searcher [func.search.bmh]
namespace std {

template<class RandomAccessIterator1,
class Hash = hash<typename iterator_traits<RandomAccessIterator1>::value_type>,
class BinaryPredicate = equal_to<>>

§ 22.10.18.4 746

© ISO/IEC N4910

class boyer_moore_horspool_searcher {
public:
boyer_moore_horspool_searcher(RandomAccessIterator1 pat_first,

RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>

operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

private:
RandomAccessIterator1 pat_first_; // exposition only
RandomAccessIterator1 pat_last_; // exposition only
Hash hash_; // exposition only
BinaryPredicate pred_; // exposition only

};
}

boyer_moore_horspool_searcher(RandomAccessIterator1 pat_first,
RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

1 Preconditions: The value type of RandomAccessIterator1 meets the Cpp17DefaultConstructible, Cpp17Copy-Constructible, and Cpp17CopyAssignable requirements.
2 Let V be iterator_traits<RandomAccessIterator1>::value_type. For any two values A and B of type V, if

pred(A, B) == true, then hf(A) == hf(B) is true.
3 Effects: Initializes pat_first_ with pat_first, pat_last_ with pat_last, hash_ with hf, and pred_ with pred.
4 Throws: Any exception thrown by the copy constructor of RandomAccessIterator1, or by the default constructor,copy constructor, or the copy assignment operator of the value type of RandomAccessIterator1, or the copyconstructor or operator() of BinaryPredicate or Hash. May throw bad_alloc if additional memory neededfor internal data structures cannot be allocated.

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>
operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

5 Mandates: RandomAccessIterator1 and RandomAccessIterator2 have the same value type.
6 Effects: Finds a subsequence of equal values in a sequence.
7 Returns: A pair of iterators i and j such that

—(7.1) i is the first iterator in the range [first, last - (pat_last_ - pat_first_)) such that for every non-negative integer n less than pat_last_ - pat_first_ the following condition holds: pred(*(i + n),
*(pat_first_ + n)) != false, and

—(7.2) j == next(i, distance(pat_first_, pat_last_)).
Returns make_pair(first, first) if [pat_first_, pat_last_) is empty, otherwise returns make_pair(last,
last) if no such iterator is found.

8 Complexity: At most (last - first) * (pat_last_ - pat_first_) applications of the predicate.
22.10.19 Class template hash [unord.hash]

1 The unordered associative containers defined in 24.5 use specializations of the class template hash (22.10.2) as thedefault hash function.
2 Each specialization of hash is either enabled or disabled, as described below.
[Note 1: Enabled specializations meet the Cpp17Hash requirements, and disabled specializations do not. —end note]
Each header that declares the template hash provides enabled specializations of hash for nullptr_t and all cv-unqualifiedarithmetic, enumeration, and pointer types. For any type Key for which neither the library nor the user provides anexplicit or partial specialization of the class template hash, hash<Key> is disabled.

§ 22.10.19 747

© ISO/IEC N4910

3 If the library provides an explicit or partial specialization of hash<Key>, that specialization is enabled except as notedotherwise, and its member functions are noexcept except as noted otherwise.
4 If H is a disabled specialization of hash, these values are false: is_default_constructible_v<H>, is_copy_constructible_-

v<H>, is_move_constructible_v<H>, is_copy_assignable_v<H>, and is_move_assignable_v<H>. Disabled special-izations of hash are not function object types (22.10).
[Note 2: This means that the specialization of hash exists, but any attempts to use it as a Cpp17Hash will be ill-formed. —end note]

5 An enabled specialization hash<Key> will:
—(5.1) meet the Cpp17Hash requirements (Table 36), with Key as the function call argument type, the Cpp17Default-Constructible requirements (Table 29), the Cpp17CopyAssignable requirements (Table 33),
—(5.2) be swappable (16.4.4.3) for lvalues,
—(5.3) meet the requirement that if k1 == k2 is true, h(k1) == h(k2) is also true, where h is an object of type

hash<Key> and k1 and k2 are objects of type Key;
—(5.4) meet the requirement that the expression h(k), where h is an object of type hash<Key> and k is an object of type

Key, shall not throw an exception unless hash<Key> is a program-defined specialization.
22.11 Class type_index [type.index]
22.11.1 Header <typeindex> synopsis [type.index.synopsis]
#include <compare> // see 17.11.1
namespace std {

class type_index;
template<class T> struct hash;
template<> struct hash<type_index>;

}

22.11.2 type_index overview [type.index.overview]
namespace std {

class type_index {
public:

type_index(const type_info& rhs) noexcept;
bool operator==(const type_index& rhs) const noexcept;
bool operator< (const type_index& rhs) const noexcept;
bool operator> (const type_index& rhs) const noexcept;
bool operator<=(const type_index& rhs) const noexcept;
bool operator>=(const type_index& rhs) const noexcept;
strong_ordering operator<=>(const type_index& rhs) const noexcept;
size_t hash_code() const noexcept;
const char* name() const noexcept;

private:
const type_info* target; // exposition only// Note that the use of a pointer here, rather than a reference,// means that the default copy/move constructor and assignment// operators will be provided and work as expected.

};
}

1 The class type_index provides a simple wrapper for type_info which can be used as an index type in associativecontainers (24.4) and in unordered associative containers (24.5).
22.11.3 type_index members [type.index.members]

type_index(const type_info& rhs) noexcept;

1 Effects: Constructs a type_index object, the equivalent of target = &rhs.
bool operator==(const type_index& rhs) const noexcept;

2 Returns: *target == *rhs.target.

§ 22.11.3 748

© ISO/IEC N4910

bool operator<(const type_index& rhs) const noexcept;

3 Returns: target->before(*rhs.target).
bool operator>(const type_index& rhs) const noexcept;

4 Returns: rhs.target->before(*target).
bool operator<=(const type_index& rhs) const noexcept;

5 Returns: !rhs.target->before(*target).
bool operator>=(const type_index& rhs) const noexcept;

6 Returns: !target->before(*rhs.target).
strong_ordering operator<=>(const type_index& rhs) const noexcept;

7 Effects: Equivalent to:
if (*target == *rhs.target) return strong_ordering::equal;
if (target->before(*rhs.target)) return strong_ordering::less;
return strong_ordering::greater;

size_t hash_code() const noexcept;

8 Returns: target->hash_code().
const char* name() const noexcept;

9 Returns: target->name().
22.11.4 Hash support [type.index.hash]

template<> struct hash<type_index>;

1 For an object index of type type_index, hash<type_index>()(index) shall evaluate to the same result as
index.hash_code().

22.12 Execution policies [execpol]
22.12.1 In general [execpol.general]

1 Subclause 22.12 describes classes that are execution policy types. An object of an execution policy type indicates thekinds of parallelism allowed in the execution of an algorithm and expresses the consequent requirements on the elementaccess functions.
[Example 1:
using namespace std;
vector<int> v = /* ... */;

// standard sequential sort
sort(v.begin(), v.end());

// explicitly sequential sort
sort(execution::seq, v.begin(), v.end());

// permitting parallel execution
sort(execution::par, v.begin(), v.end());

// permitting vectorization as well
sort(execution::par_unseq, v.begin(), v.end());

—end example]
[Note 1: Implementations can provide additional execution policies to those described in this standard as extensions to addressparallel architectures that require idiosyncratic parameters for efficient execution. —end note]
22.12.2 Header <execution> synopsis [execution.syn]
namespace std {// 22.12.3, execution policy type trait

template<class T> struct is_execution_policy;

§ 22.12.2 749

© ISO/IEC N4910

template<class T> inline constexpr bool is_execution_policy_v = is_execution_policy<T>::value;
}

namespace std::execution {// 22.12.4, sequenced execution policy
class sequenced_policy;

// 22.12.5, parallel execution policy
class parallel_policy;

// 22.12.6, parallel and unsequenced execution policy
class parallel_unsequenced_policy;

// 22.12.7, unsequenced execution policy
class unsequenced_policy;

// 22.12.8, execution policy objects
inline constexpr sequenced_policy seq{ unspecified };
inline constexpr parallel_policy par{ unspecified };
inline constexpr parallel_unsequenced_policy par_unseq{ unspecified };
inline constexpr unsequenced_policy unseq{ unspecified };

}

22.12.3 Execution policy type trait [execpol.type]

template<class T> struct is_execution_policy { see below };

1 is_execution_policy can be used to detect execution policies for the purpose of excluding function signaturesfrom otherwise ambiguous overload resolution participation.
2 is_execution_policy<T> is a Cpp17UnaryTypeTrait with a base characteristic of true_type if T is the type ofa standard or implementation-defined execution policy, otherwise false_type.

[Note 1: This provision reserves the privilege of creating non-standard execution policies to the library implementation.—end note]
3 The behavior of a program that adds specializations for is_execution_policy is undefined.
22.12.4 Sequenced execution policy [execpol.seq]

class execution::sequenced_policy { unspecified };

1 The class execution::sequenced_policy is an execution policy type used as a unique type to disambiguateparallel algorithm overloading and require that a parallel algorithm’s execution may not be parallelized.
2 During the execution of a parallel algorithm with the execution::sequenced_policy policy, if the invocation ofan element access function exits via an exception, terminate is invoked (14.6.2).
22.12.5 Parallel execution policy [execpol.par]

class execution::parallel_policy { unspecified };

1 The class execution::parallel_policy is an execution policy type used as a unique type to disambiguateparallel algorithm overloading and indicate that a parallel algorithm’s execution may be parallelized.
2 During the execution of a parallel algorithm with the execution::parallel_policy policy, if the invocation ofan element access function exits via an exception, terminate is invoked (14.6.2).
22.12.6 Parallel and unsequenced execution policy [execpol.parunseq]

class execution::parallel_unsequenced_policy { unspecified };

1 The class execution::parallel_unsequenced_policy is an execution policy type used as a unique type todisambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be parallelizedand vectorized.
2 During the execution of a parallel algorithm with the execution::parallel_unsequenced_policy policy, if theinvocation of an element access function exits via an exception, terminate is invoked (14.6.2).

§ 22.12.6 750

© ISO/IEC N4910

22.12.7 Unsequenced execution policy [execpol.unseq]

class execution::unsequenced_policy { unspecified };

1 The class unsequenced_policy is an execution policy type used as a unique type to disambiguate parallel algorithmoverloading and indicate that a parallel algorithm’s execution may be vectorized, e.g., executed on a single thread usinginstructions that operate on multiple data items.
2 During the execution of a parallel algorithm with the execution::unsequenced_policy policy, if the invocation of anelement access function exits via an exception, terminate is invoked (14.6.2).
22.12.8 Execution policy objects [execpol.objects]

inline constexpr execution::sequenced_policy execution::seq{ unspecified };
inline constexpr execution::parallel_policy execution::par{ unspecified };
inline constexpr execution::parallel_unsequenced_policy execution::par_unseq{ unspecified };
inline constexpr execution::unsequenced_policy execution::unseq{ unspecified };

1 The header <execution> declares global objects associated with each type of execution policy.
22.13 Primitive numeric conversions [charconv]
22.13.1 Header <charconv> synopsis [charconv.syn]
namespace std {// floating-point format for primitive numerical conversion

enum class chars_format {
scientific = unspecified,
fixed = unspecified,
hex = unspecified,
general = fixed | scientific

};

// 22.13.2, primitive numerical output conversion
struct to_chars_result {
char* ptr;
errc ec;
friend bool operator==(const to_chars_result&, const to_chars_result&) = default;

};

to_chars_result to_chars(char* first, char* last, see below value, int base = 10);
to_chars_result to_chars(char* first, char* last, bool value, int base = 10) = delete;

to_chars_result to_chars(char* first, char* last, float value);
to_chars_result to_chars(char* first, char* last, double value);
to_chars_result to_chars(char* first, char* last, long double value);

to_chars_result to_chars(char* first, char* last, float value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, double value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt);

to_chars_result to_chars(char* first, char* last, float value,
chars_format fmt, int precision);

to_chars_result to_chars(char* first, char* last, double value,
chars_format fmt, int precision);

to_chars_result to_chars(char* first, char* last, long double value,
chars_format fmt, int precision);

// 22.13.3, primitive numerical input conversion
struct from_chars_result {
const char* ptr;
errc ec;
friend bool operator==(const from_chars_result&, const from_chars_result&) = default;

};

from_chars_result from_chars(const char* first, const char* last,
see below& value, int base = 10);

§ 22.13.1 751

© ISO/IEC N4910

from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt = chars_format::general);

from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt = chars_format::general);

from_chars_result from_chars(const char* first, const char* last, long double& value,
chars_format fmt = chars_format::general);

}

1 The type chars_format is a bitmask type (16.3.3.3.4) with elements scientific, fixed, and hex.
2 The types to_chars_result and from_chars_result have the data members and special members specified above.They have no base classes or members other than those specified.
22.13.2 Primitive numeric output conversion [charconv.to.chars]

1 All functions named to_chars convert value into a character string by successively filling the range [first, last),where [first, last) is required to be a valid range. If the member ec of the return value is such that the value is equalto the value of a value-initialized errc, the conversion was successful and the member ptr is the one-past-the-endpointer of the characters written. Otherwise, the member ec has the value errc::value_too_large, the member ptrhas the value last, and the contents of the range [first, last) are unspecified.
2 The functions that take a floating-point value but not a precision parameter ensure that the string representationconsists of the smallest number of characters such that there is at least one digit before the radix point (if present) andparsing the representation using the corresponding from_chars function recovers value exactly.
[Note 1: This guarantee applies only if to_chars and from_chars are executed on the same implementation. —end note]
If there are several such representations, the representation with the smallest difference from the floating-point argumentvalue is chosen, resolving any remaining ties using rounding according to round_to_nearest (17.3.4.1).

3 The functions taking a chars_format parameter determine the conversion specifier for printf as follows: The conver-sion specifier is f if fmt is chars_format::fixed, e if fmt is chars_format::scientific, a (without leading "0x" inthe result) if fmt is chars_format::hex, and g if fmt is chars_format::general.
to_chars_result to_chars(char* first, char* last, see below value, int base = 10);

4 Preconditions: base has a value between 2 and 36 (inclusive).
5 Effects: The value of value is converted to a string of digits in the given base (with no redundant leading zeroes).Digits in the range 10..35 (inclusive) are represented as lowercase characters a..z. If value is less than zero, therepresentation starts with ’-’.
6 Throws: Nothing.
7 Remarks: The implementation shall provide overloads for all signed and unsigned integer types and char as thetype of the parameter value.

to_chars_result to_chars(char* first, char* last, float value);
to_chars_result to_chars(char* first, char* last, double value);
to_chars_result to_chars(char* first, char* last, long double value);

8 Effects: value is converted to a string in the style of printf in the "C" locale. The conversion specifier is f or e,chosen according to the requirement for a shortest representation (see above); a tie is resolved in favor of f.
9 Throws: Nothing.

to_chars_result to_chars(char* first, char* last, float value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, double value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt);

10 Preconditions: fmt has the value of one of the enumerators of chars_format.
11 Effects: value is converted to a string in the style of printf in the "C" locale.
12 Throws: Nothing.

to_chars_result to_chars(char* first, char* last, float value,
chars_format fmt, int precision);

to_chars_result to_chars(char* first, char* last, double value,
chars_format fmt, int precision);

§ 22.13.2 752

© ISO/IEC N4910

to_chars_result to_chars(char* first, char* last, long double value,
chars_format fmt, int precision);

13 Preconditions: fmt has the value of one of the enumerators of chars_format.
14 Effects: value is converted to a string in the style of printf in the "C" locale with the given precision.
15 Throws: Nothing.
See also: ISO C 7.21.6.1
22.13.3 Primitive numeric input conversion [charconv.from.chars]

1 All functions named from_chars analyze the string [first, last) for a pattern, where [first, last) is required to be avalid range. If no characters match the pattern, value is unmodified, the member ptr of the return value is first andthe member ec is equal to errc::invalid_argument.
[Note 1: If the pattern allows for an optional sign, but the string has no digit characters following the sign, no characters match thepattern. —end note]
Otherwise, the characters matching the pattern are interpreted as a representation of a value of the type of value.The member ptr of the return value points to the first character not matching the pattern, or has the value last if allcharacters match. If the parsed value is not in the range representable by the type of value, value is unmodified and themember ec of the return value is equal to errc::result_out_of_range. Otherwise, value is set to the parsed value,after rounding according to round_to_nearest (17.3.4.1), and the member ec is value-initialized.
from_chars_result from_chars(const char* first, const char* last,

see below& value, int base = 10);

2 Preconditions: base has a value between 2 and 36 (inclusive).
3 Effects: The pattern is the expected form of the subject sequence in the "C" locale for the given nonzero base, asdescribed for strtol, except that no "0x" or "0X" prefix shall appear if the value of base is 16, and except that

’-’ is the only sign that may appear, and only if value has a signed type.
4 Throws: Nothing.
5 Remarks: The implementation shall provide overloads for all signed and unsigned integer types and char as thereferenced type of the parameter value.

from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt = chars_format::general);

from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt = chars_format::general);

from_chars_result from_chars(const char* first, const char* last, long double& value,
chars_format fmt = chars_format::general);

6 Preconditions: fmt has the value of one of the enumerators of chars_format.
7 Effects: The pattern is the expected form of the subject sequence in the "C" locale, as described for strtod, exceptthat

—(7.1) the sign ’+’ may only appear in the exponent part;
—(7.2) if fmt has chars_format::scientific set but not chars_format::fixed, the otherwise optional exponentpart shall appear;
—(7.3) if fmt has chars_format::fixed set but not chars_format::scientific, the optional exponent part shallnot appear; and
—(7.4) if fmt is chars_format::hex, the prefix "0x" or "0X" is assumed.

[Example 1: The string 0x123 is parsed to have the value 0 with remaining characters x123. —end example]
In any case, the resulting value is one of at most two floating-point values closest to the value of the stringmatching the pattern.

8 Throws: Nothing.
See also: ISO C 7.22.1.3, 7.22.1.4

§ 22.13.3 753

© ISO/IEC N4910

22.14 Formatting [format]
22.14.1 Header <format> synopsis [format.syn]
namespace std {// 22.14.6.4, class template basic_format_context

template<class Out, class charT> class basic_format_context;
using format_context = basic_format_context<unspecified, char>;
using wformat_context = basic_format_context<unspecified, wchar_t>;

// 22.14.7.3, class template basic_format_args
template<class Context> class basic_format_args;
using format_args = basic_format_args<format_context>;
using wformat_args = basic_format_args<wformat_context>;

// 22.14.4, class template basic-format-string
template<class charT, class... Args>

struct basic-format-string; // exposition only
template<class... Args>

using format-string = // exposition only
basic-format-string<char, type_identity_t<Args>...>;

template<class... Args>
using wformat-string = // exposition only
basic-format-string<wchar_t, type_identity_t<Args>...>;

// 22.14.5, formatting functions
template<class... Args>
string format(format-string<Args...> fmt, Args&&... args);

template<class... Args>
wstring format(wformat-string<Args...> fmt, Args&&... args);

template<class... Args>
string format(const locale& loc, format-string<Args...> fmt, Args&&... args);

template<class... Args>
wstring format(const locale& loc, wformat-string<Args...> fmt, Args&&... args);

string vformat(string_view fmt, format_args args);
wstring vformat(wstring_view fmt, wformat_args args);
string vformat(const locale& loc, string_view fmt, format_args args);
wstring vformat(const locale& loc, wstring_view fmt, wformat_args args);

template<class Out, class... Args>
Out format_to(Out out, format-string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
Out format_to(Out out, wformat-string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, format-string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, wformat-string<Args...> fmt, Args&&... args);

template<class Out>
Out vformat_to(Out out, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, wstring_view fmt, wformat_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, wstring_view fmt, wformat_args args);

template<class Out> struct format_to_n_result {
Out out;
iter_difference_t<Out> size;

};

§ 22.14.1 754

© ISO/IEC N4910

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

format-string<Args...> fmt, Args&&... args);
template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

wformat-string<Args...> fmt, Args&&... args);
template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, format-string<Args...> fmt,
Args&&... args);

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, wformat-string<Args...> fmt,
Args&&... args);

template<class... Args>
size_t formatted_size(format-string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(wformat-string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, format-string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, wformat-string<Args...> fmt, Args&&... args);

// 22.14.6, formatter
template<class T, class charT = char> struct formatter;

// 22.14.6.3, class template basic_format_parse_context
template<class charT> class basic_format_parse_context;
using format_parse_context = basic_format_parse_context<char>;
using wformat_parse_context = basic_format_parse_context<wchar_t>;

// 22.14.7, arguments// 22.14.7.1, class template basic_format_arg
template<class Context> class basic_format_arg;

template<class Visitor, class Context>
decltype(auto) visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);

// 22.14.7.2, class template format-arg-store
template<class Context, class... Args> class format-arg-store; // exposition only
template<class Context = format_context, class... Args>

format-arg-store<Context, Args...>
make_format_args(Args&&... fmt_args);

template<class... Args>
format-arg-store<wformat_context, Args...>
make_wformat_args(Args&&... args);

// 22.14.8, class format_error
class format_error;

}

1 The class template format_to_n_result has the template parameters, data members, and special members specifiedabove. It has no base classes or members other than those specified.
22.14.2 Format string [format.string]
22.14.2.1 In general [format.string.general]

1 A format string for arguments args is a (possibly empty) sequence of replacement fields, escape sequences, andcharacters other than { and }. Let charT be the character type of the format string. Each character that is not part of areplacement field or an escape sequence is copied unchanged to the output. An escape sequence is one of {{ or }}. It isreplaced with { or }, respectively, in the output. The syntax of replacement fields is as follows:

§ 22.14.2.1 755

© ISO/IEC N4910

replacement-field :
{ arg-idopt format-specifieropt }

arg-id :
0
positive-integer

positive-integer :
nonzero-digit
positive-integer digit

nonnegative-integer :
digit
nonnegative-integer digit

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

digit : one of
0 1 2 3 4 5 6 7 8 9

format-specifier :
: format-spec

format-spec :as specified by the formatter specialization for the argument type
2 The arg-id field specifies the index of the argument in args whose value is to be formatted and inserted into the outputinstead of the replacement field. If there is no argument with the index arg-id in args, the string is not a format stringfor args. The optional format-specifier field explicitly specifies a format for the replacement value.
3 [Example 1:

string s = format("{0}-{{", 8); // value of s is "8-{"
—end example]

4 If all arg-ids in a format string are omitted (including those in the format-spec , as interpreted by the corresponding
formatter specialization), argument indices 0, 1, 2, . . . will automatically be used in that order. If some arg-ids areomitted and some are present, the string is not a format string.
[Note 1: A format string cannot contain a mixture of automatic and manual indexing. —end note]
[Example 2:
string s0 = format("{} to {}", "a", "b"); // OK, automatic indexing
string s1 = format("{1} to {0}", "a", "b"); // OK, manual indexing
string s2 = format("{0} to {}", "a", "b"); // not a format string (mixing automatic and manual indexing),// ill-formed
string s3 = format("{} to {1}", "a", "b"); // not a format string (mixing automatic and manual indexing),// ill-formed
—end example]

5 The format-spec field contains format specifications that define how the value should be presented. Each type candefine its own interpretation of the format-spec field. If format-spec does not conform to the format specifications forthe argument type referred to by arg-id , the string is not a format string for args.
[Example 3:
—(5.1) For arithmetic, pointer, and string types the format-spec is interpreted as a std-format-spec as described in (22.14.2.2).
—(5.2) For chrono types the format-spec is interpreted as a chrono-format-spec as described in (29.12).
—(5.3) For user-defined formatter specializations, the behavior of the parse member function determines how the format-spec isinterpreted.

—end example]
22.14.2.2 Standard format specifiers [format.string.std]

1 Each formatter specializations described in 22.14.6.2 for fundamental and string types interprets format-spec as a
std-format-spec .
[Note 1: The format specification can be used to specify such details as field width, alignment, padding, and decimal precision. Someof the formatting options are only supported for arithmetic types. —end note]
The syntax of format specifications is as follows:
§ 22.14.2.2 756

© ISO/IEC N4910

std-format-spec :
fill-and-alignopt signopt #opt 0opt widthopt precisionopt Lopt typeopt

fill-and-align :
fillopt align

fill : any character other than { or }
align : one of

< > ^

sign : one of
+ - space

width :
positive-integer
{ arg-idopt }

precision :
. nonnegative-integer
. { arg-idopt }

type : one of
a A b B c d e E f F g G o p s x X

2 [Note 2: The fill character can be any character other than { or }. The presence of a fill character is signaled by the character followingit, which must be one of the alignment options. If the second character of std-format-spec is not a valid alignment option, then it isassumed that both the fill character and the alignment option are absent. —end note]
3 The align specifier applies to all argument types. The meaning of the various alignment options is as specified inTable 64.
[Example 1:
char c = 120;
string s0 = format("{:6}", 42); // value of s0 is " 42"
string s1 = format("{:6}", 'x'); // value of s1 is "x "
string s2 = format("{:*<6}", 'x'); // value of s2 is "x*****"
string s3 = format("{:*>6}", 'x'); // value of s3 is "*****x"
string s4 = format("{:*^6}", 'x'); // value of s4 is "**x***"
string s5 = format("{:6d}", c); // value of s5 is " 120"
string s6 = format("{:6}", true); // value of s6 is "true "

—end example]
[Note 3: Unless a minimum field width is defined, the field width is determined by the size of the content and the alignment optionhas no effect. —end note]

Table 64: Meaning of align options [tab:format.align]
Option Meaning
< Forces the field to be aligned to the start of the available space. This is the default for non-arithmetic non-pointer types, charT, and bool, unless an integer presentation type is specified.
> Forces the field to be aligned to the end of the available space. This is the default for arithmetictypes other than charT and bool, pointer types, or when an integer presentation type is specified.
^ Forces the field to be centered within the available space by inserting ⌊n2 ⌋ characters before and⌈

n
2

⌉ characters after the value, where n is the total number of fill characters to insert.
4 The sign option is only valid for arithmetic types other than charT and bool or when an integer presentation type isspecified. The meaning of the various options is as specified in Table 65.
5 The sign option applies to floating-point infinity and NaN.
[Example 2:
double inf = numeric_limits<double>::infinity();
double nan = numeric_limits<double>::quiet_NaN();
string s0 = format("{0:},{0:+},{0:-},{0: }", 1); // value of s0 is "1,+1,1, 1"
string s1 = format("{0:},{0:+},{0:-},{0: }", -1); // value of s1 is "-1,-1,-1,-1"
string s2 = format("{0:},{0:+},{0:-},{0: }", inf); // value of s2 is "inf,+inf,inf, inf"

§ 22.14.2.2 757

© ISO/IEC N4910

Table 65: Meaning of sign options [tab:format.sign]
Option Meaning
+ Indicates that a sign should be used for both non-negative and negative numbers. The + sign isinserted before the output of to_chars for non-negative numbers other than negative zero.

[Note 4: For negative numbers and negative zero the output of to_chars will already contain the sign so
no additional transformation is performed. —end note]

- Indicates that a sign should be used for negative numbers and negative zero only (this is thedefault behavior).space Indicates that a leading space should be used for non-negative numbers other than negative zero,and a minus sign for negative numbers and negative zero.

string s3 = format("{0:},{0:+},{0:-},{0: }", nan); // value of s3 is "nan,+nan,nan, nan"

—end example]
6 The # option causes the alternate form to be used for the conversion. This option is valid for arithmetic types other than

charT and bool or when an integer presentation type is specified, and not otherwise. For integral types, the alternateform inserts the base prefix (if any) specified in Table 67 into the output after the sign character (possibly space) ifthere is one, or before the output of to_chars otherwise. For floating-point types, the alternate form causes the resultof the conversion of finite values to always contain a decimal-point character, even if no digits follow it. Normally,a decimal-point character appears in the result of these conversions only if a digit follows it. In addition, for g and Gconversions, trailing zeros are not removed from the result.
7 If { arg-idopt } is used in a width or precision, the value of the corresponding formatting argument is used in its place.If the corresponding formatting argument is not of integral type, or its value is negative for precision or non-positive for

width, an exception of type format_error is thrown.
8 The positive-integer in width is a decimal integer defining the minimum field width. If width is not specified, there isno minimum field width, and the field width is determined based on the content of the field.
9 The width of a string is defined as the estimated number of column positions appropriate for displaying it in a terminal.
[Note 5: This is similar to the semantics of the POSIX wcswidth function. —end note]

10 For the purposes of width computation, a string is assumed to be in a locale-independent, implementation-definedencoding. Implementations should use a Unicode encoding on platforms capable of displaying Unicode text in aterminal.
[Note 6: This is the case for Windows210-based and many POSIX-based operating systems. —end note]

11 For a string in a Unicode encoding, implementations should estimate the width of a string as the sum of estimatedwidths of the first code points in its extended grapheme clusters. The extended grapheme clusters of a string are definedby UAX #29. The estimated width of the following code points is 2:
—(11.1) u+1100 – u+115f
—(11.2) u+2329 – u+232a
—(11.3) u+2e80 – u+303e
—(11.4) u+3040 – u+a4cf
—(11.5) u+ac00 – u+d7a3
—(11.6) u+f900 – u+faff
—(11.7) u+fe10 – u+fe19
—(11.8) u+fe30 – u+fe6f
—(11.9) u+ff00 – u+ff60
—(11.10) u+ffe0 – u+ffe6
—(11.11) u+1f300 – u+1f64f
—(11.12) u+1f900 – u+1f9ff

210)Windows® is a registered trademark of Microsoft Corporation. This information is given for the convenience of users of this document anddoes not constitute an endorsement by ISO or IEC of this product.
§ 22.14.2.2 758

© ISO/IEC N4910

—(11.13) u+20000 – u+2fffd
—(11.14) u+30000 – u+3fffd

The estimated width of other code points is 1.
12 For a string in a non-Unicode encoding, the width of a string is unspecified.
13 A zero (0) character preceding the width field pads the field with leading zeros (following any indication of sign orbase) to the field width, except when applied to an infinity or NaN. This option is only valid for arithmetic types otherthan charT and bool or when an integer presentation type is specified. If the 0 character and an align option both appear,the 0 character is ignored.
[Example 3:
char c = 120;
string s1 = format("{:+06d}", c); // value of s1 is "+00120"
string s2 = format("{:#06x}", 0xa); // value of s2 is "0x000a"
string s3 = format("{:<06}", -42); // value of s3 is "-42 " (0 is ignored because of < alignment)
— end example]

14 The nonnegative-integer in precision is a decimal integer defining the precision or maximum field size. It can only beused with floating-point and string types. For floating-point types this field specifies the formatting precision. For stringtypes, this field provides an upper bound for the estimated width of the prefix of the input string that is copied intothe output. For a string in a Unicode encoding, the formatter copies to the output the longest prefix of whole extendedgrapheme clusters whose estimated width is no greater than the precision.
15 When the L option is used, the form used for the conversion is called the locale-specific form. The L option is only validfor arithmetic types, and its effect depends upon the type.

—(15.1) For integral types, the locale-specific form causes the context’s locale to be used to insert the appropriate digitgroup separator characters.
—(15.2) For floating-point types, the locale-specific form causes the context’s locale to be used to insert the appropriatedigit group and radix separator characters.
—(15.3) For the textual representation of bool, the locale-specific form causes the context’s locale to be used to insert theappropriate string as if obtained with numpunct::truename or numpunct::falsename.

16 The type determines how the data should be presented.
17 The available string presentation types are specified in Table 66.

Table 66: Meaning of type options for strings [tab:format.type.string]
Type Meaningnone, s Copies the string to the output.

18 The meaning of some non-string presentation types is defined in terms of a call to to_chars. In such cases, let
[first, last) be a range large enough to hold the to_chars output and value be the formatting argument value.Formatting is done as if by calling to_chars as specified and copying the output through the output iterator of theformat context.
[Note 7: Additional padding and adjustments are performed prior to copying the output through the output iterator as specified by theformat specifiers. —end note]

19 The available integer presentation types for integral types other than bool and charT are specified in Table 67.
[Example 4:
string s0 = format("{}", 42); // value of s0 is "42"
string s1 = format("{0:b} {0:d} {0:o} {0:x}", 42); // value of s1 is "101010 42 52 2a"
string s2 = format("{0:#x} {0:#X}", 42); // value of s2 is "0x2a 0X2A"
string s3 = format("{:L}", 1234); // value of s3 can be "1,234"// (depending on the locale)
— end example]

20 The available charT presentation types are specified in Table 68.
21 The available bool presentation types are specified in Table 69.
§ 22.14.2.2 759

© ISO/IEC N4910

Table 67: Meaning of type options for integer types [tab:format.type.int]
Type Meaning
b to_chars(first, last, value, 2); the base prefix is 0b.
B The same as b, except that the base prefix is 0B.
c Copies the character static_cast<charT>(value) to the output. Throws format_error if

value is not in the range of representable values for charT.
d to_chars(first, last, value).
o to_chars(first, last, value, 8); the base prefix is 0 if value is nonzero and is emptyotherwise.
x to_chars(first, last, value, 16); the base prefix is 0x.
X The same as x, except that it uses uppercase letters for digits above 9 and the base prefix is 0X.none The same as d.

[Note 8: If the formatting argument type is charT or bool, the default is instead c or s, respectively. —end
note]

Table 68: Meaning of type options for charT [tab:format.type.char]
Type Meaningnone, c Copies the character to the output.

b, B, d, o, x, X As specified in Table 67.

Table 69: Meaning of type options for bool [tab:format.type.bool]
Type Meaningnone, s Copies textual representation, either true or false, to the output.

b, B, d, o, x, X As specified in Table 67 for the value static_cast<unsigned char>(value).

22 The available floating-point presentation types and their meanings for values other than infinity and NaN are specified inTable 70. For lower-case presentation types, infinity and NaN are formatted as inf and nan, respectively. For upper-casepresentation types, infinity and NaN are formatted as INF and NAN, respectively.
[Note 9: In either case, a sign is included if indicated by the sign option. —end note]

23 The available pointer presentation types and their mapping to to_chars are specified in Table 71.
[Note 10: Pointer presentation types also apply to nullptr_t. —end note]
22.14.3 Error reporting [format.err.report]

1 Formatting functions throw format_error if an argument fmt is passed that is not a format string for args. Theypropagate exceptions thrown by operations of formatter specializations and iterators. Failure to allocate storage isreported by throwing an exception as described in 16.4.6.13.
22.14.4 Class template basic-format-string [format.fmt.string]
template<class charT, class... Args>
struct basic-format-string { // exposition only
private:

basic_string_view<charT> str; // exposition only
public:

template<class T> consteval basic-format-string(const T& s);
};

template<class T> consteval basic-format-string(const T& s);

1 Constraints: const T& models convertible_to<basic_string_view<charT>>.
2 Effects: Direct-non-list-initializes str with s.
3 Remarks: A call to this function is not a core constant expression (7.7) unless there exist args of types Args suchthat str is a format string for args.
§ 22.14.4 760

© ISO/IEC N4910

Table 70: Meaning of type options for floating-point types [tab:format.type.float]
Type Meaning
a If precision is specified, equivalent to

to_chars(first, last, value, chars_format::hex, precision)where precision is the specified formatting precision; equivalent to
to_chars(first, last, value, chars_format::hex)otherwise.

A The same as a, except that it uses uppercase letters for digits above 9 and P to indicate theexponent.
e Equivalent to

to_chars(first, last, value, chars_format::scientific, precision)where precision is the specified formatting precision, or 6 if precision is not specified.
E The same as e, except that it uses E to indicate exponent.
f, F Equivalent to

to_chars(first, last, value, chars_format::fixed, precision)where precision is the specified formatting precision, or 6 if precision is not specified.
g Equivalent to

to_chars(first, last, value, chars_format::general, precision)where precision is the specified formatting precision, or 6 if precision is not specified.
G The same as g, except that it uses E to indicate exponent.none If precision is specified, equivalent to

to_chars(first, last, value, chars_format::general, precision)where precision is the specified formatting precision; equivalent to
to_chars(first, last, value)otherwise.

Table 71: Meaning of type options for pointer types [tab:format.type.ptr]
Type Meaningnone, p If uintptr_t is defined,

to_chars(first, last, reinterpret_cast<uintptr_t>(value), 16)with the prefix 0x added to the output; otherwise, implementation-defined.

22.14.5 Formatting functions [format.functions]
1 In the description of the functions, operator + is used for some of the iterator categories for which it does not have to bedefined. In these cases the semantics of a + n are the same as in 27.2.

template<class... Args>
string format(format-string<Args...> fmt, Args&&... args);

2 Effects: Equivalent to:
return vformat(fmt.str, make_format_args(args...));

template<class... Args>
wstring format(wformat-string<Args...> fmt, Args&&... args);

3 Effects: Equivalent to:
return vformat(fmt.str, make_wformat_args(args...));

template<class... Args>
string format(const locale& loc, format-string<Args...> fmt, Args&&... args);

4 Effects: Equivalent to:
return vformat(loc, fmt.str, make_format_args(args...));

template<class... Args>
wstring format(const locale& loc, wformat-string<Args...> fmt, Args&&... args);

5 Effects: Equivalent to:
§ 22.14.5 761

© ISO/IEC N4910

return vformat(loc, fmt.str, make_wformat_args(args...));

string vformat(string_view fmt, format_args args);
wstring vformat(wstring_view fmt, wformat_args args);
string vformat(const locale& loc, string_view fmt, format_args args);
wstring vformat(const locale& loc, wstring_view fmt, wformat_args args);

6 Returns: A string object holding the character representation of formatting arguments provided by args formattedaccording to specifications given in fmt. If present, loc is used for locale-specific formatting.
7 Throws: As specified in 22.14.3.

template<class Out, class... Args>
Out format_to(Out out, format-string<Args...> fmt, Args&&... args);

8 Effects: Equivalent to:
return vformat_to(std::move(out), fmt.str, make_format_args(args...));

template<class Out, class... Args>
Out format_to(Out out, wformat-string<Args...> fmt, Args&&... args);

9 Effects: Equivalent to:
return vformat_to(std::move(out), fmt.str, make_wformat_args(args...));

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, format-string<Args...> fmt, Args&&... args);

10 Effects: Equivalent to:
return vformat_to(std::move(out), loc, fmt.str, make_format_args(args...));

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, wformat-string<Args...> fmt, Args&&... args);

11 Effects: Equivalent to:
return vformat_to(std::move(out), loc, fmt.str, make_wformat_args(args...));

template<class Out>
Out vformat_to(Out out, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, wstring_view fmt, wformat_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, wstring_view fmt, wformat_args args);

12 Let charT be decltype(fmt)::value_type.
13 Constraints: Out satisfies output_iterator<const charT&>.
14 Preconditions: Out models output_iterator<const charT&>.
15 Effects: Places the character representation of formatting the arguments provided by args, formatted according tothe specifications given in fmt, into the range [out, out + N), where N is the number of characters in that characterrepresentation. If present, loc is used for locale-specific formatting.
16 Returns: out + N.
17 Throws: As specified in 22.14.3.

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

format-string<Args...> fmt, Args&&... args);
template<class Out, class... Args>

format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,
wformat-string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, format-string<Args...> fmt,
Args&&... args);

§ 22.14.5 762

© ISO/IEC N4910

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, wformat-string<Args...> fmt,
Args&&... args);

18 Let
—(18.1) charT be decltype(fmt.str)::value_type,
—(18.2) N be formatted_size(fmt, args...) for the functions without a loc parameter and formatted_size(loc,

fmt, args...) for the functions with a loc parameter, and
—(18.3) M be clamp(n, 0, N).

19 Constraints: Out satisfies output_iterator<const charT&>.
20 Preconditions: Out models output_iterator<const charT&>, and formatter<remove_cvref_t<Ti>, charT>meets the BasicFormatter requirements (22.14.6.1) for each Ti in Args.
21 Effects: Places the first M characters of the character representation of formatting the arguments provided by args,formatted according to the specifications given in fmt, into the range [out, out + M). If present, loc is used forlocale-specific formatting.
22 Returns: {out + M, N}.
23 Throws: As specified in 22.14.3.

template<class... Args>
size_t formatted_size(format-string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(wformat-string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, format-string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, wformat-string<Args...> fmt, Args&&... args);

24 Let charT be decltype(fmt.str)::value_type.
25 Preconditions: formatter<remove_cvref_t<Ti>, charT> meets the BasicFormatter requirements (22.14.6.1)for each Ti in Args.
26 Returns: The number of characters in the character representation of formatting arguments args formattedaccording to specifications given in fmt. If present, loc is used for locale-specific formatting.
27 Throws: As specified in 22.14.3.
22.14.6 Formatter [format.formatter]
22.14.6.1 Formatter requirements [formatter.requirements]

1 A type F meets the BasicFormatter requirements if:
—(1.1) it meets the

—(1.1.1) Cpp17DefaultConstructible (Table 29),
—(1.1.2) Cpp17CopyConstructible (Table 31),
—(1.1.3) Cpp17CopyAssignable (Table 33), and
—(1.1.4) Cpp17Destructible (Table 34)
requirements,

—(1.2) it is swappable (16.4.4.3) for lvalues, and
—(1.3) the expressions shown in Table 72 are valid and have the indicated semantics.

2 A type F meets the Formatter requirements if it meets the BasicFormatter requirements and the expressions shown inTable 73 are valid and have the indicated semantics.
3 Given character type charT, output iterator type Out, and formatting argument type T, in Table 72 and Table 73:

—(3.1) f is a value of type F,
—(3.2) u is an lvalue of type T,

§ 22.14.6.1 763

© ISO/IEC N4910

—(3.3) t is a value of a type convertible to (possibly const) T,
—(3.4) PC is basic_format_parse_context<charT>,
—(3.5) FC is basic_format_context<Out, charT>,
—(3.6) pc is an lvalue of type PC, and
—(3.7) fc is an lvalue of type FC.

pc.begin() points to the beginning of the format-spec (22.14.2) of the replacement field being formatted in the formatstring. If format-spec is empty then either pc.begin() == pc.end() or *pc.begin() == ’}’.
Table 72: BasicFormatter requirements [tab:formatter.basic]

Expression Return type Requirement
f.parse(pc) PC::iterator Parses format-spec (22.14.2) for type T in the range

[pc.begin(), pc.end()) until the first unmatchedcharacter. Throws format_error unless the wholerange is parsed or the unmatched character is }.[Note 1: This allows formatters to emit meaningful errormessages. —end note]Stores the parsed format specifiers in *this and re-turns an iterator past the end of the parsed range.
f.format(u, fc) FC::iterator Formats u according to the specifiers stored in *this,writes the output to fc.out(), and returns an iteratorpast the end of the output range. The output shallonly depend on u, fc.locale(), fc.arg(n) for anyvalue n of type size_t, and the range [pc.begin(),

pc.end()) from the last call to f.parse(pc).

Table 73: Formatter requirements [tab:formatter]
Expression Return type Requirement
f.format(t, fc) FC::iterator Formats t according to the specifiers stored in *this,writes the output to fc.out(), and returns an iteratorpast the end of the output range. The output shallonly depend on t, fc.locale(), fc.arg(n) for anyvalue n of type size_t, and the range [pc.begin(),

pc.end()) from the last call to f.parse(pc).
f.format(u, fc) FC::iterator As above, but does not modify u.

22.14.6.2 Formatter specializations [format.formatter.spec]
1 The functions defined in 22.14.5 use specializations of the class template formatter to format individual arguments.
2 Let charT be either char or wchar_t. Each specialization of formatter is either enabled or disabled, as described below.Each header that declares the template formatter provides the following enabled specializations:

—(2.1) The specializations
template<> struct formatter<char, char>;
template<> struct formatter<char, wchar_t>;
template<> struct formatter<wchar_t, wchar_t>;

—(2.2) For each charT, the string type specializations
template<> struct formatter<charT*, charT>;
template<> struct formatter<const charT*, charT>;
template<size_t N> struct formatter<const charT[N], charT>;
template<class traits, class Allocator>
struct formatter<basic_string<charT, traits, Allocator>, charT>;

template<class traits>
struct formatter<basic_string_view<charT, traits>, charT>;

§ 22.14.6.2 764

© ISO/IEC N4910

—(2.3) For each charT, for each cv-unqualified arithmetic type ArithmeticT other than char, wchar_t, char8_t, char16_-
t, or char32_t, a specialization
template<> struct formatter<ArithmeticT, charT>;

—(2.4) For each charT, the pointer type specializations
template<> struct formatter<nullptr_t, charT>;
template<> struct formatter<void*, charT>;
template<> struct formatter<const void*, charT>;

The parse member functions of these formatters interpret the format specification as a std-format-spec as described in22.14.2.2.
[Note 1: Specializations such as formatter<wchar_t, char> and formatter<const char*, wchar_t> that would require implicitmultibyte / wide string or character conversion are disabled. —end note]

3 For any types T and charT for which neither the library nor the user provides an explicit or partial specialization of theclass template formatter, formatter<T, charT> is disabled.
4 If the library provides an explicit or partial specialization of formatter<T, charT>, that specialization is enabled andmeets the Formatter requirements except as noted otherwise.
5 If F is a disabled specialization of formatter, these values are false:

—(5.1) is_default_constructible_v<F>,
—(5.2) is_copy_constructible_v<F>,
—(5.3) is_move_constructible_v<F>,
—(5.4) is_copy_assignable_v<F>, and
—(5.5) is_move_assignable_v<F>.

6 An enabled specialization formatter<T, charT> meets the BasicFormatter requirements (22.14.6.1).
[Example 1:
#include <format>

enum color { red, green, blue };
const char* color_names[] = { "red", "green", "blue" };

template<> struct std::formatter<color> : std::formatter<const char*> {
auto format(color c, format_context& ctx) {
return formatter<const char*>::format(color_names[c], ctx);

}
};

struct err {};

std::string s0 = std::format("{}", 42); // OK, library-provided formatter
std::string s1 = std::format("{}", L"foo"); // error: disabled formatter
std::string s2 = std::format("{}", red); // OK, user-provided formatter
std::string s3 = std::format("{}", err{}); // error: disabled formatter
— end example]
22.14.6.3 Class template basic_format_parse_context [format.parse.ctx]
namespace std {

template<class charT>
class basic_format_parse_context {
public:

using char_type = charT;
using const_iterator = typename basic_string_view<charT>::const_iterator;
using iterator = const_iterator;

private:
iterator begin_; // exposition only
iterator end_; // exposition only
enum indexing { unknown, manual, automatic }; // exposition only

§ 22.14.6.3 765

© ISO/IEC N4910

indexing indexing_; // exposition only
size_t next_arg_id_; // exposition only
size_t num_args_; // exposition only

public:
constexpr explicit basic_format_parse_context(basic_string_view<charT> fmt,

size_t num_args = 0) noexcept;
basic_format_parse_context(const basic_format_parse_context&) = delete;
basic_format_parse_context& operator=(const basic_format_parse_context&) = delete;

constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr void advance_to(const_iterator it);

constexpr size_t next_arg_id();
constexpr void check_arg_id(size_t id);

};
}

1 An instance of basic_format_parse_context holds the format string parsing state consisting of the format string rangebeing parsed and the argument counter for automatic indexing.
constexpr explicit basic_format_parse_context(basic_string_view<charT> fmt,

size_t num_args = 0) noexcept;

2 Effects: Initializes begin_ with fmt.begin(), end_ with fmt.end(), indexing_ with unknown, next_arg_id_-with 0, and num_args_ with num_args.
constexpr const_iterator begin() const noexcept;

3 Returns: begin_.
constexpr const_iterator end() const noexcept;

4 Returns: end_.
constexpr void advance_to(const_iterator it);

5 Preconditions: end() is reachable from it.
6 Effects: Equivalent to: begin_ = it;

constexpr size_t next_arg_id();

7 Effects: If indexing_ != manual, equivalent to:
if (indexing_ == unknown)
indexing_ = automatic;

return next_arg_id_++;

8 Throws: format_error if indexing_ == manual which indicates mixing of automatic and manual argumentindexing.
constexpr void check_arg_id(size_t id);

9 Effects: If indexing_ != automatic, equivalent to:
if (indexing_ == unknown)
indexing_ = manual;

10 Throws: format_error if indexing_ == automatic which indicates mixing of automatic and manual argumentindexing.
11 Remarks: Call expressions where id >= num_args_ are not core constant expressions (7.7).
22.14.6.4 Class template basic_format_context [format.context]
namespace std {

template<class Out, class charT>
class basic_format_context {

basic_format_args<basic_format_context> args_; // exposition only
Out out_; // exposition only

§ 22.14.6.4 766

© ISO/IEC N4910

public:
using iterator = Out;
using char_type = charT;
template<class T> using formatter_type = formatter<T, charT>;

basic_format_arg<basic_format_context> arg(size_t id) const noexcept;
std::locale locale();

iterator out();
void advance_to(iterator it);

};
}

1 An instance of basic_format_context holds formatting state consisting of the formatting arguments and the outputiterator.
2 Out shall model output_iterator<const charT&>.
3 format_context is an alias for a specialization of basic_format_context with an output iterator that appends to

string, such as back_insert_iterator<string>. Similarly, wformat_context is an alias for a specialization of
basic_format_context with an output iterator that appends to wstring.

4 Recommended practice: For a given type charT, implementations should provide a single instantiation of basic_-
format_context for appending to basic_string<charT>, vector<charT>, or any other container with contiguousstorage by wrapping those in temporary objects with a uniform interface (such as a span<charT>) and polymorphicreallocation.
basic_format_arg<basic_format_context> arg(size_t id) const noexcept;

5 Returns: args_.get(id).
std::locale locale();

6 Returns: The locale passed to the formatting function if the latter takes one, and std::locale() otherwise.
iterator out();

7 Effects: Equivalent to: return std::move(out_);

void advance_to(iterator it);

8 Effects: Equivalent to: out_ = std::move(it);

[Example 1:
struct S { int value; };

template<> struct std::formatter<S> {
size_t width_arg_id = 0;

// Parses a width argument id in the format { digit }.
constexpr auto parse(format_parse_context& ctx) {
auto iter = ctx.begin();
auto get_char = [&]() { return iter != ctx.end() ? *iter : 0; };
if (get_char() != '{')

return iter;
++iter;
char c = get_char();
if (!isdigit(c) || (++iter, get_char()) != '}')
throw format_error("invalid format");

width_arg_id = c - '0';
ctx.check_arg_id(width_arg_id);
return ++iter;

}

// Formats an S with width given by the argument width_arg_id.
auto format(S s, format_context& ctx) {

int width = visit_format_arg([](auto value) -> int {
if constexpr (!is_integral_v<decltype(value)>)

§ 22.14.6.4 767

© ISO/IEC N4910

throw format_error("width is not integral");
else if (value < 0 || value > numeric_limits<int>::max())

throw format_error("invalid width");
else

return value;
}, ctx.arg(width_arg_id));

return format_to(ctx.out(), "{0:x<{1}}", s.value, width);
}

};

std::string s = std::format("{0:{1}}", S{42}, 10); // value of s is "xxxxxxxx42"
—end example]
22.14.7 Arguments [format.arguments]
22.14.7.1 Class template basic_format_arg [format.arg]
namespace std {

template<class Context>
class basic_format_arg {
public:

class handle;

private:
using char_type = typename Context::char_type; // exposition only
variant<monostate, bool, char_type,

int, unsigned int, long long int, unsigned long long int,
float, double, long double,
const char_type*, basic_string_view<char_type>,
const void*, handle> value; // exposition only

template<class T> explicit basic_format_arg(T&& v) noexcept; // exposition only
explicit basic_format_arg(float n) noexcept; // exposition only
explicit basic_format_arg(double n) noexcept; // exposition only
explicit basic_format_arg(long double n) noexcept; // exposition only
explicit basic_format_arg(const char_type* s); // exposition only
template<class traits>
explicit basic_format_arg(

basic_string_view<char_type, traits> s) noexcept; // exposition only
template<class traits, class Allocator>
explicit basic_format_arg(

const basic_string<char_type, traits, Allocator>& s) noexcept; // exposition only
explicit basic_format_arg(nullptr_t) noexcept; // exposition only
template<class T>
explicit basic_format_arg(T* p) noexcept; // exposition only

public:
basic_format_arg() noexcept;

explicit operator bool() const noexcept;
};

}

1 An instance of basic_format_arg provides access to a formatting argument for user-defined formatters.
2 The behavior of a program that adds specializations of basic_format_arg is undefined.

basic_format_arg() noexcept;

3 Postconditions: !(*this).

§ 22.14.7.1 768

© ISO/IEC N4910

template<class T> explicit basic_format_arg(T&& v) noexcept;

4 Constraints: The template specialization
typename Context::template formatter_type<remove_cvref_t<T>>

meets the BasicFormatter requirements (22.14.6.1). The extent to which an implementation determines that thespecialization meets the BasicFormatter requirements is unspecified, except that as a minimum the expression
typename Context::template formatter_type<remove_cvref_t<T>>()
.format(declval<T&>(), declval<Context&>())

shall be well-formed when treated as an unevaluated operand (7.2.3).
5 Effects:

—(5.1) if T is bool or char_type, initializes value with v;
—(5.2) otherwise, if T is char and char_type is wchar_t, initializes value with static_cast<wchar_t>(v);
—(5.3) otherwise, if T is a signed integer type (6.8.2) and sizeof(T) <= sizeof(int), initializes value with

static_cast<int>(v);
—(5.4) otherwise, if T is an unsigned integer type and sizeof(T) <= sizeof(unsigned int), initializes valuewith static_cast<unsigned int>(v);
—(5.5) otherwise, if T is a signed integer type and sizeof(T) <= sizeof(long long int), initializes value with

static_cast<long long int>(v);
—(5.6) otherwise, if T is an unsigned integer type and sizeof(T) <= sizeof(unsigned long long int), initial-izes value with static_cast<unsigned long long int>(v);
—(5.7) otherwise, initializes value with handle(v).

explicit basic_format_arg(float n) noexcept;
explicit basic_format_arg(double n) noexcept;
explicit basic_format_arg(long double n) noexcept;

6 Effects: Initializes value with n.
explicit basic_format_arg(const char_type* s);

7 Preconditions: s points to a NTCTS (3.37).
8 Effects: Initializes value with s.

template<class traits>
explicit basic_format_arg(basic_string_view<char_type, traits> s) noexcept;

9 Effects: Initializes value with basic_string_view<char_type>(s.data(), s.size()).
template<class traits, class Allocator>

explicit basic_format_arg(
const basic_string<char_type, traits, Allocator>& s) noexcept;

10 Effects: Initializes value with basic_string_view<char_type>(s.data(), s.size()).
explicit basic_format_arg(nullptr_t) noexcept;

11 Effects: Initializes value with static_cast<const void*>(nullptr).
template<class T> explicit basic_format_arg(T* p) noexcept;

12 Constraints: is_void_v<T> is true.
13 Effects: Initializes value with p.
14 [Note 1: Constructing basic_format_arg from a pointer to a member is ill-formed unless the user provides an enabledspecialization of formatter for that pointer to member type. —end note]

explicit operator bool() const noexcept;

15 Returns: !holds_alternative<monostate>(value).
16 The class handle allows formatting an object of a user-defined type.

§ 22.14.7.1 769

© ISO/IEC N4910

namespace std {
template<class Context>
class basic_format_arg<Context>::handle {
const void* ptr_; // exposition only
void (*format_)(basic_format_parse_context<char_type>&,

Context&, const void*); // exposition only
template<class T> explicit handle(T&& val) noexcept; // exposition only
friend class basic_format_arg<Context>; // exposition only

public:
void format(basic_format_parse_context<char_type>&, Context& ctx) const;

};
}

template<class T> explicit handle(T&& val) noexcept;

17 Let
—(17.1) TD be remove_cvref_t<T>,
—(17.2) const-formattable be true if typename Context::template formatter_type<TD>()

.format(declval<const TD&>(), declval<Context&>()) is well-formed, otherwise false,
—(17.3) TQ be const TD if const-formattable is true and TD otherwise.

18 Mandates: const-formattable || !is_const_v<remove_reference_t<T>> is true.
19 Effects: Initializes ptr_ with addressof(val) and format_ with

[](basic_format_parse_context<char_type>& parse_ctx,
Context& format_ctx, const void* ptr) {

typename Context::template formatter_type<TD> f;
parse_ctx.advance_to(f.parse(parse_ctx));
format_ctx.advance_to(f.format(*const_cast<TQ*>(static_cast<const TD*>(ptr)),

format_ctx));
}

void format(basic_format_parse_context<char_type>& parse_ctx, Context& format_ctx) const;

20 Effects: Equivalent to: format_(parse_ctx, format_ctx, ptr_);

template<class Visitor, class Context>
decltype(auto) visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);

21 Effects: Equivalent to: return visit(forward<Visitor>(vis), arg.value);

22.14.7.2 Class template format-arg-store [format.arg.store]
namespace std {

template<class Context, class... Args>
class format-arg-store { // exposition only
array<basic_format_arg<Context>, sizeof...(Args)> args; // exposition only

};
}

1 An instance of format-arg-store stores formatting arguments.
template<class Context = format_context, class... Args>

format-arg-store<Context, Args...> make_format_args(Args&&... fmt_args);

2 Preconditions: The type typename Context::template formatter_type<Ti>meets the BasicFormatter require-ments (22.14.6.1) for each Ti in Args.
3 Returns: An object of type format-arg-store<Context, Args...> whose args data member is initialized with

{basic_format_arg<Context>(fmt_args)...}.
template<class... Args>

format-arg-store<wformat_context, Args...> make_wformat_args(Args&&... args);

4 Effects: Equivalent to: return make_format_args<wformat_context>(args...);

§ 22.14.7.2 770

© ISO/IEC N4910

22.14.7.3 Class template basic_format_args [format.args]
namespace std {

template<class Context>
class basic_format_args {
size_t size_; // exposition only
const basic_format_arg<Context>* data_; // exposition only

public:
basic_format_args() noexcept;

template<class... Args>
basic_format_args(const format-arg-store<Context, Args...>& store) noexcept;

basic_format_arg<Context> get(size_t i) const noexcept;
};

}

1 An instance of basic_format_args provides access to formatting arguments. Implementations should optimize therepresentation of basic_format_args for a small number of formatting arguments.
[Note 1: For example, by storing indices of type alternatives separately from values and packing the former. —end note]
basic_format_args() noexcept;

2 Effects: Initializes size_ with 0.
template<class... Args>

basic_format_args(const format-arg-store<Context, Args...>& store) noexcept;

3 Effects: Initializes size_ with sizeof...(Args) and data_ with store.args.data().
basic_format_arg<Context> get(size_t i) const noexcept;

4 Returns: i < size_ ? data_[i] : basic_format_arg<Context>().
22.14.8 Class format_error [format.error]
namespace std {

class format_error : public runtime_error {
public:

explicit format_error(const string& what_arg);
explicit format_error(const char* what_arg);

};
}

1 The class format_error defines the type of objects thrown as exceptions to report errors from the formatting library.
format_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.
format_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
22.15 Bit manipulation [bit]
22.15.1 General [bit.general]

1 The header <bit> provides components to access, manipulate and process both individual bits and bit sequences.
22.15.2 Header <bit> synopsis [bit.syn]
namespace std {// 22.15.3, bit_cast

template<class To, class From>
constexpr To bit_cast(const From& from) noexcept;

// 22.15.4, byteswap
template<class T>
constexpr T byteswap(T value) noexcept;

§ 22.15.2 771

© ISO/IEC N4910

// 22.15.5, integral powers of 2
template<class T>
constexpr bool has_single_bit(T x) noexcept;

template<class T>
constexpr T bit_ceil(T x);

template<class T>
constexpr T bit_floor(T x) noexcept;

template<class T>
constexpr T bit_width(T x) noexcept;

// 22.15.6, rotating
template<class T>
[[nodiscard]] constexpr T rotl(T x, int s) noexcept;

template<class T>
[[nodiscard]] constexpr T rotr(T x, int s) noexcept;

// 22.15.7, counting
template<class T>
constexpr int countl_zero(T x) noexcept;

template<class T>
constexpr int countl_one(T x) noexcept;

template<class T>
constexpr int countr_zero(T x) noexcept;

template<class T>
constexpr int countr_one(T x) noexcept;

template<class T>
constexpr int popcount(T x) noexcept;

// 22.15.8, endian
enum class endian {
little = see below,
big = see below,
native = see below

};
}

22.15.3 Function template bit_cast [bit.cast]

template<class To, class From>
constexpr To bit_cast(const From& from) noexcept;

1 Constraints:
—(1.1) sizeof(To) == sizeof(From) is true;
—(1.2) is_trivially_copyable_v<To> is true; and
—(1.3) is_trivially_copyable_v<From> is true.

2 Returns: An object of type To. Implicitly creates objects nested within the result (6.7.2). Each bit of the valuerepresentation of the result is equal to the corresponding bit in the object representation of from. Padding bits ofthe result are unspecified. For the result and each object created within it, if there is no value of the object’s typecorresponding to the value representation produced, the behavior is undefined. If there are multiple such values,which value is produced is unspecified. A bit in the value representation of the result is indeterminate if it doesnot correspond to a bit in the value representation of from or corresponds to a bit of an object that is not withinits lifetime or has an indeterminate value (6.7.4). For each bit in the value representation of the result that isindeterminate, the smallest object containing that bit has an indeterminate value; the behavior is undefined unlessthat object is of unsigned ordinary character type or std::byte type. The result does not otherwise contain anyindeterminate values.
3 Remarks: This function is constexpr if and only if To, From, and the types of all subobjects of To and From aretypes T such that:

—(3.1) is_union_v<T> is false;
—(3.2) is_pointer_v<T> is false;
—(3.3) is_member_pointer_v<T> is false;

§ 22.15.3 772

© ISO/IEC N4910

—(3.4) is_volatile_v<T> is false; and
—(3.5) T has no non-static data members of reference type.

22.15.4 byteswap [bit.byteswap]

template<class T>
constexpr T byteswap(T value) noexcept;

1 Constraints: T models integral.
2 Mandates: T does not have padding bits (6.8.1).
3 Let the sequence R comprise the bytes of the object representation of value in reverse order.
4 Returns: An object v of type T such that each byte in the object representation of v is equal to the byte in thecorresponding position in R.
22.15.5 Integral powers of 2 [bit.pow.two]

template<class T>
constexpr bool has_single_bit(T x) noexcept;

1 Constraints: T is an unsigned integer type (6.8.2).
2 Returns: true if x is an integral power of two; false otherwise.

template<class T>
constexpr T bit_ceil(T x);

3 Let N be the smallest power of 2 greater than or equal to x.
4 Constraints: T is an unsigned integer type (6.8.2).
5 Preconditions: N is representable as a value of type T.
6 Returns: N .
7 Throws: Nothing.
8 Remarks: A function call expression that violates the precondition in the Preconditions: element is not a coreconstant expression (7.7).

template<class T>
constexpr T bit_floor(T x) noexcept;

9 Constraints: T is an unsigned integer type (6.8.2).
10 Returns: If x == 0, 0; otherwise the maximal value y such that has_single_bit(y) is true and y <= x.

template<class T>
constexpr T bit_width(T x) noexcept;

11 Constraints: T is an unsigned integer type (6.8.2).
12 Returns: If x == 0, 0; otherwise one plus the base-2 logarithm of x, with any fractional part discarded.
22.15.6 Rotating [bit.rotate]

1 In the following descriptions, let N denote numeric_limits<T>::digits.
template<class T>

[[nodiscard]] constexpr T rotl(T x, int s) noexcept;

2 Constraints: T is an unsigned integer type (6.8.2).
3 Let r be s % N.
4 Returns: If r is 0, x; if r is positive, (x << r) | (x >> (N - r)); if r is negative, rotr(x, -r).

template<class T>
[[nodiscard]] constexpr T rotr(T x, int s) noexcept;

5 Constraints: T is an unsigned integer type (6.8.2).
6 Let r be s % N.

§ 22.15.6 773

© ISO/IEC N4910

7 Returns: If r is 0, x; if r is positive, (x >> r) | (x << (N - r)); if r is negative, rotl(x, -r).
22.15.7 Counting [bit.count]

1 In the following descriptions, let N denote numeric_limits<T>::digits.
template<class T>

constexpr int countl_zero(T x) noexcept;

2 Constraints: T is an unsigned integer type (6.8.2).
3 Returns: The number of consecutive 0 bits in the value of x, starting from the most significant bit.

[Note 1: Returns N if x == 0. —end note]
template<class T>

constexpr int countl_one(T x) noexcept;

4 Constraints: T is an unsigned integer type (6.8.2).
5 Returns: The number of consecutive 1 bits in the value of x, starting from the most significant bit.

[Note 2: Returns N if x == numeric_limits<T>::max(). —end note]
template<class T>

constexpr int countr_zero(T x) noexcept;

6 Constraints: T is an unsigned integer type (6.8.2).
7 Returns: The number of consecutive 0 bits in the value of x, starting from the least significant bit.

[Note 3: Returns N if x == 0. —end note]
template<class T>

constexpr int countr_one(T x) noexcept;

8 Constraints: T is an unsigned integer type (6.8.2).
9 Returns: The number of consecutive 1 bits in the value of x, starting from the least significant bit.

[Note 4: Returns N if x == numeric_limits<T>::max(). —end note]
template<class T>

constexpr int popcount(T x) noexcept;

10 Constraints: T is an unsigned integer type (6.8.2).
11 Returns: The number of 1 bits in the value of x.
22.15.8 Endian [bit.endian]

1 Two common methods of byte ordering in multibyte scalar types are big-endian and little-endian in the executionenvironment. Big-endian is a format for storage of binary data in which the most significant byte is placed first, withthe rest in descending order. Little-endian is a format for storage of binary data in which the least significant byte isplaced first, with the rest in ascending order. This subclause describes the endianness of the scalar types of the executionenvironment.
enum class endian {

little = see below,
big = see below,
native = see below

};

2 If all scalar types have size 1 byte, then all of endian::little, endian::big, and endian::native have thesame value. Otherwise, endian::little is not equal to endian::big. If all scalar types are big-endian,
endian::native is equal to endian::big. If all scalar types are little-endian, endian::native is equal to
endian::little. Otherwise, endian::native is not equal to either endian::big or endian::little.

§ 22.15.8 774

© ISO/IEC N4910

23 Strings library [strings]
23.1 General [strings.general]

1 This Clause describes components for manipulating sequences of any non-array trivial standard-layout (6.8.1) type.Such types are called char-like types, and objects of char-like types are called char-like objects or simply characters.
2 The following subclauses describe a character traits class, string classes, and null-terminated sequence utilities, assummarized in Table 74.

Table 74: Strings library summary [tab:strings.summary]
Subclause Header

23.2 Character traits <string>23.3 String view classes <string_view>23.4 String classes23.5 Null-terminated sequence utilities <cctype>, <cstdlib>, <cstring>,
<cuchar>, <cwchar>, <cwctype>

23.2 Character traits [char.traits]
23.2.1 General [char.traits.general]

1 Subclause 23.2 defines requirements on classes representing character traits, and defines a class template char_-
traits<charT>, along with five specializations, char_traits<char>, char_traits<char8_t>, char_traits<char16_-
t>, char_traits<char32_t>, and char_traits<wchar_t>, that meet those requirements.

2 Most classes specified in 23.4, 23.3, and Clause 31 need a set of related types and functions to complete the definitionof their semantics. These types and functions are provided as a set of member typedef-names and functions in thetemplate parameter traits used by each such template. Subclause 23.2 defines the semantics of these members.
3 To specialize those templates to generate a string, string view, or iostream class to handle a particular character containertype (3.10) C, that and its related character traits class X are passed as a pair of parameters to the string, string view, oriostream template as parameters charT and traits. If X::char_type is not the same type as C, the program is ill-formed.
23.2.2 Character traits requirements [char.traits.require]

1 In Table 75, X denotes a traits class defining types and functions for the character container type C; c and d denote valuesof type C; p and q denote values of type const C*; s denotes a value of type C*; n, i and j denote values of type size_t;
e and f denote values of type X::int_type; pos denotes a value of type X::pos_type; and r denotes an lvalue of type
C. No expression which is part of the character traits requirements specified in this subclause 23.2.2 shall exit via anexception.

Table 75: Character traits requirements [tab:char.traits.req]
Expression Return type Assertion/note Complexity

pre-/post-condition
X::char_type C compile-time
X::int_type (described in 23.2.3) compile-time
X::off_type (described in 31.2.3 and 31.3) compile-time
X::pos_type (described in 31.2.3 and 31.3) compile-time
X::state_type (described in 23.2.3) compile-time
X::eq(c,d) bool Returns: whether c is to be treatedas equal to d. constant
X::lt(c,d) bool Returns: whether c is to be treatedas less than d. constant

§ 23.2.2 775

© ISO/IEC N4910

Table 75: Character traits requirements (continued)
Expression Return type Assertion/note Complexity

pre-/post-condition
X::compare(p,q,n) int Returns: 0 if for each i in [0,n),

X::eq(p[i],q[i]) is true; else, anegative value if, for some j in
[0,n), X::lt(p[j],q[j]) is trueand for each i in [0,j)
X::eq(p[i],q[i]) is true; else apositive value.

linear

X::length(p) size_t Returns: the smallest i such that
X::eq(p[i],charT()) is true. linear

X::find(p,n,c) const X::char_type* Returns: the smallest q in [p,p+n)such that X::eq(*q,c) is true,zero otherwise.
linear

X::move(s,p,n) X::char_type* for each i in [0,n), performs
X::assign(s[i],p[i]). Copiescorrectly even where the ranges
[p,p+n) and [s,s+n) overlap.Returns: s.

linear

X::copy(s,p,n) X::char_type* Preconditions: p not in [s,s+n).Returns: s.for each i in [0,n), performs
X::assign(s[i],p[i]).

linear

X::assign(r,d) (not used) assigns r=d. constant
X::assign(s,n,c) X::char_type* for each i in [0,n), performs

X::assign(s[i],c).Returns: s.
linear

X::not_eof(e) int_type Returns: e if
X::eq_int_type(e,X::eof()) is
false, otherwise a value f suchthat X::eq_int_type(f,X::eof())is false.

constant

X::to_char_type(e) X::char_type Returns: if for some c, X::eq_-
int_type(e,X::to_int_type(c))is true, c; else some unspecifiedvalue.

constant

X::to_int_type(c) X::int_type Returns: some value e, constrainedby the definitions of to_char_typeand eq_int_type.
constant

X::eq_int_type(e,f) bool Returns: for all c and d,
X::eq(c,d) is equal to X::eq_-
int_type(X::to_int_type(c),
X::to_int_type(d)); otherwise,yields true if e and f are bothcopies of X::eof(); otherwise,yields false if one of e and f is acopy of X::eof() and the other isnot; otherwise the value isunspecified.

constant

X::eof() X::int_type Returns: a value e such that
X::eq_int_type(e,X::to_int_-
type(c)) is false for all values
c.

constant

2 The class template
template<class charT> struct char_traits;

§ 23.2.2 776

© ISO/IEC N4910

is provided in the header <string> as a basis for explicit specializations.
23.2.3 Traits typedefs [char.traits.typedefs]

using int_type = see below;

1 Preconditions: int_type shall be able to represent all of the valid characters converted from the corresponding
char_type values, as well as an end-of-file value, eof().211

using state_type = see below;

2 Preconditions: state_typemeets theCpp17Destructible (Table 34),Cpp17CopyAssignable (Table 33),Cpp17CopyConstructible(Table 31), and Cpp17DefaultConstructible (Table 29) requirements.
23.2.4 char_traits specializations [char.traits.specializations]
23.2.4.1 General [char.traits.specializations.general]
namespace std {

template<> struct char_traits<char>;
template<> struct char_traits<char8_t>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

}

1 The header <string> defines five specializations of the class template char_traits: char_traits<char>, char_-
traits<char8_t>, char_traits<char16_t>, char_traits<char32_t>, and char_traits<wchar_t>.
23.2.4.2 struct char_traits<char> [char.traits.specializations.char]
namespace std {

template<> struct char_traits<char> {
using char_type = char;
using int_type = int;
using off_type = streamoff;
using pos_type = streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states that can occur in animplementation-defined set of supported multibyte character encoding rules.
2 The two-argument member assign is defined identically to the built-in operator =. The two-argument members eq and

lt are defined identically to the built-in operators == and < for type unsigned char.
3 The member eof() returns EOF.

211) If eof() can be held in char_type then some iostreams operations can give surprising results.
§ 23.2.4.2 777

© ISO/IEC N4910

23.2.4.3 struct char_traits<char8_t> [char.traits.specializations.char8.t]
namespace std {

template<> struct char_traits<char8_t> {
using char_type = char8_t;
using int_type = unsigned int;
using off_type = streamoff;
using pos_type = u8streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);
static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and < respectively.
2 The member eof() returns an implementation-defined constant that cannot appear as a valid UTF-8 code unit.
23.2.4.4 struct char_traits<char16_t> [char.traits.specializations.char16.t]
namespace std {

template<> struct char_traits<char16_t> {
using char_type = char16_t;
using int_type = uint_least16_t;
using off_type = streamoff;
using pos_type = u16streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <, respectively.

§ 23.2.4.4 778

© ISO/IEC N4910

2 The member eof() returns an implementation-defined constant that cannot appear as a valid UTF-16 code unit.
23.2.4.5 struct char_traits<char32_t> [char.traits.specializations.char32.t]
namespace std {

template<> struct char_traits<char32_t> {
using char_type = char32_t;
using int_type = uint_least32_t;
using off_type = streamoff;
using pos_type = u32streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <, respectively.
2 The member eof() returns an implementation-defined constant that cannot appear as a Unicode code point.
23.2.4.6 struct char_traits<wchar_t> [char.traits.specializations.wchar.t]
namespace std {

template<> struct char_traits<wchar_t> {
using char_type = wchar_t;
using int_type = wint_t;
using off_type = streamoff;
using pos_type = wstreampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

§ 23.2.4.6 779

© ISO/IEC N4910

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <, respectively.
2 The member eof() returns WEOF.
23.3 String view classes [string.view]
23.3.1 General [string.view.general]

1 The class template basic_string_view describes an object that can refer to a constant contiguous sequence of char-like (23.1) objects with the first element of the sequence at position zero. In the rest of 23.3, the type of the char-likeobjects held in a basic_string_view object is designated by charT.
2 [Note 1: The library provides implicit conversions from const charT* and std::basic_string<charT, ...> to std::basic_-

string_view<charT, ...> so that user code can accept just std::basic_string_view<charT> as a non-templated parameterwherever a sequence of characters is expected. User-defined types can define their own implicit conversions to std::basic_string_-
view in order to interoperate with these functions. —end note]
23.3.2 Header <string_view> synopsis [string.view.synop]
#include <compare> // see 17.11.1
namespace std {// 23.3.3, class template basic_string_view

template<class charT, class traits = char_traits<charT>>
class basic_string_view;

template<class charT, class traits>
inline constexpr bool ranges::enable_view<basic_string_view<charT, traits>> = true;

template<class charT, class traits>
inline constexpr bool ranges::enable_borrowed_range<basic_string_view<charT, traits>> = true;

// 23.3.5, non-member comparison functions
template<class charT, class traits>
constexpr bool operator==(basic_string_view<charT, traits> x,

basic_string_view<charT, traits> y) noexcept;
template<class charT, class traits>
constexpr see below operator<=>(basic_string_view<charT, traits> x,

basic_string_view<charT, traits> y) noexcept;

// see 23.3.5, sufficient additional overloads of comparison functions
// 23.3.6, inserters and extractors
template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
basic_string_view<charT, traits> str);

// basic_string_view typedef-names
using string_view = basic_string_view<char>;
using u8string_view = basic_string_view<char8_t>;
using u16string_view = basic_string_view<char16_t>;
using u32string_view = basic_string_view<char32_t>;
using wstring_view = basic_string_view<wchar_t>;

// 23.3.7, hash support
template<class T> struct hash;
template<> struct hash<string_view>;
template<> struct hash<u8string_view>;
template<> struct hash<u16string_view>;
template<> struct hash<u32string_view>;
template<> struct hash<wstring_view>;

inline namespace literals {
inline namespace string_view_literals {// 23.3.8, suffix for basic_string_view literals
constexpr string_view operator""sv(const char* str, size_t len) noexcept;

§ 23.3.2 780

© ISO/IEC N4910

constexpr u8string_view operator""sv(const char8_t* str, size_t len) noexcept;
constexpr u16string_view operator""sv(const char16_t* str, size_t len) noexcept;
constexpr u32string_view operator""sv(const char32_t* str, size_t len) noexcept;
constexpr wstring_view operator""sv(const wchar_t* str, size_t len) noexcept;

}
}

}

1 The function templates defined in 22.2.2 and 25.7 are available when <string_view> is included.
23.3.3 Class template basic_string_view [string.view.template]
23.3.3.1 General [string.view.template.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_string_view {
public:// types

using traits_type = traits;
using value_type = charT;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using const_iterator = implementation-defined; // see 23.3.3.3
using iterator = const_iterator;212
using const_reverse_iterator = reverse_iterator<const_iterator>;
using reverse_iterator = const_reverse_iterator;
using size_type = size_t;
using difference_type = ptrdiff_t;
static constexpr size_type npos = size_type(-1);

// 23.3.3.2, construction and assignment
constexpr basic_string_view() noexcept;
constexpr basic_string_view(const basic_string_view&) noexcept = default;
constexpr basic_string_view& operator=(const basic_string_view&) noexcept = default;
constexpr basic_string_view(const charT* str);
basic_string_view(nullptr_t) = delete;
constexpr basic_string_view(const charT* str, size_type len);
template<class It, class End>
constexpr basic_string_view(It begin, End end);

template<class R>
constexpr basic_string_view(R&& r);

// 23.3.3.3, iterator support
constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// 23.3.3.4, capacity
constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;
constexpr size_type max_size() const noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

// 23.3.3.5, element access
constexpr const_reference operator[](size_type pos) const;
constexpr const_reference at(size_type pos) const;

212) Because basic_string_view refers to a constant sequence, iterator and const_iterator are the same type.
§ 23.3.3.1 781

© ISO/IEC N4910

constexpr const_reference front() const;
constexpr const_reference back() const;
constexpr const_pointer data() const noexcept;

// 23.3.3.6, modifiers
constexpr void remove_prefix(size_type n);
constexpr void remove_suffix(size_type n);
constexpr void swap(basic_string_view& s) noexcept;

// 23.3.3.7, string operations
constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;

constexpr int compare(basic_string_view s) const noexcept;
constexpr int compare(size_type pos1, size_type n1, basic_string_view s) const;
constexpr int compare(size_type pos1, size_type n1, basic_string_view s,

size_type pos2, size_type n2) const;
constexpr int compare(const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const;

constexpr bool starts_with(basic_string_view x) const noexcept;
constexpr bool starts_with(charT x) const noexcept;
constexpr bool starts_with(const charT* x) const;
constexpr bool ends_with(basic_string_view x) const noexcept;
constexpr bool ends_with(charT x) const noexcept;
constexpr bool ends_with(const charT* x) const;

constexpr bool contains(basic_string_view x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

// 23.3.3.8, searching
constexpr size_type find(basic_string_view s, size_type pos = 0) const noexcept;
constexpr size_type find(charT c, size_type pos = 0) const noexcept;
constexpr size_type find(const charT* s, size_type pos, size_type n) const;
constexpr size_type find(const charT* s, size_type pos = 0) const;
constexpr size_type rfind(basic_string_view s, size_type pos = npos) const noexcept;
constexpr size_type rfind(charT c, size_type pos = npos) const noexcept;
constexpr size_type rfind(const charT* s, size_type pos, size_type n) const;
constexpr size_type rfind(const charT* s, size_type pos = npos) const;

constexpr size_type find_first_of(basic_string_view s, size_type pos = 0) const noexcept;
constexpr size_type find_first_of(charT c, size_type pos = 0) const noexcept;
constexpr size_type find_first_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_first_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_last_of(basic_string_view s, size_type pos = npos) const noexcept;
constexpr size_type find_last_of(charT c, size_type pos = npos) const noexcept;
constexpr size_type find_last_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_last_of(const charT* s, size_type pos = npos) const;
constexpr size_type find_first_not_of(basic_string_view s, size_type pos = 0) const noexcept;
constexpr size_type find_first_not_of(charT c, size_type pos = 0) const noexcept;
constexpr size_type find_first_not_of(const charT* s, size_type pos,

size_type n) const;
constexpr size_type find_first_not_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_last_not_of(basic_string_view s,

size_type pos = npos) const noexcept;
constexpr size_type find_last_not_of(charT c, size_type pos = npos) const noexcept;
constexpr size_type find_last_not_of(const charT* s, size_type pos,

size_type n) const;
constexpr size_type find_last_not_of(const charT* s, size_type pos = npos) const;

§ 23.3.3.1 782

© ISO/IEC N4910

private:
const_pointer data_; // exposition only
size_type size_; // exposition only

};

// 23.3.4, deduction guides
template<class It, class End>
basic_string_view(It, End) -> basic_string_view<iter_value_t<It>>;

template<class R>
basic_string_view(R&&) -> basic_string_view<ranges::range_value_t<R>>;

}

1 In every specialization basic_string_view<charT, traits>, the type traits shall meet the character traits require-ments (23.2).
[Note 1: The program is ill-formed if traits::char_type is not the same type as charT. —end note]

2 For a basic_string_view str, any operation that invalidates a pointer in the range
[str.data(),str.data() + str.size())

invalidates pointers, iterators, and references returned from str’s member functions.
3 The complexity of basic_string_view member functions is O(1) unless otherwise specified.
4 basic_string_view<charT, traits> is a trivially copyable type (6.8.1).
23.3.3.2 Construction and assignment [string.view.cons]

constexpr basic_string_view() noexcept;

1 Postconditions: size_ == 0 and data_ == nullptr.
constexpr basic_string_view(const charT* str);

2 Preconditions: [str, str + traits::length(str)) is a valid range.
3 Effects: Constructs a basic_string_view, initializing data_with str and initializing size_with traits::length(str).
4 Complexity: O(traits::length(str)).

constexpr basic_string_view(const charT* str, size_type len);

5 Preconditions: [str, str + len) is a valid range.
6 Effects: Constructs a basic_string_view, initializing data_ with str and initializing size_ with len.

template<class It, class End>
constexpr basic_string_view(It begin, End end);

7 Constraints:
—(7.1) It satisfies contiguous_iterator.
—(7.2) End satisfies sized_sentinel_for<It>.
—(7.3) is_same_v<iter_value_t<It>, charT> is true.
—(7.4) is_convertible_v<End, size_type> is false.

8 Preconditions:
—(8.1) [begin, end) is a valid range.
—(8.2) It models contiguous_iterator.
—(8.3) End models sized_sentinel_for<It>.

9 Effects: Initializes data_ with to_address(begin) and initializes size_ with end - begin.
10 Throws: When and what end - begin throws.

template<class R>
constexpr basic_string_view(R&& r);

11 Let d be an lvalue of type remove_cvref_t<R>.
12 Constraints:
§ 23.3.3.2 783

© ISO/IEC N4910

—(12.1) remove_cvref_t<R> is not the same type as basic_string_view,
—(12.2) R models ranges::contiguous_range and ranges::sized_range,
—(12.3) is_same_v<ranges::range_value_t<R>, charT> is true,
—(12.4) is_convertible_v<R, const charT*> is false,
—(12.5) d.operator ::std::basic_string_view<charT, traits>() is not a valid expression, and
—(12.6) if the qualified-id remove_reference_t<R>::traits_type is valid and denotes a type, is_same_v<remove_-

reference_t<R>::traits_type, traits> is true.
13 Effects: Initializes data_ with ranges::data(r) and size_ with ranges::size(r).
14 Throws: Any exception thrown by ranges::data(r) and ranges::size(r).
23.3.3.3 Iterator support [string.view.iterators]

using const_iterator = implementation-defined;

1 A type that meets the requirements of a constant Cpp17RandomAccessIterator (25.3.5.7), models contiguous_-
iterator (25.3.4.14), and meets the constexpr iterator requirements (25.3.1), whose value_type is the templateparameter charT.

2 All requirements on container iterators (24.2) apply to basic_string_view::const_iterator as well.
constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;

3 Returns: An iterator such that
—(3.1) if !empty(), addressof(*begin()) == data_,
—(3.2) otherwise, an unspecified value such that [begin(), end()) is a valid range.

constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;

4 Returns: begin() + size().
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;

5 Returns: const_reverse_iterator(end()).
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

6 Returns: const_reverse_iterator(begin()).
23.3.3.4 Capacity [string.view.capacity]

constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;

1 Returns: size_.
constexpr size_type max_size() const noexcept;

2 Returns: The largest possible number of char-like objects that can be referred to by a basic_string_view.
[[nodiscard]] constexpr bool empty() const noexcept;

3 Returns: size_ == 0.
23.3.3.5 Element access [string.view.access]

constexpr const_reference operator[](size_type pos) const;

1 Preconditions: pos < size().
2 Returns: data_[pos].
3 Throws: Nothing.

§ 23.3.3.5 784

© ISO/IEC N4910

4 [Note 1: Unlike basic_string::operator[], basic_string_view::operator[](size()) has undefined behavior insteadof returning charT(). —end note]
constexpr const_reference at(size_type pos) const;

5 Returns: data_[pos].
6 Throws: out_of_range if pos >= size().

constexpr const_reference front() const;

7 Preconditions: !empty().
8 Returns: data_[0].
9 Throws: Nothing.

constexpr const_reference back() const;

10 Preconditions: !empty().
11 Returns: data_[size() - 1].
12 Throws: Nothing.

constexpr const_pointer data() const noexcept;

13 Returns: data_.
14 [Note 2: Unlike basic_string::data() and string-literals, data() can return a pointer to a buffer that is not null-terminated.Therefore it is typically a mistake to pass data() to a function that takes just a const charT* and expects a null-terminatedstring. —end note]
23.3.3.6 Modifiers [string.view.modifiers]

constexpr void remove_prefix(size_type n);

1 Preconditions: n <= size().
2 Effects: Equivalent to: data_ += n; size_ -= n;

constexpr void remove_suffix(size_type n);

3 Preconditions: n <= size().
4 Effects: Equivalent to: size_ -= n;

constexpr void swap(basic_string_view& s) noexcept;

5 Effects: Exchanges the values of *this and s.
23.3.3.7 String operations [string.view.ops]

constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Let rlen be the smaller of n and size() - pos.
2 Preconditions: [s, s + rlen) is a valid range.
3 Effects: Equivalent to traits::copy(s, data() + pos, rlen).
4 Returns: rlen.
5 Throws: out_of_range if pos > size().
6 Complexity: O(rlen).

constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;

7 Let rlen be the smaller of n and size() - pos.
8 Effects: Determines rlen, the effective length of the string to reference.
9 Returns: basic_string_view(data() + pos, rlen).
10 Throws: out_of_range if pos > size().

§ 23.3.3.7 785

© ISO/IEC N4910

constexpr int compare(basic_string_view str) const noexcept;

11 Let rlen be the smaller of size() and str.size().
12 Effects: Determines rlen, the effective length of the strings to compare. The function then compares the twostrings by calling traits::compare(data(), str.data(), rlen).
13 Returns: The nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as indicated inTable 76.

Table 76: compare() results [tab:string.view.compare]
Condition Return Value

size() < str.size() < 0
size() == str.size() 0
size() > str.size() > 0

14 Complexity: O(rlen).
constexpr int compare(size_type pos1, size_type n1, basic_string_view str) const;

15 Effects: Equivalent to: return substr(pos1, n1).compare(str);

constexpr int compare(size_type pos1, size_type n1, basic_string_view str,
size_type pos2, size_type n2) const;

16 Effects: Equivalent to: return substr(pos1, n1).compare(str.substr(pos2, n2));

constexpr int compare(const charT* s) const;

17 Effects: Equivalent to: return compare(basic_string_view(s));

constexpr int compare(size_type pos1, size_type n1, const charT* s) const;

18 Effects: Equivalent to: return substr(pos1, n1).compare(basic_string_view(s));

constexpr int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const;

19 Effects: Equivalent to: return substr(pos1, n1).compare(basic_string_view(s, n2));

constexpr bool starts_with(basic_string_view x) const noexcept;

20 Effects: Equivalent to: return substr(0, x.size()) == x;

constexpr bool starts_with(charT x) const noexcept;

21 Effects: Equivalent to: return !empty() && traits::eq(front(), x);

constexpr bool starts_with(const charT* x) const;

22 Effects: Equivalent to: return starts_with(basic_string_view(x));

constexpr bool ends_with(basic_string_view x) const noexcept;

23 Effects: Equivalent to:
return size() >= x.size() && compare(size() - x.size(), npos, x) == 0;

constexpr bool ends_with(charT x) const noexcept;

24 Effects: Equivalent to: return !empty() && traits::eq(back(), x);

constexpr bool ends_with(const charT* x) const;

25 Effects: Equivalent to: return ends_with(basic_string_view(x));

constexpr bool contains(basic_string_view x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

26 Effects: Equivalent to: return find(x) != npos;

§ 23.3.3.7 786

© ISO/IEC N4910

23.3.3.8 Searching [string.view.find]
1 Member functions in this subclause have complexity O(size() * str.size()) at worst, although implementationsshould do better.
2 Let F be one of find, rfind, find_first_of, find_last_of, find_first_not_of, and find_last_not_of.

—(2.1) Each member function of the form
constexpr return-type F(const charT* s, size_type pos) const;

has effects equivalent to: return F(basic_string_view(s), pos);

—(2.2) Each member function of the form
constexpr return-type F(const charT* s, size_type pos, size_type n) const;

has effects equivalent to: return F(basic_string_view(s, n), pos);

—(2.3) Each member function of the form
constexpr return-type F(charT c, size_type pos) const noexcept;

has effects equivalent to: return F(basic_string_view(addressof(c), 1), pos);

constexpr size_type find(basic_string_view str, size_type pos = 0) const noexcept;

3 Let xpos be the lowest position, if possible, such that the following conditions hold:
—(3.1) pos <= xpos

—(3.2) xpos + str.size() <= size()

—(3.3) traits::eq(at(xpos + I), str.at(I)) for all elements I of the string referenced by str.
4 Effects: Determines xpos.
5 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type rfind(basic_string_view str, size_type pos = npos) const noexcept;

6 Let xpos be the highest position, if possible, such that the following conditions hold:
—(6.1) xpos <= pos

—(6.2) xpos + str.size() <= size()

—(6.3) traits::eq(at(xpos + I), str.at(I)) for all elements I of the string referenced by str.
7 Effects: Determines xpos.
8 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_first_of(basic_string_view str, size_type pos = 0) const noexcept;

9 Let xpos be the lowest position, if possible, such that the following conditions hold:
—(9.1) pos <= xpos

—(9.2) xpos < size()

—(9.3) traits::eq(at(xpos), str.at(I)) for some element I of the string referenced by str.
10 Effects: Determines xpos.
11 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_last_of(basic_string_view str, size_type pos = npos) const noexcept;

12 Let xpos be the highest position, if possible, such that the following conditions hold:
—(12.1) xpos <= pos

—(12.2) xpos < size()

—(12.3) traits::eq(at(xpos), str.at(I)) for some element I of the string referenced by str.
13 Effects: Determines xpos.
14 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

§ 23.3.3.8 787

© ISO/IEC N4910

constexpr size_type find_first_not_of(basic_string_view str, size_type pos = 0) const noexcept;

15 Let xpos be the lowest position, if possible, such that the following conditions hold:
—(15.1) pos <= xpos

—(15.2) xpos < size()

—(15.3) traits::eq(at(xpos), str.at(I)) for no element I of the string referenced by str.
16 Effects: Determines xpos.
17 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_last_not_of(basic_string_view str, size_type pos = npos) const noexcept;

18 Let xpos be the highest position, if possible, such that the following conditions hold:
—(18.1) xpos <= pos

—(18.2) xpos < size()

—(18.3) traits::eq(at(xpos), str.at(I)) for no element I of the string referenced by str.
19 Effects: Determines xpos.
20 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
23.3.4 Deduction guides [string.view.deduct]

template<class It, class End>
basic_string_view(It, End) -> basic_string_view<iter_value_t<It>>;

1 Constraints:
—(1.1) It satisfies contiguous_iterator.
—(1.2) End satisfies sized_sentinel_for<It>.

template<class R>
basic_string_view(R&&) -> basic_string_view<ranges::range_value_t<R>>;

2 Constraints: R satisfies ranges::contiguous_range.
23.3.5 Non-member comparison functions [string.view.comparison]

1 Let S be basic_string_view<charT, traits>, and sv be an instance of S. Implementations shall provide sufficientadditional overloads marked constexpr and noexcept so that an object t with an implicit conversion to S can becompared according to Table 77.
Table 77: Additional basic_string_view comparison overloads [tab:string.view.comparison.overloads]

Expression Equivalent to
t == sv S(t) == sv
sv == t sv == S(t)
t != sv S(t) != sv
sv != t sv != S(t)
t < sv S(t) < sv
sv < t sv < S(t)
t > sv S(t) > sv
sv > t sv > S(t)
t <= sv S(t) <= sv
sv <= t sv <= S(t)
t >= sv S(t) >= sv
sv >= t sv >= S(t)
t <=> sv S(t) <=> sv
sv <=> t sv <=> S(t)

[Example 1: A sample conforming implementation for operator== would be:

§ 23.3.5 788

© ISO/IEC N4910

template<class charT, class traits>
constexpr bool operator==(basic_string_view<charT, traits> lhs,

basic_string_view<charT, traits> rhs) noexcept {
return lhs.compare(rhs) == 0;

}
template<class charT, class traits>

constexpr bool operator==(basic_string_view<charT, traits> lhs,
type_identity_t<basic_string_view<charT, traits>> rhs) noexcept {

return lhs.compare(rhs) == 0;
}

—end example]
template<class charT, class traits>

constexpr bool operator==(basic_string_view<charT, traits> lhs,
basic_string_view<charT, traits> rhs) noexcept;

2 Returns: lhs.compare(rhs) == 0.
template<class charT, class traits>

constexpr see below operator<=>(basic_string_view<charT, traits> lhs,
basic_string_view<charT, traits> rhs) noexcept;

3 Let R denote the type traits::comparison_category if that qualified-id is valid and denotes a type (13.10.3),otherwise R is weak_ordering.
4 Mandates: R denotes a comparison category type (17.11.2).
5 Returns: static_cast<R>(lhs.compare(rhs) <=> 0).
23.3.6 Inserters and extractors [string.view.io]

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, basic_string_view<charT, traits> str);

1 Effects: Behaves as a formatted output function (31.7.5.3.1) of os. Forms a character sequence seq, initiallyconsisting of the elements defined by the range [str.begin(), str.end()). Determines padding for seq asdescribed in 31.7.5.3.1. Then inserts seq as if by calling os.rdbuf()->sputn(seq, n), where n is the larger of
os.width() and str.size(); then calls os.width(0).

2 Returns: os
23.3.7 Hash support [string.view.hash]

template<> struct hash<string_view>;
template<> struct hash<u8string_view>;
template<> struct hash<u16string_view>;
template<> struct hash<u32string_view>;
template<> struct hash<wstring_view>;

1 The specialization is enabled (22.10.19).
[Note 1: The hash value of a string view object is equal to the hash value of the corresponding string object (23.4.6). —endnote]

23.3.8 Suffix for basic_string_view literals [string.view.literals]

constexpr string_view operator""sv(const char* str, size_t len) noexcept;

1 Returns: string_view{str, len}.
constexpr u8string_view operator""sv(const char8_t* str, size_t len) noexcept;

2 Returns: u8string_view{str, len}.
constexpr u16string_view operator""sv(const char16_t* str, size_t len) noexcept;

3 Returns: u16string_view{str, len}.

§ 23.3.8 789

© ISO/IEC N4910

constexpr u32string_view operator""sv(const char32_t* str, size_t len) noexcept;

4 Returns: u32string_view{str, len}.
constexpr wstring_view operator""sv(const wchar_t* str, size_t len) noexcept;

5 Returns: wstring_view{str, len}.
23.4 String classes [string.classes]
23.4.1 General [string.classes.general]

1 The header <string> defines the basic_string class template for manipulating varying-length sequences of char-likeobjects and five typedef-names, string, u8string, u16string, u32string, and wstring, that name the specializations
basic_string<char>, basic_string<char8_t>, basic_string<char16_t>, basic_string<char32_t>, and basic_-
string<wchar_t>, respectively.
23.4.2 Header <string> synopsis [string.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 23.2, character traits

template<class charT> struct char_traits;
template<> struct char_traits<char>;
template<> struct char_traits<char8_t>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

// 23.4.3, basic_string
template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_string;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const charT* lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const charT* lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(charT lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(charT lhs,
basic_string<charT, traits, Allocator>&& rhs);

§ 23.4.2 790

© ISO/IEC N4910

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
charT rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
charT rhs);

template<class charT, class traits, class Allocator>
constexpr bool

operator==(const basic_string<charT, traits, Allocator>& lhs,
const basic_string<charT, traits, Allocator>& rhs) noexcept;

template<class charT, class traits, class Allocator>
constexpr bool operator==(const basic_string<charT, traits, Allocator>& lhs,

const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,

const basic_string<charT, traits, Allocator>& rhs) noexcept;
template<class charT, class traits, class Allocator>
constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,

const charT* rhs);

// 23.4.4.3, swap
template<class charT, class traits, class Allocator>
constexpr void

swap(basic_string<charT, traits, Allocator>& lhs,
basic_string<charT, traits, Allocator>& rhs)

noexcept(noexcept(lhs.swap(rhs)));

// 23.4.4.4, inserters and extractors
template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str);

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const basic_string<charT, traits, Allocator>& str);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str);

§ 23.4.2 791

© ISO/IEC N4910

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str);

// 23.4.4.5, erasure
template<class charT, class traits, class Allocator, class U>
constexpr typename basic_string<charT, traits, Allocator>::size_type

erase(basic_string<charT, traits, Allocator>& c, const U& value);
template<class charT, class traits, class Allocator, class Predicate>
constexpr typename basic_string<charT, traits, Allocator>::size_type

erase_if(basic_string<charT, traits, Allocator>& c, Predicate pred);

// basic_string typedef-names
using string = basic_string<char>;
using u8string = basic_string<char8_t>;
using u16string = basic_string<char16_t>;
using u32string = basic_string<char32_t>;
using wstring = basic_string<wchar_t>;

// 23.4.5, numeric conversions
int stoi(const string& str, size_t* idx = nullptr, int base = 10);
long stol(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const string& str, size_t* idx = nullptr, int base = 10);
long long stoll(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const string& str, size_t* idx = nullptr, int base = 10);
float stof(const string& str, size_t* idx = nullptr);
double stod(const string& str, size_t* idx = nullptr);
long double stold(const string& str, size_t* idx = nullptr);
string to_string(int val);
string to_string(unsigned val);
string to_string(long val);
string to_string(unsigned long val);
string to_string(long long val);
string to_string(unsigned long long val);
string to_string(float val);
string to_string(double val);
string to_string(long double val);

int stoi(const wstring& str, size_t* idx = nullptr, int base = 10);
long stol(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const wstring& str, size_t* idx = nullptr, int base = 10);
long long stoll(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const wstring& str, size_t* idx = nullptr, int base = 10);
float stof(const wstring& str, size_t* idx = nullptr);
double stod(const wstring& str, size_t* idx = nullptr);
long double stold(const wstring& str, size_t* idx = nullptr);
wstring to_wstring(int val);
wstring to_wstring(unsigned val);
wstring to_wstring(long val);
wstring to_wstring(unsigned long val);
wstring to_wstring(long long val);
wstring to_wstring(unsigned long long val);
wstring to_wstring(float val);
wstring to_wstring(double val);
wstring to_wstring(long double val);

namespace pmr {
template<class charT, class traits = char_traits<charT>>

using basic_string = std::basic_string<charT, traits, polymorphic_allocator<charT>>;

using string = basic_string<char>;
using u8string = basic_string<char8_t>;
using u16string = basic_string<char16_t>;

§ 23.4.2 792

© ISO/IEC N4910

using u32string = basic_string<char32_t>;
using wstring = basic_string<wchar_t>;

}

// 23.4.6, hash support
template<class T> struct hash;
template<> struct hash<string>;
template<> struct hash<u8string>;
template<> struct hash<u16string>;
template<> struct hash<u32string>;
template<> struct hash<wstring>;
template<> struct hash<pmr::string>;
template<> struct hash<pmr::u8string>;
template<> struct hash<pmr::u16string>;
template<> struct hash<pmr::u32string>;
template<> struct hash<pmr::wstring>;

inline namespace literals {
inline namespace string_literals {// 23.4.7, suffix for basic_string literals
constexpr string operator""s(const char* str, size_t len);
constexpr u8string operator""s(const char8_t* str, size_t len);
constexpr u16string operator""s(const char16_t* str, size_t len);
constexpr u32string operator""s(const char32_t* str, size_t len);
constexpr wstring operator""s(const wchar_t* str, size_t len);

}
}

}

23.4.3 Class template basic_string [basic.string]
23.4.3.1 General [basic.string.general]

1 The class template basic_string describes objects that can store a sequence consisting of a varying number of arbitrarychar-like objects with the first element of the sequence at position zero. Such a sequence is also called a “string” if thetype of the char-like objects that it holds is clear from context. In the rest of 23.4.3, the type of the char-like objects heldin a basic_string object is designated by charT.
2 A specialization of basic_string is a contiguous container (24.2.2.1).
3 In all cases, [data(), data() + size()] is a valid range, data() + size() points at an object with value charT() (a“null terminator”), and size() <= capacity() is true.

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_string {
public:// types
using traits_type = traits;
using value_type = charT;
using allocator_type = Allocator;
using size_type = typename allocator_traits<Allocator>::size_type;
using difference_type = typename allocator_traits<Allocator>::difference_type;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;

using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
static constexpr size_type npos = size_type(-1);

§ 23.4.3.1 793

© ISO/IEC N4910

// 23.4.3.3, construct/copy/destroy
constexpr basic_string() noexcept(noexcept(Allocator())) : basic_string(Allocator()) { }
constexpr explicit basic_string(const Allocator& a) noexcept;
constexpr basic_string(const basic_string& str);
constexpr basic_string(basic_string&& str) noexcept;
constexpr basic_string(const basic_string& str, size_type pos,

const Allocator& a = Allocator());
constexpr basic_string(const basic_string& str, size_type pos, size_type n,

const Allocator& a = Allocator());
template<class T>

constexpr basic_string(const T& t, size_type pos, size_type n,
const Allocator& a = Allocator());

template<class T>
constexpr explicit basic_string(const T& t, const Allocator& a = Allocator());

constexpr basic_string(const charT* s, size_type n, const Allocator& a = Allocator());
constexpr basic_string(const charT* s, const Allocator& a = Allocator());
basic_string(nullptr_t) = delete;
constexpr basic_string(size_type n, charT c, const Allocator& a = Allocator());
template<class InputIterator>

constexpr basic_string(InputIterator begin, InputIterator end,
const Allocator& a = Allocator());

template<container-compatible-range<charT> R>
constexpr basic_string(from_range_t, R&& rg, const Allocator& a = Allocator());

constexpr basic_string(initializer_list<charT>, const Allocator& = Allocator());
constexpr basic_string(const basic_string&, const Allocator&);
constexpr basic_string(basic_string&&, const Allocator&);
constexpr ~basic_string();

constexpr basic_string& operator=(const basic_string& str);
constexpr basic_string& operator=(basic_string&& str)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

template<class T>
constexpr basic_string& operator=(const T& t);

constexpr basic_string& operator=(const charT* s);
basic_string& operator=(nullptr_t) = delete;
constexpr basic_string& operator=(charT c);
constexpr basic_string& operator=(initializer_list<charT>);

// 23.4.3.4, iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;

constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// 23.4.3.5, capacity
constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr void resize(size_type n, charT c);
constexpr void resize(size_type n);
template<class Operation> constexpr void resize_and_overwrite(size_type n, Operation op);
constexpr size_type capacity() const noexcept;
constexpr void reserve(size_type res_arg);

§ 23.4.3.1 794

© ISO/IEC N4910

constexpr void shrink_to_fit();
constexpr void clear() noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

// 23.4.3.6, element access
constexpr const_reference operator[](size_type pos) const;
constexpr reference operator[](size_type pos);
constexpr const_reference at(size_type n) const;
constexpr reference at(size_type n);

constexpr const charT& front() const;
constexpr charT& front();
constexpr const charT& back() const;
constexpr charT& back();

// 23.4.3.7, modifiers
constexpr basic_string& operator+=(const basic_string& str);
template<class T>

constexpr basic_string& operator+=(const T& t);
constexpr basic_string& operator+=(const charT* s);
constexpr basic_string& operator+=(charT c);
constexpr basic_string& operator+=(initializer_list<charT>);
constexpr basic_string& append(const basic_string& str);
constexpr basic_string& append(const basic_string& str, size_type pos, size_type n = npos);
template<class T>

constexpr basic_string& append(const T& t);
template<class T>

constexpr basic_string& append(const T& t, size_type pos, size_type n = npos);
constexpr basic_string& append(const charT* s, size_type n);
constexpr basic_string& append(const charT* s);
constexpr basic_string& append(size_type n, charT c);
template<class InputIterator>

constexpr basic_string& append(InputIterator first, InputIterator last);
template<container-compatible-range<charT> R>

constexpr basic_string& append_range(R&& rg);
constexpr basic_string& append(initializer_list<charT>);

constexpr void push_back(charT c);

constexpr basic_string& assign(const basic_string& str);
constexpr basic_string& assign(basic_string&& str)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

constexpr basic_string& assign(const basic_string& str, size_type pos, size_type n = npos);
template<class T>

constexpr basic_string& assign(const T& t);
template<class T>

constexpr basic_string& assign(const T& t, size_type pos, size_type n = npos);
constexpr basic_string& assign(const charT* s, size_type n);
constexpr basic_string& assign(const charT* s);
constexpr basic_string& assign(size_type n, charT c);
template<class InputIterator>

constexpr basic_string& assign(InputIterator first, InputIterator last);
template<container-compatible-range<charT> R>

constexpr basic_string& assign_range(R&& rg);
constexpr basic_string& assign(initializer_list<charT>);

constexpr basic_string& insert(size_type pos, const basic_string& str);
constexpr basic_string& insert(size_type pos1, const basic_string& str,

size_type pos2, size_type n = npos);
template<class T>

constexpr basic_string& insert(size_type pos, const T& t);

§ 23.4.3.1 795

© ISO/IEC N4910

template<class T>
constexpr basic_string& insert(size_type pos1, const T& t,

size_type pos2, size_type n = npos);
constexpr basic_string& insert(size_type pos, const charT* s, size_type n);
constexpr basic_string& insert(size_type pos, const charT* s);
constexpr basic_string& insert(size_type pos, size_type n, charT c);
constexpr iterator insert(const_iterator p, charT c);
constexpr iterator insert(const_iterator p, size_type n, charT c);
template<class InputIterator>

constexpr iterator insert(const_iterator p, InputIterator first, InputIterator last);
template<container-compatible-range<charT> R>

constexpr iterator insert_range(const_iterator p, R&& rg);
constexpr iterator insert(const_iterator p, initializer_list<charT>);

constexpr basic_string& erase(size_type pos = 0, size_type n = npos);
constexpr iterator erase(const_iterator p);
constexpr iterator erase(const_iterator first, const_iterator last);

constexpr void pop_back();

constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str);
constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str,

size_type pos2, size_type n2 = npos);
template<class T>

constexpr basic_string& replace(size_type pos1, size_type n1, const T& t);
template<class T>

constexpr basic_string& replace(size_type pos1, size_type n1, const T& t,
size_type pos2, size_type n2 = npos);

constexpr basic_string& replace(size_type pos, size_type n1, const charT* s, size_type n2);
constexpr basic_string& replace(size_type pos, size_type n1, const charT* s);
constexpr basic_string& replace(size_type pos, size_type n1, size_type n2, charT c);
constexpr basic_string& replace(const_iterator i1, const_iterator i2,

const basic_string& str);
template<class T>

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const T& t);
constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s,

size_type n);
constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s);
constexpr basic_string& replace(const_iterator i1, const_iterator i2, size_type n, charT c);
template<class InputIterator>

constexpr basic_string& replace(const_iterator i1, const_iterator i2,
InputIterator j1, InputIterator j2);

template<container-compatible-range<charT> R>
constexpr basic_string& replace_with_range(const_iterator i1, const_iterator i2, R&& rg);

constexpr basic_string& replace(const_iterator, const_iterator, initializer_list<charT>);

constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

constexpr void swap(basic_string& str)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

// 23.4.3.8, string operations
constexpr const charT* c_str() const noexcept;
constexpr const charT* data() const noexcept;
constexpr charT* data() noexcept;
constexpr operator basic_string_view<charT, traits>() const noexcept;
constexpr allocator_type get_allocator() const noexcept;

template<class T>
constexpr size_type find(const T& t, size_type pos = 0) const noexcept(see below);

constexpr size_type find(const basic_string& str, size_type pos = 0) const noexcept;
constexpr size_type find(const charT* s, size_type pos, size_type n) const;
constexpr size_type find(const charT* s, size_type pos = 0) const;

§ 23.4.3.1 796

© ISO/IEC N4910

constexpr size_type find(charT c, size_type pos = 0) const noexcept;
template<class T>

constexpr size_type rfind(const T& t, size_type pos = npos) const noexcept(see below);
constexpr size_type rfind(const basic_string& str, size_type pos = npos) const noexcept;
constexpr size_type rfind(const charT* s, size_type pos, size_type n) const;
constexpr size_type rfind(const charT* s, size_type pos = npos) const;
constexpr size_type rfind(charT c, size_type pos = npos) const noexcept;

template<class T>
constexpr size_type find_first_of(const T& t, size_type pos = 0) const noexcept(see below);

constexpr size_type find_first_of(const basic_string& str, size_type pos = 0) const noexcept;
constexpr size_type find_first_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_first_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_first_of(charT c, size_type pos = 0) const noexcept;
template<class T>

constexpr size_type find_last_of(const T& t,
size_type pos = npos) const noexcept(see below);

constexpr size_type find_last_of(const basic_string& str,
size_type pos = npos) const noexcept;

constexpr size_type find_last_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_last_of(const charT* s, size_type pos = npos) const;
constexpr size_type find_last_of(charT c, size_type pos = npos) const noexcept;

template<class T>
constexpr size_type find_first_not_of(const T& t,

size_type pos = 0) const noexcept(see below);
constexpr size_type find_first_not_of(const basic_string& str,

size_type pos = 0) const noexcept;
constexpr size_type find_first_not_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_first_not_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_first_not_of(charT c, size_type pos = 0) const noexcept;
template<class T>

constexpr size_type find_last_not_of(const T& t,
size_type pos = npos) const noexcept(see below);

constexpr size_type find_last_not_of(const basic_string& str,
size_type pos = npos) const noexcept;

constexpr size_type find_last_not_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_last_not_of(const charT* s, size_type pos = npos) const;
constexpr size_type find_last_not_of(charT c, size_type pos = npos) const noexcept;

constexpr basic_string substr(size_type pos = 0, size_type n = npos) const;

template<class T>
constexpr int compare(const T& t) const noexcept(see below);

template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t) const;

template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t,

size_type pos2, size_type n2 = npos) const;
constexpr int compare(const basic_string& str) const noexcept;
constexpr int compare(size_type pos1, size_type n1, const basic_string& str) const;
constexpr int compare(size_type pos1, size_type n1, const basic_string& str,

size_type pos2, size_type n2 = npos) const;
constexpr int compare(const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const;

constexpr bool starts_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool starts_with(charT x) const noexcept;
constexpr bool starts_with(const charT* x) const;
constexpr bool ends_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool ends_with(charT x) const noexcept;
constexpr bool ends_with(const charT* x) const;

§ 23.4.3.1 797

© ISO/IEC N4910

constexpr bool contains(basic_string_view<charT, traits> x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

};

template<class InputIterator,
class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>>

basic_string(InputIterator, InputIterator, Allocator = Allocator())
-> basic_string<typename iterator_traits<InputIterator>::value_type,

char_traits<typename iterator_traits<InputIterator>::value_type>,
Allocator>;

template<ranges::input_range R,
class Allocator = allocator<ranges::range_value_t<R>>>

basic_string(from_range_t, R&&, Allocator = Allocator())
-> basic_string<ranges::range_value_t<R>, char_traits<ranges::range_value_t<R>>,

Allocator>;

template<class charT,
class traits,
class Allocator = allocator<charT>>

explicit basic_string(basic_string_view<charT, traits>, const Allocator& = Allocator())
-> basic_string<charT, traits, Allocator>;

template<class charT,
class traits,
class Allocator = allocator<charT>>

basic_string(basic_string_view<charT, traits>,
typename see below::size_type, typename see below::size_type,
const Allocator& = Allocator())

-> basic_string<charT, traits, Allocator>;
}

4 A size_type parameter type in a basic_string deduction guide refers to the size_type member type of the typededuced by the deduction guide.
5 The types iterator and const_iterator meet the constexpr iterator requirements (25.3.1).
23.4.3.2 General requirements [string.require]

1 If any operation would cause size() to exceed max_size(), that operation throws an exception object of type length_-
error.

2 If any member function or operator of basic_string throws an exception, that function or operator has no other effecton the basic_string object.
3 In every specialization basic_string<charT, traits, Allocator>, the type allocator_traits<Allocator>::value_-

type shall name the same type as charT. Every object of type basic_string<charT, traits, Allocator> uses anobject of type Allocator to allocate and free storage for the contained charT objects as needed. The Allocator objectused is obtained as described in 24.2.2.1. In every specialization basic_string<charT, traits, Allocator>, thetype traits shall meet the character traits requirements (23.2).
[Note 1: Every specialization basic_string<charT, traits, Allocator> is an allocator-aware container, but does not use theallocator’s construct and destroy member functions (24.2.2.1). —end note]
[Note 2: The program is ill-formed if traits::char_type is not the same type as charT. —end note]

4 References, pointers, and iterators referring to the elements of a basic_string sequence may be invalidated by thefollowing uses of that basic_string object:
—(4.1) Passing as an argument to any standard library function taking a reference to non-const basic_string as anargument.213
—(4.2) Calling non-const member functions, except operator[], at, data, front, back, begin, rbegin, end, and rend.

213) For example, as an argument to non-member functions swap() (23.4.4.3), operator>>() (23.4.4.4), and getline() (23.4.4.4), or as an argumentto basic_string::swap().
§ 23.4.3.2 798

© ISO/IEC N4910

23.4.3.3 Constructors and assignment operators [string.cons]

constexpr explicit basic_string(const Allocator& a) noexcept;

1 Postconditions: size() is equal to 0.
constexpr basic_string(const basic_string& str);
constexpr basic_string(basic_string&& str) noexcept;

2 Effects: Constructs an object whose value is that of str prior to this call.
3 Remarks: In the second form, str is left in a valid but unspecified state.

constexpr basic_string(const basic_string& str, size_type pos,
const Allocator& a = Allocator());

constexpr basic_string(const basic_string& str, size_type pos, size_type n,
const Allocator& a = Allocator());

4 Effects: Let n be npos for the first overload. Equivalent to:
basic_string(basic_string_view<charT, traits>(str).substr(pos, n), a)

template<class T>
constexpr basic_string(const T& t, size_type pos, size_type n, const Allocator& a = Allocator());

5 Constraints: is_convertible_v<const T&, basic_string_view<charT, traits>> is true.
6 Effects: Creates a variable, sv, as if by basic_string_view<charT, traits> sv = t; and then behaves thesame as:

basic_string(sv.substr(pos, n), a);

template<class T>
constexpr explicit basic_string(const T& t, const Allocator& a = Allocator());

7 Constraints:
—(7.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(7.2) is_convertible_v<const T&, const charT*> is false.

8 Effects: Creates a variable, sv, as if by basic_string_view<charT, traits> sv = t; and then behaves thesame as basic_string(sv.data(), sv.size(), a).
constexpr basic_string(const charT* s, size_type n, const Allocator& a = Allocator());

9 Preconditions: [s, s + n) is a valid range.
10 Effects: Constructs an object whose initial value is the range [s, s + n).
11 Postconditions: size() is equal to n, and traits::compare(data(), s, n) is equal to 0.

constexpr basic_string(const charT* s, const Allocator& a = Allocator());

12 Constraints: Allocator is a type that qualifies as an allocator (24.2.2.1).
[Note 1: This affects class template argument deduction. —end note]

13 Effects: Equivalent to: basic_string(s, traits::length(s), a).
constexpr basic_string(size_type n, charT c, const Allocator& a = Allocator());

14 Constraints: Allocator is a type that qualifies as an allocator (24.2.2.1).
[Note 2: This affects class template argument deduction. —end note]

15 Effects: Constructs an object whose value consists of n copies of c.
template<class InputIterator>

constexpr basic_string(InputIterator begin, InputIterator end, const Allocator& a = Allocator());

16 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.1).
17 Effects: Constructs a string from the values in the range [begin, end), as specified in 24.2.4.

§ 23.4.3.3 799

© ISO/IEC N4910

template<container-compatible-range<charT> R>
constexpr basic_string(from_range_t, R&& rg, const Allocator& = Allocator());

18 Effects: Constructs a string from the values in the range rg, as specified in 24.2.4.
constexpr basic_string(initializer_list<charT> il, const Allocator& a = Allocator());

19 Effects: Equivalent to basic_string(il.begin(), il.end(), a).
constexpr basic_string(const basic_string& str, const Allocator& alloc);
constexpr basic_string(basic_string&& str, const Allocator& alloc);

20 Effects: Constructs an object whose value is that of str prior to this call. The stored allocator is constructed from
alloc. In the second form, str is left in a valid but unspecified state.

21 Throws: The second form throws nothing if alloc == str.get_allocator().
template<class InputIterator,

class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>>
basic_string(InputIterator, InputIterator, Allocator = Allocator())
-> basic_string<typename iterator_traits<InputIterator>::value_type,

char_traits<typename iterator_traits<InputIterator>::value_type>,
Allocator>;

22 Constraints: InputIterator is a type that qualifies as an input iterator, and Allocator is a type that qualifies asan allocator (24.2.2.1).
template<class charT,

class traits,
class Allocator = allocator<charT>>

explicit basic_string(basic_string_view<charT, traits>, const Allocator& = Allocator())
-> basic_string<charT, traits, Allocator>;

template<class charT,
class traits,
class Allocator = allocator<charT>>

basic_string(basic_string_view<charT, traits>,
typename see below::size_type, typename see below::size_type,
const Allocator& = Allocator())

-> basic_string<charT, traits, Allocator>;

23 Constraints: Allocator is a type that qualifies as an allocator (24.2.2.1).
constexpr basic_string& operator=(const basic_string& str);

24 Effects: If *this and str are the same object, has no effect. Otherwise, replaces the value of *this with a copyof str.
25 Returns: *this.

constexpr basic_string& operator=(basic_string&& str)
noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||

allocator_traits<Allocator>::is_always_equal::value);

26 Effects: Move assigns as a sequence container (24.2), except that iterators, pointers and references may beinvalidated.
27 Returns: *this.

template<class T>
constexpr basic_string& operator=(const T& t);

28 Constraints:
—(28.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(28.2) is_convertible_v<const T&, const charT*> is false.

29 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return assign(sv);

§ 23.4.3.3 800

© ISO/IEC N4910

constexpr basic_string& operator=(const charT* s);

30 Effects: Equivalent to: return *this = basic_string_view<charT, traits>(s);

constexpr basic_string& operator=(charT c);

31 Effects: Equivalent to:
return *this = basic_string_view<charT, traits>(addressof(c), 1);

constexpr basic_string& operator=(initializer_list<charT> il);

32 Effects: Equivalent to:
return *this = basic_string_view<charT, traits>(il.begin(), il.size());

23.4.3.4 Iterator support [string.iterators]

constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;

1 Returns: An iterator referring to the first character in the string.
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;

2 Returns: An iterator which is the past-the-end value.
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;

3 Returns: An iterator which is semantically equivalent to reverse_iterator(end()).
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

4 Returns: An iterator which is semantically equivalent to reverse_iterator(begin()).
23.4.3.5 Capacity [string.capacity]

constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;

1 Returns: A count of the number of char-like objects currently in the string.
2 Complexity: Constant time.

constexpr size_type max_size() const noexcept;

3 Returns: The largest possible number of char-like objects that can be stored in a basic_string.
4 Complexity: Constant time.

constexpr void resize(size_type n, charT c);

5 Effects: Alters the value of *this as follows:
—(5.1) If n <= size(), erases the last size() - n elements.
—(5.2) If n > size(), appends n - size() copies of c.

constexpr void resize(size_type n);

6 Effects: Equivalent to resize(n, charT()).
template<class Operation> constexpr void resize_and_overwrite(size_type n, Operation op);

7 Let
—(7.1) o = size() before the call to resize_and_overwrite.
—(7.2) k be min(o, n).

§ 23.4.3.5 801

© ISO/IEC N4910

—(7.3) p be a charT*, such that the range [p, p + n] is valid and this->compare(0, k, p, k) == 0 is true beforethe call. The values in the range [p + k, p + n] may be indeterminate (6.7.4).
—(7.4) OP be the expression std::move(op)(p, n).
—(7.5) r = OP .

8 Mandates: OP has an integer-like type (25.3.4.4).
9 Preconditions:

—(9.1) OP does not throw an exception or modify p or n.
—(9.2) r ≥ 0.
—(9.3) r ≤ n.
—(9.4) After evaluating OP there are no indeterminate values in the range [p, p + r).

10 Effects: Evaluates OP , replaces the contents of *this with [p, p + r), and invalidates all pointers and referencesto the range [p, p + n].
11 Recommended practice: Implementations should avoid unnecessary copies and allocations by, for example,making p a pointer into internal storage and by restoring *(p + r) to charT() after evaluating OP .

constexpr size_type capacity() const noexcept;

12 Returns: The size of the allocated storage in the string.
13 Complexity: Constant time.

constexpr void reserve(size_type res_arg);

14 Effects: A directive that informs a basic_string of a planned change in size, so that the storage allocation can bemanaged accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocationhappens; and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and onlyif the current capacity is less than the argument of reserve().
15 Throws: length_error if res_arg > max_size() or any exceptions thrown by allocator_traits <Allocator>::allocate.

constexpr void shrink_to_fit();

16 Effects: shrink_to_fit is a non-binding request to reduce capacity() to size().
[Note 1: The request is non-binding to allow latitude for implementation-specific optimizations. —end note]
It does not increase capacity(), but may reduce capacity() by causing reallocation.

17 Complexity: If the size is not equal to the old capacity, linear in the size of the sequence; otherwise constant.
18 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in thesequence, as well as the past-the-end iterator.

[Note 2: If no reallocation happens, they remain valid. —end note]
constexpr void clear() noexcept;

19 Effects: Equivalent to: erase(begin(), end());

[[nodiscard]] constexpr bool empty() const noexcept;

20 Effects: Equivalent to: return size() == 0;

23.4.3.6 Element access [string.access]

constexpr const_reference operator[](size_type pos) const;
constexpr reference operator[](size_type pos);

1 Preconditions: pos <= size().
2 Returns: *(begin() + pos) if pos < size(). Otherwise, returns a reference to an object of type charT withvalue charT(), where modifying the object to any value other than charT() leads to undefined behavior.
3 Throws: Nothing.
4 Complexity: Constant time.

§ 23.4.3.6 802

© ISO/IEC N4910

constexpr const_reference at(size_type pos) const;
constexpr reference at(size_type pos);

5 Returns: operator[](pos).
6 Throws: out_of_range if pos >= size().

constexpr const charT& front() const;
constexpr charT& front();

7 Preconditions: !empty().
8 Effects: Equivalent to: return operator[](0);

constexpr const charT& back() const;
constexpr charT& back();

9 Preconditions: !empty().
10 Effects: Equivalent to: return operator[](size() - 1);

23.4.3.7 Modifiers [string.modifiers]
23.4.3.7.1 basic_string::operator+= [string.op.append]

constexpr basic_string& operator+=(const basic_string& str);

1 Effects: Equivalent to: return append(str);

template<class T>
constexpr basic_string& operator+=(const T& t);

2 Constraints:
—(2.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(2.2) is_convertible_v<const T&, const charT*> is false.

3 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return append(sv);

constexpr basic_string& operator+=(const charT* s);

4 Effects: Equivalent to: return append(s);

constexpr basic_string& operator+=(charT c);

5 Effects: Equivalent to: return append(size_type{1}, c);

constexpr basic_string& operator+=(initializer_list<charT> il);

6 Effects: Equivalent to: return append(il);

23.4.3.7.2 basic_string::append [string.append]

constexpr basic_string& append(const basic_string& str);

1 Effects: Equivalent to: return append(str.data(), str.size());

constexpr basic_string& append(const basic_string& str, size_type pos, size_type n = npos);

2 Effects: Equivalent to:
return append(basic_string_view<charT, traits>(str).substr(pos, n));

template<class T>
constexpr basic_string& append(const T& t);

3 Constraints:
—(3.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(3.2) is_convertible_v<const T&, const charT*> is false.

§ 23.4.3.7.2 803

© ISO/IEC N4910

4 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return append(sv.data(), sv.size());

template<class T>
constexpr basic_string& append(const T& t, size_type pos, size_type n = npos);

5 Constraints:
—(5.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(5.2) is_convertible_v<const T&, const charT*> is false.

6 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return append(sv.substr(pos, n));

constexpr basic_string& append(const charT* s, size_type n);

7 Preconditions: [s, s + n) is a valid range.
8 Effects: Appends a copy of the range [s, s + n) to the string.
9 Returns: *this.

constexpr basic_string& append(const charT* s);

10 Effects: Equivalent to: return append(s, traits::length(s));

constexpr basic_string& append(size_type n, charT c);

11 Effects: Appends n copies of c to the string.
12 Returns: *this.

template<class InputIterator>
constexpr basic_string& append(InputIterator first, InputIterator last);

13 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.1).
14 Effects: Equivalent to: return append(basic_string(first, last, get_allocator()));

template<container-compatible-range<charT> R>
constexpr basic_string& append_range(R&& rg);

15 Effects: Equivalent to: return append(basic_string(from_range, std::forward<R>(rg), get_allocator()));

constexpr basic_string& append(initializer_list<charT> il);

16 Effects: Equivalent to: return append(il.begin(), il.size());

constexpr void push_back(charT c);

17 Effects: Equivalent to append(size_type{1}, c).
23.4.3.7.3 basic_string::assign [string.assign]

constexpr basic_string& assign(const basic_string& str);

1 Effects: Equivalent to: return *this = str;

constexpr basic_string& assign(basic_string&& str)
noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||

allocator_traits<Allocator>::is_always_equal::value);

2 Effects: Equivalent to: return *this = std::move(str);

constexpr basic_string& assign(const basic_string& str, size_type pos, size_type n = npos);

3 Effects: Equivalent to:
return assign(basic_string_view<charT, traits>(str).substr(pos, n));

§ 23.4.3.7.3 804

© ISO/IEC N4910

template<class T>
constexpr basic_string& assign(const T& t);

4 Constraints:
—(4.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(4.2) is_convertible_v<const T&, const charT*> is false.

5 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return assign(sv.data(), sv.size());

template<class T>
constexpr basic_string& assign(const T& t, size_type pos, size_type n = npos);

6 Constraints:
—(6.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(6.2) is_convertible_v<const T&, const charT*> is false.

7 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return assign(sv.substr(pos, n));

constexpr basic_string& assign(const charT* s, size_type n);

8 Preconditions: [s, s + n) is a valid range.
9 Effects: Replaces the string controlled by *this with a copy of the range [s, s + n).
10 Returns: *this.

constexpr basic_string& assign(const charT* s);

11 Effects: Equivalent to: return assign(s, traits::length(s));

constexpr basic_string& assign(initializer_list<charT> il);

12 Effects: Equivalent to: return assign(il.begin(), il.size());

constexpr basic_string& assign(size_type n, charT c);

13 Effects: Equivalent to:
clear();
resize(n, c);
return *this;

template<class InputIterator>
constexpr basic_string& assign(InputIterator first, InputIterator last);

14 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.1).
15 Effects: Equivalent to: return assign(basic_string(first, last, get_allocator()));

template<container-compatible-range<charT> R>
constexpr basic_string& assign_range(R&& rg);

16 Effects: Equivalent to: return assign(basic_string(from_range, std::forward<R>(rg), get_allocator()));

23.4.3.7.4 basic_string::insert [string.insert]

constexpr basic_string& insert(size_type pos, const basic_string& str);

1 Effects: Equivalent to: return insert(pos, str.data(), str.size());

constexpr basic_string& insert(size_type pos1, const basic_string& str,
size_type pos2, size_type n = npos);

2 Effects: Equivalent to:
return insert(pos1, basic_string_view<charT, traits>(str), pos2, n);

§ 23.4.3.7.4 805

© ISO/IEC N4910

template<class T>
constexpr basic_string& insert(size_type pos, const T& t);

3 Constraints:
—(3.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(3.2) is_convertible_v<const T&, const charT*> is false.

4 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return insert(pos, sv.data(), sv.size());

template<class T>
constexpr basic_string& insert(size_type pos1, const T& t,

size_type pos2, size_type n = npos);

5 Constraints:
—(5.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(5.2) is_convertible_v<const T&, const charT*> is false.

6 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return insert(pos1, sv.substr(pos2, n));

constexpr basic_string& insert(size_type pos, const charT* s, size_type n);

7 Preconditions: [s, s + n) is a valid range.
8 Effects: Inserts a copy of the range [s, s + n) immediately before the character at position pos if pos < size(),or otherwise at the end of the string.
9 Returns: *this.
10 Throws:

—(10.1) out_of_range if pos > size(),
—(10.2) length_error if n > max_size() - size(), or
—(10.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr basic_string& insert(size_type pos, const charT* s);

11 Effects: Equivalent to: return insert(pos, s, traits::length(s));

constexpr basic_string& insert(size_type pos, size_type n, charT c);

12 Effects: Inserts n copies of c before the character at position pos if pos < size(), or otherwise at the end of thestring.
13 Returns: *this
14 Throws:

—(14.1) out_of_range if pos > size(),
—(14.2) length_error if n > max_size() - size(), or
—(14.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr iterator insert(const_iterator p, charT c);

15 Preconditions: p is a valid iterator on *this.
16 Effects: Inserts a copy of c at the position p.
17 Returns: An iterator which refers to the inserted character.

constexpr iterator insert(const_iterator p, size_type n, charT c);

18 Preconditions: p is a valid iterator on *this.
19 Effects: Inserts n copies of c at the position p.
20 Returns: An iterator which refers to the first inserted character, or p if n == 0.
§ 23.4.3.7.4 806

© ISO/IEC N4910

template<class InputIterator>
constexpr iterator insert(const_iterator p, InputIterator first, InputIterator last);

21 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.1).
22 Preconditions: p is a valid iterator on *this.
23 Effects: Equivalent to insert(p - begin(), basic_string(first, last, get_allocator())).
24 Returns: An iterator which refers to the first inserted character, or p if first == last.

template<container-compatible-range<charT> R>
constexpr iterator insert_range(const_iterator p, R&& rg);

25 Preconditions: p is a valid iterator on *this.
26 Effects: Equivalent to insert(p - begin(), basic_string(from_range, std::forward<R>(rg), get_allocator())).
27 Returns: An iterator which refers to the first inserted character, or p if rg is empty.

constexpr iterator insert(const_iterator p, initializer_list<charT> il);

28 Effects: Equivalent to: return insert(p, il.begin(), il.end());

23.4.3.7.5 basic_string::erase [string.erase]

constexpr basic_string& erase(size_type pos = 0, size_type n = npos);

1 Effects: Determines the effective length xlen of the string to be removed as the smaller of n and size() - pos.Removes the characters in the range [begin() + pos, begin() + pos + xlen).
2 Returns: *this.
3 Throws: out_of_range if pos > size().

constexpr iterator erase(const_iterator p);

4 Preconditions: p is a valid dereferenceable iterator on *this.
5 Effects: Removes the character referred to by p.
6 Returns: An iterator which points to the element immediately following p prior to the element being erased. If nosuch element exists, end() is returned.
7 Throws: Nothing.

constexpr iterator erase(const_iterator first, const_iterator last);

8 Preconditions: first and last are valid iterators on *this. [first, last) is a valid range.
9 Effects: Removes the characters in the range [first, last).
10 Returns: An iterator which points to the element pointed to by last prior to the other elements being erased. Ifno such element exists, end() is returned.
11 Throws: Nothing.

constexpr void pop_back();

12 Preconditions: !empty().
13 Effects: Equivalent to erase(end() - 1).
14 Throws: Nothing.
23.4.3.7.6 basic_string::replace [string.replace]

constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str);

1 Effects: Equivalent to: return replace(pos1, n1, str.data(), str.size());

constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str,
size_type pos2, size_type n2 = npos);

2 Effects: Equivalent to:
return replace(pos1, n1, basic_string_view<charT, traits>(str).substr(pos2, n2));

§ 23.4.3.7.6 807

© ISO/IEC N4910

template<class T>
constexpr basic_string& replace(size_type pos1, size_type n1, const T& t);

3 Constraints:
—(3.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(3.2) is_convertible_v<const T&, const charT*> is false.

4 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return replace(pos1, n1, sv.data(), sv.size());

template<class T>
constexpr basic_string& replace(size_type pos1, size_type n1, const T& t,

size_type pos2, size_type n2 = npos);

5 Constraints:
—(5.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(5.2) is_convertible_v<const T&, const charT*> is false.

6 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return replace(pos1, n1, sv.substr(pos2, n2));

constexpr basic_string& replace(size_type pos1, size_type n1, const charT* s, size_type n2);

7 Preconditions: [s, s + n2) is a valid range.
8 Effects: Determines the effective length xlen of the string to be removed as the smaller of n1 and size() - pos1.If size() - xlen >= max_size() - n2 throws length_error. Otherwise, the function replaces the charactersin the range [begin() + pos1, begin() + pos1 + xlen) with a copy of the range [s, s + n2).
9 Returns: *this.
10 Throws:

—(10.1) out_of_range if pos1 > size(),
—(10.2) length_error if the length of the resulting string would exceed max_size(), or
—(10.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr basic_string& replace(size_type pos, size_type n, const charT* s);

11 Effects: Equivalent to: return replace(pos, n, s, traits::length(s));

constexpr basic_string& replace(size_type pos1, size_type n1, size_type n2, charT c);

12 Effects: Determines the effective length xlen of the string to be removed as the smaller of n1 and size() - pos1.If size() - xlen >= max_size() - n2 throws length_error. Otherwise, the function replaces the charactersin the range [begin() + pos1, begin() + pos1 + xlen) with n2 copies of c.
13 Returns: *this.
14 Throws:

—(14.1) out_of_range if pos1 > size(),
—(14.2) length_error if the length of the resulting string would exceedmax_size(), or
—(14.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const basic_string& str);

15 Effects: Equivalent to: return replace(i1, i2, basic_string_view<charT, traits>(str));

template<class T>
constexpr basic_string& replace(const_iterator i1, const_iterator i2, const T& t);

16 Constraints:
—(16.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and

§ 23.4.3.7.6 808

© ISO/IEC N4910

—(16.2) is_convertible_v<const T&, const charT*> is false.
17 Preconditions: [begin(), i1) and [i1, i2) are valid ranges.
18 Effects: Equivalent to:

basic_string_view<charT, traits> sv = t;
return replace(i1 - begin(), i2 - i1, sv.data(), sv.size());

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s, size_type n);

19 Effects: Equivalent to: return replace(i1, i2, basic_string_view<charT, traits>(s, n));

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s);

20 Effects: Equivalent to: return replace(i1, i2, basic_string_view<charT, traits>(s));

constexpr basic_string& replace(const_iterator i1, const_iterator i2, size_type n, charT c);

21 Preconditions: [begin(), i1) and [i1, i2) are valid ranges.
22 Effects: Equivalent to: return replace(i1 - begin(), i2 - i1, n, c);

template<class InputIterator>
constexpr basic_string& replace(const_iterator i1, const_iterator i2,

InputIterator j1, InputIterator j2);

23 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.1).
24 Effects: Equivalent to: return replace(i1, i2, basic_string(j1, j2, get_allocator()));

template<container-compatible-range<charT> R>
constexpr basic_string& replace_with_range(const_iterator i1, const_iterator i2, R&& rg);

25 Effects: Equivalent to:
return replace(i1, i2, basic_string(from_range, std::forward<R>(rg), get_allocator()));

constexpr basic_string& replace(const_iterator i1, const_iterator i2, initializer_list<charT> il);

26 Effects: Equivalent to: return replace(i1, i2, il.begin(), il.size());

23.4.3.7.7 basic_string::copy [string.copy]

constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Effects: Equivalent to: return basic_string_view<charT, traits>(*this).copy(s, n, pos);

[Note 1: This does not terminate s with a null object. —end note]
23.4.3.7.8 basic_string::swap [string.swap]

constexpr void swap(basic_string& s)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

1 Preconditions: allocator_traits<Allocator>::propagate_on_container_swap::value is true or get_allocator()
== s.get_allocator().

2 Postconditions: *this contains the same sequence of characters that was in s, s contains the same sequence ofcharacters that was in *this.
3 Throws: Nothing.
4 Complexity: Constant time.
23.4.3.8 String operations [string.ops]
23.4.3.8.1 Accessors [string.accessors]

constexpr const charT* c_str() const noexcept;
constexpr const charT* data() const noexcept;

1 Returns: A pointer p such that p + i == addressof(operator[](i)) for each i in [0, size()].
2 Complexity: Constant time.

§ 23.4.3.8.1 809

© ISO/IEC N4910

3 Remarks: The program shall not modify any of the values stored in the character array; otherwise, the behavior isundefined.
constexpr charT* data() noexcept;

4 Returns: A pointer p such that p + i == addressof(operator[](i)) for each i in [0, size()].
5 Complexity: Constant time.
6 Remarks: The program shall not modify the value stored at p + size() to any value other than charT(); otherwise,the behavior is undefined.

constexpr operator basic_string_view<charT, traits>() const noexcept;

7 Effects: Equivalent to: return basic_string_view<charT, traits>(data(), size());

constexpr allocator_type get_allocator() const noexcept;

8 Returns: A copy of the Allocator object used to construct the string or, if that allocator has been replaced, acopy of the most recent replacement.
23.4.3.8.2 Searching [string.find]

1 Let F be one of find, rfind, find_first_of, find_last_of, find_first_not_of, and find_last_not_of.
—(1.1) Each member function of the form

constexpr size_type F(const basic_string& str, size_type pos) const noexcept;

has effects equivalent to: return F(basic_string_view<charT, traits>(str), pos);

—(1.2) Each member function of the form
constexpr size_type F(const charT* s, size_type pos) const;

has effects equivalent to: return F(basic_string_view<charT, traits>(s), pos);

—(1.3) Each member function of the form
constexpr size_type F(const charT* s, size_type pos, size_type n) const;

has effects equivalent to: return F(basic_string_view<charT, traits>(s, n), pos);

—(1.4) Each member function of the form
constexpr size_type F(charT c, size_type pos) const noexcept;

has effects equivalent to:
return F(basic_string_view<charT, traits>(addressof(c), 1), pos);

template<class T>
constexpr size_type find(const T& t, size_type pos = 0) const noexcept(see below);

template<class T>
constexpr size_type rfind(const T& t, size_type pos = npos) const noexcept(see below);

template<class T>
constexpr size_type find_first_of(const T& t, size_type pos = 0) const noexcept(see below);

template<class T>
constexpr size_type find_last_of(const T& t, size_type pos = npos) const noexcept(see below);

template<class T>
constexpr size_type find_first_not_of(const T& t, size_type pos = 0) const noexcept(see below);

template<class T>
constexpr size_type find_last_not_of(const T& t, size_type pos = npos) const noexcept(see below);

2 Constraints:
—(2.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(2.2) is_convertible_v<const T&, const charT*> is false.

3 Effects: Let G be the name of the function. Equivalent to:
basic_string_view<charT, traits> s = *this, sv = t;
return s.G(sv, pos);

4 Remarks: The exception specification is equivalent to is_nothrow_convertible_v<const T&, basic_string_-
view<charT, traits>>.

§ 23.4.3.8.2 810

© ISO/IEC N4910

23.4.3.8.3 basic_string::substr [string.substr]

constexpr basic_string substr(size_type pos = 0, size_type n = npos) const;

1 Effects: Determines the effective length rlen of the string to copy as the smaller of n and size() - pos.
2 Returns: basic_string(data()+pos, rlen).
3 Throws: out_of_range if pos > size().
23.4.3.8.4 basic_string::compare [string.compare]

template<class T>
constexpr int compare(const T& t) const noexcept(see below);

1 Constraints:
—(1.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(1.2) is_convertible_v<const T&, const charT*> is false.

2 Effects: Equivalent to: return basic_string_view<charT, traits>(*this).compare(t);
3 Remarks: The exception specification is equivalent to is_nothrow_convertible_v<const T&, basic_string_-

view<charT, traits>>.
template<class T>

constexpr int compare(size_type pos1, size_type n1, const T& t) const;

4 Constraints:
—(4.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(4.2) is_convertible_v<const T&, const charT*> is false.

5 Effects: Equivalent to:
return basic_string_view<charT, traits>(*this).substr(pos1, n1).compare(t);

template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t,

size_type pos2, size_type n2 = npos) const;

6 Constraints:
—(6.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(6.2) is_convertible_v<const T&, const charT*> is false.

7 Effects: Equivalent to:
basic_string_view<charT, traits> s = *this, sv = t;
return s.substr(pos1, n1).compare(sv.substr(pos2, n2));

constexpr int compare(const basic_string& str) const noexcept;

8 Effects: Equivalent to: return compare(basic_string_view<charT, traits>(str));

constexpr int compare(size_type pos1, size_type n1, const basic_string& str) const;

9 Effects: Equivalent to: return compare(pos1, n1, basic_string_view<charT, traits>(str));

constexpr int compare(size_type pos1, size_type n1, const basic_string& str,
size_type pos2, size_type n2 = npos) const;

10 Effects: Equivalent to:
return compare(pos1, n1, basic_string_view<charT, traits>(str), pos2, n2);

constexpr int compare(const charT* s) const;

11 Effects: Equivalent to: return compare(basic_string_view<charT, traits>(s));

constexpr int compare(size_type pos, size_type n1, const charT* s) const;

12 Effects: Equivalent to: return compare(pos, n1, basic_string_view<charT, traits>(s));

§ 23.4.3.8.4 811

© ISO/IEC N4910

constexpr int compare(size_type pos, size_type n1, const charT* s, size_type n2) const;

13 Effects: Equivalent to: return compare(pos, n1, basic_string_view<charT, traits>(s, n2));

23.4.3.8.5 basic_string::starts_with [string.starts.with]

constexpr bool starts_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool starts_with(charT x) const noexcept;
constexpr bool starts_with(const charT* x) const;

1 Effects: Equivalent to:
return basic_string_view<charT, traits>(data(), size()).starts_with(x);

23.4.3.8.6 basic_string::ends_with [string.ends.with]

constexpr bool ends_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool ends_with(charT x) const noexcept;
constexpr bool ends_with(const charT* x) const;

1 Effects: Equivalent to:
return basic_string_view<charT, traits>(data(), size()).ends_with(x);

23.4.3.8.7 basic_string::contains [string.contains]

constexpr bool contains(basic_string_view<charT, traits> x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

1 Effects: Equivalent to:
return basic_string_view<charT, traits>(data(), size()).contains(x);

23.4.4 Non-member functions [string.nonmembers]
23.4.4.1 operator+ [string.op.plus]

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(const basic_string<charT, traits, Allocator>& lhs,

const basic_string<charT, traits, Allocator>& rhs);
template<class charT, class traits, class Allocator>

constexpr basic_string<charT, traits, Allocator>
operator+(const basic_string<charT, traits, Allocator>& lhs, const charT* rhs);

1 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = lhs;
r.append(rhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(basic_string<charT, traits, Allocator>&& lhs,

const basic_string<charT, traits, Allocator>& rhs);
template<class charT, class traits, class Allocator>

constexpr basic_string<charT, traits, Allocator>
operator+(basic_string<charT, traits, Allocator>&& lhs, const charT* rhs);

2 Effects: Equivalent to:
lhs.append(rhs);
return std::move(lhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(basic_string<charT, traits, Allocator>&& lhs,

basic_string<charT, traits, Allocator>&& rhs);

3 Effects: Equivalent to:
lhs.append(rhs);

§ 23.4.4.1 812

© ISO/IEC N4910

return std::move(lhs);

except that both lhs and rhs are left in valid but unspecified states.
[Note 1: If lhs and rhs have equal allocators, the implementation can move from either. —end note]

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(const basic_string<charT, traits, Allocator>& lhs,

basic_string<charT, traits, Allocator>&& rhs);
template<class charT, class traits, class Allocator>

constexpr basic_string<charT, traits, Allocator>
operator+(const charT* lhs, basic_string<charT, traits, Allocator>&& rhs);

4 Effects: Equivalent to:
rhs.insert(0, lhs);
return std::move(rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(const charT* lhs, const basic_string<charT, traits, Allocator>& rhs);

5 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = rhs;
r.insert(0, lhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(charT lhs, const basic_string<charT, traits, Allocator>& rhs);

6 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = rhs;
r.insert(r.begin(), lhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(charT lhs, basic_string<charT, traits, Allocator>&& rhs);

7 Effects: Equivalent to:
rhs.insert(rhs.begin(), lhs);
return std::move(rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(const basic_string<charT, traits, Allocator>& lhs, charT rhs);

8 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = lhs;
r.push_back(rhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>
operator+(basic_string<charT, traits, Allocator>&& lhs, charT rhs);

9 Effects: Equivalent to:
lhs.push_back(rhs);
return std::move(lhs);

23.4.4.2 Non-member comparison operator functions [string.cmp]

template<class charT, class traits, class Allocator>
constexpr bool
operator==(const basic_string<charT, traits, Allocator>& lhs,

const basic_string<charT, traits, Allocator>& rhs) noexcept;

§ 23.4.4.2 813

© ISO/IEC N4910

template<class charT, class traits, class Allocator>
constexpr bool operator==(const basic_string<charT, traits, Allocator>& lhs,

const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,

const basic_string<charT, traits, Allocator>& rhs) noexcept;
template<class charT, class traits, class Allocator>

constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,
const charT* rhs);

1 Effects: Let op be the operator. Equivalent to:
return basic_string_view<charT, traits>(lhs) op basic_string_view<charT, traits>(rhs);

23.4.4.3 swap [string.special]

template<class charT, class traits, class Allocator>
constexpr void
swap(basic_string<charT, traits, Allocator>& lhs,

basic_string<charT, traits, Allocator>& rhs)
noexcept(noexcept(lhs.swap(rhs)));

1 Effects: Equivalent to lhs.swap(rhs).
23.4.4.4 Inserters and extractors [string.io]

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, basic_string<charT, traits, Allocator>& str);

1 Effects: Behaves as a formatted input function (31.7.4.3.1). After constructing a sentry object, if the sentryobject returns true when converted to a value of type bool, calls str.erase() and then extracts characters from
is and appends them to str as if by calling str.append(1, c). If is.width() is greater than zero, the maximumnumber n of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted andappended until any of the following occurs:
—(1.1) n characters are stored;
—(1.2) end-of-file occurs on the input sequence;
—(1.3) isspace(c, is.getloc()) is true for the next available input character c.

2 After the last character (if any) is extracted, is.width(0) is called and the sentry object is destroyed.
3 If the function extracts no characters, it calls is.setstate(ios_base::failbit), which may throw ios_-

base::failure (31.5.4.4).
4 Returns: is.

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

const basic_string<charT, traits, Allocator>& str);

5 Effects: Equivalent to: return os << basic_string_view<charT, traits>(str);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&
getline(basic_istream<charT, traits>& is,

basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&
getline(basic_istream<charT, traits>&& is,

basic_string<charT, traits, Allocator>& str,
charT delim);

6 Effects: Behaves as an unformatted input function (31.7.4.4), except that it does not affect the value returnedby subsequent calls to basic_istream<>::gcount(). After constructing a sentry object, if the sentry object

§ 23.4.4.4 814

© ISO/IEC N4910

returns true when converted to a value of type bool, calls str.erase() and then extracts characters from is andappends them to str as if by calling str.append(1, c) until any of the following occurs:
—(6.1) end-of-file occurs on the input sequence (in which case, the getline function calls is.setstate(ios_-

base::eofbit)).
—(6.2) traits::eq(c, delim) for the next available input character c (in which case, c is extracted but notappended) (31.5.4.4)
—(6.3) str.max_size() characters are stored (in which case, the function calls is.setstate(ios_base::fail-

bit)) (31.5.4.4)
7 The conditions are tested in the order shown. In any case, after the last character is extracted, the sentry objectis destroyed.
8 If the function extracts no characters, it calls is.setstate(ios_base::failbit) which may throw ios_-

base::failure (31.5.4.4).
9 Returns: is.

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&
getline(basic_istream<charT, traits>& is,

basic_string<charT, traits, Allocator>& str);
template<class charT, class traits, class Allocator>

basic_istream<charT, traits>&
getline(basic_istream<charT, traits>&& is,

basic_string<charT, traits, Allocator>& str);

10 Returns: getline(is, str, is.widen(’\n’)).
23.4.4.5 Erasure [string.erasure]

template<class charT, class traits, class Allocator, class U>
constexpr typename basic_string<charT, traits, Allocator>::size_type
erase(basic_string<charT, traits, Allocator>& c, const U& value);

1 Effects: Equivalent to:
auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

template<class charT, class traits, class Allocator, class Predicate>
constexpr typename basic_string<charT, traits, Allocator>::size_type
erase_if(basic_string<charT, traits, Allocator>& c, Predicate pred);

2 Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

23.4.5 Numeric conversions [string.conversions]

int stoi(const string& str, size_t* idx = nullptr, int base = 10);
long stol(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const string& str, size_t* idx = nullptr, int base = 10);
long long stoll(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const string& str, size_t* idx = nullptr, int base = 10);

1 Effects: The first two functions call strtol(str.c_str(), ptr, base), and the last three functions call strtoul(str.c_-
str(), ptr, base), strtoll(str.c_str(), ptr, base), and strtoull(str.c_str(), ptr, base), respec-tively. Each function returns the converted result, if any. The argument ptr designates a pointer to an objectinternal to the function that is used to determine what to store at *idx. If the function does not throw an exceptionand idx != nullptr, the function stores in *idx the index of the first unconverted element of str.

2 Returns: The converted result.

§ 23.4.5 815

© ISO/IEC N4910

3 Throws: invalid_argument if strtol, strtoul, strtoll, or strtoull reports that no conversion can be per-formed. Throws out_of_range if strtol, strtoul, strtoll or strtoull sets errno to ERANGE, or if the convertedvalue is outside the range of representable values for the return type.
float stof(const string& str, size_t* idx = nullptr);
double stod(const string& str, size_t* idx = nullptr);
long double stold(const string& str, size_t* idx = nullptr);

4 Effects: These functions call strtof(str.c_str(), ptr), strtod(str.c_str(), ptr), and strtold(str.c_-
str(), ptr), respectively. Each function returns the converted result, if any. The argument ptr designates apointer to an object internal to the function that is used to determine what to store at *idx. If the function does notthrow an exception and idx != nullptr, the function stores in *idx the index of the first unconverted elementof str.

5 Returns: The converted result.
6 Throws: invalid_argument if strtof, strtod, or strtold reports that no conversion can be performed. Throws

out_of_range if strtof, strtod, or strtold sets errno to ERANGE or if the converted value is outside the rangeof representable values for the return type.
string to_string(int val);
string to_string(unsigned val);
string to_string(long val);
string to_string(unsigned long val);
string to_string(long long val);
string to_string(unsigned long long val);
string to_string(float val);
string to_string(double val);
string to_string(long double val);

7 Returns: Each function returns a string object holding the character representation of the value of its argumentthat would be generated by calling sprintf(buf, fmt, val)with a format specifier of "%d", "%u", "%ld", "%lu",
"%lld", "%llu", "%f", "%f", or "%Lf", respectively, where buf designates an internal character buffer of sufficientsize.

int stoi(const wstring& str, size_t* idx = nullptr, int base = 10);
long stol(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const wstring& str, size_t* idx = nullptr, int base = 10);
long long stoll(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const wstring& str, size_t* idx = nullptr, int base = 10);

8 Effects: The first two functions call wcstol(str.c_str(), ptr, base), and the last three functions call wcstoul(str.c_-
str(), ptr, base), wcstoll(str.c_str(), ptr, base), and wcstoull(str.c_str(), ptr, base), respec-tively. Each function returns the converted result, if any. The argument ptr designates a pointer to an objectinternal to the function that is used to determine what to store at *idx. If the function does not throw an exceptionand idx != nullptr, the function stores in *idx the index of the first unconverted element of str.

9 Returns: The converted result.
10 Throws: invalid_argument if wcstol, wcstoul, wcstoll, or wcstoull reports that no conversion can be per-formed. Throws out_of_range if the converted value is outside the range of representable values for the returntype.

float stof(const wstring& str, size_t* idx = nullptr);
double stod(const wstring& str, size_t* idx = nullptr);
long double stold(const wstring& str, size_t* idx = nullptr);

11 Effects: These functions call wcstof(str.c_str(), ptr), wcstod(str.c_str(), ptr), and wcstold(str.c_-
str(), ptr), respectively. Each function returns the converted result, if any. The argument ptr designates apointer to an object internal to the function that is used to determine what to store at *idx. If the function does notthrow an exception and idx != nullptr, the function stores in *idx the index of the first unconverted elementof str.

12 Returns: The converted result.
13 Throws: invalid_argument if wcstof, wcstod, or wcstold reports that no conversion can be performed. Throws

out_of_range if wcstof, wcstod, or wcstold sets errno to ERANGE.

§ 23.4.5 816

© ISO/IEC N4910

wstring to_wstring(int val);
wstring to_wstring(unsigned val);
wstring to_wstring(long val);
wstring to_wstring(unsigned long val);
wstring to_wstring(long long val);
wstring to_wstring(unsigned long long val);
wstring to_wstring(float val);
wstring to_wstring(double val);
wstring to_wstring(long double val);

14 Returns: Each function returns a wstring object holding the character representation of the value of its argumentthat would be generated by calling swprintf(buf, buffsz, fmt, val) with a format specifier of L"%d", L"%u",
L"%ld", L"%lu", L"%lld", L"%llu", L"%f", L"%f", or L"%Lf", respectively, where buf designates an internalcharacter buffer of sufficient size buffsz.

23.4.6 Hash support [basic.string.hash]

template<> struct hash<string>;
template<> struct hash<u8string>;
template<> struct hash<u16string>;
template<> struct hash<u32string>;
template<> struct hash<wstring>;
template<> struct hash<pmr::string>;
template<> struct hash<pmr::u8string>;
template<> struct hash<pmr::u16string>;
template<> struct hash<pmr::u32string>;
template<> struct hash<pmr::wstring>;

1 If S is one of these string types, SV is the corresponding string view type, and s is an object of type S, then
hash<S>()(s) == hash<SV>()(SV(s)).

23.4.7 Suffix for basic_string literals [basic.string.literals]

constexpr string operator""s(const char* str, size_t len);

1 Returns: string{str, len}.
constexpr u8string operator""s(const char8_t* str, size_t len);

2 Returns: u8string{str, len}.
constexpr u16string operator""s(const char16_t* str, size_t len);

3 Returns: u16string{str, len}.
constexpr u32string operator""s(const char32_t* str, size_t len);

4 Returns: u32string{str, len}.
constexpr wstring operator""s(const wchar_t* str, size_t len);

5 Returns: wstring{str, len}.
6 [Note 1: The same suffix s is used for chrono::duration literals denoting seconds but there is no conflict, since duration suffixesapply to numbers and string literal suffixes apply to character array literals. —end note]
23.5 Null-terminated sequence utilities [c.strings]
23.5.1 Header <cctype> synopsis [cctype.syn]
namespace std {

int isalnum(int c);
int isalpha(int c);
int isblank(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);

§ 23.5.1 817

© ISO/IEC N4910

int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

}

1 The contents and meaning of the header <cctype> are the same as the C standard library header <ctype.h>.
See also: ISO C 7.4
23.5.2 Header <cwctype> synopsis [cwctype.syn]
namespace std {

using wint_t = see below;
using wctrans_t = see below;
using wctype_t = see below;

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswblank(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);
int iswctype(wint_t wc, wctype_t desc);
wctype_t wctype(const char* property);
wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);
wint_t towctrans(wint_t wc, wctrans_t desc);
wctrans_t wctrans(const char* property);

}

#define WEOF see below

1 The contents and meaning of the header <cwctype> are the same as the C standard library header <wctype.h>.
See also: ISO C 7.30
23.5.3 Header <cstring> synopsis [cstring.syn]
namespace std {

using size_t = see 17.2.4;

void* memcpy(void* s1, const void* s2, size_t n);
void* memmove(void* s1, const void* s2, size_t n);
char* strcpy(char* s1, const char* s2);
char* strncpy(char* s1, const char* s2, size_t n);
char* strcat(char* s1, const char* s2);
char* strncat(char* s1, const char* s2, size_t n);
int memcmp(const void* s1, const void* s2, size_t n);
int strcmp(const char* s1, const char* s2);
int strcoll(const char* s1, const char* s2);
int strncmp(const char* s1, const char* s2, size_t n);
size_t strxfrm(char* s1, const char* s2, size_t n);
const void* memchr(const void* s, int c, size_t n); // see 16.2
void* memchr(void* s, int c, size_t n); // see 16.2
const char* strchr(const char* s, int c); // see 16.2
char* strchr(char* s, int c); // see 16.2
size_t strcspn(const char* s1, const char* s2);
const char* strpbrk(const char* s1, const char* s2); // see 16.2
char* strpbrk(char* s1, const char* s2); // see 16.2

§ 23.5.3 818

© ISO/IEC N4910

const char* strrchr(const char* s, int c); // see 16.2
char* strrchr(char* s, int c); // see 16.2
size_t strspn(const char* s1, const char* s2);
const char* strstr(const char* s1, const char* s2); // see 16.2
char* strstr(char* s1, const char* s2); // see 16.2
char* strtok(char* s1, const char* s2);
void* memset(void* s, int c, size_t n);
char* strerror(int errnum);
size_t strlen(const char* s);

}

#define NULL see 17.2.3

1 The contents and meaning of the header <cstring> are the same as the C standard library header <string.h>.
2 The functions strerror and strtok are not required to avoid data races (16.4.6.10).
3 The functions memcpy and memmove are signal-safe (17.13.5). Both functions implicitly create objects (6.7.2) in thedestination region of storage immediately prior to copying the sequence of characters to the destination.
4 [Note 1: The functions strchr, strpbrk, strrchr, strstr, and memchr, have different signatures in this document, but they have thesame behavior as in the C standard library (16.2). —end note]
See also: ISO C 7.24
23.5.4 Header <cwchar> synopsis [cwchar.syn]
namespace std {

using size_t = see 17.2.4;
using mbstate_t = see below;
using wint_t = see below;

struct tm;

int fwprintf(FILE* stream, const wchar_t* format, ...);
int fwscanf(FILE* stream, const wchar_t* format, ...);
int swprintf(wchar_t* s, size_t n, const wchar_t* format, ...);
int swscanf(const wchar_t* s, const wchar_t* format, ...);
int vfwprintf(FILE* stream, const wchar_t* format, va_list arg);
int vfwscanf(FILE* stream, const wchar_t* format, va_list arg);
int vswprintf(wchar_t* s, size_t n, const wchar_t* format, va_list arg);
int vswscanf(const wchar_t* s, const wchar_t* format, va_list arg);
int vwprintf(const wchar_t* format, va_list arg);
int vwscanf(const wchar_t* format, va_list arg);
int wprintf(const wchar_t* format, ...);
int wscanf(const wchar_t* format, ...);
wint_t fgetwc(FILE* stream);
wchar_t* fgetws(wchar_t* s, int n, FILE* stream);
wint_t fputwc(wchar_t c, FILE* stream);
int fputws(const wchar_t* s, FILE* stream);
int fwide(FILE* stream, int mode);
wint_t getwc(FILE* stream);
wint_t getwchar();
wint_t putwc(wchar_t c, FILE* stream);
wint_t putwchar(wchar_t c);
wint_t ungetwc(wint_t c, FILE* stream);
double wcstod(const wchar_t* nptr, wchar_t** endptr);
float wcstof(const wchar_t* nptr, wchar_t** endptr);
long double wcstold(const wchar_t* nptr, wchar_t** endptr);
long int wcstol(const wchar_t* nptr, wchar_t** endptr, int base);
long long int wcstoll(const wchar_t* nptr, wchar_t** endptr, int base);
unsigned long int wcstoul(const wchar_t* nptr, wchar_t** endptr, int base);
unsigned long long int wcstoull(const wchar_t* nptr, wchar_t** endptr, int base);
wchar_t* wcscpy(wchar_t* s1, const wchar_t* s2);
wchar_t* wcsncpy(wchar_t* s1, const wchar_t* s2, size_t n);
wchar_t* wmemcpy(wchar_t* s1, const wchar_t* s2, size_t n);
wchar_t* wmemmove(wchar_t* s1, const wchar_t* s2, size_t n);

§ 23.5.4 819

© ISO/IEC N4910

wchar_t* wcscat(wchar_t* s1, const wchar_t* s2);
wchar_t* wcsncat(wchar_t* s1, const wchar_t* s2, size_t n);
int wcscmp(const wchar_t* s1, const wchar_t* s2);
int wcscoll(const wchar_t* s1, const wchar_t* s2);
int wcsncmp(const wchar_t* s1, const wchar_t* s2, size_t n);
size_t wcsxfrm(wchar_t* s1, const wchar_t* s2, size_t n);
int wmemcmp(const wchar_t* s1, const wchar_t* s2, size_t n);
const wchar_t* wcschr(const wchar_t* s, wchar_t c); // see 16.2
wchar_t* wcschr(wchar_t* s, wchar_t c); // see 16.2
size_t wcscspn(const wchar_t* s1, const wchar_t* s2);
const wchar_t* wcspbrk(const wchar_t* s1, const wchar_t* s2); // see 16.2
wchar_t* wcspbrk(wchar_t* s1, const wchar_t* s2); // see 16.2
const wchar_t* wcsrchr(const wchar_t* s, wchar_t c); // see 16.2
wchar_t* wcsrchr(wchar_t* s, wchar_t c); // see 16.2
size_t wcsspn(const wchar_t* s1, const wchar_t* s2);
const wchar_t* wcsstr(const wchar_t* s1, const wchar_t* s2); // see 16.2
wchar_t* wcsstr(wchar_t* s1, const wchar_t* s2); // see 16.2
wchar_t* wcstok(wchar_t* s1, const wchar_t* s2, wchar_t** ptr);
const wchar_t* wmemchr(const wchar_t* s, wchar_t c, size_t n); // see 16.2
wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n); // see 16.2
size_t wcslen(const wchar_t* s);
wchar_t* wmemset(wchar_t* s, wchar_t c, size_t n);
size_t wcsftime(wchar_t* s, size_t maxsize, const wchar_t* format, const tm* timeptr);
wint_t btowc(int c);
int wctob(wint_t c);

// 23.5.6, multibyte / wide string and character conversion functions
int mbsinit(const mbstate_t* ps);
size_t mbrlen(const char* s, size_t n, mbstate_t* ps);
size_t mbrtowc(wchar_t* pwc, const char* s, size_t n, mbstate_t* ps);
size_t wcrtomb(char* s, wchar_t wc, mbstate_t* ps);
size_t mbsrtowcs(wchar_t* dst, const char** src, size_t len, mbstate_t* ps);
size_t wcsrtombs(char* dst, const wchar_t** src, size_t len, mbstate_t* ps);

}

#define NULL see 17.2.3
#define WCHAR_MAX see below
#define WCHAR_MIN see below
#define WEOF see below

1 The contents and meaning of the header <cwchar> are the same as the C standard library header <wchar.h>, except thatit does not declare a type wchar_t.
2 [Note 1: The functions wcschr, wcspbrk, wcsrchr, wcsstr, and wmemchr have different signatures in this document, but they havethe same behavior as in the C standard library (16.2). —end note]
See also: ISO C 7.29
23.5.5 Header <cuchar> synopsis [cuchar.syn]
namespace std {

using mbstate_t = see below;
using size_t = see 17.2.4;

size_t mbrtoc8(char8_t* pc8, const char* s, size_t n, mbstate_t* ps);
size_t c8rtomb(char* s, char8_t c8, mbstate_t* ps);
size_t mbrtoc16(char16_t* pc16, const char* s, size_t n, mbstate_t* ps);
size_t c16rtomb(char* s, char16_t c16, mbstate_t* ps);
size_t mbrtoc32(char32_t* pc32, const char* s, size_t n, mbstate_t* ps);
size_t c32rtomb(char* s, char32_t c32, mbstate_t* ps);

}

1 The contents and meaning of the header <cuchar> are the same as the C standard library header <uchar.h>, except thatit declares the additional mbrtoc8 and c8rtomb functions and does not declare types char16_t nor char32_t.
See also: ISO C 7.28

§ 23.5.5 820

© ISO/IEC N4910

23.5.6 Multibyte / wide string and character conversion functions [c.mb.wcs]
1 [Note 1: The headers <cstdlib> (17.2.2), <cuchar> (23.5.5), and <cwchar> (23.5.4) declare the functions described in this subclause.—end note]

int mbsinit(const mbstate_t* ps);
int mblen(const char* s, size_t n);
size_t mbstowcs(wchar_t* pwcs, const char* s, size_t n);
size_t wcstombs(char* s, const wchar_t* pwcs, size_t n);

2 Effects: These functions have the semantics specified in the C standard library.
See also: ISO C 7.22.7.1, 7.22.8, 7.29.6.2.1
int mbtowc(wchar_t* pwc, const char* s, size_t n);
int wctomb(char* s, wchar_t wchar);

3 Effects: These functions have the semantics specified in the C standard library.
4 Remarks: Calls to these functions may introduce a data race (16.4.6.10) with other calls to the same function.
See also: ISO C 7.22.7
size_t mbrlen(const char* s, size_t n, mbstate_t* ps);
size_t mbrtowc(wchar_t* pwc, const char* s, size_t n, mbstate_t* ps);
size_t wcrtomb(char* s, wchar_t wc, mbstate_t* ps);
size_t mbsrtowcs(wchar_t* dst, const char** src, size_t len, mbstate_t* ps);
size_t wcsrtombs(char* dst, const wchar_t** src, size_t len, mbstate_t* ps);

5 Effects: These functions have the semantics specified in the C standard library.
6 Remarks: Calling these functions with an mbstate_t* argument that is a null pointer value may introduce a datarace (16.4.6.10) with other calls to the same function with an mbstate_t* argument that is a null pointer value.
See also: ISO C 7.29.6.3
size_t mbrtoc8(char8_t* pc8, const char* s, size_t n, mbstate_t* ps);

7 Effects: If s is a null pointer, equivalent to mbrtoc8(nullptr, "", 1, ps). Otherwise, the function inspectsat most n bytes beginning with the byte pointed to by s to determine the number of bytes needed to completethe next multibyte character (including any shift sequences). If the function determines that the next multibytecharacter is complete and valid, it determines the values of the corresponding UTF-8 code units and then, if
pc8 is not a null pointer, stores the value of the first (or only) such code unit in the object pointed to by pc8.Subsequent calls will store successive UTF-8 code units without consuming any additional input until all thecode units have been stored. If the corresponding Unicode character is u+0000 null, the resulting state described isthe initial conversion state.

8 Returns: The first of the following that applies (given the current conversion state):
—(8.1) 0, if the next n or fewer bytes complete the multibyte character that corresponds to the u+0000 null Unicodecharacter (which is the value stored).
—(8.2) between 1 and n (inclusive), if the next n or fewer bytes complete a valid multibyte character (whose first (oronly) code unit is stored); the value returned is the number of bytes that complete the multibyte character.
—(8.3) (size_t)(-3), if the next code unit resulting from a previous call has been stored (no bytes from the inputhave been consumed by this call).
—(8.4) (size_t)(-2), if the next n bytes contribute to an incomplete (but potentially valid) multibyte character,and all n bytes have been processed (no value is stored).
—(8.5) (size_t)(-1), if an encoding error occurs, in which case the next n or fewer bytes do not contribute toa complete and valid multibyte character (no value is stored); the value of the macro EILSEQ is stored in

errno, and the conversion state is unspecified.
size_t c8rtomb(char* s, char8_t c8, mbstate_t* ps);

9 Effects: If s is a null pointer, equivalent to c8rtomb(buf, u8’\0’, ps)where buf is an internal buffer. Otherwise,if c8 completes a sequence of valid UTF-8 code units, determines the number of bytes needed to represent themultibyte character (including any shift sequences), and stores the multibyte character representation in the arraywhose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If the multibyte character is a null

§ 23.5.6 821

© ISO/IEC N4910

character, a null byte is stored, preceded by any shift sequence needed to restore the initial shift state; the resultingstate described is the initial conversion state.
10 Returns: The number of bytes stored in the array object (including any shift sequences). If c8 does not contributeto a sequence of char8_t corresponding to a valid multibyte character, the value of the macro EILSEQ is stored in

errno, (size_t) (-1) is returned, and the conversion state is unspecified.
11 Remarks: Calls to c8rtomb with a null pointer argument for s may introduce a data race (16.4.6.10) with othercalls to c8rtomb with a null pointer argument for s.

§ 23.5.6 822

© ISO/IEC N4910

24 Containers library [containers]
24.1 General [containers.general]

1 This Clause describes components that C++ programs may use to organize collections of information.
2 The following subclauses describe container requirements, and components for sequence containers and associativecontainers, as summarized in Table 78.

Table 78: Containers library summary [tab:containers.summary]
Subclause Header

24.2 Requirements24.3 Sequence containers <array>, <deque>, <forward_list>, <list>, <vector>24.4 Associative containers <map>, <set>24.5 Unordered associative containers <unordered_map>, <unordered_set>24.6 Container adaptors <queue>, <stack>24.7 Views

24.2 Requirements [container.requirements]
24.2.1 Preamble [container.requirements.pre]

1 Containers are objects that store other objects. They control allocation and deallocation of these objects throughconstructors, destructors, insert and erase operations.
2 All of the complexity requirements in this Clause are stated solely in terms of the number of operations on the containedobjects.
[Example 1: The copy constructor of type vector<vector<int>> has linear complexity, even though the complexity of copying eachcontained vector<int> is itself linear. —end example]

3 Allocator-aware containers (24.2.2.5) other than basic_string construct elements using the function allocator_-
traits<allocator_type>::rebind_traits<U>::construct and destroy elements using the function allocator_-
traits<allocator_type>::rebind_traits<U>::destroy (20.2.8.3), where U is either allocator_type::value_typeor an internal type used by the container. These functions are called only for the container’s element type, not forinternal types used by the container.
[Note 1: This means, for example, that a node-based container would need to construct nodes containing aligned buffers and call
construct to place the element into the buffer. —end note]
24.2.2 General containers [container.gen.reqmts]
24.2.2.1 General [container.requirements.general]

1 In subclause 24.2.2,
—(1.1) X denotes a container class containing objects of type T,
—(1.2) a and b denote values of type X,
—(1.3) i and j denote values of type (possibly const) X::iterator,
—(1.4) u denotes an identifier,
—(1.5) r denotes a non-const value of type X, and
—(1.6) rv denotes a non-const rvalue of type X.

24.2.2.2 Containers [container.reqmts]
1 A type X meets the container requirements if the following types, statements, and expressions are well-formed and havethe specified semantics.

typename X::value_type

2 Result: T
§ 24.2.2.2 823

© ISO/IEC N4910

3 Preconditions: T is Cpp17Erasable from X (see 24.2.2.5, below).
typename X::reference

4 Result: T&
typename X::const_reference

5 Result: const T&

typename X::iterator

6 Result: A type that meets the forward iterator requirements (25.3.5.5) with value type T. The type X::iteratoris convertible to X::const_iterator.
typename X::const_iterator

7 Result: A type that meets the requirements of a constant iterator and those of a forward iterator with value type T.
typename X::difference_type

8 Result: A signed integer type, identical to the difference type of X::iterator and X::const_iterator.
typename X::size_type

9 Result: An unsigned integer type that can represent any non-negative value of X::difference_type.
X u;
X u = X();

10 Postconditions: u.empty()
11 Complexity: Constant.

X u(a);
X u = a;

12 Preconditions: T is Cpp17CopyInsertable into X (see below).
13 Postconditions: u == a
14 Complexity: Linear.

X u(rv);
X u = rv;

15 Postconditions: u is equal to the value that rv had before this construction.
16 Complexity: Linear for array and constant for all other standard containers.

a = rv

17 Result: X&.
18 Effects: All existing elements of a are either move assigned to or destroyed.
19 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before thisassignment.
20 Complexity: Linear.

a.~X()
21 Result: void
22 Effects: Destroys every element of a; any memory obtained is deallocated.
23 Complexity: Linear.

a.begin()

24 Result: iterator; const_iterator for constant a.
25 Returns: An iterator referring to the first element in the container.
26 Complexity: Constant.

§ 24.2.2.2 824

© ISO/IEC N4910

a.end()

27 Result: iterator; const_iterator for constant a.
28 Returns: An iterator which is the past-the-end value for the container.
29 Complexity: Constant.

a.cbegin()

30 Result: const_iterator.
31 Returns: const_cast<X const&>(a).begin()
32 Complexity: Constant.

a.cend()

33 Result: const_iterator.
34 Returns: const_cast<X const&>(a).end()
35 Complexity: Constant.

i <=> j

36 Result: strong_ordering.
37 Constraints: X::iterator meets the random access iterator requirements.
38 Complexity: Constant.

a == b

39 Preconditions: T meets the Cpp17EqualityComparable requirements.
40 Result: Convertible to bool.
41 Returns: equal(a.begin(), a.end(), b.begin(), b.end())

[Note 1: The algorithm equal is defined in 27.6.11. —end note]
42 Complexity: Constant if a.size() != b.size(), linear otherwise.
43 Remarks: == is an equivalence relation.

a != b

44 Effects: Equivalent to !(a == b).
a.swap(b)

45 Result: void
46 Effects: Exchanges the contents of a and b.
47 Complexity: Linear for array and constant for all other standard containers.

swap(a, b)

48 Effects: Equivalent to a.swap(b).
r = a

49 Result: X&.
50 Postconditions: r == a.
51 Complexity: Linear.

a.size()

52 Result: size_type.
53 Returns: distance(a.begin(), a.end()), i.e. the number of elements in the container.
54 Complexity: Constant.
55 Remarks: The number of elements is defined by the rules of constructors, inserts, and erases.

§ 24.2.2.2 825

© ISO/IEC N4910

a.max_size()

56 Result: size_type.
57 Returns: distance(begin(), end()) for the largest possible container.
58 Complexity: Constant.

a.empty()

59 Result: Convertible to bool.
60 Returns: a.begin() == a.end()
61 Complexity: Constant.
62 Remarks: If the container is empty, then a.empty() is true.
63 In the expressions

i == j
i != j
i < j
i <= j
i >= j
i > j
i <=> j
i - j

where i and j denote objects of a container’s iterator type, either or both may be replaced by an object of thecontainer’s const_iterator type referring to the same element with no change in semantics.
64 Unless otherwise specified, all containers defined in this Clause obtain memory using an allocator (see 16.4.4.6).

[Note 2: In particular, containers and iterators do not store references to allocated elements other than through the allocator’s pointertype, i.e., as objects of type P or pointer_traits<P>::template rebind<unspecified>, where P is allocator_traits<allocator_-
type>::pointer. —end note]
Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_type>::select_-
on_container_copy_construction on the allocator belonging to the container being copied. Move constructors obtainan allocator by move construction from the allocator belonging to the container being moved. Such move construc-tion of the allocator shall not exit via an exception. All other constructors for these container types take a const
allocator_type& argument.
[Note 3: If an invocation of a constructor uses the default value of an optional allocator argument, then the allocator type mustsupport value-initialization. —end note]
A copy of this allocator is used for any memory allocation and element construction performed, by these constructors andby all member functions, during the lifetime of each container object or until the allocator is replaced. The allocator maybe replaced only via assignment or swap(). Allocator replacement is performed by copy assignment, move assignment,or swapping of the allocator only if
—(64.1) allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
—(64.2) allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or
—(64.3) allocator_traits<allocator_type>::propagate_on_container_swap::value

is true within the implementation of the corresponding container operation. In all container types defined in this Clause,the member get_allocator() returns a copy of the allocator used to construct the container or, if that allocator hasbeen replaced, a copy of the most recent replacement.
65 The expression a.swap(b), for containers a and b of a standard container type other than array, shall exchange thevalues of a and b without invoking any move, copy, or swap operations on the individual container elements. Lvaluesof any Compare, Pred, or Hash types belonging to a and b shall be swappable and shall be exchanged by calling swapas described in 16.4.4.3. If allocator_traits<allocator_type>::propagate_on_container_swap::value is true,then lvalues of type allocator_type shall be swappable and the allocators of a and b shall also be exchanged by calling

swap as described in 16.4.4.3. Otherwise, the allocators shall not be swapped, and the behavior is undefined unless
a.get_allocator() == b.get_allocator(). Every iterator referring to an element in one container before the swapshall refer to the same element in the other container after the swap. It is unspecified whether an iterator with value
a.end() before the swap will have value b.end() after the swap.

§ 24.2.2.2 826

© ISO/IEC N4910

24.2.2.3 Reversible container requirements [container.rev.reqmts]
1 A type Xmeets the reversible container requirements if Xmeets the container requirements, the iterator type of X belongsto the bidirectional or random access iterator categories (25.3), and the following types and expressions are well-formedand have the specified semantics.

typename X::reverse_iterator

2 Result: The type reverse_iterator<X::iterator>, an iterator type whose value type is T.
typename X::const_reverse_iterator

3 Result: The type reverse_iterator<X::const_iterator>, a constant iterator type whose value type is T.
a.rbegin()

4 Result: reverse_iterator; const_reverse_iterator for constant a.
5 Returns: reverse_iterator(end())
6 Complexity: Constant.

a.rend()

7 Result: reverse_iterator; const_reverse_iterator for constant a.
8 Returns: reverse_iterator(begin())
9 Complexity: Constant.

a.crbegin()

10 Result: const_reverse_iterator.
11 Returns: const_cast<X const&>(a).rbegin()
12 Complexity: Constant.

a.crend()

13 Result: const_reverse_iterator.
14 Returns: const_cast<X const&>(a).rend()
15 Complexity: Constant.
16 Unless otherwise specified (see 24.2.7.2, 24.2.8.2, 24.3.8.4, and 24.3.11.5) all container types defined in this Clausemeet the following additional requirements:

—(16.1) if an exception is thrown by an insert() or emplace() function while inserting a single element, that functionhas no effects.
—(16.2) if an exception is thrown by a push_back(), push_front(), emplace_back(), or emplace_front() function,that function has no effects.
—(16.3) no erase(), clear(), pop_back() or pop_front() function throws an exception.
—(16.4) no copy constructor or assignment operator of a returned iterator throws an exception.
—(16.5) no swap() function throws an exception.
—(16.6) no swap() function invalidates any references, pointers, or iterators referring to the elements of the containersbeing swapped.

[Note 1: The end() iterator does not refer to any element, so it can be invalidated. —end note]
17 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a containermember function or passing a container as an argument to a library function shall not invalidate iterators to, or changethe values of, objects within that container.
18 A contiguous container is a container whosemember types iterator and const_iteratormeet theCpp17RandomAccessIteratorrequirements (25.3.5.7) and model contiguous_iterator (25.3.4.14).
24.2.2.4 Optional container requirements [container.opt.reqmts]

1 The following operations are provided for some types of containers but not others. Those containers for which the listedoperations are provided shall implement the semantics as described unless otherwise stated. If the iterators passed to
§ 24.2.2.4 827

© ISO/IEC N4910

lexicographical_compare_three_way meet the constexpr iterator requirements (25.3.1) then the operations describedbelow are implemented by constexpr functions.
a <=> b

2 Result: synth-three-way-result<X::value_type>.
3 Preconditions: Either <=> is defined for values of type (possibly const) T, or < is defined for values of type(possibly const) T and < is a total ordering relationship.
4 Returns: lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end(),

synth-three-way)

[Note 1: The algorithm lexicographical_compare_three_way is defined in Clause 27. —end note]
5 Complexity: Linear.
24.2.2.5 Allocator-aware containers [container.alloc.reqmts]

1 All of the containers defined in Clause 24 and in 23.4.3 except array meet the additional requirements of an allocator-aware container, as described below.
2 Given an allocator type A and given a container type X having a value_type identical to T and an allocator_typeidentical to allocator_traits<A>::rebind_alloc<T> and given an lvalue m of type A, a pointer p of type T*, anexpression v of type (possibly const) T, and an rvalue rv of type T, the following terms are defined. If X is not allocator-aware or is a specialization of basic_string, the terms below are defined as if A were allocator<T>— no allocatorobject needs to be created and user specializations of allocator<T> are not instantiated:

—(2.1) T is Cpp17DefaultInsertable into X means that the following expression is well-formed:
allocator_traits<A>::construct(m, p)

—(2.2) An element of X is default-inserted if it is initialized by evaluation of the expression
allocator_traits<A>::construct(m, p)

where p is the address of the uninitialized storage for the element allocated within X.
—(2.3) T is Cpp17MoveInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p, rv)

and its evaluation causes the following postcondition to hold: The value of *p is equivalent to the value of rvbefore the evaluation.
[Note 1: rv remains a valid object. Its state is unspecified —end note]

—(2.4) T is Cpp17CopyInsertable into X means that, in addition to T being Cpp17MoveInsertable into X, the followingexpression is well-formed:
allocator_traits<A>::construct(m, p, v)

and its evaluation causes the following postcondition to hold: The value of v is unchanged and is equivalent to *p.
—(2.5) T is Cpp17EmplaceConstructible into X from args, for zero or more arguments args, means that the followingexpression is well-formed:

allocator_traits<A>::construct(m, p, args)

—(2.6) T is Cpp17Erasable from X means that the following expression is well-formed:
allocator_traits<A>::destroy(m, p)

[Note 2: A container calls allocator_traits<A>::construct(m, p, args) to construct an element at p using args, with m ==
get_allocator(). The default construct in allocator will call ::new((void*)p) T(args), but specialized allocators can choosea different definition. —end note]

3 The following exposition-only concept is used in the definition of containers:
template<class R, class T>
concept container-compatible-range = // exposition only

ranges::input_range<R> && convertible_to<ranges::range_reference_t<R>, T>;

4 In this subclause,
—(4.1) X denotes an allocator-aware container class with a value_type of T using an allocator of type A,
—(4.2) u denotes a variable,

§ 24.2.2.5 828

© ISO/IEC N4910

—(4.3) a and b denote non-const lvalues of type X,
—(4.4) c denotes an lvalue of type const X,
—(4.5) t denotes an lvalue or a const rvalue of type X,
—(4.6) rv denotes a non-const rvalue of type X, and
—(4.7) m is a value of type A.

A type X meets the allocator-aware container requirements if X meets the container requirements and the followingtypes, statements, and expressions are well-formed and have the specified semantics.
typename X::allocator_type

5 Result: A
6 Preconditions: allocator_type::value_type is the same as X::value_type.

c.get_allocator()

7 Result: A
8 Complexity: Constant.

X u;
X u = X();

9 Preconditions: A meets the Cpp17DefaultConstructible requirements.
10 Postconditions: u.empty() returns true, u.get_allocator() == A().
11 Complexity: Constant.

X u(m);

12 Postconditions: u.empty() returns true, u.get_allocator() == m.
13 Complexity: Constant.

X u(t, m);

14 Preconditions: T is Cpp17CopyInsertable into X.
15 Postconditions: u == t, u.get_allocator() == m
16 Complexity: Linear.

X u(rv);

17 Postconditions: u has the same elements as rv had before this construction; the value of u.get_allocator() isthe same as the value of rv.get_allocator() before this construction.
18 Complexity: Constant.

X u(rv, m);

19 Preconditions: T is Cpp17MoveInsertable into X.
20 Postconditions: u has the same elements, or copies of the elements, that rv had before this construction, u.get_-

allocator() == m.
21 Complexity: Constant if m == rv.get_allocator(), otherwise linear.

a = t

22 Result: X&.
23 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
24 Postconditions: a == t is true.
25 Complexity: Linear.

a = rv

26 Result: X&.

§ 24.2.2.5 829

© ISO/IEC N4910

27 Preconditions: If allocator_traits<allocator_type>::propagate_on_container_move_assignment::valueis false, T is Cpp17MoveInsertable into X and Cpp17MoveAssignable.
28 Effects: All existing elements of a are either move assigned to or destroyed.
29 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before thisassignment.
30 Complexity: Linear.

a.swap(b)

31 Result: void
32 Effects: Exchanges the contents of a and b.
33 Complexity: Constant.
34 The behavior of certain container member functions and deduction guides depends on whether types qualify as inputiterators or allocators. The extent to which an implementation determines that a type cannot be an input iterator isunspecified, except that as a minimum integral types shall not qualify as input iterators. Likewise, the extent to whichan implementation determines that a type cannot be an allocator is unspecified, except that as a minimum a type A shallnot qualify as an allocator unless it meets both of the following conditions:

—(34.1) The qualified-id A::value_type is valid and denotes a type (13.10.3).
—(34.2) The expression declval<A&>().allocate(size_t{}) is well-formed when treated as an unevaluated operand.

24.2.3 Container data races [container.requirements.dataraces]
1 For purposes of avoiding data races (16.4.6.10), implementations shall consider the following functions to be const:

begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at and, except inassociative or unordered associative containers, operator[].
2 Notwithstanding 16.4.6.10, implementations are required to avoid data races when the contents of the contained objectin different elements in the same container, excepting vector<bool>, are modified concurrently.
3 [Note 1: For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed concurrently without adata race, but x[0] = 5 and *x.begin() = 10 executed concurrently can result in a data race. As an exception to the general rule,for a vector<bool> y, y[0] = true can race with y[1] = true. —end note]
24.2.4 Sequence containers [sequence.reqmts]

1 A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement. Thelibrary provides four basic kinds of sequence containers: vector, forward_list, list, and deque. In addition, array isprovided as a sequence container which provides limited sequence operations because it has a fixed number of elements.The library also provides container adaptors that make it easy to construct abstract data types, such as stacks or queues,out of the basic sequence container kinds (or out of other kinds of sequence containers that the user defines).
2 [Note 1: The sequence containers offer the programmer different complexity trade-offs. vector is appropriate in most circumstances.

array has a fixed size known during translation. list or forward_list support frequent insertions and deletions from the middle ofthe sequence. deque supports efficient insertions and deletions taking place at the beginning or at the end of the sequence. Whenchoosing a container, remember vector is best; leave a comment to explain if you choose from the rest! —end note]
3 In this subclause,

—(3.1) X denotes a sequence container class,
—(3.2) a denotes a value of type X containing elements of type T,
—(3.3) u denotes the name of a variable being declared,
—(3.4) A denotes X::allocator_type if the qualified-id X::allocator_type is valid and denotes a type (13.10.3) and

allocator<T> if it doesn’t,
—(3.5) i and j denote iterators that meet the Cpp17InputIterator requirements and refer to elements implicitly convertibleto value_type,
—(3.6) [i, j) denotes a valid range,
—(3.7) rg denotes a value of a type R that models container-compatible-range<T>,
—(3.8) il designates an object of type initializer_list<value_type>,
—(3.9) n denotes a value of type X::size_type,

§ 24.2.4 830

© ISO/IEC N4910

—(3.10) p denotes a valid constant iterator to a,
—(3.11) q denotes a valid dereferenceable constant iterator to a,
—(3.12) [q1, q2) denotes a valid range of constant iterators in a,
—(3.13) t denotes an lvalue or a const rvalue of X::value_type, and
—(3.14) rv denotes a non-const rvalue of X::value_type.
—(3.15) Args denotes a template parameter pack;
—(3.16) args denotes a function parameter pack with the pattern Args&&.

4 The complexities of the expressions are sequence dependent.
5 A type X meets the sequence container requirements if X meets the container requirements and the following statementsand expressions are well-formed and have the specified semantics.

X u(n, t);

6 Preconditions: T is Cpp17CopyInsertable into X.
7 Effects: Constructs a sequence container with n copies of t.
8 Postconditions: distance(u.begin(), u.end()) == n is true.

X u(i, j);

9 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector, if the iterator does not meet theCpp17ForwardIterator requirements (25.3.5.5), T is also Cpp17MoveInsertable into X.
10 Effects: Constructs a sequence container equal to the range [i, j). Each iterator in the range [i, j) is dereferencedexactly once.
11 Postconditions: distance(u.begin(), u.end()) == distance(i, j) is true.

X(from_range, rg)

12 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector, if R modelsneither sized_range nor forward_range, T is also Cpp17MoveInsertable into X.
13 Effects: Constructs a sequence container equal to the range rg. Each iterator in the range rg is dereferencedexactly once.
14 Postconditions: distance(begin(), end()) == ranges::distance(rg) is true.

X(il)

15 Effects: Equivalent to X(il.begin(), il.end()).
a = il

16 Result: X&.
17 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
18 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned to ordestroyed.
19 Returns: *this.

a.emplace(p, args)

20 Result: iterator.
21 Preconditions: T isCpp17EmplaceConstructible into X from args. For vector and deque, T is alsoCpp17MoveInsertableinto X and Cpp17MoveAssignable.
22 Effects: Inserts an object of type T constructed with std::forward<Args>(args)... before p.

[Note 2: args can directly or indirectly refer to a value in a. —end note]
23 Returns: An iterator that points to the new element constructed from args into a.

a.insert(p, t)

24 Result: iterator.
§ 24.2.4 831

© ISO/IEC N4910

25 Preconditions: T is Cpp17CopyInsertable into X. For vector and deque, T is also Cpp17CopyAssignable.
26 Effects: Inserts a copy of t before p.
27 Returns: An iterator that points to the copy of t inserted into a.

a.insert(p, rv)

28 Result: iterator.
29 Preconditions: T is Cpp17MoveInsertable into X. For vector and deque, T is also Cpp17MoveAssignable.
30 Effects: Inserts a copy of rv before p.
31 Returns: An iterator that points to the copy of rv inserted into a.

a.insert(p, n, t)

32 Result: iterator.
33 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
34 Effects: Inserts n copies of t before p.
35 Returns: An iterator that points to the copy of the first element inserted into a, or p if n == 0.

a.insert(p, i, j)

36 Result: iterator.
37 Preconditions: T isCpp17EmplaceConstructible into X from *i. For vector and deque, T is alsoCpp17MoveInsertableinto X, Cpp17MoveConstructible, Cpp17MoveAssignable, and swappable (16.4.4.3). Neither i nor j are iteratorsinto a.
38 Effects: Inserts copies of elements in [i, j) before p. Each iterator in the range [i, j) shall be dereferencedexactly once.
39 Returns: An iterator that points to the copy of the first element inserted into a, or p if i == j.

a.insert_range(p, rg)

40 Result: iterator.
41 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector and deque, T isalso Cpp17MoveInsertable into X, Cpp17MoveConstructible, Cpp17MoveAssignable, and swappable (16.4.4.3).

rg and a do not overlap.
42 Effects: Inserts copies of elements in rg before p. Each iterator in the range rg is dereferenced exactly once.
43 Returns: An iterator that points to the copy of the first element inserted into a, or p if rg is empty.

a.insert(p, il)

44 Effects: Equivalent to a.insert(p, il.begin(), il.end()).
a.erase(q)

45 Result: iterator.
46 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
47 Effects: Erases the element pointed to by q.
48 Returns: An iterator that points to the element immediately following q prior to the element being erased. If nosuch element exists, a.end() is returned.

a.erase(q1, q2)

49 Result: iterator.
50 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
51 Effects: Erases the elements in the range [q1, q2).
52 Returns: An iterator that points to the element pointed to by q2 prior to any elements being erased. If no suchelement exists, a.end() is returned.

§ 24.2.4 832

© ISO/IEC N4910

a.clear()

53 Result: void
54 Effects: Destroys all elements in a. Invalidates all references, pointers, and iterators referring to the elements of aand may invalidate the past-the-end iterator.
55 Postconditions: a.empty() is true.
56 Complexity: Linear.

a.assign(i, j)

57 Result: void
58 Preconditions: T is Cpp17EmplaceConstructible into X from *i and assignable from *i. For vector, if the iteratordoes not meet the forward iterator requirements (25.3.5.5), T is also Cpp17MoveInsertable into X. Neither i nor jare iterators into a.
59 Effects: Replaces elements in a with a copy of [i, j). Invalidates all references, pointers and iterators referringto the elements of a. For vector and deque, also invalidates the past-the-end iterator. Each iterator in the range

[i, j) is dereferenced exactly once.
a.assign_range(rg)

60 Result: void
61 Mandates: assignable_from<T&, ranges::range_reference_t<R>> is modeled.
62 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector, if R modelsneither sized_range nor forward_range, T is also Cpp17MoveInsertable into X. rg and a do not overlap.
63 Effects: Replaces elements in a with a copy of each element in rg. Invalidates all references, pointers, anditerators referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator. Eachiterator in the range rg is dereferenced exactly once.

a.assign(il)

64 Effects: Equivalent to a.assign(il.begin(), il.end()).
a.assign(n, t)

65 Result: void
66 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable. t is not a reference into a.
67 Effects: Replaces elements in a with n copies of t. Invalidates all references, pointers and iterators referring tothe elements of a. For vector and deque, also invalidates the past-the-end iterator.
68 For every sequence container defined in this Clause and in Clause 23:

—(68.1) If the constructor
template<class InputIterator>
X(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

is called with a type InputIterator that does not qualify as an input iterator, then the constructor shall notparticipate in overload resolution.
—(68.2) If the member functions of the forms:

template<class InputIterator>
return-type F(const_iterator p,

InputIterator first, InputIterator last); // such as insert
template<class InputIterator>
return-type F(InputIterator first, InputIterator last); // such as append, assign

template<class InputIterator>
return-type F(const_iterator i1, const_iterator i2,

InputIterator first, InputIterator last); // such as replace

§ 24.2.4 833

© ISO/IEC N4910

are called with a type InputIterator that does not qualify as an input iterator, then these functions shall notparticipate in overload resolution.
—(68.3) A deduction guide for a sequence container shall not participate in overload resolution if it has an InputIteratortemplate parameter and a type that does not qualify as an input iterator is deduced for that parameter, or if it hasan Allocator template parameter and a type that does not qualify as an allocator is deduced for that parameter.

69 The following operations are provided for some types of sequence containers but not others. An implementation shallimplement them so as to take amortized constant time.
a.front()

70 Result: reference; const_reference for constant a.
71 Returns: *a.begin()
72 Remarks: Required for basic_string, array, deque, forward_list, list, and vector.

a.back()

73 Result: reference; const_reference for constant a.
74 Effects: Equivalent to:

auto tmp = a.end();
--tmp;
return *tmp;

75 Remarks: Required for basic_string, array, deque, list, and vector.
a.emplace_front(args)

76 Result: reference
77 Preconditions: T is Cpp17EmplaceConstructible into X from args.
78 Effects: Prepends an object of type T constructed with std::forward<Args>(args)....
79 Returns: a.front().
80 Remarks: Required for deque, forward_list, and list.

a.emplace_back(args)

81 Result: reference
82 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector, T is also Cpp17MoveInsertableinto X.
83 Effects: Appends an object of type T constructed with std::forward<Args>(args)....
84 Returns: a.back().
85 Remarks: Required for deque, list, and vector.

a.push_front(t)

86 Result: void
87 Preconditions: T is Cpp17CopyInsertable into X.
88 Effects: Prepends a copy of t.
89 Remarks: Required for deque, forward_list, and list.

a.push_front(rv)

90 Result: void
91 Preconditions: T is Cpp17MoveInsertable into X.
92 Effects: Prepends a copy of rv.
93 Remarks: Required for deque, forward_list, and list.

a.prepend_range(rg)

94 Result: void

§ 24.2.4 834

© ISO/IEC N4910

95 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg).
96 Effects: Inserts copies of elements in rg before begin(). Each iterator in the range rg is dereferenced exactlyonce.

[Note 3: The order of elements in rg is not reversed. —end note]
97 Remarks: Required for deque, forward_list, and list.

a.push_back(t)

98 Result: void
99 Preconditions: T is Cpp17CopyInsertable into X.
100 Effects: Appends a copy of t.
101 Remarks: Required for basic_string, deque, list, and vector.

a.push_back(rv)

102 Result: void
103 Preconditions: T is Cpp17MoveInsertable into X.
104 Effects: Appends a copy of rv.
105 Remarks: Required for basic_string, deque, list, and vector.

a.append_range(rg)

106 Result: void
107 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector, T is alsoCpp17MoveInsertable into X.
108 Effects: Inserts copies of elements in rg before end(). Each iterator in the range rg is dereferenced exactly once.
109 Remarks: Required for deque, list, and vector.

a.pop_front()

110 Result: void
111 Preconditions: a.empty() is false.
112 Effects: Destroys the first element.
113 Remarks: Required for deque, forward_list, and list.

a.pop_back()

114 Result: void
115 Preconditions: a.empty() is false.
116 Effects: Destroys the last element.
117 Remarks: Required for basic_string, deque, list, and vector.

a[n]

118 Result: reference; const_reference for constant a
119 Returns: *(a.begin() + n)
120 Remarks: Required for basic_string, array, deque, and vector.

a.at(n)

121 Result: reference; const_reference for constant a
122 Returns: *(a.begin() + n)
123 Throws: out_of_range if n >= a.size().
124 Remarks: Required for basic_string, array, deque, and vector.

§ 24.2.4 835

© ISO/IEC N4910

24.2.5 Node handles [container.node]
24.2.5.1 Overview [container.node.overview]

1 A node handle is an object that accepts ownership of a single element from an associative container (24.2.7) or anunordered associative container (24.2.8). It may be used to transfer that ownership to another container with compatiblenodes. Containers with compatible nodes have the same node handle type. Elements may be transferred in eitherdirection between container types in the same row of Table 79.
Table 79: Container types with compatible nodes [tab:container.node.compat]
map<K, T, C1, A> map<K, T, C2, A>
map<K, T, C1, A> multimap<K, T, C2, A>
set<K, C1, A> set<K, C2, A>
set<K, C1, A> multiset<K, C2, A>
unordered_map<K, T, H1, E1, A> unordered_map<K, T, H2, E2, A>
unordered_map<K, T, H1, E1, A> unordered_multimap<K, T, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_set<K, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_multiset<K, H2, E2, A>

2 If a node handle is not empty, then it contains an allocator that is equal to the allocator of the container when the elementwas extracted. If a node handle is empty, it contains no allocator.
3 Class node-handle is for exposition only.
4 If a user-defined specialization of pair exists for pair<const Key, T> or pair<Key, T>, where Key is the container’s

key_type and T is the container’s mapped_type, the behavior of operations involving node handles is undefined.
template<unspecified>
class node-handle {
public:// These type declarations are described in 24.2.7 and 24.2.8.

using value_type = see below; // not present for map containers
using key_type = see below; // not present for set containers
using mapped_type = see below; // not present for set containers
using allocator_type = see below;

private:
using container_node_type = unspecified; // exposition only
using ator_traits = allocator_traits<allocator_type>; // exposition only
typename ator_traits::template

rebind_traits<container_node_type>::pointer ptr_; // exposition only
optional<allocator_type> alloc_; // exposition only

public:// 24.2.5.2, constructors, copy, and assignment
constexpr node-handle() noexcept : ptr_(), alloc_() {}
node-handle(node-handle&&) noexcept;
node-handle& operator=(node-handle&&);

// 24.2.5.3, destructor
~node-handle();

// 24.2.5.4, observers
value_type& value() const; // not present for map containers
key_type& key() const; // not present for set containers
mapped_type& mapped() const; // not present for set containers
allocator_type get_allocator() const;
explicit operator bool() const noexcept;
[[nodiscard]] bool empty() const noexcept;

§ 24.2.5.1 836

© ISO/IEC N4910

// 24.2.5.5, modifiers
void swap(node-handle&)
noexcept(ator_traits::propagate_on_container_swap::value ||

ator_traits::is_always_equal::value);

friend void swap(node-handle& x, node-handle& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);

}
};

24.2.5.2 Constructors, copy, and assignment [container.node.cons]

node-handle(node-handle&& nh) noexcept;

1 Effects: Constructs a node-handle object initializing ptr_with nh.ptr_. Move constructs alloc_with nh.alloc_-. Assigns nullptr to nh.ptr_ and assigns nullopt to nh.alloc_.
node-handle& operator=(node-handle&& nh);

2 Preconditions: Either !alloc_, or ator_traits::propagate_on_container_move_assignment::value is true,or alloc_ == nh.alloc_.
3 Effects:

—(3.1) If ptr_ != nullptr, destroys the value_type subobject in the container_node_type object pointed toby ptr_ by calling ator_traits::destroy, then deallocates ptr_ by calling ator_traits::template
rebind_traits<container_node_type>::deallocate.

—(3.2) Assigns nh.ptr_ to ptr_.
—(3.3) If !alloc_ or ator_traits::propagate_on_container_move_assignment::value is true,move assigns nh.alloc_ to alloc_.
—(3.4) Assigns nullptr to nh.ptr_ and assigns nullopt to nh.alloc_.

4 Returns: *this.
5 Throws: Nothing.
24.2.5.3 Destructor [container.node.dtor]

~node-handle();
1 Effects: If ptr_ != nullptr, destroys the value_type subobject in the container_node_type object pointed toby ptr_ by calling ator_traits::destroy, then deallocates ptr_ by calling ator_traits::template rebind_-

traits<container_node_type>::deallocate.
24.2.5.4 Observers [container.node.observers]

value_type& value() const;

1 Preconditions: empty() == false.
2 Returns: A reference to the value_type subobject in the container_node_type object pointed to by ptr_.
3 Throws: Nothing.

key_type& key() const;

4 Preconditions: empty() == false.
5 Returns: A non-const reference to the key_type member of the value_type subobject in the container_node_-

type object pointed to by ptr_.
6 Throws: Nothing.
7 Remarks: Modifying the key through the returned reference is permitted.

mapped_type& mapped() const;

8 Preconditions: empty() == false.
9 Returns: A reference to the mapped_type member of the value_type subobject in the container_node_typeobject pointed to by ptr_.
§ 24.2.5.4 837

© ISO/IEC N4910

10 Throws: Nothing.
allocator_type get_allocator() const;

11 Preconditions: empty() == false.
12 Returns: *alloc_.
13 Throws: Nothing.

explicit operator bool() const noexcept;

14 Returns: ptr_ != nullptr.
[[nodiscard]] bool empty() const noexcept;

15 Returns: ptr_ == nullptr.
24.2.5.5 Modifiers [container.node.modifiers]

void swap(node-handle& nh)
noexcept(ator_traits::propagate_on_container_swap::value ||

ator_traits::is_always_equal::value);

1 Preconditions: !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_swap::value is true, or
alloc_ == nh.alloc_.

2 Effects: Calls swap(ptr_, nh.ptr_). If !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_-
swap::value is true calls swap(alloc_, nh.alloc_).

24.2.6 Insert return type [container.insert.return]
1 The associative containers with unique keys and the unordered containers with unique keys have a member function

insert that returns a nested type insert_return_type. That return type is a specialization of the template specified inthis subclause.
template<class Iterator, class NodeType>
struct insert-return-type
{

Iterator position;
bool inserted;
NodeType node;

};

2 The name insert-return-type is exposition only. insert-return-type has the template parameters, data members,and special members specified above. It has no base classes or members other than those specified.
24.2.7 Associative containers [associative.reqmts]
24.2.7.1 General [associative.reqmts.general]

1 Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds of associativecontainers: set, multiset, map and multimap.
2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict weak ordering(27.8) on elements of Key. In addition, map and multimap associate an arbitrary mapped type T with the Key. The objectof type Compare is called the comparison object of a container.
3 The phrase “equivalence of keys” means the equivalence relation imposed by the comparison object. That is, two keys

k1 and k2 are considered to be equivalent if for the comparison object comp, comp(k1, k2) == false && comp(k2,
k1) == false.
[Note 1: This is not necessarily the same as the result of k1 == k2. —end note]
For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall always return the same value.

4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supportsequivalent keys. The set and map classes support unique keys; the multiset and multimap classes support equivalentkeys. For multiset and multimap, insert, emplace, and erase preserve the relative ordering of equivalent elements.
5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key,

T>.

§ 24.2.7.1 838

© ISO/IEC N4910

6 iterator of an associative container is of the bidirectional iterator category. For associative containers where the valuetype is the same as the key type, both iterator and const_iterator are constant iterators. It is unspecified whether ornot iterator and const_iterator are the same type.
[Note 2: iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_iterator. Userscan avoid violating the one-definition rule by always using const_iterator in their function parameter lists. —end note]

7 In this subclause,
—(7.1) X denotes an associative container class,
—(7.2) a denotes a value of type X,
—(7.3) a2 denotes a value of a type with nodes compatible with type X (Table 79),
—(7.4) b denotes a possibly const value of type X,
—(7.5) u denotes the name of a variable being declared,
—(7.6) a_uniq denotes a value of type X when X supports unique keys,
—(7.7) a_eq denotes a value of type X when X supports multiple keys,
—(7.8) a_tran denotes a possibly const value of type X when the qualified-id X::key_compare::is_transparent isvalid and denotes a type (13.10.3),
—(7.9) i and j meet the Cpp17InputIterator requirements and refer to elements implicitly convertible to value_type,
—(7.10) [i, j) denotes a valid range,
—(7.11) rg denotes a value of a type R that models container-compatible-range<value_type>,
—(7.12) p denotes a valid constant iterator to a,
—(7.13) q denotes a valid dereferenceable constant iterator to a,
—(7.14) r denotes a valid dereferenceable iterator to a,
—(7.15) [q1, q2) denotes a valid range of constant iterators in a,
—(7.16) il designates an object of type initializer_list<value_type>,
—(7.17) t denotes a value of type X::value_type,
—(7.18) k denotes a value of type X::key_type, and
—(7.19) c denotes a possibly const value of type X::key_compare;
—(7.20) kl is a value such that a is partitioned (27.8) with respect to c(x, kl), with x the key value of e and e in a;
—(7.21) ku is a value such that a is partitioned with respect to !c(ku, x), with x the key value of e and e in a;
—(7.22) ke is a value such that a is partitioned with respect to c(x, ke) and !c(ke, x), with c(x, ke) implying !c(ke,

x) and with x the key value of e and e in a;
—(7.23) kx is a value such that

—(7.23.1) a is partitioned with respect to c(x, kx) and !c(kx, x), with c(x, kx) implying !c(kx, x) and with xthe key value of e and e in a, and
—(7.23.2) kx is not convertible to either iterator or const_iterator; and

—(7.24) A denotes the storage allocator used by X, if any, or allocator<X::value_type> otherwise,
—(7.25) m denotes an allocator of a type convertible to A, and nh denotes a non-const rvalue of type X::node_type.

8 A type X meets the associative container requirements if X meets all the requirements of an allocator-aware container(24.2.2.1) and the following types, statements, and expressions are well-formed and have the specified semantics,except that for map and multimap, the requirements placed on value_type in 24.2.2.5 apply instead to key_type and
mapped_type.
[Note 3: For example, in some cases key_type and mapped_type are required to be Cpp17CopyAssignable even though the associated
value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. —end note]
typename X::key_type

9 Result: Key.

§ 24.2.7.1 839

© ISO/IEC N4910

typename X::mapped_type

10 Result: T.
11 Remarks: For map and multimap only.

typename X::value_type

12 Result: Key for set and multiset only; pair<const Key, T> for map and multimap only.
13 Preconditions: X::value_type is Cpp17Erasable from X.

typename X::key_compare

14 Result: Compare.
15 Preconditions: key_compare is Cpp17CopyConstructible.

typename X::value_compare

16 Result: A binary predicate type. It is the same as key_compare for set and multiset; is an ordering relation onpairs induced by the first component (i.e., Key) for map and multimap.
typename X::node_type

17 Result: A specialization of the node-handle class template (24.2.5), such that the public nested types are thesame types as the corresponding types in X.
X(c)

18 Effects: Constructs an empty container. Uses a copy of c as a comparison object.
19 Complexity: Constant.

X u = X();
X u;

20 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements.
21 Effects: Constructs an empty container. Uses Compare() as a comparison object.
22 Complexity: Constant.

X(i, j, c)

23 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
24 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses c as a comparisonobject.
25 Complexity: N logN in general, where N has the value distance(i, j); linear if [i, j) is sorted with value_-

comp().
X(i, j)

26 Preconditions: key_comparemeets theCpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructibleinto X from *i.
27 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses Compare() as acomparison object.
28 Complexity: N logN in general, where N has the value distance(i, j); linear if [i, j) is sorted with value_-

comp().
X(from_range, rg, c)

29 Preconditions: value_type is Cpp17EmplaceConstructible into X from *range::begin(rg).
30 Effects: Constructs an empty container and inserts each element from rg into it. Uses c as the comparison object.
31 Complexity: N logN in general, where N has the value ranges::distance(rg); linear if rg is sorted with

value_comp().

§ 24.2.7.1 840

© ISO/IEC N4910

X(from_range, rg)

32 Preconditions: key_comparemeets theCpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructibleinto X from *ranges::begin(rg).
33 Effects: Constructs an empty container and inserts each element from rg into it. Uses Compare() as the comparisonobject.
34 Complexity: Same as X(from_range, rg, c).

X(il, c)

35 Effects: Equivalent to X(il.begin(), il.end(), c).
X(il)

36 Effects: Equivalent to X(il.begin(), il.end()).
a = il

37 Result: X&
38 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
39 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned to ordestroyed.
40 Complexity: N logN in general, whereN has the value il.size() + a.size(); linear if [il.begin(), il.end())is sorted with value_comp().

b.key_comp()

41 Result: X::key_compare
42 Returns: The comparison object out of which b was constructed.
43 Complexity: Constant.

b.value_comp()

44 Result: X::value_compare
45 Returns: An object of value_compare constructed out of the comparison object.
46 Complexity: Constant.

a_uniq.emplace(args)

47 Result: pair<iterator, bool>
48 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
49 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only if there isno element in the container with key equivalent to the key of t.
50 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and the iteratorcomponent of the pair points to the element with key equivalent to the key of t.
51 Complexity: Logarithmic.

a_eq.emplace(args)

52 Result: iterator
53 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
54 Effects: Inserts a value_type object t constructed with std::forward<Args>(args).... If a range containingelements equivalent to t exists in a_eq, t is inserted at the end of that range.
55 Returns: An iterator pointing to the newly inserted element.
56 Complexity: Logarithmic.

a.emplace_hint(p, args)

57 Result: iterator

§ 24.2.7.1 841

© ISO/IEC N4910

58 Effects: Equivalent to a.emplace(std::forward<Args>(args)...), except that the element is inserted as closeas possible to the position just prior to p.
59 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element.
60 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a_uniq.insert(t)

61 Result: pair<iterator, bool>
62 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise, value_type isCpp17CopyInsertable into X.
63 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
64 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and the iteratorcomponent of the pair points to the element with key equivalent to the key of t.
65 Complexity: Logarithmic.

a_eq.insert(t)

66 Result: iterator
67 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise, value_type isCpp17CopyInsertable into X.
68 Effects: Inserts t and returns the iterator pointing to the newly inserted element. If a range containing elementsequivalent to t exists in a_eq, t is inserted at the end of that range.
69 Complexity: Logarithmic.

a.insert(p, t)

70 Result: iterator
71 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise, value_type isCpp17CopyInsertable into X.
72 Effects: Inserts t if and only if there is no element with key equivalent to the key of t in containers with uniquekeys; always inserts t in containers with equivalent keys. t is inserted as close as possible to the position justprior to p.
73 Returns: An iterator pointing to the element with key equivalent to the key of t.
74 Complexity: Logarithmic in general, but amortized constant if t is inserted right before p.

a.insert(i, j)

75 Result: void
76 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators into a.
77 Effects: Inserts each element from the range [i, j) if and only if there is no element with key equivalent to the keyof that element in containers with unique keys; always inserts that element in containers with equivalent keys.
78 Complexity: N log(a.size() +N), where N has the value distance(i, j).

a.insert_range(rg)

79 Result: void
80 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg). rg and a do notoverlap.
81 Effects: Inserts each element from rg if and only if there is no element with key equivalent to the key of thatelement in containers with unique keys; always inserts that element in containers with equivalent keys.
82 Complexity: N log(a.size() +N), where N has the value ranges::distance(rg).

a.insert(il)

83 Effects: Equivalent to a.insert(il.begin(), il.end()).

§ 24.2.7.1 842

© ISO/IEC N4910

a_uniq.insert(nh)

84 Result: insert_return_type
85 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
86 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is no elementin the container with a key equivalent to nh.key().
87 Returns: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the insertiontook place, inserted is true, position points to the inserted element, and node is empty; if the insertion failed,

inserted is false, node has the previous value of nh, and position points to an element with a key equivalentto nh.key().
88 Complexity: Logarithmic.

a_eq.insert(nh)

89 Result: iterator
90 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
91 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by nh andreturns an iterator pointing to the newly inserted element. If a range containing elements with keys equivalent to

nh.key() exists in a_eq, the element is inserted at the end of that range.
92 Postconditions: nh is empty.
93 Complexity: Logarithmic.

a.insert(p, nh)

94 Result: iterator
95 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
96 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by nh if and onlyif there is no element with key equivalent to nh.key() in containers with unique keys; always inserts the elementowned by nh in containers with equivalent keys. The element is inserted as close as possible to the position justprior to p.
97 Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.
98 Returns: An iterator pointing to the element with key equivalent to nh.key().
99 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a.extract(k)

100 Result: node_type
101 Effects: Removes the first element in the container with key equivalent to k.
102 Returns: A node_type owning the element if found, otherwise an empty node_type.
103 Complexity: log(a.size())

a_tran.extract(kx)

104 Result: node_type
105 Effects: Removes the first element in the container with key r such that !c(r, kx) && !c(kx, r) is true.
106 Returns: A node_type owning the element if found, otherwise an empty node_type.
107 Complexity: log(a_tran.size())

a.extract(q)

108 Result: node_type
109 Effects: Removes the element pointed to by q.
110 Returns: A node_type owning that element.
111 Complexity: Amortized constant.

§ 24.2.7.1 843

© ISO/IEC N4910

a.merge(a2)

112 Result: void
113 Preconditions: a.get_allocator() == a2.get_allocator().
114 Effects: Attempts to extract each element in a2 and insert it into a using the comparison object of a. In containerswith unique keys, if there is an element in a with key equivalent to the key of an element from a2, then thatelement is not extracted from a2.
115 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements but asmembers of a. Iterators referring to the transferred elements will continue to refer to their elements, but they nowbehave as iterators into a, not into a2.
116 Throws: Nothing unless the comparison object throws.
117 Complexity: N log(a.size()+N), where N has the value a2.size().

a.erase(k)

118 Result: size_type
119 Effects: Erases all elements in the container with key equivalent to k.
120 Returns: The number of erased elements.
121 Complexity: log(a.size()) + a.count(k)

a_tran.erase(kx)

122 Result: size_type
123 Effects: Erases all elements in the container with key r such that !c(r, kx) && !c(kx, r) is true.
124 Returns: The number of erased elements.
125 Complexity: log(a_tran.size()) + a_tran.count(kx)

a.erase(q)

126 Result: iterator
127 Effects: Erases the element pointed to by q.
128 Returns: An iterator pointing to the element immediately following q prior to the element being erased. If nosuch element exists, returns a.end().
129 Complexity: Amortized constant.

a.erase(r)

130 Result: iterator
131 Effects: Erases the element pointed to by r.
132 Returns: An iterator pointing to the element immediately following r prior to the element being erased. If nosuch element exists, returns a.end().
133 Complexity: Amortized constant.

a.erase(q1, q2)

134 Result: iterator
135 Effects: Erases all the elements in the range [q1, q2).
136 Returns: An iterator pointing to the element pointed to by q2 prior to any elements being erased. If no suchelement exists, a.end() is returned.
137 Complexity: log(a.size()) +N , where N has the value distance(q1, q2).

a.clear()

138 Effects: Equivalent to a.erase(a.begin(), a.end()).
139 Postconditions: a.empty() is true.
140 Complexity: Linear in a.size().

§ 24.2.7.1 844

© ISO/IEC N4910

b.find(k)

141 Result: iterator; const_iterator for constant b.
142 Returns: An iterator pointing to an element with the key equivalent to k, or b.end() if such an element is notfound.
143 Complexity: Logarithmic.

a_tran.find(ke)

144 Result: iterator; const_iterator for constant a_tran.
145 Returns: An iterator pointing to an element with key r such that !c(r, ke) && !c(ke, r) is true, or a_-

tran.end() if such an element is not found.
146 Complexity: Logarithmic.

b.count(k)

147 Result: size_type
148 Returns: The number of elements with key equivalent to k.
149 Complexity: log(b.size()) + b.count(k)

a_tran.count(ke)

150 Result: size_type
151 Returns: The number of elements with key r such that !c(r, ke) && !c(ke, r).
152 Complexity: log(a_tran.size()) + a_tran.count(ke)

b.contains(k)

153 Result: bool
154 Effects: Equivalent to: return b.find(k) != b.end();

a_tran.contains(ke)

155 Result: bool
156 Effects: Equivalent to: return a_tran.find(ke) != a_tran.end();

b.lower_bound(k)

157 Result: iterator; const_iterator for constant b.
158 Returns: An iterator pointing to the first element with key not less than k, or b.end() if such an element is notfound.
159 Complexity: Logarithmic.

a_tran.lower_bound(kl)

160 Result: iterator; const_iterator for constant a_tran.
161 Returns: An iterator pointing to the first element with key r such that !c(r, kl), or a_tran.end() if such anelement is not found.
162 Complexity: Logarithmic.

b.upper_bound(k)

163 Result: iterator; const_iterator for constant b.
164 Returns: An iterator pointing to the first element with key greater than k, or b.end() if such an element is notfound.
165 Complexity: Logarithmic,

a_tran.upper_bound(ku)

166 Result: iterator; const_iterator for constant a_tran.

§ 24.2.7.1 845

© ISO/IEC N4910

167 Returns: An iterator pointing to the first element with key r such that c(ku, r), or a_tran.end() if such anelement is not found.
168 Complexity: Logarithmic.

b.equal_range(k)

169 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant b.
170 Effects: Equivalent to: return make_pair(b.lower_bound(k), b.upper_bound(k));
171 Complexity: Logarithmic.

a_tran.equal_range(ke)

172 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant a_tran.
173 Effects: Equivalent to: return make_pair(a_tran.lower_bound(ke), a_tran.upper_bound(ke));
174 Complexity: Logarithmic.
175 The insert, insert_range, and emplacemembers shall not affect the validity of iterators and references to the container,and the erase members shall invalidate only iterators and references to the erased elements.
176 The extract members invalidate only iterators to the removed element; pointers and references to the removed elementremain valid. However, accessing the element through such pointers and references while the element is owned by a

node_type is undefined behavior. References and pointers to an element obtained while it is owned by a node_type areinvalidated if the element is successfully inserted.
177 The fundamental property of iterators of associative containers is that they iterate through the containers in the non-descending order of keys where non-descending is defined by the comparison that was used to construct them. For anytwo dereferenceable iterators i and j such that distance from i to j is positive, the following condition holds:

value_comp(*j, *i) == false

178 For associative containers with unique keys the stronger condition holds:
value_comp(*i, *j) != false

179 When an associative container is constructed by passing a comparison object the container shall not store a pointeror reference to the passed object, even if that object is passed by reference. When an associative container is copied,through either a copy constructor or an assignment operator, the target container shall then use the comparison objectfrom the container being copied, as if that comparison object had been passed to the target container in its constructor.
180 Themember function templates find, count, contains, lower_bound, upper_bound, equal_range, erase, and extractshall not participate in overload resolution unless the qualified-id Compare::is_transparent is valid and denotesa type (13.10.3). Additionally, the member function templates extract and erase shall not participate in overloadresolution if is_convertible_v<K&&, iterator> || is_convertible_v<K&&, const_iterator> is true, where Kis the type substituted as the first template argument.
181 A deduction guide for an associative container shall not participate in overload resolution if any of the following aretrue:

—(181.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is deduced forthat parameter.
—(181.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced for thatparameter.
—(181.3) It has a Compare template parameter and a type that qualifies as an allocator is deduced for that parameter.

24.2.7.2 Exception safety guarantees [associative.reqmts.except]
1 For associative containers, no clear() function throws an exception. erase(k) does not throw an exception unless thatexception is thrown by the container’s Compare object (if any).
2 For associative containers, if an exception is thrown by any operation from within an insert or emplace functioninserting a single element, the insertion has no effect.
3 For associative containers, no swap function throws an exception unless that exception is thrown by the swap of thecontainer’s Compare object (if any).

§ 24.2.7.2 846

© ISO/IEC N4910

24.2.8 Unordered associative containers [unord.req]
24.2.8.1 General [unord.req.general]

1 Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-case complexityfor most operations is linear, but the average case is much faster. The library provides four unordered associativecontainers: unordered_set, unordered_map, unordered_multiset, and unordered_multimap.
2 Unordered associative containers conform to the requirements for Containers (24.2), except that the expressions a == band a != b have different semantics than for the other container types.
3 Each unordered associative container is parameterized by Key, by a function object type Hash that meets the Cpp17Hashrequirements (16.4.4.5) and acts as a hash function for argument values of type Key, and by a binary predicate Predthat induces an equivalence relation on values of type Key. Additionally, unordered_map and unordered_multimapassociate an arbitrary mapped type T with the Key.
4 The container’s object of type Hash— denoted by hash— is called the hash function of the container. The container’sobject of type Pred— denoted by pred— is called the key equality predicate of the container.
5 Two values k1 and k2 are considered equivalent if the container’s key equality predicate pred(k1, k2) is valid andreturns true when passed those values. If k1 and k2 are equivalent, the container’s hash function shall return the samevalue for both.
[Note 1: Thus, when an unordered associative container is instantiated with a non-default Pred parameter it usually needs a non-default
Hash parameter as well. —end note]
For any two keys k1 and k2 in the same container, calling pred(k1, k2) shall always return the same value. For anykey k in a container, calling hash(k) shall always return the same value.

6 An unordered associative container supports unique keys if it may contain at most one element for each key. Otherwise,it supports equivalent keys. unordered_set and unordered_map support unique keys. unordered_multiset and
unordered_multimap support equivalent keys. In containers that support equivalent keys, elements with equivalentkeys are adjacent to each other in the iteration order of the container. Thus, although the absolute order of elementsin an unordered container is not specified, its elements are grouped into equivalent-key groups such that all elementsof each group have equivalent keys. Mutating operations on unordered containers shall preserve the relative order ofelements within each equivalent-key group unless otherwise specified.

7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_map and
unordered_multimap it is pair<const Key, T>.

8 For unordered containers where the value type is the same as the key type, both iterator and const_iterator areconstant iterators. It is unspecified whether or not iterator and const_iterator are the same type.
[Note 2: iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_iterator. Userscan avoid violating the one-definition rule by always using const_iterator in their function parameter lists. —end note]

9 The elements of an unordered associative container are organized into buckets. Keys with the same hash code appear inthe same bucket. The number of buckets is automatically increased as elements are added to an unordered associativecontainer, so that the average number of elements per bucket is kept below a bound. Rehashing invalidates iterators,changes ordering between elements, and changes which buckets elements appear in, but does not invalidate pointers orreferences to elements. For unordered_multiset and unordered_multimap, rehashing preserves the relative orderingof equivalent elements.
10 In this subclause,

—(10.1) X denotes an unordered associative container class,
—(10.2) a denotes a value of type X,
—(10.3) a2 denotes a value of a type with nodes compatible with type X (Table 79),
—(10.4) b denotes a possibly const value of type X,
—(10.5) a_uniq denotes a value of type X when X supports unique keys,
—(10.6) a_eq denotes a value of type X when X supports equivalent keys,
—(10.7) a_tran denotes a possibly const value of type X when the qualified-ids X::key_equal::is_transparent and

X::hasher::is_transparent are both valid and denote types (13.10.3),
—(10.8) i and j denote input iterators that refer to value_type,
—(10.9) [i, j) denotes a valid range,

§ 24.2.8.1 847

© ISO/IEC N4910

—(10.10) rg denotes a value of a type R that models container-compatible-range<value_type>,
—(10.11) p and q2 denote valid constant iterators to a,
—(10.12) q and q1 denote valid dereferenceable constant iterators to a,
—(10.13) r denotes a valid dereferenceable iterator to a,
—(10.14) [q1, q2) denotes a valid range in a,
—(10.15) il denotes a value of type initializer_list<value_type>,
—(10.16) t denotes a value of type X::value_type,
—(10.17) k denotes a value of type key_type,
—(10.18) hf denotes a possibly const value of type hasher,
—(10.19) eq denotes a possibly const value of type key_equal,
—(10.20) ke is a value such that

—(10.20.1) eq(r1, ke) == eq(ke, r1),
—(10.20.2) hf(r1) == hf(ke) if eq(r1, ke) is true, and
—(10.20.3) (eq(r1, ke) && eq(r1, r2)) == eq(r2, ke),
where r1 and r2 are keys of elements in a_tran,

—(10.21) kx is a value such that
—(10.21.1) eq(r1, kx) == eq(kx, r1),
—(10.21.2) hf(r1) == hf(kx) if eq(r1, kx) is true,
—(10.21.3) (eq(r1, kx) && eq(r1, r2)) == eq(r2, kx), and
—(10.21.4) kx is not convertible to either iterator or const_iterator,
where r1 and r2 are keys of elements in a_tran,

—(10.22) n denotes a value of type size_type,
—(10.23) z denotes a value of type float, and
—(10.24) nh denotes a non-const rvalue of type X::node_type.

11 A type X meets the unordered associative container requirements if X meets all the requirements of an allocator-aware container (24.2.2.1) and the following types, statements, and expressions are well-formed and have the specifiedsemantics, except that for unordered_map and unordered_multimap, the requirements placed on value_type in 24.2.2.5apply instead to key_type and mapped_type.
[Note 3: For example, key_type and mapped_type are sometimes required to be Cpp17CopyAssignable even though the associated
value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. —end note]
typename X::key_type

12 Result: Key.
typename X::mapped_type

13 Result: T.
14 Remarks: For unordered_map and unordered_multimap only.

typename X::value_type

15 Result: Key for unordered_set and unordered_multiset only; pair<const Key, T> for unordered_map and
unordered_multimap only.

16 Preconditions: value_type is Cpp17Erasable from X.
typename X::hasher

17 Result: Hash.
18 Preconditions: Hash is a unary function object type such that the expression hf(k) has type size_t.

§ 24.2.8.1 848

© ISO/IEC N4910

typename X::key_equal

19 Result: Pred.
20 Preconditions: Pred meets the Cpp17CopyConstructible requirements. Pred is a binary predicate that takes twoarguments of type Key. Pred is an equivalence relation.

typename X::local_iterator

21 Result: An iterator type whose category, value type, difference type, and pointer and reference types are the sameas X::iterator’s.
[Note 4: A local_iterator object can be used to iterate through a single bucket, but cannot be used to iterate across buckets.—end note]

typename X::const_local_iterator

22 Result: An iterator type whose category, value type, difference type, and pointer and reference types are the sameas X::const_iterator’s.
[Note 5: A const_local_iterator object can be used to iterate through a single bucket, but cannot be used to iterate acrossbuckets. —end note]

typename X::node_type

23 Result: A specialization of a node-handle class template (24.2.5), such that the public nested types are the sametypes as the corresponding types in X.
X(n, hf, eq)

24 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq as the keyequality predicate.
25 Complexity: O(n)

X(n, hf)

26 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements.
27 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and key_equal() asthe key equality predicate.
28 Complexity: O(n)

X(n)

29 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.
30 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function and key_-

equal() as the key equality predicate.
31 Complexity: O(n)

X a = X();
X a;

32 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.
33 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the hashfunction and key_equal() as the key equality predicate.
34 Complexity: Constant.

X(i, j, n, hf, eq)

35 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
36 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq as the keyequality predicate, and inserts elements from [i, j) into it.
37 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

§ 24.2.8.1 849

© ISO/IEC N4910

X(i, j, n, hf)

38 Preconditions: key_equalmeets theCpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructibleinto X from *i.
39 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and key_equal() asthe key equality predicate, and inserts elements from [i, j) into it.
40 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n)

41 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructible into X from *i.
42 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function and key_-

equal() as the key equality predicate, and inserts elements from [i, j) into it.
43 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j)

44 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructible into X from *i.
45 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the hashfunction and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.
46 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(from_range, rg, n, hf, eq)

47 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg).
48 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq as the keyequality predicate, and inserts elements from rg into it.
49 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(from_range, rg, n, hf)

50 Preconditions: key_equalmeets theCpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructibleinto X from *ranges::begin(rg).
51 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and key_equal() asthe key equality predicate, and inserts elements from rg into it.
52 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(from_range, rg, n)

53 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructible into X from *ranges::begin(rg).
54 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function and key_-

equal() as the key equality predicate, and inserts elements from rg into it.
55 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(from_range, rg)

56 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type isCpp17EmplaceConstructible into X from *ranges::begin(rg).
57 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the hashfunction and key_equal() as the key equality predicate, and inserts elements from rg into it.
58 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(il)

59 Effects: Equivalent to X(il.begin(), il.end()).

§ 24.2.8.1 850

© ISO/IEC N4910

X(il, n)

60 Effects: Equivalent to X(il.begin(), il.end(), n).
X(il, n, hf)

61 Effects: Equivalent to X(il.begin(), il.end(), n, hf).
X(il, n, hf, eq)

62 Effects: Equivalent to X(il.begin(), il.end(), n, hf, eq).
X(b)

63 Effects: In addition to the container requirements (24.2.2.1), copies the hash function, predicate, and maximumload factor.
64 Complexity: Average case linear in b.size(), worst case quadratic.

a = b

65 Result: X&
66 Effects: In addition to the container requirements, copies the hash function, predicate, and maximum load factor.
67 Complexity: Average case linear in b.size(), worst case quadratic.

a = il

68 Result: X&
69 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
70 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned to ordestroyed.
71 Complexity: Average case linear in il.size(), worst case quadratic.

b.hash_function()

72 Result: hasher
73 Returns: b’s hash function.
74 Complexity: Constant.

b.key_eq()

75 Result: key_equal
76 Returns: b’s key equality predicate.
77 Complexity: Constant.

a_uniq.emplace(args)

78 Result: pair<iterator, bool>
79 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
80 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only if there isno element in the container with key equivalent to the key of t.
81 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and the iteratorcomponent of the pair points to the element with key equivalent to the key of t.
82 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.emplace(args)

83 Result: iterator
84 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
85 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... and
86 Returns: An iterator pointing to the newly inserted element.
87 Complexity: Average case O(1), worst case O(a_eq.size()).
§ 24.2.8.1 851

© ISO/IEC N4910

a.emplace_hint(p, args)

88 Result: iterator
89 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
90 Effects: Equivalent to a.emplace(std::forward<Args>(args)...).
91 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element. The const_-

iterator p is a hint pointing to where the search should start. Implementations are permitted to ignore thehint.
92 Complexity: Average case O(1), worst case O(a.size()).

a_uniq.insert(t)

93 Result: pair<iterator, bool>
94 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise, value_type isCpp17CopyInsertable into X.
95 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
96 Returns: The bool component of the returned pair indicates whether the insertion takes place, and the iteratorcomponent points to the element with key equivalent to the key of t.
97 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(t)

98 Result: iterator
99 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise, value_type isCpp17CopyInsertable into X.
100 Effects: Inserts t.
101 Returns: An iterator pointing to the newly inserted element.
102 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(p, t)

103 Result: iterator
104 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise, value_type isCpp17CopyInsertable into X.
105 Effects: Equivalent to a.insert(t). The iterator p is a hint pointing to where the search should start. Implemen-tations are permitted to ignore the hint.
106 Returns: An iterator pointing to the element with the key equivalent to that of t.
107 Complexity: Average case O(1), worst case O(a.size()).

a.insert(i, j)

108 Result: void
109 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators into a.
110 Effects: Equivalent to a.insert(t) for each element in [i,j).
111 Complexity: Average case O(N), where N is distance(i, j), worst case O(N(a.size() + 1)).

a.insert_range(rg)

112 Result: void
113 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg). rg and a do notoverlap.
114 Effects: Equivalent to a.insert(t) for each element t in rg.
115 Complexity: Average case O(N), where N is ranges::distance(rg), worst case O(N(a.size() + 1)).

§ 24.2.8.1 852

© ISO/IEC N4910

a.insert(il)

116 Effects: Equivalent to a.insert(il.begin(), il.end()).
a_uniq.insert(nh)

117 Result: insert_return_type
118 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
119 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is no elementin the container with a key equivalent to nh.key().
120 Postconditions: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if theinsertion took place, inserted is true, position points to the inserted element, and node is empty; if theinsertion failed, inserted is false, node has the previous value of nh, and position points to an element with akey equivalent to nh.key().
121 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(nh)

122 Result: iterator
123 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
124 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by nh andreturns an iterator pointing to the newly inserted element.
125 Postconditions: nh is empty.
126 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(q, nh)

127 Result: iterator
128 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
129 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by nh if and onlyif there is no element with key equivalent to nh.key() in containers with unique keys; always inserts the elementowned by nh in containers with equivalent keys. The iterator q is a hint pointing to where the search should start.Implementations are permitted to ignore the hint.
130 Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.
131 Returns: An iterator pointing to the element with key equivalent to nh.key().
132 Complexity: Average case O(1), worst case O(a.size()).

a.extract(k)

133 Result: node_type
134 Effects: Removes an element in the container with key equivalent to k.
135 Returns: A node_type owning the element if found, otherwise an empty node_type.
136 Complexity: Average case O(1), worst case O(a.size()).

a_tran.extract(kx)

137 Result: node_type
138 Effects: Removes an element in the container with key equivalent to kx.
139 Returns: A node_type owning the element if found, otherwise an empty node_type.
140 Complexity: Average case O(1), worst case O(a_tran.size()).

a.extract(q)

141 Result: node_type
142 Effects: Removes the element pointed to by q.
143 Returns: A node_type owning that element.

§ 24.2.8.1 853

© ISO/IEC N4910

144 Complexity: Average case O(1), worst case O(a.size()).
a.merge(a2)

145 Result: void
146 Preconditions: a.get_allocator() == a2.get_allocator().
147 Effects: Attempts to extract each element in a2 and insert it into a using the hash function and key equalitypredicate of a. In containers with unique keys, if there is an element in a with key equivalent to the key of anelement from a2, then that element is not extracted from a2.
148 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements but asmembers of a. Iterators referring to the transferred elements and all iterators referring to a will be invalidated, butiterators to elements remaining in a2 will remain valid.
149 Complexity: Average case O(N), where N is a2.size(), worst case O(N*a.size() + N).

a.erase(k)

150 Result: size_type
151 Effects: Erases all elements with key equivalent to k.
152 Returns: The number of elements erased.
153 Complexity: Average case O(a.count(k)), worst case O(a.size()).

a_tran.erase(kx)

154 Result: size_type
155 Effects: Erases all elements with key equivalent to kx.
156 Returns: The number of elements erased.
157 Complexity: Average case O(a_tran.count(kx)), worst case O(a_tran.size()).

a.erase(q)

158 Result: iterator
159 Effects: Erases the element pointed to by q.
160 Returns: The iterator immediately following q prior to the erasure.
161 Complexity: Average case O(1), worst case O(a.size()).

a.erase(r)

162 Result: iterator
163 Effects: Erases the element pointed to by r.
164 Returns: The iterator immediately following r prior to the erasure.
165 Complexity: Average case O(1), worst case O(a.size()).

a.erase(q1, q2)

166 Result: iterator
167 Effects: Erases all elements in the range [q1, q2).
168 Returns: The iterator immediately following the erased elements prior to the erasure.
169 Complexity: Average case linear in distance(q1, q2), worst case O(a.size()).

a.clear()

170 Result: void
171 Effects: Erases all elements in the container.
172 Postconditions: a.empty() is true.
173 Complexity: Linear in a.size().

§ 24.2.8.1 854

© ISO/IEC N4910

b.find(k)

174 Result: iterator; const_iterator for const b.
175 Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element exists.
176 Complexity: Average case O(1), worst case O(b.size()).

a_tran.find(ke)

177 Result: iterator; const_iterator for const a_tran.
178 Returns: An iterator pointing to an element with key equivalent to ke, or a_tran.end() if no such element exists.
179 Complexity: Average case O(1), worst case O(a_tran.size()).

b.count(k)

180 Result: size_type
181 Returns: The number of elements with key equivalent to k.
182 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.count(ke)

183 Result: size_type
184 Returns: The number of elements with key equivalent to ke.
185 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.contains(k)

186 Effects: Equivalent to b.find(k) != b.end().
a_tran.contains(ke)

187 Effects: Equivalent to a_tran.find(ke) != a_tran.end().
b.equal_range(k)

188 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for const b.
189 Returns: A range containing all elements with keys equivalent to k. Returns make_pair(b.end(), b.end()) ifno such elements exist.
190 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.equal_range(ke)

191 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for const a_tran.
192 Returns: A range containing all elements with keys equivalent to ke. Returns make_pair(a_tran.end(), a_-

tran.end()) if no such elements exist.
193 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.bucket_count()

194 Result: size_type
195 Returns: The number of buckets that b contains.
196 Complexity: Constant.

b.max_bucket_count()

197 Result: size_type
198 Returns: An upper bound on the number of buckets that b can ever contain.
199 Complexity: Constant.

b.bucket(k)

200 Result: size_type
201 Preconditions: b.bucket_count() > 0.

§ 24.2.8.1 855

© ISO/IEC N4910

202 Returns: The index of the bucket in which elements with keys equivalent to k would be found, if any such elementexisted. The return value is in the range [0, b.bucket_count()).
203 Complexity: Constant.

b.bucket_size(n)

204 Result: size_type
205 Preconditions: n shall be in the range [0, b.bucket_count()).
206 Returns: The number of elements in the nth bucket.
207 Complexity: O(b.bucket_size(n))

b.begin(n)

208 Result: local_iterator; const_local_iterator for const b.
209 Preconditions: n is in the range [0, b.bucket_count()).
210 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then b.begin(n) ==

b.end(n).
211 Complexity: Constant.

b.end(n)

212 Result: local_iterator; const_local_iterator for const b.
213 Preconditions: n is in the range [0, b.bucket_count()).
214 Returns: An iterator which is the past-the-end value for the bucket.
215 Complexity: Constant.

b.cbegin(n)

216 Result: const_local_iterator
217 Preconditions: n shall be in the range [0, b.bucket_count()).
218 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then b.cbegin(n) ==

b.cend(n).
219 Complexity: Constant.

b.cend(n)

220 Result: const_local_iterator
221 Preconditions: n is in the range [0, b.bucket_count()).
222 Returns: An iterator which is the past-the-end value for the bucket.
223 Complexity: Constant.

b.load_factor()

224 Result: float
225 Returns: The average number of elements per bucket.
226 Complexity: Constant.

b.max_load_factor()

227 Result: float
228 Returns: A positive number that the container attempts to keep the load factor less than or equal to. The containerautomatically increases the number of buckets as necessary to keep the load factor below this number.
229 Complexity: Constant.

a.max_load_factor(z)

230 Result: void
231 Preconditions: z is positive. May change the container’s maximum load factor, using z as a hint.

§ 24.2.8.1 856

© ISO/IEC N4910

232 Complexity: Constant.
a.rehash(n)

233 Result: void
234 Postconditions: a.bucket_count() >= a.size() / a.max_load_factor() and a.bucket_count() >= n.
235 Complexity: Average case linear in a.size(), worst case quadratic.

a.reserve(n)

236 Effects: Equivalent to a.rehash(ceil(n / a.max_load_factor())).
237 Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-key group

[Ea1, Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1, Eb2) obtained from b.equal_-
range(Ea1), such that is_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For unordered_set and unordered_map,the complexity of operator== (i.e., the number of calls to the == operator of the value_type, to the predicate returnedby key_eq(), and to the hasher returned by hash_function()) is proportional toN in the average case and toN2 in theworst case, where N is a.size(). For unordered_multiset and unordered_multimap, the complexity of operator==is proportional to∑E2

i in the average case and toN2 in the worst case, whereN is a.size(), and Ei is the size of the
ith equivalent-key group in a. However, if the respective elements of each corresponding pair of equivalent-key groups
Eai and Ebi are arranged in the same order (as is commonly the case, e.g., if a and b are unmodified copies of the samecontainer), then the average-case complexity for unordered_multiset and unordered_multimap becomes proportionalto N (but worst-case complexity remains O(N2), e.g., for a pathologically bad hash function). The behavior of aprogram that uses operator== or operator!= on unordered containers is undefined unless the Pred function object hasthe same behavior for both containers and the equality comparison function for Key is a refinement214 of the partitioninto equivalent-key groups produced by Pred.

238 The iterator types iterator and const_iterator of an unordered associative container are of at least the forwarditerator category. For unordered associative containers where the key type and value type are the same, both iteratorand const_iterator are constant iterators.
239 The insert, insert_range, and emplace members shall not affect the validity of references to container elements, butmay invalidate all iterators to the container. The erase members shall invalidate only iterators and references to theerased elements, and preserve the relative order of the elements that are not erased.
240 The insert, insert_range, and emplace members shall not affect the validity of iterators if (N+n) <= z * B, where Nis the number of elements in the container prior to the insert operation, n is the number of elements inserted, B is thecontainer’s bucket count, and z is the container’s maximum load factor.
241 The extract members invalidate only iterators to the removed element, and preserve the relative order of the elementsthat are not erased; pointers and references to the removed element remain valid. However, accessing the elementthrough such pointers and references while the element is owned by a node_type is undefined behavior. References andpointers to an element obtained while it is owned by a node_type are invalidated if the element is successfully inserted.
242 The member function templates find, count, equal_range, contains, extract, and erase shall not participate inoverload resolution unless the qualified-ids Pred::is_transparent and Hash::is_transparent are both valid anddenote types (13.10.3). Additionally, the member function templates extract and erase shall not participate in overloadresolution if is_convertible_v<K&&, iterator> || is_convertible_v<K&&, const_iterator> is true, where Kis the type substituted as the first template argument.
243 A deduction guide for an unordered associative container shall not participate in overload resolution if any of thefollowing are true:

—(243.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is deduced forthat parameter.
—(243.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced for thatparameter.
—(243.3) It has a Hash template parameter and an integral type or a type that qualifies as an allocator is deduced for thatparameter.
—(243.4) It has a Pred template parameter and a type that qualifies as an allocator is deduced for that parameter.

214) Equality comparison is a refinement of partitioning if no two objects that compare equal fall into different partitions.
§ 24.2.8.1 857

© ISO/IEC N4910

24.2.8.2 Exception safety guarantees [unord.req.except]
1 For unordered associative containers, no clear() function throws an exception. erase(k) does not throw an exceptionunless that exception is thrown by the container’s Hash or Pred object (if any).
2 For unordered associative containers, if an exception is thrown by any operation other than the container’s hash functionfrom within an insert or emplace function inserting a single element, the insertion has no effect.
3 For unordered associative containers, no swap function throws an exception unless that exception is thrown by the swapof the container’s Hash or Pred object (if any).
4 For unordered associative containers, if an exception is thrown from within a rehash() function other than by thecontainer’s hash function or comparison function, the rehash() function has no effect.
24.3 Sequence containers [sequences]
24.3.1 In general [sequences.general]

1 The headers <array> (24.3.2), <deque> (24.3.3), <forward_list> (24.3.4), <list> (24.3.5), and <vector> (24.3.6)define class templates that meet the requirements for sequence containers.
2 The following exposition-only alias template may appear in deduction guides for sequence containers:

template<class InputIterator>
using iter-value-type = typename iterator_traits<InputIterator>::value_type; // exposition only

24.3.2 Header <array> synopsis [array.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.3.7, class template array

template<class T, size_t N> struct array;

template<class T, size_t N>
constexpr bool operator==(const array<T, N>& x, const array<T, N>& y);

template<class T, size_t N>
constexpr synth-three-way-result<T>

operator<=>(const array<T, N>& x, const array<T, N>& y);

// 24.3.7.4, specialized algorithms
template<class T, size_t N>
constexpr void swap(array<T, N>& x, array<T, N>& y) noexcept(noexcept(x.swap(y)));

// 24.3.7.6, array creation functions
template<class T, size_t N>
constexpr array<remove_cv_t<T>, N> to_array(T (&a)[N]);

template<class T, size_t N>
constexpr array<remove_cv_t<T>, N> to_array(T (&&a)[N]);

// 24.3.7.7, tuple interface
template<class T> struct tuple_size;
template<size_t I, class T> struct tuple_element;
template<class T, size_t N>
struct tuple_size<array<T, N>>;

template<size_t I, class T, size_t N>
struct tuple_element<I, array<T, N>>;

template<size_t I, class T, size_t N>
constexpr T& get(array<T, N>&) noexcept;

template<size_t I, class T, size_t N>
constexpr T&& get(array<T, N>&&) noexcept;

template<size_t I, class T, size_t N>
constexpr const T& get(const array<T, N>&) noexcept;

template<size_t I, class T, size_t N>
constexpr const T&& get(const array<T, N>&&) noexcept;

}

§ 24.3.2 858

© ISO/IEC N4910

24.3.3 Header <deque> synopsis [deque.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.3.8, class template deque

template<class T, class Allocator = allocator<T>> class deque;

template<class T, class Allocator>
bool operator==(const deque<T, Allocator>& x, const deque<T, Allocator>& y);

template<class T, class Allocator>
synth-three-way-result<T> operator<=>(const deque<T, Allocator>& x,

const deque<T, Allocator>& y);

template<class T, class Allocator>
void swap(deque<T, Allocator>& x, deque<T, Allocator>& y)
noexcept(noexcept(x.swap(y)));

template<class T, class Allocator, class U>
typename deque<T, Allocator>::size_type
erase(deque<T, Allocator>& c, const U& value);

template<class T, class Allocator, class Predicate>
typename deque<T, Allocator>::size_type
erase_if(deque<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>
using deque = std::deque<T, polymorphic_allocator<T>>;

}
}

24.3.4 Header <forward_list> synopsis [forward.list.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.3.9, class template forward_list
template<class T, class Allocator = allocator<T>> class forward_list;

template<class T, class Allocator>
bool operator==(const forward_list<T, Allocator>& x, const forward_list<T, Allocator>& y);

template<class T, class Allocator>
synth-three-way-result<T> operator<=>(const forward_list<T, Allocator>& x,

const forward_list<T, Allocator>& y);

template<class T, class Allocator>
void swap(forward_list<T, Allocator>& x, forward_list<T, Allocator>& y)
noexcept(noexcept(x.swap(y)));

template<class T, class Allocator, class U>
typename forward_list<T, Allocator>::size_type
erase(forward_list<T, Allocator>& c, const U& value);

template<class T, class Allocator, class Predicate>
typename forward_list<T, Allocator>::size_type
erase_if(forward_list<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>
using forward_list = std::forward_list<T, polymorphic_allocator<T>>;

}
}

§ 24.3.4 859

© ISO/IEC N4910

24.3.5 Header <list> synopsis [list.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.3.10, class template list

template<class T, class Allocator = allocator<T>> class list;

template<class T, class Allocator>
bool operator==(const list<T, Allocator>& x, const list<T, Allocator>& y);

template<class T, class Allocator>
synth-three-way-result<T> operator<=>(const list<T, Allocator>& x,

const list<T, Allocator>& y);

template<class T, class Allocator>
void swap(list<T, Allocator>& x, list<T, Allocator>& y)

noexcept(noexcept(x.swap(y)));

template<class T, class Allocator, class U>
typename list<T, Allocator>::size_type

erase(list<T, Allocator>& c, const U& value);
template<class T, class Allocator, class Predicate>
typename list<T, Allocator>::size_type

erase_if(list<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>

using list = std::list<T, polymorphic_allocator<T>>;
}

}

24.3.6 Header <vector> synopsis [vector.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.3.11, class template vector

template<class T, class Allocator = allocator<T>> class vector;

template<class T, class Allocator>
constexpr bool operator==(const vector<T, Allocator>& x, const vector<T, Allocator>& y);

template<class T, class Allocator>
constexpr synth-three-way-result<T> operator<=>(const vector<T, Allocator>& x,

const vector<T, Allocator>& y);

template<class T, class Allocator>
constexpr void swap(vector<T, Allocator>& x, vector<T, Allocator>& y)

noexcept(noexcept(x.swap(y)));

template<class T, class Allocator, class U>
constexpr typename vector<T, Allocator>::size_type

erase(vector<T, Allocator>& c, const U& value);
template<class T, class Allocator, class Predicate>
constexpr typename vector<T, Allocator>::size_type

erase_if(vector<T, Allocator>& c, Predicate pred);

// 24.3.12, class vector<bool>
template<class Allocator> class vector<bool, Allocator>;

// hash support
template<class T> struct hash;
template<class Allocator> struct hash<vector<bool, Allocator>>;

§ 24.3.6 860

© ISO/IEC N4910

namespace pmr {
template<class T>

using vector = std::vector<T, polymorphic_allocator<T>>;
}

}

24.3.7 Class template array [array]
24.3.7.1 Overview [array.overview]

1 The header <array> defines a class template for storing fixed-size sequences of objects. An array is a contiguouscontainer (24.2.2.1). An instance of array<T, N> stores N elements of type T, so that size() == N is an invariant.
2 An array is an aggregate (9.4.2) that can be list-initialized with up to N elements whose types are convertible to T.
3 An array meets all of the requirements of a container (24.2.2.2) and of a reversible container (24.2.2.3), except thata default constructed array object is not empty if N > 0. An array meets some of the requirements of a sequencecontainer (24.2.4). Descriptions are provided here only for operations on array that are not described in one of thesetables and for operations where there is additional semantic information.
4 array<T, N> is a structural type (13.2) if T is a structural type. Two values a1 and a2 of type array<T, N> aretemplate-argument-equivalent (13.6) if and only if each pair of corresponding elements in a1 and a2 are template-argument-equivalent.
5 The types iterator and const_iterator meet the constexpr iterator requirements (25.3.1).

namespace std {
template<class T, size_t N>
struct array {// types
using value_type = T;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using size_type = size_t;
using difference_type = ptrdiff_t;
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// no explicit construct/copy/destroy for aggregate type
constexpr void fill(const T& u);
constexpr void swap(array&) noexcept(is_nothrow_swappable_v<T>);

// iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;

constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;

§ 24.3.7.1 861

© ISO/IEC N4910

// element access
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr reference at(size_type n);
constexpr const_reference at(size_type n) const;
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;

constexpr T * data() noexcept;
constexpr const T * data() const noexcept;

};

template<class T, class... U>
array(T, U...) -> array<T, 1 + sizeof...(U)>;

}

24.3.7.2 Constructors, copy, and assignment [array.cons]
1 The conditions for an aggregate (9.4.2) shall be met. Class array relies on the implicitly-declared special member func-tions (11.4.5.2, 11.4.7, 11.4.5.3) to conform to the container requirements table in 24.2. In addition to the requirementsspecified in the container requirements table, the implicit move constructor and move assignment operator for arrayrequire that T be Cpp17MoveConstructible or Cpp17MoveAssignable, respectively.

template<class T, class... U>
array(T, U...) -> array<T, 1 + sizeof...(U)>;

2 Mandates: (is_same_v<T, U> && ...) is true.
24.3.7.3 Member functions [array.members]

constexpr size_type size() const noexcept;

1 Returns: N.
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

2 Returns: A pointer such that [data(), data() + size()) is a valid range. For a non-empty array, data() ==
addressof(front()).

constexpr void fill(const T& u);

3 Effects: As if by fill_n(begin(), N, u).
constexpr void swap(array& y) noexcept(is_nothrow_swappable_v<T>);

4 Effects: Equivalent to swap_ranges(begin(), end(), y.begin()).
5 [Note 1: Unlike the swap function for other containers, array::swap takes linear time, can exit via an exception, and does notcause iterators to become associated with the other container. —end note]
24.3.7.4 Specialized algorithms [array.special]

template<class T, size_t N>
constexpr void swap(array<T, N>& x, array<T, N>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: N == 0 or is_swappable_v<T> is true.
2 Effects: As if by x.swap(y).
3 Complexity: Linear in N.
24.3.7.5 Zero-sized arrays [array.zero]

1 array shall provide support for the special case N == 0.
2 In the case that N == 0, begin() == end() == unique value. The return value of data() is unspecified.
3 The effect of calling front() or back() for a zero-sized array is undefined.
4 Member function swap() shall have a non-throwing exception specification.
§ 24.3.7.5 862

© ISO/IEC N4910

24.3.7.6 Array creation functions [array.creation]

template<class T, size_t N>
constexpr array<remove_cv_t<T>, N> to_array(T (&a)[N]);

1 Mandates: is_array_v<T> is false and is_constructible_v<T, T&> is true.
2 Preconditions: T meets the Cpp17CopyConstructible requirements.
3 Returns: {{ a[0], . . . , a[N - 1] }}.

template<class T, size_t N>
constexpr array<remove_cv_t<T>, N> to_array(T (&&a)[N]);

4 Mandates: is_array_v<T> is false and is_move_constructible_v<T> is true.
5 Preconditions: T meets the Cpp17MoveConstructible requirements.
6 Returns: {{ std::move(a[0]), . . . , std::move(a[N - 1]) }}.
24.3.7.7 Tuple interface [array.tuple]

template<class T, size_t N>
struct tuple_size<array<T, N>> : integral_constant<size_t, N> { };

template<size_t I, class T, size_t N>
struct tuple_element<I, array<T, N>> {
using type = T;

};

1 Mandates: I < N is true.
template<size_t I, class T, size_t N>

constexpr T& get(array<T, N>& a) noexcept;
template<size_t I, class T, size_t N>

constexpr T&& get(array<T, N>&& a) noexcept;
template<size_t I, class T, size_t N>

constexpr const T& get(const array<T, N>& a) noexcept;
template<size_t I, class T, size_t N>

constexpr const T&& get(const array<T, N>&& a) noexcept;

2 Mandates: I < N is true.
3 Returns: A reference to the Ith element of a, where indexing is zero-based.
24.3.8 Class template deque [deque]
24.3.8.1 Overview [deque.overview]

1 A deque is a sequence container that supports random access iterators (25.3.5.7). In addition, it supports constant timeinsert and erase operations at the beginning or the end; insert and erase in the middle take linear time. That is, a dequeis especially optimized for pushing and popping elements at the beginning and end. Storage management is handledautomatically.
2 A dequemeets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-awarecontainer (24.2.2.5), and of a sequence container, including the optional sequence container requirements (24.2.4).Descriptions are provided here only for operations on deque that are not described in one of these tables or for operationswhere there is additional semantic information.

namespace std {
template<class T, class Allocator = allocator<T>>
class deque {
public:// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2

§ 24.3.8.1 863

© ISO/IEC N4910

using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// 24.3.8.2, construct/copy/destroy
deque() : deque(Allocator()) { }
explicit deque(const Allocator&);
explicit deque(size_type n, const Allocator& = Allocator());
deque(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

deque(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<T> R>

deque(from_range_t, R&& rg, const Allocator& = Allocator());
deque(const deque& x);
deque(deque&&);
deque(const deque&, const type_identity_t<Allocator>&);
deque(deque&&, const type_identity_t<Allocator>&);
deque(initializer_list<T>, const Allocator& = Allocator());

~deque();
deque& operator=(const deque& x);
deque& operator=(deque&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
deque& operator=(initializer_list<T>);
template<class InputIterator>

void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

void assign_range(R&& rg);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// 24.3.8.3, capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;
void resize(size_type sz);
void resize(size_type sz, const T& c);
void shrink_to_fit();

// element access
reference operator[](size_type n);
const_reference operator[](size_type n) const;
reference at(size_type n);
const_reference at(size_type n) const;
reference front();
const_reference front() const;

§ 24.3.8.1 864

© ISO/IEC N4910

reference back();
const_reference back() const;

// 24.3.8.4, modifiers
template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
template<class... Args> iterator emplace(const_iterator position, Args&&... args);

void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range<T> R>

void prepend_range(R&& rg);
void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range<T> R>

void append_range(R&& rg);

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

iterator insert_range(const_iterator position, R&& rg);
iterator insert(const_iterator position, initializer_list<T>);

void pop_front();
void pop_back();

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void swap(deque&)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
void clear() noexcept;

};

template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
deque(InputIterator, InputIterator, Allocator = Allocator())

-> deque<iter-value-type<InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
deque(from_range_t, R&&, Allocator = Allocator())

-> deque<ranges::range_value_t<R>, Allocator>;
}

24.3.8.2 Constructors, copy, and assignment [deque.cons]

explicit deque(const Allocator&);

1 Effects: Constructs an empty deque, using the specified allocator.
2 Complexity: Constant.

explicit deque(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a deque with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

deque(size_type n, const T& value, const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a deque with n copies of value, using the specified allocator.
8 Complexity: Linear in n.

§ 24.3.8.2 865

© ISO/IEC N4910

template<class InputIterator>
deque(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a deque equal to the range [first, last), using the specified allocator.
10 Complexity: Linear in distance(first, last).

template<container-compatible-range<T> R>
deque(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a deque with the elements of the range rg, using the specified allocator.
12 Complexity: Linear in ranges::distance(rg).
24.3.8.3 Capacity [deque.capacity]

void resize(size_type sz);

1 Preconditions: T is Cpp17MoveInsertable and Cpp17DefaultInsertable into *this.
2 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends sz -

size() default-inserted elements to the sequence.
void resize(size_type sz, const T& c);

3 Preconditions: T is Cpp17CopyInsertable into *this.
4 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends sz -

size() copies of c to the sequence.
void shrink_to_fit();

5 Preconditions: T is Cpp17MoveInsertable into *this.
6 Effects: shrink_to_fit is a non-binding request to reduce memory use but does not change the size of thesequence.

[Note 1: The request is non-binding to allow latitude for implementation-specific optimizations. —end note]
If the size is equal to the old capacity, or if an exception is thrown other than by the move constructor of anon-Cpp17CopyInsertable T, then there are no effects.

7 Complexity: If the size is not equal to the old capacity, linear in the size of the sequence; otherwise constant.
8 Remarks: If the size is not equal to the old capacity, then invalidates all the references, pointers, and iteratorsreferring to the elements in the sequence, as well as the past-the-end iterator.
24.3.8.4 Modifiers [deque.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position,
InputIterator first, InputIterator last);

template<container-compatible-range<T> R>
iterator insert_range(const_iterator position, R&& rg);

iterator insert(const_iterator position, initializer_list<T>);

template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
template<class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range<T> R>

void prepend_range(R&& rg);
void push_back(const T& x);
void push_back(T&& x);

§ 24.3.8.4 866

© ISO/IEC N4910

template<container-compatible-range<T> R>
void append_range(R&& rg);

1 Effects: An insertion in the middle of the deque invalidates all the iterators and references to elements of thedeque. An insertion at either end of the deque invalidates all the iterators to the deque, but has no effect on thevalidity of references to elements of the deque.
2 Complexity: The complexity is linear in the number of elements inserted plus the lesser of the distances to thebeginning and end of the deque. Inserting a single element at either the beginning or end of a deque always takesconstant time and causes a single call to a constructor of T.
3 Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment operator,or move assignment operator of T there are no effects. If an exception is thrown while inserting a singleelement at either end, there are no effects. Otherwise, if an exception is thrown by the move constructor of anon-Cpp17CopyInsertable T, the effects are unspecified.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void pop_front();
void pop_back();

4 Effects: An erase operation that erases the last element of a deque invalidates only the past-the-end iterator and alliterators and references to the erased elements. An erase operation that erases the first element of a deque but notthe last element invalidates only iterators and references to the erased elements. An erase operation that erasesneither the first element nor the last element of a deque invalidates the past-the-end iterator and all iterators andreferences to all the elements of the deque.
[Note 1: pop_front and pop_back are erase operations. —end note]

5 Throws: Nothing unless an exception is thrown by the assignment operator of T.
6 Complexity: The number of calls to the destructor of T is the same as the number of elements erased, but thenumber of calls to the assignment operator of T is no more than the lesser of the number of elements before theerased elements and the number of elements after the erased elements.
24.3.8.5 Erasure [deque.erasure]

template<class T, class Allocator, class U>
typename deque<T, Allocator>::size_type
erase(deque<T, Allocator>& c, const U& value);

1 Effects: Equivalent to:
auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

template<class T, class Allocator, class Predicate>
typename deque<T, Allocator>::size_type
erase_if(deque<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

24.3.9 Class template forward_list [forward.list]
24.3.9.1 Overview [forward.list.overview]

1 A forward_list is a container that supports forward iterators and allows constant time insert and erase operationsanywhere within the sequence, with storage management handled automatically. Fast random access to list elements isnot supported.
[Note 1: It is intended that forward_list have zero space or time overhead relative to a hand-written C-style singly linked list.Features that would conflict with that goal have been omitted. —end note]

§ 24.3.9.1 867

© ISO/IEC N4910

2 A forward_list meets all of the requirements of a container (24.2.2.2), except that the size() member function is notprovided and operator== has linear complexity, A forward_list also meets all of the requirements for an allocator-aware container (24.2.2.5). In addition, a forward_list provides the assign member functions and several of theoptional sequence container requirements (24.2.4). Descriptions are provided here only for operations on forward_listthat are not described in that table or for operations where there is additional semantic information.
3 [Note 2: Modifying any list requires access to the element preceding the first element of interest, but in a forward_list there isno constant-time way to access a preceding element. For this reason, erase_after and splice_after take fully-open ranges, notsemi-open ranges. —end note]

namespace std {
template<class T, class Allocator = allocator<T>>
class forward_list {
public:// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
// 24.3.9.2, construct/copy/destroy
forward_list() : forward_list(Allocator()) { }
explicit forward_list(const Allocator&);
explicit forward_list(size_type n, const Allocator& = Allocator());
forward_list(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<T> R>

forward_list(from_range_t, R&& rg, const Allocator& = Allocator());
forward_list(const forward_list& x);
forward_list(forward_list&& x);
forward_list(const forward_list& x, const type_identity_t<Allocator>&);
forward_list(forward_list&& x, const type_identity_t<Allocator>&);
forward_list(initializer_list<T>, const Allocator& = Allocator());
~forward_list();
forward_list& operator=(const forward_list& x);
forward_list& operator=(forward_list&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
forward_list& operator=(initializer_list<T>);
template<class InputIterator>

void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

void assign_range(R&& rg);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const noexcept;

// 24.3.9.3, iterators
iterator before_begin() noexcept;
const_iterator before_begin() const noexcept;
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cbefore_begin() const noexcept;
const_iterator cend() const noexcept;

§ 24.3.9.1 868

© ISO/IEC N4910

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type max_size() const noexcept;

// 24.3.9.4, element access
reference front();
const_reference front() const;

// 24.3.9.5, modifiers
template<class... Args> reference emplace_front(Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range<T> R>

void prepend_range(R&& rg);
void pop_front();

template<class... Args> iterator emplace_after(const_iterator position, Args&&... args);
iterator insert_after(const_iterator position, const T& x);
iterator insert_after(const_iterator position, T&& x);

iterator insert_after(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert_after(const_iterator position, InputIterator first, InputIterator last);
iterator insert_after(const_iterator position, initializer_list<T> il);
template<container-compatible-range<T> R>

iterator insert_range_after(const_iterator position, R&& rg);

iterator erase_after(const_iterator position);
iterator erase_after(const_iterator position, const_iterator last);
void swap(forward_list&)

noexcept(allocator_traits<Allocator>::is_always_equal::value);

void resize(size_type sz);
void resize(size_type sz, const value_type& c);
void clear() noexcept;

// 24.3.9.6, forward_list operations
void splice_after(const_iterator position, forward_list& x);
void splice_after(const_iterator position, forward_list&& x);
void splice_after(const_iterator position, forward_list& x, const_iterator i);
void splice_after(const_iterator position, forward_list&& x, const_iterator i);
void splice_after(const_iterator position, forward_list& x,

const_iterator first, const_iterator last);
void splice_after(const_iterator position, forward_list&& x,

const_iterator first, const_iterator last);

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

size_type unique();
template<class BinaryPredicate> size_type unique(BinaryPredicate binary_pred);

void merge(forward_list& x);
void merge(forward_list&& x);
template<class Compare> void merge(forward_list& x, Compare comp);
template<class Compare> void merge(forward_list&& x, Compare comp);

void sort();
template<class Compare> void sort(Compare comp);

void reverse() noexcept;
};

§ 24.3.9.1 869

© ISO/IEC N4910

template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
forward_list(InputIterator, InputIterator, Allocator = Allocator())

-> forward_list<iter-value-type<InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
forward_list(from_range_t, R&&, Allocator = Allocator())

-> forward_list<ranges::range_value_t<R>, Allocator>;
}

4 An incomplete type T may be used when instantiating forward_list if the allocator meets the allocator completenessrequirements (16.4.4.6.2). T shall be complete before any member of the resulting specialization of forward_list isreferenced.
24.3.9.2 Constructors, copy, and assignment [forward.list.cons]

explicit forward_list(const Allocator&);

1 Effects: Constructs an empty forward_list object using the specified allocator.
2 Complexity: Constant.

explicit forward_list(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a forward_list object with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

forward_list(size_type n, const T& value, const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a forward_list object with n copies of value using the specified allocator.
8 Complexity: Linear in n.

template<class InputIterator>
forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a forward_list object equal to the range [first, last).
10 Complexity: Linear in distance(first, last).

template<container-compatible-range<T> R>
forward_list(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a forward_list object with the elements of the range rg.
12 Complexity: Linear in ranges::distance(rg).
24.3.9.3 Iterators [forward.list.iter]

iterator before_begin() noexcept;
const_iterator before_begin() const noexcept;
const_iterator cbefore_begin() const noexcept;

1 Effects: cbefore_begin() is equivalent to const_cast<forward_list const&>(*this).before_begin().
2 Returns: A non-dereferenceable iterator that, when incremented, is equal to the iterator returned by begin().
3 Remarks: before_begin() == end() shall equal false.
24.3.9.4 Element access [forward.list.access]

reference front();
const_reference front() const;

1 Returns: *begin()
24.3.9.5 Modifiers [forward.list.modifiers]

1 None of the overloads of insert_after shall affect the validity of iterators and references, and erase_after shallinvalidate only iterators and references to the erased elements. If an exception is thrown during insert_after there

§ 24.3.9.5 870

© ISO/IEC N4910

shall be no effect. Inserting n elements into a forward_list is linear in n, and the number of calls to the copy or moveconstructor of T is exactly equal to n. Erasing n elements from a forward_list is linear in n and the number of calls tothe destructor of type T is exactly equal to n.
template<class... Args> reference emplace_front(Args&&... args);

2 Effects: Inserts an object of type value_type constructed with value_type(std::forward<Args>(args)...) atthe beginning of the list.
void push_front(const T& x);
void push_front(T&& x);

3 Effects: Inserts a copy of x at the beginning of the list.
template<container-compatible-range<T> R>

void prepend_range(R&& rg);

4 Effects: Inserts a copy of each element of rg at the beginning of the list.
[Note 1: The order of elements is not reversed. —end note]

void pop_front();

5 Effects: As if by erase_after(before_begin()).
iterator insert_after(const_iterator position, const T& x);
iterator insert_after(const_iterator position, T&& x);

6 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()).
7 Effects: Inserts a copy of x after position.
8 Returns: An iterator pointing to the copy of x.

iterator insert_after(const_iterator position, size_type n, const T& x);

9 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()).
10 Effects: Inserts n copies of x after position.
11 Returns: An iterator pointing to the last inserted copy of x or position if n == 0.

template<class InputIterator>
iterator insert_after(const_iterator position, InputIterator first, InputIterator last);

12 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()).Neither first nor last are iterators in *this.
13 Effects: Inserts copies of elements in [first, last) after position.
14 Returns: An iterator pointing to the last inserted element or position if first == last.

template<container-compatible-range<T> R>
iterator insert_range_after(const_iterator position, R&& rg);

15 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()). rgand *this do not overlap.
16 Effects: Inserts copies of elements in the range rg after position.
17 Returns: An iterator pointing to the last inserted element, or position if rg is empty.

iterator insert_after(const_iterator position, initializer_list<T> il);

18 Effects: insert_after(p, il.begin(), il.end()).
19 Returns: An iterator pointing to the last inserted element or position if il is empty.

template<class... Args>
iterator emplace_after(const_iterator position, Args&&... args);

20 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()).
21 Effects: Inserts an object of type value_type constructed with value_type(std::forward<Args>(args)...)after position.
§ 24.3.9.5 871

© ISO/IEC N4910

22 Returns: An iterator pointing to the new object.
iterator erase_after(const_iterator position);

23 Preconditions: The iterator following position is dereferenceable.
24 Effects: Erases the element pointed to by the iterator following position.
25 Returns: An iterator pointing to the element following the one that was erased, or end() if no such element exists.
26 Throws: Nothing.

iterator erase_after(const_iterator position, const_iterator last);

27 Preconditions: All iterators in the range (position, last) are dereferenceable.
28 Effects: Erases the elements in the range (position, last).
29 Returns: last.
30 Throws: Nothing.

void resize(size_type sz);

31 Preconditions: T is Cpp17DefaultInsertable into *this.
32 Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end()) - sz elements fromthe list. Otherwise, inserts sz - distance(begin(), end()) default-inserted elements at the end of the list.

void resize(size_type sz, const value_type& c);

33 Preconditions: T is Cpp17CopyInsertable into *this.
34 Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end()) - sz elements fromthe list. Otherwise, inserts sz - distance(begin(), end()) copies of c at the end of the list.

void clear() noexcept;

35 Effects: Erases all elements in the range [begin(), end()).
36 Remarks: Does not invalidate past-the-end iterators.
24.3.9.6 Operations [forward.list.ops]

1 In this subclause, arguments for a template parameter named Predicate or BinaryPredicate shall meet the corre-sponding requirements in 27.2. The semantics of i + n, where i is an iterator into the list and n is an integer, are thesame as those of next(i, n). The expression i - n, where i is an iterator into the list and n is an integer, means aniterator j such that j + n == i is true. For merge and sort, the definitions and requirements in 27.8 apply.
void splice_after(const_iterator position, forward_list& x);
void splice_after(const_iterator position, forward_list&& x);

2 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()). get_-
allocator() == x.get_allocator() is true. addressof(x) != this is true.

3 Effects: Inserts the contents of x after position, and x becomes empty. Pointers and references to the movedelements of x now refer to those same elements but as members of *this. Iterators referring to the movedelements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
4 Throws: Nothing.
5 Complexity: O(distance(x.begin(), x.end()))

void splice_after(const_iterator position, forward_list& x, const_iterator i);
void splice_after(const_iterator position, forward_list&& x, const_iterator i);

6 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()). Theiterator following i is a dereferenceable iterator in x. get_allocator() == x.get_allocator() is true.
7 Effects: Inserts the element following i into *this, following position, and removes it from x. The result isunchanged if position == i or position == ++i. Pointers and references to *++i continue to refer to the sameelement but as a member of *this. Iterators to *++i continue to refer to the same element, but now behave asiterators into *this, not into x.
8 Throws: Nothing.
§ 24.3.9.6 872

© ISO/IEC N4910

9 Complexity: O(1)

void splice_after(const_iterator position, forward_list& x,
const_iterator first, const_iterator last);

void splice_after(const_iterator position, forward_list&& x,
const_iterator first, const_iterator last);

10 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(), end()).
(first, last) is a valid range in x, and all iterators in the range (first, last) are dereferenceable. position isnot an iterator in the range (first, last). get_allocator() == x.get_allocator() is true.

11 Effects: Inserts elements in the range (first, last) after position and removes the elements from x. Pointersand references to the moved elements of x now refer to those same elements but as members of *this. Iteratorsreferring to the moved elements will continue to refer to their elements, but they now behave as iterators into
*this, not into x.

12 Complexity: O(distance(first, last))

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

13 Effects: Erases all the elements in the list referred to by a list iterator i for which the following conditions hold:
*i == value (for remove()), pred(*i) is true (for remove_if()). Invalidates only the iterators and referencesto the erased elements.

14 Returns: The number of elements erased.
15 Throws: Nothing unless an exception is thrown by the equality comparison or the predicate.
16 Complexity: Exactly distance(begin(), end()) applications of the corresponding predicate.
17 Remarks: Stable (16.4.6.8).

size_type unique();
template<class BinaryPredicate> size_type unique(BinaryPredicate binary_pred);

18 Let binary_pred be equal_to<>{} for the first overload.
19 Preconditions: binary_pred is an equivalence relation.
20 Effects: Erases all but the first element from every consecutive group of equivalent elements. That is, for anonempty list, erases all elements referred to by the iterator i in the range [begin() + 1, end()) for which

binary_pred(*i, *(i - 1)) is true. Invalidates only the iterators and references to the erased elements.
21 Returns: The number of elements erased.
22 Throws: Nothing unless an exception is thrown by the predicate.
23 Complexity: If empty() is false, exactly distance(begin(), end()) - 1 applications of the correspondingpredicate, otherwise no applications of the predicate.

void merge(forward_list& x);
void merge(forward_list&& x);
template<class Compare> void merge(forward_list& x, Compare comp);
template<class Compare> void merge(forward_list&& x, Compare comp);

24 Let comp be less<> for the first two overloads.
25 Preconditions: *this and x are both sorted with respect to the comparator comp, and get_allocator() ==

x.get_allocator() is true.
26 Effects: If addressof(x) == this, there are no effects. Otherwise, merges the two sorted ranges [begin(), end())and [x.begin(), x.end()). The result is a range that is sorted with respect to the comparator comp. Pointers andreferences to the moved elements of x now refer to those same elements but as members of *this. Iteratorsreferring to the moved elements will continue to refer to their elements, but they now behave as iterators into

*this, not into x.
27 Complexity: Atmost distance(begin(), end()) + distance(x.begin(), x.end()) - 1 comparisons if addressof(x)

!= this; otherwise, no comparisons are performed.
28 Remarks: Stable (16.4.6.8). If addressof(x) != this, x is empty after the merge. No elements are copied bythis operation. If an exception is thrown other than by a comparison, there are no effects.
§ 24.3.9.6 873

© ISO/IEC N4910

void sort();
template<class Compare> void sort(Compare comp);

29 Effects: Sorts the list according to the operator< or the comp function object. If an exception is thrown, the orderof the elements in *this is unspecified. Does not affect the validity of iterators and references.
30 Complexity: Approximately N logN comparisons, where N is distance(begin(), end()).
31 Remarks: Stable (16.4.6.8).

void reverse() noexcept;

32 Effects: Reverses the order of the elements in the list. Does not affect the validity of iterators and references.
33 Complexity: Linear time.
24.3.9.7 Erasure [forward.list.erasure]

template<class T, class Allocator, class U>
typename forward_list<T, Allocator>::size_type
erase(forward_list<T, Allocator>& c, const U& value);

1 Effects: Equivalent to: return erase_if(c, [&](auto& elem) { return elem == value; });

template<class T, class Allocator, class Predicate>
typename forward_list<T, Allocator>::size_type
erase_if(forward_list<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to: return c.remove_if(pred);

24.3.10 Class template list [list]
24.3.10.1 Overview [list.overview]

1 A list is a sequence container that supports bidirectional iterators and allows constant time insert and erase operationsanywhere within the sequence, with storage management handled automatically. Unlike vectors (24.3.11) and deques(24.3.8), fast random access to list elements is not supported, but many algorithms only need sequential access anyway.
2 A list meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-awarecontainer (24.2.2.5), and of a sequence container, includingmost of the optional sequence container requirements (24.2.4).The exceptions are the operator[] and at member functions, which are not provided.215 Descriptions are providedhere only for operations on list that are not described in one of these tables or for operations where there is additionalsemantic information.

namespace std {
template<class T, class Allocator = allocator<T>>
class list {
public:// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// 24.3.10.2, construct/copy/destroy
list() : list(Allocator()) { }
explicit list(const Allocator&);
explicit list(size_type n, const Allocator& = Allocator());
list(size_type n, const T& value, const Allocator& = Allocator());

215) These member functions are only provided by containers whose iterators are random access iterators.
§ 24.3.10.1 874

© ISO/IEC N4910

template<class InputIterator>
list(InputIterator first, InputIterator last, const Allocator& = Allocator());

template<container-compatible-range<T> R>
list(from_range_t, R&& rg, const Allocator& = Allocator());

list(const list& x);
list(list&& x);
list(const list&, const type_identity_t<Allocator>&);
list(list&&, const type_identity_t<Allocator>&);
list(initializer_list<T>, const Allocator& = Allocator());
~list();
list& operator=(const list& x);
list& operator=(list&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
list& operator=(initializer_list<T>);
template<class InputIterator>

void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

void assign_range(R&& rg);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// 24.3.10.3, capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;
void resize(size_type sz);
void resize(size_type sz, const T& c);

// element access
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 24.3.10.4, modifiers
template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range<T> R>

void prepend_range(R&& rg);
void pop_front();
void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range<T> R>

void append_range(R&& rg);
void pop_back();

§ 24.3.10.1 875

© ISO/IEC N4910

template<class... Args> iterator emplace(const_iterator position, Args&&... args);
iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

iterator insert_range(const_iterator position, R&& rg);
iterator insert(const_iterator position, initializer_list<T> il);

iterator erase(const_iterator position);
iterator erase(const_iterator position, const_iterator last);
void swap(list&) noexcept(allocator_traits<Allocator>::is_always_equal::value);
void clear() noexcept;

// 24.3.10.5, list operations
void splice(const_iterator position, list& x);
void splice(const_iterator position, list&& x);
void splice(const_iterator position, list& x, const_iterator i);
void splice(const_iterator position, list&& x, const_iterator i);
void splice(const_iterator position, list& x, const_iterator first, const_iterator last);
void splice(const_iterator position, list&& x, const_iterator first, const_iterator last);

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

size_type unique();
template<class BinaryPredicate>

size_type unique(BinaryPredicate binary_pred);

void merge(list& x);
void merge(list&& x);
template<class Compare> void merge(list& x, Compare comp);
template<class Compare> void merge(list&& x, Compare comp);

void sort();
template<class Compare> void sort(Compare comp);

void reverse() noexcept;
};

template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
list(InputIterator, InputIterator, Allocator = Allocator())

-> list<iter-value-type<InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
list(from_range_t, R&&, Allocator = Allocator())

-> list<ranges::range_value_t<R>, Allocator>;
}

3 An incomplete type Tmay be used when instantiating list if the allocator meets the allocator completeness requirements(16.4.4.6.2). T shall be complete before any member of the resulting specialization of list is referenced.
24.3.10.2 Constructors, copy, and assignment [list.cons]

explicit list(const Allocator&);

1 Effects: Constructs an empty list, using the specified allocator.
2 Complexity: Constant.

explicit list(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a list with n default-inserted elements using the specified allocator.

§ 24.3.10.2 876

© ISO/IEC N4910

5 Complexity: Linear in n.
list(size_type n, const T& value, const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a list with n copies of value, using the specified allocator.
8 Complexity: Linear in n.

template<class InputIterator>
list(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a list equal to the range [first, last).
10 Complexity: Linear in distance(first, last).

template<container-compatible-range<T> R>
list(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a list object with the elements of the range rg.
12 Complexity: Linear in ranges::distance(rg).
24.3.10.3 Capacity [list.capacity]

void resize(size_type sz);

1 Preconditions: T is Cpp17DefaultInsertable into *this.
2 Effects: If size() < sz, appends sz - size() default-inserted elements to the sequence. If sz <= size(),equivalent to:

list<T>::iterator it = begin();
advance(it, sz);
erase(it, end());

void resize(size_type sz, const T& c);

3 Preconditions: T is Cpp17CopyInsertable into *this.
4 Effects: As if by:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size()) {
iterator i = begin();
advance(i, sz);
erase(i, end());

}
else
; // do nothing

24.3.10.4 Modifiers [list.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position, InputIterator first,
InputIterator last);

template<container-compatible-range<T> R>
iterator insert_range(const_iterator position, R&& rg);

iterator insert(const_iterator position, initializer_list<T>);

template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
template<class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range<T> R>

void prepend_range(R&& rg);

§ 24.3.10.4 877

© ISO/IEC N4910

void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range<T> R>

void append_range(R&& rg);

1 Complexity: Insertion of a single element into a list takes constant time and exactly one call to a constructor of T.Insertion of multiple elements into a list is linear in the number of elements inserted, and the number of calls tothe copy constructor or move constructor of T is exactly equal to the number of elements inserted.
2 Remarks: Does not affect the validity of iterators and references. If an exception is thrown there are no effects.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

void pop_front();
void pop_back();
void clear() noexcept;

3 Effects: Invalidates only the iterators and references to the erased elements.
4 Throws: Nothing.
5 Complexity: Erasing a single element is a constant time operation with a single call to the destructor of T. Erasinga range in a list is linear time in the size of the range and the number of calls to the destructor of type T is exactlyequal to the size of the range.
24.3.10.5 Operations [list.ops]

1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically forthem.216 In this subclause, arguments for a template parameter named Predicate or BinaryPredicate shall meet thecorresponding requirements in 27.2. The semantics of i + n and i - n, where i is an iterator into the list and n is aninteger, are the same as those of next(i, n) and prev(i, n), respectively. For merge and sort, the definitions andrequirements in 27.8 apply.
2 list provides three splice operations that destructively move elements from one list to another. The behavior of spliceoperations is undefined if get_allocator() != x.get_allocator().

void splice(const_iterator position, list& x);
void splice(const_iterator position, list&& x);

3 Preconditions: addressof(x) != this is true.
4 Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the movedelements of x now refer to those same elements but as members of *this. Iterators referring to the movedelements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
5 Throws: Nothing.
6 Complexity: Constant time.

void splice(const_iterator position, list& x, const_iterator i);
void splice(const_iterator position, list&& x, const_iterator i);

7 Preconditions: i is a valid dereferenceable iterator of x.
8 Effects: Inserts an element pointed to by i from list x before position and removes the element from x. Theresult is unchanged if position == i or position == ++i. Pointers and references to *i continue to refer tothis same element but as a member of *this. Iterators to *i (including i itself) continue to refer to the sameelement, but now behave as iterators into *this, not into x.
9 Throws: Nothing.
10 Complexity: Constant time.

void splice(const_iterator position, list& x, const_iterator first,
const_iterator last);

void splice(const_iterator position, list&& x, const_iterator first,
const_iterator last);

11 Preconditions: [first, last) is a valid range in x. position is not an iterator in the range [first, last).
216) As specified in 16.4.4.6, the requirements in this Clause apply only to lists whose allocators compare equal.
§ 24.3.10.5 878

© ISO/IEC N4910

12 Effects: Inserts elements in the range [first, last) before position and removes the elements from x. Pointersand references to the moved elements of x now refer to those same elements but as members of *this. Iteratorsreferring to the moved elements will continue to refer to their elements, but they now behave as iterators into
*this, not into x.

13 Throws: Nothing.
14 Complexity: Constant time if addressof(x) == this; otherwise, linear time.

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

15 Effects: Erases all the elements in the list referred to by a list iterator i for which the following conditions hold:
*i == value, pred(*i) != false. Invalidates only the iterators and references to the erased elements.

16 Returns: The number of elements erased.
17 Throws: Nothing unless an exception is thrown by *i == value or pred(*i) != false.
18 Complexity: Exactly size() applications of the corresponding predicate.
19 Remarks: Stable (16.4.6.8).

size_type unique();
template<class BinaryPredicate> size_type unique(BinaryPredicate binary_pred);

20 Let binary_pred be equal_to<>{} for the first overload.
21 Preconditions: binary_pred is an equivalence relation.
22 Effects: Erases all but the first element from every consecutive group of equivalent elements. That is, for anonempty list, erases all elements referred to by the iterator i in the range [begin() + 1, end()) for which

binary_pred(*i, *(i - 1)) is true. Invalidates only the iterators and references to the erased elements.
23 Returns: The number of elements erased.
24 Throws: Nothing unless an exception is thrown by the predicate.
25 Complexity: If empty() is false, exactly size() - 1 applications of the corresponding predicate, otherwise noapplications of the predicate.

void merge(list& x);
void merge(list&& x);
template<class Compare> void merge(list& x, Compare comp);
template<class Compare> void merge(list&& x, Compare comp);

26 Let comp be less<> for the first two overloads.
27 Preconditions: *this and x are both sorted with respect to the comparator comp, and get_allocator() ==

x.get_allocator() is true.
28 Effects: If addressof(x) == this, there are no effects. Otherwise, merges the two sorted ranges [begin(), end())and [x.begin(), x.end()). The result is a range that is sorted with respect to the comparator comp. Pointers andreferences to the moved elements of x now refer to those same elements but as members of *this. Iteratorsreferring to the moved elements will continue to refer to their elements, but they now behave as iterators into

*this, not into x.
29 Complexity: At most size() + x.size() - 1 comparisons if addressof(x) != this; otherwise, no compar-isons are performed.
30 Remarks: Stable (16.4.6.8). If addressof(x) != this, x is empty after the merge. No elements are copied bythis operation. If an exception is thrown other than by a comparison there are no effects.

void reverse() noexcept;

31 Effects: Reverses the order of the elements in the list. Does not affect the validity of iterators and references.
32 Complexity: Linear time.

void sort();
template<class Compare> void sort(Compare comp);

33 Effects: Sorts the list according to the operator< or a Compare function object. If an exception is thrown, theorder of the elements in *this is unspecified. Does not affect the validity of iterators and references.
§ 24.3.10.5 879

© ISO/IEC N4910

34 Complexity: Approximately N logN comparisons, where N == size().
35 Remarks: Stable (16.4.6.8).
24.3.10.6 Erasure [list.erasure]

template<class T, class Allocator, class U>
typename list<T, Allocator>::size_type
erase(list<T, Allocator>& c, const U& value);

1 Effects: Equivalent to: return erase_if(c, [&](auto& elem) { return elem == value; });

template<class T, class Allocator, class Predicate>
typename list<T, Allocator>::size_type
erase_if(list<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to: return c.remove_if(pred);

24.3.11 Class template vector [vector]
24.3.11.1 Overview [vector.overview]

1 A vector is a sequence container that supports (amortized) constant time insert and erase operations at the end; insertand erase in the middle take linear time. Storage management is handled automatically, though hints can be given toimprove efficiency.
2 A vectormeets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-awarecontainer (24.2.2.5), of a sequence container, including most of the optional sequence container requirements (24.2.4),and, for an element type other than bool, of a contiguous container (24.2.2.1). The exceptions are the push_front,

prepend_range, pop_front, and emplace_front member functions, which are not provided. Descriptions are providedhere only for operations on vector that are not described in one of these tables or for operations where there is additionalsemantic information.
3 The types iterator and const_iterator meet the constexpr iterator requirements (25.3.1).

namespace std {
template<class T, class Allocator = allocator<T>>
class vector {
public:// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// 24.3.11.2, construct/copy/destroy
constexpr vector() noexcept(noexcept(Allocator())) : vector(Allocator()) { }
constexpr explicit vector(const Allocator&) noexcept;
constexpr explicit vector(size_type n, const Allocator& = Allocator());
constexpr vector(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<T> R>

constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr vector(const vector& x);
constexpr vector(vector&&) noexcept;
constexpr vector(const vector&, const type_identity_t<Allocator>&);
constexpr vector(vector&&, const type_identity_t<Allocator>&);
constexpr vector(initializer_list<T>, const Allocator& = Allocator());
constexpr ~vector();

§ 24.3.11.1 880

© ISO/IEC N4910

constexpr vector& operator=(const vector& x);
constexpr vector& operator=(vector&& x)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

constexpr vector& operator=(initializer_list<T>);
template<class InputIterator>

constexpr void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

constexpr void assign_range(R&& rg);
constexpr void assign(size_type n, const T& u);
constexpr void assign(initializer_list<T>);
constexpr allocator_type get_allocator() const noexcept;

// iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// 24.3.11.3, capacity
[[nodiscard]] constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr size_type capacity() const noexcept;
constexpr void resize(size_type sz);
constexpr void resize(size_type sz, const T& c);
constexpr void reserve(size_type n);
constexpr void shrink_to_fit();

// element access
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr const_reference at(size_type n) const;
constexpr reference at(size_type n);
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;

// 24.3.11.4, data access
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

// 24.3.11.5, modifiers
template<class... Args> constexpr reference emplace_back(Args&&... args);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range<T> R>

constexpr void append_range(R&& rg);
constexpr void pop_back();

template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);

§ 24.3.11.1 881

© ISO/IEC N4910

template<class InputIterator>
constexpr iterator insert(const_iterator position,

InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T> il);
constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(vector&)

noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

constexpr void clear() noexcept;
};

template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
vector(InputIterator, InputIterator, Allocator = Allocator())

-> vector<iter-value-type<InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
vector(from_range_t, R&&, Allocator = Allocator())

-> vector<ranges::range_value_t<R>, Allocator>;
}

4 An incomplete type T may be used when instantiating vector if the allocator meets the allocator completeness require-ments (16.4.4.6.2). T shall be complete before any member of the resulting specialization of vector is referenced.
24.3.11.2 Constructors [vector.cons]

constexpr explicit vector(const Allocator&) noexcept;

1 Effects: Constructs an empty vector, using the specified allocator.
2 Complexity: Constant.

constexpr explicit vector(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a vector with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

constexpr vector(size_type n, const T& value,
const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a vector with n copies of value, using the specified allocator.
8 Complexity: Linear in n.

template<class InputIterator>
constexpr vector(InputIterator first, InputIterator last,

const Allocator& = Allocator());

9 Effects: Constructs a vector equal to the range [first, last), using the specified allocator.
10 Complexity: Makes only N calls to the copy constructor of T (where N is the distance between first and last)and no reallocations if iterators first and last are of forward, bidirectional, or random access categories. Itmakes order N calls to the copy constructor of T and order logN reallocations if they are just input iterators.

template<container-compatible-range<T> R>
constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a vector object with the elements of the range rg, using the specified allocator.
12 Complexity: Initializes exactly N elements from the results of dereferencing successive iterators of rg, where Nis ranges::distance(rg). Performs no reallocations if R models ranges::forward_range or ranges::sized_-

range; otherwise, performs order logN reallocations and order N calls to the copy or move constructor of
T.

§ 24.3.11.2 882

© ISO/IEC N4910

24.3.11.3 Capacity [vector.capacity]

constexpr size_type capacity() const noexcept;

1 Returns: The total number of elements that the vector can hold without requiring reallocation.
2 Complexity: Constant time.

constexpr void reserve(size_type n);

3 Preconditions: T is Cpp17MoveInsertable into *this.
4 Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage allocationaccordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens;and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and only if thecurrent capacity is less than the argument of reserve(). If an exception is thrown other than by the moveconstructor of a non-Cpp17CopyInsertable type, there are no effects.
5 Throws: length_error if n > max_size().217
6 Complexity: It does not change the size of the sequence and takes at most linear time in the size of the sequence.
7 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in thesequence, as well as the past-the-end iterator.

[Note 1: If no reallocation happens, they remain valid. —end note]
No reallocation shall take place during insertions that happen after a call to reserve() until an insertion wouldmake the size of the vector greater than the value of capacity().

constexpr void shrink_to_fit();

8 Preconditions: T is Cpp17MoveInsertable into *this.
9 Effects: shrink_to_fit is a non-binding request to reduce capacity() to size().

[Note 2: The request is non-binding to allow latitude for implementation-specific optimizations. —end note]
It does not increase capacity(), but may reduce capacity() by causing reallocation. If an exception is thrownother than by the move constructor of a non-Cpp17CopyInsertable T there are no effects.

10 Complexity: If reallocation happens, linear in the size of the sequence.
11 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in thesequence as well as the past-the-end iterator.

[Note 3: If no reallocation happens, they remain valid. —end note]
constexpr void swap(vector& x)

noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

12 Effects: Exchanges the contents and capacity() of *this with that of x.
13 Complexity: Constant time.

constexpr void resize(size_type sz);

14 Preconditions: T is Cpp17MoveInsertable and Cpp17DefaultInsertable into *this.
15 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends sz -

size() default-inserted elements to the sequence.
16 Remarks: If an exception is thrown other than by the move constructor of a non-Cpp17CopyInsertable T there areno effects.

constexpr void resize(size_type sz, const T& c);

17 Preconditions: T is Cpp17CopyInsertable into *this.
18 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends sz -

size() copies of c to the sequence.
19 Remarks: If an exception is thrown there are no effects.

217) reserve() uses Allocator::allocate() which can throw an appropriate exception.
§ 24.3.11.3 883

© ISO/IEC N4910

24.3.11.4 Data [vector.data]

constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

1 Returns: A pointer such that [data(), data() + size()) is a valid range. For a non-empty vector, data() ==
addressof(front()).

2 Complexity: Constant time.
24.3.11.5 Modifiers [vector.modifiers]

constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range<T> R>

constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T>);

template<class... Args> constexpr reference emplace_back(Args&&... args);
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range<T> R>

constexpr void append_range(R&& rg);

1 Complexity: If reallocation happens, linear in the number of elements of the resulting vector; otherwise, linear inthe number of elements inserted plus the distance to the end of the vector.
2 Remarks: Causes reallocation if the new size is greater than the old capacity. Reallocation invalidates all thereferences, pointers, and iterators referring to the elements in the sequence, as well as the past-the-end iterator. Ifno reallocation happens, then references, pointers, and iterators before the insertion point remain valid but thoseat or after the insertion point, including the past-the-end iterator, are invalidated. If an exception is thrown otherthan by the copy constructor, move constructor, assignment operator, or move assignment operator of T or byany InputIterator operation there are no effects. If an exception is thrown while inserting a single element atthe end and T is Cpp17CopyInsertable or is_nothrow_move_constructible_v<T> is true, there are no effects.Otherwise, if an exception is thrown by the move constructor of a non-Cpp17CopyInsertable T, the effects areunspecified.

constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void pop_back();

3 Effects: Invalidates iterators and references at or after the point of the erase.
4 Throws: Nothing unless an exception is thrown by the assignment operator or move assignment operator of T.
5 Complexity: The destructor of T is called the number of times equal to the number of the elements erased, but theassignment operator of T is called the number of times equal to the number of elements in the vector after theerased elements.
24.3.11.6 Erasure [vector.erasure]

template<class T, class Allocator, class U>
constexpr typename vector<T, Allocator>::size_type
erase(vector<T, Allocator>& c, const U& value);

1 Effects: Equivalent to:
auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

§ 24.3.11.6 884

© ISO/IEC N4910

template<class T, class Allocator, class Predicate>
constexpr typename vector<T, Allocator>::size_type
erase_if(vector<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

24.3.12 Class vector<bool> [vector.bool]
1 To optimize space allocation, a specialization of vector for bool elements is provided:

namespace std {
template<class Allocator>
class vector<bool, Allocator> {
public:// types
using value_type = bool;
using allocator_type = Allocator;
using pointer = implementation-defined;
using const_pointer = implementation-defined;
using const_reference = bool;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// bit reference
class reference {

friend class vector;
constexpr reference() noexcept;

public:
constexpr reference(const reference&) = default;
constexpr ~reference();
constexpr operator bool() const noexcept;
constexpr reference& operator=(bool x) noexcept;
constexpr reference& operator=(const reference& x) noexcept;
constexpr const reference& operator=(bool x) const noexcept;
constexpr void flip() noexcept; // flips the bit

};

// construct/copy/destroy
constexpr vector() : vector(Allocator()) { }
constexpr explicit vector(const Allocator&);
constexpr explicit vector(size_type n, const Allocator& = Allocator());
constexpr vector(size_type n, const bool& value, const Allocator& = Allocator());
template<class InputIterator>

constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<bool> R>

constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr vector(const vector& x);
constexpr vector(vector&& x);
constexpr vector(const vector&, const type_identity_t<Allocator>&);
constexpr vector(vector&&, const type_identity_t<Allocator>&);
constexpr vector(initializer_list<bool>, const Allocator& = Allocator());
constexpr ~vector();
constexpr vector& operator=(const vector& x);
constexpr vector& operator=(vector&& x);
constexpr vector& operator=(initializer_list<bool>);
template<class InputIterator>

constexpr void assign(InputIterator first, InputIterator last);

§ 24.3.12 885

© ISO/IEC N4910

template<container-compatible-range<bool> R>
constexpr void assign_range(R&& rg);

constexpr void assign(size_type n, const bool& t);
constexpr void assign(initializer_list<bool>);
constexpr allocator_type get_allocator() const noexcept;

// iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr size_type capacity() const noexcept;
constexpr void resize(size_type sz, bool c = false);
constexpr void reserve(size_type n);
constexpr void shrink_to_fit();

// element access
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr const_reference at(size_type n) const;
constexpr reference at(size_type n);
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;

// modifiers
template<class... Args> constexpr reference emplace_back(Args&&... args);
constexpr void push_back(const bool& x);
template<container-compatible-range<bool> R>

constexpr void append_range(R&& rg);
constexpr void pop_back();
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr iterator insert(const_iterator position, const bool& x);
constexpr iterator insert(const_iterator position, size_type n, const bool& x);
template<class InputIterator>

constexpr iterator insert(const_iterator position,
InputIterator first, InputIterator last);

template<container-compatible-range<bool> R>
constexpr iterator insert_range(const_iterator position, R&& rg);

constexpr iterator insert(const_iterator position, initializer_list<bool> il);

constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(vector&);
constexpr static void swap(reference x, reference y) noexcept;
constexpr void flip() noexcept; // flips all bits
constexpr void clear() noexcept;

};
}

§ 24.3.12 886

© ISO/IEC N4910

2 Unless described below, all operations have the same requirements and semantics as the primary vector template,except that operations dealing with the bool value type map to bit values in the container storage and allocator_-
traits::construct (20.2.8.3) is not used to construct these values.

3 There is no requirement that the data be stored as a contiguous allocation of bool values. A space-optimized representa-tion of bits is recommended instead.
4 reference is a class that simulates the behavior of references of a single bit in vector<bool>. The conversion functionreturns true when the bit is set, and false otherwise. The assignment operators set the bit when the argument is(convertible to) true and clear it otherwise. flip reverses the state of the bit.

constexpr void flip() noexcept;

5 Effects: Replaces each element in the container with its complement.
constexpr static void swap(reference x, reference y) noexcept;

6 Effects: Exchanges the contents of x and y as if by:
bool b = x;
x = y;
y = b;

template<class Allocator> struct hash<vector<bool, Allocator>>;

7 The specialization is enabled (22.10.19).
24.4 Associative containers [associative]
24.4.1 In general [associative.general]

1 The header <map> defines the class templates map and multimap; the header <set> defines the class templates set and
multiset.

2 The following exposition-only alias templates may appear in deduction guides for associative containers:
template<class InputIterator>

using iter-value-type =
typename iterator_traits<InputIterator>::value_type; // exposition only

template<class InputIterator>
using iter-key-type = remove_const_t<
typename iterator_traits<InputIterator>::value_type::first_type>; // exposition only

template<class InputIterator>
using iter-mapped-type =

typename iterator_traits<InputIterator>::value_type::second_type; // exposition only
template<class InputIterator>

using iter-to-alloc-type = pair<
add_const_t<typename iterator_traits<InputIterator>::value_type::first_type>,
typename iterator_traits<InputIterator>::value_type::second_type>; // exposition only

template<ranges::input_range Range>
using range-key-type =
remove_const_t<typename ranges::range_value_t<Range>::first_type>; // exposition only

template<ranges::input_range Range>
using range-mapped-type = typename ranges::range_value_t<Range>::second_type; // exposition only

template<ranges::input_range Range>
using range-to-alloc-type =
pair<add_const_t<typename ranges::range_value_t<Range>::first_type>,

typename ranges::range_value_t<Range>::second_type>; // exposition only
24.4.2 Header <map> synopsis [associative.map.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.4.4, class template map

template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>

class map;

§ 24.4.2 887

© ISO/IEC N4910

template<class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key, T, Compare, Allocator>& x,

const map<Key, T, Compare, Allocator>& y);
template<class Key, class T, class Compare, class Allocator>
synth-three-way-result<pair<const Key, T>>

operator<=>(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);

template<class Key, class T, class Compare, class Allocator>
void swap(map<Key, T, Compare, Allocator>& x,

map<Key, T, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class T, class Compare, class Allocator, class Predicate>
typename map<Key, T, Compare, Allocator>::size_type

erase_if(map<Key, T, Compare, Allocator>& c, Predicate pred);

// 24.4.5, class template multimap
template<class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T>>>
class multimap;

template<class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key, T, Compare, Allocator>& x,

const multimap<Key, T, Compare, Allocator>& y);
template<class Key, class T, class Compare, class Allocator>
synth-three-way-result<pair<const Key, T>>
operator<=>(const multimap<Key, T, Compare, Allocator>& x,

const multimap<Key, T, Compare, Allocator>& y);

template<class Key, class T, class Compare, class Allocator>
void swap(multimap<Key, T, Compare, Allocator>& x,

multimap<Key, T, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class T, class Compare, class Allocator, class Predicate>
typename multimap<Key, T, Compare, Allocator>::size_type

erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);

namespace pmr {
template<class Key, class T, class Compare = less<Key>>

using map = std::map<Key, T, Compare,
polymorphic_allocator<pair<const Key, T>>>;

template<class Key, class T, class Compare = less<Key>>
using multimap = std::multimap<Key, T, Compare,

polymorphic_allocator<pair<const Key, T>>>;
}

}

24.4.3 Header <set> synopsis [associative.set.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.4.6, class template set

template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
class set;

template<class Key, class Compare, class Allocator>
bool operator==(const set<Key, Compare, Allocator>& x,

const set<Key, Compare, Allocator>& y);

§ 24.4.3 888

© ISO/IEC N4910

template<class Key, class Compare, class Allocator>
synth-three-way-result<Key> operator<=>(const set<Key, Compare, Allocator>& x,

const set<Key, Compare, Allocator>& y);

template<class Key, class Compare, class Allocator>
void swap(set<Key, Compare, Allocator>& x,

set<Key, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class Compare, class Allocator, class Predicate>
typename set<Key, Compare, Allocator>::size_type

erase_if(set<Key, Compare, Allocator>& c, Predicate pred);

// 24.4.7, class template multiset
template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
class multiset;

template<class Key, class Compare, class Allocator>
bool operator==(const multiset<Key, Compare, Allocator>& x,

const multiset<Key, Compare, Allocator>& y);
template<class Key, class Compare, class Allocator>
synth-three-way-result<Key> operator<=>(const multiset<Key, Compare, Allocator>& x,

const multiset<Key, Compare, Allocator>& y);

template<class Key, class Compare, class Allocator>
void swap(multiset<Key, Compare, Allocator>& x,

multiset<Key, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class Compare, class Allocator, class Predicate>
typename multiset<Key, Compare, Allocator>::size_type

erase_if(multiset<Key, Compare, Allocator>& c, Predicate pred);

namespace pmr {
template<class Key, class Compare = less<Key>>

using set = std::set<Key, Compare, polymorphic_allocator<Key>>;

template<class Key, class Compare = less<Key>>
using multiset = std::multiset<Key, Compare, polymorphic_allocator<Key>>;

}
}

24.4.4 Class template map [map]
24.4.4.1 Overview [map.overview]

1 A map is an associative container that supports unique keys (contains at most one of each key value) and provides forfast retrieval of values of another type T based on the keys. The map class supports bidirectional iterators.
2 A map meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-awarecontainer (24.2.2.5). and of an associative container (24.2.7). A map also provides most operations described in 24.2.7for unique keys. This means that a map supports the a_uniq operations in 24.2.7 but not the a_eq operations. For a

map<Key,T> the key_type is Key and the value_type is pair<const Key,T>. Descriptions are provided here only foroperations on map that are not described in one of those tables or for operations where there is additional semanticinformation.
namespace std {

template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>

class map {
public:// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using key_compare = Compare;

§ 24.4.4.1 889

© ISO/IEC N4910

using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;

class value_compare {
friend class map;

protected:
Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 24.4.4.2, construct/copy/destroy
map() : map(Compare()) { }
explicit map(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

template<container-compatible-range<value_type> R>
map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

map(const map& x);
map(map&& x);
explicit map(const Allocator&);
map(const map&, const type_identity_t<Allocator>&);
map(map&&, const type_identity_t<Allocator>&);
map(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

template<class InputIterator>
map(InputIterator first, InputIterator last, const Allocator& a)

: map(first, last, Compare(), a) { }
template<container-compatible-range<value_type> R>

map(from_range_t, R&& rg, const Allocator& a))
: map(from_range, std::forward<R>(rg), Compare(), a) { }

map(initializer_list<value_type> il, const Allocator& a)
: map(il, Compare(), a) { }

~map();
map& operator=(const map& x);
map& operator=(map&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

§ 24.4.4.1 890

© ISO/IEC N4910

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.4.4.3, element access
mapped_type& operator[](const key_type& x);
mapped_type& operator[](key_type&& x);
mapped_type& at(const key_type& x);
const mapped_type& at(const key_type& x) const;

// 24.4.4.4, modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& x);
pair<iterator, bool> insert(value_type&& x);
template<class P> pair<iterator, bool> insert(P&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class P>

iterator insert(const_iterator position, P&&);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);

§ 24.4.4.1 891

© ISO/IEC N4910

iterator erase(const_iterator first, const_iterator last);
void swap(map&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(map<Key, T, C2, Allocator>& source);

template<class C2>
void merge(map<Key, T, C2, Allocator>&& source);

template<class C2>
void merge(multimap<Key, T, C2, Allocator>& source);

template<class C2>
void merge(multimap<Key, T, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// map operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator, class Compare = less<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>

map(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
-> map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Compare, Allocator>;

template<ranges::input_range R, class Compare = less<range-key-type<R>,
class Allocator = allocator<range-to-alloc-type<R>>>

map(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> map<range-key-type<R>, range-mapped-type<R>, Compare, Allocator>;

template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>

map(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
-> map<Key, T, Compare, Allocator>;

§ 24.4.4.1 892

© ISO/IEC N4910

template<class InputIterator, class Allocator>
map(InputIterator, InputIterator, Allocator)

-> map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
less<iter-key-type<InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
map(from_range_t, R&&, Allocator)

-> map<range-key-type<R>, range-mapped-type<R>, less<range-key-type<R>>, Allocator>;

template<class Key, class T, class Allocator>
map(initializer_list<pair<Key, T>>, Allocator) -> map<Key, T, less<Key>, Allocator>;

}

24.4.4.2 Constructors, copy, and assignment [map.cons]

explicit map(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty map using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
map(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts elements fromthe range [first, last).
4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N logN , where

N is last - first.
template<container-compatible-range<value_type> R>

map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts elements fromthe range rg.
6 Complexity: Linear inN if rg is already sorted using comp and otherwiseN logN , whereN is ranges::distance(rg).
24.4.4.3 Element access [map.access]

mapped_type& operator[](const key_type& x);

1 Effects: Equivalent to: return try_emplace(x).first->second;

mapped_type& operator[](key_type&& x);

2 Effects: Equivalent to: return try_emplace(move(x)).first->second;

mapped_type& at(const key_type& x);
const mapped_type& at(const key_type& x) const;

3 Returns: A reference to the mapped_type corresponding to x in *this.
4 Throws: An exception object of type out_of_range if no such element is present.
5 Complexity: Logarithmic.
24.4.4.4 Modifiers [map.modifiers]

template<class P>
pair<iterator, bool> insert(P&& x);

template<class P>
iterator insert(const_iterator position, P&& x);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: The first form is equivalent to return emplace(std::forward<P>(x)). The second form is equivalentto return emplace_hint(position, std::forward<P>(x)).

§ 24.4.4.4 893

© ISO/IEC N4910

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

3 Preconditions: value_type is Cpp17EmplaceConstructible into map from piecewise_construct, forward_as_-
tuple(k), forward_as_tuple(std::forward<Args>(args)...).

4 Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise insertsan object of type value_type constructed with piecewise_construct, forward_as_tuple(k), forward_as_-
tuple(std::forward<Args>(args)...).

5 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
6 Complexity: The same as emplace and emplace_hint, respectively.

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

7 Preconditions: value_type is Cpp17EmplaceConstructible into map from piecewise_construct, forward_as_-
tuple(std::move(k)), forward_as_tuple(std::forward<Args>(args)...).

8 Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise in-serts an object of type value_type constructed with piecewise_construct, forward_as_tuple(std::move(k)),
forward_as_tuple(std::forward<Args>(args)...).

9 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
10 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

11 Mandates: is_assignable_v<mapped_type&, M&&> is true.
12 Preconditions: value_type is Cpp17EmplaceConstructible into map from k, forward<M>(obj).
13 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::forward<M>(obj)to e.second. Otherwise inserts an object of type value_type constructed with k, std::forward<M>(obj).
14 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
15 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

16 Mandates: is_assignable_v<mapped_type&, M&&> is true.
17 Preconditions: value_type is Cpp17EmplaceConstructible into map from move(k), forward<M>(obj).
18 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::forward<M>(obj) to

e.second. Otherwise inserts an object of type value_type constructedwith std::move(k), std::forward<M>(obj).
19 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
20 Complexity: The same as emplace and emplace_hint, respectively.
24.4.4.5 Erasure [map.erasure]

template<class Key, class T, class Compare, class Allocator, class Predicate>
typename map<Key, T, Compare, Allocator>::size_type

§ 24.4.4.5 894

© ISO/IEC N4910

erase_if(map<Key, T, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.4.5 Class template multimap [multimap]
24.4.5.1 Overview [multimap.overview]

1 A multimap is an associative container that supports equivalent keys (possibly containing multiple copies of the samekey value) and provides for fast retrieval of values of another type T based on the keys. The multimap class supportsbidirectional iterators.
2 A multimap meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-aware container (24.2.2.5), and of an associative container (24.2.7). A multimap also provides most operations describedin 24.2.7 for equal keys. This means that a multimap supports the a_eq operations in 24.2.7 but not the a_uniq operations.For a multimap<Key,T> the key_type is Key and the value_type is pair<const Key,T>. Descriptions are providedhere only for operations on multimap that are not described in one of those tables or for operations where there isadditional semantic information.

namespace std {
template<class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T>>>
class multimap {
public:// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using key_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;

class value_compare {
friend class multimap;

protected:
Compare comp;
value_compare(Compare c) : comp(c) { }

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 24.4.5.2, construct/copy/destroy
multimap() : multimap(Compare()) { }
explicit multimap(const Compare& comp, const Allocator& = Allocator());

§ 24.4.5.1 895

© ISO/IEC N4910

template<class InputIterator>
multimap(InputIterator first, InputIterator last,

const Compare& comp = Compare(),
const Allocator& = Allocator());

template<container-compatible-range<value_type> R>
multimap(from_range_t, R&& rg,

const Compare& comp = Compare(), const Allocator& = Allocator());
multimap(const multimap& x);
multimap(multimap&& x);
explicit multimap(const Allocator&);
multimap(const multimap&, const type_identity_t<Allocator>&);
multimap(multimap&&, const type_identity_t<Allocator>&);
multimap(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

template<class InputIterator>
multimap(InputIterator first, InputIterator last, const Allocator& a)

: multimap(first, last, Compare(), a) { }
template<container-compatible-range<value_type> R>

multimap(from_range_t, R&& rg, const Allocator& a))
: multimap(from_range, std::forward<R>(rg), Compare(), a) { }

multimap(initializer_list<value_type> il, const Allocator& a)
: multimap(il, Compare(), a) { }

~multimap();
multimap& operator=(const multimap& x);
multimap& operator=(multimap&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.4.5.3, modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& x);
iterator insert(value_type&& x);
template<class P> iterator insert(P&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class P> iterator insert(const_iterator position, P&& x);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);

§ 24.4.5.1 896

© ISO/IEC N4910

template<container-compatible-range<value_type> R>
void insert_range(R&& rg);

void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(multimap&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(multimap<Key, T, C2, Allocator>& source);

template<class C2>
void merge(multimap<Key, T, C2, Allocator>&& source);

template<class C2>
void merge(map<Key, T, C2, Allocator>& source);

template<class C2>
void merge(map<Key, T, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// map operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

§ 24.4.5.1 897

© ISO/IEC N4910

template<class InputIterator, class Compare = less<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>

multimap(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
-> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,

Compare, Allocator>;

template<ranges::input_range R, class Compare = less<range-key-type<R>>,
class Allocator = allocator<range-to-alloc-type<R>>>

multimap(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> multimap<range-key-type<R>, range-mapped-type<R>, Compare, Allocator>;

template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>

multimap(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
-> multimap<Key, T, Compare, Allocator>;

template<class InputIterator, class Allocator>
multimap(InputIterator, InputIterator, Allocator)
-> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,

less<iter-key-type<InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
multimap(from_range_t, R&&, Allocator)
-> multimap<range-key-type<R>, range-mapped-type<R>, less<range-key-type<R>>, Allocator>;

template<class Key, class T, class Allocator>
multimap(initializer_list<pair<Key, T>>, Allocator)
-> multimap<Key, T, less<Key>, Allocator>;

}

24.4.5.2 Constructors [multimap.cons]

explicit multimap(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty multimap using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
multimap(InputIterator first, InputIterator last,

const Compare& comp = Compare(),
const Allocator& = Allocator());

3 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts elementsfrom the range [first, last).
4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N logN , where

N is last - first.
template<container-compatible-range<value_type> R>

multimap(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts elementsfrom the range rg.
6 Complexity: Linear inN if rg is already sorted using comp and otherwiseN logN , whereN is ranges::distance(rg).
24.4.5.3 Modifiers [multimap.modifiers]

template<class P> iterator insert(P&& x);
template<class P> iterator insert(const_iterator position, P&& x);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: The first form is equivalent to return emplace(std::forward<P>(x)). The second form is equivalentto return emplace_hint(position, std::forward<P>(x)).

§ 24.4.5.3 898

© ISO/IEC N4910

24.4.5.4 Erasure [multimap.erasure]

template<class Key, class T, class Compare, class Allocator, class Predicate>
typename multimap<Key, T, Compare, Allocator>::size_type
erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.4.6 Class template set [set]
24.4.6.1 Overview [set.overview]

1 A set is an associative container that supports unique keys (contains at most one of each key value) and provides forfast retrieval of the keys themselves. The set class supports bidirectional iterators.
2 A set meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-awarecontainer (24.2.2.5). and of an associative container (24.2.7). A set also provides most operations described in 24.2.7for unique keys. This means that a set supports the a_uniq operations in 24.2.7 but not the a_eq operations. For a

set<Key> both the key_type and value_type are Key. Descriptions are provided here only for operations on set thatare not described in one of these tables and for operations where there is additional semantic information.
namespace std {

template<class Key, class Compare = less<Key>,
class Allocator = allocator<Key>>

class set {
public:// types
using key_type = Key;
using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;

// 24.4.6.2, construct/copy/destroy
set() : set(Compare()) { }
explicit set(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

template<container-compatible-range<value_type> R>
set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

set(const set& x);
set(set&& x);
explicit set(const Allocator&);
set(const set&, const type_identity_t<Allocator>&);

§ 24.4.6.1 899

© ISO/IEC N4910

set(set&&, const type_identity_t<Allocator>&);
set(initializer_list<value_type>, const Compare& = Compare(),

const Allocator& = Allocator());
template<class InputIterator>

set(InputIterator first, InputIterator last, const Allocator& a)
: set(first, last, Compare(), a) { }

template<container-compatible-range<value_type> R>
set(from_range_t, R&& rg, const Allocator& a))

: set(from_range, std::forward<R>(rg), Compare(), a) { }
set(initializer_list<value_type> il, const Allocator& a)

: set(il, Compare(), a) { }
~set();
set& operator=(const set& x);
set& operator=(set&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

set& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator,bool> insert(const value_type& x);
pair<iterator,bool> insert(value_type&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

§ 24.4.6.1 900

© ISO/IEC N4910

void swap(set&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&

is_nothrow_swappable_v<Compare>);
void clear() noexcept;

template<class C2>
void merge(set<Key, C2, Allocator>& source);

template<class C2>
void merge(set<Key, C2, Allocator>&& source);

template<class C2>
void merge(multiset<Key, C2, Allocator>& source);

template<class C2>
void merge(multiset<Key, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// set operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator,
class Compare = less<iter-value-type<InputIterator>>,
class Allocator = allocator<iter-value-type<InputIterator>>>

set(InputIterator, InputIterator,
Compare = Compare(), Allocator = Allocator())

-> set<iter-value-type<InputIterator>, Compare, Allocator>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

set(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> set<ranges::range_value_t<R>, Compare, Allocator>;

template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
set(initializer_list<Key>, Compare = Compare(), Allocator = Allocator())

-> set<Key, Compare, Allocator>;

§ 24.4.6.1 901

© ISO/IEC N4910

template<class InputIterator, class Allocator>
set(InputIterator, InputIterator, Allocator)

-> set<iter-value-type<InputIterator>,
less<iter-value-type<InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
set(from_range_t, R&&, Allocator)

-> set<ranges::range_value_t<R>, less<ranges::range_value_t<R>>, Allocator>;

template<class Key, class Allocator>
set(initializer_list<Key>, Allocator) -> set<Key, less<Key>, Allocator>;

}

24.4.6.2 Constructors, copy, and assignment [set.cons]

explicit set(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison objects and allocator.
2 Complexity: Constant.

template<class InputIterator>
set(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements fromthe range [first, last).
4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N logN , where

N is last - first.
template<container-compatible-range<value_type> R>

set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements fromthe range rg.
6 Complexity: Linear inN if rg is already sorted using comp and otherwiseN logN , whereN is ranges::distance(rg).
24.4.6.3 Erasure [set.erasure]

template<class Key, class Compare, class Allocator, class Predicate>
typename set<Key, Compare, Allocator>::size_type
erase_if(set<Key, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.4.7 Class template multiset [multiset]
24.4.7.1 Overview [multiset.overview]

1 A multiset is an associative container that supports equivalent keys (possibly contains multiple copies of the same keyvalue) and provides for fast retrieval of the keys themselves. The multiset class supports bidirectional iterators.
2 A multiset meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an allocator-aware container (24.2.2.5), of an associative container (24.2.7). multiset also provides most operations describedin 24.2.7 for duplicate keys. This means that a multiset supports the a_eq operations in 24.2.7 but not the a_uniqoperations. For a multiset<Key> both the key_type and value_type are Key. Descriptions are provided here onlyfor operations on multiset that are not described in one of these tables and for operations where there is additionalsemantic information.
§ 24.4.7.1 902

© ISO/IEC N4910

namespace std {
template<class Key, class Compare = less<Key>,

class Allocator = allocator<Key>>
class multiset {
public:// types
using key_type = Key;
using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;

// 24.4.7.2, construct/copy/destroy
multiset() : multiset(Compare()) { }
explicit multiset(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

template<container-compatible-range<value_type> R>
multiset(from_range_t, R&& rg,

const Compare& comp = Compare(), const Allocator& = Allocator());
multiset(const multiset& x);
multiset(multiset&& x);
explicit multiset(const Allocator&);
multiset(const multiset&, const type_identity_t<Allocator>&);
multiset(multiset&&, const type_identity_t<Allocator>&);
multiset(initializer_list<value_type>, const Compare& = Compare(),

const Allocator& = Allocator());
template<class InputIterator>

multiset(InputIterator first, InputIterator last, const Allocator& a)
: multiset(first, last, Compare(), a) { }

template<container-compatible-range<value_type> R>
multiset(from_range_t, R&& rg, const Allocator& a))

: multiset(from_range, std::forward<R>(rg), Compare(), a) { }
multiset(initializer_list<value_type> il, const Allocator& a)

: multiset(il, Compare(), a) { }
~multiset();
multiset& operator=(const multiset& x);
multiset& operator=(multiset&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

multiset& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;

§ 24.4.7.1 903

© ISO/IEC N4910

const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& x);
iterator insert(value_type&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(multiset&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(multiset<Key, C2, Allocator>& source);

template<class C2>
void merge(multiset<Key, C2, Allocator>&& source);

template<class C2>
void merge(set<Key, C2, Allocator>& source);

template<class C2>
void merge(set<Key, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// set operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

§ 24.4.7.1 904

© ISO/IEC N4910

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator,
class Compare = less<iter-value-type<InputIterator>>,
class Allocator = allocator<iter-value-type<InputIterator>>>

multiset(InputIterator, InputIterator,
Compare = Compare(), Allocator = Allocator())

-> multiset<iter-value-type<InputIterator>, Compare, Allocator>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

multiset(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> multiset<ranges::range_value_t<R>, Compare, Allocator>;

template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
multiset(initializer_list<Key>, Compare = Compare(), Allocator = Allocator())
-> multiset<Key, Compare, Allocator>;

template<class InputIterator, class Allocator>
multiset(InputIterator, InputIterator, Allocator)
-> multiset<iter-value-type<InputIterator>,

less<iter-value-type<InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
multiset(from_range_t, R&&, Allocator)
-> multiset<ranges::range_value_t<R>, less<ranges::range_value_t<R>>, Allocator>;

template<class Key, class Allocator>
multiset(initializer_list<Key>, Allocator) -> multiset<Key, less<Key>, Allocator>;

}

24.4.7.2 Constructors [multiset.cons]

explicit multiset(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty multiset using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
multiset(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts elementsfrom the range [first, last).

§ 24.4.7.2 905

© ISO/IEC N4910

4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N logN , where
N is last - first.

template<container-compatible-range<value_type> R>
multiset(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts elementsfrom the range rg.
6 Complexity: Linear inN if rg is already sorted using comp and otherwiseN logN , whereN is ranges::distance(rg).
24.4.7.3 Erasure [multiset.erasure]

template<class Key, class Compare, class Allocator, class Predicate>
typename multiset<Key, Compare, Allocator>::size_type
erase_if(multiset<Key, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.5 Unordered associative containers [unord]
24.5.1 In general [unord.general]

1 The header <unordered_map> defines the class templates unordered_map and unordered_multimap; the header <unordered_-
set> defines the class templates unordered_set and unordered_multiset.

2 The exposition-only alias templates iter-value-type, iter-key-type, iter-mapped-type, and iter-to-alloc-typedefined in 24.4.1 may appear in deduction guides for unordered containers.
24.5.2 Header <unordered_map> synopsis [unord.map.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.5.4, class template unordered_map
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<pair<const Key, T>>>

class unordered_map;

// 24.5.5, class template unordered_multimap
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<pair<const Key, T>>>

class unordered_multimap;

template<class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& a,

const unordered_map<Key, T, Hash, Pred, Alloc>& b);

template<class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,

const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);

§ 24.5.2 906

© ISO/IEC N4910

template<class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,

unordered_map<Key, T, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,

unordered_multimap<Key, T, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_map<K, T, H, P, A>::size_type

erase_if(unordered_map<K, T, H, P, A>& c, Predicate pred);

template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_multimap<K, T, H, P, A>::size_type

erase_if(unordered_multimap<K, T, H, P, A>& c, Predicate pred);

namespace pmr {
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_map =
std::unordered_map<Key, T, Hash, Pred,

polymorphic_allocator<pair<const Key, T>>>;
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_multimap =
std::unordered_multimap<Key, T, Hash, Pred,

polymorphic_allocator<pair<const Key, T>>>;

}
}

24.5.3 Header <unordered_set> synopsis [unord.set.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 24.5.6, class template unordered_set
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<Key>>

class unordered_set;

// 24.5.7, class template unordered_multiset
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<Key>>

class unordered_multiset;

template<class Key, class Hash, class Pred, class Alloc>
bool operator==(const unordered_set<Key, Hash, Pred, Alloc>& a,

const unordered_set<Key, Hash, Pred, Alloc>& b);

template<class Key, class Hash, class Pred, class Alloc>
bool operator==(const unordered_multiset<Key, Hash, Pred, Alloc>& a,

const unordered_multiset<Key, Hash, Pred, Alloc>& b);

§ 24.5.3 907

© ISO/IEC N4910

template<class Key, class Hash, class Pred, class Alloc>
void swap(unordered_set<Key, Hash, Pred, Alloc>& x,

unordered_set<Key, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,

unordered_multiset<Key, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

template<class K, class H, class P, class A, class Predicate>
typename unordered_set<K, H, P, A>::size_type

erase_if(unordered_set<K, H, P, A>& c, Predicate pred);

template<class K, class H, class P, class A, class Predicate>
typename unordered_multiset<K, H, P, A>::size_type

erase_if(unordered_multiset<K, H, P, A>& c, Predicate pred);

namespace pmr {
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_set = std::unordered_set<Key, Hash, Pred,
polymorphic_allocator<Key>>;

template<class Key,
class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_multiset = std::unordered_multiset<Key, Hash, Pred,
polymorphic_allocator<Key>>;

}
}

24.5.4 Class template unordered_map [unord.map]
24.5.4.1 Overview [unord.map.overview]

1 An unordered_map is an unordered associative container that supports unique keys (an unordered_map contains at mostone of each key value) and that associates values of another type mapped_type with the keys. The unordered_map classsupports forward iterators.
2 An unordered_map meets all of the requirements of a container (24.2.2.2), of an allocator-aware container (24.2.2.5),and of an unordered associative container (24.2.8). It provides the operations described in the preceding requirementstable for unique keys; that is, an unordered_map supports the a_uniq operations in that table, not the a_eq operations.For an unordered_map<Key, T> the key type is Key, the mapped type is T, and the value type is pair<const Key, T>.
3 Subclause 24.5.4 only describes operations on unordered_map that are not described in one of the requirement tables,or for which there is additional semantic information.

namespace std {
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, T>>>

class unordered_map {
public:// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;

§ 24.5.4.1 908

© ISO/IEC N4910

using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using local_iterator = implementation-defined; // see 24.2
using const_local_iterator = implementation-defined; // see 24.2
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;

// 24.5.4.2, construct/copy/destroy
unordered_map();
explicit unordered_map(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_map(from_range_t, R&& rg, size_type n = see below,

const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_map(const unordered_map&);
unordered_map(unordered_map&&);
explicit unordered_map(const Allocator&);
unordered_map(const unordered_map&, const type_identity_t<Allocator>&);
unordered_map(unordered_map&&, const type_identity_t<Allocator>&);
unordered_map(initializer_list<value_type> il,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_map(size_type n, const allocator_type& a)
: unordered_map(n, hasher(), key_equal(), a) { }

unordered_map(size_type n, const hasher& hf, const allocator_type& a)
: unordered_map(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_map(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>

unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_map(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range<value_type> R>

unordered_map(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_map(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { }

template<container-compatible-range<value_type> R>
unordered_map(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a)

: unordered_map(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
unordered_map(initializer_list<value_type> il, size_type n, const allocator_type& a)

: unordered_map(il, n, hasher(), key_equal(), a) { }
unordered_map(initializer_list<value_type> il, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_map(il, n, hf, key_equal(), a) { }

~unordered_map();
unordered_map& operator=(const unordered_map&);

§ 24.5.4.1 909

© ISO/IEC N4910

unordered_map& operator=(unordered_map&&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&

is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.5.4.4, modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
pair<iterator, bool> insert(value_type&& obj);
template<class P> pair<iterator, bool> insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class P> iterator insert(const_iterator hint, P&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

§ 24.5.4.1 910

© ISO/IEC N4910

void swap(unordered_map&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&

is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// map operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
template<class K>
size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// 24.5.4.3, element access
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

§ 24.5.4.1 911

© ISO/IEC N4910

};

template<class InputIterator,
class Hash = hash<iter-key-type<InputIterator>>,
class Pred = equal_to<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>

unordered_map(InputIterator, InputIterator, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash, Pred,
Allocator>;

template<ranges::input_range R, class Hash = hash<range-key-type<R>>,
class Pred = equal_to<range-key-type<R>>,
class Allocator = allocator<range-to-alloc-type<R>>>

unordered_map(from_range_t, R&&, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_map<range-key-type<R>, range-mapped-type<R>, Hash, Pred, Allocator>;

template<class Key, class T, class Hash = hash<Key>,
class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>>

unordered_map(initializer_list<pair<Key, T>>,
typename see below::size_type = see below, Hash = Hash(),
Pred = Pred(), Allocator = Allocator())

-> unordered_map<Key, T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_map(InputIterator, InputIterator, typename see below::size_type, Allocator)

-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
hash<iter-key-type<InputIterator>>,
equal_to<iter-key-type<InputIterator>>, Allocator>;

template<class InputIterator, class Allocator>
unordered_map(InputIterator, InputIterator, Allocator)
-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,

hash<iter-key-type<InputIterator>>,
equal_to<iter-key-type<InputIterator>>, Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_map(InputIterator, InputIterator, typename see below::size_type, Hash, Allocator)
-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash,

equal_to<iter-key-type<InputIterator>>, Allocator>;

template<ranges::\tcode{input_range} R, class Allocator>
unordered_map(from_range_t, R&&, typename see below::size_type, Allocator)
-> unordered_map<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>,

equal_to<range-key-type<R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_map(from_range_t, R&&, Allocator)

-> unordered_map<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>,
equal_to<range-key-type<R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_map(from_range_t, R&&, typename see below::size_type, Hash, Allocator)
-> unordered_map<range-key-type<R>, range-mapped-type<R>, Hash,

equal_to<range-key-type<R>>, Allocator>;

template<class Key, class T, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, typename see below::size_type,

Allocator)
-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>;

§ 24.5.4.1 912

© ISO/IEC N4910

template<class Key, class T, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, Allocator)

-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>;

template<class Key, class T, class Hash, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, typename see below::size_type, Hash,

Allocator)
-> unordered_map<Key, T, Hash, equal_to<Key>, Allocator>;

}

4 A size_type parameter type in an unordered_map deduction guide refers to the size_type member type of the typededuced by the deduction guide.
24.5.4.2 Constructors [unord.map.cnstr]

unordered_map() : unordered_map(size_type(see below)) { }
explicit unordered_map(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_map using the specified hash function, key equality predicate, andallocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined. max_load_factor() returns 1.0.
2 Complexity: Constant.

template<class InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_map(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_map(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_map using the specified hash function, key equality predicate, andallocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined.Then inserts elements from the range [f, l), rg, or il, respectively. max_load_factor() returns 1.0.
4 Complexity: Average case linear, worst case quadratic.
24.5.4.3 Element access [unord.map.elem]

mapped_type& operator[](const key_type& k);

1 Effects: Equivalent to: return try_emplace(k).first->second;

mapped_type& operator[](key_type&& k);

2 Effects: Equivalent to: return try_emplace(move(k)).first->second;

mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;

3 Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.
4 Throws: An exception object of type out_of_range if no such element is present.

§ 24.5.4.3 913

© ISO/IEC N4910

24.5.4.4 Modifiers [unord.map.modifiers]

template<class P>
pair<iterator, bool> insert(P&& obj);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: Equivalent to: return emplace(std::forward<P>(obj));

template<class P>
iterator insert(const_iterator hint, P&& obj);

3 Constraints: is_constructible_v<value_type, P&&> is true.
4 Effects: Equivalent to: return emplace_hint(hint, std::forward<P>(obj));

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

5 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from piecewise_construct,
forward_as_tuple(k), forward_as_tuple(std::forward<Args>(args)...).

6 Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise insertsan object of type value_type constructed with piecewise_construct, forward_as_tuple(k), forward_as_-
tuple(std::forward<Args>(args)...).

7 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
8 Complexity: The same as emplace and emplace_hint, respectively.

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

9 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from piecewise_construct,
forward_as_tuple(std::move(k)), forward_as_tuple(std::forward<Args>(args)...).

10 Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise in-serts an object of type value_type constructed with piecewise_construct, forward_as_tuple(std::move(k)),
forward_as_tuple(std::forward<Args>(args)...).

11 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
12 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

13 Mandates: is_assignable_v<mapped_type&, M&&> is true.
14 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from k, std::forward<M>(obj).
15 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::forward<M>(obj)to e.second. Otherwise inserts an object of type value_type constructed with k, std::forward<M>(obj).
16 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
17 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

18 Mandates: is_assignable_v<mapped_type&, M&&> is true.
§ 24.5.4.4 914

© ISO/IEC N4910

19 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from std::move(k), std::
forward<M>(obj).

20 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::forward<M>(obj) to
e.second. Otherwise inserts an object of type value_type constructedwith std::move(k), std::forward<M>(obj).

21 Returns: In the first overload, the bool component of the returned pair is true if and only if the insertion tookplace. The returned iterator points to the map element whose key is equivalent to k.
22 Complexity: The same as emplace and emplace_hint, respectively.
24.5.4.5 Erasure [unord.map.erasure]

template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_map<K, T, H, P, A>::size_type
erase_if(unordered_map<K, T, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.5.5 Class template unordered_multimap [unord.multimap]
24.5.5.1 Overview [unord.multimap.overview]

1 An unordered_multimap is an unordered associative container that supports equivalent keys (an instance of unordered_-
multimap may contain multiple copies of each key value) and that associates values of another type mapped_type withthe keys. The unordered_multimap class supports forward iterators.

2 An unordered_multimap meets all of the requirements of a container (24.2.2.2), of an allocator-aware container(24.2.2.5), and of an unordered associative container (24.2.8). It provides the operations described in the precedingrequirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in that table, notthe a_uniq operations. For an unordered_multimap<Key, T> the key type is Key, the mapped type is T, and the valuetype is pair<const Key, T>.
3 Subclause 24.5.5 only describes operations on unordered_multimap that are not described in one of the requirementtables, or for which there is additional semantic information.

namespace std {
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, T>>>

class unordered_multimap {
public:// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2

§ 24.5.5.1 915

© ISO/IEC N4910

using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using local_iterator = implementation-defined; // see 24.2
using const_local_iterator = implementation-defined; // see 24.2
using node_type = unspecified;

// 24.5.5.2, construct/copy/destroy
unordered_multimap();
explicit unordered_multimap(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_multimap(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(const unordered_multimap&);
unordered_multimap(unordered_multimap&&);
explicit unordered_multimap(const Allocator&);
unordered_multimap(const unordered_multimap&, const type_identity_t<Allocator>&);
unordered_multimap(unordered_multimap&&, const type_identity_t<Allocator>&);
unordered_multimap(initializer_list<value_type> il,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(size_type n, const allocator_type& a)
: unordered_multimap(n, hasher(), key_equal(), a) { }

unordered_multimap(size_type n, const hasher& hf, const allocator_type& a)
: unordered_multimap(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_multimap(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>

unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multimap(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range<value_type> R>
unordered_multimap(from_range_t, R&& rg, size_type n, const allocator_type& a)

: unordered_multimap(from_range, std::forward<R>(rg),
n, hasher(), key_equal(), a) { }

template<container-compatible-range<value_type> R>
unordered_multimap(from_range_t, R&& rg, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_multimap(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }

unordered_multimap(initializer_list<value_type> il, size_type n, const allocator_type& a)
: unordered_multimap(il, n, hasher(), key_equal(), a) { }

unordered_multimap(initializer_list<value_type> il, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multimap(il, n, hf, key_equal(), a) { }
~unordered_multimap();
unordered_multimap& operator=(const unordered_multimap&);
unordered_multimap& operator=(unordered_multimap&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

§ 24.5.5.1 916

© ISO/IEC N4910

unordered_multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.5.5.3, modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
iterator insert(value_type&& obj);
template<class P> iterator insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class P> iterator insert(const_iterator hint, P&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(unordered_multimap&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// map operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;

§ 24.5.5.1 917

© ISO/IEC N4910

template<class K>
iterator find(const K& k);

template<class K>
const_iterator find(const K& k) const;

size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template<class InputIterator,
class Hash = hash<iter-key-type<InputIterator>>,
class Pred = equal_to<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>

unordered_multimap(InputIterator, InputIterator,
typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
Hash, Pred, Allocator>;

template<ranges::input_range R,
class Hash = hash<range-key-type<R>>,
class Pred = equal_to<range-key-type<R>>,
class Allocator = allocator<range-to-alloc-type<R>>>

unordered_multimap(from_range_t, R&&, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multimap<range-key-type<R>, range-mapped-type<R>, Hash, Pred, Allocator>;

template<class Key, class T, class Hash = hash<Key>,
class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>>

unordered_multimap(initializer_list<pair<Key, T>>,
typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multimap<Key, T, Hash, Pred, Allocator>;

§ 24.5.5.1 918

© ISO/IEC N4910

template<class InputIterator, class Allocator>
unordered_multimap(InputIterator, InputIterator, typename see below::size_type, Allocator)
-> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,

hash<iter-key-type<InputIterator>>,
equal_to<iter-key-type<InputIterator>>, Allocator>;

template<class InputIterator, class Allocator>
unordered_multimap(InputIterator, InputIterator, Allocator)

-> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
hash<iter-key-type<InputIterator>>,
equal_to<iter-key-type<InputIterator>>, Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_multimap(InputIterator, InputIterator, typename see below::size_type, Hash,

Allocator)
-> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash,

equal_to<iter-key-type<InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multimap(from_range_t, R&&, typename see below::size_type, Allocator)
-> unordered_multimap<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>,

equal_to<range-key-type<R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multimap(from_range_t, R&&, Allocator)

-> unordered_multimap<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>,
equal_to<range-key-type<R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_multimap(from_range_t, R&&, typename see below::size_type, Hash, Allocator)

-> unordered_multimap<range-key-type<R>, range-mapped-type<R>, Hash,
equal_to<range-key-type<R>>, Allocator>;

template<class Key, class T, class Allocator>
unordered_multimap(initializer_list<pair<Key, T>>, typename see below::size_type,

Allocator)
-> unordered_multimap<Key, T, hash<Key>, equal_to<Key>, Allocator>;

template<class Key, class T, class Allocator>
unordered_multimap(initializer_list<pair<Key, T>>, Allocator)

-> unordered_multimap<Key, T, hash<Key>, equal_to<Key>, Allocator>;

template<class Key, class T, class Hash, class Allocator>
unordered_multimap(initializer_list<pair<Key, T>>, typename see below::size_type,

Hash, Allocator)
-> unordered_multimap<Key, T, Hash, equal_to<Key>, Allocator>;

}

4 A size_type parameter type in an unordered_multimap deduction guide refers to the size_type member type of thetype deduced by the deduction guide.
24.5.5.2 Constructors [unord.multimap.cnstr]

unordered_multimap() : unordered_multimap(size_type(see below)) { }
explicit unordered_multimap(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, andallocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined.
max_load_factor() returns 1.0.

2 Complexity: Constant.

§ 24.5.5.2 919

© ISO/IEC N4910

template<class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_multimap(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, andallocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined.Then inserts elements from the range [f, l), rg, or il, respectively. max_load_factor() returns 1.0.
4 Complexity: Average case linear, worst case quadratic.
24.5.5.3 Modifiers [unord.multimap.modifiers]

template<class P>
iterator insert(P&& obj);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: Equivalent to: return emplace(std::forward<P>(obj));

template<class P>
iterator insert(const_iterator hint, P&& obj);

3 Constraints: is_constructible_v<value_type, P&&> is true.
4 Effects: Equivalent to: return emplace_hint(hint, std::forward<P>(obj));

24.5.5.4 Erasure [unord.multimap.erasure]

template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_multimap<K, T, H, P, A>::size_type

erase_if(unordered_multimap<K, T, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.5.6 Class template unordered_set [unord.set]
24.5.6.1 Overview [unord.set.overview]

1 An unordered_set is an unordered associative container that supports unique keys (an unordered_set contains atmost one of each key value) and in which the elements’ keys are the elements themselves. The unordered_set classsupports forward iterators.
2 An unordered_set meets all of the requirements of a container (24.2.2.2), of an allocator-aware container (24.2.2.5),of an unordered associative container (24.2.8). It provides the operations described in the preceding requirements tablefor unique keys; that is, an unordered_set supports the a_uniq operations in that table, not the a_eq operations. For

§ 24.5.6.1 920

© ISO/IEC N4910

an unordered_set<Key> the key type and the value type are both Key. The iterator and const_iterator types areboth constant iterator types. It is unspecified whether they are the same type.
3 Subclause 24.5.6 only describes operations on unordered_set that are not described in one of the requirement tables,or for which there is additional semantic information.

namespace std {
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<Key>>

class unordered_set {
public:// types
using key_type = Key;
using value_type = Key;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using local_iterator = implementation-defined; // see 24.2
using const_local_iterator = implementation-defined; // see 24.2
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;

// 24.5.6.2, construct/copy/destroy
unordered_set();
explicit unordered_set(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_set(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(const unordered_set&);
unordered_set(unordered_set&&);
explicit unordered_set(const Allocator&);
unordered_set(const unordered_set&, const type_identity_t<Allocator>&);
unordered_set(unordered_set&&, const type_identity_t<Allocator>&);
unordered_set(initializer_list<value_type> il,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(size_type n, const allocator_type& a)
: unordered_set(n, hasher(), key_equal(), a) { }

unordered_set(size_type n, const hasher& hf, const allocator_type& a)
: unordered_set(n, hf, key_equal(), a) { }

§ 24.5.6.1 921

© ISO/IEC N4910

template<class InputIterator>
unordered_set(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_set(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>

unordered_set(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_set(f, l, n, hf, key_equal(), a) { }
unordered_set(initializer_list<value_type> il, size_type n, const allocator_type& a)

: unordered_set(il, n, hasher(), key_equal(), a) { }
template<container-compatible-range<value_type> R>

unordered_set(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_set(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { }

template<container-compatible-range<value_type> R>
unordered_set(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a)

: unordered_set(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
unordered_set(initializer_list<value_type> il, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_set(il, n, hf, key_equal(), a) { }

~unordered_set();
unordered_set& operator=(const unordered_set&);
unordered_set& operator=(unordered_set&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_set& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
pair<iterator, bool> insert(value_type&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

§ 24.5.6.1 922

© ISO/IEC N4910

void swap(unordered_set&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&

is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// set operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template<class InputIterator,
class Hash = hash<iter-value-type<InputIterator>>,
class Pred = equal_to<iter-value-type<InputIterator>>,
class Allocator = allocator<iter-value-type<InputIterator>>>

unordered_set(InputIterator, InputIterator, typename see below::size_type = see below,

§ 24.5.6.1 923

© ISO/IEC N4910

Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_set<iter-value-type<InputIterator>,

Hash, Pred, Allocator>;

template<ranges::input_range R,
class Hash = hash<ranges::range_value_t<R>>,
class Pred = equal_to<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

unordered_set(from_range_t, R&&, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_set<ranges::range_value_t<R>, Hash, Pred, Allocator>;

template<class T, class Hash = hash<T>,
class Pred = equal_to<T>, class Allocator = allocator<T>>

unordered_set(initializer_list<T>, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_set<T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_set(InputIterator, InputIterator, typename see below::size_type, Allocator)

-> unordered_set<iter-value-type<InputIterator>,
hash<iter-value-type<InputIterator>>,
equal_to<iter-value-type<InputIterator>>,
Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_set(InputIterator, InputIterator, typename see below::size_type,

Hash, Allocator)
-> unordered_set<iter-value-type<InputIterator>, Hash,

equal_to<iter-value-type<InputIterator>>,
Allocator>;

template<ranges::input_range R, class Allocator>
unordered_set(from_range_t, R&&, typename see below::size_type, Allocator)
-> unordered_set<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,

equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_set(from_range_t, R&&, Allocator)
-> unordered_set<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,

equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_set(from_range_t, R&&, typename see below::size_type, Hash, Allocator)
-> unordered_set<ranges::range_value_t<R>, Hash,

equal_to<ranges::range_value_t<R>>, Allocator>;

template<class T, class Allocator>
unordered_set(initializer_list<T>, typename see below::size_type, Allocator)
-> unordered_set<T, hash<T>, equal_to<T>, Allocator>;

template<class T, class Hash, class Allocator>
unordered_set(initializer_list<T>, typename see below::size_type, Hash, Allocator)
-> unordered_set<T, Hash, equal_to<T>, Allocator>;

}

4 A size_type parameter type in an unordered_set deduction guide refers to the size_type member type of the typededuced by the deduction guide.
24.5.6.2 Constructors [unord.set.cnstr]

unordered_set() : unordered_set(size_type(see below)) { }

§ 24.5.6.2 924

© ISO/IEC N4910

explicit unordered_set(size_type n,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_set using the specified hash function, key equality predicate, andallocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined. max_load_factor() returns 1.0.
2 Complexity: Constant.

template<class InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_multiset(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_set using the specified hash function, key equality predicate, andallocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined.Then inserts elements from the range [f, l), rg, or il, respectively. max_load_factor() returns 1.0.
4 Complexity: Average case linear, worst case quadratic.
24.5.6.3 Erasure [unord.set.erasure]

template<class K, class H, class P, class A, class Predicate>
typename unordered_set<K, H, P, A>::size_type
erase_if(unordered_set<K, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.5.7 Class template unordered_multiset [unord.multiset]
24.5.7.1 Overview [unord.multiset.overview]

1 An unordered_multiset is an unordered associative container that supports equivalent keys (an instance of unordered_-
multiset may contain multiple copies of the same key value) and in which each element’s key is the element itself.The unordered_multiset class supports forward iterators.

2 An unordered_multiset meets all of the requirements of a container (24.2.2.2), of an allocator-aware container(24.2.2.5), and of an unordered associative container (24.2.8). It provides the operations described in the precedingrequirements table for equivalent keys; that is, an unordered_multiset supports the a_eq operations in that table, notthe a_uniq operations. For an unordered_multiset<Key> the key type and the value type are both Key. The iteratorand const_iterator types are both constant iterator types. It is unspecified whether they are the same type.
3 Subclause 24.5.7 only describes operations on unordered_multiset that are not described in one of the requirementtables, or for which there is additional semantic information.
§ 24.5.7.1 925

© ISO/IEC N4910

namespace std {
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<Key>>

class unordered_multiset {
public:// types
using key_type = Key;
using value_type = Key;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined; // see 24.2
using difference_type = implementation-defined; // see 24.2
using iterator = implementation-defined; // see 24.2
using const_iterator = implementation-defined; // see 24.2
using local_iterator = implementation-defined; // see 24.2
using const_local_iterator = implementation-defined; // see 24.2
using node_type = unspecified;

// 24.5.7.2, construct/copy/destroy
unordered_multiset();
explicit unordered_multiset(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_multiset(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(const unordered_multiset&);
unordered_multiset(unordered_multiset&&);
explicit unordered_multiset(const Allocator&);
unordered_multiset(const unordered_multiset&, const type_identity_t<Allocator>&);
unordered_multiset(unordered_multiset&&, const type_identity_t<Allocator>&);
unordered_multiset(initializer_list<value_type> il,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(size_type n, const allocator_type& a)
: unordered_multiset(n, hasher(), key_equal(), a) { }

unordered_multiset(size_type n, const hasher& hf, const allocator_type& a)
: unordered_multiset(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_multiset(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l, size_type n, const hasher& hf,

const allocator_type& a)

§ 24.5.7.1 926

© ISO/IEC N4910

: unordered_multiset(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range<value_type> R>

unordered_multiset(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_multiset(from_range, std::forward<R>(rg),

n, hasher(), key_equal(), a) { }
template<container-compatible-range<value_type> R>

unordered_multiset(from_range_t, R&& rg, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multiset(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
unordered_multiset(initializer_list<value_type> il, size_type n, const allocator_type& a)

: unordered_multiset(il, n, hasher(), key_equal(), a) { }
unordered_multiset(initializer_list<value_type> il, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_multiset(il, n, hf, key_equal(), a) { }

~unordered_multiset();
unordered_multiset& operator=(const unordered_multiset&);
unordered_multiset& operator=(unordered_multiset&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_multiset& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
iterator insert(value_type&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(unordered_multiset&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

§ 24.5.7.1 927

© ISO/IEC N4910

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// set operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template<class InputIterator,
class Hash = hash<iter-value-type<InputIterator>>,
class Pred = equal_to<iter-value-type<InputIterator>>,
class Allocator = allocator<iter-value-type<InputIterator>>>

unordered_multiset(InputIterator, InputIterator, see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multiset<iter-value-type<InputIterator>,
Hash, Pred, Allocator>;

§ 24.5.7.1 928

© ISO/IEC N4910

template<ranges::input_range R,
class Hash = hash<ranges::range_value_t<R>>,
class Pred = equal_to<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

unordered_multiset(from_range_t, R&&, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multiset<ranges::range_value_t<R>, Hash, Pred, Allocator>;

template<class T, class Hash = hash<T>,
class Pred = equal_to<T>, class Allocator = allocator<T>>

unordered_multiset(initializer_list<T>, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multiset<T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_multiset(InputIterator, InputIterator, typename see below::size_type, Allocator)

-> unordered_multiset<iter-value-type<InputIterator>,
hash<iter-value-type<InputIterator>>,
equal_to<iter-value-type<InputIterator>>,
Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_multiset(InputIterator, InputIterator, typename see below::size_type,

Hash, Allocator)
-> unordered_multiset<iter-value-type<InputIterator>, Hash,

equal_to<iter-value-type<InputIterator>>,
Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multiset(from_range_t, R&&, typename see below::size_type, Allocator)
-> unordered_multiset<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,

equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multiset(from_range_t, R&&, Allocator)

-> unordered_multiset<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,
equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_multiset(from_range_t, R&&, typename see below::size_type, Hash, Allocator)

-> unordered_multiset<ranges::range_value_t<R>, Hash, equal_to<ranges::range_value_t<R>>,
Allocator>;

template<class T, class Allocator>
unordered_multiset(initializer_list<T>, typename see below::size_type, Allocator)

-> unordered_multiset<T, hash<T>, equal_to<T>, Allocator>;

template<class T, class Hash, class Allocator>
unordered_multiset(initializer_list<T>, typename see below::size_type, Hash, Allocator)
-> unordered_multiset<T, Hash, equal_to<T>, Allocator>;

}

4 A size_type parameter type in an unordered_multiset deduction guide refers to the size_type member type of thetype deduced by the deduction guide.
24.5.7.2 Constructors [unord.multiset.cnstr]

unordered_multiset() : unordered_multiset(size_type(see below)) { }
explicit unordered_multiset(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_multiset using the specified hash function, key equality predicate, andallocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined.
§ 24.5.7.2 929

© ISO/IEC N4910

max_load_factor() returns 1.0.
2 Complexity: Constant.

template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range<value_type> R>
unordered_multiset(from_range_t, R&& rg,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_multiset using the specified hash function, key equality predicate, andallocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined.Then inserts elements from the range [f, l), rg, or il, respectively. max_load_factor() returns 1.0.
4 Complexity: Average case linear, worst case quadratic.
24.5.7.3 Erasure [unord.multiset.erasure]

template<class K, class H, class P, class A, class Predicate>
typename unordered_multiset<K, H, P, A>::size_type
erase_if(unordered_multiset<K, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last;) {
if (pred(*i)) {

i = c.erase(i);
} else {

++i;
}

}
return original_size - c.size();

24.6 Container adaptors [container.adaptors]
24.6.1 In general [container.adaptors.general]

1 The headers <queue> and <stack> define the container adaptors queue, priority_queue, and stack.
2 The container adaptors each take a Container template parameter, and each constructor takes a Container referenceargument. This container is copied into the Container member of each adaptor. If the container takes an allocator, thena compatible allocator may be passed in to the adaptor’s constructor. Otherwise, normal copy or move construction isused for the container argument. The first template parameter T of the container adaptors shall denote the same type as

Container::value_type.
3 For container adaptors, no swap function throws an exception unless that exception is thrown by the swap of theadaptor’s Container or Compare object (if any).
4 A constructor template of a container adaptor shall not participate in overload resolution if it has an InputIteratortemplate parameter and a type that does not qualify as an input iterator is deduced for that parameter.
5 A deduction guide for a container adaptor shall not participate in overload resolution if any of the following are true:

—(5.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is deduced forthat parameter.
—(5.2) It has a Compare template parameter and a type that qualifies as an allocator is deduced for that parameter.

§ 24.6.1 930

© ISO/IEC N4910

—(5.3) It has a Container template parameter and a type that qualifies as an allocator is deduced for that parameter.
—(5.4) It has no Container template parameter, and it has an Allocator template parameter, and a type that does notqualify as an allocator is deduced for that parameter.
—(5.5) It has both Container and Allocator template parameters, and uses_allocator_v<Container, Allocator> is

false.
6 The exposition-only alias template iter-value-type defined in 24.3.1 may appear in deduction guides for containeradaptors.
24.6.2 Header <queue> synopsis [queue.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {

template<class T, class Container = deque<T>> class queue;

template<class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator< (const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator> (const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, three_way_comparable Container>
compare_three_way_result_t<Container>

operator<=>(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y)));

template<class T, class Container, class Alloc>
struct uses_allocator<queue<T, Container>, Alloc>;

template<class T, class Container = vector<T>,
class Compare = less<typename Container::value_type>>

class priority_queue;

template<class T, class Container, class Compare>
void swap(priority_queue<T, Container, Compare>& x,

priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y)));
template<class T, class Container, class Compare, class Alloc>
struct uses_allocator<priority_queue<T, Container, Compare>, Alloc>;

}

24.6.3 Header <stack> synopsis [stack.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {

template<class T, class Container = deque<T>> class stack;

template<class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator< (const stack<T, Container>& x, const stack<T, Container>& y);

§ 24.6.3 931

© ISO/IEC N4910

template<class T, class Container>
bool operator> (const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, three_way_comparable Container>
compare_three_way_result_t<Container>

operator<=>(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y)));

template<class T, class Container, class Alloc>
struct uses_allocator<stack<T, Container>, Alloc>;

}

24.6.4 Class template queue [queue]
24.6.4.1 Definition [queue.defn]

1 Any sequence container supporting operations front(), back(), push_back() and pop_front() can be used to instan-tiate queue. In particular, list (24.3.10) and deque (24.3.8) can be used.
namespace std {

template<class T, class Container = deque<T>>
class queue {
public:
using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;

protected:
Container c;

public:
queue() : queue(Container()) {}
explicit queue(const Container&);
explicit queue(Container&&);
template<class InputIterator> queue(InputIterator first, InputIterator last);
template<container-compatible-range<T> R> queue(from_range_t, R&& rg);
template<class Alloc> explicit queue(const Alloc&);
template<class Alloc> queue(const Container&, const Alloc&);
template<class Alloc> queue(Container&&, const Alloc&);
template<class Alloc> queue(const queue&, const Alloc&);
template<class Alloc> queue(queue&&, const Alloc&);
template<class InputIterator, class Alloc>

queue(InputIterator first, InputIterator last, const Alloc&);
template<container-compatible-range<T> R, class Alloc>

queue(from_range_t, R&& rg, const Alloc&);

[[nodiscard]] bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }
const_reference back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(value_type&& x) { c.push_back(std::move(x)); }
template<container-compatible-range<T> R> void push_range(R&& rg);
template<class... Args>

decltype(auto) emplace(Args&&... args)
{ return c.emplace_back(std::forward<Args>(args)...); }

void pop() { c.pop_front(); }

§ 24.6.4.1 932

© ISO/IEC N4910

void swap(queue& q) noexcept(is_nothrow_swappable_v<Container>)
{ using std::swap; swap(c, q.c); }

};

template<class Container>
queue(Container) -> queue<typename Container::value_type, Container>;

template<class InputIterator>
queue(InputIterator, InputIterator) -> queue<iter-value-type<InputIterator>>;

template<ranges::input_range R>
queue(from_range_t, R&&) -> queue<ranges::range_value_t<R>>;

template<class Container, class Allocator>
queue(Container, Allocator) -> queue<typename Container::value_type, Container>;

template<class InputIterator, class Allocator>
queue(InputIterator, InputIterator, Allocator)

-> queue<iter-value-type<InputIterator>, deque<iter-value-type<InputIterator>,
Allocator>>;

template<ranges::input_range R, class Allocator>
queue(from_range_t, R&&, Allocator)

-> queue<ranges::range_value_t<R>, deque<ranges::range_value_t<R>, Allocator>>;

template<class T, class Container, class Alloc>
struct uses_allocator<queue<T, Container>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

24.6.4.2 Constructors [queue.cons]

explicit queue(const Container& cont);

1 Effects: Initializes c with cont.
explicit queue(Container&& cont);

2 Effects: Initializes c with std::move(cont).
template<class InputIterator>

queue(InputIterator first, InputIterator last);

3 Effects: Initializes c with first as the first argument and last as the second argument.
template<container-compatible-range<T> R>

queue(from_range_t, R&& rg);

4 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg)).
24.6.4.3 Constructors with allocators [queue.cons.alloc]

1 If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not participate inoverload resolution.
template<class Alloc> explicit queue(const Alloc& a);

2 Effects: Initializes c with a.
template<class Alloc> queue(const container_type& cont, const Alloc& a);

3 Effects: Initializes c with cont as the first argument and a as the second argument.
template<class Alloc> queue(container_type&& cont, const Alloc& a);

4 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.
template<class Alloc> queue(const queue& q, const Alloc& a);

5 Effects: Initializes c with q.c as the first argument and a as the second argument.
§ 24.6.4.3 933

© ISO/IEC N4910

template<class Alloc> queue(queue&& q, const Alloc& a);

6 Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument.
template<class InputIterator, class Alloc>

queue(InputIterator first, InputIterator last, const Alloc& alloc);

7 Effects: Initializes c with first as the first argument, last as the second argument, and alloc as the thirdargument.
template<container-compatible-range<T> R, class Alloc>

queue(from_range_t, R&& rg, const Alloc& a);

8 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg), a).
24.6.4.4 Modifiers [queue.mod]

template<container-compatible-range<T> R>
void push_range(R&& rg);

1 Effects: Equivalent to c.append_range(std::forward<R>(rg)) if that is a valid expression, otherwise ranges::copy(rg,
back_inserter(c)).

24.6.4.5 Operators [queue.ops]

template<class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);

1 Returns: x.c == y.c.
template<class T, class Container>

bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);

2 Returns: x.c != y.c.
template<class T, class Container>

bool operator< (const queue<T, Container>& x, const queue<T, Container>& y);

3 Returns: x.c < y.c.
template<class T, class Container>

bool operator> (const queue<T, Container>& x, const queue<T, Container>& y);

4 Returns: x.c > y.c.
template<class T, class Container>

bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);

5 Returns: x.c <= y.c.
template<class T, class Container>

bool operator>=(const queue<T, Container>& x,
const queue<T, Container>& y);

6 Returns: x.c >= y.c.
template<class T, three_way_comparable Container>

compare_three_way_result_t<Container>
operator<=>(const queue<T, Container>& x, const queue<T, Container>& y);

7 Returns: x.c <=> y.c.
24.6.4.6 Specialized algorithms [queue.special]

template<class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_swappable_v<Container> is true.
2 Effects: As if by x.swap(y).

§ 24.6.4.6 934

© ISO/IEC N4910

24.6.5 Class template priority_queue [priority.queue]
24.6.5.1 Overview [priqueue.overview]

1 Any sequence container with random access iterator and supporting operations front(), push_back() and pop_back()can be used to instantiate priority_queue. In particular, vector (24.3.11) and deque (24.3.8) can be used. Instantiating
priority_queue also involves supplying a function or function object for making priority comparisons; the libraryassumes that the function or function object defines a strict weak ordering (27.8).
namespace std {

template<class T, class Container = vector<T>,
class Compare = less<typename Container::value_type>>

class priority_queue {
public:
using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;
using value_compare = Compare;

protected:
Container c;
Compare comp;

public:
priority_queue() : priority_queue(Compare()) {}
explicit priority_queue(const Compare& x) : priority_queue(x, Container()) {}
priority_queue(const Compare& x, const Container&);
priority_queue(const Compare& x, Container&&);
template<class InputIterator>

priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare());
template<class InputIterator>

priority_queue(InputIterator first, InputIterator last, const Compare& x,
const Container&);

template<class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x,

Container&&);
template<container-compatible-range<T> R>

priority_queue(from_range_t, R&& rg, const Compare& x = Compare());
template<class Alloc> explicit priority_queue(const Alloc&);
template<class Alloc> priority_queue(const Compare&, const Alloc&);
template<class Alloc> priority_queue(const Compare&, const Container&, const Alloc&);
template<class Alloc> priority_queue(const Compare&, Container&&, const Alloc&);
template<class Alloc> priority_queue(const priority_queue&, const Alloc&);
template<class Alloc> priority_queue(priority_queue&&, const Alloc&);
template<class InputIterator, class Alloc>

priority_queue(InputIterator, InputIterator, const Alloc&);
template<class InputIterator, class Alloc>

priority_queue(InputIterator, InputIterator, const Compare&, const Alloc&);
template<class InputIterator, class Alloc>

priority_queue(InputIterator, InputIterator, const Compare&, const Container&,
const Alloc&);

template<class InputIterator, class Alloc>
priority_queue(InputIterator, InputIterator, const Compare&, Container&&, const Alloc&);

template<container-compatible-range<T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Compare&, const Alloc&);

template<container-compatible-range<T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Alloc&);

[[nodiscard]] bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const_reference top() const { return c.front(); }
void push(const value_type& x);
void push(value_type&& x);

§ 24.6.5.1 935

© ISO/IEC N4910

template<container-compatible-range<T> R>
void push_range(R&& rg);

template<class... Args> void emplace(Args&&... args);
void pop();
void swap(priority_queue& q) noexcept(is_nothrow_swappable_v<Container> &&

is_nothrow_swappable_v<Compare>)
{ using std::swap; swap(c, q.c); swap(comp, q.comp); }

};

template<class Compare, class Container>
priority_queue(Compare, Container)

-> priority_queue<typename Container::value_type, Container, Compare>;

template<class InputIterator,
class Compare = less<iter-value-type<InputIterator>>,
class Container = vector<iter-value-type<InputIterator>>>

priority_queue(InputIterator, InputIterator, Compare = Compare(), Container = Container())
-> priority_queue<iter-value-type<InputIterator>, Container, Compare>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>
priority_queue(from_range_t, R&&, Compare = Compare())

-> priority_queue<ranges::range_value_t<R>, vector<ranges::range_value_t<R>>, Compare>;

template<class Compare, class Container, class Allocator>
priority_queue(Compare, Container, Allocator)

-> priority_queue<typename Container::value_type, Container, Compare>;

template<class InputIterator, class Allocator>
priority_queue(InputIterator, InputIterator, Allocator)

-> priority_queue<iter-value-type<InputIterator>,
vector<iter-value-type<InputIterator>, Allocator>,
less<iter-value-type<InputIterator>>>;

template<class InputIterator, class Compare, class Allocator>
priority_queue(InputIterator, InputIterator, Compare, Allocator)

-> priority_queue<iter-value-type<InputIterator>,
vector<iter-value-type<InputIterator>, Allocator>, Compare>;

template<class InputIterator, class Compare, class Container, class Allocator>
priority_queue(InputIterator, InputIterator, Compare, Container, Allocator)

-> priority_queue<typename Container::value_type, Container, Compare>;

template<ranges::input_range R, class Compare, class Allocator>
priority_queue(from_range_t, R&&, Compare, Allocator)

-> priority_queue<ranges::range_value_t<R>, vector<ranges::range_value_t<R>, Allocator>,
Compare>;

template<ranges::input_range R, class Allocator>
priority_queue(from_range_t, R&&, Allocator)

-> priority_queue<ranges::range_value_t<R>, vector<ranges::range_value_t<R>, Allocator>>;

// no equality is provided
template<class T, class Container, class Compare, class Alloc>
struct uses_allocator<priority_queue<T, Container, Compare>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

24.6.5.2 Constructors [priqueue.cons]

priority_queue(const Compare& x, const Container& y);
priority_queue(const Compare& x, Container&& y);

1 Preconditions: x defines a strict weak ordering (27.8).

§ 24.6.5.2 936

© ISO/IEC N4910

2 Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate); calls
make_heap(c.begin(), c.end(), comp).

template<class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare());

3 Preconditions: x defines a strict weak ordering (27.8).
4 Effects: Initializes c with first as the first argument and last as the second argument, and initializes comp with

x; then calls make_heap(c.begin(), c.end(), comp).
template<class InputIterator>

priority_queue(InputIterator first, InputIterator last, const Compare& x, const Container& y);
template<class InputIterator>

priority_queue(InputIterator first, InputIterator last, const Compare& x, Container&& y);

5 Preconditions: x defines a strict weak ordering (27.8).
6 Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate); calls

c.insert(c.end(), first, last); and finally calls make_heap(c.begin(), c.end(), comp).
template<container-compatible-range<T> R>

priority_queue(from_range_t, R&& rg, const Compare& x = Compare());

7 Preconditions: x defines a strict weak ordering (27.8).
8 Effects: Initializes comp with x and c with ranges::to<Container>(std::forward<R>(rg)) and finally calls

make_heap(c.begin(), c.end(), comp).
24.6.5.3 Constructors with allocators [priqueue.cons.alloc]

1 If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not participate inoverload resolution.
template<class Alloc> explicit priority_queue(const Alloc& a);

2 Effects: Initializes c with a and value-initializes comp.
template<class Alloc> priority_queue(const Compare& compare, const Alloc& a);

3 Effects: Initializes c with a and initializes comp with compare.
template<class Alloc>

priority_queue(const Compare& compare, const Container& cont, const Alloc& a);

4 Effects: Initializes c with cont as the first argument and a as the second argument, and initializes comp with
compare; calls make_heap(c.begin(), c.end(), comp).

template<class Alloc>
priority_queue(const Compare& compare, Container&& cont, const Alloc& a);

5 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument, and initializes
comp with compare; calls make_heap(c.begin(), c.end(), comp).

template<class Alloc> priority_queue(const priority_queue& q, const Alloc& a);

6 Effects: Initializes c with q.c as the first argument and a as the second argument, and initializes comp with q.comp.
template<class Alloc> priority_queue(priority_queue&& q, const Alloc& a);

7 Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument, and initializes
comp with std::move(q.comp).

template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Alloc& a);

8 Effects: Initializes c with first as the first argument, last as the second argument, and a as the third argument,and value-initializes comp; calls make_heap(c.begin(), c.end(), comp).

§ 24.6.5.3 937

© ISO/IEC N4910

template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Compare& compare, const Alloc& a);

9 Effects: Initializes c with first as the first argument, last as the second argument, and a as the third argument,and initializes comp with compare; calls make_heap(c.begin(), c.end(), comp).
template<class InputIterator, class Alloc>

priority_queue(InputIterator first, InputIterator last, const Compare& compare,
const Container& cont, const Alloc& a);

10 Effects: Initializes c with cont as the first argument and a as the second argument, and initializes comp with
compare; calls c.insert(c.end(), first, last); and finally calls make_heap(c.begin(), c.end(), comp).

template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Compare& compare, Container&& cont,

const Alloc& a);

11 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument, and initial-izes comp with compare; calls c.insert(c.end(), first, last); and finally calls make_heap(c.begin(),
c.end(), comp).

template<container-compatible-range<T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Compare& compare, const Alloc& a);

12 Effects: Initializes comp with compare and c with ranges::to<Container>(std::forward<R>(rg), a); calls
make_heap(c.begin(), c.end(), comp).

template<container-compatible-range<T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Alloc& a);

13 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg), a); calls make_heap(c.
begin(), c.end(), comp).

24.6.5.4 Members [priqueue.members]

void push(const value_type& x);

1 Effects: As if by:
c.push_back(x);
push_heap(c.begin(), c.end(), comp);

void push(value_type&& x);

2 Effects: As if by:
c.push_back(std::move(x));
push_heap(c.begin(), c.end(), comp);

template<container-compatible-range<T> R>
void push_range(R&& rg);

3 Effects: Insert all elements of rg in c.
4 Postconditions: is_heap(c.begin(), c.end(), comp) is true.

template<class... Args> void emplace(Args&&... args);

5 Effects: As if by:
c.emplace_back(std::forward<Args>(args)...);
push_heap(c.begin(), c.end(), comp);

void pop();

6 Effects: As if by:
pop_heap(c.begin(), c.end(), comp);
c.pop_back();

§ 24.6.5.4 938

© ISO/IEC N4910

24.6.5.5 Specialized algorithms [priqueue.special]

template<class T, class Container, class Compare>
void swap(priority_queue<T, Container, Compare>& x,

priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_swappable_v<Container> is true and is_swappable_v<Compare> is true.
2 Effects: As if by x.swap(y).
24.6.6 Class template stack [stack]
24.6.6.1 General [stack.general]

1 Any sequence container supporting operations back(), push_back() and pop_back() can be used to instantiate stack.In particular, vector (24.3.11), list (24.3.10) and deque (24.3.8) can be used.
24.6.6.2 Definition [stack.defn]
namespace std {

template<class T, class Container = deque<T>>
class stack {
public:
using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;

protected:
Container c;

public:
stack() : stack(Container()) {}
explicit stack(const Container&);
explicit stack(Container&&);
template<class InputIterator> stack(InputIterator first, InputIterator last);
template<container-compatible-range<T> R> stack(from_range_t, R&& rg);
template<class Alloc> explicit stack(const Alloc&);
template<class Alloc> stack(const Container&, const Alloc&);
template<class Alloc> stack(Container&&, const Alloc&);
template<class Alloc> stack(const stack&, const Alloc&);
template<class Alloc> stack(stack&&, const Alloc&);
template<class InputIterator, class Alloc>

stack(InputIterator first, InputIterator last, const Alloc&);
template<container-compatible-range<T> R, class Alloc>

stack(from_range_t, R&& rg, const Alloc&);

[[nodiscard]] bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference top() { return c.back(); }
const_reference top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(value_type&& x) { c.push_back(std::move(x)); }
template<container-compatible-range<T> R>

void push_range(R&& rg);
template<class... Args>

decltype(auto) emplace(Args&&... args)
{ return c.emplace_back(std::forward<Args>(args)...); }

void pop() { c.pop_back(); }
void swap(stack& s) noexcept(is_nothrow_swappable_v<Container>)

{ using std::swap; swap(c, s.c); }
};

template<class Container>
stack(Container) -> stack<typename Container::value_type, Container>;

§ 24.6.6.2 939

© ISO/IEC N4910

template<class InputIterator>
stack(InputIterator, InputIterator) -> stack<iter-value-type<InputIterator>>;

template<ranges::input_range R>
stack(from_range_t, R&&) -> stack<ranges::range_value_t<R>>;

template<class Container, class Allocator>
stack(Container, Allocator) -> stack<typename Container::value_type, Container>;

template<class InputIterator, class Allocator>
stack(InputIterator, InputIterator, Allocator)

-> stack<iter-value-type<InputIterator>, deque<iter-value-type<InputIterator>,
Allocator>>;

template<ranges::input_range R, class Allocator>
stack(from_range_t, R&&, Allocator)

-> stack<ranges::range_value_t<R>, deque<ranges::range_value_t<R>, Allocator>>;

template<class T, class Container, class Alloc>
struct uses_allocator<stack<T, Container>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

24.6.6.3 Constructors [stack.cons]

explicit stack(const Container& cont);

1 Effects: Initializes c with cont.
explicit stack(Container&& cont);

2 Effects: Initializes c with std::move(cont).
template<class InputIterator>

stack(InputIterator first, InputIterator last);

3 Effects: Initializes c with first as the first argument and last as the second argument.
template<container-compatible-range<T> R>

stack(from_range_t, R&& rg);

4 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg)).
24.6.6.4 Constructors with allocators [stack.cons.alloc]

1 If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not participate inoverload resolution.
template<class Alloc> explicit stack(const Alloc& a);

2 Effects: Initializes c with a.
template<class Alloc> stack(const container_type& cont, const Alloc& a);

3 Effects: Initializes c with cont as the first argument and a as the second argument.
template<class Alloc> stack(container_type&& cont, const Alloc& a);

4 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.
template<class Alloc> stack(const stack& s, const Alloc& a);

5 Effects: Initializes c with s.c as the first argument and a as the second argument.
template<class Alloc> stack(stack&& s, const Alloc& a);

6 Effects: Initializes c with std::move(s.c) as the first argument and a as the second argument.

§ 24.6.6.4 940

© ISO/IEC N4910

template<class InputIterator, class Alloc>
stack(InputIterator first, InputIterator last, const Alloc& alloc);

7 Effects: Initializes c with first as the first argument, last as the second argument, and alloc as the thirdargument.
template<container-compatible-range<T> R, class Alloc>

stack(from_range_t, R&& rg, const Alloc& a);

8 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg), a).
24.6.6.5 Modifiers [stack.mod]

template<container-compatible-range<T> R>
void push_range(R&& rg);

1 Effects: Equivalent to c.append_range(std::forward<R>(rg)) if that is a valid expression, otherwise ranges::copy(rg,
back_inserter(c)).

24.6.6.6 Operators [stack.ops]

template<class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);

1 Returns: x.c == y.c.
template<class T, class Container>

bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);

2 Returns: x.c != y.c.
template<class T, class Container>

bool operator< (const stack<T, Container>& x, const stack<T, Container>& y);

3 Returns: x.c < y.c.
template<class T, class Container>

bool operator> (const stack<T, Container>& x, const stack<T, Container>& y);

4 Returns: x.c > y.c.
template<class T, class Container>

bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);

5 Returns: x.c <= y.c.
template<class T, class Container>

bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);

6 Returns: x.c >= y.c.
template<class T, three_way_comparable Container>

compare_three_way_result_t<Container>
operator<=>(const stack<T, Container>& x, const stack<T, Container>& y);

7 Returns: x.c <=> y.c.
24.6.6.7 Specialized algorithms [stack.special]

template<class T, class Container>
void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_swappable_v<Container> is true.
2 Effects: As if by x.swap(y).
24.7 Views [views]
24.7.1 General [views.general]

1 The header defines the view span.

§ 24.7.1 941

© ISO/IEC N4910

24.7.2 Header synopsis [span.syn]
namespace std {// constants

inline constexpr size_t dynamic_extent = numeric_limits<size_t>::max();

// 24.7.3, class template span
template<class ElementType, size_t Extent = dynamic_extent>
class span;

template<class ElementType, size_t Extent>
inline constexpr bool ranges::enable_view<span<ElementType, Extent>> = true;

template<class ElementType, size_t Extent>
inline constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true;

// 24.7.3.8, views of object representation
template<class ElementType, size_t Extent>
span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>

as_bytes(span<ElementType, Extent> s) noexcept;

template<class ElementType, size_t Extent>
span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>

as_writable_bytes(span<ElementType, Extent> s) noexcept;
}

24.7.3 Class template span [views.span]
24.7.3.1 Overview [span.overview]

1 A span is a view over a contiguous sequence of objects, the storage of which is owned by some other object.
2 All member functions of span have constant time complexity.

namespace std {
template<class ElementType, size_t Extent = dynamic_extent>
class span {
public:// constants and types
using element_type = ElementType;
using value_type = remove_cv_t<ElementType>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = implementation-defined; // see 24.7.3.7
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_type extent = Extent;

// 24.7.3.2, constructors, copy, and assignment
constexpr span() noexcept;
template<class It>

constexpr explicit(extent != dynamic_extent) span(It first, size_type count);
template<class It, class End>

constexpr explicit(extent != dynamic_extent) span(It first, End last);
template<size_t N>

constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept;
template<class T, size_t N>

constexpr span(array<T, N>& arr) noexcept;
template<class T, size_t N>

constexpr span(const array<T, N>& arr) noexcept;
template<class R>

constexpr explicit(extent != dynamic_extent) span(R&& r);
constexpr span(const span& other) noexcept = default;
template<class OtherElementType, size_t OtherExtent>

constexpr explicit(see below) span(const span<OtherElementType, OtherExtent>& s) noexcept;

§ 24.7.3.1 942

© ISO/IEC N4910

~span() noexcept = default;

constexpr span& operator=(const span& other) noexcept = default;

// 24.7.3.4, subviews
template<size_t Count>

constexpr span<element_type, Count> first() const;
template<size_t Count>

constexpr span<element_type, Count> last() const;
template<size_t Offset, size_t Count = dynamic_extent>

constexpr span<element_type, see below> subspan() const;

constexpr span<element_type, dynamic_extent> first(size_type count) const;
constexpr span<element_type, dynamic_extent> last(size_type count) const;
constexpr span<element_type, dynamic_extent> subspan(

size_type offset, size_type count = dynamic_extent) const;

// 24.7.3.5, observers
constexpr size_type size() const noexcept;
constexpr size_type size_bytes() const noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

// 24.7.3.6, element access
constexpr reference operator[](size_type idx) const;
constexpr reference front() const;
constexpr reference back() const;
constexpr pointer data() const noexcept;

// 24.7.3.7, iterator support
constexpr iterator begin() const noexcept;
constexpr iterator end() const noexcept;
constexpr reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() const noexcept;

private:
pointer data_; // exposition only
size_type size_; // exposition only

};

template<class It, class EndOrSize>
span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>>;

template<class T, size_t N>
span(T (&)[N]) -> span<T, N>;

template<class T, size_t N>
span(array<T, N>&) -> span<T, N>;

template<class T, size_t N>
span(const array<T, N>&) -> span<const T, N>;

template<class R>
span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;

}

3 span<ElementType, Extent> is a trivially copyable type (6.8.1).
4 ElementType is required to be a complete object type that is not an abstract class type.
24.7.3.2 Constructors, copy, and assignment [span.cons]

constexpr span() noexcept;

1 Constraints: Extent == dynamic_extent || Extent == 0 is true.
2 Postconditions: size() == 0 && data() == nullptr.

template<class It>
constexpr explicit(extent != dynamic_extent) span(It first, size_type count);

3 Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
§ 24.7.3.2 943

© ISO/IEC N4910

—(3.1) It satisfies contiguous_iterator.
—(3.2) is_convertible_v<U(*)[], element_type(*)[]> is true.

[Note 1: The intent is to allow only qualification conversions of the iterator reference type to element_type. —endnote]
4 Preconditions:

—(4.1) [first, first + count) is a valid range.
—(4.2) It models contiguous_iterator.
—(4.3) If extent is not equal to dynamic_extent, then count is equal to extent.

5 Effects: Initializes data_ with to_address(first) and size_ with count.
6 Throws: Nothing.

template<class It, class End>
constexpr explicit(extent != dynamic_extent) span(It first, End last);

7 Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
—(7.1) is_convertible_v<U(*)[], element_type(*)[]> is true.

[Note 2: The intent is to allow only qualification conversions of the iterator reference type to element_type. —endnote]
—(7.2) It satisfies contiguous_iterator.
—(7.3) End satisfies sized_sentinel_for<It>.
—(7.4) is_convertible_v<End, size_t> is false.

8 Preconditions:
—(8.1) If extent is not equal to dynamic_extent, then last - first is equal to extent.
—(8.2) [first, last) is a valid range.
—(8.3) It models contiguous_iterator.
—(8.4) End models sized_sentinel_for<It>.

9 Effects: Initializes data_ with to_address(first) and size_ with last - first.
10 Throws: When and what last - first throws.

template<size_t N> constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept;
template<class T, size_t N> constexpr span(array<T, N>& arr) noexcept;
template<class T, size_t N> constexpr span(const array<T, N>& arr) noexcept;

11 Constraints: Let U be remove_pointer_t<decltype(data(arr))>.
—(11.1) extent == dynamic_extent || N == extent is true, and
—(11.2) is_convertible_v<U(*)[], element_type(*)[]> is true.

[Note 3: The intent is to allow only qualification conversions of the array element type to element_type. —end note]
12 Effects: Constructs a span that is a view over the supplied array.

[Note 4: type_identity_t affects class template argument deduction. —end note]
13 Postconditions: size() == N && data() == data(arr) is true.

template<class R> constexpr explicit(extent != dynamic_extent) span(R&& r);

14 Constraints: Let U be remove_reference_t<ranges::range_reference_t<R>>.
—(14.1) R satisfies ranges::contiguous_range and ranges::sized_range.
—(14.2) Either R satisfies ranges::borrowed_range or is_const_v<element_type> is true.
—(14.3) remove_cvref_t<R> is not a specialization of span.
—(14.4) remove_cvref_t<R> is not a specialization of array.
—(14.5) is_array_v<remove_cvref_t<R>> is false.
—(14.6) is_convertible_v<U(*)[], element_type(*)[]> is true.

§ 24.7.3.2 944

© ISO/IEC N4910

[Note 5: The intent is to allow only qualification conversions of the range reference type to element_type. —end note]
15 Preconditions:

—(15.1) If extent is not equal to dynamic_extent, then ranges::size(r) is equal to extent.
—(15.2) R models ranges::contiguous_range and ranges::sized_range.
—(15.3) If is_const_v<element_type> is false, R models ranges::borrowed_range.

16 Effects: Initializes data_ with ranges::data(r) and size_ with ranges::size(r).
17 Throws: What and when ranges::data(r) and ranges::size(r) throw.

constexpr span(const span& other) noexcept = default;

18 Postconditions: other.size() == size() && other.data() == data().
template<class OtherElementType, size_t OtherExtent>

constexpr explicit(see below) span(const span<OtherElementType, OtherExtent>& s) noexcept;

19 Constraints:
—(19.1) extent == dynamic_extent || OtherExtent == dynamic_extent || extent == OtherExtent is true,and
—(19.2) is_convertible_v<OtherElementType(*)[], element_type(*)[]> is true.

[Note 6: The intent is to allow only qualification conversions of the OtherElementType to element_type. —end note]
20 Preconditions: If extent is not equal to dynamic_extent, then s.size() is equal to extent.
21 Effects: Constructs a span that is a view over the range [s.data(), s.data() + s.size()).
22 Postconditions: size() == s.size() && data() == s.data().
23 Remarks: The expression inside explicit is equivalent to:

extent != dynamic_extent && OtherExtent == dynamic_extent

constexpr span& operator=(const span& other) noexcept = default;

24 Postconditions: size() == other.size() && data() == other.data().
24.7.3.3 Deduction guides [span.deduct]

template<class It, class EndOrSize>
span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>>;

1 Constraints: It satisfies contiguous_iterator.
template<class R>

span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;

2 Constraints: R satisfies ranges::contiguous_range.
24.7.3.4 Subviews [span.sub]

template<size_t Count> constexpr span<element_type, Count> first() const;

1 Mandates: Count <= Extent is true.
2 Preconditions: Count <= size() is true.
3 Effects: Equivalent to: return R{data(), Count}; where R is the return type.

template<size_t Count> constexpr span<element_type, Count> last() const;

4 Mandates: Count <= Extent is true.
5 Preconditions: Count <= size() is true.
6 Effects: Equivalent to: return R{data() + (size() - Count), Count}; where R is the return type.

template<size_t Offset, size_t Count = dynamic_extent>
constexpr span<element_type, see below> subspan() const;

7 Mandates:

§ 24.7.3.4 945

© ISO/IEC N4910

Offset <= Extent && (Count == dynamic_extent || Count <= Extent - Offset)

is true.
8 Preconditions:

Offset <= size() && (Count == dynamic_extent || Count <= size() - Offset)

is true.
9 Effects: Equivalent to:

return span<ElementType, see below>(
data() + Offset, Count != dynamic_extent ? Count : size() - Offset);

10 Remarks: The second template argument of the returned span type is:
Count != dynamic_extent ? Count

: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent)

constexpr span<element_type, dynamic_extent> first(size_type count) const;

11 Preconditions: count <= size() is true.
12 Effects: Equivalent to: return {data(), count};

constexpr span<element_type, dynamic_extent> last(size_type count) const;

13 Preconditions: count <= size() is true.
14 Effects: Equivalent to: return {data() + (size() - count), count};

constexpr span<element_type, dynamic_extent> subspan(
size_type offset, size_type count = dynamic_extent) const;

15 Preconditions:
offset <= size() && (count == dynamic_extent || count <= size() - offset)

is true.
16 Effects: Equivalent to:

return {data() + offset, count == dynamic_extent ? size() - offset : count};

24.7.3.5 Observers [span.obs]

constexpr size_type size() const noexcept;

1 Effects: Equivalent to: return size_;

constexpr size_type size_bytes() const noexcept;

2 Effects: Equivalent to: return size() * sizeof(element_type);

[[nodiscard]] constexpr bool empty() const noexcept;

3 Effects: Equivalent to: return size() == 0;

24.7.3.6 Element access [span.elem]

constexpr reference operator[](size_type idx) const;

1 Preconditions: idx < size() is true.
2 Effects: Equivalent to: return *(data() + idx);

constexpr reference front() const;

3 Preconditions: empty() is false.
4 Effects: Equivalent to: return *data();

constexpr reference back() const;

5 Preconditions: empty() is false.
6 Effects: Equivalent to: return *(data() + (size() - 1));

§ 24.7.3.6 946

© ISO/IEC N4910

constexpr pointer data() const noexcept;

7 Effects: Equivalent to: return data_;

24.7.3.7 Iterator support [span.iterators]

using iterator = implementation-defined;

1 The type models contiguous_iterator (25.3.4.14), meets the Cpp17RandomAccessIterator requirements(25.3.5.7), and meets the requirements for constexpr iterators (25.3.1), whose value type is value_type andwhose reference type is reference.
2 All requirements on container iterators (24.2) apply to span::iterator as well.

constexpr iterator begin() const noexcept;

3 Returns: An iterator referring to the first element in the span. If empty() is true, then it returns the same value as
end().

constexpr iterator end() const noexcept;

4 Returns: An iterator which is the past-the-end value.
constexpr reverse_iterator rbegin() const noexcept;

5 Effects: Equivalent to: return reverse_iterator(end());

constexpr reverse_iterator rend() const noexcept;

6 Effects: Equivalent to: return reverse_iterator(begin());

24.7.3.8 Views of object representation [span.objectrep]

template<class ElementType, size_t Extent>
span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>
as_bytes(span<ElementType, Extent> s) noexcept;

1 Effects: Equivalent to: return R{reinterpret_cast<const byte*>(s.data()), s.size_bytes()}; where Ris the return type.
template<class ElementType, size_t Extent>

span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>
as_writable_bytes(span<ElementType, Extent> s) noexcept;

2 Constraints: is_const_v<ElementType> is false.
3 Effects: Equivalent to: return R{reinterpret_cast<byte*>(s.data()), s.size_bytes()}; where R is thereturn type.

§ 24.7.3.8 947

© ISO/IEC N4910

25 Iterators library [iterators]
25.1 General [iterators.general]

1 This Clause describes components that C++ programs may use to perform iterations over containers (Clause 24),streams (31.7), stream buffers (31.6), and other ranges (Clause 26).
2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined iterators,and stream iterators, as summarized in Table 80.

Table 80: Iterators library summary [tab:iterators.summary]
Subclause Header

25.3 Iterator requirements <iterator>25.4 Iterator primitives25.5 Iterator adaptors25.6 Stream iterators25.7 Range access

25.2 Header <iterator> synopsis [iterator.synopsis]
#include <compare> // see 17.11.1
#include <concepts> // see 18.3
namespace std {

template<class T> using with-reference = T&; // exposition only
template<class T> concept can-reference // exposition only

= requires { typename with-reference<T>; };
template<class T> concept dereferenceable // exposition only

= requires(T& t) {
{ *t } -> can-reference; // not required to be equality-preserving

};

// 25.3.2, associated types// 25.3.2.1, incrementable traits
template<class> struct incrementable_traits;
template<class T>

using iter_difference_t = see below;

// 25.3.2.2, indirectly readable traits
template<class> struct indirectly_readable_traits;
template<class T>

using iter_value_t = see below;

// 25.3.2.3, iterator traits
template<class I> struct iterator_traits;
template<class T> requires is_object_v<T> struct iterator_traits<T*>;

template<dereferenceable T>
using iter_reference_t = decltype(*declval<T&>());

namespace ranges {// 25.3.3, customization point objects
inline namespace unspecified {// 25.3.3.1, ranges::iter_move
inline constexpr unspecified iter_move = unspecified;

§ 25.2 948

© ISO/IEC N4910

// 25.3.3.2, ranges::iter_swap
inline constexpr unspecified iter_swap = unspecified;

}
}

template<dereferenceable T>
requires requires(T& t) {

{ ranges::iter_move(t) } -> can-reference;
}

using iter_rvalue_reference_t
= decltype(ranges::iter_move(declval<T&>()));

// 25.3.4, iterator concepts// 25.3.4.2, concept indirectly_readable
template<class In>
concept indirectly_readable = see below;

template<indirectly_readable T>
using iter_common_reference_t =

common_reference_t<iter_reference_t<T>, iter_value_t<T>&>;

// 25.3.4.3, concept indirectly_writable
template<class Out, class T>
concept indirectly_writable = see below;

// 25.3.4.4, concept weakly_incrementable
template<class I>
concept weakly_incrementable = see below;

// 25.3.4.5, concept incrementable
template<class I>
concept incrementable = see below;

// 25.3.4.6, concept input_or_output_iterator
template<class I>
concept input_or_output_iterator = see below;

// 25.3.4.7, concept sentinel_for
template<class S, class I>
concept sentinel_for = see below;

// 25.3.4.8, concept sized_sentinel_for
template<class S, class I>
inline constexpr bool disable_sized_sentinel_for = false;

template<class S, class I>
concept sized_sentinel_for = see below;

// 25.3.4.9, concept input_iterator
template<class I>
concept input_iterator = see below;

// 25.3.4.10, concept output_iterator
template<class I, class T>
concept output_iterator = see below;

// 25.3.4.11, concept forward_iterator
template<class I>
concept forward_iterator = see below;

// 25.3.4.12, concept bidirectional_iterator
template<class I>
concept bidirectional_iterator = see below;

§ 25.2 949

© ISO/IEC N4910

// 25.3.4.13, concept random_access_iterator
template<class I>
concept random_access_iterator = see below;

// 25.3.4.14, concept contiguous_iterator
template<class I>
concept contiguous_iterator = see below;

// 25.3.6, indirect callable requirements// 25.3.6.2, indirect callables
template<class F, class I>
concept indirectly_unary_invocable = see below;

template<class F, class I>
concept indirectly_regular_unary_invocable = see below;

template<class F, class I>
concept indirect_unary_predicate = see below;

template<class F, class I1, class I2>
concept indirect_binary_predicate = see below;

template<class F, class I1, class I2 = I1>
concept indirect_equivalence_relation = see below;

template<class F, class I1, class I2 = I1>
concept indirect_strict_weak_order = see below;

template<class F, class... Is>
requires (indirectly_readable<Is> && ...) && invocable<F, iter_reference_t<Is>...>
using indirect_result_t = invoke_result_t<F, iter_reference_t<Is>...>;

// 25.3.6.3, projected
template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj>

struct projected;

template<weakly_incrementable I, class Proj>
struct incrementable_traits<projected<I, Proj>>;

// 25.3.7, common algorithm requirements// 25.3.7.2, concept indirectly_movable
template<class In, class Out>

concept indirectly_movable = see below;

template<class In, class Out>
concept indirectly_movable_storable = see below;

// 25.3.7.3, concept indirectly_copyable
template<class In, class Out>

concept indirectly_copyable = see below;

template<class In, class Out>
concept indirectly_copyable_storable = see below;

// 25.3.7.4, concept indirectly_swappable
template<class I1, class I2 = I1>

concept indirectly_swappable = see below;

// 25.3.7.5, concept indirectly_comparable
template<class I1, class I2, class R, class P1 = identity, class P2 = identity>

concept indirectly_comparable = see below;

§ 25.2 950

© ISO/IEC N4910

// 25.3.7.6, concept permutable
template<class I>
concept permutable = see below;

// 25.3.7.7, concept mergeable
template<class I1, class I2, class Out,

class R = ranges::less, class P1 = identity, class P2 = identity>
concept mergeable = see below;

// 25.3.7.8, concept sortable
template<class I, class R = ranges::less, class P = identity>
concept sortable = see below;

// 25.4, primitives// 25.4.2, iterator tags
struct input_iterator_tag { };
struct output_iterator_tag { };
struct forward_iterator_tag: public input_iterator_tag { };
struct bidirectional_iterator_tag: public forward_iterator_tag { };
struct random_access_iterator_tag: public bidirectional_iterator_tag { };
struct contiguous_iterator_tag: public random_access_iterator_tag { };

// 25.4.3, iterator operations
template<class InputIterator, class Distance>
constexpr void

advance(InputIterator& i, Distance n);
template<class InputIterator>
constexpr typename iterator_traits<InputIterator>::difference_type

distance(InputIterator first, InputIterator last);
template<class InputIterator>
constexpr InputIterator

next(InputIterator x,
typename iterator_traits<InputIterator>::difference_type n = 1);

template<class BidirectionalIterator>
constexpr BidirectionalIterator

prev(BidirectionalIterator x,
typename iterator_traits<BidirectionalIterator>::difference_type n = 1);

// 25.4.4, range iterator operations
namespace ranges {// 25.4.4.2, ranges::advance
template<input_or_output_iterator I>

constexpr void advance(I& i, iter_difference_t<I> n);
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr void advance(I& i, S bound);
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr iter_difference_t<I> advance(I& i, iter_difference_t<I> n, S bound);

// 25.4.4.3, ranges::distance
template<input_or_output_iterator I, sentinel_for<I> S>

requires (!sized_sentinel_for<S, I>)
constexpr iter_difference_t<I> distance(I first, S last);

template<input_or_output_iterator I, sized_sentinel_for<I> S>
constexpr iter_difference_t<I> distance(const I& first, const S& last);

template<range R>
constexpr range_difference_t<R> distance(R&& r);

// 25.4.4.4, ranges::next
template<input_or_output_iterator I>

constexpr I next(I x);
template<input_or_output_iterator I>

constexpr I next(I x, iter_difference_t<I> n);
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr I next(I x, S bound);

§ 25.2 951

© ISO/IEC N4910

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr I next(I x, iter_difference_t<I> n, S bound);

// 25.4.4.5, ranges::prev
template<bidirectional_iterator I>

constexpr I prev(I x);
template<bidirectional_iterator I>

constexpr I prev(I x, iter_difference_t<I> n);
template<bidirectional_iterator I>

constexpr I prev(I x, iter_difference_t<I> n, I bound);
}

// 25.5, predefined iterators and sentinels// 25.5.1, reverse iterators
template<class Iterator> class reverse_iterator;

template<class Iterator1, class Iterator2>
constexpr bool operator==(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator!=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator<(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator>(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator<=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator>=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>

operator<=>(const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr auto operator-(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) -> decltype(y.base() - x.base());

template<class Iterator>
constexpr reverse_iterator<Iterator> operator+(

iter_difference_t<Iterator> n,
const reverse_iterator<Iterator>& x);

template<class Iterator>
constexpr reverse_iterator<Iterator> make_reverse_iterator(Iterator i);

template<class Iterator1, class Iterator2>
requires (!sized_sentinel_for<Iterator1, Iterator2>)

inline constexpr bool disable_sized_sentinel_for<reverse_iterator<Iterator1>,
reverse_iterator<Iterator2>> = true;

// 25.5.2, insert iterators
template<class Container> class back_insert_iterator;

§ 25.2 952

© ISO/IEC N4910

template<class Container>
constexpr back_insert_iterator<Container> back_inserter(Container& x);

template<class Container> class front_insert_iterator;
template<class Container>
constexpr front_insert_iterator<Container> front_inserter(Container& x);

template<class Container> class insert_iterator;
template<class Container>
constexpr insert_iterator<Container>

inserter(Container& x, ranges::iterator_t<Container> i);

// 25.5.3, move iterators and sentinels
template<class Iterator> class move_iterator;

template<class Iterator1, class Iterator2>
constexpr bool operator==(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, class Iterator2>
constexpr bool operator<(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, class Iterator2>
constexpr bool operator>(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, class Iterator2>
constexpr bool operator<=(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, class Iterator2>
constexpr bool operator>=(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>

operator<=>(const move_iterator<Iterator1>& x,
const move_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr auto operator-(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y)
-> decltype(x.base() - y.base());

template<class Iterator>
constexpr move_iterator<Iterator>

operator+(iter_difference_t<Iterator> n, const move_iterator<Iterator>& x);

template<class Iterator>
constexpr move_iterator<Iterator> make_move_iterator(Iterator i);

template<semiregular S> class move_sentinel;

// 25.5.4, common iterators
template<input_or_output_iterator I, sentinel_for<I> S>
requires (!same_as<I, S> && copyable<I>)

class common_iterator;

template<class I, class S>
struct incrementable_traits<common_iterator<I, S>>;

template<input_iterator I, class S>
struct iterator_traits<common_iterator<I, S>>;

// 25.5.5, default sentinel
struct default_sentinel_t;
inline constexpr default_sentinel_t default_sentinel{};

§ 25.2 953

© ISO/IEC N4910

// 25.5.6, counted iterators
template<input_or_output_iterator I> class counted_iterator;

template<input_iterator I>
requires see below
struct iterator_traits<counted_iterator<I>>;

// 25.5.7, unreachable sentinel
struct unreachable_sentinel_t;
inline constexpr unreachable_sentinel_t unreachable_sentinel{};

// 25.6, stream iterators
template<class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator;
template<class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);

template<class T, class charT = char, class traits = char_traits<charT>>
class ostream_iterator;

template<class charT, class traits = char_traits<charT>>
class istreambuf_iterator;

template<class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

template<class charT, class traits = char_traits<charT>>
class ostreambuf_iterator;

// 25.7, range access
template<class C> constexpr auto begin(C& c) -> decltype(c.begin());
template<class C> constexpr auto begin(const C& c) -> decltype(c.begin());
template<class C> constexpr auto end(C& c) -> decltype(c.end());
template<class C> constexpr auto end(const C& c) -> decltype(c.end());
template<class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept;
template<class T, size_t N> constexpr T* end(T (&array)[N]) noexcept;
template<class C> constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c)))
-> decltype(std::begin(c));

template<class C> constexpr auto cend(const C& c) noexcept(noexcept(std::end(c)))
-> decltype(std::end(c));

template<class C> constexpr auto rbegin(C& c) -> decltype(c.rbegin());
template<class C> constexpr auto rbegin(const C& c) -> decltype(c.rbegin());
template<class C> constexpr auto rend(C& c) -> decltype(c.rend());
template<class C> constexpr auto rend(const C& c) -> decltype(c.rend());
template<class T, size_t N> constexpr reverse_iterator<T*> rbegin(T (&array)[N]);
template<class T, size_t N> constexpr reverse_iterator<T*> rend(T (&array)[N]);
template<class E> constexpr reverse_iterator<const E*> rbegin(initializer_list<E> il);
template<class E> constexpr reverse_iterator<const E*> rend(initializer_list<E> il);
template<class C> constexpr auto crbegin(const C& c) -> decltype(std::rbegin(c));
template<class C> constexpr auto crend(const C& c) -> decltype(std::rend(c));

template<class C> constexpr auto size(const C& c) -> decltype(c.size());
template<class T, size_t N> constexpr size_t size(const T (&array)[N]) noexcept;
template<class C> constexpr auto ssize(const C& c)
-> common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>;

template<class T, ptrdiff_t N> constexpr ptrdiff_t ssize(const T (&array)[N]) noexcept;
template<class C> [[nodiscard]] constexpr auto empty(const C& c) -> decltype(c.empty());
template<class T, size_t N> [[nodiscard]] constexpr bool empty(const T (&array)[N]) noexcept;
template<class E> [[nodiscard]] constexpr bool empty(initializer_list<E> il) noexcept;
template<class C> constexpr auto data(C& c) -> decltype(c.data());
template<class C> constexpr auto data(const C& c) -> decltype(c.data());
template<class T, size_t N> constexpr T* data(T (&array)[N]) noexcept;

§ 25.2 954

© ISO/IEC N4910

template<class E> constexpr const E* data(initializer_list<E> il) noexcept;
}

25.3 Iterator requirements [iterator.requirements]
25.3.1 In general [iterator.requirements.general]

1 Iterators are a generalization of pointers that allow a C++ program to work with different data structures (for example,containers and ranges) in a uniform manner. To be able to construct template algorithms that work correctly andefficiently on different types of data structures, the library formalizes not just the interfaces but also the semantics andcomplexity assumptions of iterators. An input iterator i supports the expression *i, resulting in a value of some objecttype T, called the value type of the iterator. An output iterator i has a non-empty set of types that are indirectly_-
writable to the iterator; for each such type T, the expression *i = o is valid where o is a value of type T. For everyiterator type X, there is a corresponding signed integer-like type (25.3.4.4) called the difference type of the iterator.

2 Since iterators are an abstraction of pointers, their semantics are a generalization of most of the semantics of pointers inC++. This ensures that every function template that takes iterators works as well with regular pointers. This documentdefines six categories of iterators, according to the operations defined on them: input iterators, output iterators, forwarditerators, bidirectional iterators, random access iterators, and contiguous iterators, as shown in Table 81.
Table 81: Relations among iterator categories [tab:iterators.relations]

Contiguous → Random Access → Bidirectional → Forward → Input
→ Output

3 The six categories of iterators correspond to the iterator concepts
—(3.1) input_iterator (25.3.4.9),
—(3.2) output_iterator (25.3.4.10),
—(3.3) forward_iterator (25.3.4.11),
—(3.4) bidirectional_iterator (25.3.4.12),
—(3.5) random_access_iterator (25.3.4.13), and
—(3.6) contiguous_iterator (25.3.4.14),

respectively. The generic term iterator refers to any type that models the input_or_output_iterator concept (25.3.4.6).
4 Forward iterators meet all the requirements of input iterators and can be used whenever an input iterator is specified;Bidirectional iterators also meet all the requirements of forward iterators and can be used whenever a forward iterator isspecified; Random access iterators also meet all the requirements of bidirectional iterators and can be used whenever abidirectional iterator is specified; Contiguous iterators also meet all the requirements of random access iterators and canbe used whenever a random access iterator is specified.
5 Iterators that further meet the requirements of output iterators are called mutable iterators. Nonmutable iterators arereferred to as constant iterators.
6 In addition to the requirements in this subclause, the nested typedef-names specified in 25.3.2.3 shall be provided forthe iterator type.
[Note 1: Either the iterator typemust provide the typedef-names directly (inwhich case iterator_traits pick them up automatically),or an iterator_traits specialization must provide them. —end note]

7 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of the array, sofor any iterator type there is an iterator value that points past the last element of a corresponding sequence. Such a valueis called a past-the-end value. Values of an iterator i for which the expression *i is defined are called dereferenceable.The library never assumes that past-the-end values are dereferenceable. Iterators can also have singular values that arenot associated with any sequence. Results of most expressions are undefined for singular values; the only exceptionsare destroying an iterator that holds a singular value, the assignment of a non-singular value to an iterator that holdsa singular value, and, for iterators that meet the Cpp17DefaultConstructible requirements, using a value-initializediterator as the source of a copy or move operation.
[Note 2: This guarantee is not offered for default-initialization, although the distinction only matters for types with trivial defaultconstructors such as pointers or aggregates holding pointers. —end note]
In these cases the singular value is overwritten the same way as any other value. Dereferenceable values are alwaysnon-singular.
§ 25.3.1 955

© ISO/IEC N4910

8 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges. A range is aniterator and a sentinel that designate the beginning and end of the computation, or an iterator and a count that designatethe beginning and the number of elements to which the computation is to be applied.218
9 An iterator and a sentinel denoting a range are comparable. A range [i, s) is empty if i == s; otherwise, [i, s) refers tothe elements in the data structure starting with the element pointed to by i and up to but not including the element, ifany, pointed to by the first iterator j such that j == s.
10 A sentinel s is called reachable from an iterator i if and only if there is a finite sequence of applications of the expression

++i that makes i == s. If s is reachable from i, [i, s) denotes a valid range.
11 A counted range i + [0, n) is empty if n == 0; otherwise, i + [0, n) refers to the n elements in the data structurestarting with the element pointed to by i and up to but not including the element, if any, pointed to by the result of napplications of ++i. A counted range i + [0, n) is valid if and only if n == 0; or n is positive, i is dereferenceable, and

++i + [0, --n) is valid.
12 The result of the application of library functions to invalid ranges is undefined.
13 All the categories of iterators require only those functions that are realizable for a given category in constant time(amortized). Therefore, requirement tables and concept definitions for the iterators do not specify complexity.
14 Destruction of a non-forward iterator may invalidate pointers and references previously obtained from that iterator.
15 An invalid iterator is an iterator that may be singular.219
16 Iterators are called constexpr iterators if all operations provided to meet iterator category requirements are constexprfunctions.
[Note 3: For example, the types “pointer to int” and reverse_iterator<int*> are constexpr iterators. —end note]
25.3.2 Associated types [iterator.assoc.types]
25.3.2.1 Incrementable traits [incrementable.traits]

1 To implement algorithms only in terms of incrementable types, it is often necessary to determine the difference type thatcorresponds to a particular incrementable type. Accordingly, it is required that if WI is the name of a type that modelsthe weakly_incrementable concept (25.3.4.4), the type
iter_difference_t<WI>

be defined as the incrementable type’s difference type.
namespace std {

template<class> struct incrementable_traits { };

template<class T>
requires is_object_v<T>

struct incrementable_traits<T*> {
using difference_type = ptrdiff_t;

};

template<class I>
struct incrementable_traits<const I>
: incrementable_traits<I> { };

template<class T>
requires requires { typename T::difference_type; }

struct incrementable_traits<T> {
using difference_type = typename T::difference_type;

};

template<class T>
requires (!requires { typename T::difference_type; } &&

requires(const T& a, const T& b) { { a - b } -> integral; })
struct incrementable_traits<T> {
using difference_type = make_signed_t<decltype(declval<T>() - declval<T>())>;

};

218) The sentinel denoting the end of a range can have the same type as the iterator denoting the beginning of the range, or a different type.
219) This definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated is undefined.
§ 25.3.2.1 956

© ISO/IEC N4910

template<class T>
using iter_difference_t = see below;

}

2 Let RI be remove_cvref_t<I>. The type iter_difference_t<I> denotes
—(2.1) incrementable_traits<RI>::difference_type if iterator_traits<RI> names a specialization generatedfrom the primary template, and
—(2.2) iterator_traits<RI>::difference_type otherwise.

3 Users may specialize incrementable_traits on program-defined types.
25.3.2.2 Indirectly readable traits [readable.traits]

1 To implement algorithms only in terms of indirectly readable types, it is often necessary to determine the value typethat corresponds to a particular indirectly readable type. Accordingly, it is required that if R is the name of a type thatmodels the indirectly_readable concept (25.3.4.2), the type
iter_value_t<R>

be defined as the indirectly readable type’s value type.
template<class> struct cond-value-type { }; // exposition only
template<class T>

requires is_object_v<T>
struct cond-value-type<T> {
using value_type = remove_cv_t<T>;

};

template<class T>
concept has-member-value-type = requires { typename T::value_type; }; // exposition only

template<class T>
concept has-member-element-type = requires { typename T::element_type; }; // exposition only

template<class> struct indirectly_readable_traits { };

template<class T>
struct indirectly_readable_traits<T*>

: cond-value-type<T> { };

template<class I>
requires is_array_v<I>

struct indirectly_readable_traits<I> {
using value_type = remove_cv_t<remove_extent_t<I>>;

};

template<class I>
struct indirectly_readable_traits<const I>

: indirectly_readable_traits<I> { };

template<has-member-value-type T>
struct indirectly_readable_traits<T>

: cond-value-type<typename T::value_type> { };

template<has-member-element-type T>
struct indirectly_readable_traits<T>

: cond-value-type<typename T::element_type> { };

template<has-member-value-type T>
requires has-member-element-type<T>

struct indirectly_readable_traits<T> { };

template<has-member-value-type T>
requires has-member-element-type<T> &&

same_as<remove_cv_t<typename T::element_type>, remove_cv_t<typename T::value_type>>
struct indirectly_readable_traits<T>

§ 25.3.2.2 957

© ISO/IEC N4910

: cond-value-type<typename T::value_type> { };

template<class T> using iter_value_t = see below;

2 Let RI be remove_cvref_t<I>. The type iter_value_t<I> denotes
—(2.1) indirectly_readable_traits<RI>::value_type if iterator_traits<RI> names a specialization generatedfrom the primary template, and
—(2.2) iterator_traits<RI>::value_type otherwise.

3 Class template indirectly_readable_traits may be specialized on program-defined types.
4 [Note 1: Some legacy output iterators define a nested type named value_type that is an alias for void. These types are not

indirectly_readable and have no associated value types. —end note]
5 [Note 2: Smart pointers like shared_ptr<int> are indirectly_readable and have an associated value type, but a smart pointer like

shared_ptr<void> is not indirectly_readable and has no associated value type. —end note]
25.3.2.3 Iterator traits [iterator.traits]

1 To implement algorithms only in terms of iterators, it is sometimes necessary to determine the iterator category thatcorresponds to a particular iterator type. Accordingly, it is required that if I is the type of an iterator, the type
iterator_traits<I>::iterator_category

be defined as the iterator’s iterator category. In addition, the types
iterator_traits<I>::pointer
iterator_traits<I>::reference

shall be defined as the iterator’s pointer and reference types; that is, for an iterator object a of class type, the sametype as decltype(a.operator->()) and decltype(*a), respectively. The type iterator_traits<I>::pointer shallbe void for an iterator of class type I that does not support operator->. Additionally, in the case of an output iterator,the types
iterator_traits<I>::value_type
iterator_traits<I>::difference_type
iterator_traits<I>::reference

may be defined as void.
2 The definitions in this subclause make use of the following exposition-only concepts:

template<class I>
concept cpp17-iterator =
requires(I i) {
{ *i } -> can-reference;
{ ++i } -> same_as<I&>;
{ *i++ } -> can-reference;

} && copyable<I>;

template<class I>
concept cpp17-input-iterator =

cpp17-iterator<I> && equality_comparable<I> && requires(I i) {
typename incrementable_traits<I>::difference_type;
typename indirectly_readable_traits<I>::value_type;
typename common_reference_t<iter_reference_t<I>&&,

typename indirectly_readable_traits<I>::value_type&>;
typename common_reference_t<decltype(*i++)&&,

typename indirectly_readable_traits<I>::value_type&>;
requires signed_integral<typename incrementable_traits<I>::difference_type>;

};

template<class I>
concept cpp17-forward-iterator =

cpp17-input-iterator<I> && constructible_from<I> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
same_as<remove_cvref_t<iter_reference_t<I>>,

typename indirectly_readable_traits<I>::value_type> &&
requires(I i) {

{ i++ } -> convertible_to<const I&>;

§ 25.3.2.3 958

© ISO/IEC N4910

{ *i++ } -> same_as<iter_reference_t<I>>;
};

template<class I>
concept cpp17-bidirectional-iterator =
cpp17-forward-iterator<I> && requires(I i) {
{ --i } -> same_as<I&>;
{ i-- } -> convertible_to<const I&>;
{ *i-- } -> same_as<iter_reference_t<I>>;

};

template<class I>
concept cpp17-random-access-iterator =

cpp17-bidirectional-iterator<I> && totally_ordered<I> &&
requires(I i, typename incrementable_traits<I>::difference_type n) {
{ i += n } -> same_as<I&>;
{ i -= n } -> same_as<I&>;
{ i + n } -> same_as<I>;
{ n + i } -> same_as<I>;
{ i - n } -> same_as<I>;
{ i - i } -> same_as<decltype(n)>;
{ i[n] } -> convertible_to<iter_reference_t<I>>;

};

3 The members of a specialization iterator_traits<I> generated from the iterator_traits primary template arecomputed as follows:
—(3.1) If I has valid (13.10.3) member types difference_type, value_type, reference, and iterator_category, then

iterator_traits<I> has the following publicly accessible members:
using iterator_category = typename I::iterator_category;
using value_type = typename I::value_type;
using difference_type = typename I::difference_type;
using pointer = see below;
using reference = typename I::reference;

If the qualified-id I::pointer is valid and denotes a type, then iterator_traits<I>::pointer names that type;otherwise, it names void.
—(3.2) Otherwise, if I satisfies the exposition-only concept cpp17-input-iterator, iterator_traits<I> has thefollowing publicly accessible members:

using iterator_category = see below;
using value_type = typename indirectly_readable_traits<I>::value_type;
using difference_type = typename incrementable_traits<I>::difference_type;
using pointer = see below;
using reference = see below;

—(3.2.1) If the qualified-id I::pointer is valid and denotes a type, pointer names that type. Otherwise, if decltype(
declval<I&>().operator->()) is well-formed, then pointer names that type. Otherwise, pointer names
void.

—(3.2.2) If the qualified-id I::reference is valid and denotes a type, reference names that type. Otherwise,
reference names iter_reference_t<I>.

—(3.2.3) If the qualified-id I::iterator_category is valid and denotes a type, iterator_category names that type.Otherwise, iterator_category names:
—(3.2.3.1) random_access_iterator_tag if I satisfies cpp17-random-access-iterator, or otherwise
—(3.2.3.2) bidirectional_iterator_tag if I satisfies cpp17-bidirectional-iterator, or otherwise
—(3.2.3.3) forward_iterator_tag if I satisfies cpp17-forward-iterator, or otherwise
—(3.2.3.4) input_iterator_tag.

—(3.3) Otherwise, if I satisfies the exposition-only concept cpp17-iterator, then iterator_traits<I> has the follow-ing publicly accessible members:
using iterator_category = output_iterator_tag;
using value_type = void;

§ 25.3.2.3 959

© ISO/IEC N4910

using difference_type = see below;
using pointer = void;
using reference = void;

If the qualified-id incrementable_traits<I>::difference_type is valid and denotes a type, then difference_-
type names that type; otherwise, it names void.

—(3.4) Otherwise, iterator_traits<I> has no members by any of the above names.
4 Explicit or partial specializations of iterator_traits may have a member type iterator_concept that is used toindicate conformance to the iterator concepts (25.3.4).
[Example 1: To indicate conformance to the input_iterator concept but a lack of conformance to the Cpp17InputIteratorrequirements (25.3.5.3), an iterator_traits specialization might have iterator_concept denote input_iterator_tag but notdefine iterator_category. —end example]

5 iterator_traits is specialized for pointers as
namespace std {

template<class T>
requires is_object_v<T>

struct iterator_traits<T*> {
using iterator_concept = contiguous_iterator_tag;
using iterator_category = random_access_iterator_tag;
using value_type = remove_cv_t<T>;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;

};
}

6 [Example 2: To implement a generic reverse function, a C++ program can do the following:
template<class BI>
void reverse(BI first, BI last) {

typename iterator_traits<BI>::difference_type n =
distance(first, last);

--n;
while(n > 0) {
typename iterator_traits<BI>::value_type
tmp = *first;

*first++ = *--last;
*last = tmp;
n -= 2;

}
}

—end example]
25.3.3 Customization point objects [iterator.cust]
25.3.3.1 ranges::iter_move [iterator.cust.move]

1 The name ranges::iter_move denotes a customization point object (16.3.3.3.6). The expression ranges::iter_-
move(E) for a subexpression E is expression-equivalent to:
—(1.1) iter_move(E), if E has class or enumeration type and iter_move(E) is a well-formed expression when treated asan unevaluated operand, with overload resolution performed in a context that does not include a declaration of

ranges::iter_move but does include the declaration
void iter_move();

—(1.2) Otherwise, if the expression *E is well-formed:
—(1.2.1) if *E is an lvalue, std::move(*E);
—(1.2.2) otherwise, *E.

—(1.3) Otherwise, ranges::iter_move(E) is ill-formed.
[Note 1: This case can result in substitution failure when ranges::iter_move(E) appears in the immediate context of atemplate instantiation. —end note]

2 If ranges::iter_move(E) is not equal to *E, the program is ill-formed, no diagnostic required.
§ 25.3.3.1 960

© ISO/IEC N4910

25.3.3.2 ranges::iter_swap [iterator.cust.swap]
1 The name ranges::iter_swap denotes a customization point object (16.3.3.3.6) that exchanges the values (18.4.9)denoted by its arguments.
2 Let iter-exchange-move be the exposition-only function:

template<class X, class Y>
constexpr iter_value_t<X> iter-exchange-move(X&& x, Y&& y)
noexcept(noexcept(iter_value_t<X>(iter_move(x))) &&

noexcept(*x = iter_move(y)));

3 Effects: Equivalent to:
iter_value_t<X> old_value(iter_move(x));
*x = iter_move(y);
return old_value;

4 The expression ranges::iter_swap(E1, E2) for subexpressions E1 and E2 is expression-equivalent to:
—(4.1) (void)iter_swap(E1, E2), if either E1 or E2 has class or enumeration type and iter_swap(E1, E2) is a well-formed expression with overload resolution performed in a context that includes the declaration

template<class I1, class I2>
void iter_swap(I1, I2) = delete;

and does not include a declaration of ranges::iter_swap. If the function selected by overload resolution doesnot exchange the values denoted by E1 and E2, the program is ill-formed, no diagnostic required.
—(4.2) Otherwise, if the types of E1 and E2 each model indirectly_readable, and if the reference types of E1 and E2model swappable_with (18.4.9), then ranges::swap(*E1, *E2).
—(4.3) Otherwise, if the types T1 and T2 of E1 and E2model indirectly_movable_storable<T1, T2> and indirectly_-

movable_storable<T2, T1>, then (void)(*E1 = iter-exchange-move(E2, E1)), except that E1 is evaluatedonly once.
—(4.4) Otherwise, ranges::iter_swap(E1, E2) is ill-formed.

[Note 1: This case can result in substitution failure when ranges::iter_swap(E1, E2) appears in the immediate context of atemplate instantiation. —end note]
25.3.4 Iterator concepts [iterator.concepts]
25.3.4.1 General [iterator.concepts.general]

1 For a type I, let ITER_TRAITS(I) denote the type I if iterator_traits<I> names a specialization generated from theprimary template. Otherwise, ITER_TRAITS(I) denotes iterator_traits<I>.
—(1.1) If the qualified-id ITER_TRAITS(I)::iterator_concept is valid and names a type, then ITER_CONCEPT(I) de-notes that type.
—(1.2) Otherwise, if the qualified-id ITER_TRAITS(I)::iterator_category is valid and names a type, then ITER_-

CONCEPT(I) denotes that type.
—(1.3) Otherwise, if iterator_traits<I> names a specialization generated from the primary template, then ITER_-

CONCEPT(I) denotes random_access_iterator_tag.
—(1.4) Otherwise, ITER_CONCEPT(I) does not denote a type.

2 [Note 1: ITER_TRAITS enables independent syntactic determination of an iterator’s category and concept. —end note]
[Example 1:
struct I {

using value_type = int;
using difference_type = int;

int operator*() const;
I& operator++();
I operator++(int);
I& operator--();
I operator--(int);

§ 25.3.4.1 961

© ISO/IEC N4910

bool operator==(I) const;
};

iterator_traits<I>::iterator_category denotes input_iterator_tag, and ITER_CONCEPT(I) denotes random_access_iterator_-
tag. —end example]
25.3.4.2 Concept indirectly_readable [iterator.concept.readable]

1 Types that are indirectly readable by applying operator* model the indirectly_readable concept, including pointers,smart pointers, and iterators.
template<class In>

concept indirectly-readable-impl =
requires(const In in) {

typename iter_value_t<In>;
typename iter_reference_t<In>;
typename iter_rvalue_reference_t<In>;
{ *in } -> same_as<iter_reference_t<In>>;
{ ranges::iter_move(in) } -> same_as<iter_rvalue_reference_t<In>>;

} &&
common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> &&
common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> &&
common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>;

template<class In>
concept indirectly_readable =
indirectly-readable-impl<remove_cvref_t<In>>;

2 Given a value i of type I, I models indirectly_readable only if the expression *i is equality-preserving.
[Note 1: The expression *i is indirectly required to be valid via the exposition-only dereferenceable concept (25.2). —end note]
25.3.4.3 Concept indirectly_writable [iterator.concept.writable]

1 The indirectly_writable concept specifies the requirements for writing a value into an iterator’s referenced object.
template<class Out, class T>

concept indirectly_writable =
requires(Out&& o, T&& t) {

*o = std::forward<T>(t); // not required to be equality-preserving
*std::forward<Out>(o) = std::forward<T>(t); // not required to be equality-preserving
const_cast<const iter_reference_t<Out>&&>(*o) =

std::forward<T>(t); // not required to be equality-preserving
const_cast<const iter_reference_t<Out>&&>(*std::forward<Out>(o)) =

std::forward<T>(t); // not required to be equality-preserving
};

2 Let E be an expression such that decltype((E)) is T, and let o be a dereferenceable object of type Out. Out and T model
indirectly_writable<Out, T> only if
—(2.1) If Out and Tmodel indirectly_readable<Out> && same_as<iter_value_t<Out>, decay_t<T>>, then *o afterany above assignment is equal to the value of E before the assignment.

3 After evaluating any above assignment expression, o is not required to be dereferenceable.
4 If E is an xvalue (7.2.1), the resulting state of the object it denotes is valid but unspecified (16.4.6.15).
5 [Note 1: The only valid use of an operator* is on the left side of the assignment statement. Assignment through the same value ofthe indirectly writable type happens only once. —end note]
6 [Note 2: indirectly_writable has the awkward const_cast expressions to reject iterators with prvalue non-proxy referencetypes that permit rvalue assignment but do not also permit const rvalue assignment. Consequently, an iterator type I that returns

std::string by value does not model indirectly_writable<I, std::string>. —end note]
25.3.4.4 Concept weakly_incrementable [iterator.concept.winc]

1 The weakly_incrementable concept specifies the requirements on types that can be incremented with the pre- andpost-increment operators. The increment operations are not required to be equality-preserving, nor is the type requiredto be equality_comparable.
template<class T>

inline constexpr bool is-integer-like = see below; // exposition only

§ 25.3.4.4 962

© ISO/IEC N4910

template<class T>
inline constexpr bool is-signed-integer-like = see below; // exposition only

template<class I>
concept weakly_incrementable =
movable<I> &&
requires(I i) {

typename iter_difference_t<I>;
requires is-signed-integer-like<iter_difference_t<I>>;
{ ++i } -> same_as<I&>; // not required to be equality-preserving
i++; // not required to be equality-preserving

};

2 A type I is an integer-class type if it is in a set of implementation-defined types that behave as integer types do, asdefined below.
[Note 1: An integer-class type is not necessarily a class type. —end note]

3 The range of representable values of an integer-class type is the continuous set of values over which it is defined. Forany integer-class type, its range of representable values is either −2N−1 to 2N−1 − 1 (inclusive) for some integer N ,in which case it is a signed-integer-class type, or 0 to 2N − 1 (inclusive) for some integer N , in which case it is anunsigned-integer-class type. In both cases, N is called the width of the integer-class type. The width of an integer-classtype is greater than that of every integral type of the same signedness.
4 A type I other than cv bool is integer-like if it models integral<I> or if it is an integer-class type. An integer-like type

I is signed-integer-like if it models signed_integral<I> or if it is a signed-integer-class type. An integer-like type I isunsigned-integer-like if it models unsigned_integral<I> or if it is an unsigned-integer-class type.
5 For every integer-class type I, let B(I) be a unique hypothetical extended integer type of the same signedness with thesame width (6.8.2) as I.
[Note 2: The corresponding hypothetical specialization numeric_limits<B(I)> meets the requirements on numeric_limits special-izations for integral types (17.3.5). —end note]
For every integral type J, let B(J) be the same type as J.

6 Expressions of integer-class type are explicitly convertible to any integer-like type, and implicitly convertible to anyinteger-class type of equal or greater width and the same signedness. Expressions of integral type are both implicitly andexplicitly convertible to any integer-class type. Conversions between integral and integer-class types and between twointeger-class types do not exit via an exception. The result of such a conversion is the unique value of the destinationtype that is congruent to the source modulo 2N , where N is the width of the destination type.
7 Let a be an object of integer-class type I, let b be an object of integer-like type I2 such that the expression b is implicitlyconvertible to I, let x and y be, respectively, objects of type B(I) and B(I2) as described above that represent the samevalues as a and b, and let c be an lvalue of any integral type.

—(7.1) The expressions a++ and a-- shall be prvalues of type I whose values are equal to that of a prior to the evaluationof the expressions. The expression a++ shall modify the value of a by adding 1 to it. The expression a-- shallmodify the value of a by subtracting 1 from it.
—(7.2) The expressions ++a, --a, and &a shall be expression-equivalent to a += 1, a -= 1, and addressof(a), respec-tively.
—(7.3) For every unary-operator @ other than & for which the expression @x is well-formed, @a shall also be well-formedand have the same value, effects, and value category as @x. If @x has type bool, so too does @a; if @x has type

B(I), then @a has type I.
—(7.4) For every assignment operator @= for which c @= x is well-formed, c @= a shall also be well-formed and shallhave the same value and effects as c @= x. The expression c @= a shall be an lvalue referring to c.
—(7.5) For every assignment operator @= for which x @= y is well-formed, a @= b shall also be well-formed and shallhave the same effects as x @= y, except that the value that would be stored into x is stored into a. The expression

a @= b shall be an lvalue referring to a.
—(7.6) For every non-assignment binary operator @ for which x @ y and y @ x are well-formed, a @ b and b @ a shallalso be well-formed and shall have the same value, effects, and value category as x @ y and y @ x, respectively.If x @ y or y @ x has type B(I), then a @ b or b @ a, respectively, has type I; if x @ y or y @ x has type

B(I2), then a @ b or b @ a, respectively, has type I2; if x @ y or y @ x has any other type, then a @ b or b @ a,respectively, has that type.
§ 25.3.4.4 963

© ISO/IEC N4910

8 An expression E of integer-class type I is contextually convertible to bool as if by bool(E != I(0)).
9 All integer-class types model regular (18.6) and three_way_comparable<strong_ordering> (17.11.4).
10 A value-initialized object of integer-class type has value 0.
11 For every (possibly cv-qualified) integer-class type I, numeric_limits<I> is specialized such that each static datamember m has the same value as numeric_limits<B(I)>::m, and each static member function f returns I(numeric_-

limits<B(I)>::f()).
12 For any two integer-like types I1 and I2, at least one of which is an integer-class type, common_type_t<I1, I2> denotesan integer-class type whose width is not less than that of I1 or I2. If both I1 and I2 are signed-integer-like types, then

common_type_t<I1, I2> is also a signed-integer-like type.
13 is-integer-like<I> is true if and only if I is an integer-like type. is-signed-integer-like<I> is true if and onlyif I is a signed-integer-like type.
14 Let i be an object of type I. When i is in the domain of both pre- and post-increment, i is said to be incrementable. Imodels weakly_incrementable<I> only if

—(14.1) The expressions ++i and i++ have the same domain.
—(14.2) If i is incrementable, then both ++i and i++ advance i to the next element.
—(14.3) If i is incrementable, then addressof(++i) is equal to addressof(i).

15 Recommended practice: The implementaton of an algorithm on a weakly incrementable type should never attempt topass through the same incrementable value twice; such an algorithm should be a single-pass algorithm.
[Note 3: For weakly_incrementable types, a equals b does not imply that ++a equals ++b. (Equality does not guarantee thesubstitution property or referential transparency.) Such algorithms can be used with istreams as the source of the input data throughthe istream_iterator class template. —end note]
25.3.4.5 Concept incrementable [iterator.concept.inc]

1 The incrementable concept specifies requirements on types that can be incremented with the pre- and post-incrementoperators. The increment operations are required to be equality-preserving, and the type is required to be equality_-
comparable.
[Note 1: This supersedes the annotations on the increment expressions in the definition of weakly_incrementable. —end note]
template<class I>

concept incrementable =
regular<I> &&
weakly_incrementable<I> &&
requires(I i) {
{ i++ } -> same_as<I>;

};

2 Let a and b be incrementable objects of type I. I models incrementable only if
—(2.1) If bool(a == b) then bool(a++ == b).
—(2.2) If bool(a == b) then bool(((void)a++, a) == ++b).

3 [Note 2: The requirement that a equals b implies ++a equals ++b (which is not true for weakly incrementable types) allows the use ofmulti-pass one-directional algorithms with types that model incrementable. —end note]
25.3.4.6 Concept input_or_output_iterator [iterator.concept.iterator]

1 The input_or_output_iterator concept forms the basis of the iterator concept taxonomy; every iterator models
input_or_output_iterator. This concept specifies operations for dereferencing and incrementing an iterator. Mostalgorithms will require additional operations to compare iterators with sentinels (25.3.4.7), to read (25.3.4.9) orwrite (25.3.4.10) values, or to provide a richer set of iterator movements (25.3.4.11, 25.3.4.12, 25.3.4.13).
template<class I>

concept input_or_output_iterator =
requires(I i) {

{ *i } -> can-reference;
} &&
weakly_incrementable<I>;

2 [Note 1: Unlike the Cpp17Iterator requirements, the input_or_output_iterator concept does not require copyability. —end note]

§ 25.3.4.6 964

© ISO/IEC N4910

25.3.4.7 Concept sentinel_for [iterator.concept.sentinel]
1 The sentinel_for concept specifies the relationship between an input_or_output_iterator type and a semiregulartype whose values denote a range.

template<class S, class I>
concept sentinel_for =
semiregular<S> &&
input_or_output_iterator<I> &&
weakly-equality-comparable-with<S, I>; // see 18.5.3

2 Let s and i be values of type S and I such that [i, s) denotes a range. Types S and I model sentinel_for<S, I>only if
—(2.1) i == s is well-defined.
—(2.2) If bool(i != s) then i is dereferenceable and [++i, s) denotes a range.
—(2.3) assignable_from<I&, S> is either modeled or not satisfied.

3 The domain of == is not static. Given an iterator i and sentinel s such that [i, s) denotes a range and i != s, i and sare not required to continue to denote a range after incrementing any other iterator equal to i. Consequently, i == s isno longer required to be well-defined.
25.3.4.8 Concept sized_sentinel_for [iterator.concept.sizedsentinel]

1 The sized_sentinel_for concept specifies requirements on an input_or_output_iterator type I and a corresponding
sentinel_for<I> that allow the use of the - operator to compute the distance between them in constant time.
template<class S, class I>

concept sized_sentinel_for =
sentinel_for<S, I> &&
!disable_sized_sentinel_for<remove_cv_t<S>, remove_cv_t<I>> &&
requires(const I& i, const S& s) {

{ s - i } -> same_as<iter_difference_t<I>>;
{ i - s } -> same_as<iter_difference_t<I>>;

};

2 Let i be an iterator of type I, and s a sentinel of type S such that [i, s) denotes a range. Let N be the smallestnumber of applications of ++i necessary to make bool(i == s) be true. S and Imodel sized_sentinel_for<S,
I> only if
—(2.1) If N is representable by iter_difference_t<I>, then s - i is well-defined and equals N .
—(2.2) If −N is representable by iter_difference_t<I>, then i - s is well-defined and equals −N .

template<class S, class I>
inline constexpr bool disable_sized_sentinel_for = false;

3 Remarks: Pursuant to 16.4.5.2.1, users may specialize disable_sized_sentinel_for for cv-unqualified non-array object types S and I if S and/or I is a program-defined type. Such specializations shall be usable in constantexpressions (7.7) and have type const bool.
4 [Note 1: disable_sized_sentinel_for allows use of sentinels and iterators with the library that satisfy but do not in factmodel sized_sentinel_for. —end note]
5 [Example 1: The sized_sentinel_for concept is modeled by pairs of random_access_iterators (25.3.4.13) and by countediterators and their sentinels (25.5.6.1). —end example]
25.3.4.9 Concept input_iterator [iterator.concept.input]

1 The input_iterator concept defines requirements for a type whose referenced values can be read (from the requirementfor indirectly_readable (25.3.4.2)) and which can be both pre- and post-incremented.
[Note 1: Unlike the Cpp17InputIterator requirements (25.3.5.3), the input_iterator concept does not need equality comparisonsince iterators are typically compared to sentinels. —end note]
template<class I>

concept input_iterator =
input_or_output_iterator<I> &&
indirectly_readable<I> &&
requires { typename ITER_CONCEPT(I); } &&

§ 25.3.4.9 965

© ISO/IEC N4910

derived_from<ITER_CONCEPT(I), input_iterator_tag>;

25.3.4.10 Concept output_iterator [iterator.concept.output]
1 The output_iterator concept defines requirements for a type that can be used to write values (from the requirementfor indirectly_writable (25.3.4.3)) and which can be both pre- and post-incremented.
[Note 1: Output iterators are not required to model equality_comparable. —end note]
template<class I, class T>

concept output_iterator =
input_or_output_iterator<I> &&
indirectly_writable<I, T> &&
requires(I i, T&& t) {

*i++ = std::forward<T>(t); // not required to be equality-preserving
};

2 Let E be an expression such that decltype((E)) is T, and let i be a dereferenceable object of type I. I and T model
output_iterator<I, T> only if *i++ = E; has effects equivalent to:
*i = E;
++i;

3 Recommended practice: The implementation of an algorithm on output iterators should never attempt to pass throughthe same iterator twice; such an algorithm should be a single-pass algorithm.
25.3.4.11 Concept forward_iterator [iterator.concept.forward]

1 The forward_iterator concept adds copyability, equality comparison, and the multi-pass guarantee, specified below.
template<class I>

concept forward_iterator =
input_iterator<I> &&
derived_from<ITER_CONCEPT(I), forward_iterator_tag> &&
incrementable<I> &&
sentinel_for<I, I>;

2 The domain of == for forward iterators is that of iterators over the same underlying sequence. However, value-initializediterators of the same type may be compared and shall compare equal to other value-initialized iterators of the same type.
[Note 1: Value-initialized iterators behave as if they refer past the end of the same empty sequence. —end note]

3 Pointers and references obtained from a forward iterator into a range [i, s) shall remain valid while [i, s) continues todenote a range.
4 Two dereferenceable iterators a and b of type X offer the multi-pass guarantee if:

—(4.1) a == b implies ++a == ++b and
—(4.2) the expression ((void)[](X x){++x;}(a), *a) is equivalent to the expression *a.

5 [Note 2: The requirement that a == b implies ++a == ++b and the removal of the restrictions on the number of assignments througha mutable iterator (which applies to output iterators) allow the use of multi-pass one-directional algorithms with forward iterators.—end note]
25.3.4.12 Concept bidirectional_iterator [iterator.concept.bidir]

1 The bidirectional_iterator concept adds the ability to move an iterator backward as well as forward.
template<class I>

concept bidirectional_iterator =
forward_iterator<I> &&
derived_from<ITER_CONCEPT(I), bidirectional_iterator_tag> &&
requires(I i) {

{ --i } -> same_as<I&>;
{ i-- } -> same_as<I>;

};

2 A bidirectional iterator r is decrementable if and only if there exists some q such that ++q == r. Decrementable iterators
r shall be in the domain of the expressions --r and r--.

3 Let a and b be equal objects of type I. I models bidirectional_iterator only if:
—(3.1) If a and b are decrementable, then all of the following are true:

§ 25.3.4.12 966

© ISO/IEC N4910

—(3.1.1) addressof(--a) == addressof(a)

—(3.1.2) bool(a-- == b)

—(3.1.3) after evaluating both a-- and --b, bool(a == b) is still true
—(3.1.4) bool(++(--a) == b)

—(3.2) If a and b are incrementable, then bool(--(++a) == b).
25.3.4.13 Concept random_access_iterator [iterator.concept.random.access]

1 The random_access_iterator concept adds support for constant-time advancement with +=, +, -=, and -, as well as thecomputation of distance in constant time with -. Random access iterators also support array notation via subscripting.
template<class I>

concept random_access_iterator =
bidirectional_iterator<I> &&
derived_from<ITER_CONCEPT(I), random_access_iterator_tag> &&
totally_ordered<I> &&
sized_sentinel_for<I, I> &&
requires(I i, const I j, const iter_difference_t<I> n) {

{ i += n } -> same_as<I&>;
{ j + n } -> same_as<I>;
{ n + j } -> same_as<I>;
{ i -= n } -> same_as<I&>;
{ j - n } -> same_as<I>;
{ j[n] } -> same_as<iter_reference_t<I>>;

};

2 Let a and b be valid iterators of type I such that b is reachable from a after n applications of ++a, let D be iter_-
difference_t<I>, and let n denote a value of type D. I models random_access_iterator only if
—(2.1) (a += n) is equal to b.
—(2.2) addressof(a += n) is equal to addressof(a).
—(2.3) (a + n) is equal to (a += n).
—(2.4) For any two positive values x and y of type D, if (a + D(x + y)) is valid, then (a + D(x + y)) is equal to ((a

+ x) + y).
—(2.5) (a + D(0)) is equal to a.
—(2.6) If (a + D(n - 1)) is valid, then (a + n) is equal to [](I c){ return ++c; }(a + D(n - 1)).
—(2.7) (b += D(-n)) is equal to a.
—(2.8) (b -= n) is equal to a.
—(2.9) addressof(b -= n) is equal to addressof(b).
—(2.10) (b - n) is equal to (b -= n).
—(2.11) If b is dereferenceable, then a[n] is valid and is equal to *b.
—(2.12) bool(a <= b) is true.

25.3.4.14 Concept contiguous_iterator [iterator.concept.contiguous]
1 The contiguous_iterator concept provides a guarantee that the denoted elements are stored contiguously in memory.

template<class I>
concept contiguous_iterator =
random_access_iterator<I> &&
derived_from<ITER_CONCEPT(I), contiguous_iterator_tag> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
same_as<iter_value_t<I>, remove_cvref_t<iter_reference_t<I>>> &&
requires(const I& i) {

{ to_address(i) } -> same_as<add_pointer_t<iter_reference_t<I>>>;
};

2 Let a and b be dereferenceable iterators and c be a non-dereferenceable iterator of type I such that b is reachable from aand c is reachable from b, and let D be iter_difference_t<I>. The type I models contiguous_iterator only if
—(2.1) to_address(a) == addressof(*a),

§ 25.3.4.14 967

© ISO/IEC N4910

—(2.2) to_address(b) == to_address(a) + D(b - a),
—(2.3) to_address(c) == to_address(a) + D(c - a),
—(2.4) ranges::iter_move(a) has the same type, value category, and effects as std::move(*a), and
—(2.5) if ranges::iter_swap(a, b) is well-formed, it has effects equivalent to ranges::swap(*a, *b).

25.3.5 C++17 iterator requirements [iterator.cpp17]
25.3.5.1 General [iterator.cpp17.general]

1 In the following sections, a and b denote values of type X or const X, difference_type and reference refer to the types
iterator_traits<X>::difference_type and iterator_traits<X>::reference, respectively, n denotes a value of
difference_type, u, tmp, and m denote identifiers, r denotes a value of X&, t denotes a value of value type T, o denotesa value of some type that is writable to the output iterator.
[Note 1: For an iterator type X there must be an instantiation of iterator_traits<X> (25.3.2.3). —end note]
25.3.5.2 Cpp17Iterator [iterator.iterators]

1 The Cpp17Iterator requirements form the basis of the iterator taxonomy; every iterator meets the Cpp17Iteratorrequirements. This set of requirements specifies operations for dereferencing and incrementing an iterator. Mostalgorithms will require additional operations to read (25.3.5.3) or write (25.3.5.4) values, or to provide a richer set ofiterator movements (25.3.5.5, 25.3.5.6, 25.3.5.7).
2 A type X meets the Cpp17Iterator requirements if:

—(2.1) X meets the Cpp17CopyConstructible, Cpp17CopyAssignable, and Cpp17Destructible requirements (16.4.4.2)and lvalues of type X are swappable (16.4.4.3), and
—(2.2) iterator_traits<X>::difference_type is a signed integer type or void, and
—(2.3) the expressions in Table 82 are valid and have the indicated semantics.

Table 82: Cpp17Iterator requirements [tab:iterator]
Expression Return type Operational Assertion/note

semantics pre-/post-condition
*r unspecified Preconditions: r isdereferenceable.
++r X&

25.3.5.3 Input iterators [input.iterators]
1 A class or pointer type X meets the requirements of an input iterator for the value type T if X meets the Cpp17Iterator(25.3.5.2) and Cpp17EqualityComparable (Table 27) requirements and the expressions in Table 83 are valid and havethe indicated semantics.
2 In Table 83, the term the domain of == is used in the ordinary mathematical sense to denote the set of values over which

== is (required to be) defined. This set can change over time. Each algorithm places additional requirements on thedomain of == for the iterator values it uses. These requirements can be inferred from the uses that algorithm makes of
== and !=.
[Example 1: The call find(a,b,x) is defined only if the value of a has the property p defined as follows: b has property p and avalue i has property p if (*i==x) or if (*i!=x and ++i has property p). —end example]

Table 83: Cpp17InputIterator requirements (in addition to Cpp17Iterator) [tab:inputiterator]
Expression Return type Operational Assertion/note

semantics pre-/post-condition
a != b contextuallyconvertible to

bool

!(a == b) Preconditions: (a, b) is in thedomain of ==.

§ 25.3.5.3 968

© ISO/IEC N4910

Table 83: Cpp17InputIterator requirements (in addition to Cpp17Iterator) (continued)
Expression Return type Operational Assertion/note

semantics pre-/post-condition
*a reference,convertible to T Preconditions: a isdereferenceable.The expression

(void)*a, *a is equivalent to
*a.If a == b and (a, b) is in thedomain of == then *a isequivalent to *b.

a->m (*a).m Preconditions: a isdereferenceable.
++r X& Preconditions: r isdereferenceable.Postconditions: r isdereferenceable or r ispast-the-end;any copies of the previous valueof r are no longer required to bedereferenceable nor to be in thedomain of ==.
(void)r++ equivalent to (void)++r
*r++ convertible to T { T tmp = *r;

++r;
return tmp; }

3 Recommended practice: The implementation of an algorithm on input iterators should never attempt to pass through thesame iterator twice; such an algorithm should be a single pass algorithm.

§ 25.3.5.3 969

© ISO/IEC N4910

[Note 1: For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substitution property or referentialtransparency.) Value type T is not required to be a Cpp17CopyAssignable type (Table 33). Such an algorithm can be used withistreams as the source of the input data through the istream_iterator class template. —end note]
25.3.5.4 Output iterators [output.iterators]

1 A class or pointer type Xmeets the requirements of an output iterator if Xmeets the Cpp17Iterator requirements (25.3.5.2)and the expressions in Table 84 are valid and have the indicated semantics.
Table 84: Cpp17OutputIterator requirements (in addition to Cpp17Iterator) [tab:outputiterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

*r = o result is not used Remarks: After this operation ris not required to bedereferenceable.Postconditions: r isincrementable.
++r X& addressof(r) ==

addressof(++r).Remarks: After this operation ris not required to bedereferenceable.Postconditions: r isincrementable.
r++ convertible to

const X&
{ X tmp = r;
++r;
return tmp; }

Remarks: After this operation ris not required to bedereferenceable.Postconditions: r isincrementable.
*r++ = o result is not used Remarks: After this operation ris not required to bedereferenceable.Postconditions: r isincrementable.

2 Recommended practice: The implementation of an algorithm on output iterators should never attempt to pass throughthe same iterator twice; such an algorithm should be a single-pass algorithm.
[Note 1: The only valid use of an operator* is on the left side of the assignment statement. Assignment through the same value ofthe iterator happens only once. Equality and inequality are not necessarily defined. —end note]
25.3.5.5 Forward iterators [forward.iterators]

1 A class or pointer type X meets the requirements of a forward iterator if
—(1.1) X meets the Cpp17InputIterator requirements (25.3.5.3),
—(1.2) X meets the Cpp17DefaultConstructible requirements (16.4.4.2),
—(1.3) if X is a mutable iterator, reference is a reference to T; if X is a constant iterator, reference is a reference to

const T,
—(1.4) the expressions in Table 85 are valid and have the indicated semantics, and
—(1.5) objects of type X offer the multi-pass guarantee, described below.

2 The domain of == for forward iterators is that of iterators over the same underlying sequence. However, value-initializediterators may be compared and shall compare equal to other value-initialized iterators of the same type.
[Note 1: Value-initialized iterators behave as if they refer past the end of the same empty sequence. —end note]

3 Two dereferenceable iterators a and b of type X offer the multi-pass guarantee if:
—(3.1) a == b implies ++a == ++b and
—(3.2) X is a pointer type or the expression (void)++X(a), *a is equivalent to the expression *a.

§ 25.3.5.5 970

© ISO/IEC N4910

4 [Note 2: The requirement that a == b implies ++a == ++b (which is not true for input and output iterators) and the removal ofthe restrictions on the number of the assignments through a mutable iterator (which applies to output iterators) allows the use ofmulti-pass one-directional algorithms with forward iterators. —end note]
Table 85: Cpp17ForwardIterator requirements (in addition to Cpp17InputIterator) [tab:forwarditerator]
Expression Return type Operational Assertion/note

semantics pre-/post-condition
r++ convertible to

const X&
{ X tmp = r;
++r;
return tmp; }

*r++ reference

5 If a and b are equal, then either a and b are both dereferenceable or else neither is dereferenceable.
6 If a and b are both dereferenceable, then a == b if and only if *a and *b are bound to the same object.
25.3.5.6 Bidirectional iterators [bidirectional.iterators]

1 Aclass or pointer type Xmeets the requirements of a bidirectional iterator if, in addition tomeeting theCpp17ForwardIteratorrequirements, the following expressions are valid as shown in Table 86.
Table 86: Cpp17BidirectionalIterator requirements (in addition to Cpp17ForwardIterator) [tab:bidirectionaliterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

--r X& Preconditions: there exists ssuch that r == ++s.Postconditions: r isdereferenceable.
--(++r) == r.
--r == --s implies r == s.
addressof(r) ==
addressof(--r).

r-- convertible to
const X&

{ X tmp = r;
--r;
return tmp; }

*r-- reference

2 [Note 1: Bidirectional iterators allow algorithms to move iterators backward as well as forward. —end note]
25.3.5.7 Random access iterators [random.access.iterators]

1 Aclass or pointer type Xmeets the requirements of a random access iterator if, in addition tomeeting theCpp17BidirectionalIteratorrequirements, the following expressions are valid as shown in Table 87.
Table 87: Cpp17RandomAccessIterator requirements (in addition to Cpp17BidirectionalIterator)[tab:randomaccessiterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

r += n X& { difference_type m = n;
if (m >= 0)
while (m--)
++r;
else
while (m++)
--r;
return r; }

a + n
n + a

X { X tmp = a;
return tmp += n; }

a + n == n + a.

§ 25.3.5.7 971

© ISO/IEC N4910

Table 87: Cpp17RandomAccessIterator requirements (in addition to Cpp17BidirectionalIterator) (continued)
Expression Return type Operational Assertion/note

semantics pre-/post-condition
r -= n X& return r += -n; Preconditions: the absolutevalue of n is in the range ofrepresentable values of

difference_type.
a - n X { X tmp = a;

return tmp -= n; }
b - a difference_-

type
return n Preconditions: there exists avalue n of type

difference_type such that a +
n == b.
b == a + (b - a).

a[n] convertible to
reference

*(a + n)

a < b contextuallyconvertible to
bool

Effects: Equivalent to: return b -
a > 0;

< is a total ordering relation

a > b contextuallyconvertible to
bool

b < a > is a total ordering relationopposite to <.
a >= b contextuallyconvertible to

bool

!(a < b)

a <= b contextuallyconvertible to
bool.

!(a > b)

25.3.6 Indirect callable requirements [indirectcallable]
25.3.6.1 General [indirectcallable.general]

1 There are several concepts that group requirements of algorithms that take callable objects (22.10.3) as arguments.
25.3.6.2 Indirect callables [indirectcallable.indirectinvocable]

1 The indirect callable concepts are used to constrain those algorithms that accept callable objects (22.10.3) as arguments.
namespace std {

template<class F, class I>
concept indirectly_unary_invocable =

indirectly_readable<I> &&
copy_constructible<F> &&
invocable<F&, iter_value_t<I>&> &&
invocable<F&, iter_reference_t<I>> &&
invocable<F&, iter_common_reference_t<I>> &&
common_reference_with<

invoke_result_t<F&, iter_value_t<I>&>,
invoke_result_t<F&, iter_reference_t<I>>>;

template<class F, class I>
concept indirectly_regular_unary_invocable =

indirectly_readable<I> &&
copy_constructible<F> &&
regular_invocable<F&, iter_value_t<I>&> &&
regular_invocable<F&, iter_reference_t<I>> &&
regular_invocable<F&, iter_common_reference_t<I>> &&
common_reference_with<

invoke_result_t<F&, iter_value_t<I>&>,
invoke_result_t<F&, iter_reference_t<I>>>;

§ 25.3.6.2 972

© ISO/IEC N4910

template<class F, class I>
concept indirect_unary_predicate =

indirectly_readable<I> &&
copy_constructible<F> &&
predicate<F&, iter_value_t<I>&> &&
predicate<F&, iter_reference_t<I>> &&
predicate<F&, iter_common_reference_t<I>>;

template<class F, class I1, class I2>
concept indirect_binary_predicate =

indirectly_readable<I1> && indirectly_readable<I2> &&
copy_constructible<F> &&
predicate<F&, iter_value_t<I1>&, iter_value_t<I2>&> &&
predicate<F&, iter_value_t<I1>&, iter_reference_t<I2>> &&
predicate<F&, iter_reference_t<I1>, iter_value_t<I2>&> &&
predicate<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
predicate<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class F, class I1, class I2 = I1>
concept indirect_equivalence_relation =

indirectly_readable<I1> && indirectly_readable<I2> &&
copy_constructible<F> &&
equivalence_relation<F&, iter_value_t<I1>&, iter_value_t<I2>&> &&
equivalence_relation<F&, iter_value_t<I1>&, iter_reference_t<I2>> &&
equivalence_relation<F&, iter_reference_t<I1>, iter_value_t<I2>&> &&
equivalence_relation<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
equivalence_relation<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class F, class I1, class I2 = I1>
concept indirect_strict_weak_order =

indirectly_readable<I1> && indirectly_readable<I2> &&
copy_constructible<F> &&
strict_weak_order<F&, iter_value_t<I1>&, iter_value_t<I2>&> &&
strict_weak_order<F&, iter_value_t<I1>&, iter_reference_t<I2>> &&
strict_weak_order<F&, iter_reference_t<I1>, iter_value_t<I2>&> &&
strict_weak_order<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
strict_weak_order<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

}

25.3.6.3 Class template projected [projected]
1 Class template projected is used to constrain algorithms that accept callable objects and projections (3.45). It combinesa indirectly_readable type I and a callable object type Proj into a new indirectly_readable type whose referencetype is the result of applying Proj to the iter_reference_t of I.

namespace std {
template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj>
struct projected {

using value_type = remove_cvref_t<indirect_result_t<Proj&, I>>;
indirect_result_t<Proj&, I> operator*() const; // not defined

};

template<weakly_incrementable I, class Proj>
struct incrementable_traits<projected<I, Proj>> {

using difference_type = iter_difference_t<I>;
};

}

25.3.7 Common algorithm requirements [alg.req]
25.3.7.1 General [alg.req.general]

1 There are several additional iterator concepts that are commonly applied to families of algorithms. These grouptogether iterator requirements of algorithm families. There are three relational concepts that specify how element values

§ 25.3.7.1 973

© ISO/IEC N4910

are transferred between indirectly_readable and indirectly_writable types: indirectly_movable, indirectly_-
copyable, and indirectly_swappable. There are three relational concepts for rearrangements: permutable, mergeable,and sortable. There is one relational concept for comparing values from different sequences: indirectly_comparable.

2 [Note 1: The ranges::less function object type used in the concepts below imposes constraints on the concepts’ arguments inaddition to those that appear in the concepts’ bodies (22.10.9). —end note]
25.3.7.2 Concept indirectly_movable [alg.req.ind.move]

1 The indirectly_movable concept specifies the relationship between a indirectly_readable type and a indirectly_-
writable type between which values may be moved.
template<class In, class Out>

concept indirectly_movable =
indirectly_readable<In> &&
indirectly_writable<Out, iter_rvalue_reference_t<In>>;

2 The indirectly_movable_storable concept augments indirectly_movable with additional requirements enablingthe transfer to be performed through an intermediate object of the indirectly_readable type’s value type.
template<class In, class Out>

concept indirectly_movable_storable =
indirectly_movable<In, Out> &&
indirectly_writable<Out, iter_value_t<In>> &&
movable<iter_value_t<In>> &&
constructible_from<iter_value_t<In>, iter_rvalue_reference_t<In>> &&
assignable_from<iter_value_t<In>&, iter_rvalue_reference_t<In>>;

3 Let i be a dereferenceable value of type In. In and Out model indirectly_movable_storable<In, Out> only if afterthe initialization of the object obj in
iter_value_t<In> obj(ranges::iter_move(i));

obj is equal to the value previously denoted by *i. If iter_rvalue_reference_t<In> is an rvalue reference type, theresulting state of the value denoted by *i is valid but unspecified (16.4.6.15).
25.3.7.3 Concept indirectly_copyable [alg.req.ind.copy]

1 The indirectly_copyable concept specifies the relationship between a indirectly_readable type and a indirectly_-
writable type between which values may be copied.
template<class In, class Out>

concept indirectly_copyable =
indirectly_readable<In> &&
indirectly_writable<Out, iter_reference_t<In>>;

2 The indirectly_copyable_storable concept augments indirectly_copyable with additional requirements enablingthe transfer to be performed through an intermediate object of the indirectly_readable type’s value type. It alsorequires the capability to make copies of values.
template<class In, class Out>

concept indirectly_copyable_storable =
indirectly_copyable<In, Out> &&
indirectly_writable<Out, iter_value_t<In>&> &&
indirectly_writable<Out, const iter_value_t<In>&> &&
indirectly_writable<Out, iter_value_t<In>&&> &&
indirectly_writable<Out, const iter_value_t<In>&&> &&
copyable<iter_value_t<In>> &&
constructible_from<iter_value_t<In>, iter_reference_t<In>> &&
assignable_from<iter_value_t<In>&, iter_reference_t<In>>;

3 Let i be a dereferenceable value of type In. In and Out model indirectly_copyable_storable<In, Out> only ifafter the initialization of the object obj in
iter_value_t<In> obj(*i);

obj is equal to the value previously denoted by *i. If iter_reference_t<In> is an rvalue reference type, the resultingstate of the value denoted by *i is valid but unspecified (16.4.6.15).

§ 25.3.7.3 974

© ISO/IEC N4910

25.3.7.4 Concept indirectly_swappable [alg.req.ind.swap]
1 The indirectly_swappable concept specifies a swappable relationship between the values referenced by two indirectly_-

readable types.
template<class I1, class I2 = I1>

concept indirectly_swappable =
indirectly_readable<I1> && indirectly_readable<I2> &&
requires(const I1 i1, const I2 i2) {

ranges::iter_swap(i1, i1);
ranges::iter_swap(i2, i2);
ranges::iter_swap(i1, i2);
ranges::iter_swap(i2, i1);

};

25.3.7.5 Concept indirectly_comparable [alg.req.ind.cmp]
1 The indirectly_comparable concept specifies the common requirements of algorithms that compare values from twodifferent sequences.

template<class I1, class I2, class R, class P1 = identity,
class P2 = identity>

concept indirectly_comparable =
indirect_binary_predicate<R, projected<I1, P1>, projected<I2, P2>>;

25.3.7.6 Concept permutable [alg.req.permutable]
1 The permutable concept specifies the common requirements of algorithms that reorder elements in place by moving orswapping them.

template<class I>
concept permutable =
forward_iterator<I> &&
indirectly_movable_storable<I, I> &&
indirectly_swappable<I, I>;

25.3.7.7 Concept mergeable [alg.req.mergeable]
1 The mergeable concept specifies the requirements of algorithms that merge sorted sequences into an output sequenceby copying elements.

template<class I1, class I2, class Out, class R = ranges::less,
class P1 = identity, class P2 = identity>

concept mergeable =
input_iterator<I1> &&
input_iterator<I2> &&
weakly_incrementable<Out> &&
indirectly_copyable<I1, Out> &&
indirectly_copyable<I2, Out> &&
indirect_strict_weak_order<R, projected<I1, P1>, projected<I2, P2>>;

25.3.7.8 Concept sortable [alg.req.sortable]
1 The sortable concept specifies the common requirements of algorithms that permute sequences into ordered sequences(e.g., sort).

template<class I, class R = ranges::less, class P = identity>
concept sortable =
permutable<I> &&
indirect_strict_weak_order<R, projected<I, P>>;

25.4 Iterator primitives [iterator.primitives]
25.4.1 General [iterator.primitives.general]

1 To simplify the use of iterators, the library provides several classes and functions.

§ 25.4.1 975

© ISO/IEC N4910

25.4.2 Standard iterator tags [std.iterator.tags]
1 It is often desirable for a function template specialization to find out what is the most specific category of its iterator argu-ment, so that the function can select the most efficient algorithm at compile time. To facilitate this, the library introducescategory tag classes which are used as compile time tags for algorithm selection. They are: output_iterator_tag,

input_iterator_tag, forward_iterator_tag, bidirectional_iterator_tag, random_access_iterator_tag, and
contiguous_iterator_tag. For every iterator of type I, iterator_traits<I>::iterator_category shall be definedto be a category tag that describes the iterator’s behavior. Additionally, iterator_traits<I>::iterator_conceptmay be used to indicate conformance to the iterator concepts (25.3.4).
namespace std {

struct output_iterator_tag { };
struct input_iterator_tag { };
struct forward_iterator_tag: public input_iterator_tag { };
struct bidirectional_iterator_tag: public forward_iterator_tag { };
struct random_access_iterator_tag: public bidirectional_iterator_tag { };
struct contiguous_iterator_tag: public random_access_iterator_tag { };

}
2 [Example 1: A program-defined iterator BinaryTreeIterator can be included into the bidirectional iterator category by specializingthe iterator_traits template:

template<class T> struct iterator_traits<BinaryTreeIterator<T>> {
using iterator_category = bidirectional_iterator_tag;
using difference_type = ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;

};

—end example]
3 [Example 2: If evolve() is well-defined for bidirectional iterators, but can be implemented more efficiently for random accessiterators, then the implementation is as follows:

template<class BidirectionalIterator>
inline void
evolve(BidirectionalIterator first, BidirectionalIterator last) {

evolve(first, last,
typename iterator_traits<BidirectionalIterator>::iterator_category());

}

template<class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {// more generic, but less efficient algorithm
}

template<class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {// more efficient, but less generic algorithm
}

—end example]
25.4.3 Iterator operations [iterator.operations]

1 Since only random access iterators provide + and - operators, the library provides two function templates advance and
distance. These function templates use + and - for random access iterators (and are, therefore, constant time for them);for input, forward and bidirectional iterators they use ++ to provide linear time implementations.
template<class InputIterator, class Distance>

constexpr void advance(InputIterator& i, Distance n);

2 Preconditions: n is negative only for bidirectional iterators.
3 Effects: Increments i by n if n is non-negative, and decrements i by -n otherwise.

§ 25.4.3 976

© ISO/IEC N4910

template<class InputIterator>
constexpr typename iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);

4 Preconditions: last is reachable from first, or InputIterator meets the Cpp17RandomAccessIterator require-ments and first is reachable from last.
5 Effects: If InputIterator meets the Cpp17RandomAccessIterator requirements, returns (last - first); other-wise, increments first until last is reached and returns the number of increments.

template<class InputIterator>
constexpr InputIterator next(InputIterator x,
typename iterator_traits<InputIterator>::difference_type n = 1);

6 Effects: Equivalent to: advance(x, n); return x;

template<class BidirectionalIterator>
constexpr BidirectionalIterator prev(BidirectionalIterator x,
typename iterator_traits<BidirectionalIterator>::difference_type n = 1);

7 Effects: Equivalent to: advance(x, -n); return x;

25.4.4 Range iterator operations [range.iter.ops]
25.4.4.1 General [range.iter.ops.general]

1 The library includes the function templates ranges::advance, ranges::distance, ranges::next, and ranges::prevto manipulate iterators. These operations adapt to the set of operators provided by each iterator category to provide themost efficient implementation possible for a concrete iterator type.
[Example 1: ranges::advance uses the + operator to move a random_access_iterator forward n steps in constant time. For aniterator type that does not model random_access_iterator, ranges::advance instead performs n individual increments with the ++operator. —end example]

2 The function templates defined in 25.4.4 are not found by argument-dependent name lookup (6.5.4). When found byunqualified (6.5.3) name lookup for the postfix-expression in a function call (7.6.1.3), they inhibit argument-dependentname lookup.
[Example 2:
void foo() {

using namespace std::ranges;
std::vector<int> vec{1,2,3};
distance(begin(vec), end(vec)); // #1

}

The function call expression at #1 invokes std::ranges::distance, not std::distance, despite that (a) the iterator type returnedfrom begin(vec) and end(vec) may be associated with namespace std and (b) std::distance is more specialized (13.7.7.3) than
std::ranges::distance since the former requires its first two parameters to have the same type. —end example]

3 The number and order of deducible template parameters for the function templates defined in 25.4.4 is unspecified,except where explicitly stated otherwise.
25.4.4.2 ranges::advance [range.iter.op.advance]

template<input_or_output_iterator I>
constexpr void ranges::advance(I& i, iter_difference_t<I> n);

1 Preconditions: If I does not model bidirectional_iterator, n is not negative.
2 Effects:

—(2.1) If I models random_access_iterator, equivalent to i += n.
—(2.2) Otherwise, if n is non-negative, increments i by n.
—(2.3) Otherwise, decrements i by -n.

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr void ranges::advance(I& i, S bound);

3 Preconditions: Either assignable_from<I&, S> || sized_sentinel_for<S, I> is modeled, or [i, bound) de-notes a range.

§ 25.4.4.2 977

© ISO/IEC N4910

4 Effects:
—(4.1) If I and S model assignable_from<I&, S>, equivalent to i = std::move(bound).
—(4.2) Otherwise, if S and I model sized_sentinel_for<S, I>, equivalent to ranges::advance(i, bound -

i).
—(4.3) Otherwise, while bool(i != bound) is true, increments i.

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr iter_difference_t<I> ranges::advance(I& i, iter_difference_t<I> n, S bound);

5 Preconditions: If n > 0, [i, bound) denotes a range. If n == 0, [i, bound) or [bound, i) denotes a range. If n < 0,
[bound, i) denotes a range, I models bidirectional_iterator, and I and S model same_as<I, S>.

6 Effects:
—(6.1) If S and I model sized_sentinel_for<S, I>:

—(6.1.1) If |n| ≥ |bound - i|, equivalent to ranges::advance(i, bound).
—(6.1.2) Otherwise, equivalent to ranges::advance(i, n).

—(6.2) Otherwise,
—(6.2.1) if n is non-negative, while bool(i != bound) is true, increments i but at most n times.
—(6.2.2) Otherwise, while bool(i != bound) is true, decrements i but at most -n times.

7 Returns: n - M , whereM is the difference between the ending and starting positions of i.
25.4.4.3 ranges::distance [range.iter.op.distance]

template<input_or_output_iterator I, sentinel_for<I> S>
requires (!sized_sentinel_for<S, I>)
constexpr iter_difference_t<I> ranges::distance(I first, S last);

1 Preconditions: [first, last) denotes a range.
2 Effects: Increments first until last is reached and returns the number of increments.

template<input_or_output_iterator I, sized_sentinel_for<I> S>
constexpr iter_difference_t<I> ranges::distance(const I& first, const S& last);

3 Effects: Equivalent to: return last - first;

template<range R>
constexpr range_difference_t<R> ranges::distance(R&& r);

4 Effects: If R models sized_range, equivalent to:
return static_cast<range_difference_t<R>>(ranges::size(r)); // 26.3.10
Otherwise, equivalent to:
return ranges::distance(ranges::begin(r), ranges::end(r)); // 26.3

25.4.4.4 ranges::next [range.iter.op.next]

template<input_or_output_iterator I>
constexpr I ranges::next(I x);

1 Effects: Equivalent to: ++x; return x;

template<input_or_output_iterator I>
constexpr I ranges::next(I x, iter_difference_t<I> n);

2 Effects: Equivalent to: ranges::advance(x, n); return x;

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr I ranges::next(I x, S bound);

3 Effects: Equivalent to: ranges::advance(x, bound); return x;

§ 25.4.4.4 978

© ISO/IEC N4910

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr I ranges::next(I x, iter_difference_t<I> n, S bound);

4 Effects: Equivalent to: ranges::advance(x, n, bound); return x;

25.4.4.5 ranges::prev [range.iter.op.prev]

template<bidirectional_iterator I>
constexpr I ranges::prev(I x);

1 Effects: Equivalent to: --x; return x;

template<bidirectional_iterator I>
constexpr I ranges::prev(I x, iter_difference_t<I> n);

2 Effects: Equivalent to: ranges::advance(x, -n); return x;

template<bidirectional_iterator I>
constexpr I ranges::prev(I x, iter_difference_t<I> n, I bound);

3 Effects: Equivalent to: ranges::advance(x, -n, bound); return x;

25.5 Iterator adaptors [predef.iterators]
25.5.1 Reverse iterators [reverse.iterators]
25.5.1.1 General [reverse.iterators.general]

1 Class template reverse_iterator is an iterator adaptor that iterates from the end of the sequence defined by itsunderlying iterator to the beginning of that sequence.
25.5.1.2 Class template reverse_iterator [reverse.iterator]
namespace std {

template<class Iterator>
class reverse_iterator {
public:
using iterator_type = Iterator;
using iterator_concept = see below;
using iterator_category = see below;
using value_type = iter_value_t<Iterator>;
using difference_type = iter_difference_t<Iterator>;
using pointer = typename iterator_traits<Iterator>::pointer;
using reference = iter_reference_t<Iterator>;

constexpr reverse_iterator();
constexpr explicit reverse_iterator(Iterator x);
template<class U> constexpr reverse_iterator(const reverse_iterator<U>& u);
template<class U> constexpr reverse_iterator& operator=(const reverse_iterator<U>& u);

constexpr Iterator base() const;
constexpr reference operator*() const;
constexpr pointer operator->() const requires see below;

constexpr reverse_iterator& operator++();
constexpr reverse_iterator operator++(int);
constexpr reverse_iterator& operator--();
constexpr reverse_iterator operator--(int);

constexpr reverse_iterator operator+ (difference_type n) const;
constexpr reverse_iterator& operator+=(difference_type n);
constexpr reverse_iterator operator- (difference_type n) const;
constexpr reverse_iterator& operator-=(difference_type n);
constexpr unspecified operator[](difference_type n) const;

friend constexpr iter_rvalue_reference_t<Iterator>
iter_move(const reverse_iterator& i) noexcept(see below);

§ 25.5.1.2 979

© ISO/IEC N4910

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void

iter_swap(const reverse_iterator& x,
const reverse_iterator<Iterator2>& y) noexcept(see below);

protected:
Iterator current;

};
}

1 The member typedef-name iterator_concept denotes
—(1.1) random_access_iterator_tag if Iterator models random_access_iterator, and
—(1.2) bidirectional_iterator_tag otherwise.

2 The member typedef-name iterator_category denotes
—(2.1) random_access_iterator_tag if the type iterator_traits<Iterator>::iterator_categorymodels derived_-

from<random_access_iterator_tag>, and
—(2.2) iterator_traits<Iterator>::iterator_category otherwise.

25.5.1.3 Requirements [reverse.iter.requirements]
1 The template parameter Iterator shall either meet the requirements of a Cpp17BidirectionalIterator (25.3.5.6) ormodel bidirectional_iterator (25.3.4.12).
2 Additionally, Iterator shall either meet the requirements of a Cpp17RandomAccessIterator (25.3.5.7) or model

random_access_iterator (25.3.4.13) if the definitions of any of the members
—(2.1) operator+, operator-, operator+=, operator-= (25.5.1.7), or
—(2.2) operator[] (25.5.1.6),

or the non-member operators (25.5.1.8)
—(2.3) operator<, operator>, operator<=, operator>=, operator-, or operator+ (25.5.1.9)

are instantiated (13.9.2).
25.5.1.4 Construction and assignment [reverse.iter.cons]

constexpr reverse_iterator();

1 Effects: Value-initializes current. Iterator operations applied to the resulting iterator have defined behavior ifand only if the corresponding operations are defined on a value-initialized iterator of type Iterator.
constexpr explicit reverse_iterator(Iterator x);

2 Effects: Initializes current with x.
template<class U> constexpr reverse_iterator(const reverse_iterator<U>& u);

3 Constraints: is_same_v<U, Iterator> is false and const U& models convertible_to<Iterator>.
4 Effects: Initializes current with u.current.

template<class U>
constexpr reverse_iterator&
operator=(const reverse_iterator<U>& u);

5 Constraints: is_same_v<U, Iterator> is false, const U&models convertible_to<Iterator>, and assignable_-
from<Iterator&, const U&> is modeled.

6 Effects: Assigns u.current to current.
7 Returns: *this.
25.5.1.5 Conversion [reverse.iter.conv]

constexpr Iterator base() const; // explicit
1 Returns: current.

§ 25.5.1.5 980

© ISO/IEC N4910

25.5.1.6 Element access [reverse.iter.elem]

constexpr reference operator*() const;

1 Effects: As if by:
Iterator tmp = current;
return *--tmp;

constexpr pointer operator->() const
requires (is_pointer_v<Iterator> ||

requires(const Iterator i) { i.operator->(); });

2 Effects:
—(2.1) If Iterator is a pointer type, equivalent to: return prev(current);

—(2.2) Otherwise, equivalent to: return prev(current).operator->();

constexpr unspecified operator[](difference_type n) const;

3 Returns: current[-n-1].
25.5.1.7 Navigation [reverse.iter.nav]

constexpr reverse_iterator operator+(difference_type n) const;

1 Returns: reverse_iterator(current-n).
constexpr reverse_iterator operator-(difference_type n) const;

2 Returns: reverse_iterator(current+n).
constexpr reverse_iterator& operator++();

3 Effects: As if by: --current;
4 Returns: *this.

constexpr reverse_iterator operator++(int);

5 Effects: As if by:
reverse_iterator tmp = *this;
--current;
return tmp;

constexpr reverse_iterator& operator--();

6 Effects: As if by ++current.
7 Returns: *this.

constexpr reverse_iterator operator--(int);

8 Effects: As if by:
reverse_iterator tmp = *this;
++current;
return tmp;

constexpr reverse_iterator& operator+=(difference_type n);

9 Effects: As if by: current -= n;
10 Returns: *this.

constexpr reverse_iterator& operator-=(difference_type n);

11 Effects: As if by: current += n;
12 Returns: *this.
25.5.1.8 Comparisons [reverse.iter.cmp]

template<class Iterator1, class Iterator2>
constexpr bool operator==(

§ 25.5.1.8 981

© ISO/IEC N4910

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Constraints: x.base() == y.base() is well-formed and convertible to bool.
2 Returns: x.base() == y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator!=(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

3 Constraints: x.base() != y.base() is well-formed and convertible to bool.
4 Returns: x.base() != y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator<(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

5 Constraints: x.base() > y.base() is well-formed and convertible to bool.
6 Returns: x.base() > y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator>(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

7 Constraints: x.base() < y.base() is well-formed and convertible to bool.
8 Returns: x.base() < y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator<=(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

9 Constraints: x.base() >= y.base() is well-formed and convertible to bool.
10 Returns: x.base() >= y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator>=(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

11 Constraints: x.base() <= y.base() is well-formed and convertible to bool.
12 Returns: x.base() <= y.base().

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>
operator<=>(const reverse_iterator<Iterator1>& x,

const reverse_iterator<Iterator2>& y);

13 Returns: y.base() <=> x.base().
14 [Note 1: The argument order in the Returns: element is reversed because this is a reverse iterator. —end note]
25.5.1.9 Non-member functions [reverse.iter.nonmember]

template<class Iterator1, class Iterator2>
constexpr auto operator-(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) -> decltype(y.base() - x.base());

1 Returns: y.base() - x.base().

§ 25.5.1.9 982

© ISO/IEC N4910

template<class Iterator>
constexpr reverse_iterator<Iterator> operator+(
iter_difference_t<Iterator> n,
const reverse_iterator<Iterator>& x);

2 Returns: reverse_iterator<Iterator>(x.base() - n).
friend constexpr iter_rvalue_reference_t<Iterator>

iter_move(const reverse_iterator& i) noexcept(see below);

3 Effects: Equivalent to:
auto tmp = i.base();
return ranges::iter_move(--tmp);

4 Remarks: The exception specification is equivalent to:
is_nothrow_copy_constructible_v<Iterator> &&
noexcept(ranges::iter_move(--declval<Iterator&>()))

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void
iter_swap(const reverse_iterator& x,

const reverse_iterator<Iterator2>& y) noexcept(see below);

5 Effects: Equivalent to:
auto xtmp = x.base();
auto ytmp = y.base();
ranges::iter_swap(--xtmp, --ytmp);

6 Remarks: The exception specification is equivalent to:
is_nothrow_copy_constructible_v<Iterator> &&
is_nothrow_copy_constructible_v<Iterator2> &&
noexcept(ranges::iter_swap(--declval<Iterator&>(), --declval<Iterator2&>()))

template<class Iterator>
constexpr reverse_iterator<Iterator> make_reverse_iterator(Iterator i);

7 Returns: reverse_iterator<Iterator>(i).
25.5.2 Insert iterators [insert.iterators]
25.5.2.1 General [insert.iterators.general]

1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator adaptors,called insert iterators, are provided in the library. With regular iterator classes,
while (first != last) *result++ = *first++;

causes a range [first, last) to be copied into a range starting with result. The same code with result being an insertiterator will insert corresponding elements into the container. This device allows all of the copying algorithms in thelibrary to work in the insert mode instead of the regular overwrite mode.
2 An insert iterator is constructed from a container and possibly one of its iterators pointing to where insertion takes placeif it is neither at the beginning nor at the end of the container. Insert iterators meet the requirements of output iterators.

operator* returns the insert iterator itself. The assignment operator=(const T& x) is defined on insert iterators toallow writing into them, it inserts x right before where the insert iterator is pointing. In other words, an insert iterator islike a cursor pointing into the container where the insertion takes place. back_insert_iterator inserts elements at theend of a container, front_insert_iterator inserts elements at the beginning of a container, and insert_iteratorinserts elements where the iterator points to in a container. back_inserter, front_inserter, and inserter are threefunctions making the insert iterators out of a container.
25.5.2.2 Class template back_insert_iterator [back.insert.iterator]
namespace std {

template<class Container>
class back_insert_iterator {
protected:
Container* container;

§ 25.5.2.2 983

© ISO/IEC N4910

public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using container_type = Container;

constexpr explicit back_insert_iterator(Container& x);
constexpr back_insert_iterator& operator=(const typename Container::value_type& value);
constexpr back_insert_iterator& operator=(typename Container::value_type&& value);

constexpr back_insert_iterator& operator*();
constexpr back_insert_iterator& operator++();
constexpr back_insert_iterator operator++(int);

};
}

25.5.2.2.1 Operations [back.insert.iter.ops]

constexpr explicit back_insert_iterator(Container& x);

1 Effects: Initializes container with addressof(x).
constexpr back_insert_iterator& operator=(const typename Container::value_type& value);

2 Effects: As if by: container->push_back(value);
3 Returns: *this.

constexpr back_insert_iterator& operator=(typename Container::value_type&& value);

4 Effects: As if by: container->push_back(std::move(value));
5 Returns: *this.

constexpr back_insert_iterator& operator*();

6 Returns: *this.
constexpr back_insert_iterator& operator++();
constexpr back_insert_iterator operator++(int);

7 Returns: *this.
25.5.2.2.2 back_inserter [back.inserter]

template<class Container>
constexpr back_insert_iterator<Container> back_inserter(Container& x);

1 Returns: back_insert_iterator<Container>(x).
25.5.2.3 Class template front_insert_iterator [front.insert.iterator]
namespace std {

template<class Container>
class front_insert_iterator {
protected:
Container* container;

public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using container_type = Container;

§ 25.5.2.3 984

© ISO/IEC N4910

constexpr explicit front_insert_iterator(Container& x);
constexpr front_insert_iterator& operator=(const typename Container::value_type& value);
constexpr front_insert_iterator& operator=(typename Container::value_type&& value);

constexpr front_insert_iterator& operator*();
constexpr front_insert_iterator& operator++();
constexpr front_insert_iterator operator++(int);

};
}

25.5.2.3.1 Operations [front.insert.iter.ops]

constexpr explicit front_insert_iterator(Container& x);

1 Effects: Initializes container with addressof(x).
constexpr front_insert_iterator& operator=(const typename Container::value_type& value);

2 Effects: As if by: container->push_front(value);
3 Returns: *this.

constexpr front_insert_iterator& operator=(typename Container::value_type&& value);

4 Effects: As if by: container->push_front(std::move(value));
5 Returns: *this.

constexpr front_insert_iterator& operator*();

6 Returns: *this.
constexpr front_insert_iterator& operator++();
constexpr front_insert_iterator operator++(int);

7 Returns: *this.
25.5.2.3.2 front_inserter [front.inserter]

template<class Container>
constexpr front_insert_iterator<Container> front_inserter(Container& x);

1 Returns: front_insert_iterator<Container>(x).
25.5.2.4 Class template insert_iterator [insert.iterator]
namespace std {

template<class Container>
class insert_iterator {
protected:
Container* container;
ranges::iterator_t<Container> iter;

public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using container_type = Container;

constexpr insert_iterator(Container& x, ranges::iterator_t<Container> i);
constexpr insert_iterator& operator=(const typename Container::value_type& value);
constexpr insert_iterator& operator=(typename Container::value_type&& value);

constexpr insert_iterator& operator*();
constexpr insert_iterator& operator++();
constexpr insert_iterator& operator++(int);

};
}

§ 25.5.2.4 985

© ISO/IEC N4910

25.5.2.4.1 Operations [insert.iter.ops]

constexpr insert_iterator(Container& x, ranges::iterator_t<Container> i);

1 Effects: Initializes container with addressof(x) and iter with i.
constexpr insert_iterator& operator=(const typename Container::value_type& value);

2 Effects: As if by:
iter = container->insert(iter, value);
++iter;

3 Returns: *this.
constexpr insert_iterator& operator=(typename Container::value_type&& value);

4 Effects: As if by:
iter = container->insert(iter, std::move(value));
++iter;

5 Returns: *this.
constexpr insert_iterator& operator*();

6 Returns: *this.
constexpr insert_iterator& operator++();
constexpr insert_iterator& operator++(int);

7 Returns: *this.
25.5.2.4.2 inserter [inserter]

template<class Container>
constexpr insert_iterator<Container>
inserter(Container& x, ranges::iterator_t<Container> i);

1 Returns: insert_iterator<Container>(x, i).
25.5.3 Move iterators and sentinels [move.iterators]
25.5.3.1 General [move.iterators.general]

1 Class template move_iterator is an iterator adaptor with the same behavior as the underlying iterator except that itsindirection operator implicitly converts the value returned by the underlying iterator’s indirection operator to an rvalue.Some generic algorithms can be called with move iterators to replace copying with moving.
2 [Example 1:

list<string> s;// populate the list s
vector<string> v1(s.begin(), s.end()); // copies strings into v1
vector<string> v2(make_move_iterator(s.begin()),

make_move_iterator(s.end())); // moves strings into v2
—end example]
25.5.3.2 Class template move_iterator [move.iterator]
namespace std {

template<class Iterator>
class move_iterator {
public:
using iterator_type = Iterator;
using iterator_concept = input_iterator_tag;
using iterator_category = see below; // not always present
using value_type = iter_value_t<Iterator>;
using difference_type = iter_difference_t<Iterator>;
using pointer = Iterator;
using reference = iter_rvalue_reference_t<Iterator>;

§ 25.5.3.2 986

© ISO/IEC N4910

constexpr move_iterator();
constexpr explicit move_iterator(Iterator i);
template<class U> constexpr move_iterator(const move_iterator<U>& u);
template<class U> constexpr move_iterator& operator=(const move_iterator<U>& u);

constexpr const Iterator& base() const & noexcept;
constexpr Iterator base() &&;
constexpr reference operator*() const;

constexpr move_iterator& operator++();
constexpr auto operator++(int);
constexpr move_iterator& operator--();
constexpr move_iterator operator--(int);

constexpr move_iterator operator+(difference_type n) const;
constexpr move_iterator& operator+=(difference_type n);
constexpr move_iterator operator-(difference_type n) const;
constexpr move_iterator& operator-=(difference_type n);
constexpr reference operator[](difference_type n) const;

template<sentinel_for<Iterator> S>
friend constexpr bool

operator==(const move_iterator& x, const move_sentinel<S>& y);
template<sized_sentinel_for<Iterator> S>

friend constexpr iter_difference_t<Iterator>
operator-(const move_sentinel<S>& x, const move_iterator& y);

template<sized_sentinel_for<Iterator> S>
friend constexpr iter_difference_t<Iterator>

operator-(const move_iterator& x, const move_sentinel<S>& y);
friend constexpr iter_rvalue_reference_t<Iterator>

iter_move(const move_iterator& i)
noexcept(noexcept(ranges::iter_move(i.current)));

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void

iter_swap(const move_iterator& x, const move_iterator<Iterator2>& y)
noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

private:
Iterator current; // exposition only

};
}

1 Themember typedef-name iterator_category is defined if and only if the qualified-id iterator_traits<Iterator>::iterator_-
category is valid and denotes a type. In that case, iterator_category denotes
—(1.1) random_access_iterator_tag if the type iterator_traits<Iterator>::iterator_categorymodels derived_-

from<random_access_iterator_tag>, and
—(1.2) iterator_traits<Iterator>::iterator_category otherwise.

25.5.3.3 Requirements [move.iter.requirements]
1 The template parameter Iterator shall either meet the Cpp17InputIterator requirements (25.3.5.3) or model input_-

iterator (25.3.4.9). Additionally, if any of the bidirectional traversal functions are instantiated, the template pa-rameter shall either meet the Cpp17BidirectionalIterator requirements (25.3.5.6) or model bidirectional_iterator(25.3.4.12). If any of the random access traversal functions are instantiated, the template parameter shall either meet theCpp17RandomAccessIterator requirements (25.3.5.7) or model random_access_iterator (25.3.4.13).
25.5.3.4 Construction and assignment [move.iter.cons]

constexpr move_iterator();

1 Effects: Value-initializes current.
constexpr explicit move_iterator(Iterator i);

2 Effects: Initializes current with std::move(i).
§ 25.5.3.4 987

© ISO/IEC N4910

template<class U> constexpr move_iterator(const move_iterator<U>& u);

3 Constraints: is_same_v<U, Iterator> is false and const U& models convertible_to<Iterator>.
4 Effects: Initializes current with u.current.

template<class U> constexpr move_iterator& operator=(const move_iterator<U>& u);

5 Constraints: is_same_v<U, Iterator> is false, const U&models convertible_to<Iterator>, and assignable_-
from<Iterator&, const U&> is modeled.

6 Effects: Assigns u.current to current.
25.5.3.5 Conversion [move.iter.op.conv]

constexpr const Iterator& base() const & noexcept;

1 Returns: current.
constexpr Iterator base() &&;

2 Returns: std::move(current).
25.5.3.6 Element access [move.iter.elem]

constexpr reference operator*() const;

1 Effects: Equivalent to: return ranges::iter_move(current);

constexpr reference operator[](difference_type n) const;

2 Effects: Equivalent to: return ranges::iter_move(current + n);

25.5.3.7 Navigation [move.iter.nav]

constexpr move_iterator& operator++();

1 Effects: As if by ++current.
2 Returns: *this.

constexpr auto operator++(int);

3 Effects: If Iterator models forward_iterator, equivalent to:
move_iterator tmp = *this;
++current;
return tmp;

Otherwise, equivalent to ++current.
constexpr move_iterator& operator--();

4 Effects: As if by --current.
5 Returns: *this.

constexpr move_iterator operator--(int);

6 Effects: As if by:
move_iterator tmp = *this;
--current;
return tmp;

constexpr move_iterator operator+(difference_type n) const;

7 Returns: move_iterator(current + n).
constexpr move_iterator& operator+=(difference_type n);

8 Effects: As if by: current += n;
9 Returns: *this.

§ 25.5.3.7 988

© ISO/IEC N4910

constexpr move_iterator operator-(difference_type n) const;

10 Returns: move_iterator(current - n).
constexpr move_iterator& operator-=(difference_type n);

11 Effects: As if by: current -= n;
12 Returns: *this.
25.5.3.8 Comparisons [move.iter.op.comp]

template<class Iterator1, class Iterator2>
constexpr bool operator==(const move_iterator<Iterator1>& x,

const move_iterator<Iterator2>& y);
template<sentinel_for<Iterator> S>

friend constexpr bool operator==(const move_iterator& x,
const move_sentinel<S>& y);

1 Constraints: x.base() == y.base() is well-formed and convertible to bool.
2 Returns: x.base() == y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator<(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

3 Constraints: x.base() < y.base() is well-formed and convertible to bool.
4 Returns: x.base() < y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator>(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

5 Constraints: y.base() < x.base() is well-formed and convertible to bool.
6 Returns: y < x.

template<class Iterator1, class Iterator2>
constexpr bool operator<=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

7 Constraints: y.base() < x.base() is well-formed and convertible to bool.
8 Returns: !(y < x).

template<class Iterator1, class Iterator2>
constexpr bool operator>=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

9 Constraints: x.base() < y.base() is well-formed and convertible to bool.
10 Returns: !(x < y).

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>
operator<=>(const move_iterator<Iterator1>& x,

const move_iterator<Iterator2>& y);

11 Returns: x.base() <=> y.base().
25.5.3.9 Non-member functions [move.iter.nonmember]

template<class Iterator1, class Iterator2>
constexpr auto operator-(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y)

-> decltype(x.base() - y.base());
template<sized_sentinel_for<Iterator> S>

friend constexpr iter_difference_t<Iterator>
operator-(const move_sentinel<S>& x, const move_iterator& y);

template<sized_sentinel_for<Iterator> S>
friend constexpr iter_difference_t<Iterator>
operator-(const move_iterator& x, const move_sentinel<S>& y);

1 Returns: x.base() - y.base().

§ 25.5.3.9 989

© ISO/IEC N4910

template<class Iterator>
constexpr move_iterator<Iterator>
operator+(iter_difference_t<Iterator> n, const move_iterator<Iterator>& x);

2 Constraints: x.base() + n is well-formed and has type Iterator.
3 Returns: x + n.

friend constexpr iter_rvalue_reference_t<Iterator>
iter_move(const move_iterator& i)
noexcept(noexcept(ranges::iter_move(i.current)));

4 Effects: Equivalent to: return ranges::iter_move(i.current);

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void
iter_swap(const move_iterator& x, const move_iterator<Iterator2>& y)

noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

5 Effects: Equivalent to: ranges::iter_swap(x.current, y.current).
template<class Iterator>
constexpr move_iterator<Iterator> make_move_iterator(Iterator i);

6 Returns: move_iterator<Iterator>(std::move(i)).
25.5.3.10 Class template move_sentinel [move.sentinel]

1 Class template move_sentinel is a sentinel adaptor useful for denoting ranges together with move_iterator. Whenan input iterator type I and sentinel type S model sentinel_for<S, I>, move_sentinel<S> and move_iterator<I>model sentinel_for<move_sentinel<S>, move_iterator<I>> as well.
2 [Example 1: A move_if algorithm is easily implemented with copy_if using move_iterator and move_sentinel:

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
indirect_unary_predicate<I> Pred>

requires indirectly_movable<I, O>
void move_if(I first, S last, O out, Pred pred) {

std::ranges::copy_if(move_iterator<I>{first}, move_sentinel<S>{last}, out, pred);
}

—end example]
namespace std {

template<semiregular S>
class move_sentinel {
public:
constexpr move_sentinel();
constexpr explicit move_sentinel(S s);
template<class S2>

requires convertible_to<const S2&, S>
constexpr move_sentinel(const move_sentinel<S2>& s);

template<class S2>
requires assignable_from<S&, const S2&>

constexpr move_sentinel& operator=(const move_sentinel<S2>& s);

constexpr S base() const;
private:
S last; // exposition only

};
}

25.5.3.11 Operations [move.sent.ops]

constexpr move_sentinel();

1 Effects: Value-initializes last. If is_trivially_default_constructible_v<S> is true, then this constructor isa constexpr constructor.

§ 25.5.3.11 990

© ISO/IEC N4910

constexpr explicit move_sentinel(S s);

2 Effects: Initializes last with std::move(s).
template<class S2>

requires convertible_to<const S2&, S>
constexpr move_sentinel(const move_sentinel<S2>& s);

3 Effects: Initializes last with s.last.
template<class S2>

requires assignable_from<S&, const S2&>
constexpr move_sentinel& operator=(const move_sentinel<S2>& s);

4 Effects: Equivalent to: last = s.last; return *this;

constexpr S base() const;

5 Returns: last.
25.5.4 Common iterators [iterators.common]
25.5.4.1 Class template common_iterator [common.iterator]

1 Class template common_iterator is an iterator/sentinel adaptor that is capable of representing a non-common range ofelements (where the types of the iterator and sentinel differ) as a common range (where they are the same). It does thisby holding either an iterator or a sentinel, and implementing the equality comparison operators appropriately.
2 [Note 1: The common_iterator type is useful for interfacing with legacy code that expects the begin and end of a range to have thesame type. —end note]
3 [Example 1:

template<class ForwardIterator>
void fun(ForwardIterator begin, ForwardIterator end);

list<int> s;// populate the list s
using CI = common_iterator<counted_iterator<list<int>::iterator>, default_sentinel_t>;// call fun on a range of 10 ints
fun(CI(counted_iterator(s.begin(), 10)), CI(default_sentinel));

—end example]
namespace std {

template<input_or_output_iterator I, sentinel_for<I> S>
requires (!same_as<I, S> && copyable<I>)

class common_iterator {
public:
constexpr common_iterator() requires default_initializable<I> = default;
constexpr common_iterator(I i);
constexpr common_iterator(S s);
template<class I2, class S2>

requires convertible_to<const I2&, I> && convertible_to<const S2&, S>
constexpr common_iterator(const common_iterator<I2, S2>& x);

template<class I2, class S2>
requires convertible_to<const I2&, I> && convertible_to<const S2&, S> &&

assignable_from<I&, const I2&> && assignable_from<S&, const S2&>
constexpr common_iterator& operator=(const common_iterator<I2, S2>& x);

constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable<const I>;
constexpr decltype(auto) operator->() const

requires see below;

constexpr common_iterator& operator++();
constexpr decltype(auto) operator++(int);

§ 25.5.4.1 991

© ISO/IEC N4910

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2> && equality_comparable_with<I, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

template<sized_sentinel_for<I> I2, sized_sentinel_for<I> S2>
requires sized_sentinel_for<S, I2>

friend constexpr iter_difference_t<I2> operator-(
const common_iterator& x, const common_iterator<I2, S2>& y);

friend constexpr iter_rvalue_reference_t<I> iter_move(const common_iterator& i)
noexcept(noexcept(ranges::iter_move(declval<const I&>())))

requires input_iterator<I>;
template<indirectly_swappable<I> I2, class S2>

friend constexpr void iter_swap(const common_iterator& x, const common_iterator<I2, S2>& y)
noexcept(noexcept(ranges::iter_swap(declval<const I&>(), declval<const I2&>())));

private:
variant<I, S> v_; // exposition only

};

template<class I, class S>
struct incrementable_traits<common_iterator<I, S>> {
using difference_type = iter_difference_t<I>;

};

template<input_iterator I, class S>
struct iterator_traits<common_iterator<I, S>> {
using iterator_concept = see below;
using iterator_category = see below;
using value_type = iter_value_t<I>;
using difference_type = iter_difference_t<I>;
using pointer = see below;
using reference = iter_reference_t<I>;

};
}

25.5.4.2 Associated types [common.iter.types]
1 The nested typedef-names of the specialization of iterator_traits for common_iterator<I, S> are defined asfollows.

—(1.1) iterator_concept denotes forward_iterator_tag if Imodels forward_iterator; otherwise it denotes input_-
iterator_tag.

—(1.2) iterator_category denotes forward_iterator_tag if the qualified-id iterator_traits<I>::iterator_categoryis valid and denotes a type that models derived_from<forward_iterator_tag>; otherwise it denotes input_-
iterator_tag.

—(1.3) Let a denote an lvalue of type const common_iterator<I, S>. If the expression a.operator->() is well-formed,then pointer denotes decltype(a.operator->()). Otherwise, pointer denotes void.
25.5.4.3 Constructors and conversions [common.iter.const]

constexpr common_iterator(I i);

1 Effects: Initializes v_ as if by v_{in_place_type<I>, std::move(i)}.
constexpr common_iterator(S s);

2 Effects: Initializes v_ as if by v_{in_place_type<S>, std::move(s)}.

§ 25.5.4.3 992

© ISO/IEC N4910

template<class I2, class S2>
requires convertible_to<const I2&, I> && convertible_to<const S2&, S>
constexpr common_iterator(const common_iterator<I2, S2>& x);

3 Preconditions: x.v_.valueless_by_exception() is false.
4 Effects: Initializes v_ as if by v_{in_place_index<i>, get<i>(x.v_)}, where i is x.v_.index().

template<class I2, class S2>
requires convertible_to<const I2&, I> && convertible_to<const S2&, S> &&

assignable_from<I&, const I2&> && assignable_from<S&, const S2&>
constexpr common_iterator& operator=(const common_iterator<I2, S2>& x);

5 Preconditions: x.v_.valueless_by_exception() is false.
6 Effects: Equivalent to:

—(6.1) If v_.index() == x.v_.index(), then get<i>(v_) = get<i>(x.v_).
—(6.2) Otherwise, v_.emplace<i>(get<i>(x.v_)).
where i is x.v_.index().

7 Returns: *this
25.5.4.4 Accessors [common.iter.access]

constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const
requires dereferenceable<const I>;

1 Preconditions: holds_alternative<I>(v_) is true.
2 Effects: Equivalent to: return *get<I>(v_);

constexpr decltype(auto) operator->() const
requires see below;

3 The expression in the requires-clause is equivalent to:
indirectly_readable<const I> &&
(requires(const I& i) { i.operator->(); } ||
is_reference_v<iter_reference_t<I>> ||
constructible_from<iter_value_t<I>, iter_reference_t<I>>)

4 Preconditions: holds_alternative<I>(v_) is true.
5 Effects:

—(5.1) If I is a pointer type or if the expression get<I>(v_).operator->() is well-formed, equivalent to: return
get<I>(v_);

—(5.2) Otherwise, if iter_reference_t<I> is a reference type, equivalent to:
auto&& tmp = *get<I>(v_);
return addressof(tmp);

—(5.3) Otherwise, equivalent to: return proxy(*get<I>(v_)); where proxy is the exposition-only class:
class proxy {

iter_value_t<I> keep_;
constexpr proxy(iter_reference_t<I>&& x)

: keep_(std::move(x)) {}
public:

constexpr const iter_value_t<I>* operator->() const noexcept {
return addressof(keep_);

}
};

25.5.4.5 Navigation [common.iter.nav]

constexpr common_iterator& operator++();

1 Preconditions: holds_alternative<I>(v_) is true.
2 Effects: Equivalent to ++get<I>(v_).
§ 25.5.4.5 993

© ISO/IEC N4910

3 Returns: *this.
constexpr decltype(auto) operator++(int);

4 Preconditions: holds_alternative<I>(v_) is true.
5 Effects: If I models forward_iterator, equivalent to:

common_iterator tmp = *this;
++*this;
return tmp;

Otherwise, if requires(I& i) { { *i++ } -> can-reference; } is true or
indirectly_readable<I> && constructible_from<iter_value_t<I>, iter_reference_t<I>> &&
move_constructible<iter_value_t<I>>

is false, equivalent to:
return get<I>(v_)++;

Otherwise, equivalent to:
postfix-proxy p(**this);
++*this;
return p;

where postfix-proxy is the exposition-only class:
class postfix-proxy {
iter_value_t<I> keep_;
constexpr postfix-proxy(iter_reference_t<I>&& x)

: keep_(std::forward<iter_reference_t<I>>(x)) {}
public:
constexpr const iter_value_t<I>& operator*() const noexcept {

return keep_;
}

};

25.5.4.6 Comparisons [common.iter.cmp]

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

1 Preconditions: x.v_.valueless_by_exception() and y.v_.valueless_by_exception() are each false.
2 Returns: true if i == j, and otherwise get<i>(x.v_) == get<j>(y.v_), where i is x.v_.index() and j is

y.v_.index().
template<class I2, sentinel_for<I> S2>

requires sentinel_for<S, I2> && equality_comparable_with<I, I2>
friend constexpr bool operator==(

const common_iterator& x, const common_iterator<I2, S2>& y);

3 Preconditions: x.v_.valueless_by_exception() and y.v_.valueless_by_exception() are each false.
4 Returns: true if i and j are each 1, and otherwise get<i>(x.v_) == get<j>(y.v_), where i is x.v_.index()and j is y.v_.index().

template<sized_sentinel_for<I> I2, sized_sentinel_for<I> S2>
requires sized_sentinel_for<S, I2>

friend constexpr iter_difference_t<I2> operator-(
const common_iterator& x, const common_iterator<I2, S2>& y);

5 Preconditions: x.v_.valueless_by_exception() and y.v_.valueless_by_exception() are each false.
6 Returns: 0 if i and j are each 1, and otherwise get<i>(x.v_) - get<j>(y.v_), where i is x.v_.index() and jis y.v_.index().

§ 25.5.4.6 994

© ISO/IEC N4910

25.5.4.7 Customizations [common.iter.cust]

friend constexpr iter_rvalue_reference_t<I> iter_move(const common_iterator& i)
noexcept(noexcept(ranges::iter_move(declval<const I&>())))
requires input_iterator<I>;

1 Preconditions: holds_alternative<I>(i.v_) is true.
2 Effects: Equivalent to: return ranges::iter_move(get<I>(i.v_));

template<indirectly_swappable<I> I2, class S2>
friend constexpr void iter_swap(const common_iterator& x, const common_iterator<I2, S2>& y)
noexcept(noexcept(ranges::iter_swap(declval<const I&>(), declval<const I2&>())));

3 Preconditions: holds_alternative<I>(x.v_) and holds_alternative<I2>(y.v_) are each true.
4 Effects: Equivalent to ranges::iter_swap(get<I>(x.v_), get<I2>(y.v_)).
25.5.5 Default sentinel [default.sentinel]

namespace std {
struct default_sentinel_t { };

}

1 Class default_sentinel_t is an empty type used to denote the end of a range. It can be used together with iteratortypes that know the bound of their range (e.g., counted_iterator (25.5.6.1)).
25.5.6 Counted iterators [iterators.counted]
25.5.6.1 Class template counted_iterator [counted.iterator]

1 Class template counted_iterator is an iterator adaptor with the same behavior as the underlying iterator except that itkeeps track of the distance to the end of its range. It can be used together with default_sentinel in calls to genericalgorithms to operate on a range of N elements starting at a given position without needing to know the end position apriori.
2 [Example 1:

list<string> s;// populate the list s with at least 10 strings
vector<string> v;// copies 10 strings into v:
ranges::copy(counted_iterator(s.begin(), 10), default_sentinel, back_inserter(v));

—end example]
3 Two values i1 and i2 of types counted_iterator<I1> and counted_iterator<I2> refer to elements of the samesequence if and only if there exists some integer n such that next(i1.base(), i1.count() + n) and next(i2.base(),

i2.count() + n) refer to the same (possibly past-the-end) element.
namespace std {

template<input_or_output_iterator I>
class counted_iterator {
public:

using iterator_type = I;
using value_type = iter_value_t<I>; // present only// if I models indirectly_readable
using difference_type = iter_difference_t<I>;
using iterator_concept = typename I::iterator_concept; // present only// if the qualified-id I::iterator_concept is valid and denotes a type
using iterator_category = typename I::iterator_category; // present only// if the qualified-id I::iterator_category is valid and denotes a type
constexpr counted_iterator() requires default_initializable<I> = default;
constexpr counted_iterator(I x, iter_difference_t<I> n);
template<class I2>
requires convertible_to<const I2&, I>

constexpr counted_iterator(const counted_iterator<I2>& x);

template<class I2>
requires assignable_from<I&, const I2&>

constexpr counted_iterator& operator=(const counted_iterator<I2>& x);

§ 25.5.6.1 995

© ISO/IEC N4910

constexpr const I& base() const & noexcept;
constexpr I base() &&;
constexpr iter_difference_t<I> count() const noexcept;
constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable<const I>;

constexpr auto operator->() const noexcept
requires contiguous_iterator<I>;

constexpr counted_iterator& operator++();
constexpr decltype(auto) operator++(int);
constexpr counted_iterator operator++(int)

requires forward_iterator<I>;
constexpr counted_iterator& operator--()

requires bidirectional_iterator<I>;
constexpr counted_iterator operator--(int)

requires bidirectional_iterator<I>;

constexpr counted_iterator operator+(iter_difference_t<I> n) const
requires random_access_iterator<I>;

friend constexpr counted_iterator operator+(
iter_difference_t<I> n, const counted_iterator& x)

requires random_access_iterator<I>;
constexpr counted_iterator& operator+=(iter_difference_t<I> n)

requires random_access_iterator<I>;

constexpr counted_iterator operator-(iter_difference_t<I> n) const
requires random_access_iterator<I>;

template<common_with<I> I2>
friend constexpr iter_difference_t<I2> operator-(

const counted_iterator& x, const counted_iterator<I2>& y);
friend constexpr iter_difference_t<I> operator-(

const counted_iterator& x, default_sentinel_t);
friend constexpr iter_difference_t<I> operator-(

default_sentinel_t, const counted_iterator& y);
constexpr counted_iterator& operator-=(iter_difference_t<I> n)

requires random_access_iterator<I>;

constexpr decltype(auto) operator[](iter_difference_t<I> n) const
requires random_access_iterator<I>;

template<common_with<I> I2>
friend constexpr bool operator==(

const counted_iterator& x, const counted_iterator<I2>& y);
friend constexpr bool operator==(

const counted_iterator& x, default_sentinel_t);

template<common_with<I> I2>
friend constexpr strong_ordering operator<=>(

const counted_iterator& x, const counted_iterator<I2>& y);

friend constexpr iter_rvalue_reference_t<I> iter_move(const counted_iterator& i)
noexcept(noexcept(ranges::iter_move(i.current)))

requires input_iterator<I>;
template<indirectly_swappable<I> I2>

friend constexpr void iter_swap(const counted_iterator& x, const counted_iterator<I2>& y)
noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

private:
I current = I(); // exposition only
iter_difference_t<I> length = 0; // exposition only

};

§ 25.5.6.1 996

© ISO/IEC N4910

template<input_iterator I>
requires same_as<ITER_TRAITS(I), iterator_traits<I>> // see 25.3.4.1

struct iterator_traits<counted_iterator<I>> : iterator_traits<I> {
using pointer = conditional_t<contiguous_iterator<I>,

add_pointer_t<iter_reference_t<I>>, void>;
};

}

25.5.6.2 Constructors and conversions [counted.iter.const]

constexpr counted_iterator(I i, iter_difference_t<I> n);

1 Preconditions: n >= 0.
2 Effects: Initializes current with std::move(i) and length with n.

template<class I2>
requires convertible_to<const I2&, I>
constexpr counted_iterator(const counted_iterator<I2>& x);

3 Effects: Initializes current with x.current and length with x.length.
template<class I2>

requires assignable_from<I&, const I2&>
constexpr counted_iterator& operator=(const counted_iterator<I2>& x);

4 Effects: Assigns x.current to current and x.length to length.
5 Returns: *this.
25.5.6.3 Accessors [counted.iter.access]

constexpr const I& base() const & noexcept;

1 Effects: Equivalent to: return current;

constexpr I base() &&;

2 Returns: std::move(current).
constexpr iter_difference_t<I> count() const noexcept;

3 Effects: Equivalent to: return length;

25.5.6.4 Element access [counted.iter.elem]

constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable<const I>;

1 Preconditions: length > 0 is true.
2 Effects: Equivalent to: return *current;

constexpr auto operator->() const noexcept
requires contiguous_iterator<I>;

3 Effects: Equivalent to: return to_address(current);

constexpr decltype(auto) operator[](iter_difference_t<I> n) const
requires random_access_iterator<I>;

4 Preconditions: n < length.
5 Effects: Equivalent to: return current[n];

25.5.6.5 Navigation [counted.iter.nav]

constexpr counted_iterator& operator++();

1 Preconditions: length > 0.
2 Effects: Equivalent to:

§ 25.5.6.5 997

© ISO/IEC N4910

++current;
--length;
return *this;

constexpr decltype(auto) operator++(int);

3 Preconditions: length > 0.
4 Effects: Equivalent to:

--length;
try { return current++; }
catch(...) { ++length; throw; }

constexpr counted_iterator operator++(int)
requires forward_iterator<I>;

5 Effects: Equivalent to:
counted_iterator tmp = *this;
++*this;
return tmp;

constexpr counted_iterator& operator--()
requires bidirectional_iterator<I>;

6 Effects: Equivalent to:
--current;
++length;
return *this;

constexpr counted_iterator operator--(int)
requires bidirectional_iterator<I>;

7 Effects: Equivalent to:
counted_iterator tmp = *this;
--*this;
return tmp;

constexpr counted_iterator operator+(iter_difference_t<I> n) const
requires random_access_iterator<I>;

8 Effects: Equivalent to: return counted_iterator(current + n, length - n);

friend constexpr counted_iterator operator+(
iter_difference_t<I> n, const counted_iterator& x)
requires random_access_iterator<I>;

9 Effects: Equivalent to: return x + n;

constexpr counted_iterator& operator+=(iter_difference_t<I> n)
requires random_access_iterator<I>;

10 Preconditions: n <= length.
11 Effects: Equivalent to:

current += n;
length -= n;
return *this;

constexpr counted_iterator operator-(iter_difference_t<I> n) const
requires random_access_iterator<I>;

12 Effects: Equivalent to: return counted_iterator(current - n, length + n);

template<common_with<I> I2>
friend constexpr iter_difference_t<I2> operator-(
const counted_iterator& x, const counted_iterator<I2>& y);

13 Preconditions: x and y refer to elements of the same sequence (25.5.6.1).

§ 25.5.6.5 998

© ISO/IEC N4910

14 Effects: Equivalent to: return y.length - x.length;

friend constexpr iter_difference_t<I> operator-(
const counted_iterator& x, default_sentinel_t);

15 Effects: Equivalent to: return -x.length;

friend constexpr iter_difference_t<I> operator-(
default_sentinel_t, const counted_iterator& y);

16 Effects: Equivalent to: return y.length;

constexpr counted_iterator& operator-=(iter_difference_t<I> n)
requires random_access_iterator<I>;

17 Preconditions: -n <= length.
18 Effects: Equivalent to:

current -= n;
length += n;
return *this;

25.5.6.6 Comparisons [counted.iter.cmp]

template<common_with<I> I2>
friend constexpr bool operator==(
const counted_iterator& x, const counted_iterator<I2>& y);

1 Preconditions: x and y refer to elements of the same sequence (25.5.6.1).
2 Effects: Equivalent to: return x.length == y.length;

friend constexpr bool operator==(
const counted_iterator& x, default_sentinel_t);

3 Effects: Equivalent to: return x.length == 0;

template<common_with<I> I2>
friend constexpr strong_ordering operator<=>(
const counted_iterator& x, const counted_iterator<I2>& y);

4 Preconditions: x and y refer to elements of the same sequence (25.5.6.1).
5 Effects: Equivalent to: return y.length <=> x.length;
6 [Note 1: The argument order in the Effects: element is reversed because length counts down, not up. —end note]
25.5.6.7 Customizations [counted.iter.cust]

friend constexpr iter_rvalue_reference_t<I>
iter_move(const counted_iterator& i)
noexcept(noexcept(ranges::iter_move(i.current)))
requires input_iterator<I>;

1 Preconditions: i.length > 0 is true.
2 Effects: Equivalent to: return ranges::iter_move(i.current);

template<indirectly_swappable<I> I2>
friend constexpr void
iter_swap(const counted_iterator& x, const counted_iterator<I2>& y)

noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

3 Preconditions: Both x.length > 0 and y.length > 0 are true.
4 Effects: Equivalent to ranges::iter_swap(x.current, y.current).
25.5.7 Unreachable sentinel [unreachable.sentinel]

1 Class unreachable_sentinel_t can be used with any weakly_incrementable type to denote the “upper bound” of anunbounded interval.
2 [Example 1:

§ 25.5.7 999

© ISO/IEC N4910

char* p;// set p to point to a character buffer containing newlines
char* nl = find(p, unreachable_sentinel, '\n');

Provided a newline character really exists in the buffer, the use of unreachable_sentinel above potentially makes the call to findmore efficient since the loop test against the sentinel does not require a conditional branch. —end example]
namespace std {

struct unreachable_sentinel_t {
template<weakly_incrementable I>

friend constexpr bool operator==(unreachable_sentinel_t, const I&) noexcept
{ return false; }

};
}

25.6 Stream iterators [stream.iterators]
25.6.1 General [stream.iterators.general]

1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate iterator-like classtemplates are provided.
[Example 1:
partial_sum(istream_iterator<double, char>(cin),

istream_iterator<double, char>(),
ostream_iterator<double, char>(cout, "\n"));

reads a file containing floating-point numbers from cin, and prints the partial sums onto cout. —end example]
25.6.2 Class template istream_iterator [istream.iterator]
25.6.2.1 General [istream.iterator.general]

1 The class template istream_iterator is an input iterator (25.3.5.3) that reads successive elements from the inputstream for which it was constructed.
namespace std {

template<class T, class charT = char, class traits = char_traits<charT>,
class Distance = ptrdiff_t>

class istream_iterator {
public:
using iterator_category = input_iterator_tag;
using value_type = T;
using difference_type = Distance;
using pointer = const T*;
using reference = const T&;
using char_type = charT;
using traits_type = traits;
using istream_type = basic_istream<charT,traits>;

constexpr istream_iterator();
constexpr istream_iterator(default_sentinel_t);
istream_iterator(istream_type& s);
istream_iterator(const istream_iterator& x) = default;
~istream_iterator() = default;
istream_iterator& operator=(const istream_iterator&) = default;

const T& operator*() const;
const T* operator->() const;
istream_iterator& operator++();
istream_iterator operator++(int);

friend bool operator==(const istream_iterator& i, default_sentinel_t);

private:
basic_istream<charT,traits>* in_stream; // exposition only
T value; // exposition only

};
}

§ 25.6.2.1 1000

© ISO/IEC N4910

2 The type T shall meet the Cpp17DefaultConstructible, Cpp17CopyConstructible, and Cpp17CopyAssignable require-ments.
25.6.2.2 Constructors and destructor [istream.iterator.cons]

constexpr istream_iterator();
constexpr istream_iterator(default_sentinel_t);

1 Effects: Constructs the end-of-stream iterator, value-initializing value.
2 Postconditions: in_stream == nullptr is true.
3 Remarks: If the initializer T() in the declaration auto x = T(); is a constant initializer (7.7), then these con-structors are constexpr constructors.

istream_iterator(istream_type& s);

4 Effects: Initializes in_stream with addressof(s), value-initializes value, and then calls operator++().
istream_iterator(const istream_iterator& x) = default;

5 Postconditions: in_stream == x.in_stream is true.
6 Remarks: If is_trivially_copy_constructible_v<T> is true, then this constructor is trivial.
~istream_iterator() = default;

7 Remarks: If is_trivially_destructible_v<T> is true, then this destructor is trivial.
25.6.2.3 Operations [istream.iterator.ops]

const T& operator*() const;

1 Preconditions: in_stream != nullptr is true.
2 Returns: value.

const T* operator->() const;

3 Preconditions: in_stream != nullptr is true.
4 Returns: addressof(value).

istream_iterator& operator++();

5 Preconditions: in_stream != nullptr is true.
6 Effects: Equivalent to:

if (!(*in_stream >> value))
in_stream = nullptr;

7 Returns: *this.
istream_iterator operator++(int);

8 Preconditions: in_stream != nullptr is true.
9 Effects: Equivalent to:

istream_iterator tmp = *this;
++*this;
return tmp;

template<class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);

10 Returns: x.in_stream == y.in_stream.
friend bool operator==(const istream_iterator& i, default_sentinel_t);

11 Returns: !i.in_stream.

§ 25.6.2.3 1001

© ISO/IEC N4910

25.6.3 Class template ostream_iterator [ostream.iterator]
25.6.3.1 General [ostream.iterator.general]

1 ostream_iteratorwrites (using operator<<) successive elements onto the output stream fromwhich it was constructed.If it was constructed with charT* as a constructor argument, this string, called a delimiter string, is written to the streamafter every T is written.
namespace std {

template<class T, class charT = char, class traits = char_traits<charT>>
class ostream_iterator {
public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using char_type = charT;
using traits_type = traits;
using ostream_type = basic_ostream<charT,traits>;

ostream_iterator(ostream_type& s);
ostream_iterator(ostream_type& s, const charT* delimiter);
ostream_iterator(const ostream_iterator& x);
~ostream_iterator();
ostream_iterator& operator=(const ostream_iterator&) = default;
ostream_iterator& operator=(const T& value);

ostream_iterator& operator*();
ostream_iterator& operator++();
ostream_iterator& operator++(int);

private:
basic_ostream<charT,traits>* out_stream; // exposition only
const charT* delim; // exposition only

};
}

25.6.3.2 Constructors and destructor [ostream.iterator.cons.des]

ostream_iterator(ostream_type& s);

1 Effects: Initializes out_stream with addressof(s) and delim with nullptr.
ostream_iterator(ostream_type& s, const charT* delimiter);

2 Effects: Initializes out_stream with addressof(s) and delim with delimiter.
25.6.3.3 Operations [ostream.iterator.ops]

ostream_iterator& operator=(const T& value);

1 Effects: As if by:
*out_stream << value;
if (delim)
*out_stream << delim;

return *this;

ostream_iterator& operator*();

2 Returns: *this.
ostream_iterator& operator++();
ostream_iterator& operator++(int);

3 Returns: *this.

§ 25.6.3.3 1002

© ISO/IEC N4910

25.6.4 Class template istreambuf_iterator [istreambuf.iterator]
25.6.4.1 General [istreambuf.iterator.general]

1 The class template istreambuf_iterator defines an input iterator (25.3.5.3) that reads successive characters from thestreambuf for which it was constructed. operator* provides access to the current input character, if any. Each time
operator++ is evaluated, the iterator advances to the next input character. If the end of stream is reached (streambuf_-
type::sgetc() returns traits::eof()), the iterator becomes equal to the end-of-stream iterator value. The defaultconstructor istreambuf_iterator() and the constructor istreambuf_iterator(nullptr) both construct an end-of-stream iterator object suitable for use as an end-of-range. All specializations of istreambuf_iterator shall have atrivial copy constructor, a constexpr default constructor, and a trivial destructor.

2 The result of operator*() on an end-of-stream iterator is undefined. For any other iterator value a char_type value isreturned. It is impossible to assign a character via an input iterator.
namespace std {

template<class charT, class traits = char_traits<charT>>
class istreambuf_iterator {
public:
using iterator_category = input_iterator_tag;
using value_type = charT;
using difference_type = typename traits::off_type;
using pointer = unspecified;
using reference = charT;
using char_type = charT;
using traits_type = traits;
using int_type = typename traits::int_type;
using streambuf_type = basic_streambuf<charT,traits>;
using istream_type = basic_istream<charT,traits>;

class proxy; // exposition only
constexpr istreambuf_iterator() noexcept;
constexpr istreambuf_iterator(default_sentinel_t) noexcept;
istreambuf_iterator(const istreambuf_iterator&) noexcept = default;
~istreambuf_iterator() = default;
istreambuf_iterator(istream_type& s) noexcept;
istreambuf_iterator(streambuf_type* s) noexcept;
istreambuf_iterator(const proxy& p) noexcept;
istreambuf_iterator& operator=(const istreambuf_iterator&) noexcept = default;
charT operator*() const;
istreambuf_iterator& operator++();
proxy operator++(int);
bool equal(const istreambuf_iterator& b) const;

friend bool operator==(const istreambuf_iterator& i, default_sentinel_t s);

private:
streambuf_type* sbuf_; // exposition only

};
}

25.6.4.2 Class istreambuf_iterator::proxy [istreambuf.iterator.proxy]
1 Class istreambuf_iterator<charT,traits>::proxy is for exposition only. An implementation is permitted toprovide equivalent functionality without providing a class with this name. Class istreambuf_iterator<charT,

traits>::proxy provides a temporary placeholder as the return value of the post-increment operator (operator++). Itkeeps the character pointed to by the previous value of the iterator for some possible future access to get the character.
namespace std {

template<class charT, class traits>
class istreambuf_iterator<charT, traits>::proxy { // exposition only
charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy(charT c, basic_streambuf<charT,traits>* sbuf)
: keep_(c), sbuf_(sbuf) { }

§ 25.6.4.2 1003

© ISO/IEC N4910

public:
charT operator*() { return keep_; }

};
}

25.6.4.3 Constructors [istreambuf.iterator.cons]
1 For each istreambuf_iterator constructor in this subclause, an end-of-stream iterator is constructed if and only if theexposition-only member sbuf_ is initialized with a null pointer value.

constexpr istreambuf_iterator() noexcept;
constexpr istreambuf_iterator(default_sentinel_t) noexcept;

2 Effects: Initializes sbuf_ with nullptr.
istreambuf_iterator(istream_type& s) noexcept;

3 Effects: Initializes sbuf_ with s.rdbuf().
istreambuf_iterator(streambuf_type* s) noexcept;

4 Effects: Initializes sbuf_ with s.
istreambuf_iterator(const proxy& p) noexcept;

5 Effects: Initializes sbuf_ with p.sbuf_.
25.6.4.4 Operations [istreambuf.iterator.ops]

charT operator*() const;

1 Returns: The character obtained via the streambuf member sbuf_->sgetc().
istreambuf_iterator& operator++();

2 Effects: As if by sbuf_->sbumpc().
3 Returns: *this.

proxy operator++(int);

4 Returns: proxy(sbuf_->sbumpc(), sbuf_).
bool equal(const istreambuf_iterator& b) const;

5 Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream, regardless of what
streambuf object they use.

template<class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

6 Returns: a.equal(b).
friend bool operator==(const istreambuf_iterator& i, default_sentinel_t s);

7 Returns: i.equal(s).
25.6.5 Class template ostreambuf_iterator [ostreambuf.iterator]
25.6.5.1 General [ostreambuf.iterator.general]

1 The class template ostreambuf_iterator writes successive characters onto the output stream from which it wasconstructed.
namespace std {

template<class charT, class traits = char_traits<charT>>
class ostreambuf_iterator {
public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;

§ 25.6.5.1 1004

© ISO/IEC N4910

using reference = void;
using char_type = charT;
using traits_type = traits;
using streambuf_type = basic_streambuf<charT,traits>;
using ostream_type = basic_ostream<charT,traits>;

ostreambuf_iterator(ostream_type& s) noexcept;
ostreambuf_iterator(streambuf_type* s) noexcept;
ostreambuf_iterator& operator=(charT c);

ostreambuf_iterator& operator*();
ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);
bool failed() const noexcept;

private:
streambuf_type* sbuf_; // exposition only

};
}

25.6.5.2 Constructors [ostreambuf.iter.cons]

ostreambuf_iterator(ostream_type& s) noexcept;

1 Preconditions: s.rdbuf() is not a null pointer.
2 Effects: Initializes sbuf_ with s.rdbuf().

ostreambuf_iterator(streambuf_type* s) noexcept;

3 Preconditions: s is not a null pointer.
4 Effects: Initializes sbuf_ with s.
25.6.5.3 Operations [ostreambuf.iter.ops]

ostreambuf_iterator& operator=(charT c);

1 Effects: If failed() yields false, calls sbuf_->sputc(c); otherwise has no effect.
2 Returns: *this.

ostreambuf_iterator& operator*();

3 Returns: *this.
ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);

4 Returns: *this.
bool failed() const noexcept;

5 Returns: true if in any prior use of member operator=, the call to sbuf_->sputc() returned traits::eof(); or
false otherwise.

25.7 Range access [iterator.range]
1 In addition to being available via inclusion of the <iterator> header, the function templates in 25.7 are availablewhen any of the following headers are included: <array> (24.3.2), <deque> (24.3.3), <forward_list> (24.3.4), <list>(24.3.5), <map> (24.4.2), <regex> (32.3), <set> (24.4.3), (24.7.2), <string> (23.4.2), <string_view> (23.3.2),
<unordered_map> (24.5.2), <unordered_set> (24.5.3), and <vector> (24.3.6). Each of these templates is a designatedcustomization point (16.4.5.2.1).
template<class C> constexpr auto begin(C& c) -> decltype(c.begin());
template<class C> constexpr auto begin(const C& c) -> decltype(c.begin());

2 Returns: c.begin().

§ 25.7 1005

© ISO/IEC N4910

template<class C> constexpr auto end(C& c) -> decltype(c.end());
template<class C> constexpr auto end(const C& c) -> decltype(c.end());

3 Returns: c.end().
template<class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept;

4 Returns: array.
template<class T, size_t N> constexpr T* end(T (&array)[N]) noexcept;

5 Returns: array + N.
template<class C> constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c)))

-> decltype(std::begin(c));

6 Returns: std::begin(c).
template<class C> constexpr auto cend(const C& c) noexcept(noexcept(std::end(c)))

-> decltype(std::end(c));

7 Returns: std::end(c).
template<class C> constexpr auto rbegin(C& c) -> decltype(c.rbegin());
template<class C> constexpr auto rbegin(const C& c) -> decltype(c.rbegin());

8 Returns: c.rbegin().
template<class C> constexpr auto rend(C& c) -> decltype(c.rend());
template<class C> constexpr auto rend(const C& c) -> decltype(c.rend());

9 Returns: c.rend().
template<class T, size_t N> constexpr reverse_iterator<T*> rbegin(T (&array)[N]);

10 Returns: reverse_iterator<T*>(array + N).
template<class T, size_t N> constexpr reverse_iterator<T*> rend(T (&array)[N]);

11 Returns: reverse_iterator<T*>(array).
template<class E> constexpr reverse_iterator<const E*> rbegin(initializer_list<E> il);

12 Returns: reverse_iterator<const E*>(il.end()).
template<class E> constexpr reverse_iterator<const E*> rend(initializer_list<E> il);

13 Returns: reverse_iterator<const E*>(il.begin()).
template<class C> constexpr auto crbegin(const C& c) -> decltype(std::rbegin(c));

14 Returns: std::rbegin(c).
template<class C> constexpr auto crend(const C& c) -> decltype(std::rend(c));

15 Returns: std::rend(c).
template<class C> constexpr auto size(const C& c) -> decltype(c.size());

16 Returns: c.size().
template<class T, size_t N> constexpr size_t size(const T (&array)[N]) noexcept;

17 Returns: N.
template<class C> constexpr auto ssize(const C& c)
-> common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>;

18 Effects: Equivalent to:
return static_cast<common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>>(c.size());

template<class T, ptrdiff_t N> constexpr ptrdiff_t ssize(const T (&array)[N]) noexcept;

19 Returns: N.

§ 25.7 1006

© ISO/IEC N4910

template<class C> [[nodiscard]] constexpr auto empty(const C& c) -> decltype(c.empty());

20 Returns: c.empty().
template<class T, size_t N> [[nodiscard]] constexpr bool empty(const T (&array)[N]) noexcept;

21 Returns: false.
template<class E> [[nodiscard]] constexpr bool empty(initializer_list<E> il) noexcept;

22 Returns: il.size() == 0.
template<class C> constexpr auto data(C& c) -> decltype(c.data());
template<class C> constexpr auto data(const C& c) -> decltype(c.data());

23 Returns: c.data().
template<class T, size_t N> constexpr T* data(T (&array)[N]) noexcept;

24 Returns: array.
template<class E> constexpr const E* data(initializer_list<E> il) noexcept;

25 Returns: il.begin().

§ 25.7 1007

© ISO/IEC N4910

26 Ranges library [ranges]
26.1 General [ranges.general]

1 This Clause describes components for dealing with ranges of elements.
2 The following subclauses describe range and view requirements, and components for range primitives as summarizedin Table 88.

Table 88: Ranges library summary [tab:range.summary]
Subclause Header

26.3 Range access <ranges>26.4 Requirements26.5 Range utilities26.6 Range factories26.7 Range adaptors

26.2 Header <ranges> synopsis [ranges.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
#include <iterator> // see 25.2
namespace std::ranges {

inline namespace unspecified {// 26.3, range access
inline constexpr unspecified begin = unspecified;
inline constexpr unspecified end = unspecified;
inline constexpr unspecified cbegin = unspecified;
inline constexpr unspecified cend = unspecified;
inline constexpr unspecified rbegin = unspecified;
inline constexpr unspecified rend = unspecified;
inline constexpr unspecified crbegin = unspecified;
inline constexpr unspecified crend = unspecified;

inline constexpr unspecified size = unspecified;
inline constexpr unspecified ssize = unspecified;
inline constexpr unspecified empty = unspecified;
inline constexpr unspecified data = unspecified;
inline constexpr unspecified cdata = unspecified;

}

// 26.4.2, ranges
template<class T>
concept range = see below;

template<class T>
inline constexpr bool enable_borrowed_range = false;

template<class T>
concept borrowed_range = see below;

template<class T>
using iterator_t = decltype(ranges::begin(declval<T&>()));

template<range R>
using sentinel_t = decltype(ranges::end(declval<R&>()));

template<range R>
using range_difference_t = iter_difference_t<iterator_t<R>>;

§ 26.2 1008

© ISO/IEC N4910

template<sized_range R>
using range_size_t = decltype(ranges::size(declval<R&>()));

template<range R>
using range_value_t = iter_value_t<iterator_t<R>>;

template<range R>
using range_reference_t = iter_reference_t<iterator_t<R>>;

template<range R>
using range_rvalue_reference_t = iter_rvalue_reference_t<iterator_t<R>>;

// 26.4.3, sized ranges
template<class>
inline constexpr bool disable_sized_range = false;

template<class T>
concept sized_range = see below;

// 26.4.4, views
template<class T>
inline constexpr bool enable_view = see below;

struct view_base {};

template<class T>
concept view = see below;

// 26.4.5, other range refinements
template<class R, class T>

concept output_range = see below;

template<class T>
concept input_range = see below;

template<class T>
concept forward_range = see below;

template<class T>
concept bidirectional_range = see below;

template<class T>
concept random_access_range = see below;

template<class T>
concept contiguous_range = see below;

template<class T>
concept common_range = see below;

template<class T>
concept viewable_range = see below;

// 26.5.3, class template view_interface
template<class D>

requires is_class_v<D> && same_as<D, remove_cv_t<D>>
class view_interface;

// 26.5.4, sub-ranges
enum class subrange_kind : bool { unsized, sized };

template<input_or_output_iterator I, sentinel_for<I> S = I, subrange_kind K = see below>
requires (K == subrange_kind::sized || !sized_sentinel_for<S, I>)

class subrange;

template<class I, class S, subrange_kind K>
inline constexpr bool enable_borrowed_range<subrange<I, S, K>> = true;

§ 26.2 1009

© ISO/IEC N4910

// 26.5.5, dangling iterator handling
struct dangling;

template<range R>
using borrowed_iterator_t = see below;

template<range R>
using borrowed_subrange_t = see below;

// 26.5.6, range conversions
template<class C, input_range R, class... Args> requires (!view<C>)
constexpr C to(R&& r, Args&&... args);

template<template<class...> class C, input_range R, class... Args>
constexpr auto to(R&& r, Args&&... args) -> see below;

template<class C, class... Args> requires (!view<C>)
constexpr auto to(Args&&... args) -> see below;

template<template<class...> class C, class... Args>
constexpr auto to(Args&&... args) -> see below;

// 26.6.2, empty view
template<class T>

requires is_object_v<T>
class empty_view;

template<class T>
inline constexpr bool enable_borrowed_range<empty_view<T>> = true;

namespace views {
template<class T>
inline constexpr empty_view<T> empty{};

}

// 26.6.3, single view
template<copy_constructible T>

requires is_object_v<T>
class single_view;

namespace views { inline constexpr unspecified single = unspecified; }

template<bool Const, class T>
using maybe-const = conditional_t<Const, const T, T>; // exposition only

// 26.6.4, iota view
template<weakly_incrementable W, semiregular Bound = unreachable_sentinel_t>

requires weakly-equality-comparable-with<W, Bound> && copyable<W>
class iota_view;

template<class W, class Bound>
inline constexpr bool enable_borrowed_range<iota_view<W, Bound>> = true;

namespace views { inline constexpr unspecified iota = unspecified; }

// 26.6.5, istream view
template<movable Val, class CharT, class Traits = char_traits<CharT>>

requires see below
class basic_istream_view;
template<class Val>

using istream_view = basic_istream_view<Val, char>;
template<class Val>

using wistream_view = basic_istream_view<Val, wchar_t>;

namespace views { template<class T> inline constexpr unspecified istream = unspecified; }

§ 26.2 1010

© ISO/IEC N4910

// 26.7.2, range adaptor objects
template<class D>
requires is_class_v<D> && same_as<D, remove_cv_t<D>>

class range_adaptor_closure { };

// 26.7.5, all view
namespace views {
inline constexpr unspecified all = unspecified;

template<viewable_range R>
using all_t = decltype(all(declval<R>()));

}

template<range R>
requires is_object_v<R>

class ref_view;

template<class T>
inline constexpr bool enable_borrowed_range<ref_view<T>> = true;

// 26.7.5.3, owning view
template<range R>
requires see below

class owning_view;

template<class T>
inline constexpr bool enable_borrowed_range<owning_view<T>> = enable_borrowed_range<T>;

// 26.7.6, filter view
template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view;

namespace views { inline constexpr unspecified filter = unspecified; }

// 26.7.7, transform view
template<input_range V, copy_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference<invoke_result_t<F&, range_reference_t<V>>>

class transform_view;

namespace views { inline constexpr unspecified transform = unspecified; }

// 26.7.8, take view
template<view> class take_view;

template<class T>
inline constexpr bool enable_borrowed_range<take_view<T>> = enable_borrowed_range<T>;

namespace views { inline constexpr unspecified take = unspecified; }

// 26.7.9, take while view
template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
class take_while_view;

namespace views { inline constexpr unspecified take_while = unspecified; }

// 26.7.10, drop view
template<view V>
class drop_view;

§ 26.2 1011

© ISO/IEC N4910

template<class T>
inline constexpr bool enable_borrowed_range<drop_view<T>> = enable_borrowed_range<T>;

namespace views { inline constexpr unspecified drop = unspecified; }

// 26.7.11, drop while view
template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
class drop_while_view;

template<class T, class Pred>
inline constexpr bool enable_borrowed_range<drop_while_view<T, Pred>> =

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified drop_while = unspecified; }

// 26.7.12, join view
template<input_range V>
requires view<V> && input_range<range_reference_t<V>>

class join_view;

namespace views { inline constexpr unspecified join = unspecified; }

// 26.7.13, join with view
template<class R, class P>
concept compatible-joinable-ranges = see below; // exposition only

template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern>
&& compatible-joinable-ranges<range_reference_t<V>, Pattern>

class join_with_view;

namespace views { inline constexpr unspecified join_with = unspecified; }

// 26.7.14, lazy split view
template<class R>
concept tiny-range = see below; // exposition only

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range<Pattern>)

class lazy_split_view;

// 26.7.15, split view
template<forward_range V, forward_range Pattern>

requires view<V> && view<Pattern> &&
indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>

class split_view;

namespace views {
inline constexpr unspecified lazy_split = unspecified;
inline constexpr unspecified split = unspecified;

}

// 26.7.16, counted view
namespace views { inline constexpr unspecified counted = unspecified; }

// 26.7.17, common view
template<view V>
requires (!common_range<V> && copyable<iterator_t<V>>)

class common_view;

§ 26.2 1012

© ISO/IEC N4910

template<class T>
inline constexpr bool enable_borrowed_range<common_view<T>> = enable_borrowed_range<T>;

namespace views { inline constexpr unspecified common = unspecified; }

// 26.7.18, reverse view
template<view V>
requires bidirectional_range<V>

class reverse_view;

template<class T>
inline constexpr bool enable_borrowed_range<reverse_view<T>> = enable_borrowed_range<T>;

namespace views { inline constexpr unspecified reverse = unspecified; }

// 26.7.19, elements view
template<input_range V, size_t N>
requires see below

class elements_view;

template<class T, size_t N>
inline constexpr bool enable_borrowed_range<elements_view<T, N>> = enable_borrowed_range<T>;

template<class R>
using keys_view = elements_view<R, 0>;

template<class R>
using values_view = elements_view<R, 1>;

namespace views {
template<size_t N>

inline constexpr unspecified elements = unspecified;
inline constexpr auto keys = elements<0>;
inline constexpr auto values = elements<1>;

}

// 26.7.20, zip view
template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

class zip_view;

template<class... Views>
inline constexpr bool enable_borrowed_range<zip_view<Views...>> =

(enable_borrowed_range<Views> && ...);

namespace views { inline constexpr unspecified zip = unspecified; }

// 26.7.21, zip transform view
template<copy_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference<invoke_result_t<F&, range_reference_t<Views>...>>

class zip_transform_view;

namespace views { inline constexpr unspecified zip_transform = unspecified; }

// 26.7.22, adjacent view
template<forward_range V, size_t N>
requires view<V> && (N > 0)

class adjacent_view;

template<class V, size_t N>
inline constexpr bool enable_borrowed_range<adjacent_view<V, N>> =

enable_borrowed_range<V>;

§ 26.2 1013

© ISO/IEC N4910

namespace views {
template<size_t N>

inline constexpr unspecified adjacent = unspecified ;
inline constexpr auto pairwise = adjacent<2>;

}

// 26.7.23, adjacent transform view
template<forward_range V, copy_constructible F, size_t N>
requires see below

class adjacent_transform_view;

namespace views {
template<size_t N>

inline constexpr unspecified adjacent_transform = unspecified;
inline constexpr auto pairwise_transform = adjacent_transform<2>;

}

// 26.7.24, chunk view
template<view V>
requires input_range<V>

class chunk_view;

template<view V>
requires forward_range<V>

class chunk_view<V>;

template<class V>
inline constexpr bool enable_borrowed_range<chunk_view<V>> =

forward_range<V> && enable_borrowed_range<V>;

namespace views { inline constexpr unspecified chunk = unspecified; }

// 26.7.25, slide view
template<view V>
requires forward_range<V>

class slide_view;

template<class V>
inline constexpr bool enable_borrowed_range<slide_view<V>> =

enable_borrowed_range<V>;

namespace views { inline constexpr unspecified slide = unspecified; }

// 26.7.26, chunk by view
template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class chunk_by_view;

namespace views { inline constexpr unspecified chunk_by = unspecified; }
}

namespace std {
namespace views = ranges::views;

template<class T> struct tuple_size;
template<size_t I, class T> struct tuple_element;

template<class I, class S, ranges::subrange_kind K>
struct tuple_size<ranges::subrange<I, S, K>>
: integral_constant<size_t, 2> {};

template<class I, class S, ranges::subrange_kind K>
struct tuple_element<0, ranges::subrange<I, S, K>> {
using type = I;

};

§ 26.2 1014

© ISO/IEC N4910

template<class I, class S, ranges::subrange_kind K>
struct tuple_element<1, ranges::subrange<I, S, K>> {
using type = S;

};
template<class I, class S, ranges::subrange_kind K>
struct tuple_element<0, const ranges::subrange<I, S, K>> {
using type = I;

};
template<class I, class S, ranges::subrange_kind K>
struct tuple_element<1, const ranges::subrange<I, S, K>> {
using type = S;

};

struct from_range_t { explicit from_range_t() = default; };
inline constexpr from_range_t from_range{};

}

1 Within this Clause, for an integer-like type X (25.3.4.4), make-unsigned-like-t<X> denotes make_unsigned_t<X> if Xis an integer type; otherwise, it denotes a corresponding unspecified unsigned-integer-like type of the same width as X.For an expression x of type X, to-unsigned-like(x) is x explicitly converted to make-unsigned-like-t<X>.
2 Also within this Clause, make-signed-like-t<X> for an integer-like type X denotes make_signed_t<X> if X is an integertype; otherwise, it denotes a corresponding unspecified signed-integer-like type of the same width as X.
26.3 Range access [range.access]
26.3.1 General [range.access.general]

1 In addition to being available via inclusion of the <ranges> header, the customization point objects in 26.3 are availablewhen <iterator> (25.2) is included.
2 Within 26.3, the reified object of a subexpression E denotes

—(2.1) the same object as E if E is a glvalue, or
—(2.2) the result of applying the temporary materialization conversion (7.3.5) to E otherwise.

26.3.2 ranges::begin [range.access.begin]
1 The name ranges::begin denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::begin(E) is ill-formed.
—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type, ranges::begin(E)is ill-formed with no diagnostic required.
—(2.3) Otherwise, if T is an array type, ranges::begin(E) is expression-equivalent to t + 0.
—(2.4) Otherwise, if auto(t.begin()) is a valid expressionwhose typemodels input_or_output_iterator, ranges::begin(E)is expression-equivalent to auto(t.begin()).
—(2.5) Otherwise, if T is a class or enumeration type and auto(begin(t)) is a valid expression whose type models

input_or_output_iterator with overload resolution performed in a context in which unqualified lookup for
begin finds only the declarations
void begin(auto&) = delete;
void begin(const auto&) = delete;

then ranges::begin(E) is expression-equivalent to auto(begin(t)) with overload resolution performed in theabove context.
—(2.6) Otherwise, ranges::begin(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::begin(E) appears in the immediate contextof a template instantiation. —end note]
4 [Note 2: Whenever ranges::begin(E) is a valid expression, its type models input_or_output_iterator. —end note]
26.3.3 ranges::end [range.access.end]

1 The name ranges::end denotes a customization point object (16.3.3.3.6).
§ 26.3.3 1015

© ISO/IEC N4910

2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:
—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::end(E) is ill-formed.
—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type, ranges::end(E)is ill-formed with no diagnostic required.
—(2.3) Otherwise, if T is an array of unknown bound, ranges::end(E) is ill-formed.
—(2.4) Otherwise, if T is an array, ranges::end(E) is expression-equivalent to t + extent_v<T>.
—(2.5) Otherwise, if auto(t.end()) is a valid expression whose type models sentinel_for<iterator_t<T>> then

ranges::end(E) is expression-equivalent to auto(t.end()).
—(2.6) Otherwise, if T is a class or enumeration type and auto(end(t)) is a valid expression whose type models

sentinel_for<iterator_t<T>> with overload resolution performed in a context in which unqualified lookupfor end finds only the declarations
void end(auto&) = delete;
void end(const auto&) = delete;

then ranges::end(E) is expression-equivalent to auto(end(t)) with overload resolution performed in the abovecontext.
—(2.7) Otherwise, ranges::end(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::end(E) appears in the immediate context ofa template instantiation. —end note]
4 [Note 2: Whenever ranges::end(E) is a valid expression, the types S and I of ranges::end(E) and ranges::begin(E) model

sentinel_for<S, I>. —end note]
26.3.4 ranges::cbegin [range.access.cbegin]

1 The name ranges::cbegin denotes a customization point object (16.3.3.3.6). The expression ranges::cbegin(E) fora subexpression E of type T is expression-equivalent to:
—(1.1) ranges::begin(static_cast<const T&>(E)) if E is an lvalue.
—(1.2) Otherwise, ranges::begin(static_cast<const T&&>(E)).

2 [Note 1: Whenever ranges::cbegin(E) is a valid expression, its type models input_or_output_iterator. —end note]
26.3.5 ranges::cend [range.access.cend]

1 The name ranges::cend denotes a customization point object (16.3.3.3.6). The expression ranges::cend(E) for asubexpression E of type T is expression-equivalent to:
—(1.1) ranges::end(static_cast<const T&>(E)) if E is an lvalue.
—(1.2) Otherwise, ranges::end(static_cast<const T&&>(E)).

2 [Note 1: Whenever ranges::cend(E) is a valid expression, the types S and I of the expressions ranges::cend(E) and ranges::cbegin(E)model sentinel_for<S, I>. —end note]
26.3.6 ranges::rbegin [range.access.rbegin]

1 The name ranges::rbegin denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::rbegin(E) is ill-formed.
—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type, ranges::rbegin(E)is ill-formed with no diagnostic required.
—(2.3) Otherwise, if auto(t.rbegin()) is a valid expressionwhose typemodels input_or_output_iterator, ranges::rbegin(E)is expression-equivalent to auto(t.rbegin()).
—(2.4) Otherwise, if T is a class or enumeration type and auto(rbegin(t)) is a valid expression whose type models

input_or_output_iterator with overload resolution performed in a context in which unqualified lookup for
rbegin finds only the declarations
void rbegin(auto&) = delete;
void rbegin(const auto&) = delete;

§ 26.3.6 1016

© ISO/IEC N4910

then ranges::rbegin(E) is expression-equivalent to auto(rbegin(t)) with overload resolution performed inthe above context.
—(2.5) Otherwise, if both ranges::begin(t) and ranges::end(t) are valid expressions of the same type whichmodels bidirectional_iterator (25.3.4.12), ranges::rbegin(E) is expression-equivalent to make_reverse_-

iterator(ranges::end(t)).
—(2.6) Otherwise, ranges::rbegin(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::rbegin(E) appears in the immediate contextof a template instantiation. —end note]
4 [Note 2: Whenever ranges::rbegin(E) is a valid expression, its type models input_or_output_iterator. —end note]
26.3.7 ranges::rend [range.access.rend]

1 The name ranges::rend denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::rend(E) is ill-formed.
—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type, ranges::rend(E)is ill-formed with no diagnostic required.
—(2.3) Otherwise, if auto(t.rend()) is a valid expressionwhose typemodels sentinel_for<decltype(ranges::rbegin(E))>then ranges::rend(E) is expression-equivalent to auto(t.rend()).
—(2.4) Otherwise, if T is a class or enumeration type and auto(rend(t)) is a valid expression whose type models

sentinel_for<decltype(ranges::rbegin(E))> with overload resolution performed in a context in which un-qualified lookup for rend finds only the declarations
void rend(auto&) = delete;
void rend(const auto&) = delete;

then ranges::rend(E) is expression-equivalent to auto(rend(t)) with overload resolution performed in theabove context.
—(2.5) Otherwise, if both ranges::begin(t) and ranges::end(t) are valid expressions of the same type which mod-els bidirectional_iterator (25.3.4.12), then ranges::rend(E) is expression-equivalent to make_reverse_-

iterator(ranges::begin(t)).
—(2.6) Otherwise, ranges::rend(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::rend(E) appears in the immediate contextof a template instantiation. —end note]
4 [Note 2: Whenever ranges::rend(E) is a valid expression, the types S and I of the expressions ranges::rend(E) and ranges::rbegin(E)model sentinel_for<S, I>. —end note]
26.3.8 ranges::crbegin [range.access.crbegin]

1 The name ranges::crbegin denotes a customization point object (16.3.3.3.6). The expression ranges::crbegin(E)for a subexpression E of type T is expression-equivalent to:
—(1.1) ranges::rbegin(static_cast<const T&>(E)) if E is an lvalue.
—(1.2) Otherwise, ranges::rbegin(static_cast<const T&&>(E)).

2 [Note 1: Whenever ranges::crbegin(E) is a valid expression, its type models input_or_output_iterator. —end note]
26.3.9 ranges::crend [range.access.crend]

1 The name ranges::crend denotes a customization point object (16.3.3.3.6). The expression ranges::crend(E) for asubexpression E of type T is expression-equivalent to:
—(1.1) ranges::rend(static_cast<const T&>(E)) if E is an lvalue.
—(1.2) Otherwise, ranges::rend(static_cast<const T&&>(E)).

2 [Note 1: Whenever ranges::crend(E) is a valid expression, the types S and I of the expressions ranges::crend(E) and ranges::crbegin(E)model sentinel_for<S, I>. —end note]

§ 26.3.9 1017

© ISO/IEC N4910

26.3.10 ranges::size [range.prim.size]
1 The name ranges::size denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If T is an array of unknown bound (9.3.4.5), ranges::size(E) is ill-formed.
—(2.2) Otherwise, if T is an array type, ranges::size(E) is expression-equivalent to auto(extent_v<T>).
—(2.3) Otherwise, if disable_sized_range<remove_cv_t<T>> (26.4.3) is false and auto(t.size()) is a valid expres-sion of integer-like type (25.3.4.4), ranges::size(E) is expression-equivalent to auto(t.size()).
—(2.4) Otherwise, if T is a class or enumeration type, disable_sized_range<remove_cv_t<T>> is false and auto(size(t))is a valid expression of integer-like type with overload resolution performed in a context in which unqualifiedlookup for size finds only the declarations

void size(auto&) = delete;
void size(const auto&) = delete;

then ranges::size(E) is expression-equivalent to auto(size(t)) with overload resolution performed in theabove context.
—(2.5) Otherwise, if to-unsigned-like(ranges::end(t) - ranges::begin(t)) (26.2) is a valid expression and thetypes I and S of ranges::begin(t) and ranges::end(t) (respectively) model both sized_sentinel_for<S, I>(25.3.4.8) and forward_iterator<I>, then ranges::size(E) is expression-equivalent to to-unsigned-like(ranges::end(t)

- ranges::begin(t)).
—(2.6) Otherwise, ranges::size(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::size(E) appears in the immediate contextof a template instantiation. —end note]
4 [Note 2: Whenever ranges::size(E) is a valid expression, its type is integer-like. —end note]
26.3.11 ranges::ssize [range.prim.ssize]

1 The name ranges::ssize denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. If ranges::size(t) is ill-formed, ranges::ssize(E) is ill-formed. Otherwise let D be make-signed-like-t<decltype(ranges::size(t))>, or

ptrdiff_t if it is wider than that type; ranges::ssize(E) is expression-equivalent to static_cast<D>(ranges::size(t)).
26.3.12 ranges::empty [range.prim.empty]

1 The name ranges::empty denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If T is an array of unknown bound (9.3.4.5), ranges::empty(E) is ill-formed.
—(2.2) Otherwise, if bool(t.empty()) is a valid expression, ranges::empty(E) is expression-equivalent to bool(t.empty()).
—(2.3) Otherwise, if (ranges::size(t) == 0) is a valid expression, ranges::empty(E) is expression-equivalent to

(ranges::size(t) == 0).
—(2.4) Otherwise, if bool(ranges::begin(t) == ranges::end(t)) is a valid expression and the type of ranges::begin(t)models forward_iterator, ranges::empty(E) is expression-equivalent to bool(ranges::begin(t) == ranges::end(t)).
—(2.5) Otherwise, ranges::empty(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::empty(E) appears in the immediate contextof a template instantiation. —end note]
4 [Note 2: Whenever ranges::empty(E) is a valid expression, it has type bool. —end note]
26.3.13 ranges::data [range.prim.data]

1 The name ranges::data denotes a customization point object (16.3.3.3.6).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::data(E) is ill-formed.
—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type, ranges::data(E)is ill-formed with no diagnostic required.

§ 26.3.13 1018

© ISO/IEC N4910

—(2.3) Otherwise, if auto(t.data()) is a valid expression of pointer to object type, ranges::data(E) is expression-equivalent to auto(t.data()).
—(2.4) Otherwise, if ranges::begin(t) is a valid expressionwhose typemodels contiguous_iterator, ranges::data(E)is expression-equivalent to to_address(ranges::begin(t)).
—(2.5) Otherwise, ranges::data(E) is ill-formed.

3 [Note 1: Diagnosable ill-formed cases above result in substitution failure when ranges::data(E) appears in the immediate contextof a template instantiation. —end note]
4 [Note 2: Whenever ranges::data(E) is a valid expression, it has pointer to object type. —end note]
26.3.14 ranges::cdata [range.prim.cdata]

1 The name ranges::cdata denotes a customization point object (16.3.3.3.6). The expression ranges::cdata(E) for asubexpression E of type T is expression-equivalent to:
—(1.1) ranges::data(static_cast<const T&>(E)) if E is an lvalue.
—(1.2) Otherwise, ranges::data(static_cast<const T&&>(E)).

2 [Note 1: Whenever ranges::cdata(E) is a valid expression, it has pointer to object type. —end note]
26.4 Range requirements [range.req]
26.4.1 General [range.req.general]

1 Ranges are an abstraction that allow a C++ program to operate on elements of data structures uniformly. Calling
ranges::begin on a range returns an object whose type models input_or_output_iterator (25.3.4.6). Calling
ranges::end on a range returns an object whose type S, together with the type I of the object returned by ranges::begin,models sentinel_for<S, I>. The library formalizes the interfaces, semantics, and complexity of ranges to enablealgorithms and range adaptors that work efficiently on different types of sequences.

2 The range concept requires that ranges::begin and ranges::end return an iterator and a sentinel, respectively. The
sized_range concept refines range with the requirement that ranges::size be amortized O(1). The view conceptspecifies requirements on a range type to provide operations with predictable complexity.

3 Several refinements of range group requirements that arise frequently in concepts and algorithms. Common ranges areranges for which ranges::begin and ranges::end return objects of the same type. Random access ranges are rangesfor which ranges::begin returns a type that models random_access_iterator (25.3.4.13). (Contiguous, bidirectional,forward, input, and output ranges are defined similarly.) Viewable ranges can be converted to views.
26.4.2 Ranges [range.range]

1 The range concept defines the requirements of a type that allows iteration over its elements by providing an iterator andsentinel that denote the elements of the range.
template<class T>

concept range =
requires(T& t) {

ranges::begin(t); // sometimes equality-preserving (see below)
ranges::end(t);

};

2 The required expressions ranges::begin(t) and ranges::end(t) of the range concept do not require implicitexpression variations (18.2).
3 Given an expression t such that decltype((t)) is T&, T models range only if

—(3.1) [ranges::begin(t), ranges::end(t)) denotes a range (25.3.1),
—(3.2) both ranges::begin(t) and ranges::end(t) are amortized constant time and non-modifying, and
—(3.3) if the type of ranges::begin(t) models forward_iterator, ranges::begin(t) is equality-preserving.

4 [Note 1: Equality preservation of both ranges::begin and ranges::end enables passing a range whose iterator type models
forward_iterator to multiple algorithms and making multiple passes over the range by repeated calls to ranges::beginand ranges::end. Since ranges::begin is not required to be equality-preserving when the return type does not model
forward_iterator, it is possible for repeated calls to not return equal values or to not be well-defined. —end note]

§ 26.4.2 1019

© ISO/IEC N4910

template<class T>
concept borrowed_range =
range<T> && (is_lvalue_reference_v<T> || enable_borrowed_range<remove_cvref_t<T>>);

5 Let U be remove_reference_t<T> if T is an rvalue reference type, and T otherwise. Given a variable u of type U, Tmodels borrowed_range only if the validity of iterators obtained from u is not tied to the lifetime of that variable.
6 [Note 2: Since the validity of iterators is not tied to the lifetime of a variable whose type models borrowed_range, a functionwith a parameter of such a type can return iterators obtained from it without danger of dangling. —end note]

template<class>
inline constexpr bool enable_borrowed_range = false;

7 Remarks: Pursuant to 16.4.5.2.1, users may specialize enable_borrowed_range for cv-unqualified program-defined types. Such specializations shall be usable in constant expressions (7.7) and have type const bool.
8 [Example 1: Each specialization S of class template subrange (26.5.4) models borrowed_range because

—(8.1) enable_borrowed_range<S> is specialized to have the value true, and
—(8.2) S’s iterators do not have validity tied to the lifetime of an S object because they are “borrowed” from some other range.
—end example]

26.4.3 Sized ranges [range.sized]
1 The sized_range concept refines rangewith the requirement that the number of elements in the range can be determinedin amortized constant time using ranges::size.

template<class T>
concept sized_range =
range<T> && requires(T& t) { ranges::size(t); };

2 Given an lvalue t of type remove_reference_t<T>, T models sized_range only if
—(2.1) ranges::size(t) is amortizedO(1), does notmodify t, and is equal to ranges::distance(ranges::begin(t),

ranges::end(t)), and
—(2.2) if iterator_t<T>models forward_iterator, ranges::size(t) is well-defined regardless of the evaluationof ranges::begin(t).

[Note 1: ranges::size(t) is otherwise not required to be well-defined after evaluating ranges::begin(t). Forexample, it is possible for ranges::size(t) to be well-defined for a sized_range whose iterator type does not model
forward_iterator only if evaluated before the first call to ranges::begin(t). —end note]

template<class>
inline constexpr bool disable_sized_range = false;

3 Remarks: Pursuant to 16.4.5.2.1, users may specialize disable_sized_range for cv-unqualified program-definedtypes. Such specializations shall be usable in constant expressions (7.7) and have type const bool.
4 [Note 2: disable_sized_range allows use of range types with the library that satisfy but do not in fact model sized_range.—end note]
26.4.4 Views [range.view]

1 The view concept specifies the requirements of a range type that has the semantic properties below, which make itsuitable for use in constructing range adaptor pipelines (26.7).
template<class T>

concept view =
range<T> && movable<T> && enable_view<T>;

2 T models view only if:
—(2.1) T has O(1) move construction; and
—(2.2) move assignment of an object of type T is no more complex than destruction followed by move construction;and
—(2.3) if N copies and/or moves are made from an object of type T that contained M elements, then those Nobjects have O(N +M) destruction; and
—(2.4) copy_constructible<T> is false, or T has O(1) copy construction; and

§ 26.4.4 1020

© ISO/IEC N4910

—(2.5) copyable<T> is false, or copy assignment of an object of type T is no more complex than destructionfollowed by copy construction.
3 [Note 1: The constraints on copying and moving imply that a moved-from object of type T has O(1) destruction. —end note]
4 [Example 1: Examples of views are:

—(4.1) A range type that wraps a pair of iterators.
—(4.2) A range type that holds its elements by shared_ptr and shares ownership with all its copies.
—(4.3) A range type that generates its elements on demand.

A container such as vector<string> does not meet the semantic requirements of view since copying the container copies allof the elements, which cannot be done in constant time. —end example]
5 Since the difference between range and view is largely semantic, the two are differentiated with the help of enable_view.

template<class T>
inline constexpr bool is-derived-from-view-interface = see below; // exposition only

template<class T>
inline constexpr bool enable_view =
derived_from<T, view_base> || is-derived-from-view-interface<T>;

6 For a type T, is-derived-from-view-interface<T> is true if and only if T has exactly one public base class
view_interface<U> for some type U and T has no base classes of type view_interface<V> for any other type V.

7 Remarks: Pursuant to 16.4.5.2.1, users may specialize enable_view to true for cv-unqualified program-definedtypes which model view, and false for types which do not. Such specializations shall be usable in constantexpressions (7.7) and have type const bool.
26.4.5 Other range refinements [range.refinements]

1 The output_range concept specifies requirements of a range type for which ranges::begin returns a model of output_-
iterator (25.3.4.10). input_range, forward_range, bidirectional_range, and random_access_range are definedsimilarly.
template<class R, class T>

concept output_range =
range<R> && output_iterator<iterator_t<R>, T>;

template<class T>
concept input_range =
range<T> && input_iterator<iterator_t<T>>;

template<class T>
concept forward_range =
input_range<T> && forward_iterator<iterator_t<T>>;

template<class T>
concept bidirectional_range =
forward_range<T> && bidirectional_iterator<iterator_t<T>>;

template<class T>
concept random_access_range =
bidirectional_range<T> && random_access_iterator<iterator_t<T>>;

2 contiguous_range additionally requires that the ranges::data customization point object (26.3.13) is usable with therange.
template<class T>

concept contiguous_range =
random_access_range<T> && contiguous_iterator<iterator_t<T>> &&
requires(T& t) {

{ ranges::data(t) } -> same_as<add_pointer_t<range_reference_t<T>>>;
};

3 Given an expression t such that decltype((t)) is T&, Tmodels contiguous_range only if to_address(ranges::begin(t))
== ranges::data(t) is true.

§ 26.4.5 1021

© ISO/IEC N4910

4 The common_range concept specifies requirements of a range type for which ranges::begin and ranges::end returnobjects of the same type.
[Example 1: The standard containers (Clause 24) model common_range. —end example]
template<class T>

concept common_range =
range<T> && same_as<iterator_t<T>, sentinel_t<T>>;

template<class R>
inline constexpr bool is-initializer-list = see below; // exposition only

5 For a type R, is-initializer-list<R> is true if and only if remove_cvref_t<R> is a specialization of initializer_-
list.

6 The viewable_range concept specifies the requirements of a range type that can be converted to a view safely.
template<class T>

concept viewable_range =
range<T> &&
((view<remove_cvref_t<T>> && constructible_from<remove_cvref_t<T>, T>) ||
(!view<remove_cvref_t<T>> &&
(is_lvalue_reference_v<T> || (movable<remove_reference_t<T>> && !is-initializer-list<T>))));

26.5 Range utilities [range.utility]
26.5.1 General [range.utility.general]

1 The components in 26.5 are general utilities for representing and manipulating ranges.
26.5.2 Helper concepts [range.utility.helpers]

1 Many of the types in subclause 26.5 are specified in terms of the following exposition-only concepts:
template<class R>

concept simple-view = // exposition only
view<R> && range<const R> &&
same_as<iterator_t<R>, iterator_t<const R>> &&
same_as<sentinel_t<R>, sentinel_t<const R>>;

template<class I>
concept has-arrow = // exposition only

input_iterator<I> && (is_pointer_v<I> || requires(I i) { i.operator->(); });

template<class T, class U>
concept different-from = // exposition only

!same_as<remove_cvref_t<T>, remove_cvref_t<U>>;

26.5.3 View interface [view.interface]
26.5.3.1 General [view.interface.general]

1 The class template view_interface is a helper for defining view-like types that offer a container-like interface. It isparameterized with the type that is derived from it.
namespace std::ranges {

template<class D>
requires is_class_v<D> && same_as<D, remove_cv_t<D>>

class view_interface {
private:
constexpr D& derived() noexcept { // exposition only

return static_cast<D&>(*this);
}
constexpr const D& derived() const noexcept { // exposition only

return static_cast<const D&>(*this);
}

§ 26.5.3.1 1022

© ISO/IEC N4910

public:
constexpr bool empty() requires forward_range<D> {

return ranges::begin(derived()) == ranges::end(derived());
}
constexpr bool empty() const requires forward_range<const D> {

return ranges::begin(derived()) == ranges::end(derived());
}

constexpr explicit operator bool()
requires requires { ranges::empty(derived()); } {

return !ranges::empty(derived());
}

constexpr explicit operator bool() const
requires requires { ranges::empty(derived()); } {

return !ranges::empty(derived());
}

constexpr auto data() requires contiguous_iterator<iterator_t<D>> {
return to_address(ranges::begin(derived()));

}
constexpr auto data() const

requires range<const D> && contiguous_iterator<iterator_t<const D>> {
return to_address(ranges::begin(derived()));

}

constexpr auto size() requires forward_range<D> &&
sized_sentinel_for<sentinel_t<D>, iterator_t<D>> {

return ranges::end(derived()) - ranges::begin(derived());
}

constexpr auto size() const requires forward_range<const D> &&
sized_sentinel_for<sentinel_t<const D>, iterator_t<const D>> {

return ranges::end(derived()) - ranges::begin(derived());
}

constexpr decltype(auto) front() requires forward_range<D>;
constexpr decltype(auto) front() const requires forward_range<const D>;

constexpr decltype(auto) back() requires bidirectional_range<D> && common_range<D>;
constexpr decltype(auto) back() const

requires bidirectional_range<const D> && common_range<const D>;

template<random_access_range R = D>
constexpr decltype(auto) operator[](range_difference_t<R> n) {

return ranges::begin(derived())[n];
}

template<random_access_range R = const D>
constexpr decltype(auto) operator[](range_difference_t<R> n) const {

return ranges::begin(derived())[n];
}

};
}

2 The template parameter D for view_interface may be an incomplete type. Before any member of the resultingspecialization of view_interface other than special member functions is referenced, D shall be complete, and modelboth derived_from<view_interface<D>> and view.
26.5.3.2 Members [view.interface.members]

constexpr decltype(auto) front() requires forward_range<D>;
constexpr decltype(auto) front() const requires forward_range<const D>;

1 Preconditions: !empty() is true.
2 Effects: Equivalent to: return *ranges::begin(derived());

§ 26.5.3.2 1023

© ISO/IEC N4910

constexpr decltype(auto) back() requires bidirectional_range<D> && common_range<D>;
constexpr decltype(auto) back() const

requires bidirectional_range<const D> && common_range<const D>;

3 Preconditions: !empty() is true.
4 Effects: Equivalent to: return *ranges::prev(ranges::end(derived()));

26.5.4 Sub-ranges [range.subrange]
26.5.4.1 General [range.subrange.general]

1 The subrange class template combines together an iterator and a sentinel into a single object that models the viewconcept. Additionally, it models the sized_range concept when the final template parameter is subrange_kind::sized.
namespace std::ranges {

template<class From, class To>
concept uses-nonqualification-pointer-conversion = // exposition only

is_pointer_v<From> && is_pointer_v<To> &&
!convertible_to<remove_pointer_t<From>(*)[], remove_pointer_t<To>(*)[]>;

template<class From, class To>
concept convertible-to-non-slicing = // exposition only

convertible_to<From, To> &&
!uses-nonqualification-pointer-conversion<decay_t<From>, decay_t<To>>;

template<class T>
concept pair-like = // exposition only
!is_reference_v<T> && requires(T t) {

typename tuple_size<T>::type; // ensures tuple_size<T> is complete
requires derived_from<tuple_size<T>, integral_constant<size_t, 2>>;
typename tuple_element_t<0, remove_const_t<T>>;
typename tuple_element_t<1, remove_const_t<T>>;
{ std::get<0>(t) } -> convertible_to<const tuple_element_t<0, T>&>;
{ std::get<1>(t) } -> convertible_to<const tuple_element_t<1, T>&>;

};

template<class T, class U, class V>
concept pair-like-convertible-from = // exposition only
!range<T> && pair-like<T> &&
constructible_from<T, U, V> &&
convertible-to-non-slicing<U, tuple_element_t<0, T>> &&
convertible_to<V, tuple_element_t<1, T>>;

template<input_or_output_iterator I, sentinel_for<I> S = I, subrange_kind K =
sized_sentinel_for<S, I> ? subrange_kind::sized : subrange_kind::unsized>

requires (K == subrange_kind::sized || !sized_sentinel_for<S, I>)
class subrange : public view_interface<subrange<I, S, K>> {
private:
static constexpr bool StoreSize = // exposition only
K == subrange_kind::sized && !sized_sentinel_for<S, I>;

I begin_ = I(); // exposition only
S end_ = S(); // exposition only
make-unsigned-like-t<iter_difference_t<I>> size_ = 0; // exposition only; present only// when StoreSize is true

public:
subrange() requires default_initializable<I> = default;

constexpr subrange(convertible-to-non-slicing<I> auto i, S s) requires (!StoreSize);

constexpr subrange(convertible-to-non-slicing<I> auto i, S s,
make-unsigned-like-t<iter_difference_t<I>> n)

requires (K == subrange_kind::sized);

§ 26.5.4.1 1024

© ISO/IEC N4910

template<different-from<subrange> R>
requires borrowed_range<R> &&

convertible-to-non-slicing<iterator_t<R>, I> &&
convertible_to<sentinel_t<R>, S>

constexpr subrange(R&& r) requires (!StoreSize || sized_range<R>);

template<borrowed_range R>
requires convertible-to-non-slicing<iterator_t<R>, I> &&

convertible_to<sentinel_t<R>, S>
constexpr subrange(R&& r, make-unsigned-like-t<iter_difference_t<I>> n)

requires (K == subrange_kind::sized)
: subrange{ranges::begin(r), ranges::end(r), n} {}

template<different-from<subrange> PairLike>
requires pair-like-convertible-from<PairLike, const I&, const S&>

constexpr operator PairLike() const;

constexpr I begin() const requires copyable<I>;
[[nodiscard]] constexpr I begin() requires (!copyable<I>);
constexpr S end() const;

constexpr bool empty() const;
constexpr make-unsigned-like-t<iter_difference_t<I>> size() const

requires (K == subrange_kind::sized);

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) const &
requires forward_iterator<I>;

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) &&;
[[nodiscard]] constexpr subrange prev(iter_difference_t<I> n = 1) const

requires bidirectional_iterator<I>;
constexpr subrange& advance(iter_difference_t<I> n);

};

template<input_or_output_iterator I, sentinel_for<I> S>
subrange(I, S) -> subrange<I, S>;

template<input_or_output_iterator I, sentinel_for<I> S>
subrange(I, S, make-unsigned-like-t<iter_difference_t<I>>) ->
subrange<I, S, subrange_kind::sized>;

template<borrowed_range R>
subrange(R&&) ->

subrange<iterator_t<R>, sentinel_t<R>,
(sized_range<R> || sized_sentinel_for<sentinel_t<R>, iterator_t<R>>)

? subrange_kind::sized : subrange_kind::unsized>;

template<borrowed_range R>
subrange(R&&, make-unsigned-like-t<range_difference_t<R>>) ->

subrange<iterator_t<R>, sentinel_t<R>, subrange_kind::sized>;

template<size_t N, class I, class S, subrange_kind K>
requires ((N == 0 && copyable<I>) || N == 1)
constexpr auto get(const subrange<I, S, K>& r);

template<size_t N, class I, class S, subrange_kind K>
requires (N < 2)
constexpr auto get(subrange<I, S, K>&& r);

}

namespace std {
using ranges::get;

}

§ 26.5.4.1 1025

© ISO/IEC N4910

26.5.4.2 Constructors and conversions [range.subrange.ctor]

constexpr subrange(convertible-to-non-slicing<I> auto i, S s) requires (!StoreSize);

1 Preconditions: [i, s) is a valid range.
2 Effects: Initializes begin_ with std::move(i) and end_ with s.

constexpr subrange(convertible-to-non-slicing<I> auto i, S s,
make-unsigned-like-t<iter_difference_t<I>> n)

requires (K == subrange_kind::sized);

3 Preconditions: [i, s) is a valid range, and n == to-unsigned-like(ranges::distance(i, s)) is true.
4 Effects: Initializes begin_ with std::move(i) and end_ with s. If StoreSize is true, initializes size_ with n.
5 [Note 1: Accepting the length of the range and storing it to later return from size() enables subrange to model sized_rangeeven when it stores an iterator and sentinel that do not model sized_sentinel_for. —end note]

template<different-from<subrange> R>
requires borrowed_range<R> &&

convertible-to-non-slicing<iterator_t<R>, I> &&
convertible_to<sentinel_t<R>, S>

constexpr subrange(R&& r) requires (!StoreSize || sized_range<R>);

6 Effects: Equivalent to:
—(6.1) If StoreSize is true, subrange(r, static_cast<decltype(size_)>(ranges::size(r))).
—(6.2) Otherwise, subrange(ranges::begin(r), ranges::end(r)).

template<different-from<subrange> PairLike>
requires pair-like-convertible-from<PairLike, const I&, const S&>

constexpr operator PairLike() const;

7 Effects: Equivalent to: return PairLike(begin_, end_);

26.5.4.3 Accessors [range.subrange.access]

constexpr I begin() const requires copyable<I>;

1 Effects: Equivalent to: return begin_;

[[nodiscard]] constexpr I begin() requires (!copyable<I>);

2 Effects: Equivalent to: return std::move(begin_);

constexpr S end() const;

3 Effects: Equivalent to: return end_;

constexpr bool empty() const;

4 Effects: Equivalent to: return begin_ == end_;

constexpr make-unsigned-like-t<iter_difference_t<I>> size() const
requires (K == subrange_kind::sized);

5 Effects:
—(5.1) If StoreSize is true, equivalent to: return size_;

—(5.2) Otherwise, equivalent to: return to-unsigned-like(end_ - begin_);

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) const &
requires forward_iterator<I>;

6 Effects: Equivalent to:
auto tmp = *this;
tmp.advance(n);
return tmp;

§ 26.5.4.3 1026

© ISO/IEC N4910

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) &&;

7 Effects: Equivalent to:
advance(n);
return std::move(*this);

[[nodiscard]] constexpr subrange prev(iter_difference_t<I> n = 1) const
requires bidirectional_iterator<I>;

8 Effects: Equivalent to:
auto tmp = *this;
tmp.advance(-n);
return tmp;

constexpr subrange& advance(iter_difference_t<I> n);

9 Effects: Equivalent to:
if constexpr (bidirectional_iterator<I>) {
if (n < 0) {

ranges::advance(begin_, n);
if constexpr (StoreSize)

size_ += to-unsigned-like(-n);
return *this;

}
}

auto d = n - ranges::advance(begin_, n, end_);
if constexpr (StoreSize)
size_ -= to-unsigned-like(d);

return *this;

template<size_t N, class I, class S, subrange_kind K>
requires ((N == 0 && copyable<I>) || N == 1)
constexpr auto get(const subrange<I, S, K>& r);

template<size_t N, class I, class S, subrange_kind K>
requires (N < 2)
constexpr auto get(subrange<I, S, K>&& r);

10 Effects: Equivalent to:
if constexpr (N == 0)
return r.begin();

else
return r.end();

26.5.5 Dangling iterator handling [range.dangling]
1 The tag type dangling is used together with the template aliases borrowed_iterator_t and borrowed_subrange_t.When an algorithm that typically returns an iterator into, or a subrange of, a range argument is called with an rvaluerange argument that does not model borrowed_range (26.4.2), the return value possibly refers to a range whose lifetimehas ended. In such cases, the tag type dangling is returned instead of an iterator or subrange.

namespace std::ranges {
struct dangling {
constexpr dangling() noexcept = default;
constexpr dangling(auto&&...) noexcept {}

};
}

2 [Example 1:
vector<int> f();
auto result1 = ranges::find(f(), 42); // #1
static_assert(same_as<decltype(result1), ranges::dangling>);
auto vec = f();
auto result2 = ranges::find(vec, 42); // #2
static_assert(same_as<decltype(result2), vector<int>::iterator>);
auto result3 = ranges::find(ranges::subrange{vec}, 42); // #3
§ 26.5.5 1027

© ISO/IEC N4910

static_assert(same_as<decltype(result3), vector<int>::iterator>);

The call to ranges::find at #1 returns ranges::dangling since f() is an rvalue vector; it is possible for the vector to be destroyedbefore a returned iterator is dereferenced. However, the calls at #2 and #3 both return iterators since the lvalue vec and specializationsof subrange model borrowed_range. —end example]
3 For a type R that models range:

—(3.1) if Rmodels borrowed_range, then borrowed_iterator_t<R> denotes iterator_t<R>, and borrowed_subrange_-
t<R> denotes subrange<iterator_t<R>>;

—(3.2) otherwise, both borrowed_iterator_t<R> and borrowed_subrange_t<R> denote dangling.
26.5.6 Range conversions [range.utility.conv]
26.5.6.1 General [range.utility.conv.general]

1 The range conversion functions construct an object (usually a container) from a range, by using a constructor taking arange, a from_range_t tagged constructor, or a constructor taking a pair of iterators, or by inserting each element of therange into the default-constructed object.
2 ranges::to is applied recursively, allowing the conversion of a range of ranges.
[Example 1:
string_view str = "the quick brown fox";
auto words = views::split(str, ' ') | to<vector<string>>();// words is vector<string>{"the", "quick", "brown", "fox"}

—end example]
3 Let reservable-container be defined as follows:

template<class Container>
constexpr bool reservable-container = // exposition only

sized_range<Container> &&
requires(Container& c, range_size_t<Container> n) {
c.reserve(n);
{ c.capacity() } -> same_as<decltype(n)>;
{ c.max_size() } -> same_as<decltype(n)>;

};

4 Let container-insertable be defined as follows:
template<class Container, class Ref>
constexpr bool container-insertable = // exposition only
requires(Container& c, Ref&& ref) {
requires (requires { c.push_back(std::forward<Ref>(ref)); } ||

requires { c.insert(c.end(), std::forward<Ref>(ref)); });
};

5 Let container-inserter be defined as follows:
template<typename Ref>
auto container-inserter(C& c) { // exposition only

if constexpr (requires { c.push_back(declval<Ref>()); })
return back_inserter(c);

else
return inserter(c, c.end());

};

26.5.6.2 ranges::to [range.utility.conv.to]

template<class C, input_range R, class... Args> requires (!view<C>)
constexpr C to(R&& r, Args&&... args);

1 Returns: An object of type C constructed from the elements of r in the following manner:
—(1.1) If convertible_to<range_reference_t<R>, range_value_t<C>> is true:

—(1.1.1) If constructible_from<C, R, Args...> is true:
C(std::forward<R>(r), std::forward<Args>(args)...)

§ 26.5.6.2 1028

© ISO/IEC N4910

—(1.1.2) Otherwise, if constructible_from<C, from_range_t, R, Args...> is true:
C(from_range, std::forward<R>(r), std::forward<Args>(args)...)

—(1.1.3) Otherwise, if
—(1.1.3.1) common_range<R> is true,
—(1.1.3.2) cpp17-input-iterator<iterator_t<R>> is true, and
—(1.1.3.3) constructible_from<C, iterator_t<R>, sentinel_t<R>, Args...> is true:
C(ranges::begin(r), ranges::end(r), std::forward<Args>(args)...)

—(1.1.4) Otherwise, if
—(1.1.4.1) constructible_from<C, Args...> is true, and
—(1.1.4.2) container-insertable<C, range_reference_t<R>> is true:
C c(std::forward<Args>(args)...);
if constexpr (sized_range<R> && reservable-container<C>)
c.reserve(ranges::size(r));

ranges::copy(r, container-inserter<range_reference_t<R>>(c));

—(1.2) Otherwise, if input_range<range_reference_t<R>> is true:
to<C>(r | views::transform([](auto&& elem) {

return to<range_value_t<C>>(std::forward<decltype(elem)>(elem));
}), std::forward<Args>(args)...);

—(1.3) Otherwise, the program is ill-formed.
template<template<class...> class C, input_range R, class... Args>

constexpr auto to(R&& r, Args&&... args);

2 Let input-iterator be an exposition-only type:
struct input-iterator { // exposition only
using iterator_category = input_iterator_tag;
using value_type = range_value_t<R>;
using difference_type = ptrdiff_t;
using pointer = add_pointer_t<range_reference_t<R>>;
using reference = range_reference_t<R>;
reference operator*() const;
pointer operator->() const;
input-iterator& operator++();
input-iterator operator++(int);
bool operator==(const input-iterator&) const;

};

[Note 1: input-iterator meets the syntactic requirements of Cpp17InputIterator. —end note]
3 Let DEDUCE_EXPR be defined as follows:

—(3.1) C(declval<R>(), declval<Args>()...) if that is a valid expression,
—(3.2) otherwise, C(from_range, declval<R>(), declval<Args>()...) if that is a valid expression,
—(3.3) otherwise,

C(declval<input-iterator>(), declval<input-iterator>(), declval<Args>()...)

if that is a valid expression,
—(3.4) otherwise, the program is ill-formed.

4 Returns: to<decltype(DEDUCE_EXPR)>(std::forward<R>(r), std::forward<Args>(args)...).
26.5.6.3 ranges::to adaptors [range.utility.conv.adaptors]

template<class C, class... Args> requires (!view<C>)
constexpr auto to(Args&&... args);

§ 26.5.6.3 1029

© ISO/IEC N4910

template<template<class...> class C, class... Args>
constexpr auto to(Args&&... args);

1 Returns: A range adaptor closure object (26.7.2) f that is a perfect forwarding call wrapper (22.10.4) with thefollowing properties:
—(1.1) It has no target object.
—(1.2) Its bound argument entities bound_args consist of objects of types decay_t<Args>... direct-non-list-initialized with std::forward<Args>(args)..., respectively.
—(1.3) Its call pattern is to<C>(r, bound_args...), where r is the argument used in a function call expression of

f.
26.6 Range factories [range.factories]
26.6.1 General [range.factories.general]

1 Subclause 26.6 defines range factories, which are utilities to create a view.
2 Range factories are declared in namespace std::ranges::views.
26.6.2 Empty view [range.empty]
26.6.2.1 Overview [range.empty.overview]

1 empty_view produces a view of no elements of a particular type.
2 [Example 1:

auto e = views::empty<int>;
static_assert(ranges::empty(e));
static_assert(0 == e.size());

—end example]
26.6.2.2 Class template empty_view [range.empty.view]
namespace std::ranges {

template<class T>
requires is_object_v<T>

class empty_view : public view_interface<empty_view<T>> {
public:
static constexpr T* begin() noexcept { return nullptr; }
static constexpr T* end() noexcept { return nullptr; }
static constexpr T* data() noexcept { return nullptr; }
static constexpr size_t size() noexcept { return 0; }
static constexpr bool empty() noexcept { return true; }

};
}

26.6.3 Single view [range.single]
26.6.3.1 Overview [range.single.overview]

1 single_view produces a view that contains exactly one element of a specified value.
2 The name views::single denotes a customization point object (16.3.3.3.6). Given a subexpression E, the expression

views::single(E) is expression-equivalent to single_view<decay_t<decltype((E))>>(E).
3 [Example 1:

for (int i : views::single(4))
cout << i; // prints 4

—end example]
26.6.3.2 Class template single_view [range.single.view]
namespace std::ranges {

template<copy_constructible T>
requires is_object_v<T>

class single_view : public view_interface<single_view<T>> {
private:
copyable-box<T> value_; // exposition only (see 26.7.3)

§ 26.6.3.2 1030

© ISO/IEC N4910

public:
single_view() requires default_initializable<T> = default;
constexpr explicit single_view(const T& t);
constexpr explicit single_view(T&& t);
template<class... Args>

requires constructible_from<T, Args...>
constexpr explicit single_view(in_place_t, Args&&... args);

constexpr T* begin() noexcept;
constexpr const T* begin() const noexcept;
constexpr T* end() noexcept;
constexpr const T* end() const noexcept;
static constexpr size_t size() noexcept;
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

};

template<class T>
single_view(T) -> single_view<T>;

}

constexpr explicit single_view(const T& t);

1 Effects: Initializes value_ with t.
constexpr explicit single_view(T&& t);

2 Effects: Initializes value_ with std::move(t).
template<class... Args>

requires constructible_from<T, Args...>
constexpr explicit single_view(in_place_t, Args&&... args);

3 Effects: Initializes value_ as if by value_{in_place, std::forward<Args>(args)...}.
constexpr T* begin() noexcept;
constexpr const T* begin() const noexcept;

4 Effects: Equivalent to: return data();

constexpr T* end() noexcept;
constexpr const T* end() const noexcept;

5 Effects: Equivalent to: return data() + 1;

static constexpr size_t size() noexcept;

6 Effects: Equivalent to: return 1;

constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

7 Effects: Equivalent to: return value_.operator->();

26.6.4 Iota view [range.iota]
26.6.4.1 Overview [range.iota.overview]

1 iota_view generates a sequence of elements by repeatedly incrementing an initial value.
2 The name views::iota denotes a customization point object (16.3.3.3.6). Given subexpressions E and F, the expres-sions views::iota(E) and views::iota(E, F) are expression-equivalent to iota_view(E) and iota_view(E, F),respectively.
3 [Example 1:

for (int i : views::iota(1, 10))
cout << i << ' '; // prints: 1 2 3 4 5 6 7 8 9

—end example]

§ 26.6.4.1 1031

© ISO/IEC N4910

26.6.4.2 Class template iota_view [range.iota.view]
namespace std::ranges {

template<class I>
concept decrementable = see below; // exposition only

template<class I>
concept advanceable = see below; // exposition only

template<weakly_incrementable W, semiregular Bound = unreachable_sentinel_t>
requires weakly-equality-comparable-with<W, Bound> && copyable<W>

class iota_view : public view_interface<iota_view<W, Bound>> {
private:// 26.6.4.3, class iota_view::iterator
struct iterator; // exposition only
// 26.6.4.4, class iota_view::sentinel
struct sentinel; // exposition only
W value_ = W(); // exposition only
Bound bound_ = Bound(); // exposition only

public:
iota_view() requires default_initializable<W> = default;
constexpr explicit iota_view(W value);
constexpr iota_view(type_identity_t<W> value, type_identity_t<Bound> bound);
constexpr iota_view(iterator first, see below last);

constexpr iterator begin() const;
constexpr auto end() const;
constexpr iterator end() const requires same_as<W, Bound>;

constexpr auto size() const requires see below;
};

template<class W, class Bound>
requires (!is-integer-like<W> || !is-integer-like<Bound> ||

(is-signed-integer-like<W> == is-signed-integer-like<Bound>))
iota_view(W, Bound) -> iota_view<W, Bound>;

}

1 Let IOTA-DIFF-T(W) be defined as follows:
—(1.1) If W is not an integral type, or if it is an integral type and sizeof(iter_difference_t<W>) is greater than

sizeof(W), then IOTA-DIFF-T(W) denotes iter_difference_t<W>.
—(1.2) Otherwise, IOTA-DIFF-T(W) is a signed integer type of width greater than the width of W if such a type exists.
—(1.3) Otherwise, IOTA-DIFF-T(W) is an unspecified signed-integer-like type (25.3.4.4) of width not less than the widthof W.

[Note 1: It is unspecified whether this type satisfies weakly_incrementable. —end note]
2 The exposition-only decrementable concept is equivalent to:

template<class I>
concept decrementable = // exposition only
incrementable<I> && requires(I i) {

{ --i } -> same_as<I&>;
{ i-- } -> same_as<I>;

};

3 When an object is in the domain of both pre- and post-decrement, the object is said to be decrementable.
4 Let a and b be equal objects of type I. I models decrementable only if

—(4.1) If a and b are decrementable, then the following are all true:
—(4.1.1) addressof(--a) == addressof(a)

§ 26.6.4.2 1032

© ISO/IEC N4910

—(4.1.2) bool(a-- == b)

—(4.1.3) bool(((void)a--, a) == --b)

—(4.1.4) bool(++(--a) == b).
—(4.2) If a and b are incrementable, then bool(--(++a) == b).

5 The exposition-only advanceable concept is equivalent to:
template<class I>

concept advanceable = // exposition only
decrementable<I> && totally_ordered<I> &&
requires(I i, const I j, const IOTA-DIFF-T(I) n) {

{ i += n } -> same_as<I&>;
{ i -= n } -> same_as<I&>;
I(j + n);
I(n + j);
I(j - n);
{ j - j } -> convertible_to<IOTA-DIFF-T(I)>;

};

Let D be IOTA-DIFF-T(I). Let a and b be objects of type I such that b is reachable from a after n applications of ++a,for some value n of type D. I models advanceable only if
—(5.1) (a += n) is equal to b.
—(5.2) addressof(a += n) is equal to addressof(a).
—(5.3) I(a + n) is equal to (a += n).
—(5.4) For any two positive values x and y of type D, if I(a + D(x + y)) is well-defined, then I(a + D(x + y)) isequal to I(I(a + x) + y).
—(5.5) I(a + D(0)) is equal to a.
—(5.6) If I(a + D(n - 1)) is well-defined, then I(a + n) is equal to [](I c) { return ++c; }(I(a + D(n - 1))).
—(5.7) (b += -n) is equal to a.
—(5.8) (b -= n) is equal to a.
—(5.9) addressof(b -= n) is equal to addressof(b).
—(5.10) I(b - n) is equal to (b -= n).
—(5.11) D(b - a) is equal to n.
—(5.12) D(a - b) is equal to D(-n).
—(5.13) bool(a <= b) is true.

constexpr explicit iota_view(W value);

6 Preconditions: Bound denotes unreachable_sentinel_t or Bound() is reachable from value.
7 Effects: Initializes value_ with value.

constexpr iota_view(type_identity_t<W> value, type_identity_t<Bound> bound);

8 Preconditions: Bound denotes unreachable_sentinel_t or bound is reachable from value. When W and Boundmodel totally_ordered_with, then bool(value <= bound) is true.
9 Effects: Initializes value_ with value and bound_ with bound.

constexpr iota_view(iterator first, see below last);

10 Effects: Equivalent to:
—(10.1) If same_as<W, Bound> is true, iota_view(first.value_, last.value_).
—(10.2) Otherwise, if Bound denotes unreachable_sentinel_t, iota_view(first.value_, last).
—(10.3) Otherwise, iota_view(first.value_, last.bound_).

11 Remarks: The type of last is:
—(11.1) If same_as<W, Bound> is true, iterator.

§ 26.6.4.2 1033

© ISO/IEC N4910

—(11.2) Otherwise, if Bound denotes unreachable_sentinel_t, Bound.
—(11.3) Otherwise, sentinel.

constexpr iterator begin() const;

12 Effects: Equivalent to: return iterator{value_};

constexpr auto end() const;

13 Effects: Equivalent to:
if constexpr (same_as<Bound, unreachable_sentinel_t>)
return unreachable_sentinel;

else
return sentinel{bound_};

constexpr iterator end() const requires same_as<W, Bound>;

14 Effects: Equivalent to: return iterator{bound_};

constexpr auto size() const requires see below;

15 Effects: Equivalent to:
if constexpr (is-integer-like<W> && is-integer-like<Bound>)
return (value_ < 0)

? ((bound_ < 0)
? to-unsigned-like(-value_) - to-unsigned-like(-bound_)
: to-unsigned-like(bound_) + to-unsigned-like(-value_))

: to-unsigned-like(bound_) - to-unsigned-like(value_);
else
return to-unsigned-like(bound_ - value_);

16 Remarks: The expression in the requires-clause is equivalent to:
(same_as<W, Bound> && advanceable<W>) || (is-integer-like<W> && is-integer-like<Bound>) ||
sized_sentinel_for<Bound, W>

26.6.4.3 Class iota_view::iterator [range.iota.iterator]
namespace std::ranges {

template<weakly_incrementable W, semiregular Bound>
requires weakly-equality-comparable-with<W, Bound> && copyable<W>

struct iota_view<W, Bound>::iterator {
private:

W value_ = W(); // exposition only
public:

using iterator_concept = see below;
using iterator_category = input_iterator_tag; // present only if W models incrementable
using value_type = W;
using difference_type = IOTA-DIFF-T(W);

iterator() requires default_initializable<W> = default;
constexpr explicit iterator(W value);

constexpr W operator*() const noexcept(is_nothrow_copy_constructible_v<W>);

constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires incrementable<W>;

constexpr iterator& operator--() requires decrementable<W>;
constexpr iterator operator--(int) requires decrementable<W>;

constexpr iterator& operator+=(difference_type n)
requires advanceable<W>;

constexpr iterator& operator-=(difference_type n)
requires advanceable<W>;

§ 26.6.4.3 1034

© ISO/IEC N4910

constexpr W operator[](difference_type n) const
requires advanceable<W>;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<W>;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires totally_ordered<W>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires totally_ordered<W>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires totally_ordered<W>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires totally_ordered<W>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires totally_ordered<W> && three_way_comparable<W>;

friend constexpr iterator operator+(iterator i, difference_type n)
requires advanceable<W>;

friend constexpr iterator operator+(difference_type n, iterator i)
requires advanceable<W>;

friend constexpr iterator operator-(iterator i, difference_type n)
requires advanceable<W>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires advanceable<W>;

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If W models advanceable, then iterator_concept is random_access_iterator_tag.
—(1.2) Otherwise, if W models decrementable, then iterator_concept is bidirectional_iterator_tag.
—(1.3) Otherwise, if W models incrementable, then iterator_concept is forward_iterator_tag.
—(1.4) Otherwise, iterator_concept is input_iterator_tag.

2 [Note 1: Overloads for iter_move and iter_swap are omitted intentionally. —end note]
constexpr explicit iterator(W value);

3 Effects: Initializes value_ with value.
constexpr W operator*() const noexcept(is_nothrow_copy_constructible_v<W>);

4 Effects: Equivalent to: return value_;
5 [Note 2: The noexcept clause is needed by the default iter_move implementation. —end note]

constexpr iterator& operator++();

6 Effects: Equivalent to:
++value_;
return *this;

constexpr void operator++(int);

7 Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires incrementable<W>;

8 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires decrementable<W>;

9 Effects: Equivalent to:
§ 26.6.4.3 1035

© ISO/IEC N4910

--value_;
return *this;

constexpr iterator operator--(int) requires decrementable<W>;

10 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator& operator+=(difference_type n)
requires advanceable<W>;

11 Effects: Equivalent to:
if constexpr (is-integer-like<W> && !is-signed-integer-like<W>) {
if (n >= difference_type(0))

value_ += static_cast<W>(n);
else

value_ -= static_cast<W>(-n);
} else {
value_ += n;

}
return *this;

constexpr iterator& operator-=(difference_type n)
requires advanceable<W>;

12 Effects: Equivalent to:
if constexpr (is-integer-like<W> && !is-signed-integer-like<W>) {
if (n >= difference_type(0))
value_ -= static_cast<W>(n);

else
value_ += static_cast<W>(-n);

} else {
value_ -= n;

}
return *this;

constexpr W operator[](difference_type n) const
requires advanceable<W>;

13 Effects: Equivalent to: return W(value_ + n);

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<W>;

14 Effects: Equivalent to: return x.value_ == y.value_;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires totally_ordered<W>;

15 Effects: Equivalent to: return x.value_ < y.value_;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires totally_ordered<W>;

16 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires totally_ordered<W>;

17 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires totally_ordered<W>;

18 Effects: Equivalent to: return !(x < y);

§ 26.6.4.3 1036

© ISO/IEC N4910

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires totally_ordered<W> && three_way_comparable<W>;

19 Effects: Equivalent to: return x.value_ <=> y.value_;

friend constexpr iterator operator+(iterator i, difference_type n)
requires advanceable<W>;

20 Effects: Equivalent to:
i += n;
return i;

friend constexpr iterator operator+(difference_type n, iterator i)
requires advanceable<W>;

21 Effects: Equivalent to: return i + n;

friend constexpr iterator operator-(iterator i, difference_type n)
requires advanceable<W>;

22 Effects: Equivalent to:
i -= n;
return i;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires advanceable<W>;

23 Effects: Equivalent to:
using D = difference_type;
if constexpr (is-integer-like<W>) {
if constexpr (is-signed-integer-like<W>)
return D(D(x.value_) - D(y.value_));

else
return (y.value_ > x.value_)
? D(-D(y.value_ - x.value_))
: D(x.value_ - y.value_);

} else {
return x.value_ - y.value_;

}

26.6.4.4 Class iota_view::sentinel [range.iota.sentinel]
namespace std::ranges {

template<weakly_incrementable W, semiregular Bound>
requires weakly-equality-comparable-with<W, Bound> && copyable<W>

struct iota_view<W, Bound>::sentinel {
private:

Bound bound_ = Bound(); // exposition only
public:

sentinel() = default;
constexpr explicit sentinel(Bound bound);

friend constexpr bool operator==(const iterator& x, const sentinel& y);

friend constexpr iter_difference_t<W> operator-(const iterator& x, const sentinel& y)
requires sized_sentinel_for<Bound, W>;

friend constexpr iter_difference_t<W> operator-(const sentinel& x, const iterator& y)
requires sized_sentinel_for<Bound, W>;

};
}

constexpr explicit sentinel(Bound bound);

1 Effects: Initializes bound_ with bound.
friend constexpr bool operator==(const iterator& x, const sentinel& y);

2 Effects: Equivalent to: return x.value_ == y.bound_;

§ 26.6.4.4 1037

© ISO/IEC N4910

friend constexpr iter_difference_t<W> operator-(const iterator& x, const sentinel& y)
requires sized_sentinel_for<Bound, W>;

3 Effects: Equivalent to: return x.value_ - y.bound_;

friend constexpr iter_difference_t<W> operator-(const sentinel& x, const iterator& y)
requires sized_sentinel_for<Bound, W>;

4 Effects: Equivalent to: return -(y - x);

26.6.5 Istream view [range.istream]
26.6.5.1 Overview [range.istream.overview]

1 basic_istream_view models input_range and reads (using operator>>) successive elements from its correspondinginput stream.
2 The name views::istream<T> denotes a customization point object (16.3.3.3.6). Given a type T and a subexpression Eof type U, if U models derived_from<basic_istream<typename U::char_type, typename U::traits_type>>, thenthe expression views::istream<T>(E) is expression-equivalent to basic_istream_view<T, typename U::char_type,

typename U::traits_type>(E); otherwise, views::istream<T>(E) is ill-formed.
3 [Example 1:

auto ints = istringstream{"0 1 2 3 4"};
ranges::copy(ranges::istream_view<int>(ints), ostream_iterator<int>{cout, "-"});// prints 0-1-2-3-4-
—end example]
26.6.5.2 Class template basic_istream_view [range.istream.view]
namespace std::ranges {

template<class Val, class CharT, class Traits>
concept stream-extractable = // exposition only

requires(basic_istream<CharT, Traits>& is, Val& t) {
is >> t;

};

template<movable Val, class CharT, class Traits = char_traits<CharT>>
requires default_initializable<Val> &&

stream-extractable<Val, CharT, Traits>
class basic_istream_view : public view_interface<basic_istream_view<Val, CharT, Traits>> {
public:
constexpr explicit basic_istream_view(basic_istream<CharT, Traits>& stream);

constexpr auto begin() {
*stream_ >> value_;
return iterator{*this};

}

constexpr default_sentinel_t end() const noexcept;

private:
struct iterator; // exposition only
basic_istream<CharT, Traits>* stream_; // exposition only
Val value_ = Val(); // exposition only

};
}

constexpr explicit basic_istream_view(basic_istream<CharT, Traits>& stream);

1 Effects: Initializes stream_ with addressof(stream).
constexpr default_sentinel_t end() const noexcept;

2 Effects: Equivalent to: return default_sentinel;

§ 26.6.5.2 1038

© ISO/IEC N4910

26.6.5.3 Class template basic_istream_view::iterator [range.istream.iterator]
namespace std::ranges {

template<movable Val, class CharT, class Traits>
requires default_initializable<Val> &&

stream-extractable<Val, CharT, Traits>
class basic_istream_view<Val, CharT, Traits>::iterator {
public:
using iterator_concept = input_iterator_tag;
using difference_type = ptrdiff_t;
using value_type = Val;

constexpr explicit iterator(basic_istream_view& parent) noexcept;

iterator(const iterator&) = delete;
iterator(iterator&&) = default;

iterator& operator=(const iterator&) = delete;
iterator& operator=(iterator&&) = default;

iterator& operator++();
void operator++(int);

Val& operator*() const;

friend bool operator==(const iterator& x, default_sentinel_t);

private:
basic_istream_view* parent_; // exposition only

};
}

constexpr explicit iterator(basic_istream_view& parent) noexcept;

1 Effects: Initializes parent_ with addressof(parent).
iterator& operator++();

2 Effects: Equivalent to:
*parent_->stream_ >> parent_->value_;
return *this;

void operator++(int);

3 Effects: Equivalent to ++*this.
Val& operator*() const;

4 Effects: Equivalent to: return parent_->value_;

friend bool operator==(const iterator& x, default_sentinel_t);

5 Effects: Equivalent to: return !*x.parent_->stream_;

26.7 Range adaptors [range.adaptors]
26.7.1 General [range.adaptors.general]

1 Subclause 26.7 defines range adaptors, which are utilities that transform a range into a view with custom behaviors.These adaptors can be chained to create pipelines of range transformations that evaluate lazily as the resulting view isiterated.
2 Range adaptors are declared in namespace std::ranges::views.
3 The bitwise OR operator is overloaded for the purpose of creating adaptor chain pipelines. The adaptors also supportfunction call syntax with equivalent semantics.
4 [Example 1:

vector<int> ints{0,1,2,3,4,5};

§ 26.7.1 1039

© ISO/IEC N4910

auto even = [](int i) { return 0 == i % 2; };
auto square = [](int i) { return i * i; };
for (int i : ints | views::filter(even) | views::transform(square)) {

cout << i << ' '; // prints: 0 4 16
}
assert(ranges::equal(ints | views::filter(even), views::filter(ints, even)));

—end example]
26.7.2 Range adaptor objects [range.adaptor.object]

1 A range adaptor closure object is a unary function object that accepts a range argument. For a range adaptor closureobject C and an expression R such that decltype((R)) models range, the following expressions are equivalent:
C(R)
R | C

Given an additional range adaptor closure object D, the expression C | D produces another range adaptor closure object
E. E is a perfect forwarding call wrapper (22.10.4) with the following properties:
—(1.1) Its target object is an object d of type decay_t<decltype((D))> direct-non-list-initialized with D.
—(1.2) It has one bound argument entity, an object c of type decay_t<decltype((C))> direct-non-list-initialized with C.
—(1.3) Its call pattern is d(c(arg)), where arg is the argument used in a function call expression of E.

The expression C | D is well-formed if and only if the initializations of the state entities of E are all well-formed.
2 Given an object t of type T, where

—(2.1) t is a unary function object that accepts a range argument,
—(2.2) T models derived_from<range_adaptor_closure<T>>,
—(2.3) T has no other base classes of type range_adaptor_closure<U> for any other type U, and
—(2.4) T does not model range

then the implementation ensures that t is a range adaptor closure object.
3 The template parameter D for range_adaptor_closure may be an incomplete type. If an expression of type cv D isused as an operand to the | operator, D shall be complete and model derived_from<range_adaptor_closure<D>>. Thebehavior of an expression involving an object of type cv D as an operand to the | operator is undefined if overloadresolution selects a program-defined operator| function.
4 If an expression of type cv U is used as an operand to the | operator, where U has a base class of type range_adaptor_-

closure<T> for some type T other than U, the behavior is undefined.
5 The behavior of a program that adds a specialization for range_adaptor_closure is undefined.
6 A range adaptor object is a customization point object (16.3.3.3.6) that accepts a viewable_range as its first argumentand returns a view.
7 If a range adaptor object accepts only one argument, then it is a range adaptor closure object.
8 If a range adaptor object adaptor accepts more than one argument, then let range be an expression such that

decltype((range)) models viewable_range, let args... be arguments such that adaptor(range, args...) isa well-formed expression as specified in the rest of subclause 26.7, and let BoundArgs be a pack that denotes decay_-
t<decltype((args))>.... The expression adaptor(args...) produces a range adaptor closure object f that is aperfect forwarding call wrapper (22.10.4) with the following properties:
—(8.1) Its target object is a copy of adaptor.
—(8.2) Its bound argument entities bound_args consist of objects of types BoundArgs... direct-non-list-initialized with

std::forward<decltype((args))>(args)..., respectively.
—(8.3) Its call pattern is adaptor(r, bound_args...), where r is the argument used in a function call expression of f.

The expression adaptor(args...) is well-formed if and only if the initialization of the bound argument entities of theresult, as specified above, are all well-formed.
26.7.3 Copyable wrapper [range.copy.wrap]

1 Many types in this subclause are specified in terms of an exposition-only class template copyable-box. copyable-box<T>behaves exactly like optional<T> with the following differences:
§ 26.7.3 1040

© ISO/IEC N4910

—(1.1) copyable-box<T> constrains its type parameter T with copy_constructible<T> && is_object_v<T>.
—(1.2) The default constructor of copyable-box<T> is equivalent to:

constexpr copyable-box() noexcept(is_nothrow_default_constructible_v<T>)
requires default_initializable<T>

: copyable-box{in_place} {}

—(1.3) If copyable<T> is not modeled, the copy assignment operator is equivalent to:
constexpr copyable-box& operator=(const copyable-box& that)
noexcept(is_nothrow_copy_constructible_v<T>) {
if (this != addressof(that)) {

if (that) emplace(*that);
else reset();

}
return *this;

}

—(1.4) If movable<T> is not modeled, the move assignment operator is equivalent to:
constexpr copyable-box& operator=(copyable-box&& that)

noexcept(is_nothrow_move_constructible_v<T>) {
if (this != addressof(that)) {

if (that) emplace(std::move(*that));
else reset();

}
return *this;

}

2 Recommended practice: copyable-box<T> should store only a T if either T models copyable or is_nothrow_move_-
constructible_v<T> && is_nothrow_copy_constructible_v<T> is true.
26.7.4 Non-propagating cache [range.nonprop.cache]

1 Some types in subclause 26.7 are specified in terms of an exposition-only class template non-propagating-cache.
non-propagating-cache<T> behaves exactly like optional<T> with the following differences:
—(1.1) non-propagating-cache<T> constrains its type parameter T with is_object_v<T>.
—(1.2) The copy constructor is equivalent to:

constexpr non-propagating-cache(const non-propagating-cache&) noexcept {}

—(1.3) The move constructor is equivalent to:
constexpr non-propagating-cache(non-propagating-cache&& other) noexcept {
other.reset();

}

—(1.4) The copy assignment operator is equivalent to:
constexpr non-propagating-cache& operator=(const non-propagating-cache& other) noexcept {
if (addressof(other) != this)

reset();
return *this;

}

—(1.5) The move assignment operator is equivalent to:
constexpr non-propagating-cache& operator=(non-propagating-cache&& other) noexcept {

reset();
other.reset();
return *this;

}

—(1.6) non-propagating-cache<T> has an additional member function template specified as follows:
template<class I>

constexpr T& emplace-deref(const I& i); // exposition only
Mandates: The declaration T t(*i); is well-formed for some invented variable t.
[Note 1: If *i is a prvalue of type cv T, there is no requirement that it is movable (9.4.1). —end note]

§ 26.7.4 1041

© ISO/IEC N4910

Effects: Calls reset(). Then direct-non-list-initializes the contained value with *i.
Postconditions: *this contains a value.
Returns: A reference to the new contained value.
Throws: Any exception thrown by the initialization of the contained value.
Remarks: If an exception is thrown during the initialization of T, *this does not contain a value, and theprevious value (if any) has been destroyed.

2 [Note 2: non-propagating-cache enables an input view to temporarily cache values as it is iterated over. —end note]
26.7.5 All view [range.all]
26.7.5.1 General [range.all.general]

1 views::all returns a view that includes all elements of its range argument.
2 The name views::all denotes a range adaptor object (26.7.2). Given a subexpression E, the expression views::all(E)is expression-equivalent to:

—(2.1) decay-copy(E) if the decayed type of E models view.
—(2.2) Otherwise, ref_view{E} if that expression is well-formed.
—(2.3) Otherwise, owning_view{E}.

26.7.5.2 Class template ref_view [range.ref.view]
1 ref_view is a view of the elements of some other range.

namespace std::ranges {
template<range R>
requires is_object_v<R>

class ref_view : public view_interface<ref_view<R>> {
private:
R* r_; // exposition only

public:
template<different-from<ref_view> T>

requires see below
constexpr ref_view(T&& t);

constexpr R& base() const { return *r_; }

constexpr iterator_t<R> begin() const { return ranges::begin(*r_); }
constexpr sentinel_t<R> end() const { return ranges::end(*r_); }

constexpr bool empty() const
requires requires { ranges::empty(*r_); }

{ return ranges::empty(*r_); }

constexpr auto size() const requires sized_range<R>
{ return ranges::size(*r_); }

constexpr auto data() const requires contiguous_range<R>
{ return ranges::data(*r_); }

};

template<class R>
ref_view(R&) -> ref_view<R>;

}

template<different-from<ref_view> T>
requires see below

constexpr ref_view(T&& t);

2 Effects: Initializes r_ with addressof(static_cast<R&>(std::forward<T>(t))).
3 Remarks: Let FUN denote the exposition-only functions

void FUN(R&);
void FUN(R&&) = delete;

§ 26.7.5.2 1042

© ISO/IEC N4910

The expression in the requires-clause is equivalent to:
convertible_to<T, R&> && requires { FUN(declval<T>()); }

26.7.5.3 Class template owning_view [range.owning.view]
1 owning_view is a move-only view of the elements of some other range.

namespace std::ranges {
template<range R>
requires movable<R> && (!is-initializer-list<R>) // see 26.4.5

class owning_view : public view_interface<owning_view<R>> {
private:
R r_ = R(); // exposition only

public:
owning_view() requires default_initializable<R> = default;
constexpr owning_view(R&& t);

owning_view(owning_view&&) = default;
owning_view& operator=(owning_view&&) = default;

constexpr R& base() & noexcept { return r_; }
constexpr const R& base() const & noexcept { return r_; }
constexpr R&& base() && noexcept { return std::move(r_); }
constexpr const R&& base() const && noexcept { return std::move(r_); }

constexpr iterator_t<R> begin() { return ranges::begin(r_); }
constexpr sentinel_t<R> end() { return ranges::end(r_); }

constexpr auto begin() const requires range<const R>
{ return ranges::begin(r_); }
constexpr auto end() const requires range<const R>
{ return ranges::end(r_); }

constexpr bool empty() requires requires { ranges::empty(r_); }
{ return ranges::empty(r_); }
constexpr bool empty() const requires requires { ranges::empty(r_); }
{ return ranges::empty(r_); }

constexpr auto size() requires sized_range<R>
{ return ranges::size(r_); }
constexpr auto size() const requires sized_range<const R>
{ return ranges::size(r_); }

constexpr auto data() requires contiguous_range<R>
{ return ranges::data(r_); }
constexpr auto data() const requires contiguous_range<const R>
{ return ranges::data(r_); }

};
}

constexpr owning_view(R&& t);

2 Effects: Initializes r_ with std::move(t).
26.7.6 Filter view [range.filter]
26.7.6.1 Overview [range.filter.overview]

1 filter_view presents a view of the elements of an underlying sequence that satisfy a predicate.
2 The name views::filter denotes a range adaptor object (26.7.2). Given subexpressions E and P, the expression

views::filter(E, P) is expression-equivalent to filter_view(E, P).
3 [Example 1:

vector<int> is{ 0, 1, 2, 3, 4, 5, 6 };
auto evens = views::filter(is, [](int i) { return 0 == i % 2; });

§ 26.7.6.1 1043

© ISO/IEC N4910

for (int i : evens)
cout << i << ' '; // prints: 0 2 4 6

—end example]
26.7.6.2 Class template filter_view [range.filter.view]
namespace std::ranges {

template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view : public view_interface<filter_view<V, Pred>> {
private:
V base_ = V(); // exposition only
copyable-box<Pred> pred_; // exposition only
// 26.7.6.3, class filter_view::iterator
class iterator; // exposition only
// 26.7.6.4, class filter_view::sentinel
class sentinel; // exposition only

public:
filter_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr filter_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr iterator begin();
constexpr auto end() {
if constexpr (common_range<V>)

return iterator{*this, ranges::end(base_)};
else

return sentinel{*this};
}

};

template<class R, class Pred>
filter_view(R&&, Pred) -> filter_view<views::all_t<R>, Pred>;

}

constexpr filter_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and initializes pred_ with std::move(pred).
constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

constexpr iterator begin();

3 Preconditions: pred_.has_value() is true.
4 Returns: {*this, ranges::find_if(base_, ref(*pred_))}.
5 Remarks: In order to provide the amortized constant time complexity required by the range concept when filter_-

view models forward_range, this function caches the result within the filter_view for use on subsequent calls.
26.7.6.3 Class filter_view::iterator [range.filter.iterator]
namespace std::ranges {

template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view<V, Pred>::iterator {
private:
iterator_t<V> current_ = iterator_t<V>(); // exposition only
filter_view* parent_ = nullptr; // exposition only

§ 26.7.6.3 1044

© ISO/IEC N4910

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type = range_value_t<V>;
using difference_type = range_difference_t<V>;

iterator() requires default_initializable<iterator_t<V>> = default;
constexpr iterator(filter_view& parent, iterator_t<V> current);

constexpr const iterator_t<V>& base() const & noexcept;
constexpr iterator_t<V> base() &&;
constexpr range_reference_t<V> operator*() const;
constexpr iterator_t<V> operator->() const

requires has-arrow<iterator_t<V>> && copyable<iterator_t<V>>;

constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<V>;

constexpr iterator& operator--() requires bidirectional_range<V>;
constexpr iterator operator--(int) requires bidirectional_range<V>;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<iterator_t<V>>;

friend constexpr range_rvalue_reference_t<V> iter_move(const iterator& i)
noexcept(noexcept(ranges::iter_move(i.current_)));

friend constexpr void iter_swap(const iterator& x, const iterator& y)
noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
requires indirectly_swappable<iterator_t<V>>;

};
}

1 Modification of the element a filter_view::iterator denotes is permitted, but results in undefined behavior if theresulting value does not satisfy the filter predicate.
2 iterator::iterator_concept is defined as follows:

—(2.1) If V models bidirectional_range, then iterator_concept denotes bidirectional_iterator_tag.
—(2.2) Otherwise, if V models forward_range, then iterator_concept denotes forward_iterator_tag.
—(2.3) Otherwise, iterator_concept denotes input_iterator_tag.

3 The member typedef-name iterator_category is defined if and only if V models forward_range. In that case,
iterator::iterator_category is defined as follows:
—(3.1) Let C denote the type iterator_traits<iterator_t<V>>::iterator_category.
—(3.2) If Cmodels derived_from<bidirectional_iterator_tag>, then iterator_category denotes bidirectional_-

iterator_tag.
—(3.3) Otherwise, if C models derived_from<forward_iterator_tag>, then iterator_category denotes forward_-

iterator_tag.
—(3.4) Otherwise, iterator_category denotes C.

constexpr iterator(filter_view& parent, iterator_t<V> current);

4 Effects: Initializes current_ with std::move(current) and parent_ with addressof(parent).
constexpr const iterator_t<V>& base() const & noexcept;

5 Effects: Equivalent to: return current_;

constexpr iterator_t<V> base() &&;

6 Effects: Equivalent to: return std::move(current_);

§ 26.7.6.3 1045

© ISO/IEC N4910

constexpr range_reference_t<V> operator*() const;

7 Effects: Equivalent to: return *current_;

constexpr iterator_t<V> operator->() const
requires has-arrow<iterator_t<V>> && copyable<iterator_t<V>>;

8 Effects: Equivalent to: return current_;

constexpr iterator& operator++();

9 Effects: Equivalent to:
current_ = ranges::find_if(std::move(++current_), ranges::end(parent_->base_),

ref(*parent_->pred_));
return *this;

constexpr void operator++(int);

10 Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires forward_range<V>;

11 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<V>;

12 Effects: Equivalent to:
do

--current_;
while (!invoke(*parent_->pred_, *current_));
return *this;

constexpr iterator operator--(int) requires bidirectional_range<V>;

13 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<iterator_t<V>>;

14 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr range_rvalue_reference_t<V> iter_move(const iterator& i)
noexcept(noexcept(ranges::iter_move(i.current_)));

15 Effects: Equivalent to: return ranges::iter_move(i.current_);

friend constexpr void iter_swap(const iterator& x, const iterator& y)
noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
requires indirectly_swappable<iterator_t<V>>;

16 Effects: Equivalent to ranges::iter_swap(x.current_, y.current_).
26.7.6.4 Class filter_view::sentinel [range.filter.sentinel]
namespace std::ranges {

template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view<V, Pred>::sentinel {
private:

sentinel_t<V> end_ = sentinel_t<V>(); // exposition only
public:

sentinel() = default;

§ 26.7.6.4 1046

© ISO/IEC N4910

constexpr explicit sentinel(filter_view& parent);

constexpr sentinel_t<V> base() const;

friend constexpr bool operator==(const iterator& x, const sentinel& y);
};

}

constexpr explicit sentinel(filter_view& parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).
constexpr sentinel_t<V> base() const;

2 Effects: Equivalent to: return end_;

friend constexpr bool operator==(const iterator& x, const sentinel& y);

3 Effects: Equivalent to: return x.current_ == y.end_;

26.7.7 Transform view [range.transform]
26.7.7.1 Overview [range.transform.overview]

1 transform_view presents a view of an underlying sequence after applying a transformation function to each element.
2 The name views::transform denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression

views::transform(E, F) is expression-equivalent to transform_view(E, F).
3 [Example 1:

vector<int> is{ 0, 1, 2, 3, 4 };
auto squares = views::transform(is, [](int i) { return i * i; });
for (int i : squares)

cout << i << ' '; // prints: 0 1 4 9 16
—end example]
26.7.7.2 Class template transform_view [range.transform.view]
namespace std::ranges {

template<input_range V, copy_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference<invoke_result_t<F&, range_reference_t<V>>>

class transform_view : public view_interface<transform_view<V, F>> {
private:// 26.7.7.3, class template transform_view::iterator
template<bool> struct iterator; // exposition only
// 26.7.7.4, class template transform_view::sentinel
template<bool> struct sentinel; // exposition only
V base_ = V(); // exposition only
copyable-box<F> fun_; // exposition only

public:
transform_view() requires default_initializable<V> && default_initializable<F> = default;
constexpr transform_view(V base, F fun);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr iterator<false> begin();
constexpr iterator<true> begin() const
requires range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

§ 26.7.7.2 1047

© ISO/IEC N4910

constexpr sentinel<false> end();
constexpr iterator<false> end() requires common_range<V>;
constexpr sentinel<true> end() const

requires range<const V> &&
regular_invocable<const F&, range_reference_t<const V>>;

constexpr iterator<true> end() const
requires common_range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

constexpr auto size() requires sized_range<V> { return ranges::size(base_); }
constexpr auto size() const requires sized_range<const V>
{ return ranges::size(base_); }

};

template<class R, class F>
transform_view(R&&, F) -> transform_view<views::all_t<R>, F>;

}

constexpr transform_view(V base, F fun);

1 Effects: Initializes base_ with std::move(base) and fun_ with std::move(fun).
constexpr iterator<false> begin();

2 Effects: Equivalent to:
return iterator<false>{*this, ranges::begin(base_)};

constexpr iterator<true> begin() const
requires range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

3 Effects: Equivalent to:
return iterator<true>{*this, ranges::begin(base_)};

constexpr sentinel<false> end();

4 Effects: Equivalent to:
return sentinel<false>{ranges::end(base_)};

constexpr iterator<false> end() requires common_range<V>;

5 Effects: Equivalent to:
return iterator<false>{*this, ranges::end(base_)};

constexpr sentinel<true> end() const
requires range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

6 Effects: Equivalent to:
return sentinel<true>{ranges::end(base_)};

constexpr iterator<true> end() const
requires common_range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

7 Effects: Equivalent to:
return iterator<true>{*this, ranges::end(base_)};

26.7.7.3 Class template transform_view::iterator [range.transform.iterator]
namespace std::ranges {

template<input_range V, copy_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference<invoke_result_t<F&, range_reference_t<V>>>

template<bool Const>
class transform_view<V, F>::iterator {

§ 26.7.7.3 1048

© ISO/IEC N4910

private:
using Parent = maybe-const<Const, transform_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only
Parent* parent_ = nullptr; // exposition only

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type =

remove_cvref_t<invoke_result_t<F&, range_reference_t<Base>>>;
using difference_type = range_difference_t<Base>;

iterator() requires default_initializable<iterator_t<Base>> = default;
constexpr iterator(Parent& parent, iterator_t<Base> current);
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

constexpr const iterator_t<Base>& base() const & noexcept;
constexpr iterator_t<Base> base() &&;

constexpr decltype(auto) operator*() const
noexcept(noexcept(invoke(*parent_->fun_, *current_))) {
return invoke(*parent_->fun_, *current_);

}

constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base>;

constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;

constexpr iterator& operator+=(difference_type n)
requires random_access_range<Base>;

constexpr iterator& operator-=(difference_type n)
requires random_access_range<Base>;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base> {
return invoke(*parent_->fun_, current_[n]);

}

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<iterator_t<Base>>;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;

friend constexpr iterator operator+(iterator i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, iterator i)
requires random_access_range<Base>;

friend constexpr iterator operator-(iterator i, difference_type n)
requires random_access_range<Base>;

§ 26.7.7.3 1049

© ISO/IEC N4910

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_tag.
—(1.2) Otherwise, if Basemodels bidirectional_range, then iterator_concept denotes bidirectional_iterator_-

tag.
—(1.3) Otherwise, if Base models forward_range, then iterator_concept denotes forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if Base models forward_range. In that case,
iterator::iterator_category is defined as follows: Let C denote the type iterator_traits<iterator_t<Base>>::iterator_-
category.
—(2.1) If is_lvalue_reference_v<invoke_result_t<F&, range_reference_t<Base>>> is true, then

—(2.1.1) if C models derived_from<contiguous_iterator_tag>, iterator_category denotes random_access_-
iterator_tag;

—(2.1.2) otherwise, iterator_category denotes C.
—(2.2) Otherwise, iterator_category denotes input_iterator_tag.

constexpr iterator(Parent& parent, iterator_t<Base> current);

3 Effects: Initializes current_ with std::move(current) and parent_ with addressof(parent).
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

4 Effects: Initializes current_ with std::move(i.current_) and parent_ with i.parent_.
constexpr const iterator_t<Base>& base() const & noexcept;

5 Effects: Equivalent to: return current_;

constexpr iterator_t<Base> base() &&;

6 Effects: Equivalent to: return std::move(current_);

constexpr iterator& operator++();

7 Effects: Equivalent to:
++current_;
return *this;

constexpr void operator++(int);

8 Effects: Equivalent to ++current_.
constexpr iterator operator++(int) requires forward_range<Base>;

9 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

10 Effects: Equivalent to:
--current_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base>;

11 Effects: Equivalent to:
auto tmp = *this;

§ 26.7.7.3 1050

© ISO/IEC N4910

--*this;
return tmp;

constexpr iterator& operator+=(difference_type n)
requires random_access_range<Base>;

12 Effects: Equivalent to:
current_ += n;
return *this;

constexpr iterator& operator-=(difference_type n)
requires random_access_range<Base>;

13 Effects: Equivalent to:
current_ -= n;
return *this;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<iterator_t<Base>>;

14 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

15 Effects: Equivalent to: return x.current_ < y.current_;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

16 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

17 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

18 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;

19 Effects: Equivalent to: return x.current_ <=> y.current_;

friend constexpr iterator operator+(iterator i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, iterator i)
requires random_access_range<Base>;

20 Effects: Equivalent to: return iterator{*i.parent_, i.current_ + n};

friend constexpr iterator operator-(iterator i, difference_type n)
requires random_access_range<Base>;

21 Effects: Equivalent to: return iterator{*i.parent_, i.current_ - n};

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

22 Effects: Equivalent to: return x.current_ - y.current_;

26.7.7.4 Class template transform_view::sentinel [range.transform.sentinel]
namespace std::ranges {

template<input_range V, copy_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference<invoke_result_t<F&, range_reference_t<V>>>

§ 26.7.7.4 1051

© ISO/IEC N4910

template<bool Const>
class transform_view<V, F>::sentinel {
private:
using Parent = maybe-const<Const, transform_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only

public:
sentinel() = default;
constexpr explicit sentinel(sentinel_t<Base> end);
constexpr sentinel(sentinel<!Const> i)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

constexpr sentinel_t<Base> base() const;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const sentinel& y, const iterator<OtherConst>& x);

};
}

constexpr explicit sentinel(sentinel_t<Base> end);

1 Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> i)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with std::move(i.end_).
constexpr sentinel_t<Base> base() const;

3 Effects: Equivalent to: return end_;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

4 Effects: Equivalent to: return x.current_ == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

5 Effects: Equivalent to: return x.current_ - y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const sentinel& y, const iterator<OtherConst>& x);

6 Effects: Equivalent to: return y.end_ - x.current_;

26.7.8 Take view [range.take]
26.7.8.1 Overview [range.take.overview]

1 take_view produces a view of the first N elements from another view, or all the elements if the adapted view containsfewer than N .
§ 26.7.8.1 1052

© ISO/IEC N4910

2 The name views::take denotes a range adaptor object (26.7.2). Let E and F be expressions, let T be remove_-
cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>. If decltype((F)) does not model
convertible_to<D>, views::take(E, F) is ill-formed. Otherwise, the expression views::take(E, F) is expression-equivalent to:
—(2.1) If T is a specialization of ranges::empty_view (26.6.2.2), then ((void) F, decay-copy(E)), except that theevaluations of E and F are indeterminately sequenced.
—(2.2) Otherwise, if T models random_access_range and sized_range and is a specialization of span (24.7.3), basic_-

string_view (23.3), or ranges::subrange (26.5.4), then U(ranges::begin(E), ranges::begin(E) + std::min<D>(ranges::distance(E),
F)), except that E is evaluated only once, where U is a type determined as follows:
—(2.2.1) if T is a specialization of span, then U is span<typename T::element_type>;
—(2.2.2) otherwise, if T is a specialization of basic_string_view, then U is T;
—(2.2.3) otherwise, T is a specialization of ranges::subrange, and U is ranges::subrange<iterator_t<T>>;

—(2.3) otherwise, if T is a specialization of ranges::iota_view (26.6.4.2) that models random_access_range and
sized_range, then ranges::iota_view(*ranges::begin(E), *(ranges::begin(E) + std::
min<D>(ranges::distance(E), F))), except that E is evaluated only once;

—(2.4) Otherwise, ranges::take_view(E, F).
3 [Example 1:

vector<int> is{0,1,2,3,4,5,6,7,8,9};
for (int i : is | views::take(5))

cout << i << ' '; // prints: 0 1 2 3 4
—end example]
26.7.8.2 Class template take_view [range.take.view]
namespace std::ranges {

template<view V>
class take_view : public view_interface<take_view<V>> {
private:
V base_ = V(); // exposition only
range_difference_t<V> count_ = 0; // exposition only
// 26.7.8.3, class template take_view::sentinel
template<bool> struct sentinel; // exposition only

public:
take_view() requires default_initializable<V> = default;
constexpr take_view(V base, range_difference_t<V> count);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view<V>) {
if constexpr (sized_range<V>) {

if constexpr (random_access_range<V>) {
return ranges::begin(base_);

} else {
auto sz = range_difference_t<V>(size());
return counted_iterator(ranges::begin(base_), sz);

}
} else {

return counted_iterator(ranges::begin(base_), count_);
}

}

constexpr auto begin() const requires range<const V> {
if constexpr (sized_range<const V>) {

if constexpr (random_access_range<const V>) {
return ranges::begin(base_);

} else {

§ 26.7.8.2 1053

© ISO/IEC N4910

auto sz = range_difference_t<const V>(size());
return counted_iterator(ranges::begin(base_), sz);

}
} else {

return counted_iterator(ranges::begin(base_), count_);
}

}

constexpr auto end() requires (!simple-view<V>) {
if constexpr (sized_range<V>) {

if constexpr (random_access_range<V>)
return ranges::begin(base_) + range_difference_t<V>(size());

else
return default_sentinel;

} else {
return sentinel<false>{ranges::end(base_)};

}
}

constexpr auto end() const requires range<const V> {
if constexpr (sized_range<const V>) {

if constexpr (random_access_range<const V>)
return ranges::begin(base_) + range_difference_t<const V>(size());

else
return default_sentinel;

} else {
return sentinel<true>{ranges::end(base_)};

}
}

constexpr auto size() requires sized_range<V> {
auto n = ranges::size(base_);
return ranges::min(n, static_cast<decltype(n)>(count_));

}

constexpr auto size() const requires sized_range<const V> {
auto n = ranges::size(base_);
return ranges::min(n, static_cast<decltype(n)>(count_));

}
};

template<class R>
take_view(R&&, range_difference_t<R>)

-> take_view<views::all_t<R>>;
}

constexpr take_view(V base, range_difference_t<V> count);

1 Effects: Initializes base_ with std::move(base) and count_ with count.
26.7.8.3 Class template take_view::sentinel [range.take.sentinel]
namespace std::ranges {

template<view V>
template<bool Const>
class take_view<V>::sentinel {
private:
using Base = maybe-const<Const, V>; // exposition only
template<bool OtherConst>

using CI = counted_iterator<iterator_t<maybe-const<OtherConst, V>>>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only

public:
sentinel() = default;
constexpr explicit sentinel(sentinel_t<Base> end);

§ 26.7.8.3 1054

© ISO/IEC N4910

constexpr sentinel(sentinel<!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

constexpr sentinel_t<Base> base() const;

friend constexpr bool operator==(const CI<Const>& y, const sentinel& x);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const CI<OtherConst>& y, const sentinel& x);
};

}

constexpr explicit sentinel(sentinel_t<Base> end);

1 Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with std::move(s.end_).
constexpr sentinel_t<Base> base() const;

3 Effects: Equivalent to: return end_;

friend constexpr bool operator==(const CI<Const>& y, const sentinel& x);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const CI<OtherConst>& y, const sentinel& x);

4 Effects: Equivalent to: return y.count() == 0 || y.base() == x.end_;

26.7.9 Take while view [range.take.while]
26.7.9.1 Overview [range.take.while.overview]

1 Given a unary predicate pred and a view r, take_while_view produces a view of the range [begin(r), ranges::find_-
if_not(r, pred)).

2 The name views::take_while denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression
views::take_while(E, F) is expression-equivalent to take_while_view(E, F).

3 [Example 1:
auto input = istringstream{"0 1 2 3 4 5 6 7 8 9"};
auto small = [](const auto x) noexcept { return x < 5; };
auto small_ints = istream_view<int>(input) | views::take_while(small);
for (const auto i : small_ints) {

cout << i << ' '; // prints 0 1 2 3 4
}
auto i = 0;
input >> i;
cout << i; // prints 6
—end example]
26.7.9.2 Class template take_while_view [range.take.while.view]
namespace std::ranges {

template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
class take_while_view : public view_interface<take_while_view<V, Pred>> {// 26.7.9.3, class template take_while_view::sentinel
template<bool> class sentinel; // exposition only
V base_ = V(); // exposition only
copyable-box<Pred> pred_; // exposition only

§ 26.7.9.2 1055

© ISO/IEC N4910

public:
take_while_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr take_while_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr auto begin() requires (!simple-view<V>)
{ return ranges::begin(base_); }

constexpr auto begin() const
requires range<const V> &&

indirect_unary_predicate<const Pred, iterator_t<const V>>
{ return ranges::begin(base_); }

constexpr auto end() requires (!simple-view<V>)
{ return sentinel<false>(ranges::end(base_), addressof(*pred_)); }

constexpr auto end() const
requires range<const V> &&

indirect_unary_predicate<const Pred, iterator_t<const V>>
{ return sentinel<true>(ranges::end(base_), addressof(*pred_)); }

};

template<class R, class Pred>
take_while_view(R&&, Pred) -> take_while_view<views::all_t<R>, Pred>;

}

constexpr take_while_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and pred_ with std::move(pred).
constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

26.7.9.3 Class template take_while_view::sentinel [range.take.while.sentinel]
namespace std::ranges {

template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
template<bool Const>
class take_while_view<V, Pred>::sentinel {
using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only
const Pred* pred_ = nullptr; // exposition only

public:
sentinel() = default;
constexpr explicit sentinel(sentinel_t<Base> end, const Pred* pred);
constexpr sentinel(sentinel<!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

constexpr sentinel_t<Base> base() const { return end_; }

friend constexpr bool operator==(const iterator_t<Base>& x, const sentinel& y);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator_t<maybe-const<OtherConst, V>>& x,
const sentinel& y);

§ 26.7.9.3 1056

© ISO/IEC N4910

};
}

constexpr explicit sentinel(sentinel_t<Base> end, const Pred* pred);

1 Effects: Initializes end_ with end and pred_ with pred.
constexpr sentinel(sentinel<!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with s.end_ and pred_ with s.pred_.
friend constexpr bool operator==(const iterator_t<Base>& x, const sentinel& y);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator_t<maybe-const<OtherConst, V>>& x,
const sentinel& y);

3 Effects: Equivalent to: return y.end_ == x || !invoke(*y.pred_, *x);

26.7.10 Drop view [range.drop]
26.7.10.1 Overview [range.drop.overview]

1 drop_view produces a view excluding the first N elements from another view, or an empty range if the adapted viewcontains fewer than N elements.
2 The name views::drop denotes a range adaptor object (26.7.2). Let E and F be expressions, let T be remove_-

cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>. If decltype((F)) does not model
convertible_to<D>, views::drop(E, F) is ill-formed. Otherwise, the expression views::drop(E, F) is expression-equivalent to:
—(2.1) If T is a specialization of ranges::empty_view (26.6.2.2), then ((void) F, decay-copy(E)), except that theevaluations of E and F are indeterminately sequenced.
—(2.2) Otherwise, if T models random_access_range and sized_range and is

—(2.2.1) a specialization of span (24.7.3),
—(2.2.2) a specialization of basic_string_view (23.3),
—(2.2.3) a specialization of ranges::iota_view (26.6.4.2), or
—(2.2.4) a specialization of ranges::subrange (26.5.4) where T::StoreSize is false,
then U(ranges::begin(E) + std::min<D>(ranges::distance(E), F), ranges::end(E)), except that E isevaluated only once, where U is span<typename T::element_type> if T is a specialization of span and T other-wise.

—(2.3) Otherwise, if T is a specialization of ranges::subrange (26.5.4) that models random_access_range and sized_-
range, then T(ranges::begin(E) + std::min<D>(ranges::distance(E), F), ranges::
end(E), to-unsigned-like(ranges::distance(E) - std::min<D>(ranges::distance(E), F))), except that
E and F are each evaluated only once.

—(2.4) Otherwise, ranges::drop_view(E, F).
3 [Example 1:

auto ints = views::iota(0) | views::take(10);
for (auto i : ints | views::drop(5)) {

cout << i << ' '; // prints 5 6 7 8 9
}

—end example]
26.7.10.2 Class template drop_view [range.drop.view]
namespace std::ranges {

template<view V>
class drop_view : public view_interface<drop_view<V>> {
public:
drop_view() requires default_initializable<V> = default;
constexpr drop_view(V base, range_difference_t<V> count);

§ 26.7.10.2 1057

© ISO/IEC N4910

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin()
requires (!(simple-view<V> &&

random_access_range<const V> && sized_range<const V>));
constexpr auto begin() const

requires random_access_range<const V> && sized_range<const V>;

constexpr auto end() requires (!simple-view<V>)
{ return ranges::end(base_); }

constexpr auto end() const requires range<const V>
{ return ranges::end(base_); }

constexpr auto size() requires sized_range<V> {
const auto s = ranges::size(base_);
const auto c = static_cast<decltype(s)>(count_);
return s < c ? 0 : s - c;

}

constexpr auto size() const requires sized_range<const V> {
const auto s = ranges::size(base_);
const auto c = static_cast<decltype(s)>(count_);
return s < c ? 0 : s - c;

}

private:
V base_ = V(); // exposition only
range_difference_t<V> count_ = 0; // exposition only

};

template<class R>
drop_view(R&&, range_difference_t<R>) -> drop_view<views::all_t<R>>;

}

constexpr drop_view(V base, range_difference_t<V> count);

1 Preconditions: count >= 0 is true.
2 Effects: Initializes base_ with std::move(base) and count_ with count.

constexpr auto begin()
requires (!(simple-view<V> &&

random_access_range<const V> && sized_range<const V>));
constexpr auto begin() const

requires random_access_range<const V> && sized_range<const V>;

3 Returns: ranges::next(ranges::begin(base_), count_, ranges::end(base_)).
4 Remarks: In order to provide the amortized constant-time complexity required by the range concept when drop_-

view models forward_range, the first overload caches the result within the drop_view for use on subsequentcalls.
[Note 1: Without this, applying a reverse_view over a drop_view would have quadratic iteration complexity. —end note]

26.7.11 Drop while view [range.drop.while]
26.7.11.1 Overview [range.drop.while.overview]

1 Given a unary predicate pred and a view r, drop_while_view produces a view of the range [ranges::find_if_not(r,
pred), ranges::end(r)).

2 The name views::drop_while denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression
views::drop_while(E, F) is expression-equivalent to drop_while_view(E, F).

3 [Example 1:
constexpr auto source = " \t \t \t hello there";

§ 26.7.11.1 1058

© ISO/IEC N4910

auto is_invisible = [](const auto x) { return x == ' ' || x == '\t'; };
auto skip_ws = views::drop_while(source, is_invisible);
for (auto c : skip_ws) {

cout << c; // prints hello there with no leading space
}

—end example]
26.7.11.2 Class template drop_while_view [range.drop.while.view]
namespace std::ranges {

template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
class drop_while_view : public view_interface<drop_while_view<V, Pred>> {
public:
drop_while_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr drop_while_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr auto begin();

constexpr auto end() { return ranges::end(base_); }

private:
V base_ = V(); // exposition only
copyable-box<Pred> pred_; // exposition only

};

template<class R, class Pred>
drop_while_view(R&&, Pred) -> drop_while_view<views::all_t<R>, Pred>;

}

constexpr drop_while_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and pred_ with std::move(pred).
constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

constexpr auto begin();

3 Preconditions: pred_.has_value() is true.
4 Returns: ranges::find_if_not(base_, cref(*pred_)).
5 Remarks: In order to provide the amortized constant-time complexity required by the range concept when

drop_while_view models forward_range, the first call caches the result within the drop_while_view for use onsubsequent calls.
[Note 1: Without this, applying a reverse_view over a drop_while_view would have quadratic iteration complexity. —endnote]

26.7.12 Join view [range.join]
26.7.12.1 Overview [range.join.overview]

1 join_view flattens a view of ranges into a view.
2 The name views::join denotes a range adaptor object (26.7.2). Given a subexpression E, the expression views::join(E)is expression-equivalent to join_view<views::all_t<decltype((E))>>{E}.
3 [Example 1:

vector<string> ss{"hello", " ", "world", "!"};

§ 26.7.12.1 1059

© ISO/IEC N4910

for (char ch : ss | views::join)
cout << ch; // prints: hello world!

—end example]
26.7.12.2 Class template join_view [range.join.view]
namespace std::ranges {

template<input_range V>
requires view<V> && input_range<range_reference_t<V>>

class join_view : public view_interface<join_view<V>> {
private:

using InnerRng = range_reference_t<V>; // exposition only
// 26.7.12.3, class template join_view::iterator
template<bool Const>
struct iterator; // exposition only

// 26.7.12.4, class template join_view::sentinel
template<bool Const>
struct sentinel; // exposition only

V base_ = V(); // exposition only
non-propagating-cache<remove_cv_t<InnerRng>> inner_; // exposition only, present only// when !is_reference_v<InnerRng>

public:
join_view() requires default_initializable<V> = default;
constexpr explicit join_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
constexpr bool use_const = simple-view<V> &&

is_reference_v<range_reference_t<V>>;
return iterator<use_const>{*this, ranges::begin(base_)};

}

constexpr auto begin() const
requires input_range<const V> &&

is_reference_v<range_reference_t<const V>>
{ return iterator<true>{*this, ranges::begin(base_)}; }

constexpr auto end() {
if constexpr (forward_range<V> &&

is_reference_v<InnerRng> && forward_range<InnerRng> &&
common_range<V> && common_range<InnerRng>)

return iterator<simple-view<V>>{*this, ranges::end(base_)};
else

return sentinel<simple-view<V>>{*this};
}

constexpr auto end() const
requires input_range<const V> &&

is_reference_v<range_reference_t<const V>> {
if constexpr (forward_range<const V> &&

forward_range<range_reference_t<const V>> &&
common_range<const V> &&
common_range<range_reference_t<const V>>)

return iterator<true>{*this, ranges::end(base_)};
else

return sentinel<true>{*this};
}

§ 26.7.12.2 1060

© ISO/IEC N4910

};

template<class R>
explicit join_view(R&&) -> join_view<views::all_t<R>>;

}

constexpr explicit join_view(V base);

1 Effects: Initializes base_ with std::move(base).
26.7.12.3 Class template join_view::iterator [range.join.iterator]
namespace std::ranges {

template<input_range V>
requires view<V> && input_range<range_reference_t<V>>

template<bool Const>
struct join_view<V>::iterator {
private:
using Parent = maybe-const<Const, join_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
using OuterIter = iterator_t<Base>; // exposition only
using InnerIter = iterator_t<range_reference_t<Base>>; // exposition only
static constexpr bool ref-is-glvalue = // exposition only

is_reference_v<range_reference_t<Base>>;

OuterIter outer_ = OuterIter(); // exposition only
InnerIter inner_ = InnerIter(); // exposition only
Parent* parent_ = nullptr; // exposition only
constexpr void satisfy(); // exposition only

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type = range_value_t<range_reference_t<Base>>;
using difference_type = see below;

iterator() requires default_initializable<OuterIter> &&
default_initializable<InnerIter> = default;

constexpr iterator(Parent& parent, OuterIter outer);
constexpr iterator(iterator<!Const> i)
requires Const &&

convertible_to<iterator_t<V>, OuterIter> &&
convertible_to<iterator_t<InnerRng>, InnerIter>;

constexpr decltype(auto) operator*() const { return *inner_; }

constexpr InnerIter operator->() const
requires has-arrow<InnerIter> && copyable<InnerIter>;

constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int)
requires ref-is-glvalue && forward_range<Base> &&

forward_range<range_reference_t<Base>>;

constexpr iterator& operator--()
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional_range<range_reference_t<Base>> &&
common_range<range_reference_t<Base>>;

§ 26.7.12.3 1061

© ISO/IEC N4910

constexpr iterator operator--(int)
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional_range<range_reference_t<Base>> &&
common_range<range_reference_t<Base>>;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires ref-is-glvalue && equality_comparable<iterator_t<Base>> &&

equality_comparable<iterator_t<range_reference_t<Base>>>;

friend constexpr decltype(auto) iter_move(const iterator& i)
noexcept(noexcept(ranges::iter_move(i.inner_))) {

return ranges::iter_move(i.inner_);
}

friend constexpr void iter_swap(const iterator& x, const iterator& y)
noexcept(noexcept(ranges::iter_swap(x.inner_, y.inner_)))
requires indirectly_swappable<InnerIter>;

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If ref-is-glvalue is true, Base models bidirectional_range, and range_reference_t<Base> models both

bidirectional_range and common_range, then iterator_concept denotes bidirectional_iterator_tag.
—(1.2) Otherwise, if ref-is-glvalue is true and Base and range_reference_t<Base> each model forward_range,then iterator_concept denotes forward_iterator_tag.
—(1.3) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if ref-is-glvalue is true, Base models
forward_range, and range_reference_t<Base>models forward_range. In that case, iterator::iterator_categoryis defined as follows:
—(2.1) Let OUTERC denote iterator_traits<iterator_t<Base>>::iterator_category, and let INNERC denote

iterator_traits<iterator_t<range_reference_t<Base>>>::iterator_category.
—(2.2) If OUTERC and INNERC each model derived_from<bidirectional_iterator_tag> and range_reference_-

t<Base> models common_range, iterator_category denotes bidirectional_iterator_tag.
—(2.3) Otherwise, if OUTERC and INNERC each model derived_from<forward_iterator_tag>, iterator_categorydenotes forward_iterator_tag.
—(2.4) Otherwise, iterator_category denotes input_iterator_tag.

3 iterator::difference_type denotes the type:
common_type_t<

range_difference_t<Base>,
range_difference_t<range_reference_t<Base>>>

4 join_view iterators use the satisfy function to skip over empty inner ranges.
constexpr void satisfy(); // exposition only

5 Effects: Equivalent to:
auto update_inner = [this](const iterator_t<Base>& x) -> auto&& {
if constexpr (ref-is-glvalue) // *x is a reference

return *x;
else

return parent_->inner_.emplace-deref(x);
};

for (; outer_ != ranges::end(parent_->base_); ++outer_) {
auto&& inner = update_inner(outer_);
inner_ = ranges::begin(inner);
if (inner_ != ranges::end(inner))

return;
}

§ 26.7.12.3 1062

© ISO/IEC N4910

if constexpr (ref-is-glvalue)
inner_ = InnerIter();

constexpr iterator(Parent& parent, OuterIter outer);

6 Effects: Initializes outer_ with std::move(outer) and parent_ with addressof(parent); then calls satisfy().
constexpr iterator(iterator<!Const> i)

requires Const &&
convertible_to<iterator_t<V>, OuterIter> &&
convertible_to<iterator_t<InnerRng>, InnerIter>;

7 Effects: Initializes outer_ with std::move(i.outer_), inner_ with std::move(i.inner_), and parent_ with
i.parent_.

constexpr InnerIter operator->() const
requires has-arrow<InnerIter> && copyable<InnerIter>;

8 Effects: Equivalent to return inner_;

constexpr iterator& operator++();

9 Let inner-range be:
—(9.1) If ref-is-glvalue is true, *outer_.
—(9.2) Otherwise, *parent_->inner_.

10 Effects: Equivalent to:
auto&& inner_rng = inner-range;
if (++inner_ == ranges::end(inner_rng)) {
++outer_;
satisfy();

}
return *this;

constexpr void operator++(int);

11 Effects: Equivalent to: ++*this.
constexpr iterator operator++(int)

requires ref-is-glvalue && forward_range<Base> &&
forward_range<range_reference_t<Base>>;

12 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--()
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional_range<range_reference_t<Base>> &&
common_range<range_reference_t<Base>>;

13 Effects: Equivalent to:
if (outer_ == ranges::end(parent_->base_))
inner_ = ranges::end(*--outer_);

while (inner_ == ranges::begin(*outer_))
inner_ = ranges::end(*--outer_);

--inner_;
return *this;

constexpr iterator operator--(int)
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional_range<range_reference_t<Base>> &&
common_range<range_reference_t<Base>>;

14 Effects: Equivalent to:
auto tmp = *this;

§ 26.7.12.3 1063

© ISO/IEC N4910

--*this;
return tmp;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires ref-is-glvalue && equality_comparable<iterator_t<Base>> &&

equality_comparable<iterator_t<range_reference_t<Base>>>;

15 Effects: Equivalent to: return x.outer_ == y.outer_ && x.inner_ == y.inner_;

friend constexpr void iter_swap(const iterator& x, const iterator& y)
noexcept(noexcept(ranges::iter_swap(x.inner_, y.inner_)))
requires indirectly_swappable<InnerIter>;

16 Effects: Equivalent to: return ranges::iter_swap(x.inner_, y.inner_);

26.7.12.4 Class template join_view::sentinel [range.join.sentinel]
namespace std::ranges {

template<input_range V>
requires view<V> && input_range<range_reference_t<V>>

template<bool Const>
struct join_view<V>::sentinel {
private:

using Parent = maybe-const<Const, join_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only

public:
sentinel() = default;

constexpr explicit sentinel(Parent& parent);
constexpr sentinel(sentinel<!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
};

}

constexpr explicit sentinel(Parent& parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).
constexpr sentinel(sentinel<!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with std::move(s.end_).
template<bool OtherConst>

requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>
friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

3 Effects: Equivalent to: return x.outer_ == y.end_;

26.7.13 Join with view [range.join.with]
26.7.13.1 Overview [range.join.with.overview]

1 join_with_view takes a view and a delimiter, and flattens the view, inserting every element of the delimiter in betweenelements of the view. The delimiter can be a single element or a view of elements.
2 The name views::join_with denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression

views::join_with(E, F) is expression-equivalent to join_with_view(E, F).
3 [Example 1:

vector<string> vs = {"the", "quick", "brown", "fox"};
for (char c : vs | join_with('-')) {

cout << c;
}

§ 26.7.13.1 1064

© ISO/IEC N4910

The above prints: the-quick-brown-fox —end example]
26.7.13.2 Class template join_with_view [range.join.with.view]
namespace std::ranges {

template<class R, class P>
concept compatible-joinable-ranges = // exposition only

common_with<range_value_t<R>, range_value_t<P>> &&
common_reference_with<range_reference_t<R>, range_reference_t<P>> &&
common_reference_with<range_rvalue_reference_t<R>, range_rvalue_reference_t<P>>;

template<class R>
concept bidirectional-common = bidirectional_range<R> && common_range<R>; // exposition only
template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern>
&& compatible-joinable-ranges<range_reference_t<V>, Pattern>

class join_with_view : public view_interface<join_with_view<V, Pattern>> {
using InnerRng = range_reference_t<V>; // exposition only
V base_ = V(); // exposition only
non-propagating-cache<remove_cv_t<InnerRng>> inner_; // exposition only, present only// when !is_reference_v<InnerRng>
Pattern pattern_ = Pattern(); // exposition only
// 26.7.13.3, class template join_with_view::iterator
template<bool Const> struct iterator; // exposition only
// 26.7.13.4, class template join_with_view::sentinel
template<bool Const> struct sentinel; // exposition only

public:
join_with_view()

requires default_initializable<V> && default_initializable<Pattern> = default;

constexpr join_with_view(V base, Pattern pattern);

template<input_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<InnerRng>>>
constexpr join_with_view(R&& r, range_value_t<InnerRng> e);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
constexpr bool use_const =

simple-view<V> && is_reference_v<InnerRng> && simple-view<Pattern>;
return iterator<use_const>{*this, ranges::begin(base_)};

}
constexpr auto begin() const

requires input_range<const V> &&
forward_range<const Pattern> &&
is_reference_v<range_reference_t<const V>> {

return iterator<true>{*this, ranges::begin(base_)};
}

constexpr auto end() {
if constexpr (forward_range<V> &&

is_reference_v<InnerRng> && forward_range<InnerRng> &&
common_range<V> && common_range<InnerRng>)

return iterator<simple-view<V> && simple-view<Pattern>>{*this, ranges::end(base_)};
else

return sentinel<simple-view<V> && simple-view<Pattern>>{*this};

§ 26.7.13.2 1065

© ISO/IEC N4910

}
constexpr auto end() const

requires input_range<const V> && forward_range<const Pattern> &&
is_reference_v<range_reference_t<const V>> {

using InnerConstRng = range_reference_t<const V>;
if constexpr (forward_range<const V> && forward_range<InnerConstRng> &&

common_range<const V> && common_range<InnerConstRng>)
return iterator<true>{*this, ranges::end(base_)};

else
return sentinel<true>{*this};

}
};

template<class R, class P>
join_with_view(R&&, P&&) -> join_with_view<views::all_t<R>, views::all_t<P>>;

template<input_range R>
join_with_view(R&&, range_value_t<range_reference_t<R>>)

-> join_with_view<views::all_t<R>, single_view<range_value_t<range_reference_t<R>>>>;
}

constexpr join_with_view(V base, Pattern pattern);

1 Effects: Initializes base_ with std::move(base) and pattern_ with std::move(pattern).
template<input_range R>

requires constructible_from<V, views::all_t<R>> &&
constructible_from<Pattern, single_view<range_value_t<InnerRng>>>

constexpr join_with_view(R&& r, range_value_t<InnerRng> e);

2 Effects: Initializes base_with views::all(std::forward<R>(r)) and pattern_with views::single(std::move(e)).
26.7.13.3 Class template join_with_view::iterator [range.join.with.iterator]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern> && compatible-joinable-ranges<range_reference_t<V>, Pattern>
template<bool Const>
class join_with_view<V, Pattern>::iterator {
using Parent = maybe-const<Const, join_with_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
using InnerBase = range_reference_t<Base>; // exposition only
using PatternBase = maybe-const<Const, Pattern>; // exposition only
using OuterIter = iterator_t<Base>; // exposition only
using InnerIter = iterator_t<InnerBase>; // exposition only
using PatternIter = iterator_t<PatternBase>; // exposition only
static constexpr bool ref-is-glvalue = is_reference_v<InnerBase>; // exposition only
Parent* parent_ = nullptr; // exposition only
OuterIter outer_it_ = OuterIter(); // exposition only
variant<PatternIter, InnerIter> inner_it_; // exposition only
constexpr iterator(Parent& parent, iterator_t<Base> outer); // exposition only
constexpr auto&& update-inner(const OuterIter&); // exposition only
constexpr auto&& get-inner(const OuterIter&); // exposition only
constexpr void satisfy(); // exposition only

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type = see below;
using difference_type = see below;

§ 26.7.13.3 1066

© ISO/IEC N4910

iterator() requires default_initializable<OuterIter> = default;
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, OuterIter> &&
convertible_to<iterator_t<InnerRng>, InnerIter> &&
convertible_to<iterator_t<Pattern>, PatternIter>;

constexpr decltype(auto) operator*() const;

constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int)

requires ref-is-glvalue && forward_iterator<OuterIter> &&
forward_iterator<InnerIter>;

constexpr iterator& operator--()
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional-common<InnerBase> && bidirectional-common<PatternBase>;
constexpr iterator operator--(int)

requires ref-is-glvalue && bidirectional_range<Base> &&
bidirectional-common<InnerBase> && bidirectional-common<PatternBase>;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires ref-is-glvalue && equality_comparable<OuterIter> &&

equality_comparable<InnerIter>;

friend constexpr decltype(auto) iter_move(const iterator& x) {
using rvalue_reference = common_reference_t<

iter_rvalue_reference_t<InnerIter>,
iter_rvalue_reference_t<PatternIter>>;

return visit<rvalue_reference>(ranges::iter_move, x.inner_it_);
}

friend constexpr void iter_swap(const iterator& x, const iterator& y)
requires indirectly_swappable<InnerIter, PatternIter> {

visit(ranges::iter_swap, x.inner_it_, y.inner_it_);
}

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If ref-is-glvalue is true, Base models bidirectional_range, and InnerBase and PatternBase each model

bidirectional-common, then iterator_concept denotes bidirectional_iterator_tag.
—(1.2) Otherwise, if ref-is-glvalue is true and Base and InnerBase each model forward_range, then iterator_-

concept denotes forward_iterator_tag.
—(1.3) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if ref-is-glvalue is true, and Base and
InnerBase each model forward_range. In that case, iterator::iterator_category is defined as follows:
—(2.1) Let OUTERC denote iterator_traits<OuterIter>::iterator_category, let INNERC denote iterator_-

traits<InnerIter>::iterator_category, and let PATTERNC denote iterator_-
traits<PatternIter>::iterator_category.

—(2.2) If
is_lvalue_reference_v<common_reference_t<iter_reference_t<InnerIter>,

iter_reference_t<PatternIter>>>

is false, iterator_category denotes input_iterator_tag.
—(2.3) Otherwise, if OUTERC, INNERC, and PATTERNC each model derived_from<bidirectional_iterator_-

category> and InnerBase and PatternBase eachmodel common_range, iterator_category denotes bidirectional_-
iterator_tag.

—(2.4) Otherwise, ifOUTERC, INNERC, andPATTERNC eachmodel derived_from<forward_iterator_tag>, iterator_-
category denotes forward_iterator_tag.

§ 26.7.13.3 1067

© ISO/IEC N4910

—(2.5) Otherwise, iterator_category denotes input_iterator_tag.
3 iterator::value_type denotes the type:

common_type_t<iter_value_t<InnerIter>, iter_value_t<PatternIter>>

4 iterator::difference_type denotes the type:
common_type_t<

iter_difference_t<OuterIter>,
iter_difference_t<InnerIter>,
iter_difference_t<PatternIter>>

constexpr auto&& update-inner(const OuterIter& x);

5 Effects: Equivalent to:
if constexpr (ref-is-glvalue)
return *x;

else
return parent_->inner_.emplace-deref(x);

constexpr auto&& get-inner(const OuterIter& x);

6 Effects: Equivalent to:
if constexpr (ref-is-glvalue)
return *x;

else
return *parent_->inner_;

constexpr void satisfy();

7 Effects: Equivalent to:
while (true) {
if (inner_it_.index() == 0) {

if (std::get<0>(inner_it_) != ranges::end(parent_->pattern_))
break;

auto&& inner = update-inner(outer_it_);
inner_it_.emplace<1>(ranges::begin(inner));

} else {
auto&& inner = get-inner(outer_it_);
if (std::get<1>(inner_it_) != ranges::end(inner))

break;
if (++outer_it_ == ranges::end(parent_->base_)) {

if constexpr (ref-is-glvalue)
inner_it_.emplace<0>();

break;
}
inner_it_.emplace<0>(ranges::begin(parent_->pattern_));

}
}

[Note 1: join_with_view iterators use the satisfy function to skip over empty inner ranges. —end note]
constexpr iterator(Parent& parent, iterator_t<Base> outer);

8 Effects: Initializes parent_ with addressof(parent) and outer_it_ with std::move(outer). Then, equivalentto:
if (outer_it_ != ranges::end(parent_->base_)) {
auto&& inner = update-inner(outer_it_);
inner_it_.emplace<1>(ranges::begin(inner));
satisfy();

}

constexpr iterator(iterator<!Const> i)
requires Const && convertible_to<iterator_t<V>, OuterIter> &&

convertible_to<iterator_t<InnerRng>, InnerIter> &&

§ 26.7.13.3 1068

© ISO/IEC N4910

convertible_to<iterator_t<Pattern>, PatternIter>;

9 Effects: Initializes outer_it_ with std::move(i.outer_it_) and parent_ with i.parent_. Then, equivalentto:
if (i.inner_it_.index() == 0)
inner_it_.emplace<0>(std::get<0>(std::move(i.inner_it_)));

else
inner_it_.emplace<1>(std::get<1>(std::move(i.inner_it_)));

constexpr decltype(auto) operator*() const;

10 Effects: Equivalent to:
using reference =
common_reference_t<iter_reference_t<InnerIter>, iter_reference_t<PatternIter>>;

return visit([](auto& it) -> reference { return *it; }, inner_it_);

constexpr iterator& operator++();

11 Effects: Equivalent to:
visit([](auto& it){ ++it; }, inner_it_);
satisfy();
return *this;

constexpr void operator++(int);

12 Effects: Equivalent to ++*this.
constexpr iterator operator++(int)

requires ref-is-glvalue && forward_iterator<OuterIter> && forward_iterator<InnerIter>;

13 Effects: Equivalent to:
iterator tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--()
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional-common<InnerBase> && bidirectional-common<PatternBase>;

14 Effects: Equivalent to:
if (outer_it_ == ranges::end(parent_->base_)) {

auto&& inner = *--outer_it_;
inner_it_.emplace<1>(ranges::end(inner));

}

while (true) {
if (inner_it_.index() == 0) {
auto& it = std::get<0>(inner_it_);
if (it == ranges::begin(parent_->pattern_)) {

auto&& inner = *--outer_it_;
inner_it_.emplace<1>(ranges::end(inner));

} else {
break;

}
} else {
auto& it = std::get<1>(inner_it_);
auto&& inner = *outer_it_;
if (it == ranges::begin(inner)) {

inner_it_.emplace<0>(ranges::end(parent_->pattern_));
} else {

break;
}

}
}
visit([](auto& it){ --it; }, inner_it_);

§ 26.7.13.3 1069

© ISO/IEC N4910

return *this;

constexpr iterator operator--(int)
requires ref-is-glvalue && bidirectional_range<Base> &&

bidirectional-common<InnerBase> && bidirectional-common<PatternBase>;

15 Effects: Equivalent to:
iterator tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires ref-is-glvalue && equality_comparable<OuterIter> &&

equality_comparable<InnerIter>;

16 Effects: Equivalent to:
return x.outer_it_ == y.outer_it_ && x.inner_it_ == y.inner_it_;

26.7.13.4 Class template join_with_view::sentinel [range.join.with.sentinel]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern> && compatible-joinable-ranges<range_reference_t<V>, Pattern>
template<bool Const>
class join_with_view<V, Pattern>::sentinel {

using Parent = maybe-const<Const, join_with_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only
constexpr explicit sentinel(Parent& parent); // exposition only

public:
sentinel() = default;
constexpr sentinel(sentinel<!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

template <bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
};

constexpr explicit sentinel(Parent& parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).
constexpr sentinel(sentinel<!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with std::move(s.end_).
template <bool OtherConst>

requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>
friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

3 Effects: Equivalent to: return x.outer_it_ == y.end_;

26.7.14 Lazy split view [range.lazy.split]
26.7.14.1 Overview [range.lazy.split.overview]

1 lazy_split_view takes a view and a delimiter, and splits the view into subranges on the delimiter. The delimiter canbe a single element or a view of elements.
2 The name views::lazy_split denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression

views::lazy_split(E, F) is expression-equivalent to lazy_split_view(E, F).
3 [Example 1:

string str{"the quick brown fox"};

§ 26.7.14.1 1070

© ISO/IEC N4910

for (auto word : str | views::lazy_split(' ')) {
for (char ch : word)
cout << ch;

cout << '*';
}// The above prints: the*quick*brown*fox*
—end example]
26.7.14.2 Class template lazy_split_view [range.lazy.split.view]
namespace std::ranges {

template<auto> struct require-constant; // exposition only
template<class R>
concept tiny-range = // exposition only

sized_range<R> &&
requires { typename require-constant<remove_reference_t<R>::size()>; } &&
(remove_reference_t<R>::size() <= 1);

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range<Pattern>)

class lazy_split_view : public view_interface<lazy_split_view<V, Pattern>> {
private:

V base_ = V(); // exposition only
Pattern pattern_ = Pattern(); // exposition only
non-propagating-cache<iterator_t<V>> current_; // exposition only, present only// if !forward_range<V>
// 26.7.14.3, class template lazy_split_view::outer-iterator
template<bool> struct outer-iterator; // exposition only
// 26.7.14.5, class template lazy_split_view::inner-iterator
template<bool> struct inner-iterator; // exposition only

public:
lazy_split_view()
requires default_initializable<V> && default_initializable<Pattern> = default;

constexpr lazy_split_view(V base, Pattern pattern);

template<input_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<R>>>
constexpr lazy_split_view(R&& r, range_value_t<R> e);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
if constexpr (forward_range<V>) {

return outer-iterator<simple-view<V> && simple-view<Pattern>>
{*this, ranges::begin(base_)};

} else {
current_ = ranges::begin(base_);
return outer-iterator<false>{*this};

}
}

constexpr auto begin() const requires forward_range<V> && forward_range<const V> {
return outer-iterator<true>{*this, ranges::begin(base_)};

}

§ 26.7.14.2 1071

© ISO/IEC N4910

constexpr auto end() requires forward_range<V> && common_range<V> {
return outer-iterator<simple-view<V> && simple-view<Pattern>>
{*this, ranges::end(base_)};

}

constexpr auto end() const {
if constexpr (forward_range<V> && forward_range<const V> && common_range<const V>)

return outer-iterator<true>{*this, ranges::end(base_)};
else

return default_sentinel;
}

};

template<class R, class P>
lazy_split_view(R&&, P&&) -> lazy_split_view<views::all_t<R>, views::all_t<P>>;

template<input_range R>
lazy_split_view(R&&, range_value_t<R>)

-> lazy_split_view<views::all_t<R>, single_view<range_value_t<R>>>;
}

constexpr lazy_split_view(V base, Pattern pattern);

1 Effects: Initializes base_ with std::move(base), and pattern_ with std::move(pattern).
template<input_range R>

requires constructible_from<V, views::all_t<R>> &&
constructible_from<Pattern, single_view<range_value_t<R>>>

constexpr lazy_split_view(R&& r, range_value_t<R> e);

2 Effects: Initializes base_ with views::all(std::forward<R>(r)), and pattern_ with views::
single(std::move(e)).

26.7.14.3 Class template lazy_split_view::outer-iterator [range.lazy.split.outer]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range<Pattern>)

template<bool Const>
struct lazy_split_view<V, Pattern>::outer-iterator {
private:
using Parent = maybe-const<Const, lazy_split_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
Parent* parent_ = nullptr; // exposition only
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only, present only// if V models forward_range
bool trailing_empty_ = false; // exposition only

public:
using iterator_concept =

conditional_t<forward_range<Base>, forward_iterator_tag, input_iterator_tag>;

using iterator_category = input_iterator_tag; // present only if Base// models forward_range
// 26.7.14.4, class lazy_split_view::outer-iterator::value_type
struct value_type;
using difference_type = range_difference_t<Base>;

outer-iterator() = default;
constexpr explicit outer-iterator(Parent& parent)

requires (!forward_range<Base>);

§ 26.7.14.3 1072

© ISO/IEC N4910

constexpr outer-iterator(Parent& parent, iterator_t<Base> current)
requires forward_range<Base>;

constexpr outer-iterator(outer-iterator<!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

constexpr value_type operator*() const;

constexpr outer-iterator& operator++();
constexpr decltype(auto) operator++(int) {

if constexpr (forward_range<Base>) {
auto tmp = *this;
++*this;
return tmp;

} else
++*this;

}

friend constexpr bool operator==(const outer-iterator& x, const outer-iterator& y)
requires forward_range<Base>;

friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);
};

}

1 Many of the specifications in 26.7.14 refer to the notional member current of outer-iterator. current is equivalent to
current_ if V models forward_range, and *parent_->current_ otherwise.
constexpr explicit outer-iterator(Parent& parent)

requires (!forward_range<Base>);

2 Effects: Initializes parent_ with addressof(parent).
constexpr outer-iterator(Parent& parent, iterator_t<Base> current)
requires forward_range<Base>;

3 Effects: Initializes parent_ with addressof(parent) and current_ with std::move(current).
constexpr outer-iterator(outer-iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

4 Effects: Initializes parent_ with i.parent_ and current_ with std::move(i.current_).
constexpr value_type operator*() const;

5 Effects: Equivalent to: return value_type{*this};

constexpr outer-iterator& operator++();

6 Effects: Equivalent to:
const auto end = ranges::end(parent_->base_);
if (current == end) {

trailing_empty_ = false;
return *this;

}
const auto [pbegin, pend] = subrange{parent_->pattern_};
if (pbegin == pend) ++current;
else if constexpr (tiny-range<Pattern>) {

current = ranges::find(std::move(current), end, *pbegin);
if (current != end) {
++current;
if (current == end)

trailing_empty_ = true;
}

}
else {

do {
auto [b, p] = ranges::mismatch(current, end, pbegin, pend);

§ 26.7.14.3 1073

© ISO/IEC N4910

if (p == pend) {
current = b;
if (current == end)

trailing_empty_ = true;
break; // The pattern matched; skip it

}
} while (++current != end);

}
return *this;

friend constexpr bool operator==(const outer-iterator& x, const outer-iterator& y)
requires forward_range<Base>;

7 Effects: Equivalent to:
return x.current_ == y.current_ && x.trailing_empty_ == y.trailing_empty_;

friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);

8 Effects: Equivalent to:
return x.current == ranges::end(x.parent_->base_) && !x.trailing_empty_;

26.7.14.4 Class lazy_split_view::outer-iterator::value_type [range.lazy.split.outer.value]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range<Pattern>)

template<bool Const>
struct lazy_split_view<V, Pattern>::outer-iterator<Const>::value_type
: view_interface<value_type> {

private:
outer-iterator i_ = outer-iterator(); // exposition only

public:
value_type() = default;
constexpr explicit value_type(outer-iterator i);

constexpr inner-iterator<Const> begin() const;
constexpr default_sentinel_t end() const noexcept;

};
}

constexpr explicit value_type(outer-iterator i);

1 Effects: Initializes i_ with std::move(i).
constexpr inner-iterator<Const> begin() const;

2 Effects: Equivalent to: return inner-iterator<Const>{i_};

constexpr default_sentinel_t end() const noexcept;

3 Effects: Equivalent to: return default_sentinel;

26.7.14.5 Class template lazy_split_view::inner-iterator [range.lazy.split.inner]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range<Pattern>)

template<bool Const>
struct lazy_split_view<V, Pattern>::inner-iterator {
private:
using Base = maybe-const<Const, V>; // exposition only
outer-iterator<Const> i_ = outer-iterator<Const>(); // exposition only
bool incremented_ = false; // exposition only

§ 26.7.14.5 1074

© ISO/IEC N4910

public:
using iterator_concept = typename outer-iterator<Const>::iterator_concept;

using iterator_category = see below; // present only if Base// models forward_range
using value_type = range_value_t<Base>;
using difference_type = range_difference_t<Base>;

inner-iterator() = default;
constexpr explicit inner-iterator(outer-iterator<Const> i);

constexpr const iterator_t<Base>& base() const & noexcept;
constexpr iterator_t<Base> base() && requires forward_range<V>;

constexpr decltype(auto) operator*() const { return *i_.current; }

constexpr inner-iterator& operator++();
constexpr decltype(auto) operator++(int) {

if constexpr (forward_range<Base>) {
auto tmp = *this;
++*this;
return tmp;

} else
++*this;

}

friend constexpr bool operator==(const inner-iterator& x, const inner-iterator& y)
requires forward_range<Base>;

friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);

friend constexpr decltype(auto) iter_move(const inner-iterator& i)
noexcept(noexcept(ranges::iter_move(i.i_.current))) {

return ranges::iter_move(i.i_.current);
}

friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y)
noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current)))
requires indirectly_swappable<iterator_t<Base>>;

};
}

1 If Base does not model forward_range there is no member iterator_category. Otherwise, the typedef-name
iterator_category denotes:
—(1.1) forward_iterator_tag if iterator_traits<iterator_t<Base>>::iterator_category models

derived_from<forward_iterator_tag>;
—(1.2) otherwise, iterator_traits<iterator_t<Base>>::iterator_category.

constexpr explicit inner-iterator(outer-iterator<Const> i);

2 Effects: Initializes i_ with std::move(i).
constexpr const iterator_t<Base>& base() const & noexcept;

3 Effects: Equivalent to: return i_.current;

constexpr iterator_t<Base> base() && requires forward_range<V>;

4 Effects: Equivalent to: return std::move(i_.current);

constexpr inner-iterator& operator++();

5 Effects: Equivalent to:
incremented_ = true;

§ 26.7.14.5 1075

© ISO/IEC N4910

if constexpr (!forward_range<Base>) {
if constexpr (Pattern::size() == 0) {

return *this;
}

}
++i_.current;
return *this;

friend constexpr bool operator==(const inner-iterator& x, const inner-iterator& y)
requires forward_range<Base>;

6 Effects: Equivalent to: return x.i_.current == y.i_.current;

friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);

7 Effects: Equivalent to:
auto [pcur, pend] = subrange{x.i_.parent_->pattern_};
auto end = ranges::end(x.i_.parent_->base_);
if constexpr (tiny-range<Pattern>) {
const auto & cur = x.i_.current;
if (cur == end) return true;
if (pcur == pend) return x.incremented_;
return *cur == *pcur;

} else {
auto cur = x.i_.current;
if (cur == end) return true;
if (pcur == pend) return x.incremented_;
do {

if (*cur != *pcur) return false;
if (++pcur == pend) return true;

} while (++cur != end);
return false;

}

friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y)
noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current)))
requires indirectly_swappable<iterator_t<Base>>;

8 Effects: Equivalent to ranges::iter_swap(x.i_.current, y.i_.current).
26.7.15 Split view [range.split]
26.7.15.1 Overview [range.split.overview]

1 split_view takes a view and a delimiter, and splits the view into subranges on the delimiter. The delimiter can be asingle element or a view of elements.
2 The name views::split denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression

views::split(E, F) is expression-equivalent to split_view(E, F).
3 [Example 1:

string str{"the quick brown fox"};
for (string_view word : split(str, ' ')) {

cout << word << '*';
}// The above prints: the*quick*brown*fox*
—end example]
26.7.15.2 Class template split_view [range.split.view]
namespace std::ranges {

template<forward_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>
class split_view : public view_interface<split_view<V, Pattern>> {
private:

V base_ = V(); // exposition only
Pattern pattern_ = Pattern(); // exposition only

§ 26.7.15.2 1076

© ISO/IEC N4910

// 26.7.15.3, class split_view::iterator
struct iterator; // exposition only
// 26.7.15.4, class split_view::sentinel
struct sentinel; // exposition only

public:
split_view()

requires default_initializable<V> && default_initializable<Pattern> = default;
constexpr split_view(V base, Pattern pattern);

template<forward_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<R>>>
constexpr split_view(R&& r, range_value_t<R> e);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr iterator begin();

constexpr auto end() {
if constexpr (common_range<V>) {

return iterator{*this, ranges::end(base_), {}};
} else {

return sentinel{*this};
}

}

constexpr subrange<iterator_t<V>> find-next(iterator_t<V>); // exposition only
};

template<class R, class P>
split_view(R&&, P&&) -> split_view<views::all_t<R>, views::all_t<P>>;

template<forward_range R>
split_view(R&&, range_value_t<R>)

-> split_view<views::all_t<R>, single_view<range_value_t<R>>>;
}

constexpr split_view(V base, Pattern pattern);

1 Effects: Initializes base_ with std::move(base), and pattern_ with std::move(pattern).
template<forward_range R>

requires constructible_from<V, views::all_t<R>> &&
constructible_from<Pattern, single_view<range_value_t<R>>>

constexpr split_view(R&& r, range_value_t<R> e);

2 Effects: Initializes base_ with views::all(std::forward<R>(r)), and pattern_ with views::
single(std::move(e)).

constexpr iterator begin();

3 Returns: {*this, ranges::begin(base_), find-next(ranges::begin(base_))}.
4 Remarks: In order to provide the amortized constant time complexity required by the range concept, this functioncaches the result within the split_view for use on subsequent calls.

constexpr subrange<iterator_t<V>> find-next(iterator_t<V> it); // exposition only
5 Effects: Equivalent to:

auto [b, e] = ranges::search(subrange(it, ranges::end(base_)), pattern_);
if (b != ranges::end(base_) && ranges::empty(pattern_)) {
++b;

§ 26.7.15.2 1077

© ISO/IEC N4910

++e;
}
return {b, e};

26.7.15.3 Class split_view::iterator [range.split.iterator]
namespace std::ranges {

template<forward_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>
class split_view<V, Pattern>::iterator {
private:

split_view* parent_ = nullptr; // exposition only
iterator_t<V> cur_ = iterator_t<V>(); // exposition only
subrange<iterator_t<V>> next_ = subrange<iterator_t<V>>(); // exposition only
bool trailing_empty_ = false; // exposition only

public:
using iterator_concept = forward_iterator_tag;
using iterator_category = input_iterator_tag;
using value_type = subrange<iterator_t<V>>;
using difference_type = range_difference_t<V>;

iterator() = default;
constexpr iterator(split_view& parent, iterator_t<V> current, subrange<iterator_t<V>> next);

constexpr iterator_t<V> base() const;
constexpr value_type operator*() const;

constexpr iterator& operator++();
constexpr iterator operator++(int);

friend constexpr bool operator==(const iterator& x, const iterator& y);
};

}

constexpr iterator(split_view& parent, iterator_t<V> current, subrange<iterator_t<V>> next);

1 Effects: Initializes parent_with addressof(parent), cur_with std::move(current), and next_with std::move(next).
constexpr iterator_t<V> base() const;

2 Effects: Equivalent to return cur_;

constexpr value_type operator*() const;

3 Effects: Equivalent to return {cur_, next_.begin()};

constexpr iterator& operator++();

4 Effects: Equivalent to:
cur_ = next_.begin();
if (cur_ != ranges::end(parent_->base_)) {
cur_ = next_.end();
if (cur_ == ranges::end(parent_->base_)) {

trailing_empty_ = true;
next_ = {cur_, cur_};

} else {
next_ = parent_->find-next(cur_);

}
} else {
trailing_empty_ = false;

}
return *this;

§ 26.7.15.3 1078

© ISO/IEC N4910

constexpr iterator operator++(int);

5 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

friend constexpr bool operator==(const iterator& x, const iterator& y);

6 Effects: Equivalent to:
return x.cur_ == y.cur_ && x.trailing_empty_ == y.trailing_empty_;

26.7.15.4 Class split_view::sentinel [range.split.sentinel]
namespace std::ranges {

template<forward_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>
struct split_view<V, Pattern>::sentinel {
private:

sentinel_t<V> end_ = sentinel_t<V>(); // exposition only
public:

sentinel() = default;
constexpr explicit sentinel(split_view& parent);

friend constexpr bool operator==(const iterator& x, const sentinel& y);
};

}

constexpr explicit sentinel(split_view& parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).
friend constexpr bool operator==(const iterator& x, const sentinel& y);

2 Effects: Equivalent to: return x.cur_ == y.end_ && !x.trailing_empty_;

26.7.16 Counted view [range.counted]
1 A counted view presents a view of the elements of the counted range (25.3.1) i+[0, n) for an iterator i and non-negativeinteger n.
2 The name views::counted denotes a customization point object (16.3.3.3.6). Let E and F be expressions, let T be

decay_t<decltype((E))>, and let D be iter_difference_t<T>. If decltype((F)) does not model convertible_-
to<D>, views::counted(E, F) is ill-formed.
[Note 1: This case can result in substitution failure when views::counted(E, F) appears in the immediate context of a templateinstantiation. —end note]
Otherwise, views::counted(E, F) is expression-equivalent to:
—(2.1) If T models contiguous_iterator, then span(to_address(E), static_cast<size_t>(static_-

cast<D>(F))).
—(2.2) Otherwise, if T models random_access_iterator, then subrange(E, E + static_cast<D>(F)), except that Eis evaluated only once.
—(2.3) Otherwise, subrange(counted_iterator(E, F), default_sentinel).

26.7.17 Common view [range.common]
26.7.17.1 Overview [range.common.overview]

1 common_view takes a view which has different types for its iterator and sentinel and turns it into a view of the sameelements with an iterator and sentinel of the same type.
2 [Note 1: common_view is useful for calling legacy algorithms that expect a range’s iterator and sentinel types to be the same. —endnote]
3 The name views::common denotes a range adaptor object (26.7.2). Given a subexpression E, the expression views::common(E)is expression-equivalent to:
§ 26.7.17.1 1079

© ISO/IEC N4910

—(3.1) views::all(E), if decltype((E)) models common_range and views::all(E) is a well-formed expression.
—(3.2) Otherwise, common_view{E}.

4 [Example 1:
// Legacy algorithm:
template<class ForwardIterator>
size_t count(ForwardIterator first, ForwardIterator last);

template<forward_range R>
void my_algo(R&& r) {

auto&& common = views::common(r);
auto cnt = count(common.begin(), common.end());// ...

}

—end example]
26.7.17.2 Class template common_view [range.common.view]
namespace std::ranges {

template<view V>
requires (!common_range<V> && copyable<iterator_t<V>>)

class common_view : public view_interface<common_view<V>> {
private:
V base_ = V(); // exposition only

public:
common_view() requires default_initializable<V> = default;

constexpr explicit common_view(V r);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
if constexpr (random_access_range<V> && sized_range<V>)

return ranges::begin(base_);
else

return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::begin(base_));
}

constexpr auto begin() const requires range<const V> {
if constexpr (random_access_range<const V> && sized_range<const V>)

return ranges::begin(base_);
else

return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::begin(base_));
}

constexpr auto end() {
if constexpr (random_access_range<V> && sized_range<V>)

return ranges::begin(base_) + ranges::size(base_);
else

return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::end(base_));
}

constexpr auto end() const requires range<const V> {
if constexpr (random_access_range<const V> && sized_range<const V>)

return ranges::begin(base_) + ranges::size(base_);
else

return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::end(base_));
}

constexpr auto size() requires sized_range<V> {
return ranges::size(base_);

}

§ 26.7.17.2 1080

© ISO/IEC N4910

constexpr auto size() const requires sized_range<const V> {
return ranges::size(base_);

}
};

template<class R>
common_view(R&&) -> common_view<views::all_t<R>>;

}

constexpr explicit common_view(V base);

1 Effects: Initializes base_ with std::move(base).
26.7.18 Reverse view [range.reverse]
26.7.18.1 Overview [range.reverse.overview]

1 reverse_view takes a bidirectional view and produces another view that iterates the same elements in reverse order.
2 The name views::reverse denotes a range adaptor object (26.7.2). Given a subexpression E, the expression views::reverse(E)is expression-equivalent to:

—(2.1) If the type of E is a (possibly cv-qualified) specialization of reverse_view, equivalent to E.base().
—(2.2) Otherwise, if the type of E is cv subrange<reverse_iterator<I>, reverse_iterator<I>, K> for some iteratortype I and value K of type subrange_kind,

—(2.2.1) if K is subrange_kind::sized, equivalent to:
subrange<I, I, K>(E.end().base(), E.begin().base(), E.size())

—(2.2.2) otherwise, equivalent to:
subrange<I, I, K>(E.end().base(), E.begin().base())

However, in either case E is evaluated only once.
—(2.3) Otherwise, equivalent to reverse_view{E}.

3 [Example 1:
vector<int> is {0,1,2,3,4};
for (int i : is | views::reverse)

cout << i << ' '; // prints: 4 3 2 1 0
—end example]
26.7.18.2 Class template reverse_view [range.reverse.view]
namespace std::ranges {

template<view V>
requires bidirectional_range<V>

class reverse_view : public view_interface<reverse_view<V>> {
private:

V base_ = V(); // exposition only
public:

reverse_view() requires default_initializable<V> = default;

constexpr explicit reverse_view(V r);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr reverse_iterator<iterator_t<V>> begin();
constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>;
constexpr auto begin() const requires common_range<const V>;

constexpr reverse_iterator<iterator_t<V>> end();
constexpr auto end() const requires common_range<const V>;

constexpr auto size() requires sized_range<V> {
return ranges::size(base_);

}

§ 26.7.18.2 1081

© ISO/IEC N4910

constexpr auto size() const requires sized_range<const V> {
return ranges::size(base_);

}
};

template<class R>
reverse_view(R&&) -> reverse_view<views::all_t<R>>;

}

constexpr explicit reverse_view(V base);

1 Effects: Initializes base_ with std::move(base).
constexpr reverse_iterator<iterator_t<V>> begin();

2 Returns:
make_reverse_iterator(ranges::next(ranges::begin(base_), ranges::end(base_)))

3 Remarks: In order to provide the amortized constant time complexity required by the range concept, this functioncaches the result within the reverse_view for use on subsequent calls.
constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>;
constexpr auto begin() const requires common_range<const V>;

4 Effects: Equivalent to: return make_reverse_iterator(ranges::end(base_));

constexpr reverse_iterator<iterator_t<V>> end();
constexpr auto end() const requires common_range<const V>;

5 Effects: Equivalent to: return make_reverse_iterator(ranges::begin(base_));

26.7.19 Elements view [range.elements]
26.7.19.1 Overview [range.elements.overview]

1 elements_view takes a view of tuple-like values and a size_t, and produces a view with a value-type of the N th
element of the adapted view’s value-type.

2 The name views::elements<N> denotes a range adaptor object (26.7.2). Given a subexpression E and constant expres-sion N, the expression views::elements<N>(E) is expression-equivalent to elements_view<views::all_t<decltype((E))>,
N>{E}.
[Example 1:
auto historical_figures = map{

pair{"Lovelace"sv, 1815},
{"Turing"sv, 1912},
{"Babbage"sv, 1791},
{"Hamilton"sv, 1936}

};

auto names = historical_figures | views::elements<0>;
for (auto&& name : names) {

cout << name << ' '; // prints Babbage Hamilton Lovelace Turing
}

auto birth_years = historical_figures | views::elements<1>;
for (auto&& born : birth_years) {

cout << born << ' '; // prints 1791 1936 1815 1912
}

—end example]
3 keys_view is an alias for elements_view<R, 0>, and is useful for extracting keys from associative containers.
[Example 2:
auto names = historical_figures | views::keys;
for (auto&& name : names) {

cout << name << ' '; // prints Babbage Hamilton Lovelace Turing
}

§ 26.7.19.1 1082

© ISO/IEC N4910

—end example]
4 values_view is an alias for elements_view<R, 1>, and is useful for extracting values from associative containers.
[Example 3:
auto is_even = [](const auto x) { return x % 2 == 0; };
cout << ranges::count_if(historical_figures | views::values, is_even); // prints 2
—end example]
26.7.19.2 Class template elements_view [range.elements.view]
namespace std::ranges {

template<class T, size_t N>
concept has-tuple-element = // exposition only
requires(T t) {

typename tuple_size<T>::type;
requires N < tuple_size_v<T>;
typename tuple_element_t<N, T>;
{ std::get<N>(t) } -> convertible_to<const tuple_element_t<N, T>&>;

};

template<class T, size_t N>
concept returnable-element = // exposition only
is_reference_v<T> || move_constructible<tuple_element_t<N, T>>;

template<input_range V, size_t N>
requires view<V> && has-tuple-element<range_value_t<V>, N> &&

has-tuple-element<remove_reference_t<range_reference_t<V>>, N> &&
returnable-element<range_reference_t<V>, N>

class elements_view : public view_interface<elements_view<V, N>> {
public:
elements_view() requires default_initializable<V> = default;
constexpr explicit elements_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view<V>)
{ return iterator<false>(ranges::begin(base_)); }

constexpr auto begin() const requires range<const V>
{ return iterator<true>(ranges::begin(base_)); }

constexpr auto end() requires (!simple-view<V> && !common_range<V>)
{ return sentinel<false>{ranges::end(base_)}; }

constexpr auto end() requires (!simple-view<V> && common_range<V>)
{ return iterator<false>{ranges::end(base_)}; }

constexpr auto end() const requires range<const V>
{ return sentinel<true>{ranges::end(base_)}; }

constexpr auto end() const requires common_range<const V>
{ return iterator<true>{ranges::end(base_)}; }

constexpr auto size() requires sized_range<V>
{ return ranges::size(base_); }

constexpr auto size() const requires sized_range<const V>
{ return ranges::size(base_); }

private:// 26.7.19.3, class template elements_view::iterator
template<bool> struct iterator; // exposition only

§ 26.7.19.2 1083

© ISO/IEC N4910

// 26.7.19.4, class template elements_view::sentinel
template<bool> struct sentinel; // exposition only
V base_ = V(); // exposition only

};
}

constexpr explicit elements_view(V base);

1 Effects: Initializes base_ with std::move(base).
26.7.19.3 Class template elements_view::iterator [range.elements.iterator]
namespace std::ranges {

template<input_range V, size_t N>
requires view<V> && has-tuple-element<range_value_t<V>, N> &&

has-tuple-element<remove_reference_t<range_reference_t<V>>, N> &&
returnable-element<range_reference_t<V>, N>

template<bool Const>
class elements_view<V, N>::iterator {

using Base = maybe-const<Const, V>; // exposition only
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only
static constexpr decltype(auto) get-element(const iterator_t<Base>& i); // exposition only

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type = remove_cvref_t<tuple_element_t<N, range_value_t<Base>>>;
using difference_type = range_difference_t<Base>;

iterator() requires default_initializable<iterator_t<Base>> = default;
constexpr explicit iterator(iterator_t<Base> current);
constexpr iterator(iterator<!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

constexpr const iterator_t<Base>& base() const & noexcept;
constexpr iterator_t<Base> base() &&;

constexpr decltype(auto) operator*() const
{ return get-element(current_); }

constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base>;

constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base>

{ return get-element(current_ + n); }

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<iterator_t<Base>>;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

§ 26.7.19.3 1084

© ISO/IEC N4910

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;

friend constexpr iterator operator+(const iterator& x, difference_type y)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type x, const iterator& y)
requires random_access_range<Base>;

friend constexpr iterator operator-(const iterator& x, difference_type y)
requires random_access_range<Base>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

};
}

1 The member typedef-name iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_tag.
—(1.2) Otherwise, if Basemodels bidirectional_range, then iterator_concept denotes bidirectional_iterator_-

tag.
—(1.3) Otherwise, if Base models forward_range, then iterator_concept denotes forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if Base models forward_range. In that case,
iterator_category is defined as follows: Let C denote the type iterator_traits<iterator_t<Base>>::iterator_-
category.
—(2.1) If std::get<N>(*current_) is an rvalue, iterator_category denotes input_iterator_tag.
—(2.2) Otherwise, if C models derived_from<random_access_iterator_tag>, iterator_category denotes random_-

access_iterator_tag.
—(2.3) Otherwise, iterator_category denotes C.

static constexpr decltype(auto) get-element(const iterator_t<Base>& i); // exposition only
3 Effects: Equivalent to:

if constexpr (is_reference_v<range_reference_t<Base>>) {
return std::get<N>(*i);

} else {
using E = remove_cv_t<tuple_element_t<N, range_reference_t<Base>>>;
return static_cast<E>(std::get<N>(*i));

}

constexpr explicit iterator(iterator_t<Base> current);

4 Effects: Initializes current_ with std::move(current).
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

5 Effects: Initializes current_ with std::move(i.current_).
constexpr const iterator_t<Base>& base() const & noexcept;

6 Effects: Equivalent to: return current_;

constexpr iterator_t<Base> base() &&;

7 Effects: Equivalent to: return std::move(current_);

§ 26.7.19.3 1085

© ISO/IEC N4910

constexpr iterator& operator++();

8 Effects: Equivalent to:
++current_;
return *this;

constexpr void operator++(int);

9 Effects: Equivalent to: ++current_.
constexpr iterator operator++(int) requires forward_range<Base>;

10 Effects: Equivalent to:
auto temp = *this;
++current_;
return temp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

11 Effects: Equivalent to:
--current_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base>;

12 Effects: Equivalent to:
auto temp = *this;
--current_;
return temp;

constexpr iterator& operator+=(difference_type n);
requires random_access_range<Base>;

13 Effects: Equivalent to:
current_ += n;
return *this;

constexpr iterator& operator-=(difference_type n)
requires random_access_range<Base>;

14 Effects: Equivalent to:
current_ -= n;
return *this;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<Base>;

15 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

16 Effects: Equivalent to: return x.current_ < y.current_;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

17 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

18 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

19 Effects: Equivalent to: return !(x < y);

§ 26.7.19.3 1086

© ISO/IEC N4910

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;

20 Effects: Equivalent to: return x.current_ <=> y.current_;

friend constexpr iterator operator+(const iterator& x, difference_type y)
requires random_access_range<Base>;

21 Effects: Equivalent to: return iterator{x} += y;

friend constexpr iterator operator+(difference_type x, const iterator& y)
requires random_access_range<Base>;

22 Effects: Equivalent to: return y + x;

friend constexpr iterator operator-(const iterator& x, difference_type y)
requires random_access_range<Base>;

23 Effects: Equivalent to: return iterator{x} -= y;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

24 Effects: Equivalent to: return x.current_ - y.current_;

26.7.19.4 Class template elements_view::sentinel [range.elements.sentinel]
namespace std::ranges {

template<input_range V, size_t N>
requires view<V> && has-tuple-element<range_value_t<V>, N> &&

has-tuple-element<remove_reference_t<range_reference_t<V>>, N> &&
returnable-element<range_reference_t<V>, N>

template<bool Const>
class elements_view<V, N>::sentinel {
private:

using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only

public:
sentinel() = default;
constexpr explicit sentinel(sentinel_t<Base> end);
constexpr sentinel(sentinel<!Const> other)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

constexpr sentinel_t<Base> base() const;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const sentinel& x, const iterator<OtherConst>& y);

};
}

constexpr explicit sentinel(sentinel_t<Base> end);

1 Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> other)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with std::move(other.end_).
§ 26.7.19.4 1087

© ISO/IEC N4910

constexpr sentinel_t<Base> base() const;

3 Effects: Equivalent to: return end_;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

4 Effects: Equivalent to: return x.current_ == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

5 Effects: Equivalent to: return x.current_ - y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const sentinel& x, const iterator<OtherConst>& y);

6 Effects: Equivalent to: return x.end_ - y.current_;

26.7.20 Zip view [range.zip]
26.7.20.1 Overview [range.zip.overview]

1 zip_view takes any number of views and produces a view of tuples of references to the corresponding elements of theconstituent views.
2 The name views::zip denotes a customization point object (16.3.3.3.6). Given a pack of subexpressions Es..., theexpression views::zip(Es...) is expression-equivalent to

—(2.1) auto(views::empty<tuple<>>) if Es is an empty pack,
—(2.2) otherwise, zip_view<views::all_t<decltype((Es))>...>(Es...).

[Example 1:
vector v = {1, 2};
list l = {'a', 'b', 'c'};

auto z = views::zip(v, l);
range_reference_t<decltype(z)> f = z.front(); // f is a pair<int&, char&>// that refers to the first element of v and l
for (auto&& [x, y] : z) {

cout << '(' << x << ", " << y << ") "; // prints: (1, a) (2, b)
}

—end example]
26.7.20.2 Class template zip_view [range.zip.view]
namespace std::ranges {

template<class... Rs>
concept zip-is-common = // exposition only

(sizeof...(Rs) == 1 && (common_range<Rs> && ...)) ||
(!(bidirectional_range<Rs> && ...) && (common_range<Rs> && ...)) ||
((random_access_range<Rs> && ...) && (sized_range<Rs> && ...));

template<class... Ts>
using tuple-or-pair = see below; // exposition only

template<class F, class Tuple>
constexpr auto tuple-transform(F&& f, Tuple&& tuple) { // exposition only

return apply([&]<class... Ts>(Ts&&... elements) {
return tuple-or-pair<invoke_result_t<F&, Ts>...>(
invoke(f, std::forward<Ts>(elements))...

);

§ 26.7.20.2 1088

© ISO/IEC N4910

}, std::forward<Tuple>(tuple));
}

template<class F, class Tuple>
constexpr void tuple-for-each(F&& f, Tuple&& tuple) { // exposition only
apply([&]<class... Ts>(Ts&&... elements) {

(invoke(f, std::forward<Ts>(elements)), ...);
}, std::forward<Tuple>(tuple));

}

template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

class zip_view : public view_interface<zip_view<Views...>> {
tuple<Views...> views_; // exposition only
// 26.7.20.3, class template zip_view::iterator
template<bool> class iterator; // exposition only
// 26.7.20.4, class template zip_view::sentinel
template<bool> class sentinel; // exposition only

public:
zip_view() = default;
constexpr explicit zip_view(Views... views);

constexpr auto begin() requires (!(simple-view<Views> && ...)) {
return iterator<false>(tuple-transform(ranges::begin, views_));

}
constexpr auto begin() const requires (range<const Views> && ...) {

return iterator<true>(tuple-transform(ranges::begin, views_));
}

constexpr auto end() requires (!(simple-view<Views> && ...)) {
if constexpr (!zip-is-common<Views...>) {
return sentinel<false>(tuple-transform(ranges::end, views_));

} else if constexpr ((random_access_range<Views> && ...)) {
return begin() + iter_difference_t<iterator<false>>(size());

} else {
return iterator<false>(tuple-transform(ranges::end, views_));

}
}

constexpr auto end() const requires (range<const Views> && ...) {
if constexpr (!zip-is-common<const Views...>) {
return sentinel<true>(tuple-transform(ranges::end, views_));

} else if constexpr ((random_access_range<const Views> && ...)) {
return begin() + iter_difference_t<iterator<true>>(size());

} else {
return iterator<true>(tuple-transform(ranges::end, views_));

}
}

constexpr auto size() requires (sized_range<Views> && ...);
constexpr auto size() const requires (sized_range<const Views> && ...);

};

template<class... Rs>
zip_view(Rs&&...) -> zip_view<views::all_t<Rs>...>;

}

1 Given some pack of types Ts, the alias template tuple-or-pair is defined as follows:
—(1.1) If sizeof...(Ts) is 2, tuple-or-pair<Ts...> denotes pair<Ts...>.
—(1.2) Otherwise, tuple-or-pair<Ts...> denotes tuple<Ts...>.

§ 26.7.20.2 1089

© ISO/IEC N4910

2 Two zip_view objects have the same underlying sequence if and only if the corresponding elements of views_ areequal (18.2) and have the same underlying sequence.
[Note 1: In particular, comparison of iterators obtained from zip_view objects that do not have the same underlying sequence is notrequired to produce meaningful results (25.3.4.11). —end note]
constexpr explicit zip_view(Views... views);

3 Effects: Initializes views_ with std::move(views)....
constexpr auto size() requires (sized_range<Views> && ...);
constexpr auto size() const requires (sized_range<const Views> && ...);

4 Effects: Equivalent to:
return apply([](auto... sizes) {
using CT = make-unsigned-like-t<common_type_t<decltype(sizes)...>>;
return ranges::min({CT(sizes)...});

}, tuple-transform(ranges::size, views_));

26.7.20.3 Class template zip_view::iterator [range.zip.iterator]
namespace std::ranges {

template<bool Const, class... Views>
concept all-random-access = // exposition only
(random_access_range<maybe-const<Const, Views>> && ...);

template<bool Const, class... Views>
concept all-bidirectional = // exposition only
(bidirectional_range<maybe-const<Const, Views>> && ...);

template<bool Const, class... Views>
concept all-forward = // exposition only
(forward_range<maybe-const<Const, Views>> && ...);

template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

template<bool Const>
class zip_view<Views...>::iterator {

tuple-or-pair<iterator_t<maybe-const<Const, Views>>...> current_; // exposition only
constexpr explicit iterator(tuple-or-pair<iterator_t<maybe-const<Const, Views>>...>);// exposition only

public:
using iterator_category = input_iterator_tag; // not always present
using iterator_concept = see below;
using value_type = tuple-or-pair<range_value_t<maybe-const<Const, Views>>...>;
using difference_type = common_type_t<range_difference_t<maybe-const<Const, Views>>...>;

iterator() = default;
constexpr iterator(iterator<!Const> i)
requires Const && (convertible_to<iterator_t<Views>,

iterator_t<maybe-const<Const, Views>>> && ...);

constexpr auto operator*() const;
constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires all-forward<Const, Views...>;

constexpr iterator& operator--() requires all-bidirectional<Const, Views...>;
constexpr iterator operator--(int) requires all-bidirectional<Const, Views...>;

constexpr iterator& operator+=(difference_type x)
requires all-random-access<Const, Views...>;

constexpr iterator& operator-=(difference_type x)
requires all-random-access<Const, Views...>;

constexpr auto operator[](difference_type n) const
requires all-random-access<Const, Views...>;

§ 26.7.20.3 1090

© ISO/IEC N4910

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires (equality_comparable<iterator_t<maybe-const<Const, Views>>> && ...);

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...> &&

(three_way_comparable<iterator_t<maybe-const<Const, Views>>> && ...);

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires all-random-access<Const, Views...>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires all-random-access<Const, Views...>;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires all-random-access<Const, Views...>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires (sized_sentinel_for<iterator_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<Const, Views>>> && ...);

friend constexpr auto iter_move(const iterator& i) noexcept(see below);

friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below)
requires (indirectly_swappable<iterator_t<maybe-const<Const, Views>>> && ...);

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If all-random-access<Const, Views...> is modeled, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if all-bidirectional<Const, Views...> is modeled, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, if all-forward<Const, Views...> is modeled, then iterator_concept denotes forward_iterator_-

tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 iterator::iterator_category is present if and only if all-forward<Const, Views...> is modeled.
3 If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires a singularvalue.

constexpr explicit iterator(tuple-or-pair<iterator_t<maybe-const<Const, Views>>...> current);

4 Effects: Initializes current_ with std::move(current).
constexpr iterator(iterator<!Const> i)

requires Const &&
(convertible_to<iterator_t<Views>, iterator_t<maybe-const<Const, Views>>> && ...);

5 Effects: Initializes current_ with std::move(i.current_).
constexpr auto operator*() const;

6 Effects: Equivalent to:
return tuple-transform([](auto& i) -> decltype(auto) { return *i; }, current_);

constexpr iterator& operator++();

7 Effects: Equivalent to:
tuple-for-each([](auto& i) { ++i; }, current_);

§ 26.7.20.3 1091

© ISO/IEC N4910

return *this;

constexpr void operator++(int);

8 Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires all-forward<Const, Views...>;

9 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires all-bidirectional<Const, Views...>;

10 Effects: Equivalent to:
tuple-for-each([](auto& i) { --i; }, current_);
return *this;

constexpr iterator operator--(int) requires all-bidirectional<Const, Views...>;

11 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator& operator+=(difference_type x)
requires all-random-access<Const, Views...>;

12 Effects: Equivalent to:
tuple-for-each([&]<class I>(I& i) { i += iter_difference_t<I>(x); }, current_);
return *this;

constexpr iterator& operator-=(difference_type x)
requires all-random-access<Const, Views...>;

13 Effects: Equivalent to:
tuple-for-each([&]<class I>(I& i) { i -= iter_difference_t<I>(x); }, current_);
return *this;

constexpr auto operator[](difference_type n) const
requires all-random-access<Const, Views...>;

14 Effects: Equivalent to:
return tuple-transform([&]<class I>(I& i) -> decltype(auto) {

return i[iter_difference_t<I>(n)];
}, current_);

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires (equality_comparable<iterator_t<maybe-const<Const, Views>>> && ...);

15 Returns:
—(15.1) x.current_ == y.current_ if all-bidirectional<Const, Views...> is true.
—(15.2) Otherwise, true if there exists an integer 0 ≤ i < sizeof...(Views) such that bool(std::get<i>(x.current_-

) == std::get<i>(y.current_)) is true.
[Note 1: This allows zip_view to model common_range when all constituent views model common_range. —end note]

—(15.3) Otherwise, false.
friend constexpr bool operator<(const iterator& x, const iterator& y)

requires all-random-access<Const, Views...>;

16 Returns: x.current_ < y.current_.

§ 26.7.20.3 1092

© ISO/IEC N4910

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

17 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

18 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...>;

19 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires all-random-access<Const, Views...> &&

(three_way_comparable<iterator_t<maybe-const<Const, Views>>> && ...);

20 Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n)

requires all-random-access<Const, Views...>;
friend constexpr iterator operator+(difference_type n, const iterator& i)
requires all-random-access<Const, Views...>;

21 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires all-random-access<Const, Views...>;

22 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires (sized_sentinel_for<iterator_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<Const, Views>>> && ...);

23 Let DIST(i) be difference_type(std::get<i>(x.current_) - std::get<i>(y.current_)).
24 Returns: The value with the smallest absolute value among DIST(n) for all integers 0 ≤ n < sizeof...(Views).

friend constexpr auto iter_move(const iterator& i) noexcept(see below);

25 Effects: Equivalent to:
return tuple-transform(ranges::iter_move, i.current_);

26 Remarks: The exception specification is equivalent to:
(noexcept(ranges::iter_move(declval<const iterator_t<maybe-const<Const,

Views>>&>())) && ...) &&
(is_nothrow_move_constructible_v<range_rvalue_reference_t<maybe-const<Const,

Views>>> && ...)

friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below)
requires (indirectly_swappable<iterator_t<maybe-const<Const, Views>>> && ...);

27 Effects: For every integer 0 ≤ i < sizeof...(Views), performs:
ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))

28 Remarks: The exception specification is equivalent to the logical AND of the following expressions:
noexcept(ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_)))

for every integer 0 ≤ i < sizeof...(Views).

§ 26.7.20.3 1093

© ISO/IEC N4910

26.7.20.4 Class template zip_view::sentinel [range.zip.sentinel]
namespace std::ranges {

template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

template<bool Const>
class zip_view<Views...>::sentinel {
tuple-or-pair<sentinel_t<maybe-const<Const, Views>>...> end_; // exposition only
constexpr explicit sentinel(tuple-or-pair<sentinel_t<maybe-const<Const, Views>>...> end);// exposition only

public:
sentinel() = default;
constexpr sentinel(sentinel<!Const> i)
requires Const &&

(convertible_to<sentinel_t<Views>, sentinel_t<maybe-const<Const, Views>>> && ...);

template<bool OtherConst>
requires (sentinel_for<sentinel_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...>

operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...>

operator-(const sentinel& y, const iterator<OtherConst>& x);
};

}

constexpr explicit sentinel(tuple-or-pair<sentinel_t<maybe-const<Const, Views>>...> end);

1 Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> i)
requires Const &&

(convertible_to<sentinel_t<Views>, sentinel_t<maybe-const<Const, Views>>> && ...);

2 Effects: Initializes end_ with std::move(i.end_).
template<bool OtherConst>
requires (sentinel_for<sentinel_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

3 Returns: true if there exists an integer 0 ≤ i < sizeof...(Views) such that bool(std::get<i>(x.current_)
== std::get<i>(y.end_)) is true. Otherwise, false.

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...>

operator-(const iterator<OtherConst>& x, const sentinel& y);

4 Let D be the return type. Let DIST(i) be D(std::get<i>(x.current_) - std::get<i>(y.end_)).
5 Returns: The value with the smallest absolute value among DIST(n) for all integers 0 ≤ n < sizeof...(Views).

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...>

§ 26.7.20.4 1094

© ISO/IEC N4910

operator-(const sentinel& y, const iterator<OtherConst>& x);

6 Effects: Equivalent to return -(x - y);

26.7.21 Zip transform view [range.zip.transform]
26.7.21.1 Overview [range.zip.transform.overview]

1 zip_transform_view takes an invocable object and any number of views and produces a view whoseM th element isthe result of applying the invocable object to theM th elements of all views.
2 The name views::zip_transform denotes a customization point object (16.3.3.3.6). Let F be a subexpression, and let

Es... be a pack of subexpressions.
—(2.1) If Es is an empty pack, let FD be decay_t<decltype((F))>.

—(2.1.1) If copy_constructible<FD> && regular_invocable<FD&> is false, or if decay_t<invoke_result_t<FD&>>is not an object type, views::zip_transform(F, Es...) is ill-formed.
—(2.1.2) Otherwise, the expression views::zip_transform(F, Es...) is expression-equivalent to

((void)F, auto(views::empty<decay_t<invoke_result_t<FD&>>>))

—(2.2) Otherwise, the expression views::zip_transform(F, Es...) is expression-equivalent to zip_transform_-
view(F, Es...).

3 [Example 1:
vector v1 = {1, 2};
vector v2 = {4, 5, 6};

for (auto i : views::zip_transform(plus(), v1, v2)) {
cout << i << ' '; // prints: 5 7

}

—end example]
26.7.21.2 Class template zip_transform_view [range.zip.transform.view]
namespace std::ranges {

template<copy_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference<invoke_result_t<F&, range_reference_t<Views>...>>

class zip_transform_view : public view_interface<zip_transform_view<F, Views...>> {
copyable-box<F> fun_; // exposition only
zip_view<Views...> zip_; // exposition only
using InnerView = zip_view<Views...>; // exposition only
template<bool Const>

using ziperator = iterator_t<maybe-const<Const, InnerView>>; // exposition only
template<bool Const>

using zentinel = sentinel_t<maybe-const<Const, InnerView>>; // exposition only
// 26.7.21.3, class template zip_transform_view::iterator
template<bool> class iterator; // exposition only
// 26.7.21.4, class template zip_transform_view::sentinel
template<bool> class sentinel; // exposition only

public:
zip_transform_view() = default;

constexpr explicit zip_transform_view(F fun, Views... views);

constexpr auto begin() { return iterator<false>(*this, zip_.begin()); }

constexpr auto begin() const
requires range<const InnerView> &&

regular_invocable<const F&, range_reference_t<const Views>...> {
return iterator<true>(*this, zip_.begin());

§ 26.7.21.2 1095

© ISO/IEC N4910

}

constexpr auto end() {
if constexpr (common_range<InnerView>) {

return iterator<false>(*this, zip_.end());
} else {

return sentinel<false>(zip_.end());
}

}

constexpr auto end() const
requires range<const InnerView> &&

regular_invocable<const F&, range_reference_t<const Views>...> {
if constexpr (common_range<const InnerView>) {
return iterator<true>(*this, zip_.end());

} else {
return sentinel<true>(zip_.end());

}
}

constexpr auto size() requires sized_range<InnerView> {
return zip_.size();

}

constexpr auto size() const requires sized_range<const InnerView> {
return zip_.size();

}
};

template<class F, class... Rs>
zip_transform_view(F, Rs&&...) -> zip_transform_view<F, views::all_t<Rs>...>;

}

constexpr explicit zip_transform_view(F fun, Views... views);

1 Effects: Initializes fun_ with std::move(fun) and zip_ with std::move(views)....
26.7.21.3 Class template zip_transform_view::iterator [range.zip.transform.iterator]
namespace std::ranges {

template<copy_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference<invoke_result_t<F&, range_reference_t<Views>...>>

template<bool Const>
class zip_transform_view<F, Views...>::iterator {
using Parent = maybe-const<Const, zip_transform_view>; // exposition only
using Base = maybe-const<Const, InnerView>; // exposition only
Parent* parent_ = nullptr; // exposition only
ziperator<Const> inner_; // exposition only
constexpr iterator(Parent& parent, ziperator<Const> inner); // exposition only

public:
using iterator_category = see below; // not always present
using iterator_concept = typename ziperator<Const>::iterator_concept;
using value_type =

remove_cvref_t<invoke_result_t<maybe-const<Const, F>&,
range_reference_t<maybe-const<Const, Views>>...>>;

using difference_type = range_difference_t<Base>;

iterator() = default;
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<ziperator<false>, ziperator<Const>>;

§ 26.7.21.3 1096

© ISO/IEC N4910

constexpr decltype(auto) operator*() const noexcept(see below);
constexpr iterator& operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base>;

constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;

constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base>;

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<ziperator<Const>>;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<ziperator<Const>>;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<ziperator<Const>, ziperator<Const>>;

};
}

1 The member typedef-name iterator::iterator_category is defined if and only if Base models forward_range. Inthat case, iterator::iterator_category is defined as follows:
—(1.1) If

invoke_result_t<maybe-const<Const, F>&, range_reference_t<maybe-const<Const, Views>>...>

is not an lvalue reference, iterator_category denotes input_iterator_tag.
—(1.2) Otherwise, let Cs denote the pack of types iterator_traits<iterator_t<maybe-const<Const, Views>>>::iterator_-

category....
—(1.2.1) If (derived_from<Cs, random_access_iterator_tag> && ...) is true, iterator_category denotes

random_access_iterator_tag.
—(1.2.2) Otherwise, if (derived_from<Cs, bidirectional_iterator_tag> && ...) is true, iterator_categorydenotes bidirectional_iterator_tag.
—(1.2.3) Otherwise, if (derived_from<Cs, forward_iterator_tag> && ...) is true, iterator_category de-notes forward_iterator_tag.
—(1.2.4) Otherwise, iterator_category denotes input_iterator_tag.

constexpr iterator(Parent& parent, ziperator<Const> inner);

2 Effects: Initializes parent_ with addressof(parent) and inner_ with std::move(inner).
constexpr iterator(iterator<!Const> i)

§ 26.7.21.3 1097

© ISO/IEC N4910

requires Const && convertible_to<ziperator<false>, ziperator<Const>>;

3 Effects: Initializes parent_ with i.parent_ and inner_ with std::move(i.inner_).
constexpr decltype(auto) operator*() const noexcept(see below);

4 Effects: Equivalent to:
return apply([&](const auto&... iters) -> decltype(auto) {
return invoke(*parent_->fun_, *iters...);

}, inner_.current_);

5 Remarks: Let Is be the pack 0, 1, ..., (sizeof...(Views)-1). The exception specification is equivalent to:
noexcept(invoke(*parent_->fun_, *std::get<Is>(inner_.current_)...)).

constexpr iterator& operator++();

6 Effects: Equivalent to:
++inner_;
return *this;

constexpr void operator++(int);

7 Effects: Equivalent to: ++*this.
constexpr iterator operator++(int) requires forward_range<Base>;

8 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

9 Effects: Equivalent to:
--inner_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base>;

10 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

11 Effects: Equivalent to:
inner_ += x;
return *this;

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

12 Effects: Equivalent to:
inner_ -= x;
return *this;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base>;

13 Effects: Equivalent to:
return apply([&]<class... Is>(const Is&... iters) -> decltype(auto) {

return invoke(*parent_->fun_, iters[iter_difference_t<Is>(n)]...);
}, inner_.current_);

§ 26.7.21.3 1098

© ISO/IEC N4910

friend constexpr bool operator==(const iterator& x, const iterator& y)
requires equality_comparable<ziperator<Const>>;

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<ziperator<Const>>;

14 Let op be the operator.
15 Effects: Equivalent to: return x.inner_ op y.inner_;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

16 Effects: Equivalent to: return iterator(*i.parent_, i.inner_ + n);

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

17 Effects: Equivalent to: return iterator(*i.parent_, i.inner_ - n);

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<ziperator<Const>, ziperator<Const>>;

18 Effects: Equivalent to: return x.inner_ - y.inner_;

26.7.21.4 Class template zip_transform_view::sentinel [range.zip.transform.sentinel]
namespace std::ranges {

template<copy_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference<invoke_result_t<F&, range_reference_t<Views>...>>

template<bool Const>
class zip_transform_view<F, Views...>::sentinel {

zentinel<Const> inner_; // exposition only
constexpr explicit sentinel(zentinel<Const> inner); // exposition only

public:
sentinel() = default;
constexpr sentinel(sentinel<!Const> i)
requires Const && convertible_to<zentinel<false>, zentinel<Const>>;

template<bool OtherConst>
requires sentinel_for<zentinel<Const>, ziperator<OtherConst>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const sentinel& x, const iterator<OtherConst>& y);

};
}

§ 26.7.21.4 1099

© ISO/IEC N4910

constexpr explicit sentinel(zentinel<Const> inner);

1 Effects: Initializes inner_ with inner.
constexpr sentinel(sentinel<!Const> i)

requires Const && convertible_to<zentinel<false>, zentinel<Const>>;

2 Effects: Initializes inner_ with std::move(i.inner_).
template<bool OtherConst>

requires sentinel_for<zentinel<Const>, ziperator<OtherConst>>
friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

3 Effects: Equivalent to: return x.inner_ == y.inner_;

template<bool OtherConst>
requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const sentinel& x, const iterator<OtherConst>& y);

4 Effects: Equivalent to: return x.inner_ - y.inner_;

26.7.22 Adjacent view [range.adjacent]
26.7.22.1 Overview [range.adjacent.overview]

1 adjacent_view takes a view and produces a view whose M th element is a tuple of references to the M th through
(M + N − 1)th elements of the original view. If the original view has fewer than N elements, the resulting view isempty.

2 The name views::adjacent<N> denotes a range adaptor object (26.7.2). Given a subexpression E and a constantexpression N, the expression views::adjacent<N>(E) is expression-equivalent to
—(2.1) ((void)E, auto(views::empty<tuple<>>)) if N is equal to 0,
—(2.2) otherwise, adjacent_view<views::all_t<decltype((E))>, N>(E).

[Example 1:
vector v = {1, 2, 3, 4};

for (auto i : v | views::adjacent<2>) {
cout << "(" << i.first << ", " << i.second << ") "; // prints: (1, 2) (2, 3) (3, 4)

}

—end example]
3 Define REPEAT(T, N) as a pack of N types, each of which denotes the same type as T.
26.7.22.2 Class template adjacent_view [range.adjacent.view]
namespace std::ranges {

template<forward_range V, size_t N>
requires view<V> && (N > 0)

class adjacent_view : public view_interface<adjacent_view<V, N>> {
V base_ = V(); // exposition only
// 26.7.22.3, class template adjacent_view::iterator
template<bool> class iterator; // exposition only
// 26.7.22.4, class template adjacent_view::sentinel
template<bool> class sentinel; // exposition only
struct as-sentinel{}; // exposition only

public:
adjacent_view() requires default_initializable<V> = default;
constexpr explicit adjacent_view(V base);

§ 26.7.22.2 1100

© ISO/IEC N4910

constexpr auto begin() requires (!simple-view<V>) {
return iterator<false>(ranges::begin(base_), ranges::end(base_));

}

constexpr auto begin() const requires range<const V> {
return iterator<true>(ranges::begin(base_), ranges::end(base_));

}

constexpr auto end() requires (!simple-view<V>) {
if constexpr (common_range<V>) {

return iterator<false>(as-sentinel{}, ranges::begin(base_), ranges::end(base_));
} else {

return sentinel<false>(ranges::end(base_));
}

}

constexpr auto end() const requires range<const V> {
if constexpr (common_range<const V>) {

return iterator<true>(as-sentinel{}, ranges::begin(base_), ranges::end(base_));
} else {

return sentinel<true>(ranges::end(base_));
}

}

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};
}

constexpr explicit adjacent_view(V base);

1 Effects: Initializes base_ with std::move(base).
constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

2 Effects: Equivalent to:
using ST = decltype(ranges::size(base_));
using CT = common_type_t<ST, size_t>;
auto sz = static_cast<CT>(ranges::size(base_));
sz -= std::min<CT>(sz, N - 1);
return static_cast<ST>(sz);

26.7.22.3 Class template adjacent_view::iterator [range.adjacent.iterator]
namespace std::ranges {

template<forward_range V, size_t N>
requires view<V> && (N > 0)

template<bool Const>
class adjacent_view<V, N>::iterator {
using Base = maybe-const<Const, V>; // exposition only
array<iterator_t<Base>, N> current_ = array<iterator_t<Base>, N>(); // exposition only
constexpr iterator(iterator_t<Base> first, sentinel_t<Base> last); // exposition only
constexpr iterator(as-sentinel, iterator_t<Base> first, iterator_t<Base> last);// exposition only

public:
using iterator_category = input_iterator_tag;
using iterator_concept = see below;
using value_type = tuple-or-pair<REPEAT(range_value_t<Base>, N)...>;
using difference_type = range_difference_t<Base>;

iterator() = default;
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

§ 26.7.22.3 1101

© ISO/IEC N4910

constexpr auto operator*() const;
constexpr iterator& operator++();
constexpr iterator operator++(int);

constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

constexpr auto operator[](difference_type n) const
requires random_access_range<Base>;

friend constexpr bool operator==(const iterator& x, const iterator& y);
friend constexpr bool operator<(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator>(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator<=(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator>=(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr auto operator<=>(const iterator& x, const iterator& y)

requires random_access_range<Base> &&
three_way_comparable<iterator_t<Base>>;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

friend constexpr auto iter_move(const iterator& i) noexcept(see below);
friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below)

requires indirectly_swappable<iterator_t<Base>>;
};

}

1 iterator::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_tag.
—(1.2) Otherwise, if Basemodels bidirectional_range, then iterator_concept denotes bidirectional_iterator_-

tag.
—(1.3) Otherwise, iterator_concept denotes forward_iterator_tag.

2 If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires a singularvalue.
constexpr iterator(iterator_t<Base> first, sentinel_t<Base> last);

3 Postconditions: current_[0] == first is true, and for every integer 1 ≤ i < N, current_[i] == ranges::next(current_-
[i-1], 1, last) is true.

constexpr iterator(as-sentinel, iterator_t<Base> first, iterator_t<Base> last);

4 Postconditions: If Base does not model bidirectional_range, each element of current_ is equal to last. Other-wise, current_[N-1] == last is true, and for every integer 0 ≤ i < (N−1), current_[i] == ranges::prev(current_-
[i+1], 1, first) is true.

§ 26.7.22.3 1102

© ISO/IEC N4910

constexpr iterator(iterator<!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

5 Effects: Initializes each element of current_ with the corresponding element of i.current_ as an xvalue.
constexpr auto operator*() const;

6 Effects: Equivalent to:
return tuple-transform([](auto& i) -> decltype(auto) { return *i; }, current_);

constexpr iterator& operator++();

7 Preconditions: current_.back() is incrementable.
8 Postconditions: Each element of current_ is equal to ranges::next(i), where i is the value of that elementbefore the call.
9 Returns: *this.

constexpr iterator operator++(int);

10 Preconditions: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

11 Preconditions: current_.front() is decrementable.
12 Postconditions: Each element of current_ is equal to ranges::prev(i), where i is the value of that elementbefore the call.
13 Returns: *this.

constexpr iterator operator--(int) requires bidirectional_range<Base>;

14 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

15 Preconditions: current_.back() + x has well-defined behavior.
16 Postconditions: Each element of current_ is equal to i + x, where i is the value of that element before the call.
17 Returns: *this.

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

18 Preconditions: current_.front() - x has well-defined behavior.
19 Postconditions: Each element of current_ is equal to i - x, where i is the value of that element before the call.
20 Returns: *this.

constexpr auto operator[](difference_type n) const
requires random_access_range<Base>;

21 Effects: Equivalent to:
return tuple-transform([&](auto& i) -> decltype(auto) { return i[n]; }, current_);

friend constexpr bool operator==(const iterator& x, const iterator& y);

22 Returns: x.current_.back() == y.current_.back().

§ 26.7.22.3 1103

© ISO/IEC N4910

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

23 Returns: x.current_.back() < y.current_.back().
friend constexpr bool operator>(const iterator& x, const iterator& y)

requires random_access_range<Base>;

24 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

25 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

26 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> &&

three_way_comparable<iterator_t<Base>>;

27 Returns: x.current_.back() <=> y.current_.back().
friend constexpr iterator operator+(const iterator& i, difference_type n)

requires random_access_range<Base>;
friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

28 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

29 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

30 Effects: Equivalent to: return x.current_.back() - y.current_.back();

friend constexpr auto iter_move(const iterator& i) noexcept(see below);

31 Effects: Equivalent to: return tuple-transform(ranges::iter_move, i.current_);
32 Remarks: The exception specification is equivalent to:

noexcept(ranges::iter_move(declval<const iterator_t<Base>&>())) &&
is_nothrow_move_constructible_v<range_rvalue_reference_t<Base>>

friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below)
requires indirectly_swappable<iterator_t<Base>>;

33 Preconditions: None of the iterators in l.current_ is equal to an iterator in r.current_.
34 Effects: For every integer 0 ≤ i < N, performs ranges::iter_swap(l.current_[i], r.current_[i]).
35 Remarks: The exception specification is equivalent to:

noexcept(ranges::iter_swap(declval<iterator_t<Base>>(), declval<iterator_t<Base>>()))

26.7.22.4 Class template adjacent_view::sentinel [range.adjacent.sentinel]
namespace std::ranges {

template<forward_range V, size_t N>

§ 26.7.22.4 1104

© ISO/IEC N4910

requires view<V> && (N > 0)
template<bool Const>
class adjacent_view<V, N>::sentinel {
using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only
constexpr explicit sentinel(sentinel_t<Base> end); // exposition only

public:
sentinel() = default;
constexpr sentinel(sentinel<!Const> i)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const sentinel& y, const iterator<OtherConst>& x);

};
}

constexpr explicit sentinel(sentinel_t<Base> end);

1 Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> i)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

2 Effects: Initializes end_ with std::move(i.end_).
template<bool OtherConst>

requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>
friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

3 Effects: Equivalent to: return x.current_.back() == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

4 Effects: Equivalent to: return x.current_.back() - y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>>

friend constexpr range_difference_t<maybe-const<OtherConst, V>>
operator-(const sentinel& y, const iterator<OtherConst>& x);

5 Effects: Equivalent to: return y.end_ - x.current_.back();

26.7.23 Adjacent transform view [range.adjacent.transform]
26.7.23.1 Overview [range.adjacent.transform.overview]

1 adjacent_transform_view takes an invocable object and a view and produces a view whoseM th element is the resultof applying the invocable object to theM th through (M +N − 1)th elements of the original view. If the original viewhas fewer than N elements, the resulting view is empty.
2 The name views::adjacent_transform<N> denotes a range adaptor object (26.7.2). Given subexpressions E and F anda constant expression N:

§ 26.7.23.1 1105

© ISO/IEC N4910

—(2.1) If N is equal to 0, views::adjacent_transform<N>(E, F) is expression-equivalent to ((void)E, views::zip_-
transform(F)), except that the evaluations of E and F are indeterminately sequenced.

—(2.2) Otherwise, the expression views::adjacent_transform<N>(E, F) is expression-equivalent to adjacent_transform_-
view<views::all_t<decltype((E))>, decay_t<decltype((F))>, N>(E, F).

3 [Example 1:
vector v = {1, 2, 3, 4};

for (auto i : v | views::adjacent_transform<2>(std::multiplies())) {
cout << i << ' '; // prints: 2 6 12

}

—end example]
26.7.23.2 Class template adjacent_transform_view [range.adjacent.transform.view]
namespace std::ranges {

template<forward_range V, copy_constructible F, size_t N>
requires view<V> && (N > 0) && is_object_v<F> &&

regular_invocable<F&, REPEAT(range_reference_t<V>, N)...> &&
can-reference<invoke_result_t<F&, REPEAT(range_reference_t<V>, N)...>>

class adjacent_transform_view : public view_interface<adjacent_transform_view<V, F, N>> {
copyable-box<F> fun_; // exposition only
adjacent_view<V, N> inner_; // exposition only
using InnerView = adjacent_view<V, N>; // exposition only
template<bool Const>
using inner-iterator = iterator_t<maybe-const<Const, InnerView>>; // exposition only

template<bool Const>
using inner-sentinel = sentinel_t<maybe-const<Const, InnerView>>; // exposition only

// 26.7.23.3, class template adjacent_transform_view::iterator
template<bool> class iterator; // exposition only
// 26.7.23.4, class template adjacent_transform_view::sentinel
template<bool> class sentinel; // exposition only

public:
adjacent_transform_view() = default;
constexpr explicit adjacent_transform_view(V base, F fun);

constexpr auto begin() {
return iterator<false>(*this, inner_.begin());

}

constexpr auto begin() const
requires range<const InnerView> &&

regular_invocable<const F&, REPEAT(range_reference_t<const V>, N)...> {
return iterator<true>(*this, inner_.begin());

}

constexpr auto end() {
if constexpr (common_range<InnerView>) {
return iterator<false>(*this, inner_.end());

} else {
return sentinel<false>(inner_.end());

}
}

constexpr auto end() const
requires range<const InnerView> &&

regular_invocable<const F&, REPEAT(range_reference_t<const V>, N)...> {
if constexpr (common_range<const InnerView>) {

return iterator<true>(*this, inner_.end());
} else {

§ 26.7.23.2 1106

© ISO/IEC N4910

return sentinel<true>(inner_.end());
}

}

constexpr auto size() requires sized_range<InnerView> {
return inner_.size();

}

constexpr auto size() const requires sized_range<const InnerView> {
return inner_.size();

}
};

}

constexpr explicit adjacent_transform_view(V base, F fun);

1 Effects: Initializes fun_ with std::move(fun) and inner_ with std::move(base).
26.7.23.3 Class template adjacent_transform_view::iterator [range.adjacent.transform.iterator]
namespace std::ranges {

template<forward_range V, copy_constructible F, size_t N>
requires view<V> && (N > 0) && is_object_v<F> &&

regular_invocable<F&, REPEAT(range_reference_t<V>, N)...> &&
can-reference<invoke_result_t<F&, REPEAT(range_reference_t<V>, N)...>>

template<bool Const>
class adjacent_transform_view<F, V...>::iterator {
using Parent = maybe-const<Const, adjacent_transform_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
Parent* parent_ = nullptr; // exposition only
inner-iterator<Const> inner_; // exposition only
constexpr iterator(Parent& parent, inner-iterator<Const> inner); // exposition only

public:
using iterator_category = see below;
using iterator_concept = typename inner-iterator<Const>::iterator_concept;
using value_type =

remove_cvref_t<invoke_result_t<maybe-const<Const, F>&,
REPEAT(range_reference_t<Base>, N)...>>;

using difference_type = range_difference_t<Base>;

iterator() = default;
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<inner-iterator<false>, inner-iterator<Const>>;

constexpr decltype(auto) operator*() const noexcept(see below);
constexpr iterator& operator++();
constexpr iterator operator++(int);
constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base>;

friend constexpr bool operator==(const iterator& x, const iterator& y);
friend constexpr bool operator<(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator>(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator<=(const iterator& x, const iterator& y)

requires random_access_range<Base>;

§ 26.7.23.3 1107

© ISO/IEC N4910

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<inner-iterator<Const>>;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<inner-iterator<Const>, inner-iterator<Const>>;

};
}

1 The member typedef-name iterator::iterator_category is defined as follows:
—(1.1) If invoke_result_t<maybe-const<Const, F>&, REPEAT(range_reference_t<Base>, N)...> isnot an lvalue reference, iterator_category denotes input_iterator_tag.
—(1.2) Otherwise, let C denote the type iterator_traits<iterator_t<Base>>::iterator_category.

—(1.2.1) If derived_from<C, random_access_iterator_tag> is true, iterator_category denotes random_access_-
iterator_tag.

—(1.2.2) Otherwise, if derived_from<C, bidirectional_iterator_tag> is true, iterator_category denotes
bidirectional_iterator_tag.

—(1.2.3) Otherwise, if derived_from<C, forward_iterator_tag> is true, iterator_category denotes forward_-
iterator_tag.

—(1.2.4) Otherwise, iterator_category denotes input_iterator_tag.
constexpr iterator(Parent& parent, inner-iterator<Const> inner);

2 Effects: Initializes parent_ with addressof(parent) and inner_ with std::move(inner).
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<inner-iterator<false>, inner-iterator<Const>>;

3 Effects: Initializes parent_ with i.parent_ and inner_ with std::move(i.inner_).
constexpr decltype(auto) operator*() const noexcept(see below);

4 Effects: Equivalent to:
return apply([&](const auto&... iters) -> decltype(auto) {
return invoke(*parent_->fun_, *iters...);

}, inner_.current_);

5 Remarks: Let Is be the pack 0, 1, ..., (N-1). The exception specification is equivalent to:
noexcept(invoke(*parent_->fun_, *std::get<Is>(inner_.current_)...))

constexpr iterator& operator++();

6 Effects: Equivalent to:
++inner_;
return *this;

constexpr iterator operator++(int);

7 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

8 Effects: Equivalent to:

§ 26.7.23.3 1108

© ISO/IEC N4910

--inner_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base>;

9 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;

10 Effects: Equivalent to:
inner_ += x;
return *this;

constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;

11 Effects: Equivalent to:
inner_ -= x;
return *this;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base>;

12 Effects: Equivalent to:
return apply([&](const auto&... iters) -> decltype(auto) {

return invoke(*parent_->fun_, iters[n]...);
}, inner_.current_);

friend constexpr bool operator==(const iterator& x, const iterator& y);
friend constexpr bool operator<(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator>(const iterator& x, const iterator& y)

requires random_access_range<Base>;
friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> && three_way_comparable<inner-iterator<Const>>;

13 Let op be the operator.
14 Effects: Equivalent to: return x.inner_ op y.inner_;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

15 Effects: Equivalent to: return iterator(*i.parent_, i.inner_ + n);

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

16 Effects: Equivalent to: return iterator(*i.parent_, i.inner_ - n);

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<inner-iterator<Const>, inner-iterator<Const>>;

17 Effects: Equivalent to: return x.inner_ - y.inner_;

26.7.23.4 Class template adjacent_transform_view::sentinel [range.adjacent.transform.sentinel]
namespace std::ranges {

template<forward_range V, copy_constructible F, size_t N>
requires view<V> && (N > 0) && is_object_v<F> &&

regular_invocable<F&, REPEAT(range_reference_t<V>, N)...> &&

§ 26.7.23.4 1109

© ISO/IEC N4910

can-reference<invoke_result_t<F&, REPEAT(range_reference_t<V>, N)...>>
template<bool Const>
class adjacent_transform_view<V, F, N>::sentinel {
inner-sentinel<Const> inner_; // exposition only
constexpr explicit sentinel(inner-sentinel<Const> inner); // exposition only

public:
sentinel() = default;
constexpr sentinel(sentinel<!Const> i)
requires Const && convertible_to<inner-sentinel<false>, inner-sentinel<Const>>;

template<bool OtherConst>
requires sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const sentinel& x, const iterator<OtherConst>& y);

};
}

constexpr explicit sentinel(inner-sentinel<Const> inner);

1 Effects: Initializes inner_ with inner.
constexpr sentinel(sentinel<!Const> i)
requires Const && convertible_to<inner-sentinel<false>, inner-sentinel<Const>>;

2 Effects: Initializes inner_ with std::move(i.inner_).
template<bool OtherConst>
requires sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>>

friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);

3 Effects: Equivalent to return x.inner_ == y.inner_;

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const iterator<OtherConst>& x, const sentinel& y);

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>>

friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>>
operator-(const sentinel& x, const iterator<OtherConst>& y);

4 Effects: Equivalent to return x.inner_ - y.inner_;

26.7.24 Chunk view [range.chunk]
26.7.24.1 Overview [range.chunk.overview]

1 chunk_view takes a view and a number N and produces a range of views that are N-sized non-overlapping successivechunks of the elements of the original view, in order. The last view in the range can have fewer than N elements.
2 The name views::chunk denotes a range adaptor object (26.7.2). Given subexpressions E and N, the expression

views::chunk(E, N) is expression-equivalent to chunk_view(E, N).
[Example 1:
vector v = {1, 2, 3, 4, 5};

§ 26.7.24.1 1110

© ISO/IEC N4910

for (auto r : v | views::chunk(2)) {
cout << '[';
auto sep = "";
for(auto i : r) {

cout << sep << i;
sep = ", ";

}
cout << "] ";

}

The above prints: [1, 2] [3, 4] [5] —end example]
26.7.24.2 chunk_view for input ranges [range.chunk.view.input]
namespace std::ranges {

template<class I>
constexpr I div-ceil(I num, I denom) { // exposition only
I r = num / denom;
if (num % denom)
++r;

return r;
}

template<view V>
requires input_range<V>

class chunk_view : public view_interface<chunk_view<V>> {
V base_ = V(); // exposition only
range_difference_t<V> n_ = 0; // exposition only
range_difference_t<V> remainder_ = 0; // exposition only
non-propagating-cache<iterator_t<V>> current_; // exposition only
// 26.7.24.3, class chunk_view::outer-iterator
class outer-iterator; // exposition only
// 26.7.24.5, class chunk_view::inner-iterator
class inner-iterator; // exposition only

public:
chunk_view() requires default_initializable<V> = default;
constexpr explicit chunk_view(V base, range_difference_t<V> n);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr outer-iterator begin();
constexpr default_sentinel_t end() noexcept;

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};

template<class R>
chunk_view(R&& r, range_difference_t<R>) -> chunk_view<views::all_t<R>>;

}

constexpr explicit chunk_view(V base, range_difference_t<V> n);

1 Preconditions: n > 0 is true.
2 Effects: Initializes base_ with std::move(base) and n_ with n.

constexpr outer-iterator begin();

3 Effects: Equivalent to:
current_ = ranges::begin(base_);
remainder_ = n_;

§ 26.7.24.2 1111

© ISO/IEC N4910

return outer-iterator(*this);

constexpr default_sentinel_t end() noexcept;

4 Returns: default_sentinel.
constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

5 Effects: Equivalent to:
return to-unsigned-like(div-ceil(ranges::distance(base_), n_));

26.7.24.3 Class chunk_view::outer-iterator [range.chunk.outer.iter]
namespace std::ranges {

template<view V>
requires input_range<V>

class chunk_view<V>::outer-iterator {
chunk_view* parent_; // exposition only
constexpr explicit outer-iterator(chunk_view& parent); // exposition only

public:
using iterator_concept = input_iterator_tag;
using difference_type = range_difference_t<V>;

// 26.7.24.4, class chunk_view::outer-iterator::value_type
struct value_type;

outer-iterator(outer-iterator&&) = default;
outer-iterator& operator=(outer-iterator&&) = default;

constexpr value_type operator*() const;
constexpr outer-iterator& operator++();
constexpr void operator++(int);

friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);

friend constexpr difference_type operator-(default_sentinel_t y, const outer-iterator& x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr difference_type operator-(const outer-iterator& x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

};
}

constexpr explicit outer-iterator(chunk_view& parent);

1 Effects: Initializes parent_ with addressof(parent).
constexpr value_type operator*() const;

2 Preconditions: *this == default_sentinel is false.
3 Returns: value_type(*parent_).

constexpr outer-iterator& operator++();

4 Preconditions: *this == default_sentinel is false.
5 Effects: Equivalent to:

ranges::advance(*parent_->current_, parent_->remainder_, ranges::end(parent_->base_));
parent_->remainder_ = parent_->n_;
return *this;

constexpr void operator++(int);

6 Effects: Equivalent to ++*this.

§ 26.7.24.3 1112

© ISO/IEC N4910

friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);

7 Effects: Equivalent to:
return *x.parent_->current_ == ranges::end(x.parent_->base_) && x.parent_->remainder_ != 0;

friend constexpr difference_type operator-(default_sentinel_t y, const outer-iterator& x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

8 Effects: Equivalent to:
const auto dist = ranges::end(x.parent_->base_) - *x.parent_->current_;
if (dist < x.parent_->remainder_) {
return dist == 0 ? 0 : 1;

}
return div-ceil(dist - x.parent_->remainder_, x.parent_->n_) + 1;

friend constexpr difference_type operator-(const outer-iterator& x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

9 Effects: Equivalent to: return -(y - x);

26.7.24.4 Class chunk_view::outer-iterator::value_type [range.chunk.outer.value]
namespace std::ranges {

template<view V>
requires input_range<V>

struct chunk_view<V>::outer-iterator::value_type : view_interface<value_type> {
private:
chunk_view* parent_; // exposition only
constexpr explicit value_type(chunk_view& parent); // exposition only

public:
constexpr inner-iterator begin() const noexcept;
constexpr default_sentinel_t end() const noexcept;

constexpr auto size() const
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

};
}

constexpr explicit value_type(chunk_view& parent);

1 Effects: Initializes parent_ with addressof(parent).
constexpr inner-iterator begin() const noexcept;

2 Returns: inner-iterator(*parent_).
constexpr default_sentinel_t end() const noexcept;

3 Returns: default_sentinel.
constexpr auto size() const

requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

4 Effects: Equivalent to:
return ranges::min(parent_->remainder_, ranges::end(parent_->base_) - *parent_->current_);

26.7.24.5 Class chunk_view::inner-iterator [range.chunk.inner.iter]
namespace std::ranges {

template<view V>
requires input_range<V>

class chunk_view<V>::inner-iterator {
chunk_view* parent_; // exposition only
constexpr explicit inner-iterator(chunk_view& parent) noexcept; // exposition only

§ 26.7.24.5 1113

© ISO/IEC N4910

public:
using iterator_concept = input_iterator_tag;
using difference_type = range_difference_t<V>;
using value_type = range_value_t<V>;

inner-iterator(inner-iterator&&) = default;
inner-iterator& operator=(inner-iterator&&) = default;

constexpr const iterator_t<V>& base() const &;

constexpr range_reference_t<V> operator*() const;
constexpr inner-iterator& operator++();
constexpr void operator++(int);

friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);

friend constexpr difference_type operator-(default_sentinel_t y, const inner-iterator& x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr difference_type operator-(const inner-iterator& x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

};
}

constexpr explicit inner-iterator(chunk_view& parent) noexcept;

1 Effects: Initializes parent_ with addressof(parent).
constexpr const iterator_t<V>& base() const &;

2 Effects: Equivalent to: return *parent_->current_;

constexpr range_reference_t<V> operator*() const;

3 Preconditions: *this == default_sentinel is false.
4 Effects: Equivalent to: return **parent_->current_;

constexpr inner-iterator& operator++();

5 Preconditions: *this == default_sentinel is false.
6 Effects: Equivalent to:

++*parent_->current_;
if (*parent_->current_ == ranges::end(parent_->base_))
parent_->remainder_ = 0;

else
--parent_->remainder_;

return *this;

constexpr void operator++(int);

7 Effects: Equivalent to ++*this.
friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);

8 Returns: x.parent_->remainder_ == 0.
friend constexpr difference_type operator-(default_sentinel_t y, const inner-iterator& x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

9 Effects: Equivalent to:
return ranges::min(x.parent_->remainder_,

ranges::end(x.parent_->base_) - *x.parent_->current_);

friend constexpr difference_type operator-(const inner-iterator& x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

10 Effects: Equivalent to: return -(y - x);

§ 26.7.24.5 1114

© ISO/IEC N4910

26.7.24.6 chunk_view for forward ranges [range.chunk.view.fwd]
namespace std::ranges {

template<view V>
requires forward_range<V>

class chunk_view<V> : public view_interface<chunk_view<V>> {
V base_ = V(); // exposition only
range_difference_t<V> n_ = 0; // exposition only
// 26.7.24.7, class template chunk_view::iterator
template<bool> class iterator; // exposition only

public:
chunk_view() requires default_initializable<V> = default;
constexpr explicit chunk_view(V base, range_difference_t<V> n);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view<V>) {
return iterator<false>(this, ranges::begin(base_));

}

constexpr auto begin() const requires forward_range<const V> {
return iterator<true>(this, ranges::begin(base_));

}

constexpr auto end() requires (!simple-view<V>) {
if constexpr (common_range<V> && sized_range<V>) {

auto missing = (n_ - ranges::distance(base_) % n_) % n_;
return iterator<false>(this, ranges::end(base_), missing);

} else if constexpr (common_range<V> && !bidirectional_range<V>) {
return iterator<false>(this, ranges::end(base_));

} else {
return default_sentinel;

}
}

constexpr auto end() const requires forward_range<const V> {
if constexpr (common_range<const V> && sized_range<const V>) {

auto missing = (n_ - ranges::distance(base_) % n_) % n_;
return iterator<true>(this, ranges::end(base_), missing);

} else if constexpr (common_range<const V> && !bidirectional_range<const V>) {
return iterator<true>(this, ranges::end(base_));

} else {
return default_sentinel;

}
}

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};
}

constexpr explicit chunk_view(V base, range_difference_t<V> n);

1 Preconditions: n > 0 is true.
2 Effects: Initializes base_ with std::move(base) and n_ with n.

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

3 Effects: Equivalent to:
return to-unsigned-like(div-ceil(ranges::distance(base_), n_));

§ 26.7.24.6 1115

© ISO/IEC N4910

26.7.24.7 Class template chunk_view<V>::iterator for forward ranges [range.chunk.fwd.iter]
namespace std::ranges {

template<view V>
requires forward_range<V>

template<bool Const>
class chunk_view<V>::iterator {
using Parent = maybe-const<Const, chunk_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only
range_difference_t<Base> n_ = 0; // exposition only
range_difference_t<Base> missing_ = 0; // exposition only
constexpr iterator(Parent* parent, iterator_t<Base> current, // exposition only

range_difference_t<Base> missing = 0);

public:
using iterator_category = input_iterator_tag;
using iterator_concept = see below;
using value_type = decltype(views::take(subrange(current_, end_), n_));
using difference_type = range_difference_t<Base>;

iterator() = default;
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>
&& convertible_to<sentinel_t<V>, sentinel_t<Base>>;

constexpr iterator_t<Base> base() const;

constexpr value_type operator*() const;
constexpr iterator& operator++();
constexpr iterator operator++(int);

constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

constexpr value_type operator[](difference_type n) const
requires random_access_range<Base>;

friend constexpr bool operator==(const iterator& x, const iterator& y);
friend constexpr bool operator==(const iterator& x, default_sentinel_t);

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> &&

three_way_comparable<iterator_t<Base>>;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

§ 26.7.24.7 1116

© ISO/IEC N4910

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

friend constexpr difference_type operator-(default_sentinel_t y, const iterator& x)
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;

friend constexpr difference_type operator-(const iterator& x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_tag.
—(1.2) Otherwise, if Basemodels bidirectional_range, then iterator_concept denotes bidirectional_iterator_-

tag.
—(1.3) Otherwise, iterator_concept denotes forward_iterator_tag.

constexpr iterator(Parent* parent, iterator_t<Base> current,
range_difference_t<Base> missing = 0);

2 Effects: Initializes current_ with current, end_ with ranges::end(parent->base_), n_ with parent
->n_, and missing_ with missing.

constexpr iterator(iterator<!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>

&& convertible_to<sentinel_t<V>, sentinel_t<Base>>;

3 Effects: Initializes current_ with std::move(i.current_), end_ with std::move(i.end_), n_ with i.n_, and
missing_ with i.missing_.

constexpr iterator_t<Base> base() const;

4 Returns: current_.
constexpr value_type operator*() const;

5 Preconditions: current_ != end_ is true.
6 Returns: views::take(subrange(current_, end_), n_).

constexpr iterator& operator++();

7 Preconditions: current_ != end_ is true.
8 Effects: Equivalent to:

missing_ = ranges::advance(current_, n_, end_);
return *this;

constexpr iterator operator++(int);

9 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

10 Effects: Equivalent to:
ranges::advance(current_, missing_ - n_);
missing_ = 0;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base>;

11 Effects: Equivalent to:
auto tmp = *this;

§ 26.7.24.7 1117

© ISO/IEC N4910

--*this;
return tmp;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

12 Preconditions: If x is positive, ranges::distance(current_, end_) > n_ * (x - 1) is true.
[Note 1: If x is negative, the Effects paragraph implies a precondition. —end note]

13 Effects: Equivalent to:
if (x > 0) {
missing_ = ranges::advance(current_, n_ * x, end_);

} else if (x < 0) {
ranges::advance(current_, n_ * x + missing_);
missing_ = 0;

}
return *this;

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

14 Effects: Equivalent to: return *this += -x;
constexpr value_type operator[](difference_type n) const

requires random_access_range<Base>;

15 Returns: *(*this + n).
friend constexpr bool operator==(const iterator& x, const iterator& y);

16 Returns: x.current_ == y.current_.
friend constexpr bool operator==(const iterator& x, default_sentinel_t);

17 Returns: x.current_ == x.end_.
friend constexpr bool operator<(const iterator& x, const iterator& y)

requires random_access_range<Base>;

18 Returns: x.current_ < y.current_.
friend constexpr bool operator>(const iterator& x, const iterator& y)

requires random_access_range<Base>;

19 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

20 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

21 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> &&

three_way_comparable<iterator_t<Base>>;

22 Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

23 Effects: Equivalent to:
auto r = i;
r += n;

§ 26.7.24.7 1118

© ISO/IEC N4910

return r;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

24 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

25 Returns: (x.current_ - y.current_ + x.missing_ - y.missing_) / x.n_.
friend constexpr difference_type operator-(default_sentinel_t y, const iterator& x)

requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;

26 Returns: div-ceil(x.end_ - x.current_, x.n_).
friend constexpr difference_type operator-(const iterator& x, default_sentinel_t y)

requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;

27 Effects: Equivalent to: return -(y - x);

26.7.25 Slide view [range.slide]
26.7.25.1 Overview [range.slide.overview]

1 slide_view takes a view and a number N and produces a view whose Mth element is a view over the Mth through
(M + N− 1)th elements of the original view. If the original view has fewer than N elements, the resulting view is empty.

2 The name views::slide denotes a range adaptor object (26.7.2). Given subexpressions E and N, the expression
views::slide(E, N) is expression-equivalent to slide_view(E, N).
[Example 1:
vector v = {1, 2, 3, 4};

for (auto i : v | views::slide(2)) {
cout << '[' << i[0] << ", " << i[1] << "] "; // prints: [1, 2] [2, 3] [3, 4]

}

—end example]
26.7.25.2 Class template slide_view [range.slide.view]
namespace std::ranges {

template<class V>
concept slide-caches-nothing = random_access_range<V> && sized_range<V>; // exposition only
template<class V>
concept slide-caches-last = // exposition only
!slide-caches-nothing<V> && bidirectional_range<V> && common_range<V>;

template<class V>
concept slide-caches-first = // exposition only
!slide-caches-nothing<V> && !slide-caches-last<V>;

template<forward_range V>
requires view<V>

class slide_view : public view_interface<slide_view<V>> {
V base_ = V(); // exposition only
range_difference_t<V> n_ = 0; // exposition only
// 26.7.25.3, class template slide_view::iterator
template<bool> class iterator; // exposition only
// 26.7.25.4, class slide_view::sentinel
class sentinel; // exposition only

§ 26.7.25.2 1119

© ISO/IEC N4910

public:
slide_view() requires default_initializable<V> = default;
constexpr explicit slide_view(V base, range_difference_t<V> n);

constexpr auto begin()
requires (!(simple-view<V> && slide-caches-nothing<const V>));

constexpr auto begin() const requires slide-caches-nothing<const V>;

constexpr auto end()
requires (!(simple-view<V> && slide-caches-nothing<const V>));

constexpr auto end() const requires slide-caches-nothing<const V>;

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};

template<class R>
slide_view(R&& r, range_difference_t<R>) -> slide_view<views::all_t<R>>;

}

constexpr explicit slide_view(V base, range_difference_t<V> n);

1 Effects: Initializes base_ with std::move(base) and n_ with n.
constexpr auto begin()

requires (!(simple-view<V> && slide-caches-nothing<const V>));

2 Returns:
—(2.1) If V models slide-caches-first,

iterator<false>(ranges::begin(base_),
ranges::next(ranges::begin(base_), n_ - 1, ranges::end(base_)), n_)

—(2.2) Otherwise, iterator<false>(ranges::begin(base_), n_).
3 Remarks: In order to provide the amortized constant-time complexity required by the range concept, this functioncaches the result within the slide_view for use on subsequent calls when V models slide-caches-first.

constexpr auto begin() const requires slide-caches-nothing<const V>;

4 Returns: iterator<true>(ranges::begin(base_), n_).
constexpr auto end()

requires (!(simple-view<V> && slide-caches-nothing<const V>));

5 Returns:
—(5.1) If V models slide-caches-nothing,

iterator<false>(ranges::begin(base_) + range_difference_t<V>(size()), n_)

—(5.2) Otherwise, if V models slide-caches-last,
iterator<false>(ranges::prev(ranges::end(base_), n_ - 1, ranges::begin(base_)), n_)

—(5.3) Otherwise, if V models common_range,
iterator<false>(ranges::end(base_), ranges::end(base_), n_)

—(5.4) Otherwise, sentinel(ranges::end(base_)).
6 Remarks: In order to provide the amortized constant-time complexity required by the range concept, this functioncaches the result within the slide_view for use on subsequent calls when V models slide-caches-last.

constexpr auto end() const requires slide-caches-nothing<const V>;

7 Returns: begin() + range_difference_t<const V>(size()).
constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

8 Effects: Equivalent to:

§ 26.7.25.2 1120

© ISO/IEC N4910

auto sz = ranges::distance(base_) - n_ + 1;
if (sz < 0) sz = 0;
return to-unsigned-like(sz);

26.7.25.3 Class template slide_view::iterator [range.slide.iterator]
namespace std::ranges {

template<forward_range V>
requires view<V>

template<bool Const>
class slide_view<V>::iterator {

using Base = maybe-const<Const, V>; // exposition only
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only
iterator_t<Base> last_ele_ = iterator_t<Base>(); // exposition only,// present only if Base models slide-caches-first
range_difference_t<Base> n_ = 0; // exposition only
constexpr iterator(iterator_t<Base> current, range_difference_t<Base> n) // exposition only
requires (!slide-caches-first<Base>);

constexpr iterator(iterator_t<Base> current, iterator_t<Base> last_ele, // exposition only
range_difference_t<Base> n)

requires slide-caches-first<Base>;

public:
using iterator_category = input_iterator_tag;
using iterator_concept = see below;
using value_type = decltype(views::counted(current_, n_));
using difference_type = range_difference_t<Base>;

iterator() = default;
constexpr iterator(iterator<!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

constexpr auto operator*() const;
constexpr iterator& operator++();
constexpr iterator operator++(int);

constexpr iterator& operator--() requires bidirectional_range<Base>;
constexpr iterator operator--(int) requires bidirectional_range<Base>;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

constexpr auto operator[](difference_type n) const
requires random_access_range<Base>;

friend constexpr bool operator==(const iterator& x, const iterator& y);

friend constexpr bool operator<(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> &&

three_way_comparable<iterator_t<Base>>;

friend constexpr iterator operator+(const iterator& i, difference_type n)
requires random_access_range<Base>;

§ 26.7.25.3 1121

© ISO/IEC N4910

friend constexpr iterator operator+(difference_type n, const iterator& i)
requires random_access_range<Base>;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_tag.
—(1.2) Otherwise, if Basemodels bidirectional_range, then iterator_concept denotes bidirectional_iterator_-

tag.
—(1.3) Otherwise, iterator_concept denotes forward_iterator_tag.

2 If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires a singularvalue.
constexpr iterator(iterator_t<Base> current, range_difference_t<Base> n)

requires (!slide-caches-first<Base>);

3 Effects: Initializes current_ with current and n_ with n.
constexpr iterator(iterator_t<Base> current, iterator_t<Base> last_ele,

range_difference_t<Base> n)
requires slide-caches-first<Base>;

4 Effects: Initializes current_ with current, last_ele_ with last_ele, and n_ with n.
constexpr iterator(iterator<!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

5 Effects: Initializes current_ with std::move(i.current_) and n_ with i.n_.
[Note 1: iterator<true> can only be formed when Base models slide-caches-nothing, in which case last_ele_ is notpresent. —end note]

constexpr auto operator*() const;

6 Returns: views::counted(current_, n_).
constexpr iterator& operator++();

7 Preconditions: current_ and last_ele_ (if present) are incrementable.
8 Postconditions: current_ and last_ele_ (if present) are each equal to ranges::next(i), where i is the valueof that data member before the call.
9 Returns: *this.

constexpr iterator operator++(int);

10 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<Base>;

11 Preconditions: current_ and last_ele_ (if present) are decrementable.
12 Postconditions: current_ and last_ele_ (if present) are each equal to ranges::prev(i), where i is the valueof that data member before the call.
13 Returns: *this.

constexpr iterator operator--(int) requires bidirectional_range<Base>;

14 Effects: Equivalent to:
auto tmp = *this;

§ 26.7.25.3 1122

© ISO/IEC N4910

--*this;
return tmp;

constexpr iterator& operator+=(difference_type x)
requires random_access_range<Base>;

15 Preconditions: current_ + x and last_ele_ + x (if last_ele_ is present) have well-defined behavior.
16 Postconditions: current_ and last_ele_ (if present) are each equal to i + x, where i is the value of that datamember before the call.
17 Returns: *this.

constexpr iterator& operator-=(difference_type x)
requires random_access_range<Base>;

18 Preconditions: current_ - x and last_ele_ - x (if last_ele_ is present) have well-defined behavior.
19 Postconditions: current_ and last_ele_ (if present) are each equal to i - x, where i is the value of that datamember before the call.
20 Returns: *this.

constexpr auto operator[](difference_type n) const
requires random_access_range<Base>;

21 Effects: Equivalent to: return views::counted(current_ + n, n_);

friend constexpr bool operator==(const iterator& x, const iterator& y);

22 Returns: If last_ele_ is present, x.last_ele_ == y.last_ele_; otherwise, x.current_ == y.current_.
friend constexpr bool operator<(const iterator& x, const iterator& y)

requires random_access_range<Base>;

23 Returns: x.current_ < y.current_.
friend constexpr bool operator>(const iterator& x, const iterator& y)

requires random_access_range<Base>;

24 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

25 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator& x, const iterator& y)
requires random_access_range<Base>;

26 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator& x, const iterator& y)
requires random_access_range<Base> &&

three_way_comparable<iterator_t<Base>>;

27 Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n)

requires random_access_range<Base>;
friend constexpr iterator operator+(difference_type n, const iterator& i)

requires random_access_range<Base>;

28 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator& i, difference_type n)
requires random_access_range<Base>;

29 Effects: Equivalent to:

§ 26.7.25.3 1123

© ISO/IEC N4910

auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;

30 Returns: If last_ele_ is present, x.last_ele_ - y.last_ele_; otherwise, x.current_ - y.current_.
26.7.25.4 Class slide_view::sentinel [range.slide.sentinel]
namespace std::ranges {

template<forward_range V>
requires view<V>

class slide_view<V>::sentinel {
sentinel_t<V> end_ = sentinel_t<V>(); // exposition only
constexpr explicit sentinel(sentinel_t<V> end); // exposition only

public:
sentinel() = default;

friend constexpr bool operator==(const iterator<false>& x, const sentinel& y);

friend constexpr range_difference_t<V>
operator-(const iterator<false>& x, const sentinel& y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr range_difference_t<V>
operator-(const sentinel& y, const iterator<false>& x)

requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
};

}
1 [Note 1: sentinel is used only when slide-caches-first<V> is true. —end note]

constexpr explicit sentinel(sentinel_t<V> end);

2 Effects: Initializes end_ with end.
friend constexpr bool operator==(const iterator<false>& x, const sentinel& y);

3 Returns: x.last_ele_ == y.end_.
friend constexpr range_difference_t<V>

operator-(const iterator<false>& x, const sentinel& y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

4 Returns: x.last_ele_ - y.end_.
friend constexpr range_difference_t<V>

operator-(const sentinel& y, const iterator<false>& x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

5 Returns: y.end_ - x.last_ele_.
26.7.26 Chunk by view [range.chunk.by]
26.7.26.1 Overview [range.chunk.by.overview]

1 chunk_by_view takes a view and a predicate, and splits the view into subranges between each pair of adjacent elementsfor which the predicate returns false.
2 The name views::chunk_by denotes a range adaptor object (26.7.2). Given subexpressions E and F, the expression

views::chunk_by(E, F) is expression-equivalent to chunk_by_view(E, F).
[Example 1:
vector v = {1, 2, 2, 3, 0, 4, 5, 2};

§ 26.7.26.1 1124

© ISO/IEC N4910

for (auto r : v | views::chunk_by(ranges::less_equal{})) {
cout << '[';
auto sep = "";
for(auto i : r) {

cout << sep << i;
sep = ", ";

}
cout << "] ";

}

The above prints: [1, 2, 2, 3] [0, 4, 5] [2] —end example]
26.7.26.2 Class template chunk_by_view [range.chunk.by.view]
namespace std::ranges {

template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class chunk_by_view : public view_interface<chunk_by_view<V, Pred>> {
V base_ = V(); // exposition only
copyable-box<Pred> pred_ = Pred(); // exposition only
// 26.7.26.3, class chunk_by_view::iterator
class iterator; // exposition only

public:
chunk_by_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr explicit chunk_by_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr iterator begin();
constexpr auto end();

constexpr iterator_t<V> find-next(iterator_t<V>); // exposition only
constexpr iterator_t<V> find-prev(iterator_t<V>) // exposition only
requires bidirectional_range<V>;

};

template<class R, class Pred>
chunk_by_view(R&&, Pred) -> chunk_by_view<views::all_t<R>, Pred>;

}

constexpr explicit chunk_by_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and pred_ with std::move(pred).
constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

constexpr iterator begin();

3 Preconditions: pred_.has_value() is true.
4 Returns: iterator(*this, ranges::begin(base_), find-next(ranges::begin(base_))).
5 Remarks: In order to provide the amortized constant-time complexity required by the range concept, this functioncaches the result within the chunk_by_view for use on subsequent calls.

constexpr auto end();

6 Effects: Equivalent to:
if constexpr (common_range<V>) {
return iterator(*this, ranges::end(base_), ranges::end(base_));

} else {

§ 26.7.26.2 1125

© ISO/IEC N4910

return default_sentinel;
}

constexpr iterator_t<V> find-next(iterator_t<V> current);

7 Preconditions: pred_.has_value() is true.
8 Returns:

ranges::next(ranges::adjacent_find(current, ranges::end(base_), not_fn(ref(*pred_))),
1, ranges::end(base_))

constexpr iterator_t<V> find-prev(iterator_t<V> current) requires bidirectional_range<V>;

9 Preconditions:
—(9.1) current is not equal to ranges::begin(base_).
—(9.2) pred_.has_value() is true.

10 Returns: An iterator i in the range [ranges::begin(base_), current) such that:
—(10.1) ranges::adjacent_find(i, current, not_fn(ref(*pred_))) is equal to current; and
—(10.2) if i is not equal to ranges::begin(base_), then bool(invoke(*pred_, *ranges::prev(i), *i)) is

false.
26.7.26.3 Class chunk_by_view::iterator [range.chunk.by.iter]
namespace std::ranges {

template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class chunk_by_view<V, Pred>::iterator {
chunk_by_view* parent_ = nullptr; // exposition only
iterator_t<V> current_ = iterator_t<V>(); // exposition only
iterator_t<V> next_ = iterator_t<V>(); // exposition only
constexpr iterator(chunk_by_view& parent, iterator_t<V> current, // exposition only

iterator_t<V> next);

public:
using value_type = subrange<iterator_t<V>>;
using difference_type = range_difference_t<V>;
using iterator_category = input_iterator_tag;
using iterator_concept = see below;

iterator() = default;

constexpr value_type operator*() const;
constexpr iterator& operator++();
constexpr iterator operator++(int);

constexpr iterator& operator--() requires bidirectional_range<V>;
constexpr iterator operator--(int) requires bidirectional_range<V>;

friend constexpr bool operator==(const iterator& x, const iterator& y);
friend constexpr bool operator==(const iterator& x, default_sentinel_t);

};
}

1 iterator::iterator_concept is defined as follows:
—(1.1) If V models bidirectional_range, then iterator_concept denotes bidirectional_iterator_tag.
—(1.2) Otherwise, iterator_concept denotes forward_iterator_tag.

constexpr iterator(chunk_by_view& parent, iterator_t<V> current, iterator_t<V> next);

2 Effects: Initializes parent_ with addressof(parent), current_ with current, and next_ with next.

§ 26.7.26.3 1126

© ISO/IEC N4910

constexpr value_type operator*() const;

3 Preconditions: current_ is not equal to next_.
4 Returns: subrange(current_, next_).

constexpr iterator& operator++();

5 Preconditions: current_ is not equal to next_.
6 Effects: Equivalent to:

current_ = next_;
next_ = parent_->find-next(current_);
return *this;

constexpr iterator operator++(int);

7 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator& operator--() requires bidirectional_range<V>;

8 Effects: Equivalent to:
next_ = current_;
current_ = parent_->find-prev(next_);
return *this;

constexpr iterator operator--(int) requires bidirectional_range<V>;

9 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator& x, const iterator& y);

10 Returns: x.current_ == y.current_.
friend constexpr bool operator==(const iterator& x, default_sentinel_t);

11 Returns: x.current_ == x.next_.

§ 26.7.26.3 1127

© ISO/IEC N4910

27 Algorithms library [algorithms]
27.1 General [algorithms.general]

1 This Clause describes components that C++ programs may use to perform algorithmic operations on containers (Clause24) and other sequences.
2 The following subclauses describe components for non-modifying sequence operations, mutating sequence operations,sorting and related operations, and algorithms from the ISO C library, as summarized in Table 89.

Table 89: Algorithms library summary [tab:algorithms.summary]
Subclause Header

27.2 Algorithms requirements27.3 Parallel algorithms27.5 Algorithm result types <algorithm>27.6 Non-modifying sequence operations27.7 Mutating sequence operations27.8 Sorting and related operations27.10 Generalized numeric operations <numeric>27.11 Specialized <memory> algorithms <memory>27.12 C library algorithms <cstdlib>

27.2 Algorithms requirements [algorithms.requirements]
1 All of the algorithms are separated from the particular implementations of data structures and are parameterized byiterator types. Because of this, they can work with program-defined data structures, as long as these data structures haveiterator types satisfying the assumptions on the algorithms.
2 The entities defined in the std::ranges namespace in this Clause are not found by argument-dependent name lookup(6.5.4). When found by unqualified (6.5.3) name lookup for the postfix-expression in a function call (7.6.1.3), theyinhibit argument-dependent name lookup.
[Example 1:
void foo() {

using namespace std::ranges;
std::vector<int> vec{1,2,3};
find(begin(vec), end(vec), 2); // #1

}

The function call expression at #1 invokes std::ranges::find, not std::find, despite that (a) the iterator type returned from
begin(vec) and end(vec)may be associatedwith namespace std and (b) std::find is more specialized (13.7.7.3) than std::ranges::findsince the former requires its first two parameters to have the same type. —end example]

3 For purposes of determining the existence of data races, algorithms shall not modify objects referenced through aniterator argument unless the specification requires such modification.
4 Throughout this Clause, where the template parameters are not constrained, the names of template parameters are usedto express type requirements.

—(4.1) If an algorithm’s template parameter is named InputIterator, InputIterator1, or InputIterator2, the tem-plate argument shall meet the Cpp17InputIterator requirements (25.3.5.3).
—(4.2) If an algorithm’s template parameter is named OutputIterator, OutputIterator1, or OutputIterator2, thetemplate argument shall meet the Cpp17OutputIterator requirements (25.3.5.4).
—(4.3) If an algorithm’s template parameter is named ForwardIterator, ForwardIterator1, or ForwardIterator2, thetemplate argument shall meet the Cpp17ForwardIterator requirements (25.3.5.5).
—(4.4) If an algorithm’s template parameter is named NoThrowForwardIterator, the template argument shall meet theCpp17ForwardIterator requirements (25.3.5.5), and is required to have the property that no exceptions are thrownfrom increment, assignment, or comparison of, or indirection through, valid iterators.

§ 27.2 1128

© ISO/IEC N4910

—(4.5) If an algorithm’s template parameter is named BidirectionalIterator, BidirectionalIterator1, or BidirectionalIterator2,the template argument shall meet the Cpp17BidirectionalIterator requirements (25.3.5.6).
—(4.6) If an algorithm’s template parameter is named RandomAccessIterator, RandomAccessIterator1, or RandomAccessIterator2,the template argument shall meet the Cpp17RandomAccessIterator requirements (25.3.5.7).

5 If an algorithm’s Effects: element specifies that a value pointed to by any iterator passed as an argument is modified,then that algorithm has an additional type requirement: The type of that argument shall meet the requirements of amutable iterator (25.3).
[Note 1: This requirement does not affect arguments that are named OutputIterator, OutputIterator1, or OutputIterator2,because output iterators must always be mutable, nor does it affect arguments that are constrained, for which mutability requirementsare expressed explicitly. —end note]

6 Both in-place and copying versions are provided for certain algorithms.220 When such a version is provided for algorithmit is called algorithm_copy. Algorithms that take predicates end with the suffix _if (which follows the suffix _copy).
7 When not otherwise constrained, the Predicate parameter is used whenever an algorithm expects a function object(22.10) that, when applied to the result of dereferencing the corresponding iterator, returns a value testable as true. Inother words, if an algorithm takes Predicate pred as its argument and first as its iterator argument with value type T,it should work correctly in the construct pred(*first) contextually converted to bool (7.3). The function object predshall not apply any non-constant function through the dereferenced iterator. Given a glvalue u of type (possibly const)

T that designates the same object as *first, pred(u) shall be a valid expression that is equal to pred(*first).
8 When not otherwise constrained, the BinaryPredicate parameter is used whenever an algorithm expects a functionobject that when applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type

T when T is part of the signature returns a value testable as true. In other words, if an algorithm takes BinaryPredicate
binary_pred as its argument and first1 and first2 as its iterator arguments with respective value types T1 and T2, itshould work correctly in the construct binary_pred(*first1, *first2) contextually converted to bool (7.3). Unlessotherwise specified, BinaryPredicate always takes the first iterator’s value_type as its first argument, that is, in thosecases when T value is part of the signature, it should work correctly in the construct binary_pred(*first1, value)contextually converted to bool (7.3). binary_pred shall not apply any non-constant function through the dereferencediterators. Given a glvalue u of type (possibly const) T1 that designates the same object as *first1, and a glvalue v of type(possibly const) T2 that designates the same object as *first2, binary_pred(u, *first2), binary_pred(*first1,
v), and binary_pred(u, v) shall each be a valid expression that is equal to binary_pred(*first1, *first2), and
binary_pred(u, value) shall be a valid expression that is equal to binary_pred(*first1, value).

9 The parameters UnaryOperation, BinaryOperation, BinaryOperation1, and BinaryOperation2 are used wheneveran algorithm expects a function object (22.10).
10 [Note 2: Unless otherwise specified, algorithms that take function objects as arguments can copy those function objects freely. If objectidentity is important, a wrapper class that points to a noncopied implementation object such as reference_wrapper<T> (22.10.6), orsome equivalent solution, can be used. —end note]
11 When the description of an algorithm gives an expression such as *first == value for a condition, the expressionshall evaluate to either true or false in boolean contexts.
12 In the description of the algorithms, operator + is used for some of the iterator categories for which it does not have tobe defined. In these cases the semantics of a + n are the same as those of

auto tmp = a;
for (; n < 0; ++n) --tmp;
for (; n > 0; --n) ++tmp;
return tmp;

Similarly, operator - is used for some combinations of iterators and sentinel types for which it does not have to bedefined. If [a, b) denotes a range, the semantics of b - a in these cases are the same as those of
iter_difference_t<decltype(a)> n = 0;
for (auto tmp = a; tmp != b; ++tmp) ++n;
return n;

and if [b, a) denotes a range, the same as those of
iter_difference_t<decltype(b)> n = 0;
for (auto tmp = b; tmp != a; ++tmp) --n;

220) The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the operationdominates the cost of copy, the copying version is not included. For example, sort_copy is not included because the cost of sorting is much moresignificant, and users can invoke copy followed by sort.
§ 27.2 1129

© ISO/IEC N4910

return n;

13 In the description of the algorithms, given an iterator a whose difference type is D, and an expression n of integer-liketype other than cv D, the semantics of a + n and a - n are, respectively, those of a + D(n) and a - D(n).
14 In the description of algorithm return values, a sentinel value s denoting the end of a range [i, s) is sometimes returnedwhere an iterator is expected. In these cases, the semantics are as if the sentinel is converted into an iterator using

ranges::next(i, s).
15 Overloads of algorithms that take range arguments (26.4.2) behave as if they are implemented by calling ranges::beginand ranges::end on the range(s) and dispatching to the overload in namespace ranges that takes separate iterator andsentinel arguments.
16 The well-formedness and behavior of a call to an algorithm with an explicitly-specified template argument list isunspecified, except where explicitly stated otherwise.

[Note 3: Consequently, an implementation can declare an algorithm with different template parameters than those presented. —endnote]
27.3 Parallel algorithms [algorithms.parallel]
27.3.1 Preamble [algorithms.parallel.defns]

1 Subclause 27.3 describes components that C++ programs may use to perform operations on containers and othersequences in parallel.
2 A parallel algorithm is a function template listed in this document with a template parameter named ExecutionPolicy.
3 Parallel algorithms access objects indirectly accessible via their arguments by invoking the following functions:

—(3.1) All operations of the categories of the iterators that the algorithm is instantiated with.
—(3.2) Operations on those sequence elements that are required by its specification.
—(3.3) User-provided function objects to be applied during the execution of the algorithm, if required by the specification.
—(3.4) Operations on those function objects required by the specification.

[Note 1: See 27.2. —end note]
These functions are herein called element access functions.
[Example 1: The sort function may invoke the following element access functions:
—(3.5) Operations of the random-access iterator of the actual template argument (as per 25.3.5.7), as implied by the name of thetemplate parameter RandomAccessIterator.
—(3.6) The swap function on the elements of the sequence (as per the preconditions specified in 27.8.2.1).
—(3.7) The user-provided Compare function object.

—end example]
4 A standard library function is vectorization-unsafe if it is specified to synchronize with another function invocation,or another function invocation is specified to synchronize with it, and if it is not a memory allocation or deallocationfunction.
[Note 2: Implementations must ensure that internal synchronization inside standard library functions does not prevent forwardprogress when those functions are executed by threads of execution with weakly parallel forward progress guarantees. —end note]
[Example 2:
int x = 0;
std::mutex m;
void f() {

int a[] = {1,2};
std::for_each(std::execution::par_unseq, std::begin(a), std::end(a), [&](int) {
std::lock_guard<mutex> guard(m); // incorrect: lock_guard constructor calls m.lock()

++x;
});

}

The above program may result in two consecutive calls to m.lock() on the same thread of execution (which may deadlock), becausethe applications of the function object are not guaranteed to run on different threads of execution. —end example]

§ 27.3.1 1130

© ISO/IEC N4910

27.3.2 Requirements on user-provided function objects [algorithms.parallel.user]
1 Unless otherwise specified, function objects passed into parallel algorithms as objects of type Predicate, BinaryPredicate,

Compare, UnaryOperation, BinaryOperation, BinaryOperation1, BinaryOperation2, and the operators used by theanalogous overloads to these parallel algorithms that are formed by an invocation with the specified default predicate oroperation (where applicable) shall not directly or indirectly modify objects via their arguments, nor shall they rely onthe identity of the provided objects.
27.3.3 Effect of execution policies on algorithm execution [algorithms.parallel.exec]

1 Parallel algorithms have template parameters named ExecutionPolicy (22.12) which describe the manner in which theexecution of these algorithms may be parallelized and the manner in which they apply the element access functions.
2 If an object is modified by an element access function, the algorithm will perform no other unsynchronized accesses tothat object. The modifying element access functions are those which are specified as modifying the object.
[Note 1: For example, swap, ++, --, @=, and assignments modify the object. For the assignment and @= operators, only the leftargument is modified. —end note]

3 Unless otherwise stated, implementations may make arbitrary copies of elements (with type T) from sequences where
is_trivially_copy_constructible_v<T> and is_trivially_destructible_v<T> are true.
[Note 2: This implies that user-supplied function objects cannot rely on object identity of arguments for such input sequences. Ifobject identity of the arguments to these function objects is important, a wrapping iterator that returns a non-copied implementationobject such as reference_wrapper<T> (22.10.6), or some equivalent solution, can be used. —end note]

4 The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
execution::sequenced_policy all occur in the calling thread of execution.
[Note 3: The invocations are not interleaved; see 6.9.1. —end note]

5 The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
execution::unsequenced_policy are permitted to execute in an unordered fashion in the calling thread of execution,unsequenced with respect to one another in the calling thread of execution.
[Note 4: This means that multiple function object invocations can be interleaved on a single thread of execution, which overrides theusual guarantee from 6.9.1 that function executions do not overlap with one another. —end note]
The behavior of a program is undefined if it invokes a vectorization-unsafe standard library function from user codecalled from a execution::unsequenced_policy algorithm.
[Note 5: Because execution::unsequenced_policy allows the execution of element access functions to be interleaved on a singlethread of execution, blocking synchronization, including the use of mutexes, risks deadlock. —end note]

6 The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
execution::parallel_policy are permitted to execute either in the invoking thread of execution or in a thread ofexecution implicitly created by the library to support parallel algorithm execution. If the threads of execution createdby thread (33.4.3) or jthread (33.4.4) provide concurrent forward progress guarantees (6.9.2.3), then a thread ofexecution implicitly created by the library will provide parallel forward progress guarantees; otherwise, the providedforward progress guarantee is implementation-defined. Any such invocations executing in the same thread of executionare indeterminately sequenced with respect to each other.
[Note 6: It is the caller’s responsibility to ensure that the invocation does not introduce data races or deadlocks. —end note]
[Example 1:
int a[] = {0,1};
std::vector<int> v;
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int i) {

v.push_back(i*2+1); // incorrect: data race
});

The program above has a data race because of the unsynchronized access to the container v. —end example]
[Example 2:
std::atomic<int> x{0};
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

x.fetch_add(1, std::memory_order::relaxed);// spin wait for another iteration to change the value of x
while (x.load(std::memory_order::relaxed) == 1) { } // incorrect: assumes execution order

});

§ 27.3.3 1131

© ISO/IEC N4910

The above example depends on the order of execution of the iterations, and will not terminate if both iterations are executedsequentially on the same thread of execution. —end example]
[Example 3:
int x = 0;
std::mutex m;
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m);
++x;

});

The above example synchronizes access to object x ensuring that it is incremented correctly. —end example]
7 The invocations of element access functions in parallel algorithms invoked with an execution policy object of type

execution::parallel_unsequenced_policy are permitted to execute in an unordered fashion in unspecified threadsof execution, and unsequenced with respect to one another within each thread of execution. These threads of executionare either the invoking thread of execution or threads of execution implicitly created by the library; the latter willprovide weakly parallel forward progress guarantees.
[Note 7: This means that multiple function object invocations can be interleaved on a single thread of execution, which overrides theusual guarantee from 6.9.1 that function executions do not overlap with one another. —end note]
The behavior of a program is undefined if it invokes a vectorization-unsafe standard library function from user codecalled from a execution::parallel_unsequenced_policy algorithm.
[Note 8: Because execution::parallel_unsequenced_policy allows the execution of element access functions to be interleavedon a single thread of execution, blocking synchronization, including the use of mutexes, risks deadlock. —end note]

8 [Note 9: The semantics of invocationwith execution::unsequenced_policy, execution::parallel_policy, or execution::parallel_-
unsequenced_policy allow the implementation to fall back to sequential execution if the system cannot parallelize an algorithminvocation, e.g., due to lack of resources. —end note]

9 If an invocation of a parallel algorithm uses threads of execution implicitly created by the library, then the invokingthread of execution will either
—(9.1) temporarily block with forward progress guarantee delegation (6.9.2.3) on the completion of these library-managedthreads of execution, or
—(9.2) eventually execute an element access function;

the thread of execution will continue to do so until the algorithm is finished.
[Note 10: In blocking with forward progress guarantee delegation in this context, a thread of execution created by the library isconsidered to have finished execution as soon as it has finished the execution of the particular element access function that theinvoking thread of execution logically depends on. —end note]

10 The semantics of parallel algorithms invoked with an execution policy object of implementation-defined type areimplementation-defined.
27.3.4 Parallel algorithm exceptions [algorithms.parallel.exceptions]

1 During the execution of a parallel algorithm, if temporary memory resources are required for parallelization and noneare available, the algorithm throws a bad_alloc exception.
2 During the execution of a parallel algorithm, if the invocation of an element access function exits via an uncaughtexception, the behavior is determined by the ExecutionPolicy.
27.3.5 ExecutionPolicy algorithm overloads [algorithms.parallel.overloads]

1 Parallel algorithms are algorithm overloads. Each parallel algorithm overload has an additional template type parameternamed ExecutionPolicy, which is the first template parameter. Additionally, each parallel algorithm overload has anadditional function parameter of type ExecutionPolicy&&, which is the first function parameter.
[Note 1: Not all algorithms have parallel algorithm overloads. —end note]

2 Unless otherwise specified, the semantics of ExecutionPolicy algorithm overloads are identical to their overloadswithout.
3 Unless otherwise specified, the complexity requirements of ExecutionPolicy algorithm overloads are relaxed from thecomplexity requirements of the overloads without as follows: when the guarantee says “at most expr” or “exactly expr”

§ 27.3.5 1132

© ISO/IEC N4910

and does not specify the number of assignments or swaps, and expr is not already expressed with O() notation, thecomplexity of the algorithm shall be O(expr).
4 Parallel algorithms shall not participate in overload resolution unless is_execution_policy_v<remove_cvref_t<ExecutionPolicy>>is true.
27.4 Header <algorithm> synopsis [algorithm.syn]
#include <initializer_list>

namespace std {
namespace ranges {// 27.5, algorithm result types
template<class I, class F>

struct in_fun_result;

template<class I1, class I2>
struct in_in_result;

template<class I, class O>
struct in_out_result;

template<class I1, class I2, class O>
struct in_in_out_result;

template<class I, class O1, class O2>
struct in_out_out_result;

template<class T>
struct min_max_result;

template<class I>
struct in_found_result;

template<class O, class T>
struct out_value_result;

}

// 27.6, non-modifying sequence operations// 27.6.1, all of
template<class InputIterator, class Predicate>
constexpr bool all_of(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool all_of(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool all_of(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool all_of(R&& r, Pred pred, Proj proj = {});
}

// 27.6.2, any of
template<class InputIterator, class Predicate>
constexpr bool any_of(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool any_of(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Predicate pred);

§ 27.4 1133

© ISO/IEC N4910

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool any_of(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool any_of(R&& r, Pred pred, Proj proj = {});
}

// 27.6.3, none of
template<class InputIterator, class Predicate>
constexpr bool none_of(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool none_of(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool none_of(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool none_of(R&& r, Pred pred, Proj proj = {});
}

// 27.6.4, for each
template<class InputIterator, class Function>
constexpr Function for_each(InputIterator first, InputIterator last, Function f);

template<class ExecutionPolicy, class ForwardIterator, class Function>
void for_each(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Function f);

namespace ranges {
template<class I, class F>

using for_each_result = in_fun_result<I, F>;

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr for_each_result<I, Fun>
for_each(I first, S last, Fun f, Proj proj = {});

template<input_range R, class Proj = identity,
indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun>

constexpr for_each_result<borrowed_iterator_t<R>, Fun>
for_each(R&& r, Fun f, Proj proj = {});

}

template<class InputIterator, class Size, class Function>
constexpr InputIterator for_each_n(InputIterator first, Size n, Function f);

template<class ExecutionPolicy, class ForwardIterator, class Size, class Function>
ForwardIterator for_each_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, Function f);

namespace ranges {
template<class I, class F>

using for_each_n_result = in_fun_result<I, F>;

template<input_iterator I, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr for_each_n_result<I, Fun>
for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});

}

§ 27.4 1134

© ISO/IEC N4910

// 27.6.5, find
template<class InputIterator, class T>
constexpr InputIterator find(InputIterator first, InputIterator last,

const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
ForwardIterator find(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
const T& value);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
ForwardIterator find_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Predicate pred);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if_not(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
ForwardIterator find_if_not(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr I find(I first, S last, const T& value, Proj proj = {});

template<input_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to,

projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_iterator_t<R>

find(R&& r, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr I find_if(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr borrowed_iterator_t<R>
find_if(R&& r, Pred pred, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I find_if_not(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>

find_if_not(R&& r, Pred pred, Proj proj = {});
}

// 27.6.6, find end
template<class ForwardIterator1, class ForwardIterator2>
constexpr ForwardIterator1

find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
constexpr ForwardIterator1

find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_end(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

§ 27.4 1135

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator1,
class ForwardIterator2, class BinaryPredicate>

ForwardIterator1
find_end(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>

find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>

find_end(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.7, find first
template<class InputIterator, class ForwardIterator>
constexpr InputIterator

find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2);

template<class InputIterator, class ForwardIterator, class BinaryPredicate>
constexpr InputIterator

find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1,
class ForwardIterator2, class BinaryPredicate>

ForwardIterator1
find_first_of(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr I1 find_first_of(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, forward_range R2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_iterator_t<R1>

find_first_of(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.8, adjacent find
template<class ForwardIterator>
constexpr ForwardIterator

adjacent_find(ForwardIterator first, ForwardIterator last);

§ 27.4 1136

© ISO/IEC N4910

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator

adjacent_find(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

adjacent_find(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>
ForwardIterator

adjacent_find(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_binary_predicate<projected<I, Proj>,
projected<I, Proj>> Pred = ranges::equal_to>

constexpr I adjacent_find(I first, S last, Pred pred = {},
Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_binary_predicate<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
constexpr borrowed_iterator_t<R>

adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
}

// 27.6.9, count
template<class InputIterator, class T>
constexpr typename iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
typename iterator_traits<ForwardIterator>::difference_type

count(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, const T& value);

template<class InputIterator, class Predicate>
constexpr typename iterator_traits<InputIterator>::difference_type

count_if(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
typename iterator_traits<ForwardIterator>::difference_type

count_if(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr iter_difference_t<I>

count(I first, S last, const T& value, Proj proj = {});
template<input_range R, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T*>

constexpr range_difference_t<R>
count(R&& r, const T& value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr iter_difference_t<I>
count_if(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr range_difference_t<R>
count_if(R&& r, Pred pred, Proj proj = {});

}

§ 27.4 1137

© ISO/IEC N4910

// 27.6.10, mismatch
template<class InputIterator1, class InputIterator2>
constexpr pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template<class InputIterator1, class InputIterator2, class BinaryPredicate>
constexpr pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
constexpr pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class BinaryPredicate>
constexpr pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<class I1, class I2>

using mismatch_result = in_in_result<I1, I2>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr mismatch_result<I1, I2>

mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

mismatch(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.11, equal
template<class InputIterator1, class InputIterator2>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);

§ 27.4 1138

© ISO/IEC N4910

template<class InputIterator1, class InputIterator2, class BinaryPredicate>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool equal(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool equal(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool equal(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool equal(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
}

// 27.6.12, is permutation
template<class ForwardIterator1, class ForwardIterator2>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,

sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<I1, Proj1>,

projected<I2, Proj2>> Pred = ranges::equal_to>

§ 27.4 1139

© ISO/IEC N4910

constexpr bool is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>
Pred = ranges::equal_to>

constexpr bool is_permutation(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.13, search
template<class ForwardIterator1, class ForwardIterator2>
constexpr ForwardIterator1

search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
constexpr ForwardIterator1

search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

search(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,

sentinel_for<I2> S2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>

search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>

search(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class ForwardIterator, class Size, class T>
constexpr ForwardIterator

search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value);

template<class ForwardIterator, class Size, class T, class BinaryPredicate>
constexpr ForwardIterator

search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
ForwardIterator

search_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Size count, const T& value);

§ 27.4 1140

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Size count, const T& value,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T,

class Pred = ranges::equal_to, class Proj = identity>
requires indirectly_comparable<I, const T*, Pred, Proj>
constexpr subrange<I>

search_n(I first, S last, iter_difference_t<I> count,
const T& value, Pred pred = {}, Proj proj = {});

template<forward_range R, class T, class Pred = ranges::equal_to,
class Proj = identity>

requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj>
constexpr borrowed_subrange_t<R>

search_n(R&& r, range_difference_t<R> count,
const T& value, Pred pred = {}, Proj proj = {});

}

template<class ForwardIterator, class Searcher>
constexpr ForwardIterator

search(ForwardIterator first, ForwardIterator last, const Searcher& searcher);

namespace ranges {// 27.6.14, starts with
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool starts_with(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

// 27.6.15, ends with
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) &&

(forward_iterator<I2> || sized_sentinel_for<S2, I2>) &&
indirectly_comparable<I1, I2, Pred, Proj1, Proj2>

constexpr bool ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires (forward_range<R1> || sized_range<R1>) &&
(forward_range<R2> || sized_range<R2>) &&
indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>

constexpr bool ends_with(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.7, mutating sequence operations// 27.7.1, copy
template<class InputIterator, class OutputIterator>
constexpr OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator result);

§ 27.4 1141

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr copy_result<I, O>

copy(I first, S last, O result);
template<input_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr copy_result<borrowed_iterator_t<R>, O>

copy(R&& r, O result);
}

template<class InputIterator, class Size, class OutputIterator>
constexpr OutputIterator copy_n(InputIterator first, Size n,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class Size,

class ForwardIterator2>
ForwardIterator2 copy_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, Size n,
ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using copy_n_result = in_out_result<I, O>;

template<input_iterator I, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr copy_n_result<I, O>

copy_n(I first, iter_difference_t<I> n, O result);
}

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class Predicate>
ForwardIterator2 copy_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

namespace ranges {
template<class I, class O>

using copy_if_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr copy_if_result<I, O>

copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires indirectly_copyable<iterator_t<R>, O>
constexpr copy_if_result<borrowed_iterator_t<R>, O>

copy_if(R&& r, O result, Pred pred, Proj proj = {});
}

§ 27.4 1142

© ISO/IEC N4910

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2

copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

namespace ranges {
template<class I1, class I2>

using copy_backward_result = in_out_result<I1, I2>;

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_copyable<I1, I2>
constexpr copy_backward_result<I1, I2>

copy_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>

requires indirectly_copyable<iterator_t<R>, I>
constexpr copy_backward_result<borrowed_iterator_t<R>, I>

copy_backward(R&& r, I result);
}

// 27.7.2, move
template<class InputIterator, class OutputIterator>
constexpr OutputIterator move(InputIterator first, InputIterator last,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1,

class ForwardIterator2>
ForwardIterator2 move(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using move_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_movable<I, O>
constexpr move_result<I, O>

move(I first, S last, O result);
template<input_range R, weakly_incrementable O>

requires indirectly_movable<iterator_t<R>, O>
constexpr move_result<borrowed_iterator_t<R>, O>

move(R&& r, O result);
}

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2

move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

namespace ranges {
template<class I1, class I2>

using move_backward_result = in_out_result<I1, I2>;

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_movable<I1, I2>
constexpr move_backward_result<I1, I2>

move_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>

requires indirectly_movable<iterator_t<R>, I>
constexpr move_backward_result<borrowed_iterator_t<R>, I>

move_backward(R&& r, I result);
}

§ 27.4 1143

© ISO/IEC N4910

// 27.7.3, swap
template<class ForwardIterator1, class ForwardIterator2>
constexpr ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

namespace ranges {
template<class I1, class I2>

using swap_ranges_result = in_in_result<I1, I2>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2>
requires indirectly_swappable<I1, I2>
constexpr swap_ranges_result<I1, I2>

swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);
template<input_range R1, input_range R2>

requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>>
constexpr swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

swap_ranges(R1&& r1, R2&& r2);
}

template<class ForwardIterator1, class ForwardIterator2>
constexpr void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

// 27.7.4, transform
template<class InputIterator, class OutputIterator, class UnaryOperation>
constexpr OutputIterator

transform(InputIterator first1, InputIterator last1,
OutputIterator result, UnaryOperation op);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class BinaryOperation>

constexpr OutputIterator
transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class UnaryOperation>

ForwardIterator2
transform(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 result, UnaryOperation op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class BinaryOperation>

ForwardIterator
transform(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator result,
BinaryOperation binary_op);

namespace ranges {
template<class I, class O>

using unary_transform_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
copy_constructible F, class Proj = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>>
constexpr unary_transform_result<I, O>

transform(I first1, S last1, O result, F op, Proj proj = {});
template<input_range R, weakly_incrementable O, copy_constructible F,

class Proj = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
constexpr unary_transform_result<borrowed_iterator_t<R>, O>

§ 27.4 1144

© ISO/IEC N4910

transform(R&& r, O result, F op, Proj proj = {});

template<class I1, class I2, class O>
using binary_transform_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, copy_constructible F, class Proj1 = identity,
class Proj2 = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>,
projected<I2, Proj2>>>

constexpr binary_transform_result<I1, I2, O>
transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,

F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

copy_constructible F, class Proj1 = identity, class Proj2 = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>>
constexpr binary_transform_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

transform(R1&& r1, R2&& r2, O result,
F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.7.5, replace
template<class ForwardIterator, class T>
constexpr void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class T>
void replace(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);

template<class ForwardIterator, class Predicate, class T>
constexpr void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class Predicate, class T>
void replace_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class T1, class T2, class Proj = identity>

requires indirectly_writable<I, const T2&> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>

constexpr I
replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {});

template<input_range R, class T1, class T2, class Proj = identity>
requires indirectly_writable<iterator_t<R>, const T2&> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T1*>

constexpr borrowed_iterator_t<R>
replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_writable<I, const T&>
constexpr I replace_if(I first, S last, Pred pred, const T& new_value, Proj proj = {});

template<input_range R, class T, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_writable<iterator_t<R>, const T&>
constexpr borrowed_iterator_t<R>

replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {});
}

§ 27.4 1145

© ISO/IEC N4910

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2 replace_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
const T& old_value, const T& new_value);

template<class InputIterator, class OutputIterator, class Predicate, class T>
constexpr OutputIterator replace_copy_if(InputIterator first, InputIterator last,

OutputIterator result,
Predicate pred, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate, class T>

ForwardIterator2 replace_copy_if(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
Predicate pred, const T& new_value);

namespace ranges {
template<class I, class O>

using replace_copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, class T1, class T2,
output_iterator<const T2&> O, class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>

constexpr replace_copy_result<I, O>
replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value,

Proj proj = {});
template<input_range R, class T1, class T2, output_iterator<const T2&> O,

class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T1*>

constexpr replace_copy_result<borrowed_iterator_t<R>, O>
replace_copy(R&& r, O result, const T1& old_value, const T2& new_value,

Proj proj = {});

template<class I, class O>
using replace_copy_if_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, class T, output_iterator<const T&> O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr replace_copy_if_result<I, O>

replace_copy_if(I first, S last, O result, Pred pred, const T& new_value,
Proj proj = {});

template<input_range R, class T, output_iterator<const T&> O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr replace_copy_if_result<borrowed_iterator_t<R>, O>

replace_copy_if(R&& r, O result, Pred pred, const T& new_value,
Proj proj = {});

}

// 27.7.6, fill
template<class ForwardIterator, class T>
constexpr void fill(ForwardIterator first, ForwardIterator last, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
void fill(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, const T& value);

§ 27.4 1146

© ISO/IEC N4910

template<class OutputIterator, class Size, class T>
constexpr OutputIterator fill_n(OutputIterator first, Size n, const T& value);

template<class ExecutionPolicy, class ForwardIterator,
class Size, class T>

ForwardIterator fill_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, Size n, const T& value);

namespace ranges {
template<class T, output_iterator<const T&> O, sentinel_for<O> S>

constexpr O fill(O first, S last, const T& value);
template<class T, output_range<const T&> R>

constexpr borrowed_iterator_t<R> fill(R&& r, const T& value);
template<class T, output_iterator<const T&> O>

constexpr O fill_n(O first, iter_difference_t<O> n, const T& value);
}

// 27.7.7, generate
template<class ForwardIterator, class Generator>
constexpr void generate(ForwardIterator first, ForwardIterator last,

Generator gen);
template<class ExecutionPolicy, class ForwardIterator, class Generator>
void generate(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Generator gen);

template<class OutputIterator, class Size, class Generator>
constexpr OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

template<class ExecutionPolicy, class ForwardIterator, class Size, class Generator>
ForwardIterator generate_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, Generator gen);

namespace ranges {
template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F>

requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O generate(O first, S last, F gen);

template<class R, copy_constructible F>
requires invocable<F&> && output_range<R, invoke_result_t<F&>>
constexpr borrowed_iterator_t<R> generate(R&& r, F gen);

template<input_or_output_iterator O, copy_constructible F>
requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O generate_n(O first, iter_difference_t<O> n, F gen);

}

// 27.7.8, remove
template<class ForwardIterator, class T>
constexpr ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
ForwardIterator remove(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
ForwardIterator remove_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Predicate pred);

namespace ranges {
template<permutable I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr subrange<I> remove(I first, S last, const T& value, Proj proj = {});

§ 27.4 1147

© ISO/IEC N4910

template<forward_range R, class T, class Proj = identity>
requires permutable<iterator_t<R>> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T*>

constexpr borrowed_subrange_t<R>
remove(R&& r, const T& value, Proj proj = {});

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> remove_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

remove_if(R&& r, Pred pred, Proj proj = {});
}

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator

remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class T>

ForwardIterator2
remove_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator

remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate>

ForwardIterator2
remove_copy_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

namespace ranges {
template<class I, class O>

using remove_copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class T,
class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>

constexpr remove_copy_result<I, O>
remove_copy(I first, S last, O result, const T& value, Proj proj = {});

template<input_range R, weakly_incrementable O, class T, class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T*>

constexpr remove_copy_result<borrowed_iterator_t<R>, O>
remove_copy(R&& r, O result, const T& value, Proj proj = {});

template<class I, class O>
using remove_copy_if_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr remove_copy_if_result<I, O>

remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});

§ 27.4 1148

© ISO/IEC N4910

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr remove_copy_if_result<borrowed_iterator_t<R>, O>

remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});
}

// 27.7.9, unique
template<class ForwardIterator>
constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator unique(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

namespace ranges {
template<permutable I, sentinel_for<I> S, class Proj = identity,

indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>
constexpr subrange<I> unique(I first, S last, C comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

unique(R&& r, C comp = {}, Proj proj = {});
}

template<class InputIterator, class OutputIterator>
constexpr OutputIterator

unique_copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
constexpr OutputIterator

unique_copy(InputIterator first, InputIterator last,
OutputIterator result, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

unique_copy(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator2
unique_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryPredicate pred);

namespace ranges {
template<class I, class O>

using unique_copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>

requires indirectly_copyable<I, O> &&
(forward_iterator<I> ||
(input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) ||
indirectly_copyable_storable<I, O>)

constexpr unique_copy_result<I, O>
unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});

§ 27.4 1149

© ISO/IEC N4910

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>

requires indirectly_copyable<iterator_t<R>, O> &&
(forward_iterator<iterator_t<R>> ||
(input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) ||
indirectly_copyable_storable<iterator_t<R>, O>)

constexpr unique_copy_result<borrowed_iterator_t<R>, O>
unique_copy(R&& r, O result, C comp = {}, Proj proj = {});

}

// 27.7.10, reverse
template<class BidirectionalIterator>
constexpr void reverse(BidirectionalIterator first, BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator>
void reverse(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first, BidirectionalIterator last);

namespace ranges {
template<bidirectional_iterator I, sentinel_for<I> S>

requires permutable<I>
constexpr I reverse(I first, S last);

template<bidirectional_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_iterator_t<R> reverse(R&& r);

}

template<class BidirectionalIterator, class OutputIterator>
constexpr OutputIterator

reverse_copy(BidirectionalIterator first, BidirectionalIterator last,
OutputIterator result);

template<class ExecutionPolicy, class BidirectionalIterator, class ForwardIterator>
ForwardIterator

reverse_copy(ExecutionPolicy&& exec, // see 27.3.5
BidirectionalIterator first, BidirectionalIterator last,
ForwardIterator result);

namespace ranges {
template<class I, class O>

using reverse_copy_result = in_out_result<I, O>;

template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr reverse_copy_result<I, O>

reverse_copy(I first, S last, O result);
template<bidirectional_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr reverse_copy_result<borrowed_iterator_t<R>, O>

reverse_copy(R&& r, O result);
}

// 27.7.11, rotate
template<class ForwardIterator>
constexpr ForwardIterator rotate(ForwardIterator first,

ForwardIterator middle,
ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator rotate(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first,
ForwardIterator middle,
ForwardIterator last);

namespace ranges {
template<permutable I, sentinel_for<I> S>

constexpr subrange<I> rotate(I first, I middle, S last);

§ 27.4 1150

© ISO/IEC N4910

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> rotate(R&& r, iterator_t<R> middle);

}

template<class ForwardIterator, class OutputIterator>
constexpr OutputIterator

rotate_copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

rotate_copy(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 middle,
ForwardIterator1 last, ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using rotate_copy_result = in_out_result<I, O>;

template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr rotate_copy_result<I, O>

rotate_copy(I first, I middle, S last, O result);
template<forward_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr rotate_copy_result<borrowed_iterator_t<R>, O>

rotate_copy(R&& r, iterator_t<R> middle, O result);
}

// 27.7.12, sample
template<class PopulationIterator, class SampleIterator,

class Distance, class UniformRandomBitGenerator>
SampleIterator sample(PopulationIterator first, PopulationIterator last,

SampleIterator out, Distance n,
UniformRandomBitGenerator&& g);

namespace ranges {
template<input_iterator I, sentinel_for<I> S,

weakly_incrementable O, class Gen>
requires (forward_iterator<I> || random_access_iterator<O>) &&

indirectly_copyable<I, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g);
template<input_range R, weakly_incrementable O, class Gen>

requires (forward_range<R> || random_access_iterator<O>) &&
indirectly_copyable<iterator_t<R>, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O sample(R&& r, O out, range_difference_t<R> n, Gen&& g);
}

// 27.7.13, shuffle
template<class RandomAccessIterator, class UniformRandomBitGenerator>
void shuffle(RandomAccessIterator first,

RandomAccessIterator last,
UniformRandomBitGenerator&& g);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Gen>

requires permutable<I> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

I shuffle(I first, S last, Gen&& g);
template<random_access_range R, class Gen>

requires permutable<iterator_t<R>> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

§ 27.4 1151

© ISO/IEC N4910

borrowed_iterator_t<R> shuffle(R&& r, Gen&& g);
}

// 27.7.14, shift
template<class ForwardIterator>
constexpr ForwardIterator

shift_left(ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

shift_left(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

namespace ranges {
template<permutable I, sentinel_for<I> S>

constexpr subrange<I> shift_left(I first, S last, iter_difference_t<I> n);
template<forward_range R>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> shift_left(R&& r, range_difference_t<R> n);

}

template<class ForwardIterator>
constexpr ForwardIterator

shift_right(ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

shift_right(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

namespace ranges {
template<permutable I, sentinel_for<I> S>

constexpr subrange<I> shift_right(I first, S last, iter_difference_t<I> n);
template<forward_range R>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> shift_right(R&& r, range_difference_t<R> n);

}

// 27.8, sorting and related operations// 27.8.2, sorting
template<class RandomAccessIterator>
constexpr void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>
void sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

sort(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

§ 27.4 1152

© ISO/IEC N4910

sort(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>
void stable_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void stable_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
I stable_sort(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>

stable_sort(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
constexpr void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>
void partial_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void partial_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

partial_sort(R&& r, iterator_t<R> middle, Comp comp = {},
Proj proj = {});

}

template<class InputIterator, class RandomAccessIterator>
constexpr RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
constexpr RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,

§ 27.4 1153

© ISO/IEC N4910

RandomAccessIterator result_last,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

namespace ranges {
template<class I, class O>

using partial_sort_copy_result = in_out_result<I, O>;

template<input_iterator I1, sentinel_for<I1> S1,
random_access_iterator I2, sentinel_for<I2> S2,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<I1, Proj1>, projected<I2, Proj2>>

constexpr partial_sort_copy_result<I1, I2>
partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, random_access_range R2, class Comp = ranges::less,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> &&

sortable<iterator_t<R2>, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>
constexpr partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class ForwardIterator>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>
bool is_sorted(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
bool is_sorted(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr bool is_sorted(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr bool is_sorted(R&& r, Comp comp = {}, Proj proj = {});
}

§ 27.4 1154

© ISO/IEC N4910

template<class ForwardIterator>
constexpr ForwardIterator

is_sorted_until(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
constexpr ForwardIterator

is_sorted_until(ForwardIterator first, ForwardIterator last,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

is_sorted_until(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
ForwardIterator

is_sorted_until(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});

}

// 27.8.3, Nth element
template<class RandomAccessIterator>
constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>
void nth_element(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void nth_element(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});
}

// 27.8.4, binary search
template<class ForwardIterator, class T>
constexpr ForwardIterator

lower_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator

lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

§ 27.4 1155

© ISO/IEC N4910

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr I lower_bound(I first, S last, const T& value, Comp comp = {},

Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_iterator_t<R>
lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator, class T>
constexpr ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr I upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_iterator_t<R>
upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator, class T>
constexpr pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr subrange<I>

equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_subrange_t<R>
equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator, class T>
constexpr bool

binary_search(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr bool

binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

§ 27.4 1156

© ISO/IEC N4910

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr bool binary_search(I first, S last, const T& value, Comp comp = {},

Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr bool binary_search(R&& r, const T& value, Comp comp = {},
Proj proj = {});

}

// 27.8.5, partitions
template<class InputIterator, class Predicate>
constexpr bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool is_partitioned(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool is_partitioned(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool is_partitioned(R&& r, Pred pred, Proj proj = {});
}

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator partition(ForwardIterator first,

ForwardIterator last,
Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
ForwardIterator partition(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first,
ForwardIterator last,
Predicate pred);

namespace ranges {
template<permutable I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr subrange<I>

partition(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

partition(R&& r, Pred pred, Proj proj = {});
}

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last,
Predicate pred);

template<class ExecutionPolicy, class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first,
BidirectionalIterator last,
Predicate pred);

namespace ranges {
template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
requires permutable<I>

§ 27.4 1157

© ISO/IEC N4910

subrange<I> stable_partition(I first, S last, Pred pred, Proj proj = {});
template<bidirectional_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires permutable<iterator_t<R>>
borrowed_subrange_t<R> stable_partition(R&& r, Pred pred, Proj proj = {});

}

template<class InputIterator, class OutputIterator1,
class OutputIterator2, class Predicate>

constexpr pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,

OutputIterator1 out_true, OutputIterator2 out_false,
Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class ForwardIterator1,
class ForwardIterator2, class Predicate>

pair<ForwardIterator1, ForwardIterator2>
partition_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
ForwardIterator1 out_true, ForwardIterator2 out_false,
Predicate pred);

namespace ranges {
template<class I, class O1, class O2>

using partition_copy_result = in_out_out_result<I, O1, O2>;

template<input_iterator I, sentinel_for<I> S,
weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2>
constexpr partition_copy_result<I, O1, O2>

partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred,
Proj proj = {});

template<input_range R, weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O1> &&
indirectly_copyable<iterator_t<R>, O2>

constexpr partition_copy_result<borrowed_iterator_t<R>, O1, O2>
partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});

}

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator

partition_point(ForwardIterator first, ForwardIterator last,
Predicate pred);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr I partition_point(I first, S last, Pred pred, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr borrowed_iterator_t<R>
partition_point(R&& r, Pred pred, Proj proj = {});

}

// 27.8.6, merge
template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

§ 27.4 1158

© ISO/IEC N4910

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

constexpr OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
merge(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
merge(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using merge_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity,
class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr merge_result<I1, I2, O>

merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

merge(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

template<class ExecutionPolicy, class BidirectionalIterator>
void inplace_merge(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator, class Compare>
void inplace_merge(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

namespace ranges {
template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
I inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});

§ 27.4 1159

© ISO/IEC N4910

template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>

inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {},
Proj proj = {});

}

// 27.8.7, set operations
template<class InputIterator1, class InputIterator2>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool includes(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Compare>

bool includes(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>, projected<I2, Proj2>> Comp =
ranges::less>

constexpr bool includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Proj1 = identity,
class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool includes(R1&& r1, R2&& r2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
}

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_union(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_union(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,

§ 27.4 1160

© ISO/IEC N4910

ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using set_union_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_union_result<I1, I2, O>

set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

set_union(R1&& r1, R2&& r2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_intersection(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_intersection(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using set_intersection_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_intersection_result<I1, I2, O>

set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_intersection_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

set_intersection(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}

§ 27.4 1161

© ISO/IEC N4910

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I, class O>

using set_difference_result = in_out_result<I, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_difference_result<I1, O>

set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_difference_result<borrowed_iterator_t<R1>, O>

set_difference(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator

§ 27.4 1162

© ISO/IEC N4910

set_symmetric_difference(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using set_symmetric_difference_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_symmetric_difference_result<I1, I2, O>

set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {},
Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_symmetric_difference_result<borrowed_iterator_t<R1>,

borrowed_iterator_t<R2>, O>
set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
}

// 27.8.8, heap operations
template<class RandomAccessIterator>
constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

push_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

push_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

pop_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

pop_heap(R&& r, Comp comp = {}, Proj proj = {});
}

§ 27.4 1163

© ISO/IEC N4910

template<class RandomAccessIterator>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

make_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

make_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

sort_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

sort_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>
bool is_heap(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
bool is_heap(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr bool is_heap(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr bool is_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last,

§ 27.4 1164

© ISO/IEC N4910

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>
RandomAccessIterator

is_heap_until(ExecutionPolicy&& exec, // see 27.3.5
RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
RandomAccessIterator

is_heap_until(ExecutionPolicy&& exec, // see 27.3.5
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
is_heap_until(R&& r, Comp comp = {}, Proj proj = {});

}

// 27.8.9, minimum and maximum
template<class T> constexpr const T& min(const T& a, const T& b);
template<class T, class Compare>
constexpr const T& min(const T& a, const T& b, Compare comp);

template<class T>
constexpr T min(initializer_list<T> t);

template<class T, class Compare>
constexpr T min(initializer_list<T> t, Compare comp);

namespace ranges {
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T& min(const T& a, const T& b, Comp comp = {}, Proj proj = {});

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>

min(R&& r, Comp comp = {}, Proj proj = {});
}

template<class T> constexpr const T& max(const T& a, const T& b);
template<class T, class Compare>
constexpr const T& max(const T& a, const T& b, Compare comp);

template<class T>
constexpr T max(initializer_list<T> t);

template<class T, class Compare>
constexpr T max(initializer_list<T> t, Compare comp);

namespace ranges {
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T& max(const T& a, const T& b, Comp comp = {}, Proj proj = {});

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>

max(R&& r, Comp comp = {}, Proj proj = {});

§ 27.4 1165

© ISO/IEC N4910

}

template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T, class Compare>
constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);

template<class T>
constexpr pair<T, T> minmax(initializer_list<T> t);

template<class T, class Compare>
constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);

namespace ranges {
template<class T>

using minmax_result = min_max_result<T>;

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr minmax_result<const T&>
minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr minmax_result<T>
minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr minmax_result<range_value_t<R>>

minmax(R&& r, Comp comp = {}, Proj proj = {});
}

template<class ForwardIterator>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator min_element(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
ForwardIterator min_element(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I min_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
min_element(R&& r, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator max_element(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
ForwardIterator max_element(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

§ 27.4 1166

© ISO/IEC N4910

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I max_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
max_element(R&& r, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator>
constexpr pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);
template<class ExecutionPolicy, class ForwardIterator>
pair<ForwardIterator, ForwardIterator>

minmax_element(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>

minmax_element(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Compare comp);

namespace ranges {
template<class I>

using minmax_element_result = min_max_result<I>;

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr minmax_element_result<I>
minmax_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr minmax_element_result<borrowed_iterator_t<R>>
minmax_element(R&& r, Comp comp = {}, Proj proj = {});

}

// 27.8.10, bounded value
template<class T>
constexpr const T& clamp(const T& v, const T& lo, const T& hi);

template<class T, class Compare>
constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);

namespace ranges {
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T&

clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {});
}

// 27.8.11, lexicographical comparison
template<class InputIterator1, class InputIterator2>
constexpr bool

lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool

lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

§ 27.4 1167

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool

lexicographical_compare(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Compare>

bool
lexicographical_compare(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>, projected<I2, Proj2>> Comp =

ranges::less>
constexpr bool

lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Proj1 = identity,
class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool

lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.8.12, three-way comparison algorithms
template<class InputIterator1, class InputIterator2, class Cmp>
constexpr auto

lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,
InputIterator2 b2, InputIterator2 e2,
Cmp comp)

-> decltype(comp(*b1, *b2));
template<class InputIterator1, class InputIterator2>
constexpr auto

lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,
InputIterator2 b2, InputIterator2 e2);

// 27.8.13, permutations
template<class BidirectionalIterator>
constexpr bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
constexpr bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

namespace ranges {
template<class I>

using next_permutation_result = in_found_result<I>;

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr next_permutation_result<I>

next_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,

class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr next_permutation_result<borrowed_iterator_t<R>>

next_permutation(R&& r, Comp comp = {}, Proj proj = {});

§ 27.4 1168

© ISO/IEC N4910

}

template<class BidirectionalIterator>
constexpr bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
constexpr bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

namespace ranges {
template<class I>

using prev_permutation_result = in_found_result<I>;

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr prev_permutation_result<I>

prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,

class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr prev_permutation_result<borrowed_iterator_t<R>>

prev_permutation(R&& r, Comp comp = {}, Proj proj = {});
}

}

27.5 Algorithm result types [algorithms.results]
1 Each of the class templates specified in this subclause has the template parameters, data members, and special membersspecified below, and has no base classes or members other than those specified.

namespace std::ranges {
template<class I, class F>
struct in_fun_result {
[[no_unique_address]] I in;
[[no_unique_address]] F fun;

template<class I2, class F2>
requires convertible_to<const I&, I2> && convertible_to<const F&, F2>

constexpr operator in_fun_result<I2, F2>() const & {
return {in, fun};

}

template<class I2, class F2>
requires convertible_to<I, I2> && convertible_to<F, F2>

constexpr operator in_fun_result<I2, F2>() && {
return {std::move(in), std::move(fun)};

}
};

template<class I1, class I2>
struct in_in_result {
[[no_unique_address]] I1 in1;
[[no_unique_address]] I2 in2;

template<class II1, class II2>
requires convertible_to<const I1&, II1> && convertible_to<const I2&, II2>

constexpr operator in_in_result<II1, II2>() const & {
return {in1, in2};

}

template<class II1, class II2>
requires convertible_to<I1, II1> && convertible_to<I2, II2>

constexpr operator in_in_result<II1, II2>() && {
return {std::move(in1), std::move(in2)};

§ 27.5 1169

© ISO/IEC N4910

}
};

template<class I, class O>
struct in_out_result {
[[no_unique_address]] I in;
[[no_unique_address]] O out;

template<class I2, class O2>
requires convertible_to<const I&, I2> && convertible_to<const O&, O2>

constexpr operator in_out_result<I2, O2>() const & {
return {in, out};

}

template<class I2, class O2>
requires convertible_to<I, I2> && convertible_to<O, O2>

constexpr operator in_out_result<I2, O2>() && {
return {std::move(in), std::move(out)};

}
};

template<class I1, class I2, class O>
struct in_in_out_result {
[[no_unique_address]] I1 in1;
[[no_unique_address]] I2 in2;
[[no_unique_address]] O out;

template<class II1, class II2, class OO>
requires convertible_to<const I1&, II1> &&

convertible_to<const I2&, II2> &&
convertible_to<const O&, OO>

constexpr operator in_in_out_result<II1, II2, OO>() const & {
return {in1, in2, out};

}

template<class II1, class II2, class OO>
requires convertible_to<I1, II1> &&

convertible_to<I2, II2> &&
convertible_to<O, OO>

constexpr operator in_in_out_result<II1, II2, OO>() && {
return {std::move(in1), std::move(in2), std::move(out)};

}
};

template<class I, class O1, class O2>
struct in_out_out_result {
[[no_unique_address]] I in;
[[no_unique_address]] O1 out1;
[[no_unique_address]] O2 out2;

template<class II, class OO1, class OO2>
requires convertible_to<const I&, II> &&

convertible_to<const O1&, OO1> &&
convertible_to<const O2&, OO2>

constexpr operator in_out_out_result<II, OO1, OO2>() const & {
return {in, out1, out2};

}

template<class II, class OO1, class OO2>
requires convertible_to<I, II> &&

convertible_to<O1, OO1> &&
convertible_to<O2, OO2>

constexpr operator in_out_out_result<II, OO1, OO2>() && {
return {std::move(in), std::move(out1), std::move(out2)};

§ 27.5 1170

© ISO/IEC N4910

}
};

template<class T>
struct min_max_result {
[[no_unique_address]] T min;
[[no_unique_address]] T max;

template<class T2>
requires convertible_to<const T&, T2>

constexpr operator min_max_result<T2>() const & {
return {min, max};

}

template<class T2>
requires convertible_to<T, T2>

constexpr operator min_max_result<T2>() && {
return {std::move(min), std::move(max)};

}
};

template<class I>
struct in_found_result {
[[no_unique_address]] I in;
bool found;

template<class I2>
requires convertible_to<const I&, I2>

constexpr operator in_found_result<I2>() const & {
return {in, found};

}
template<class I2>

requires convertible_to<I, I2>
constexpr operator in_found_result<I2>() && {

return {std::move(in), found};
}

};

template<class O, class T>
struct out_value_result {
[[no_unique_address]] O out;
[[no_unique_address]] T value;

template<class O2, class T2>
requires convertible_to<const O&, O2> && convertible_to<const T&, T2>

constexpr operator out_value_result<O2, T2>() const & {
return {out, value};

}

template<class O2, class T2>
requires convertible_to<O, O2> && convertible_to<T, T2>

constexpr operator out_value_result<O2, T2>() && {
return {std::move(out), std::move(value)};

}
};

}

27.6 Non-modifying sequence operations [alg.nonmodifying]
27.6.1 All of [alg.all.of]

template<class InputIterator, class Predicate>
constexpr bool all_of(InputIterator first, InputIterator last, Predicate pred);

§ 27.6.1 1171

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool all_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::all_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::all_of(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) pred(*i) for the overloads in namespace std;
—(1.2) invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.

2 Returns: false if E is false for some iterator i in the range [first, last), and true otherwise.
3 Complexity: At most last - first applications of the predicate and any projection.
27.6.2 Any of [alg.any.of]

template<class InputIterator, class Predicate>
constexpr bool any_of(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool any_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::any_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::any_of(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) pred(*i) for the overloads in namespace std;
—(1.2) invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.

2 Returns: true if E is true for some iterator i in the range [first, last), and false otherwise.
3 Complexity: At most last - first applications of the predicate and any projection.
27.6.3 None of [alg.none.of]

template<class InputIterator, class Predicate>
constexpr bool none_of(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool none_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::none_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::none_of(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) pred(*i) for the overloads in namespace std;
—(1.2) invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.

2 Returns: false if E is true for some iterator i in the range [first, last), and true otherwise.
3 Complexity: At most last - first applications of the predicate and any projection.

§ 27.6.3 1172

© ISO/IEC N4910

27.6.4 For each [alg.foreach]

template<class InputIterator, class Function>
constexpr Function for_each(InputIterator first, InputIterator last, Function f);

1 Preconditions: Function meets the Cpp17MoveConstructible requirements (Table 30).
[Note 1: Function need not meet the requirements of Cpp17CopyConstructible (Table 31). —end note]

2 Effects: Applies f to the result of dereferencing every iterator in the range [first, last), starting from first andproceeding to last - 1.
[Note 2: If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through thedereferenced iterator. —end note]

3 Returns: f.
4 Complexity: Applies f exactly last - first times.
5 Remarks: If f returns a result, the result is ignored.

template<class ExecutionPolicy, class ForwardIterator, class Function>
void for_each(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Function f);

6 Preconditions: Function meets the Cpp17CopyConstructible requirements.
7 Effects: Applies f to the result of dereferencing every iterator in the range [first, last).

[Note 3: If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through thedereferenced iterator. —end note]
8 Complexity: Applies f exactly last - first times.
9 Remarks: If f returns a result, the result is ignored. Implementations do not have the freedom granted under27.3.3 to make arbitrary copies of elements from the input sequence.
10 [Note 4: Does not return a copy of its Function parameter, since parallelization often does not permit efficient state accumula-tion. —end note]

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr ranges::for_each_result<I, Fun>
ranges::for_each(I first, S last, Fun f, Proj proj = {});

template<input_range R, class Proj = identity,
indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun>

constexpr ranges::for_each_result<borrowed_iterator_t<R>, Fun>
ranges::for_each(R&& r, Fun f, Proj proj = {});

11 Effects: Calls invoke(f, invoke(proj, *i)) for every iterator i in the range [first, last), starting from firstand proceeding to last - 1.
[Note 5: If the result of invoke(proj, *i) is a mutable reference, f can apply non-constant functions. —end note]

12 Returns: {last, std::move(f)}.
13 Complexity: Applies f and proj exactly last - first times.
14 Remarks: If f returns a result, the result is ignored.
15 [Note 6: The overloads in namespace ranges require Fun to model copy_constructible. —end note]

template<class InputIterator, class Size, class Function>
constexpr InputIterator for_each_n(InputIterator first, Size n, Function f);

16 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
17 Preconditions: n >= 0 is true. Function meets the Cpp17MoveConstructible requirements.

[Note 7: Function need not meet the requirements of Cpp17CopyConstructible. —end note]
18 Effects: Applies f to the result of dereferencing every iterator in the range [first, first + n) in order.

[Note 8: If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through thedereferenced iterator. —end note]

§ 27.6.4 1173

© ISO/IEC N4910

19 Returns: first + n.
20 Remarks: If f returns a result, the result is ignored.

template<class ExecutionPolicy, class ForwardIterator, class Size, class Function>
ForwardIterator for_each_n(ExecutionPolicy&& exec, ForwardIterator first, Size n,

Function f);

21 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
22 Preconditions: n >= 0 is true. Function meets the Cpp17CopyConstructible requirements.
23 Effects: Applies f to the result of dereferencing every iterator in the range [first, first + n).

[Note 9: If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through thedereferenced iterator. —end note]
24 Returns: first + n.
25 Remarks: If f returns a result, the result is ignored. Implementations do not have the freedom granted under27.3.3 to make arbitrary copies of elements from the input sequence.

template<input_iterator I, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr ranges::for_each_n_result<I, Fun>
ranges::for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});

26 Preconditions: n >= 0 is true.
27 Effects: Calls invoke(f, invoke(proj, *i)) for every iterator i in the range [first, first + n) in order.

[Note 10: If the result of invoke(proj, *i) is a mutable reference, f can apply non-constant functions. —end note]
28 Returns: {first + n, std::move(f)}.
29 Remarks: If f returns a result, the result is ignored.
30 [Note 11: The overload in namespace ranges requires Fun to model copy_constructible. —end note]
27.6.5 Find [alg.find]

template<class InputIterator, class T>
constexpr InputIterator find(InputIterator first, InputIterator last,

const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>

ForwardIterator find(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
const T& value);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator find_if(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
Predicate pred);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if_not(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator find_if_not(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Predicate pred);

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr I ranges::find(I first, S last, const T& value, Proj proj = {});

template<input_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_iterator_t<R>
ranges::find(R&& r, const T& value, Proj proj = {});

§ 27.6.5 1174

© ISO/IEC N4910

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I ranges::find_if(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>
ranges::find_if(R&& r, Pred pred, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I ranges::find_if_not(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>
ranges::find_if_not(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) *i == value for find;
—(1.2) pred(*i) != false for find_if;
—(1.3) pred(*i) == false for find_if_not;
—(1.4) bool(invoke(proj, *i) == value) for ranges::find;
—(1.5) bool(invoke(pred, invoke(proj, *i))) for ranges::find_if;
—(1.6) bool(!invoke(pred, invoke(proj, *i))) for ranges::find_if_not.

2 Returns: The first iterator i in the range [first, last) for which E is true. Returns last if no such iterator isfound.
3 Complexity: At most last - first applications of the corresponding predicate and any projection.
27.6.6 Find end [alg.find.end]

template<class ForwardIterator1, class ForwardIterator2>
constexpr ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_end(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

constexpr ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>
ranges::find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

§ 27.6.6 1175

© ISO/IEC N4910

template<forward_range R1, forward_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>
ranges::find_end(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let:
—(1.1) pred be equal_to{} for the overloads with no parameter pred;
—(1.2) E be:

—(1.2.1) pred(*(i + n), *(first2 + n)) for the overloads in namespace std;
—(1.2.2) invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n))) for the overloads innamespace ranges;

—(1.3) i be last1 if [first2, last2) is empty, or if (last2 - first2) > (last1 - first1) is true, or if thereis no iterator in the range [first1, last1 - (last2 - first2)) such that for every non-negative integer
n < (last2 - first2), E is true. Otherwise i is the last such iterator in [first1, last1 - (last2 -
first2)).

2 Returns:
—(2.1) i for the overloads in namespace std.
—(2.2) {i, i + (i == last1 ? 0 : last2 - first2)} for the overloads in namespace ranges.

3 Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) + 1) applications of thecorresponding predicate and any projections.
27.6.7 Find first [alg.find.first.of]

template<class InputIterator, class ForwardIterator>
constexpr InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_first_of(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator, class ForwardIterator,
class BinaryPredicate>

constexpr InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr I1 ranges::find_first_of(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, forward_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_iterator_t<R1>
ranges::find_first_of(R1&& r1, R2&& r2,

§ 27.6.7 1176

© ISO/IEC N4910

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let E be:
—(1.1) *i == *j for the overloads with no parameter pred;
—(1.2) pred(*i, *j) != false for the overloads with a parameter pred and no parameter proj1;
—(1.3) bool(invoke(pred, invoke(proj1, *i), invoke(proj2, *j))) for the overloads with parameters predand proj1.

2 Effects: Finds an element that matches one of a set of values.
3 Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range [first2, last2)

E holds. Returns last1 if [first2, last2) is empty or if no such iterator is found.
4 Complexity: At most (last1-first1) * (last2-first2) applications of the corresponding predicate and anyprojections.
27.6.8 Adjacent find [alg.adjacent.find]

template<class ForwardIterator>
constexpr ForwardIterator
adjacent_find(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator
adjacent_find(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator
adjacent_find(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>

ForwardIterator
adjacent_find(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_binary_predicate<projected<I, Proj>,

projected<I, Proj>> Pred = ranges::equal_to>
constexpr I ranges::adjacent_find(I first, S last, Pred pred = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_binary_predicate<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
constexpr borrowed_iterator_t<R> ranges::adjacent_find(R&& r, Pred pred = {}, Proj proj = {});

1 Let E be:
—(1.1) *i == *(i + 1) for the overloads with no parameter pred;
—(1.2) pred(*i, *(i + 1)) != false for the overloads with a parameter pred and no parameter proj;
—(1.3) bool(invoke(pred, invoke(proj, *i), invoke(proj, *(i + 1)))) for the overloads with both param-eters pred and proj.

2 Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which E holds. Returns
last if no such iterator is found.

3 Complexity: For the overloads with no ExecutionPolicy, exactly
min((i - first) + 1, (last - first) - 1)

applications of the corresponding predicate, where i is adjacent_find’s return value. For the overloads withan ExecutionPolicy, O(last - first) applications of the corresponding predicate, and no more than twice asmany applications of any projection.

§ 27.6.8 1177

© ISO/IEC N4910

27.6.9 Count [alg.count]

template<class InputIterator, class T>
constexpr typename iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
typename iterator_traits<ForwardIterator>::difference_type
count(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, const T& value);

template<class InputIterator, class Predicate>
constexpr typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
typename iterator_traits<ForwardIterator>::difference_type
count_if(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Predicate pred);

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr iter_difference_t<I>
ranges::count(I first, S last, const T& value, Proj proj = {});

template<input_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr range_difference_t<R>
ranges::count(R&& r, const T& value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr iter_difference_t<I>
ranges::count_if(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr range_difference_t<R>
ranges::count_if(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) *i == value for the overloads with no parameter pred or proj;
—(1.2) pred(*i) != false for the overloads with a parameter pred but no parameter proj;
—(1.3) invoke(proj, *i) == value for the overloads with a parameter proj but no parameter pred;
—(1.4) bool(invoke(pred, invoke(proj, *i))) for the overloads with both parameters proj and pred.

2 Effects: Returns the number of iterators i in the range [first, last) for which E holds.
3 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
27.6.10 Mismatch [mismatch]

template<class InputIterator1, class InputIterator2>
constexpr pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);

§ 27.6.10 1178

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr ranges::mismatch_result<I1, I2>
ranges::mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr ranges::mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
ranges::mismatch(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let last2 be first2 + (last1 - first1) for the overloads with no parameter last2 or r2.
2 Let E be:

—(2.1) !(*(first1 + n) == *(first2 + n)) for the overloads with no parameter pred;
—(2.2) pred(*(first1 + n), *(first2 + n)) == false for the overloads with a parameter pred and no param-eter proj1;
—(2.3) !invoke(pred, invoke(proj1, *(first1 + n)), invoke(proj2, *(first2 + n))) for the overloadswith both parameters pred and proj1.

3 Let N bemin(last1 - first1, last2 - first2).
4 Returns: { first1 + n, first2 + n }, where n is the smallest integer in [0, N) such that E holds, or N if nosuch integer exists.
5 Complexity: At most N applications of the corresponding predicate and any projections.
27.6.11 Equal [alg.equal]

template<class InputIterator1, class InputIterator2>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);

§ 27.6.11 1179

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool equal(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

bool equal(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ranges::equal(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool ranges::equal(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let:
—(1.1) last2 be first2 + (last1 - first1) for the overloads with no parameter last2 or r2;
—(1.2) pred be equal_to{} for the overloads with no parameter pred;
—(1.3) E be:

—(1.3.1) pred(*i, *(first2 + (i - first1))) for the overloads with no parameter proj1;
—(1.3.2) invoke(pred, invoke(proj1, *i), invoke(proj2, *(first2 + (i - first1)))) for the over-loads with parameter proj1.

2 Returns: If last1 - first1 != last2 - first2, return false. Otherwise return true if E holds for everyiterator i in the range [first1, last1) Otherwise, returns false.
3 Complexity: If

—(3.1) the types of first1, last1, first2, and last2 meet the Cpp17RandomAccessIterator requirements(25.3.5.7) and last1 - first1 != last2 - first2 for the overloads in namespace std;

§ 27.6.11 1180

© ISO/IEC N4910

—(3.2) the types of first1, last1, first2, and last2 pairwise model sized_sentinel_for (25.3.4.8) and last1
- first1 != last2 - first2 for the first overload in namespace ranges,

—(3.3) R1 and R2 eachmodel sized_range and ranges::distance(r1) != ranges::distance(r2) for the secondoverload in namespace ranges,
then no applications of the corresponding predicate and each projection; otherwise,
—(3.4) For the overloads with no ExecutionPolicy, at mostmin(last1 - first1, last2 - first2) applicationsof the corresponding predicate and any projections.
—(3.5) For the overloads with an ExecutionPolicy, O(min(last1 - first1, last2 - first2)) applications ofthe corresponding predicate.

27.6.12 Is permutation [alg.is.permutation]

template<class ForwardIterator1, class ForwardIterator2>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>

constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Let last2 be first2 + (last1 - first1) for the overloads with no parameter named last2, and let pred be
equal_to{} for the overloads with no parameter pred.

2 Mandates: ForwardIterator1 and ForwardIterator2 have the same value type.
3 Preconditions: The comparison function is an equivalence relation.
4 Returns: If last1 - first1 != last2 - first2, return false. Otherwise return true if there exists a per-mutation of the elements in the range [first2, last2), beginning with ForwardIterator2 begin, such that

equal(first1, last1, begin, pred) returns true; otherwise, returns false.
5 Complexity: No applications of the corresponding predicate if ForwardIterator1 and ForwardIterator2 meetthe requirements of random access iterators and last1 - first1 != last2 - first2. Otherwise, exactly last1

- first1 applications of the corresponding predicate if equal(first1, last1, first2, last2, pred) wouldreturn true; otherwise, at worst O(N2), where N has the value last1 - first1.
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,

sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<I1, Proj1>,

projected<I2, Proj2>> Pred = ranges::equal_to>
constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

6 Returns: If last1 - first1 != last2 - first2, return false. Otherwise return true if there exists a permuta-tion of the elements in the range [first2, last2), bounded by [pfirst, plast), such that ranges::equal(first1,
last1, pfirst, plast, pred, proj1, proj2) returns true; otherwise, returns false.

7 Complexity: No applications of the corresponding predicate and projections if:
—(7.1) for the first overload,

§ 27.6.12 1181

© ISO/IEC N4910

—(7.1.1) S1 and I1 model sized_sentinel_for<S1, I1>,
—(7.1.2) S2 and I2 model sized_sentinel_for<S2, I2>, and
—(7.1.3) last1 - first1 != last2 - first2;

—(7.2) for the second overload, R1 and R2 eachmodel sized_range, and ranges::distance(r1) != ranges::distance(r2).
Otherwise, exactly last1 - first1 applications of the corresponding predicate and projections if ranges::equal(
first1, last1, first2, last2, pred, proj1, proj2)would return true; otherwise, at worstO(N2), where
N has the value last1 - first1.

27.6.13 Search [alg.search]

template<class ForwardIterator1, class ForwardIterator2>
constexpr ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
search(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

constexpr ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Returns: The first iterator i in the range [first1, last1 - (last2-first2)) such that for every non-negativeinteger n less than last2 - first2 the following corresponding conditions hold: *(i + n) == *(first2 + n),
pred(*(i + n), *(first2 + n)) != false. Returns first1 if [first2, last2) is empty, otherwise returns
last1 if no such iterator is found.

2 Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding predicate.
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,

sentinel_for<I2> S2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>
ranges::search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>
ranges::search(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

3 Returns:
—(3.1) {i, i + (last2 - first2)}, where i is the first iterator in the range [first1, last1 - (last2 - first2))such that for every non-negative integer n less than last2 - first2 the condition

bool(invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n))))

is true.
—(3.2) Returns {last1, last1} if no such iterator exists.

§ 27.6.13 1182

© ISO/IEC N4910

4 Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding predicate andprojections.
template<class ForwardIterator, class Size, class T>

constexpr ForwardIterator
search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class Size, class T>

ForwardIterator
search_n(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Size count, const T& value);

template<class ForwardIterator, class Size, class T,
class BinaryPredicate>

constexpr ForwardIterator
search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Size count, const T& value,
BinaryPredicate pred);

5 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
6 Returns: The first iterator i in the range [first, last-count) such that for every non-negative integer n less than

count the following corresponding conditions hold: *(i + n) == value, pred(*(i + n), value) != false.Returns last if no such iterator is found.
7 Complexity: At most last - first applications of the corresponding predicate.

template<forward_iterator I, sentinel_for<I> S, class T,
class Pred = ranges::equal_to, class Proj = identity>

requires indirectly_comparable<I, const T*, Pred, Proj>
constexpr subrange<I>
ranges::search_n(I first, S last, iter_difference_t<I> count,

const T& value, Pred pred = {}, Proj proj = {});
template<forward_range R, class T, class Pred = ranges::equal_to,

class Proj = identity>
requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj>
constexpr borrowed_subrange_t<R>
ranges::search_n(R&& r, range_difference_t<R> count,

const T& value, Pred pred = {}, Proj proj = {});

8 Returns: {i, i + count} where i is the first iterator in the range [first, last - count) such that for everynon-negative integer n less than count, the following condition holds: invoke(pred, invoke(proj, *(i + n)),
value). Returns {last, last} if no such iterator is found.

9 Complexity: At most last - first applications of the corresponding predicate and projection.
template<class ForwardIterator, class Searcher>

constexpr ForwardIterator
search(ForwardIterator first, ForwardIterator last, const Searcher& searcher);

10 Effects: Equivalent to: return searcher(first, last).first;
11 Remarks: Searcher need not meet the Cpp17CopyConstructible requirements.
27.6.14 Starts with [alg.starts.with]

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ranges::starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

§ 27.6.14 1183

© ISO/IEC N4910

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity,

class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool ranges::starts_with(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Returns:
ranges::mismatch(std::move(first1), last1, std::move(first2), last2,

pred, proj1, proj2).in2 == last2

27.6.15 Ends with [alg.ends.with]

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) &&
(forward_iterator<I2> || sized_sentinel_for<S2, I2>) &&
indirectly_comparable<I1, I2, Pred, Proj1, Proj2>

constexpr bool ranges::ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let N1 be last1 - first1 and N2 be last2 - first2.
2 Returns: false if N1 < N2, otherwise

ranges::equal(std::move(first1) + (N1 - N2), last1, std::move(first2), last2,
pred, proj1, proj2)

template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity,
class Proj2 = identity>

requires (forward_range<R1> || sized_range<R1>) &&
(forward_range<R2> || sized_range<R2>) &&
indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>

constexpr bool ranges::ends_with(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

3 Let N1 be ranges::distance(r1) and N2 be ranges::distance(r2).
4 Returns: false if N1 < N2, otherwise

ranges::equal(ranges::drop_view(ranges::ref_view(r1), N1 - N2), r2, pred, proj1, proj2)

27.7 Mutating sequence operations [alg.modifying.operations]
27.7.1 Copy [alg.copy]

template<class InputIterator, class OutputIterator>
constexpr OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator result);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::copy_result<I, O> ranges::copy(I first, S last, O result);

template<input_range R, weakly_incrementable O>
requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::copy_result<borrowed_iterator_t<R>, O> ranges::copy(R&& r, O result);

1 Let N be last - first.
2 Preconditions: result is not in the range [first, last).
3 Effects: Copies elements in the range [first, last) into the range [result, result + N) starting from firstand proceeding to last. For each non-negative integer n < N , performs *(result + n) = *(first + n).
4 Returns:

—(4.1) result + N for the overload in namespace std.
—(4.2) {last, result + N} for the overloads in namespace ranges.

5 Complexity: Exactly N assignments.

§ 27.7.1 1184

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 copy(ExecutionPolicy&& policy,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

6 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.
7 Effects: Copies elements in the range [first, last) into the range [result, result + (last - first)). Foreach non-negative integer n < (last - first), performs *(result + n) = *(first + n).
8 Returns: result + (last - first).
9 Complexity: Exactly last - first assignments.

template<class InputIterator, class Size, class OutputIterator>
constexpr OutputIterator copy_n(InputIterator first, Size n,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class Size, class ForwardIterator2>

ForwardIterator2 copy_n(ExecutionPolicy&& exec,
ForwardIterator1 first, Size n,
ForwardIterator2 result);

template<input_iterator I, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::copy_n_result<I, O>
ranges::copy_n(I first, iter_difference_t<I> n, O result);

10 Let N bemax(0, n).
11 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
12 Effects: For each non-negative integer i < N , performs *(result + i) = *(first + i).
13 Returns:

—(13.1) result + N for the overloads in namespace std.
—(13.2) {first + N, result + N} for the overload in namespace ranges.

14 Complexity: Exactly N assignments.
template<class InputIterator, class OutputIterator, class Predicate>

constexpr OutputIterator copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate>

ForwardIterator2 copy_if(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr ranges::copy_if_result<I, O>
ranges::copy_if(I first, S last, O result, Pred pred, Proj proj = {});

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::copy_if_result<borrowed_iterator_t<R>, O>
ranges::copy_if(R&& r, O result, Pred pred, Proj proj = {});

15 Let E be:
—(15.1) bool(pred(*i)) for the overloads in namespace std;
—(15.2) bool(invoke(pred, invoke(proj, *i))) for the overloads in namespace ranges,
and N be the number of iterators i in the range [first, last) for which the condition E holds.

16 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.

§ 27.7.1 1185

© ISO/IEC N4910

[Note 1: For the overload with an ExecutionPolicy, there might be a performance cost if iterator_traits<ForwardIter-
ator1>::value_type is not Cpp17MoveConstructible (Table 30). —end note]

17 Effects: Copies all of the elements referred to by the iterator i in the range [first, last) for which E is true.
18 Returns:

—(18.1) result + N for the overloads in namespace std.
—(18.2) {last, result + N} for the overloads in namespace ranges.

19 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
20 Remarks: Stable (16.4.6.8).

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2
copy_backward(BidirectionalIterator1 first,

BidirectionalIterator1 last,
BidirectionalIterator2 result);

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_copyable<I1, I2>
constexpr ranges::copy_backward_result<I1, I2>
ranges::copy_backward(I1 first, S1 last, I2 result);

template<bidirectional_range R, bidirectional_iterator I>
requires indirectly_copyable<iterator_t<R>, I>
constexpr ranges::copy_backward_result<borrowed_iterator_t<R>, I>
ranges::copy_backward(R&& r, I result);

21 Let N be last - first.
22 Preconditions: result is not in the range (first, last].
23 Effects: Copies elements in the range [first, last) into the range [result - N, result) starting from last -

1 and proceeding to first.221 For each positive integer n ≤ N , performs *(result - n) = *(last - n).
24 Returns:

—(24.1) result - N for the overload in namespace std.
—(24.2) {last, result - N} for the overloads in namespace ranges.

25 Complexity: Exactly N assignments.
27.7.2 Move [alg.move]

template<class InputIterator, class OutputIterator>
constexpr OutputIterator move(InputIterator first, InputIterator last,

OutputIterator result);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_movable<I, O>
constexpr ranges::move_result<I, O>
ranges::move(I first, S last, O result);

template<input_range R, weakly_incrementable O>
requires indirectly_movable<iterator_t<R>, O>
constexpr ranges::move_result<borrowed_iterator_t<R>, O>
ranges::move(R&& r, O result);

1 Let E be
—(1.1) std::move(*(first + n)) for the overload in namespace std;
—(1.2) ranges::iter_move(first + n) for the overloads in namespace ranges.
Let N be last - first.

2 Preconditions: result is not in the range [first, last).
3 Effects: Moves elements in the range [first, last) into the range [result, result + N) starting from firstand proceeding to last. For each non-negative integer n < N , performs *(result + n) = E.

221) copy_backward can be used instead of copy when last is in the range [result - N, result).
§ 27.7.2 1186

© ISO/IEC N4910

4 Returns:
—(4.1) result + N for the overload in namespace std.
—(4.2) {last, result + N} for the overloads in namespace ranges.

5 Complexity: Exactly N assignments.
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 move(ExecutionPolicy&& policy,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

6 Let N be last - first.
7 Preconditions: The ranges [first, last) and [result, result + N) do not overlap.
8 Effects: Moves elements in the range [first, last) into the range [result, result + N). For each non-negativeinteger n < N , performs *(result + n) = std::move(*(first + n)).
9 Returns: result + N .
10 Complexity: Exactly N assignments.

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2
move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,

BidirectionalIterator2 result);

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_movable<I1, I2>
constexpr ranges::move_backward_result<I1, I2>
ranges::move_backward(I1 first, S1 last, I2 result);

template<bidirectional_range R, bidirectional_iterator I>
requires indirectly_movable<iterator_t<R>, I>
constexpr ranges::move_backward_result<borrowed_iterator_t<R>, I>
ranges::move_backward(R&& r, I result);

11 Let E be
—(11.1) std::move(*(last - n)) for the overload in namespace std;
—(11.2) ranges::iter_move(last - n) for the overloads in namespace ranges.
Let N be last - first.

12 Preconditions: result is not in the range (first, last].
13 Effects: Moves elements in the range [first, last) into the range [result - N, result) starting from last -

1 and proceeding to first.222 For each positive integer n ≤ N , performs *(result - n) = E.
14 Returns:

—(14.1) result - N for the overload in namespace std.
—(14.2) {last, result - N} for the overloads in namespace ranges.

15 Complexity: Exactly N assignments.
27.7.3 Swap [alg.swap]

template<class ForwardIterator1, class ForwardIterator2>
constexpr ForwardIterator2
swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
swap_ranges(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

222) move_backward can be used instead of move when last is in the range [result - N, result).
§ 27.7.3 1187

© ISO/IEC N4910

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2>
requires indirectly_swappable<I1, I2>
constexpr ranges::swap_ranges_result<I1, I2>
ranges::swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);

template<input_range R1, input_range R2>
requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>>
constexpr ranges::swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
ranges::swap_ranges(R1&& r1, R2&& r2);

1 Let:
—(1.1) last2 be first2 + (last1 - first1) for the overloads with no parameter named last2;
—(1.2) M be min(last1 - first1, last2 - first2).

2 Preconditions: The two ranges [first1, last1) and [first2, last2) do not overlap. For the overloads in name-space std, *(first1 + n) is swappable with (16.4.4.3) *(first2 + n).
3 Effects: For each non-negative integer n < M performs:

—(3.1) swap(*(first1 + n), *(first2 + n)) for the overloads in namespace std;
—(3.2) ranges::iter_swap(first1 + n, first2 + n) for the overloads in namespace ranges.

4 Returns:
—(4.1) last2 for the overloads in namespace std.
—(4.2) {first1 + M, first2 + M} for the overloads in namespace ranges.

5 Complexity: ExactlyM swaps.
template<class ForwardIterator1, class ForwardIterator2>

constexpr void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

6 Preconditions: a and b are dereferenceable. *a is swappable with (16.4.4.3) *b.
7 Effects: As if by swap(*a, *b).
27.7.4 Transform [alg.transform]

template<class InputIterator, class OutputIterator,
class UnaryOperation>

constexpr OutputIterator
transform(InputIterator first1, InputIterator last1,

OutputIterator result, UnaryOperation op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class UnaryOperation>
ForwardIterator2
transform(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 result, UnaryOperation op);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

constexpr OutputIterator
transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class BinaryOperation>

ForwardIterator
transform(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator result,
BinaryOperation binary_op);

§ 27.7.4 1188

© ISO/IEC N4910

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
copy_constructible F, class Proj = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>>
constexpr ranges::unary_transform_result<I, O>
ranges::transform(I first1, S last1, O result, F op, Proj proj = {});

template<input_range R, weakly_incrementable O, copy_constructible F,
class Proj = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
constexpr ranges::unary_transform_result<borrowed_iterator_t<R>, O>
ranges::transform(R&& r, O result, F op, Proj proj = {});

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, copy_constructible F, class Proj1 = identity,
class Proj2 = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>,
projected<I2, Proj2>>>

constexpr ranges::binary_transform_result<I1, I2, O>
ranges::transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,

F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

copy_constructible F, class Proj1 = identity, class Proj2 = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>>
constexpr ranges::binary_transform_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
ranges::transform(R1&& r1, R2&& r2, O result,

F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let:
—(1.1) last2 be first2 + (last1 - first1) for the overloads with parameter first2 but no parameter last2;
—(1.2) N be last1 - first1 for unary transforms, or min(last1 - first1, last2 - first2) for binary trans-forms;
—(1.3) E be

—(1.3.1) op(*(first1 + (i - result))) for unary transforms defined in namespace std;
—(1.3.2) binary_op(*(first1 + (i - result)), *(first2 + (i - result))) for binary transforms de-fined in namespace std;
—(1.3.3) invoke(op, invoke(proj, *(first1 + (i - result)))) for unary transforms defined in name-space ranges;
—(1.3.4) invoke(binary_op, invoke(proj1, *(first1 + (i - result))), invoke(proj2,

*(first2 + (i - result)))) for binary transforms defined in namespace ranges.
2 Preconditions: op and binary_op do not invalidate iterators or subranges, nor modify elements in the ranges

—(2.1) [first1, first1 + N],
—(2.2) [first2, first2 + N], and
—(2.3) [result, result + N].223

3 Effects: Assigns through every iterator i in the range [result, result + N) a new corresponding value equal to
E.

4 Returns:
—(4.1) result + N for the overloads defined in namespace std.
—(4.2) {first1 + N, result + N} for unary transforms defined in namespace ranges.
—(4.3) {first1 + N, first2 + N, result + N} for binary transforms defined in namespace ranges.

5 Complexity: Exactly N applications of op or binary_op, and any projections. This requirement also applies tothe overload with an ExecutionPolicy.
6 Remarks: result may be equal to first1 or first2.

223) The use of fully closed ranges is intentional.
§ 27.7.4 1189

© ISO/IEC N4910

27.7.5 Replace [alg.replace]

template<class ForwardIterator, class T>
constexpr void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class T>

void replace(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);

template<class ForwardIterator, class Predicate, class T>
constexpr void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class Predicate, class T>

void replace_if(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);

template<input_iterator I, sentinel_for<I> S, class T1, class T2, class Proj = identity>
requires indirectly_writable<I, const T2&> &&

indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>
constexpr I
ranges::replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {});

template<input_range R, class T1, class T2, class Proj = identity>
requires indirectly_writable<iterator_t<R>, const T2&> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*>
constexpr borrowed_iterator_t<R>
ranges::replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_writable<I, const T&>
constexpr I ranges::replace_if(I first, S last, Pred pred, const T& new_value, Proj proj = {});

template<input_range R, class T, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_writable<iterator_t<R>, const T&>
constexpr borrowed_iterator_t<R>
ranges::replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {});

1 Let E be
—(1.1) bool(*i == old_value) for replace;
—(1.2) bool(pred(*i)) for replace_if;
—(1.3) bool(invoke(proj, *i) == old_value) for ranges::replace;
—(1.4) bool(invoke(pred, invoke(proj, *i))) for ranges::replace_if.

2 Mandates: new_value is writable (25.3.1) to first.
3 Effects: Substitutes elements referred by the iterator i in the range [first, last) with new_value, when E is

true.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: Exactly last - first applications of the corresponding predicate and any projection.

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator
replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2
replace_copy(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
const T& old_value, const T& new_value);

§ 27.7.5 1190

© ISO/IEC N4910

template<class InputIterator, class OutputIterator, class Predicate, class T>
constexpr OutputIterator
replace_copy_if(InputIterator first, InputIterator last,

OutputIterator result,
Predicate pred, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate, class T>

ForwardIterator2
replace_copy_if(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
Predicate pred, const T& new_value);

template<input_iterator I, sentinel_for<I> S, class T1, class T2, output_iterator<const T2&> O,
class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>

constexpr ranges::replace_copy_result<I, O>
ranges::replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value,

Proj proj = {});
template<input_range R, class T1, class T2, output_iterator<const T2&> O,

class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*>
constexpr ranges::replace_copy_result<borrowed_iterator_t<R>, O>
ranges::replace_copy(R&& r, O result, const T1& old_value, const T2& new_value,

Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class T, output_iterator<const T&> O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr ranges::replace_copy_if_result<I, O>
ranges::replace_copy_if(I first, S last, O result, Pred pred, const T& new_value,

Proj proj = {});
template<input_range R, class T, output_iterator<const T&> O, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::replace_copy_if_result<borrowed_iterator_t<R>, O>
ranges::replace_copy_if(R&& r, O result, Pred pred, const T& new_value,

Proj proj = {});

6 Let E be
—(6.1) bool(*(first + (i - result)) == old_value) for replace_copy;
—(6.2) bool(pred(*(first + (i - result)))) for replace_copy_if;
—(6.3) bool(invoke(proj, *(first + (i - result))) == old_value) for ranges::replace_copy;
—(6.4) bool(invoke(pred, invoke(proj, *(first + (i - result))))) for ranges::replace_copy_if.

7 Mandates: The results of the expressions *first and new_value are writable (25.3.1) to result.
8 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.
9 Effects: Assigns through every iterator i in the range [result, result + (last - first)) a new correspondingvalue

—(9.1) new_value if E is true or
—(9.2) *(first + (i - result)) otherwise.

10 Returns:
—(10.1) result + (last - first) for the overloads in namespace std.
—(10.2) {last, result + (last - first)} for the overloads in namespace ranges.

11 Complexity: Exactly last - first applications of the corresponding predicate and any projection.

§ 27.7.5 1191

© ISO/IEC N4910

27.7.6 Fill [alg.fill]

template<class ForwardIterator, class T>
constexpr void fill(ForwardIterator first, ForwardIterator last, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
void fill(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
constexpr OutputIterator fill_n(OutputIterator first, Size n, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
ForwardIterator fill_n(ExecutionPolicy&& exec,

ForwardIterator first, Size n, const T& value);

template<class T, output_iterator<const T&> O, sentinel_for<O> S>
constexpr O ranges::fill(O first, S last, const T& value);

template<class T, output_range<const T&> R>
constexpr borrowed_iterator_t<R> ranges::fill(R&& r, const T& value);

template<class T, output_iterator<const T&> O>
constexpr O ranges::fill_n(O first, iter_difference_t<O> n, const T& value);

1 Let N bemax(0, n) for the fill_n algorithms, and last - first for the fill algorithms.
2 Mandates: The expression value is writable (25.3.1) to the output iterator. The type Size is convertible to anintegral type (7.3.9, 11.4.8).
3 Effects: Assigns value through all the iterators in the range [first, first + N).
4 Returns: first + N .
5 Complexity: Exactly N assignments.
27.7.7 Generate [alg.generate]

template<class ForwardIterator, class Generator>
constexpr void generate(ForwardIterator first, ForwardIterator last,

Generator gen);
template<class ExecutionPolicy, class ForwardIterator, class Generator>

void generate(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Generator gen);

template<class OutputIterator, class Size, class Generator>
constexpr OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

template<class ExecutionPolicy, class ForwardIterator, class Size, class Generator>
ForwardIterator generate_n(ExecutionPolicy&& exec,

ForwardIterator first, Size n, Generator gen);

template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F>
requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O ranges::generate(O first, S last, F gen);

template<class R, copy_constructible F>
requires invocable<F&> && output_range<R, invoke_result_t<F&>>
constexpr borrowed_iterator_t<R> ranges::generate(R&& r, F gen);

template<input_or_output_iterator O, copy_constructible F>
requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O ranges::generate_n(O first, iter_difference_t<O> n, F gen);

1 Let N bemax(0, n) for the generate_n algorithms, and last - first for the generate algorithms.
2 Mandates: Size is convertible to an integral type (7.3.9, 11.4.8).
3 Effects: Assigns the result of successive evaluations of gen() through each iterator in the range [first, first +

N).
4 Returns: first + N .
5 Complexity: Exactly N evaluations of gen() and assignments.
§ 27.7.7 1192

© ISO/IEC N4910

27.7.8 Remove [alg.remove]

template<class ForwardIterator, class T>
constexpr ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>

ForwardIterator remove(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator remove_if(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Predicate pred);

template<permutable I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr subrange<I> ranges::remove(I first, S last, const T& value, Proj proj = {});

template<forward_range R, class T, class Proj = identity>
requires permutable<iterator_t<R>> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_subrange_t<R>
ranges::remove(R&& r, const T& value, Proj proj = {});

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> ranges::remove_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>
ranges::remove_if(R&& r, Pred pred, Proj proj = {});

1 Let E be
—(1.1) bool(*i == value) for remove;
—(1.2) bool(pred(*i)) for remove_if;
—(1.3) bool(invoke(proj, *i) == value) for ranges::remove;
—(1.4) bool(invoke(pred, invoke(proj, *i))) for ranges::remove_if.

2 Preconditions: For the algorithms in namespace std, the type of *first meets the Cpp17MoveAssignablerequirements (Table 32).
3 Effects: Eliminates all the elements referred to by iterator i in the range [first, last) for which E holds.
4 Returns: Let j be the end of the resulting range. Returns:

—(4.1) j for the overloads in namespace std.
—(4.2) {j, last} for the overloads in namespace ranges.

5 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
6 Remarks: Stable (16.4.6.8).
7 [Note 1: Each element in the range [ret, last), where ret is the returned value, has a valid but unspecified state, because thealgorithms can eliminate elements by moving from elements that were originally in that range. —end note]

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator
remove_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& value);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class T>
ForwardIterator2
remove_copy(ExecutionPolicy&& exec,

§ 27.7.8 1193

© ISO/IEC N4910

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator
remove_copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class Predicate>
ForwardIterator2
remove_copy_if(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class T,
class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>

constexpr ranges::remove_copy_result<I, O>
ranges::remove_copy(I first, S last, O result, const T& value, Proj proj = {});

template<input_range R, weakly_incrementable O, class T, class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr ranges::remove_copy_result<borrowed_iterator_t<R>, O>
ranges::remove_copy(R&& r, O result, const T& value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr ranges::remove_copy_if_result<I, O>
ranges::remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::remove_copy_if_result<borrowed_iterator_t<R>, O>
ranges::remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});

8 Let E be
—(8.1) bool(*i == value) for remove_copy;
—(8.2) bool(pred(*i)) for remove_copy_if;
—(8.3) bool(invoke(proj, *i) == value) for ranges::remove_copy;
—(8.4) bool(invoke(pred, invoke(proj, *i))) for ranges::remove_copy_if.

9 Let N be the number of elements in [first, last) for which E is false.
10 Mandates: *first is writable (25.3.1) to result.
11 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.

[Note 2: For the overloadswith an ExecutionPolicy, theremight be a performance cost if iterator_traits<ForwardIterator1>::value_-
type does not meet the Cpp17MoveConstructible (Table 30) requirements. —end note]

12 Effects: Copies all the elements referred to by the iterator i in the range [first, last) for which E is false.
13 Returns:

—(13.1) result + N , for the algorithms in namespace std.
—(13.2) {last, result + N}, for the algorithms in namespace ranges.

14 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
15 Remarks: Stable (16.4.6.8).
27.7.9 Unique [alg.unique]

template<class ForwardIterator>
constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last);

§ 27.7.9 1194

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator unique(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>

ForwardIterator unique(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>

constexpr subrange<I> ranges::unique(I first, S last, C comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>
ranges::unique(R&& r, C comp = {}, Proj proj = {});

1 Let pred be equal_to{} for the overloads with no parameter pred, and let E be
—(1.1) bool(pred(*(i - 1), *i)) for the overloads in namespace std;
—(1.2) bool(invoke(comp, invoke(proj, *(i - 1)), invoke(proj, *i))) for the overloads in namespace

ranges.
2 Preconditions: For the overloads in namepace std, pred is an equivalence relation and the type of *first meetsthe Cpp17MoveAssignable requirements (Table 32).
3 Effects: For a nonempty range, eliminates all but the first element from every consecutive group of equivalentelements referred to by the iterator i in the range [first + 1, last) for which E is true.
4 Returns: Let j be the end of the resulting range. Returns:

—(4.1) j for the overloads in namespace std.
—(4.2) {j, last} for the overloads in namespace ranges.

5 Complexity: For nonempty ranges, exactly (last - first) - 1 applications of the corresponding predicate andno more than twice as many applications of any projection.
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
unique_copy(InputIterator first, InputIterator last,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
unique_copy(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class InputIterator, class OutputIterator,
class BinaryPredicate>

constexpr OutputIterator
unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator2
unique_copy(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryPredicate pred);

§ 27.7.9 1195

© ISO/IEC N4910

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>

requires indirectly_copyable<I, O> &&
(forward_iterator<I> ||
(input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) ||
indirectly_copyable_storable<I, O>)

constexpr ranges::unique_copy_result<I, O>
ranges::unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>

requires indirectly_copyable<iterator_t<R>, O> &&
(forward_iterator<iterator_t<R>> ||
(input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) ||
indirectly_copyable_storable<iterator_t<R>, O>)

constexpr ranges::unique_copy_result<borrowed_iterator_t<R>, O>
ranges::unique_copy(R&& r, O result, C comp = {}, Proj proj = {});

6 Let pred be equal_to{} for the overloads in namespace std with no parameter pred, and let E be
—(6.1) bool(pred(*i, *(i - 1))) for the overloads in namespace std;
—(6.2) bool(invoke(comp, invoke(proj, *i), invoke(proj, *(i - 1)))) for the overloads in namespace

ranges.
7 Mandates: *first is writable (25.3.1) to result.
8 Preconditions:

—(8.1) The ranges [first, last) and [result, result+(last-first)) do not overlap.
—(8.2) For the overloads in namespace std:

—(8.2.1) The comparison function is an equivalence relation.
—(8.2.2) For the overloadswith no ExecutionPolicy, let T be the value type of InputIterator. If InputIteratormeets the Cpp17ForwardIterator requirements, then there are no additional requirements for T. Other-wise, if OutputIterator meets the Cpp17ForwardIterator requirements and its value type is the sameas T, then T meets the Cpp17CopyAssignable (Table 33) requirements. Otherwise, T meets both theCpp17CopyConstructible (Table 31) and Cpp17CopyAssignable requirements.

[Note 1: For the overloads with an ExecutionPolicy, there might be a performance cost if the value type of
ForwardIterator1 does not meet both the Cpp17CopyConstructible and Cpp17CopyAssignable requirements.—end note]

9 Effects: Copies only the first element from every consecutive group of equal elements referred to by the iterator iin the range [first, last) for which E holds.
10 Returns:

—(10.1) result + N for the overloads in namespace std.
—(10.2) {last, result + N} for the overloads in namespace ranges.

11 Complexity: Exactly last - first - 1 applications of the corresponding predicate and no more than twice asmany applications of any projection.
27.7.10 Reverse [alg.reverse]

template<class BidirectionalIterator>
constexpr void reverse(BidirectionalIterator first, BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator>
void reverse(ExecutionPolicy&& exec,

BidirectionalIterator first, BidirectionalIterator last);

template<bidirectional_iterator I, sentinel_for<I> S>
requires permutable<I>
constexpr I ranges::reverse(I first, S last);

template<bidirectional_range R>
requires permutable<iterator_t<R>>

§ 27.7.10 1196

© ISO/IEC N4910

constexpr borrowed_iterator_t<R> ranges::reverse(R&& r);

1 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17ValueSwappablerequirements (16.4.4.3).
2 Effects: For each non-negative integer i < (last - first) / 2, applies std::iter_swap, or ranges::iter_-

swap for the overloads in namespace ranges, to all pairs of iterators first + i, (last - i) - 1.
3 Returns: last for the overloads in namespace ranges.
4 Complexity: Exactly (last - first)/2 swaps.

template<class BidirectionalIterator, class OutputIterator>
constexpr OutputIterator
reverse_copy(BidirectionalIterator first, BidirectionalIterator last,

OutputIterator result);
template<class ExecutionPolicy, class BidirectionalIterator, class ForwardIterator>

ForwardIterator
reverse_copy(ExecutionPolicy&& exec,

BidirectionalIterator first, BidirectionalIterator last,
ForwardIterator result);

template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::reverse_copy_result<I, O>
ranges::reverse_copy(I first, S last, O result);

template<bidirectional_range R, weakly_incrementable O>
requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::reverse_copy_result<borrowed_iterator_t<R>, O>
ranges::reverse_copy(R&& r, O result);

5 Let N be last - first.
6 Preconditions: The ranges [first, last) and [result, result + N) do not overlap.
7 Effects: Copies the range [first, last) to the range [result, result + N) such that for every non-negativeinteger i < N the following assignment takes place: *(result + N - 1 - i) = *(first + i).
8 Returns:

—(8.1) result + N for the overloads in namespace std.
—(8.2) {last, result + N} for the overloads in namespace ranges.

9 Complexity: Exactly N assignments.
27.7.11 Rotate [alg.rotate]

template<class ForwardIterator>
constexpr ForwardIterator
rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator
rotate(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator middle, ForwardIterator last);

template<permutable I, sentinel_for<I> S>
constexpr subrange<I> ranges::rotate(I first, I middle, S last);

1 Preconditions: [first, middle) and [middle, last) are valid ranges. For the overloads in namespace std,
ForwardIterator meets the Cpp17ValueSwappable requirements (16.4.4.3), and the type of *first meetsthe Cpp17MoveConstructible (Table 30) and Cpp17MoveAssignable (Table 32) requirements.

2 Effects: For each non-negative integer i < (last - first), places the element from the position first + iinto position first + (i + (last - middle)) % (last - first).
[Note 1: This is a left rotate. —end note]

3 Returns:
—(3.1) first + (last - middle) for the overloads in namespace std.

§ 27.7.11 1197

© ISO/IEC N4910

—(3.2) {first + (last - middle), last} for the overload in namespace ranges.
4 Complexity: At most last - first swaps.

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> ranges::rotate(R&& r, iterator_t<R> middle);

5 Effects: Equivalent to: return ranges::rotate(ranges::begin(r), middle, ranges::end(r));

template<class ForwardIterator, class OutputIterator>
constexpr OutputIterator
rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
rotate_copy(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 middle, ForwardIterator1 last,
ForwardIterator2 result);

template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::rotate_copy_result<I, O>

ranges::rotate_copy(I first, I middle, S last, O result);

6 Let N be last - first.
7 Preconditions: [first, middle) and [middle, last) are valid ranges. The ranges [first, last) and [result,

result + N) do not overlap.
8 Effects: Copies the range [first, last) to the range [result, result + N) such that for each non-negativeinteger i < N the following assignment takes place: *(result + i) = *(first + (i + (middle - first))

% N).
9 Returns:

—(9.1) result + N for the overloads in namespace std.
—(9.2) {last, result + N} for the overload in namespace ranges.

10 Complexity: Exactly N assignments.
template<forward_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::rotate_copy_result<borrowed_iterator_t<R>, O>
ranges::rotate_copy(R&& r, iterator_t<R> middle, O result);

11 Effects: Equivalent to:
return ranges::rotate_copy(ranges::begin(r), middle, ranges::end(r), result);

27.7.12 Sample [alg.random.sample]

template<class PopulationIterator, class SampleIterator,
class Distance, class UniformRandomBitGenerator>

SampleIterator sample(PopulationIterator first, PopulationIterator last,
SampleIterator out, Distance n,
UniformRandomBitGenerator&& g);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Gen>
requires (forward_iterator<I> || random_access_iterator<O>) &&

indirectly_copyable<I, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O ranges::sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g);
template<input_range R, weakly_incrementable O, class Gen>

requires (forward_range<R> || random_access_iterator<O>) &&
indirectly_copyable<iterator_t<R>, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

§ 27.7.12 1198

© ISO/IEC N4910

O ranges::sample(R&& r, O out, range_difference_t<R> n, Gen&& g);

1 Mandates: For the overload in namespace std, Distance is an integer type and *first is writable (25.3.1) to
out.

2 Preconditions: out is not in the range [first, last). For the overload in namespace std:
—(2.1) PopulationIterator meets the Cpp17InputIterator requirements (25.3.5.3).
—(2.2) SampleIterator meets the Cpp17OutputIterator requirements (25.3.5.4).
—(2.3) SampleIterator meets the Cpp17RandomAccessIterator requirements (25.3.5.7) unless PopulationIter-

ator meets the Cpp17ForwardIterator requirements (25.3.5.5).
—(2.4) remove_reference_t<UniformRandomBitGenerator> meets the requirements of a uniform random bitgenerator type (28.5.3.3).

3 Effects: Copies min(last - first, n) elements (the sample) from [first, last) (the population) to out suchthat each possible sample has equal probability of appearance.
[Note 1: Algorithms that obtain such effects include selection sampling and reservoir sampling. —end note]

4 Returns: The end of the resulting sample range.
5 Complexity: O(last - first).
6 Remarks:

—(6.1) For the overload in namespace std, stable if and only if PopulationIterator meets the Cpp17For-wardIterator requirements. For the first overload in namespace ranges, stable if and only if I models
forward_iterator.

—(6.2) To the extent that the implementation of this function makes use of random numbers, the object g serves asthe implementation’s source of randomness.
27.7.13 Shuffle [alg.random.shuffle]

template<class RandomAccessIterator, class UniformRandomBitGenerator>
void shuffle(RandomAccessIterator first,

RandomAccessIterator last,
UniformRandomBitGenerator&& g);

template<random_access_iterator I, sentinel_for<I> S, class Gen>
requires permutable<I> &&

uniform_random_bit_generator<remove_reference_t<Gen>>
I ranges::shuffle(I first, S last, Gen&& g);

template<random_access_range R, class Gen>
requires permutable<iterator_t<R>> &&

uniform_random_bit_generator<remove_reference_t<Gen>>
borrowed_iterator_t<R> ranges::shuffle(R&& r, Gen&& g);

1 Preconditions: For the overload in namespace std:
—(1.1) RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3).
—(1.2) The type remove_reference_t<UniformRandomBitGenerator> meets the uniform random bit generator(28.5.3.3) requirements.

2 Effects: Permutes the elements in the range [first, last) such that each possible permutation of those elementshas equal probability of appearance.
3 Returns: last for the overloads in namespace ranges.
4 Complexity: Exactly (last - first) - 1 swaps.
5 Remarks: To the extent that the implementation of this function makes use of random numbers, the objectreferenced by g shall serve as the implementation’s source of randomness.
27.7.14 Shift [alg.shift]

template<class ForwardIterator>
constexpr ForwardIterator
shift_left(ForwardIterator first, ForwardIterator last,

§ 27.7.14 1199

© ISO/IEC N4910

typename iterator_traits<ForwardIterator>::difference_type n);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
shift_left(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

typename iterator_traits<ForwardIterator>::difference_type n);

template<permutable I, sentinel_for<I> S>
constexpr subrange<I> ranges::shift_left(I first, S last, iter_difference_t<I> n);

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> ranges::shift_left(R&& r, range_difference_t<R> n)

1 Preconditions: n >= 0 is true. For the overloads in namespace std, the type of *firstmeets theCpp17MoveAssignablerequirements.
2 Effects: If n == 0 or n >= last - first, does nothing. Otherwise, moves the element from position first + n

+ i into position first + i for each non-negative integer i < (last - first) - n. For the overloads withoutan ExecutionPolicy template parameter, does so in order starting from i = 0 and proceeding to i = (last -
first) - n - 1.

3 Returns: Let NEW_LAST be first + (last - first - n) if n < last - first, otherwise first.
—(3.1) NEW_LAST for the overloads in namespace std.
—(3.2) {first, NEW_LAST} for the overloads in namespace ranges.

4 Complexity: At most (last - first) - n assignments.
template<class ForwardIterator>

constexpr ForwardIterator
shift_right(ForwardIterator first, ForwardIterator last,

typename iterator_traits<ForwardIterator>::difference_type n);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
shift_right(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

typename iterator_traits<ForwardIterator>::difference_type n);

template<permutable I, sentinel_for<I> S>
constexpr subrange<I> ranges::shift_right(I first, S last, iter_difference_t<I> n);

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> ranges::shift_right(R&& r, range_difference_t<R> n);

5 Preconditions: n >= 0 is true. For the overloads in namespace std, the type of *firstmeets theCpp17MoveAssignablerequirements, and ForwardIteratormeets theCpp17BidirectionalIterator requirements (25.3.5.6) or theCpp17ValueSwap-pable requirements.
6 Effects: If n == 0 or n >= last - first, does nothing. Otherwise, moves the element from position first + iinto position first + n + i for each non-negative integer i < (last - first) - n. Does so in order startingfrom i = (last - first) - n - 1 and proceeding to i = 0 if:

—(6.1) for the overload in namespace std without an ExecutionPolicy template parameter, ForwardIteratormeets the Cpp17BidirectionalIterator requirements,
—(6.2) for the overloads in namespace ranges, I models bidirectional_iterator.

7 Returns: Let NEW_FIRST be first + n if n < last - first, otherwise last.
—(7.1) NEW_FIRST for the overloads in namespace std.
—(7.2) {NEW_FIRST, last} for the overloads in namespace ranges.

8 Complexity: At most (last - first) - n assignments or swaps.
27.8 Sorting and related operations [alg.sorting]
27.8.1 General [alg.sorting.general]

1 The operations in 27.8 defined directly in namespace std have two versions: one that takes a function object of type
Compare and one that uses an operator<.

§ 27.8.1 1200

© ISO/IEC N4910

2 Compare is a function object type (22.10) that meets the requirements for a template parameter named BinaryPredicate(27.2). The return value of the function call operation applied to an object of type Compare, when contextually convertedto bool (7.3), yields true if the first argument of the call is less than the second, and false otherwise. Compare comp isused throughout for algorithms assuming an ordering relation.
3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) != falsedefaults to *i < *j != false. For algorithms other than those described in 27.8.4, comp shall induce a strict weakordering on the values.
4 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term weak torequirements that are not as strong as those for a total ordering, but stronger than those for a partial ordering. If wedefine equiv(a, b) as !comp(a, b) && !comp(b, a), then the requirements are that comp and equiv both be transitiverelations:

—(4.1) comp(a, b) && comp(b, c) implies comp(a, c)

—(4.2) equiv(a, b) && equiv(b, c) implies equiv(a, c)

[Note 1: Under these conditions, it can be shown that
—(4.3) equiv is an equivalence relation,
—(4.4) comp induces a well-defined relation on the equivalence classes determined by equiv, and
—(4.5) the induced relation is a strict total ordering.

—end note]
5 A sequence is sorted with respect to a comp and proj for a comparator and projection comp and proj if for every iterator

i pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing to an element ofthe sequence,
bool(invoke(comp, invoke(proj, *(i + n)), invoke(proj, *i)))

is false.
6 A sequence [start, finish) is partitioned with respect to an expression f(e) if there exists an integer n such that forall 0 <= i < (finish - start), f(*(start + i)) is true if and only if i < n.
7 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of equivalenceto describe concepts such as stability. The equivalence to which we refer is not necessarily an operator==, but anequivalence relation induced by the strict weak ordering. That is, two elements a and b are considered equivalent if andonly if !(a < b) && !(b < a).
27.8.2 Sorting [alg.sort]
27.8.2.1 sort [sort]

template<class RandomAccessIterator>
constexpr void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void sort(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void sort(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::sort(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

§ 27.8.2.1 1201

© ISO/IEC N4910

ranges::sort(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, RandomAccessIteratormeets the Cpp17ValueSwappable re-quirements (16.4.4.3) and the type of *firstmeets theCpp17MoveConstructible (Table 30) andCpp17MoveAssignable(Table 32) requirements.
3 Effects: Sorts the elements in the range [first, last) with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: Let N be last - first. O(N logN) comparisons and projections.
27.8.2.2 stable_sort [stable.sort]

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void stable_sort(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void stable_sort(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
I ranges::stable_sort(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>
ranges::stable_sort(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, RandomAccessIteratormeets the Cpp17ValueSwappable re-quirements (16.4.4.3) and the type of *firstmeets theCpp17MoveConstructible (Table 30) andCpp17MoveAssignable(Table 32) requirements.
3 Effects: Sorts the elements in the range [first, last) with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: Let N be last - first. If enough extra memory is available, N log(N) comparisons. Otherwise,at most N log2(N) comparisons. In either case, twice as many projections as the number of comparisons.
6 Remarks: Stable (16.4.6.8).
27.8.2.3 partial_sort [partial.sort]

template<class RandomAccessIterator>
constexpr void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void partial_sort(ExecutionPolicy&& exec,

RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last);

§ 27.8.2.3 1202

© ISO/IEC N4910

template<class RandomAccessIterator, class Compare>
constexpr void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void partial_sort(ExecutionPolicy&& exec,

RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: [first, middle) and [middle, last) are valid ranges. For the overloads in namespace std,

RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3) and the type of *first meetsthe Cpp17MoveConstructible (Table 30) and Cpp17MoveAssignable (Table 32) requirements.
3 Effects: Places the first middle - first elements from the range [first, last) as sorted with respect to compand proj into the range [first, middle). The rest of the elements in the range [middle, last) are placed in anunspecified order.
4 Returns: last for the overload in namespace ranges.
5 Complexity: Approximately (last - first) * log(middle - first) comparisons, and twice as many projec-tions.

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>
ranges::partial_sort(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});

6 Effects: Equivalent to:
return ranges::partial_sort(ranges::begin(r), middle, ranges::end(r), comp, proj);

27.8.2.4 partial_sort_copy [partial.sort.copy]

template<class InputIterator, class RandomAccessIterator>
constexpr RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator>
RandomAccessIterator
partial_sort_copy(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator,
class Compare>

constexpr RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(ExecutionPolicy&& exec,

§ 27.8.2.4 1203

© ISO/IEC N4910

ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, random_access_iterator I2, sentinel_for<I2> S2,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<I1, Proj1>, projected<I2, Proj2>>

constexpr ranges::partial_sort_copy_result<I1, I2>
ranges::partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, random_access_range R2, class Comp = ranges::less,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> &&

sortable<iterator_t<R2>, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>
constexpr ranges::partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
ranges::partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let N be min(last - first, result_last - result_first). Let comp be less{}, and proj1 and proj2 be
identity{} for the overloads with no parameters by those names.

2 Mandates: For the overloads in namespace std, the expression *first is writable (25.3.1) to result_first.
3 Preconditions: For the overloads in namespace std, RandomAccessIterator meets the Cpp17ValueSwappablerequirements (16.4.4.3), the type of *result_first meets the Cpp17MoveConstructible (Table 30) and Cpp17-MoveAssignable (Table 32) requirements.
4 For iterators a1 and b1 in [first, last), and iterators x2 and y2 in [result_first, result_last), after evaluatingthe assignment *y2 = *b1, let E be the value of

bool(invoke(comp, invoke(proj1, *a1), invoke(proj2, *y2))).

Then, after evaluating the assignment *x2 = *a1, E is equal to
bool(invoke(comp, invoke(proj2, *x2), invoke(proj2, *y2))).

[Note 1: Writing a value from the input range into the output range does not affect how it is ordered by comp and proj1 or
proj2. —end note]

5 Effects: Places the first N elements as sorted with respect to comp and proj2 into the range [result_first,
result_first + N).

6 Returns:
—(6.1) result_first + N for the overloads in namespace std.
—(6.2) {last, result_first + N} for the overloads in namespace ranges.

7 Complexity: Approximately (last - first) * log N comparisons, and twice as many projections.
27.8.2.5 is_sorted [is.sorted]

template<class ForwardIterator>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last);

1 Effects: Equivalent to: return is_sorted_until(first, last) == last;

template<class ExecutionPolicy, class ForwardIterator>
bool is_sorted(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

2 Effects: Equivalent to:
return is_sorted_until(std::forward<ExecutionPolicy>(exec), first, last) == last;

§ 27.8.2.5 1204

© ISO/IEC N4910

template<class ForwardIterator, class Compare>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last,

Compare comp);

3 Effects: Equivalent to: return is_sorted_until(first, last, comp) == last;

template<class ExecutionPolicy, class ForwardIterator, class Compare>
bool is_sorted(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Compare comp);

4 Effects: Equivalent to:
return is_sorted_until(std::forward<ExecutionPolicy>(exec), first, last, comp) == last;

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr bool ranges::is_sorted(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr bool ranges::is_sorted(R&& r, Comp comp = {}, Proj proj = {});

5 Effects: Equivalent to: return ranges::is_sorted_until(first, last, comp, proj) == last;

template<class ForwardIterator>
constexpr ForwardIterator
is_sorted_until(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator
is_sorted_until(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator
is_sorted_until(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

ForwardIterator
is_sorted_until(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>
ranges::is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});

6 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
7 Returns: The last iterator i in [first, last] for which the range [first, i) is sorted with respect to comp and

proj.
8 Complexity: Linear.
27.8.3 Nth element [alg.nth.element]

template<class RandomAccessIterator>
constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>

void nth_element(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

§ 27.8.3 1205

© ISO/IEC N4910

template<class RandomAccessIterator, class Compare>
constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void nth_element(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: [first, nth) and [nth, last) are valid ranges. For the overloads in namespace std, RandomAccessIteratormeets theCpp17ValueSwappable requirements (16.4.4.3), and the type of *firstmeets theCpp17MoveConstructible(Table 30) and Cpp17MoveAssignable (Table 32) requirements.
3 Effects: After nth_element the element in the position pointed to by nth is the element that would be in thatposition if the whole range were sorted with respect to comp and proj, unless nth == last. Also for everyiterator i in the range [first, nth) and every iterator j in the range [nth, last) it holds that: bool(invoke(comp,

invoke(proj, *j), invoke(proj, *i))) is false.
4 Returns: last for the overload in namespace ranges.
5 Complexity: For the overloadswith no ExecutionPolicy, linear on average. For the overloadswith an ExecutionPolicy,

O(N) applications of the predicate, and O(N logN) swaps, where N = last - first.
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>
ranges::nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});

6 Effects: Equivalent to:
return ranges::nth_element(ranges::begin(r), nth, ranges::end(r), comp, proj);

27.8.4 Binary search [alg.binary.search]
27.8.4.1 General [alg.binary.search.general]

1 All of the algorithms in 27.8.4 are versions of binary search and assume that the sequence being searched is partitionedwith respect to an expression formed by binding the search key to an argument of the comparison function. They workon non-random access iterators minimizing the number of comparisons, which will be logarithmic for all types ofiterators. They are especially appropriate for random access iterators, because these algorithms do a logarithmic numberof steps through the data structure. For non-random access iterators they execute a linear number of steps.
27.8.4.2 lower_bound [lower.bound]

template<class ForwardIterator, class T>
constexpr ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::lower_bound(I first, S last, const T& value, Comp comp = {},
Proj proj = {});

§ 27.8.4.2 1206

© ISO/IEC N4910

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_iterator_t<R>
ranges::lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expression

bool(invoke(comp, invoke(proj, e), value)).
3 Returns: The furthermost iterator i in the range [first, last] such that for every iterator j in the range [first, i),

bool(invoke(comp, invoke(proj, *j), value)) is true.
4 Complexity: At most log2(last - first) + O(1) comparisons and projections.
27.8.4.3 upper_bound [upper.bound]

template<class ForwardIterator, class T>
constexpr ForwardIterator
upper_bound(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator
upper_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_iterator_t<R>
ranges::upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expression

!bool(invoke(comp, value, invoke(proj, e))).
3 Returns: The furthermost iterator i in the range [first, last] such that for every iterator j in the range [first, i),

!bool(invoke(comp, value, invoke(proj, *j))) is true.
4 Complexity: At most log2(last - first) + O(1) comparisons and projections.
27.8.4.4 equal_range [equal.range]

template<class ForwardIterator, class T>
constexpr pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first,

ForwardIterator last, const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first,

ForwardIterator last, const T& value,
Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr subrange<I>
ranges::equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});

§ 27.8.4.4 1207

© ISO/IEC N4910

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_subrange_t<R>
ranges::equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expressions bool(invoke(comp,

invoke(proj, e), value)) and !bool(invoke(comp, value, invoke(proj, e))). Also, for all elements eof [first, last), bool(comp(e, value)) implies !bool(comp(value, e)) for the overloads in namespace
std.

3 Returns:
—(3.1) For the overloads in namespace std:

{lower_bound(first, last, value, comp),
upper_bound(first, last, value, comp)}

—(3.2) For the overloads in namespace ranges:
{ranges::lower_bound(first, last, value, comp, proj),
ranges::upper_bound(first, last, value, comp, proj)}

4 Complexity: At most 2 ∗ log2(last - first) + O(1) comparisons and projections.
27.8.4.5 binary_search [binary.search]

template<class ForwardIterator, class T>
constexpr bool
binary_search(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr bool
binary_search(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr bool ranges::binary_search(I first, S last, const T& value, Comp comp = {},
Proj proj = {});

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr bool ranges::binary_search(R&& r, const T& value, Comp comp = {},
Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expressions bool(invoke(comp,

invoke(proj, e), value)) and !bool(invoke(comp, value, invoke(proj, e))). Also, for all elements eof [first, last), bool(comp(e, value)) implies !bool(comp(value, e)) for the overloads in namespace
std.

3 Returns: true if and only if for some iterator i in the range [first, last), !bool(invoke(comp, invoke(proj,
*i), value)) && !bool(invoke(comp, value, invoke(proj, *i))) is true.

4 Complexity: At most log2(last - first) + O(1) comparisons and projections.
27.8.5 Partitions [alg.partitions]

template<class InputIterator, class Predicate>
constexpr bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool is_partitioned(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Predicate pred);

§ 27.8.5 1208

© ISO/IEC N4910

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::is_partitioned(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::is_partitioned(R&& r, Pred pred, Proj proj = {});

1 Let proj be identity{} for the overloads with no parameter named proj.
2 Returns: true if and only if the elements e of [first, last) are partitioned with respect to the expression

bool(invoke(pred, invoke(proj, e))).
3 Complexity: Linear. At most last - first applications of pred and proj.

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator
partition(ForwardIterator first, ForwardIterator last, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
ForwardIterator
partition(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Predicate pred);

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I>
ranges::partition(I first, S last, Pred pred, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>
ranges::partition(R&& r, Pred pred, Proj proj = {});

4 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(pred,
invoke(proj, x))).

5 Preconditions: For the overloads in namespace std, ForwardIterator meets the Cpp17ValueSwappable require-ments (16.4.4.3).
6 Effects: Places all the elements e in [first, last) that satisfy E(e) before all the elements that do not.
7 Returns: Let i be an iterator such that E(*j) is true for every iterator j in [first, i) and false for every iterator

j in [i, last). Returns:
—(7.1) i for the overloads in namespace std.
—(7.2) {i, last} for the overloads in namespace ranges.

8 Complexity: Let N = last - first:
—(8.1) For the overload with no ExecutionPolicy, exactlyN applications of the predicate and projection. At most

N/2 swaps if the type of first meets the Cpp17BidirectionalIterator requirements for the overloads innamespace std or models bidirectional_iterator for the overloads in namespace ranges, and at most
N swaps otherwise.

—(8.2) For the overload with an ExecutionPolicy, O(N logN) swaps and O(N) applications of the predicate.
template<class BidirectionalIterator, class Predicate>

BidirectionalIterator
stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred);

template<class ExecutionPolicy, class BidirectionalIterator, class Predicate>
BidirectionalIterator
stable_partition(ExecutionPolicy&& exec,

BidirectionalIterator first, BidirectionalIterator last, Predicate pred);

template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires permutable<I>
subrange<I> ranges::stable_partition(I first, S last, Pred pred, Proj proj = {});

§ 27.8.5 1209

© ISO/IEC N4910

template<bidirectional_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
borrowed_subrange_t<R> ranges::stable_partition(R&& r, Pred pred, Proj proj = {});

9 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(pred,
invoke(proj, x))).

10 Preconditions: For the overloads in namespace std, BidirectionalIteratormeets theCpp17ValueSwappable re-quirements (16.4.4.3) and the type of *firstmeets theCpp17MoveConstructible (Table 30) andCpp17MoveAssignable(Table 32) requirements.
11 Effects: Places all the elements e in [first, last) that satisfy E(e) before all the elements that do not. Therelative order of the elements in both groups is preserved.
12 Returns: Let i be an iterator such that for every iterator j in [first, i), E(*j) is true, and for every iterator j inthe range [i, last), E(*j) is false. Returns:

—(12.1) i for the overloads in namespace std.
—(12.2) {i, last} for the overloads in namespace ranges.

13 Complexity: Let N = last - first:
—(13.1) For the overloads with no ExecutionPolicy, at most N logN swaps, but only O(N) swaps if there isenough extra memory. Exactly N applications of the predicate and projection.
—(13.2) For the overload with an ExecutionPolicy, O(N logN) swaps and O(N) applications of the predicate.

template<class InputIterator, class OutputIterator1, class OutputIterator2, class Predicate>
constexpr pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,

OutputIterator1 out_true, OutputIterator2 out_false, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class ForwardIterator1,

class ForwardIterator2, class Predicate>
pair<ForwardIterator1, ForwardIterator2>
partition_copy(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
ForwardIterator1 out_true, ForwardIterator2 out_false, Predicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2>
constexpr ranges::partition_copy_result<I, O1, O2>
ranges::partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred,

Proj proj = {});
template<input_range R, weakly_incrementable O1, weakly_incrementable O2,

class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O1> &&
indirectly_copyable<iterator_t<R>, O2>

constexpr ranges::partition_copy_result<borrowed_iterator_t<R>, O1, O2>
ranges::partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});

14 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(pred,
invoke(proj, x))).

15 Mandates: For the overloads in namespace std, the expression *first is writable (25.3.1) to out_true and
out_false.

16 Preconditions: The input range and output ranges do not overlap.
[Note 1: For the overload with an ExecutionPolicy, there might be a performance cost if first’s value type does not meetthe Cpp17CopyConstructible requirements. —end note]

17 Effects: For each iterator i in [first, last), copies *i to the output range beginning with out_true if E(*i) is
true, or to the output range beginning with out_false otherwise.

18 Returns: Let o1 be the end of the output range beginning at out_true, and o2 the end of the output range beginningat out_false. Returns

§ 27.8.5 1210

© ISO/IEC N4910

—(18.1) {o1, o2} for the overloads in namespace std.
—(18.2) {last, o1, o2} for the overloads in namespace ranges.

19 Complexity: Exactly last - first applications of pred and proj.
template<class ForwardIterator, class Predicate>

constexpr ForwardIterator
partition_point(ForwardIterator first, ForwardIterator last, Predicate pred);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I ranges::partition_point(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>
ranges::partition_point(R&& r, Pred pred, Proj proj = {});

20 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(pred,
invoke(proj, x))).

21 Preconditions: The elements e of [first, last) are partitioned with respect to E(e).
22 Returns: An iterator mid such that E(*i) is true for all iterators i in [first, mid), and false for all iterators i in

[mid, last).
23 Complexity: O(log(last - first)) applications of pred and proj.
27.8.6 Merge [alg.merge]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

constexpr OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
merge(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
merge(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity,
class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::merge_result<I1, I2, O>
ranges::merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

§ 27.8.6 1211

© ISO/IEC N4910

template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
ranges::merge(R1&& r1, R2&& r2, O result,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let N be (last1 - first1) + (last2 - first2). Let comp be less{}, proj1 be identity{}, and proj2 be
identity{}, for the overloads with no parameters by those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and proj1 or
proj2, respectively. The resulting range does not overlap with either of the original ranges.

3 Effects: Copies all the elements of the two ranges [first1, last1) and [first2, last2) into the range [result,
result_last), where result_last is result + N . If an element a precedes b in an input range, a is copied intothe output range before b. If e1 is an element of [first1, last1) and e2 of [first2, last2), e2 is copied into theoutput range before e1 if and only if bool(invoke(comp, invoke(proj2, e2), invoke(proj1, e1))) is true.

4 Returns:
—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.

5 Complexity:
—(5.1) For the overloads with no ExecutionPolicy, at mostN−1 comparisons and applications of each projection.
—(5.2) For the overloads with an ExecutionPolicy, O(N) comparisons.

6 Remarks: Stable (16.4.6.8).
template<class BidirectionalIterator>

void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator>
void inplace_merge(ExecutionPolicy&& exec,

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

template<class ExecutionPolicy, class BidirectionalIterator, class Compare>
void inplace_merge(ExecutionPolicy&& exec,

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
I ranges::inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});

7 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
8 Preconditions: [first, middle) and [middle, last) are valid ranges sorted with respect to comp and proj. For theoverloads in namespace std, BidirectionalIterator meets the Cpp17ValueSwappable requirements (16.4.4.3)and the type of *first meets the Cpp17MoveConstructible (Table 30) and Cpp17MoveAssignable (Table 32)requirements.
9 Effects: Merges two sorted consecutive ranges [first, middle) and [middle, last), putting the result of the mergeinto the range [first, last). The resulting range is sorted with respect to comp and proj.
10 Returns: last for the overload in namespace ranges.
11 Complexity: Let N = last - first:

§ 27.8.6 1212

© ISO/IEC N4910

—(11.1) For the overloads with no ExecutionPolicy, and if enough additional memory is available, exactly N − 1comparisons.
—(11.2) Otherwise, O(N logN) comparisons.
In either case, twice as many projections as comparisons.

12 Remarks: Stable (16.4.6.8).
template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>
ranges::inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});

13 Effects: Equivalent to:
return ranges::inplace_merge(ranges::begin(r), middle, ranges::end(r), comp, proj);

27.8.7 Set operations on sorted structures [alg.set.operations]
27.8.7.1 General [alg.set.operations.general]

1 Subclause 27.8.7 defines all the basic set operations on sorted structures. They also work with multisets (24.4.7)containing multiple copies of equivalent elements. The semantics of the set operations are generalized to multisetsin a standard way by defining set_union to contain the maximum number of occurrences of every element, set_-
intersection to contain the minimum, and so on.
27.8.7.2 includes [includes]

template<class InputIterator1, class InputIterator2>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

bool includes(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class Compare>
bool includes(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>,

projected<I2, Proj2>> Comp = ranges::less>
constexpr bool ranges::includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Proj1 = identity,

class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool ranges::includes(R1&& r1, R2&& r2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, proj1 be identity{}, and proj2 be identity{}, for the overloads with no parameters bythose names.
2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and proj1 or

proj2, respectively.
3 Returns: true if and only if [first2, last2) is a subsequence of [first1, last1).

[Note 1: A sequence S is a subsequence of another sequence T if S can be obtained from T by removing some, all, or noneof T ’s elements and keeping the remaining elements in the same order. —end note]
§ 27.8.7.2 1213

© ISO/IEC N4910

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applications ofeach projection.
27.8.7.3 set_union [set.union]

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_union(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_union(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_union_result<I1, I2, O>
ranges::set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
ranges::set_union(R1&& r1, R2&& r2, O result, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by those names.
2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and proj1 or

proj2, respectively. The resulting range does not overlap with either of the original ranges.
3 Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements that are presentin one or both of the ranges.
4 Returns: Let result_last be the end of the constructed range. Returns

—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.

5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applications ofeach projection.
6 Remarks: Stable (16.4.6.8). If [first1, last1) contains m elements that are equivalent to each other and

[first2, last2) contains n elements that are equivalent to them, then all m elements from the first range arecopied to the output range, in order, and then the finalmax(n−m, 0) elements from the second range are copiedto the output range, in order.

§ 27.8.7.3 1214

© ISO/IEC N4910

27.8.7.4 set_intersection [set.intersection]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

constexpr OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_intersection(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_intersection(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_intersection_result<I1, I2, O>
ranges::set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_intersection_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
ranges::set_intersection(R1&& r1, R2&& r2, O result,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by those names.
2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and proj1 or

proj2, respectively. The resulting range does not overlap with either of the original ranges.
3 Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements that arepresent in both of the ranges.
4 Returns: Let result_last be the end of the constructed range. Returns

—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.

5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applications ofeach projection.
6 Remarks: Stable (16.4.6.8). If [first1, last1) contains m elements that are equivalent to each other and

[first2, last2) contains n elements that are equivalent to them, the first min(m,n) elements are copied fromthe first range to the output range, in order.
27.8.7.5 set_difference [set.difference]

template<class InputIterator1, class InputIterator2,

§ 27.8.7.5 1215

© ISO/IEC N4910

class OutputIterator>
constexpr OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_difference_result<I1, O>
ranges::set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_difference_result<borrowed_iterator_t<R1>, O>
ranges::set_difference(R1&& r1, R2&& r2, O result,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by those names.
2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and proj1 or

proj2, respectively. The resulting range does not overlap with either of the original ranges.
3 Effects: Copies the elements of the range [first1, last1) which are not present in the range [first2, last2) tothe range beginning at result. The elements in the constructed range are sorted.
4 Returns: Let result_last be the end of the constructed range. Returns

—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, result_last} for the overloads in namespace ranges.

5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applications ofeach projection.
6 Remarks: If [first1, last1) containsm elements that are equivalent to each other and [first2, last2) contains

n elements that are equivalent to them, the lastmax(m− n, 0) elements from [first1, last1) is copied to theoutput range, in order.
27.8.7.6 set_symmetric_difference [set.symmetric.difference]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

constexpr OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

§ 27.8.7.6 1216

© ISO/IEC N4910

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_symmetric_difference_result<I1, I2, O>
ranges::set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,

Comp comp = {}, Proj1 proj1 = {},
Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_symmetric_difference_result<borrowed_iterator_t<R1>,

borrowed_iterator_t<R2>, O>
ranges::set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by those names.
2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and proj1 or

proj2, respectively. The resulting range does not overlap with either of the original ranges.
3 Effects: Copies the elements of the range [first1, last1) that are not present in the range [first2, last2), andthe elements of the range [first2, last2) that are not present in the range [first1, last1) to the range beginningat result. The elements in the constructed range are sorted.
4 Returns: Let result_last be the end of the constructed range. Returns

—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.

5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applications ofeach projection.
6 Remarks: Stable (16.4.6.8). If [first1, last1) contains m elements that are equivalent to each other and

[first2, last2) contains n elements that are equivalent to them, then |m− n| of those elements shall be copiedto the output range: the lastm− n of these elements from [first1, last1) ifm > n, and the last n−m of theseelements from [first2, last2) ifm < n. In either case, the elements are copied in order.

§ 27.8.7.6 1217

© ISO/IEC N4910

27.8.8 Heap operations [alg.heap.operations]
27.8.8.1 General [alg.heap.operations.general]

1 A random access range [a, b) is a heap with respect to comp and proj for a comparator and projection comp and proj ifits elements are organized such that:
—(1.1) WithN = b - a, for all i, 0 < i < N , bool(invoke(comp, invoke(proj, a[

⌊
i−1
2

⌋
]), invoke(proj, a[i])))is false.

—(1.2) *a may be removed by pop_heap, or a new element added by push_heap, in O(logN) time.
2 These properties make heaps useful as priority queues.
3 make_heap converts a range into a heap and sort_heap turns a heap into a sorted sequence.
27.8.8.2 push_heap [push.heap]

template<class RandomAccessIterator>
constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::push_heap(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>
ranges::push_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: The range [first, last - 1) is a valid heap with respect to comp and proj. For the overloadsin namespace std, the type of *first meets the Cpp17MoveConstructible requirements (Table 30) and theCpp17MoveAssignable requirements (Table 32).
3 Effects: Places the value in the location last - 1 into the resulting heap [first, last).
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most log(last - first) comparisons and twice as many projections.
27.8.8.3 pop_heap [pop.heap]

template<class RandomAccessIterator>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::pop_heap(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>
ranges::pop_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: The range [first, last) is a valid non-empty heap with respect to comp and proj. For theoverloads in namespace std, RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3)

§ 27.8.8.3 1218

© ISO/IEC N4910

and the type of *first meets the Cpp17MoveConstructible (Table 30) and Cpp17MoveAssignable (Table 32)requirements.
3 Effects: Swaps the value in the location first with the value in the location last - 1 and makes [first, last -

1) into a heap with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most 2 log(last - first) comparisons and twice as many projections.
27.8.8.4 make_heap [make.heap]

template<class RandomAccessIterator>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::make_heap(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>
ranges::make_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, the type of *first meets the Cpp17MoveConstructible(Table 30) and Cpp17MoveAssignable (Table 32) requirements.
3 Effects: Constructs a heap with respect to comp and proj out of the range [first, last).
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most 3(last - first) comparisons and twice as many projections.
27.8.8.5 sort_heap [sort.heap]

template<class RandomAccessIterator>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I
ranges::sort_heap(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>
ranges::sort_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: The range [first, last) is a valid heap with respect to comp and proj. For the overloads innamespace std, RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3) and the typeof *first meets the Cpp17MoveConstructible (Table 30) and Cpp17MoveAssignable (Table 32) requirements.
3 Effects: Sorts elements in the heap [first, last) with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most 2N logN comparisons, where N = last - first, and twice as many projections.

§ 27.8.8.5 1219

© ISO/IEC N4910

27.8.8.6 is_heap [is.heap]

template<class RandomAccessIterator>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last);

1 Effects: Equivalent to: return is_heap_until(first, last) == last;

template<class ExecutionPolicy, class RandomAccessIterator>
bool is_heap(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

2 Effects: Equivalent to:
return is_heap_until(std::forward<ExecutionPolicy>(exec), first, last) == last;

template<class RandomAccessIterator, class Compare>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

3 Effects: Equivalent to: return is_heap_until(first, last, comp) == last;

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
bool is_heap(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

4 Effects: Equivalent to:
return is_heap_until(std::forward<ExecutionPolicy>(exec), first, last, comp) == last;

template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr bool ranges::is_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr bool ranges::is_heap(R&& r, Comp comp = {}, Proj proj = {});

5 Effects: Equivalent to: return ranges::is_heap_until(first, last, comp, proj) == last;

template<class RandomAccessIterator>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>

RandomAccessIterator
is_heap_until(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
RandomAccessIterator

is_heap_until(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>

ranges::is_heap_until(R&& r, Comp comp = {}, Proj proj = {});

6 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
7 Returns: The last iterator i in [first, last] for which the range [first, i) is a heap with respect to comp and

proj.

§ 27.8.8.6 1220

© ISO/IEC N4910

8 Complexity: Linear.
27.8.9 Minimum and maximum [alg.min.max]

template<class T>
constexpr const T& min(const T& a, const T& b);

template<class T, class Compare>
constexpr const T& min(const T& a, const T& b, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr const T& ranges::min(const T& a, const T& b, Comp comp = {}, Proj proj = {});

1 Preconditions: For the first form, T meets the Cpp17LessThanComparable requirements (Table 28).
2 Returns: The smaller value. Returns the first argument when the arguments are equivalent.
3 Complexity: Exactly one comparison and two applications of the projection, if any.
4 Remarks: An invocation may explicitly specify an argument for the template parameter T of the overloads innamespace std.

template<class T>
constexpr T min(initializer_list<T> r);

template<class T, class Compare>
constexpr T min(initializer_list<T> r, Compare comp);

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T ranges::min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>
ranges::min(R&& r, Comp comp = {}, Proj proj = {});

5 Preconditions: ranges::distance(r) > 0. For the overloads in namespace std, T meets the Cpp17Copy-Constructible requirements. For the first form, T meets the Cpp17LessThanComparable requirements (Table 28).
6 Returns: The smallest value in the input range. Returns a copy of the leftmost element when several elements areequivalent to the smallest.
7 Complexity: Exactly ranges::distance(r) - 1 comparisons and twice as many applications of the projection,if any.
8 Remarks: An invocation may explicitly specify an argument for the template parameter T of the overloads innamespace std.

template<class T>
constexpr const T& max(const T& a, const T& b);

template<class T, class Compare>
constexpr const T& max(const T& a, const T& b, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr const T& ranges::max(const T& a, const T& b, Comp comp = {}, Proj proj = {});

9 Preconditions: For the first form, T meets the Cpp17LessThanComparable requirements (Table 28).
10 Returns: The larger value. Returns the first argument when the arguments are equivalent.
11 Complexity: Exactly one comparison and two applications of the projection, if any.
12 Remarks: An invocation may explicitly specify an argument for the template parameter T of the overloads innamespace std.

template<class T>
constexpr T max(initializer_list<T> r);

template<class T, class Compare>
constexpr T max(initializer_list<T> r, Compare comp);

§ 27.8.9 1221

© ISO/IEC N4910

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T ranges::max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>
ranges::max(R&& r, Comp comp = {}, Proj proj = {});

13 Preconditions: ranges::distance(r) > 0. For the overloads in namespace std, T meets the Cpp17Copy-Constructible requirements. For the first form, T meets the Cpp17LessThanComparable requirements (Table 28).
14 Returns: The largest value in the input range. Returns a copy of the leftmost element when several elements areequivalent to the largest.
15 Complexity: Exactly ranges::distance(r) - 1 comparisons and twice as many applications of the projection,if any.
16 Remarks: An invocation may explicitly specify an argument for the template parameter T of the overloads innamespace std.

template<class T>
constexpr pair<const T&, const T&> minmax(const T& a, const T& b);

template<class T, class Compare>
constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr ranges::minmax_result<const T&>
ranges::minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});

17 Preconditions: For the first form, T meets the Cpp17LessThanComparable requirements (Table 28).
18 Returns: {b, a} if b is smaller than a, and {a, b} otherwise.
19 Complexity: Exactly one comparison and two applications of the projection, if any.
20 Remarks: An invocation may explicitly specify an argument for the template parameter T of the overloads innamespace std.

template<class T>
constexpr pair<T, T> minmax(initializer_list<T> t);

template<class T, class Compare>
constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr ranges::minmax_result<T>
ranges::minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr ranges::minmax_result<range_value_t<R>>
ranges::minmax(R&& r, Comp comp = {}, Proj proj = {});

21 Preconditions: ranges::distance(r) > 0. For the overloads in namespace std, T meets the Cpp17Copy-Constructible requirements. For the first form, type T meets the Cpp17LessThanComparable requirements(Table 28).
22 Returns: Let X be the return type. Returns X{x, y}, where x is a copy of the leftmost element with the smallestvalue and y a copy of the rightmost element with the largest value in the input range.
23 Complexity: At most (3/2)ranges::distance(r) applications of the corresponding predicate and twice as manyapplications of the projection, if any.
24 Remarks: An invocation may explicitly specify an argument for the template parameter T of the overloads innamespace std.

§ 27.8.9 1222

© ISO/IEC N4910

template<class ForwardIterator>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator min_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

ForwardIterator min_element(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::min_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>
ranges::min_element(R&& r, Comp comp = {}, Proj proj = {});

25 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
26 Returns: The first iterator i in the range [first, last) such that for every iterator j in the range [first, last),

bool(invoke(comp, invoke(proj, *j), invoke(proj, *i)))

is false. Returns last if first == last.
27 Complexity: Exactlymax(last - first - 1, 0) comparisons and twice as many projections.

template<class ForwardIterator>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator max_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

ForwardIterator max_element(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::max_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>

ranges::max_element(R&& r, Comp comp = {}, Proj proj = {});

28 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
29 Returns: The first iterator i in the range [first, last) such that for every iterator j in the range [first, last),

bool(invoke(comp, invoke(proj, *i), invoke(proj, *j)))

is false. Returns last if first == last.
30 Complexity: Exactlymax(last - first - 1, 0) comparisons and twice as many projections.

template<class ForwardIterator>
constexpr pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last);

§ 27.8.9 1223

© ISO/IEC N4910

template<class ExecutionPolicy, class ForwardIterator>
pair<ForwardIterator, ForwardIterator>
minmax_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>
minmax_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr ranges::minmax_result<I>
ranges::minmax_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr ranges::minmax_result<borrowed_iterator_t<R>>
ranges::minmax_element(R&& r, Comp comp = {}, Proj proj = {});

31 Returns: {first, first} if [first, last) is empty, otherwise {m, M}, where m is the first iterator in [first, last)such that no iterator in the range refers to a smaller element, and where M is the last iterator224 in [first, last)such that no iterator in the range refers to a larger element.
32 Complexity: LetN be last - first. At mostmax(

⌊
3
2 (N −1)

⌋
, 0) comparisons and twice as many applicationsof the projection, if any.

27.8.10 Bounded value [alg.clamp]

template<class T>
constexpr const T& clamp(const T& v, const T& lo, const T& hi);

template<class T, class Compare>
constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr const T&
ranges::clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {});

1 Let comp be less{} for the overloads with no parameter comp, and let proj be identity{} for the overloads withno parameter proj.
2 Preconditions: bool(invoke(comp, invoke(proj, hi), invoke(proj, lo))) is false. For the first form,type T meets the Cpp17LessThanComparable requirements (Table 28).
3 Returns: lo if bool(invoke(comp, invoke(proj, v), invoke(proj, lo))) is true, hi if bool(invoke(comp,

invoke(proj, hi), invoke(proj, v))) is true, otherwise v.
4 [Note 1: If NaN is avoided, T can be a floating-point type. —end note]
5 Complexity: At most two comparisons and three applications of the projection.
27.8.11 Lexicographical comparison [alg.lex.comparison]

template<class InputIterator1, class InputIterator2>
constexpr bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

bool
lexicographical_compare(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

224) This behavior intentionally differs from max_element.
§ 27.8.11 1224

© ISO/IEC N4910

template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Compare>

bool
lexicographical_compare(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>,

projected<I2, Proj2>> Comp = ranges::less>
constexpr bool
ranges::lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Proj1 = identity,

class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool
ranges::lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Returns: true if and only if the sequence of elements defined by the range [first1, last1) is lexicographicallyless than the sequence of elements defined by the range [first2, last2).
2 Complexity: At most 2 min(last1 - first1, last2 - first2) applications of the corresponding comparisonand each projection, if any.
3 Remarks: If two sequences have the same number of elements and their corresponding elements (if any) areequivalent, then neither sequence is lexicographically less than the other. If one sequence is a proper prefix of theother, then the shorter sequence is lexicographically less than the longer sequence. Otherwise, the lexicographicalcomparison of the sequences yields the same result as the comparison of the first corresponding pair of elementsthat are not equivalent.
4 [Example 1: ranges::lexicographical_compare(I1, S1, I2, S2, Comp, Proj1, Proj2) can be implemented as:

for (; first1 != last1 && first2 != last2 ; ++first1, (void) ++first2) {
if (invoke(comp, invoke(proj1, *first1), invoke(proj2, *first2))) return true;
if (invoke(comp, invoke(proj2, *first2), invoke(proj1, *first1))) return false;

}
return first1 == last1 && first2 != last2;

—end example]
5 [Note 1: An empty sequence is lexicographically less than any non-empty sequence, but not less than any empty sequence.—end note]
27.8.12 Three-way comparison algorithms [alg.three.way]

template<class InputIterator1, class InputIterator2, class Cmp>
constexpr auto
lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,

InputIterator2 b2, InputIterator2 e2,
Cmp comp)

-> decltype(comp(*b1, *b2));

1 Let N bemin(e1 - b1, e2 - b2). Let E(n) be comp(*(b1 + n), *(b2 + n)).
2 Mandates: decltype(comp(*b1, *b2)) is a comparison category type.
3 Returns: E(i), where i is the smallest integer in [0, N) such that E(i) != 0 is true, or (e1 - b1) <=> (e2 -

b2) if no such integer exists.

§ 27.8.12 1225

© ISO/IEC N4910

4 Complexity: At most N applications of comp.
template<class InputIterator1, class InputIterator2>

constexpr auto
lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,

InputIterator2 b2, InputIterator2 e2);

5 Effects: Equivalent to:
return lexicographical_compare_three_way(b1, e1, b2, e2, compare_three_way());

27.8.13 Permutation generators [alg.permutation.generators]

template<class BidirectionalIterator>
constexpr bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
constexpr bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr ranges::next_permutation_result<I>
ranges::next_permutation(I first, S last, Comp comp = {}, Proj proj = {});

template<bidirectional_range R, class Comp = ranges::less,
class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr ranges::next_permutation_result<borrowed_iterator_t<R>>
ranges::next_permutation(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17ValueSwappablerequirements (16.4.4.3).
3 Effects: Takes a sequence defined by the range [first, last) and transforms it into the next permutation. Thenext permutation is found by assuming that the set of all permutations is lexicographically sorted with respectto comp and proj. If no such permutation exists, transforms the sequence into the first permutation; that is, theascendingly-sorted one.
4 Returns: Let B be true if a next permutation was found and otherwise false. Returns:

—(4.1) B for the overloads in namespace std.
—(4.2) { last, B } for the overloads in namespace ranges.

5 Complexity: At most (last - first) / 2 swaps.
template<class BidirectionalIterator>

constexpr bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
constexpr bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr ranges::prev_permutation_result<I>
ranges::prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});

template<bidirectional_range R, class Comp = ranges::less,
class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr ranges::prev_permutation_result<borrowed_iterator_t<R>>

§ 27.8.13 1226

© ISO/IEC N4910

ranges::prev_permutation(R&& r, Comp comp = {}, Proj proj = {});

6 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
7 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17ValueSwappablerequirements (16.4.4.3).
8 Effects: Takes a sequence defined by the range [first, last) and transforms it into the previous permutation.The previous permutation is found by assuming that the set of all permutations is lexicographically sorted withrespect to comp and proj. If no such permutation exists, transforms the sequence into the last permutation; that is,the descendingly-sorted one.
9 Returns: Let B be true if a previous permutation was found and otherwise false. Returns:

—(9.1) B for the overloads in namespace std.
—(9.2) { last, B } for the overloads in namespace ranges.

10 Complexity: At most (last - first) / 2 swaps.
27.9 Header <numeric> synopsis [numeric.ops.overview]
namespace std {// 27.10.3, accumulate

template<class InputIterator, class T>
constexpr T accumulate(InputIterator first, InputIterator last, T init);

template<class InputIterator, class T, class BinaryOperation>
constexpr T accumulate(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);

// 27.10.4, reduce
template<class InputIterator>
constexpr typename iterator_traits<InputIterator>::value_type

reduce(InputIterator first, InputIterator last);
template<class InputIterator, class T>
constexpr T reduce(InputIterator first, InputIterator last, T init);

template<class InputIterator, class T, class BinaryOperation>
constexpr T reduce(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator>
typename iterator_traits<ForwardIterator>::value_type

reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class T>
T reduce(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, T init);
template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation>
T reduce(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, T init, BinaryOperation binary_op);

// 27.10.5, inner product
template<class InputIterator1, class InputIterator2, class T>
constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template<class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,
BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);

// 27.10.6, transform reduce
template<class InputIterator1, class InputIterator2, class T>
constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template<class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,

§ 27.9 1227

© ISO/IEC N4910

BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);
template<class InputIterator, class T,

class BinaryOperation, class UnaryOperation>
constexpr T transform_reduce(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op, UnaryOperation unary_op);
template<class ExecutionPolicy,

class ForwardIterator1, class ForwardIterator2, class T>
T transform_reduce(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, T init);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

T transform_reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, T init,
BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);

template<class ExecutionPolicy, class ForwardIterator, class T,
class BinaryOperation, class UnaryOperation>

T transform_reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

// 27.10.7, partial sum
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);

// 27.10.8, exclusive scan
template<class InputIterator, class OutputIterator, class T>

constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init);
template<class InputIterator, class OutputIterator, class T, class BinaryOperation>

constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>

ForwardIterator2
exclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation>

ForwardIterator2
exclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init, BinaryOperation binary_op);

// 27.10.9, inclusive scan
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);

§ 27.9 1228

© ISO/IEC N4910

template<class InputIterator, class OutputIterator, class BinaryOperation, class T>
constexpr OutputIterator

inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op, T init);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class T>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op, T init);

// 27.10.10, transform exclusive scan
template<class InputIterator, class OutputIterator, class T,

class BinaryOperation, class UnaryOperation>
constexpr OutputIterator

transform_exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_exclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

// 27.10.11, transform inclusive scan
template<class InputIterator, class OutputIterator,

class BinaryOperation, class UnaryOperation>
constexpr OutputIterator

transform_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation, class T>

constexpr OutputIterator
transform_inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op, T init);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op,
UnaryOperation unary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation, class T>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, UnaryOperation unary_op, T init);

§ 27.9 1229

© ISO/IEC N4910

// 27.10.12, adjacent difference
template<class InputIterator, class OutputIterator>
constexpr OutputIterator

adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryOperation>
constexpr OutputIterator

adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

adjacent_difference(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>

ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

// 27.10.13, iota
template<class ForwardIterator, class T>
constexpr void iota(ForwardIterator first, ForwardIterator last, T value);

namespace ranges {
template<class O, class T>

using iota_result = out_value_result<O, T>;

template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T>
requires indirectly_writable<O, const T&>
constexpr iota_result<O, T> iota(O first, S last, T value);

template<weakly_incrementable T, output_range<const T&> R>
constexpr iota_result<borrowed_iterator_t<R>, T> iota(R&& r, T value);

}

// 27.10.14, greatest common divisor
template<class M, class N>
constexpr common_type_t<M, N> gcd(M m, N n);

// 27.10.15, least common multiple
template<class M, class N>
constexpr common_type_t<M, N> lcm(M m, N n);

// 27.10.16, midpoint
template<class T>
constexpr T midpoint(T a, T b) noexcept;

template<class T>
constexpr T* midpoint(T* a, T* b);

}

27.10 Generalized numeric operations [numeric.ops]
27.10.1 General [numeric.ops.general]

1 [Note 1: The use of closed ranges as well as semi-open ranges to specify requirements throughout 27.10 is intentional. —end note]
27.10.2 Definitions [numerics.defns]

1 Define GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, ..., aN) as follows:
—(1.1) a1 when N is 1, otherwise
—(1.2) op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, ..., aK),

GENERALIZED_NONCOMMUTATIVE_SUM(op, aM, ..., aN)) for any K where 1 < K + 1 = M ≤ N.

§ 27.10.2 1230

© ISO/IEC N4910

2 Define GENERALIZED_SUM(op, a1, ..., aN) as GENERALIZED_NONCOMMUTATIVE_SUM(op, b1, ..., bN), where b1,
..., bN may be any permutation of a1, ..., aN.
27.10.3 Accumulate [accumulate]

template<class InputIterator, class T>
constexpr T accumulate(InputIterator first, InputIterator last, T init);

template<class InputIterator, class T, class BinaryOperation>
constexpr T accumulate(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);

1 Preconditions: T meets the Cpp17CopyConstructible (Table 31) and Cpp17CopyAssignable (Table 33) require-ments. In the range [first, last], binary_op neither modifies elements nor invalidates iterators or subranges.225
2 Effects: Computes its result by initializing the accumulator acc with the initial value init and then modifies itwith acc = std::move(acc) + *i or acc = binary_op(std::move(acc), *i) for every iterator i in the range

[first, last) in order.226
27.10.4 Reduce [reduce]

template<class InputIterator>
constexpr typename iterator_traits<InputIterator>::value_type
reduce(InputIterator first, InputIterator last);

1 Effects: Equivalent to:
return reduce(first, last,

typename iterator_traits<InputIterator>::value_type{});

template<class ExecutionPolicy, class ForwardIterator>
typename iterator_traits<ForwardIterator>::value_type
reduce(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

2 Effects: Equivalent to:
return reduce(std::forward<ExecutionPolicy>(exec), first, last,

typename iterator_traits<ForwardIterator>::value_type{});

template<class InputIterator, class T>
constexpr T reduce(InputIterator first, InputIterator last, T init);

3 Effects: Equivalent to:
return reduce(first, last, init, plus<>());

template<class ExecutionPolicy, class ForwardIterator, class T>
T reduce(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, T init);

4 Effects: Equivalent to:
return reduce(std::forward<ExecutionPolicy>(exec), first, last, init, plus<>());

template<class InputIterator, class T, class BinaryOperation>
constexpr T reduce(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation>

T reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, T init,
BinaryOperation binary_op);

5 Mandates: All of
—(5.1) binary_op(init, *first),
—(5.2) binary_op(*first, init),

225) The use of fully closed ranges is intentional.
226) accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining the result ofreduction on an empty sequence by always requiring an initial value.
§ 27.10.4 1231

© ISO/IEC N4910

—(5.3) binary_op(init, init), and
—(5.4) binary_op(*first, *first)

are convertible to T.
6 Preconditions:

—(6.1) T meets the Cpp17MoveConstructible (Table 30) requirements.
—(6.2) binary_op neither invalidates iterators or subranges, nor modifies elements in the range [first, last].

7 Returns: GENERALIZED_SUM(binary_op, init, *i, ...) for every i in [first, last).
8 Complexity: O(last - first) applications of binary_op.
9 [Note 1: The difference between reduce and accumulate is that reduce applies binary_op in an unspecified order, whichyields a nondeterministic result for non-associative or non-commutative binary_op such as floating-point addition. —endnote]
27.10.5 Inner product [inner.product]

template<class InputIterator1, class InputIterator2, class T>
constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template<class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

1 Preconditions: T meets the Cpp17CopyConstructible (Table 31) and Cpp17CopyAssignable (Table 33) require-ments. In the ranges [first1, last1] and [first2, first2 + (last1 - first1)] binary_op1 and binary_op2neither modifies elements nor invalidates iterators or subranges.227
2 Effects: Computes its result by initializing the accumulator acc with the initial value init and then modifyingit with acc = std::move(acc) + (*i1) * (*i2) or acc = binary_op1(std::move(acc), binary_op2(*i1,

*i2)) for every iterator i1 in the range [first1, last1) and iterator i2 in the range [first2, first2 + (last1 -
first1)) in order.

27.10.6 Transform reduce [transform.reduce]

template<class InputIterator1, class InputIterator2, class T>
constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2,
T init);

1 Effects: Equivalent to:
return transform_reduce(first1, last1, first2, init, plus<>(), multiplies<>());

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T>

T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2,
T init);

2 Effects: Equivalent to:
return transform_reduce(std::forward<ExecutionPolicy>(exec),

first1, last1, first2, init, plus<>(), multiplies<>());

template<class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2,
T init,
BinaryOperation1 binary_op1,

227) The use of fully closed ranges is intentional.
§ 27.10.6 1232

© ISO/IEC N4910

BinaryOperation2 binary_op2);
template<class ExecutionPolicy,

class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2,
T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

3 Mandates: All of
—(3.1) binary_op1(init, init),
—(3.2) binary_op1(init, binary_op2(*first1, *first2)),
—(3.3) binary_op1(binary_op2(*first1, *first2), init), and
—(3.4) binary_op1(binary_op2(*first1, *first2), binary_op2(*first1, *first2))

are convertible to T.
4 Preconditions:

—(4.1) T meets the Cpp17MoveConstructible (Table 30) requirements.
—(4.2) Neither binary_op1 nor binary_op2 invalidates subranges, nor modifies elements in the ranges [first1,

last1] and [first2, first2 + (last1 - first1)].
5 Returns:

GENERALIZED_SUM(binary_op1, init, binary_op2(*i, *(first2 + (i - first1))), ...)

for every iterator i in [first1, last1).
6 Complexity: O(last1 - first1) applications each of binary_op1 and binary_op2.

template<class InputIterator, class T,
class BinaryOperation, class UnaryOperation>

constexpr T transform_reduce(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator, class T,
class BinaryOperation, class UnaryOperation>

T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
T init, BinaryOperation binary_op, UnaryOperation unary_op);

7 Mandates: All of
—(7.1) binary_op(init, init),
—(7.2) binary_op(init, unary_op(*first)),
—(7.3) binary_op(unary_op(*first), init), and
—(7.4) binary_op(unary_op(*first), unary_op(*first))

are convertible to T.
8 Preconditions:

—(8.1) T meets the Cpp17MoveConstructible (Table 30) requirements.
—(8.2) Neither unary_op nor binary_op invalidates subranges, nor modifies elements in the range [first, last].

9 Returns:
GENERALIZED_SUM(binary_op, init, unary_op(*i), ...)

for every iterator i in [first, last).
10 Complexity: O(last - first) applications each of unary_op and binary_op.
11 [Note 1: transform_reduce does not apply unary_op to init. —end note]

§ 27.10.6 1233

© ISO/IEC N4910

27.10.7 Partial sum [partial.sum]

template<class InputIterator, class OutputIterator>
constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);

1 Mandates: InputIterator’s value type is constructible from *first. The result of the expression std::move(acc)
+ *i or binary_op(std::move(acc), *i) is implicitly convertible to InputIterator’s value type. acc iswritable (25.3.1) to result.

2 Preconditions: In the ranges [first, last] and [result, result + (last - first)] binary_op neither modifieselements nor invalidates iterators or subranges.228
3 Effects: For a non-empty range, the function creates an accumulator acc whose type is InputIterator’s valuetype, initializes it with *first, and assigns the result to *result. For every iterator i in [first + 1, last) inorder, acc is then modified by acc = std::move(acc) + *i or acc = binary_op(std::move(acc), *i) andthe result is assigned to *(result + (i - first)).
4 Returns: result + (last - first).
5 Complexity: Exactly (last - first) - 1 applications of the binary operation.
6 Remarks: result may be equal to first.
27.10.8 Exclusive scan [exclusive.scan]

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init);

1 Effects: Equivalent to:
return exclusive_scan(first, last, result, init, plus<>());

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2
exclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init);

2 Effects: Equivalent to:
return exclusive_scan(std::forward<ExecutionPolicy>(exec),

first, last, result, init, plus<>());

template<class InputIterator, class OutputIterator, class T, class BinaryOperation>
constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init, BinaryOperation binary_op);
template<class ExecutionPolicy,

class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation>
ForwardIterator2
exclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init, BinaryOperation binary_op);

3 Mandates: All of
—(3.1) binary_op(init, init),
—(3.2) binary_op(init, *first), and
—(3.3) binary_op(*first, *first)

228) The use of fully closed ranges is intentional.
§ 27.10.8 1234

© ISO/IEC N4910

are convertible to T.
4 Preconditions:

—(4.1) T meets the Cpp17MoveConstructible (Table 30) requirements.
—(4.2) binary_op neither invalidates iterators or subranges, nor modifies elements in the ranges [first, last] or

[result, result + (last - first)].
5 Effects: For each integer K in [0, last - first) assigns through result + K the value of:

GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init, *(first + 0), *(first + 1), ..., *(first + K - 1))

6 Returns: The end of the resulting range beginning at result.
7 Complexity: O(last - first) applications of binary_op.
8 Remarks: result may be equal to first.
9 [Note 1: The difference between exclusive_scan and inclusive_scan is that exclusive_scan excludes the ith input elementfrom the ith sum. If binary_op is not mathematically associative, the behavior of exclusive_scan can be nondeterministic.—end note]
27.10.9 Inclusive scan [inclusive.scan]

template<class InputIterator, class OutputIterator>
constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result);

1 Effects: Equivalent to:
return inclusive_scan(first, last, result, plus<>());

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

2 Effects: Equivalent to:
return inclusive_scan(std::forward<ExecutionPolicy>(exec), first, last, result, plus<>());

template<class InputIterator, class OutputIterator, class BinaryOperation>
constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class BinaryOperation>
ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

template<class InputIterator, class OutputIterator, class BinaryOperation, class T>
constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op, T init);
template<class ExecutionPolicy,

class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class T>
ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op, T init);

3 Let U be the value type of decltype(first).
4 Mandates: If init is provided, all of

—(4.1) binary_op(init, init),

§ 27.10.9 1235

© ISO/IEC N4910

—(4.2) binary_op(init, *first), and
—(4.3) binary_op(*first, *first)

are convertible to T; otherwise, binary_op(*first, *first) is convertible to U.
5 Preconditions:

—(5.1) If init is provided, T meets the Cpp17MoveConstructible (Table 30) requirements; otherwise, U meets theCpp17MoveConstructible requirements.
—(5.2) binary_op neither invalidates iterators or subranges, nor modifies elements in the ranges [first, last] or

[result, result + (last - first)].
6 Effects: For each integer K in [0, last - first) assigns through result + K the value of

—(6.1) GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init, *(first + 0), *(first + 1), ..., *(first + K))if init is provided, or

—(6.2) GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, *(first + 0), *(first + 1), ..., *(first + K))otherwise.

7 Returns: The end of the resulting range beginning at result.
8 Complexity: O(last - first) applications of binary_op.
9 Remarks: result may be equal to first.
10 [Note 1: The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input elementin the ith sum. If binary_op is not mathematically associative, the behavior of inclusive_scan can be nondeterministic.—end note]
27.10.10 Transform exclusive scan [transform.exclusive.scan]

template<class InputIterator, class OutputIterator, class T,
class BinaryOperation, class UnaryOperation>

constexpr OutputIterator
transform_exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_exclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

1 Mandates: All of
—(1.1) binary_op(init, init),
—(1.2) binary_op(init, unary_op(*first)), and
—(1.3) binary_op(unary_op(*first), unary_op(*first))

are convertible to T.
2 Preconditions:

—(2.1) T meets the Cpp17MoveConstructible (Table 30) requirements.
—(2.2) Neither unary_op nor binary_op invalidates iterators or subranges, nor modifies elements in the ranges

[first, last] or [result, result + (last - first)].
3 Effects: For each integer K in [0, last - first) assigns through result + K the value of:

GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K - 1)))

4 Returns: The end of the resulting range beginning at result.
§ 27.10.10 1236

© ISO/IEC N4910

5 Complexity: O(last - first) applications each of unary_op and binary_op.
6 Remarks: result may be equal to first.
7 [Note 1: The difference between transform_exclusive_scan and transform_inclusive_scan is that transform_exclusive_-

scan excludes the ith input element from the ith sum. If binary_op is not mathematically associative, the behavior of
transform_exclusive_scan can be nondeterministic. transform_exclusive_scan does not apply unary_op to init. —endnote]

27.10.11 Transform inclusive scan [transform.inclusive.scan]

template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation>

constexpr OutputIterator
transform_inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation, class T>

constexpr OutputIterator
transform_inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op,
T init);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation, class T>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, UnaryOperation unary_op,
T init);

1 Let U be the value type of decltype(first).
2 Mandates: If init is provided, all of

—(2.1) binary_op(init, init),
—(2.2) binary_op(init, unary_op(*first)), and
—(2.3) binary_op(unary_op(*first), unary_op(*first))

are convertible to T; otherwise, binary_op(unary_op(*first), unary_op(*first)) is convertible to U.
3 Preconditions:

—(3.1) If init is provided, T meets the Cpp17MoveConstructible (Table 30) requirements; otherwise, U meets theCpp17MoveConstructible requirements.
—(3.2) Neither unary_op nor binary_op invalidates iterators or subranges, nor modifies elements in the ranges

[first, last] or [result, result + (last - first)].
4 Effects: For each integer K in [0, last - first) assigns through result + K the value of

—(4.1) GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K)))if init is provided, or

—(4.2) GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op,

§ 27.10.11 1237

© ISO/IEC N4910

unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K)))otherwise.
5 Returns: The end of the resulting range beginning at result.
6 Complexity: O(last - first) applications each of unary_op and binary_op.
7 Remarks: result may be equal to first.
8 [Note 1: The difference between transform_exclusive_scan and transform_inclusive_scan is that transform_inclusive_-

scan includes the ith input element in the ith sum. If binary_op is not mathematically associative, the behavior of transform_-
inclusive_scan can be nondeterministic. transform_inclusive_scan does not apply unary_op to init. —end note]

27.10.12 Adjacent difference [adjacent.difference]

template<class InputIterator, class OutputIterator>
constexpr OutputIterator
adjacent_difference(InputIterator first, InputIterator last,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result);

template<class InputIterator, class OutputIterator, class BinaryOperation>
constexpr OutputIterator
adjacent_difference(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class BinaryOperation>
ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

1 Let T be the value type of decltype(first). For the overloads that do not take an argument binary_op, let
binary_op be an lvalue that denotes an object of type minus<>.

2 Mandates:
—(2.1) For the overloads with no ExecutionPolicy, T is constructible from *first. acc (defined below) is writable(25.3.1) to the result output iterator. The result of the expression binary_op(val, std::move(acc)) iswritable to result.
—(2.2) For the overloads with an ExecutionPolicy, the result of the expressions binary_op(*first, *first)and *first are writable to result.

3 Preconditions:
—(3.1) For the overloads with no ExecutionPolicy, T meets the Cpp17MoveAssignable (Table 32) requirements.
—(3.2) For all overloads, in the ranges [first, last] and [result, result + (last - first)], binary_op neithermodifies elements nor invalidate iterators or subranges.229

4 Effects: For the overloads with no ExecutionPolicy and a non-empty range, the function creates an accumulator
acc of type T, initializes it with *first, and assigns the result to *result. For every iterator i in [first + 1, last)in order, creates an object valwhose type is T, initializes it with *i, computes binary_op(val, std::move(acc)),assigns the result to *(result + (i - first)), and move assigns from val to acc.

5 For the overloads with an ExecutionPolicy and a non-empty range, performs *result = *first. Then, forevery d in [1, last - first - 1], performs *(result + d) = binary_op(*(first + d), *(first + (d -
1))).

6 Returns: result + (last - first).
7 Complexity: Exactly (last - first) - 1 applications of the binary operation.
8 Remarks: For the overloads with no ExecutionPolicy, result may be equal to first. For the overloads withan ExecutionPolicy, the ranges [first, last) and [result, result + (last - first)) shall not overlap.

229) The use of fully closed ranges is intentional.
§ 27.10.12 1238

© ISO/IEC N4910

27.10.13 Iota [numeric.iota]

template<class ForwardIterator, class T>
constexpr void iota(ForwardIterator first, ForwardIterator last, T value);

1 Mandates: T is convertible to ForwardIterator’s value type. The expression ++val, where val has type T, iswell-formed.
2 Effects: For each element referred to by the iterator i in the range [first, last), assigns *i = value andincrements value as if by ++value.
3 Complexity: Exactly last - first increments and assignments.

template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T>
requires indirectly_writable<O, const T&>
constexpr ranges::iota_result<O, T> ranges::iota(O first, S last, T value);

template<weakly_incrementable T, output_range<const T&> R>
constexpr ranges::iota_result<borrowed_iterator_t<R>, T> ranges::iota(R&& r, T value);

4 Effects: Equivalent to:
while (first != last) {
*first = as_const(value);
++first;
++value;

}
return {std::move(first), std::move(value)};

27.10.14 Greatest common divisor [numeric.ops.gcd]

template<class M, class N>
constexpr common_type_t<M, N> gcd(M m, N n);

1 Mandates: M and N both are integer types other than cv bool.
2 Preconditions: |m| and |n| are representable as a value of common_type_t<M, N>.

[Note 1: These requirements ensure, for example, that gcd(m, m) = |m| is representable as a value of type M. —end note]
3 Returns: Zero when m and n are both zero. Otherwise, returns the greatest common divisor of |m| and |n|.
4 Throws: Nothing.
27.10.15 Least common multiple [numeric.ops.lcm]

template<class M, class N>
constexpr common_type_t<M, N> lcm(M m, N n);

1 Mandates: M and N both are integer types other than cv bool.
2 Preconditions: |m| and |n| are representable as a value of common_type_t<M, N>. The least common multiple of

|m| and |n| is representable as a value of type common_type_t<M, N>.
3 Returns: Zero when either m or n is zero. Otherwise, returns the least common multiple of |m| and |n|.
4 Throws: Nothing.
27.10.16 Midpoint [numeric.ops.midpoint]

template<class T>
constexpr T midpoint(T a, T b) noexcept;

1 Constraints: T is an arithmetic type other than bool.
2 Returns: Half the sum of a and b. If T is an integer type and the sum is odd, the result is rounded towards a.
3 Remarks: No overflow occurs. If T is a floating-point type, at most one inexact operation occurs.

template<class T>
constexpr T* midpoint(T* a, T* b);

4 Constraints: T is an object type.
5 Mandates: T is a complete type.

§ 27.10.16 1239

© ISO/IEC N4910

6 Preconditions: a and b point to, respectively, elements i and j of the same array object x.
[Note 1: As specified in 6.8.3, an object that is not an array element is considered to belong to a single-element array forthis purpose and a pointer past the last element of an array of n elements is considered to be equivalent to a pointer to ahypothetical array element n for this purpose. —end note]

7 Returns: A pointer to array element i+ j−i
2 of x, where the result of the division is truncated towards zero.

27.11 Specialized <memory> algorithms [specialized.algorithms]
27.11.1 General [specialized.algorithms.general]

1 The contents specified in 27.11 are declared in the header <memory> (20.2.2).
2 Unless otherwise specified, if an exception is thrown in the following algorithms, objects constructed by a placement

new-expression (7.6.2.8) are destroyed in an unspecified order before allowing the exception to propagate.
3 [Note 1: When invoked on ranges of potentially-overlapping subobjects (6.7.2), the algorithms specified in 27.11 result in undefinedbehavior. —end note]
4 Some algorithms specified in 27.11 make use of the exposition-only function voidify:

template<class T>
constexpr void* voidify(T& obj) noexcept {

return const_cast<void*>(static_cast<const volatile void*>(addressof(obj)));
}

27.11.2 Special memory concepts [special.mem.concepts]
1 Some algorithms in this subclause are constrained with the following exposition-only concepts:

template<class I>
concept nothrow-input-iterator = // exposition only

input_iterator<I> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
same_as<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>;

2 A type I models nothrow-input-iterator only if no exceptions are thrown from increment, copy construction,move construction, copy assignment, move assignment, or indirection through valid iterators.
3 [Note 1: This concept allows some input_iterator (25.3.4.9) operations to throw exceptions. —end note]

template<class S, class I>
concept nothrow-sentinel-for = sentinel_for<S, I>; // exposition only

4 Types S and I model nothrow-sentinel-for only if no exceptions are thrown from copy construction, moveconstruction, copy assignment, move assignment, or comparisons between valid values of type I and S.
5 [Note 2: This concept allows some sentinel_for (25.3.4.7) operations to throw exceptions. —end note]

template<class R>
concept nothrow-input-range = // exposition only
range<R> &&
nothrow-input-iterator<iterator_t<R>> &&
nothrow-sentinel-for<sentinel_t<R>, iterator_t<R>>;

6 A type R models nothrow-input-range only if no exceptions are thrown from calls to ranges::begin and
ranges::end on an object of type R.

template<class I>
concept nothrow-forward-iterator = // exposition only

nothrow-input-iterator<I> &&
forward_iterator<I> &&
nothrow-sentinel-for<I, I>;

7 [Note 3: This concept allows some forward_iterator (25.3.4.11) operations to throw exceptions. —end note]
template<class R>
concept nothrow-forward-range = // exposition only

nothrow-input-range<R> &&
nothrow-forward-iterator<iterator_t<R>>;

§ 27.11.2 1240

© ISO/IEC N4910

27.11.3 uninitialized_default_construct [uninitialized.construct.default]

template<class NoThrowForwardIterator>
void uninitialized_default_construct(NoThrowForwardIterator first, NoThrowForwardIterator last);

1 Effects: Equivalent to:
for (; first != last; ++first)
::new (voidify(*first))

typename iterator_traits<NoThrowForwardIterator>::value_type;

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S>
requires default_initializable<iter_value_t<I>>
I uninitialized_default_construct(I first, S last);

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>
borrowed_iterator_t<R> uninitialized_default_construct(R&& r);

}

2 Effects: Equivalent to:
for (; first != last; ++first)
::new (voidify(*first)) remove_reference_t<iter_reference_t<I>>;

return first;

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator uninitialized_default_construct_n(NoThrowForwardIterator first, Size n);

3 Effects: Equivalent to:
for (; n > 0; (void)++first, --n)
::new (voidify(*first))

typename iterator_traits<NoThrowForwardIterator>::value_type;
return first;

namespace ranges {
template<nothrow-forward-iterator I>
requires default_initializable<iter_value_t<I>>
I uninitialized_default_construct_n(I first, iter_difference_t<I> n);

}

4 Effects: Equivalent to:
return uninitialized_default_construct(counted_iterator(first, n),

default_sentinel).base();

27.11.4 uninitialized_value_construct [uninitialized.construct.value]

template<class NoThrowForwardIterator>
void uninitialized_value_construct(NoThrowForwardIterator first, NoThrowForwardIterator last);

1 Effects: Equivalent to:
for (; first != last; ++first)
::new (voidify(*first))

typename iterator_traits<NoThrowForwardIterator>::value_type();

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S>
requires default_initializable<iter_value_t<I>>
I uninitialized_value_construct(I first, S last);

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>
borrowed_iterator_t<R> uninitialized_value_construct(R&& r);

}

2 Effects: Equivalent to:
for (; first != last; ++first)
::new (voidify(*first)) remove_reference_t<iter_reference_t<I>>();

return first;

§ 27.11.4 1241

© ISO/IEC N4910

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator uninitialized_value_construct_n(NoThrowForwardIterator first, Size n);

3 Effects: Equivalent to:
for (; n > 0; (void)++first, --n)
::new (voidify(*first))

typename iterator_traits<NoThrowForwardIterator>::value_type();
return first;

namespace ranges {
template<nothrow-forward-iterator I>
requires default_initializable<iter_value_t<I>>
I uninitialized_value_construct_n(I first, iter_difference_t<I> n);

}

4 Effects: Equivalent to:
return uninitialized_value_construct(counted_iterator(first, n),

default_sentinel).base();

27.11.5 uninitialized_copy [uninitialized.copy]

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy(InputIterator first, InputIterator last,

NoThrowForwardIterator result);

1 Preconditions: result + [0, (last - first)) does not overlap with [first, last).
2 Effects: Equivalent to:

for (; first != last; ++result, (void) ++first)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(*first);

3 Returns: result.
namespace ranges {

template<input_iterator I, sentinel_for<I> S1,
nothrow-forward-iterator O, nothrow-sentinel-for<O> S2>

requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
uninitialized_copy_result<I, O>

uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast);
template<input_range IR, nothrow-forward-range OR>

requires constructible_from<range_value_t<OR>, range_reference_t<IR>>
uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>

uninitialized_copy(IR&& in_range, OR&& out_range);
}

4 Preconditions: [ofirst, olast) does not overlap with [ifirst, ilast).
5 Effects: Equivalent to:

for (; ifirst != ilast && ofirst != olast; ++ofirst, (void)++ifirst)
::new (voidify(*ofirst)) remove_reference_t<iter_reference_t<O>>(*ifirst);

return {std::move(ifirst), ofirst};

template<class InputIterator, class Size, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(InputIterator first, Size n,

NoThrowForwardIterator result);

6 Preconditions: result + [0, n) does not overlap with first + [0, n).
7 Effects: Equivalent to:

for (; n > 0; ++result, (void) ++first, --n)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(*first);

8 Returns: result.

§ 27.11.5 1242

© ISO/IEC N4910

namespace ranges {
template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for<O> S>
requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
uninitialized_copy_n_result<I, O>

uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}

9 Preconditions: [ofirst, olast) does not overlap with ifirst + [0, n).
10 Effects: Equivalent to:

auto t = uninitialized_copy(counted_iterator(ifirst, n),
default_sentinel, ofirst, olast);

return {std::move(t.in).base(), t.out};

27.11.6 uninitialized_move [uninitialized.move]

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(InputIterator first, InputIterator last,

NoThrowForwardIterator result);

1 Preconditions: result + [0, (last - first)) does not overlap with [first, last).
2 Effects: Equivalent to:

for (; first != last; (void)++result, ++first)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(std::move(*first));
return result;

namespace ranges {
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for<O> S2>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_result<I, O>

uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast);
template<input_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>

uninitialized_move(IR&& in_range, OR&& out_range);
}

3 Preconditions: [ofirst, olast) does not overlap with [ifirst, ilast).
4 Effects: Equivalent to:

for (; ifirst != ilast && ofirst != olast; ++ofirst, (void)++ifirst)
::new (voidify(*ofirst))

remove_reference_t<iter_reference_t<O>>(ranges::iter_move(ifirst));
return {std::move(ifirst), ofirst};

5 [Note 1: If an exception is thrown, some objects in the range [first, last) are left in a valid, but unspecified state. —endnote]
template<class InputIterator, class Size, class NoThrowForwardIterator>

pair<InputIterator, NoThrowForwardIterator>
uninitialized_move_n(InputIterator first, Size n, NoThrowForwardIterator result);

6 Preconditions: result + [0, n) does not overlap with first + [0, n).
7 Effects: Equivalent to:

for (; n > 0; ++result, (void) ++first, --n)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(std::move(*first));
return {first, result};

namespace ranges {
template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for<O> S>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, O>

§ 27.11.6 1243

© ISO/IEC N4910

uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}

8 Preconditions: [ofirst, olast) does not overlap with ifirst + [0, n).
9 Effects: Equivalent to:

auto t = uninitialized_move(counted_iterator(ifirst, n),
default_sentinel, ofirst, olast);

return {std::move(t.in).base(), t.out};
10 [Note 2: If an exception is thrown, some objects in the range first+ [0, n) are left in a valid but unspecified state. —endnote]
27.11.7 uninitialized_fill [uninitialized.fill]

template<class NoThrowForwardIterator, class T>
void uninitialized_fill(NoThrowForwardIterator first, NoThrowForwardIterator last, const T& x);

1 Effects: Equivalent to:
for (; first != last; ++first)
::new (voidify(*first))

typename iterator_traits<NoThrowForwardIterator>::value_type(x);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S, class T>
requires constructible_from<iter_value_t<I>, const T&>
I uninitialized_fill(I first, S last, const T& x);

template<nothrow-forward-range R, class T>
requires constructible_from<range_value_t<R>, const T&>
borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x);

}

2 Effects: Equivalent to:
for (; first != last; ++first)
::new (voidify(*first)) remove_reference_t<iter_reference_t<I>>(x);

return first;

template<class NoThrowForwardIterator, class Size, class T>
NoThrowForwardIterator uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x);

3 Effects: Equivalent to:
for (; n--; ++first)
::new (voidify(*first))

typename iterator_traits<NoThrowForwardIterator>::value_type(x);
return first;

namespace ranges {
template<nothrow-forward-iterator I, class T>
requires constructible_from<iter_value_t<I>, const T&>
I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x);

}

4 Effects: Equivalent to:
return uninitialized_fill(counted_iterator(first, n), default_sentinel, x).base();

27.11.8 construct_at [specialized.construct]

template<class T, class... Args>
constexpr T* construct_at(T* location, Args&&... args);

namespace ranges {
template<class T, class... Args>
constexpr T* construct_at(T* location, Args&&... args);

}

1 Constraints: The expression ::new (declval<void*>()) T(declval<Args>()...) is well-formed when treatedas an unevaluated operand (7.2.3).
§ 27.11.8 1244

© ISO/IEC N4910

2 Effects: Equivalent to:
return ::new (voidify(*location)) T(std::forward<Args>(args)...);

27.11.9 destroy [specialized.destroy]

template<class T>
constexpr void destroy_at(T* location);

namespace ranges {
template<destructible T>
constexpr void destroy_at(T* location) noexcept;

}

1 Effects:
—(1.1) If T is an array type, equivalent to destroy(begin(*location), end(*location)).
—(1.2) Otherwise, equivalent to location->~T().

template<class NoThrowForwardIterator>
constexpr void destroy(NoThrowForwardIterator first, NoThrowForwardIterator last);

2 Effects: Equivalent to:
for (; first != last; ++first)
destroy_at(addressof(*first));

namespace ranges {
template<nothrow-input-iterator I, nothrow-sentinel-for<I> S>
requires destructible<iter_value_t<I>>
constexpr I destroy(I first, S last) noexcept;

template<nothrow-input-range R>
requires destructible<range_value_t<R>>
constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept;

}

3 Effects: Equivalent to:
for (; first != last; ++first)
destroy_at(addressof(*first));

return first;

template<class NoThrowForwardIterator, class Size>
constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, Size n);

4 Effects: Equivalent to:
for (; n > 0; (void)++first, --n)
destroy_at(addressof(*first));

return first;

namespace ranges {
template<nothrow-input-iterator I>
requires destructible<iter_value_t<I>>
constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept;

}

5 Effects: Equivalent to:
return destroy(counted_iterator(first, n), default_sentinel).base();

27.12 C library algorithms [alg.c.library]
1 [Note 1: The header <cstdlib> (17.2.2) declares the functions described in this subclause. —end note]

void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,
c-compare-pred* compar);

void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,
compare-pred* compar);

void qsort(void* base, size_t nmemb, size_t size, c-compare-pred* compar);

§ 27.12 1245

© ISO/IEC N4910

void qsort(void* base, size_t nmemb, size_t size, compare-pred* compar);

2 Preconditions: For qsort, the objects in the array pointed to by base are of trivially copyable type.
3 Effects: These functions have the semantics specified in the C standard library.
4 Throws: Any exception thrown by compar (16.4.6.13).
See also: ISO C 7.22.5

§ 27.12 1246

© ISO/IEC N4910

28 Numerics library [numerics]
28.1 General [numerics.general]

1 This Clause describes components that C++ programs may use to perform seminumerical operations.
2 The following subclauses describe components for complex number types, random number generation, numeric (n-at-a-time) arrays, generalized numeric algorithms, and mathematical constants and functions for floating-point types, assummarized in Table 90.

Table 90: Numerics library summary [tab:numerics.summary]
Subclause Header

28.2 Requirements28.3 Floating-point environment <cfenv>28.4 Complex numbers <complex>28.5 Random number generation <random>28.6 Numeric arrays <valarray>28.7 Mathematical functions for floating-point types <cmath>, <cstdlib>28.8 Numbers <numbers>

28.2 Numeric type requirements [numeric.requirements]
1 The complex and valarray components are parameterized by the type of information they contain and manipulate. AC++ program shall instantiate these components only with a numeric type. A numeric type is a cv-unqualified object type

T that meets the Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17CopyAssignable, and Cpp17Destructiblerequirements (16.4.4.2).230
2 If any operation on T throws an exception the effects are undefined.
3 In addition, many member and related functions of valarray<T> can be successfully instantiated and will exhibitwell-defined behavior if and only if T meets additional requirements specified for each such member or related function.
4 [Example 1: It is valid to instantiate valarray<complex>, but operator>()will not be successfully instantiated for valarray<complex>operands, since complex does not have any ordering operators. —end example]
28.3 The floating-point environment [cfenv]
28.3.1 Header <cfenv> synopsis [cfenv.syn]
#define FE_ALL_EXCEPT see below
#define FE_DIVBYZERO see below // optional
#define FE_INEXACT see below // optional
#define FE_INVALID see below // optional
#define FE_OVERFLOW see below // optional
#define FE_UNDERFLOW see below // optional
#define FE_DOWNWARD see below // optional
#define FE_TONEAREST see below // optional
#define FE_TOWARDZERO see below // optional
#define FE_UPWARD see below // optional
#define FE_DFL_ENV see below

namespace std {// types
using fenv_t = object type;
using fexcept_t = integer type;

230) In other words, value types. These include arithmetic types, pointers, the library class complex, and instantiations of valarray for value types.
§ 28.3.1 1247

© ISO/IEC N4910

// functions
int feclearexcept(int except);
int fegetexceptflag(fexcept_t* pflag, int except);
int feraiseexcept(int except);
int fesetexceptflag(const fexcept_t* pflag, int except);
int fetestexcept(int except);

int fegetround();
int fesetround(int mode);

int fegetenv(fenv_t* penv);
int feholdexcept(fenv_t* penv);
int fesetenv(const fenv_t* penv);
int feupdateenv(const fenv_t* penv);

}

1 The contents and meaning of the header <cfenv> are the same as the C standard library header <fenv.h>.
[Note 1: This document does not require an implementation to support the FENV_ACCESS pragma; it is implementation-defined (15.9)whether the pragma is supported. As a consequence, it is implementation-defined whether these functions can be used to testfloating-point status flags, set floating-point control modes, or run under non-default mode settings. If the pragma is used to enablecontrol over the floating-point environment, this document does not specify the effect on floating-point evaluation in constantexpressions. —end note]
See also: ISO C 7.6
28.3.2 Threads [cfenv.thread]

1 The floating-point environment has thread storage duration (6.7.5.3). The initial state for a thread’s floating-pointenvironment is the state of the floating-point environment of the thread that constructs the corresponding threadobject (33.4.3) or jthread object (33.4.4) at the time it constructed the object.
[Note 1: That is, the child thread gets the floating-point state of the parent thread at the time of the child’s creation. —end note]

2 A separate floating-point environment is maintained for each thread. Each function accesses the environment corre-sponding to its calling thread.
28.4 Complex numbers [complex.numbers]
28.4.1 General [complex.numbers.general]

1 The header <complex> defines a class template, and numerous functions for representing and manipulating complexnumbers.
2 The effect of instantiating the template complex for any type other than float, double, or long double is unspecified.The specializations complex<float>, complex<double>, and complex<long double> are literal types (6.8.1).
3 If the result of a function is not mathematically defined or not in the range of representable values for its type, thebehavior is undefined.
4 If z is an lvalue of type cv complex<T> then:

—(4.1) the expression reinterpret_cast<cv T(&)[2]>(z) is well-formed,
—(4.2) reinterpret_cast<cv T(&)[2]>(z)[0] designates the real part of z, and
—(4.3) reinterpret_cast<cv T(&)[2]>(z)[1] designates the imaginary part of z.

Moreover, if a is an expression of type cv complex<T>* and the expression a[i] is well-defined for an integer expression
i, then:
—(4.4) reinterpret_cast<cv T*>(a)[2*i] designates the real part of a[i], and
—(4.5) reinterpret_cast<cv T*>(a)[2*i + 1] designates the imaginary part of a[i].

28.4.2 Header <complex> synopsis [complex.syn]
namespace std {// 28.4.3, class template complex

template<class T> class complex;

§ 28.4.2 1248

© ISO/IEC N4910

// 28.4.4, specializations
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;

// 28.4.7, operators
template<class T> constexpr complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator+(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator+(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator-(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator-(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator-(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator*(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator*(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator*(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator/(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator/(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator/(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator+(const complex<T>&);
template<class T> constexpr complex<T> operator-(const complex<T>&);

template<class T> constexpr bool operator==(const complex<T>&, const complex<T>&);
template<class T> constexpr bool operator==(const complex<T>&, const T&);

template<class T, class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, complex<T>&);

template<class T, class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const complex<T>&);

// 28.4.8, values
template<class T> constexpr T real(const complex<T>&);
template<class T> constexpr T imag(const complex<T>&);

template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
template<class T> constexpr T norm(const complex<T>&);

template<class T> constexpr complex<T> conj(const complex<T>&);
template<class T> complex<T> proj(const complex<T>&);
template<class T> complex<T> polar(const T&, const T& = T());

// 28.4.9, transcendentals
template<class T> complex<T> acos(const complex<T>&);
template<class T> complex<T> asin(const complex<T>&);
template<class T> complex<T> atan(const complex<T>&);

template<class T> complex<T> acosh(const complex<T>&);
template<class T> complex<T> asinh(const complex<T>&);
template<class T> complex<T> atanh(const complex<T>&);

template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);

template<class T> complex<T> pow (const complex<T>&, const T&);
template<class T> complex<T> pow (const complex<T>&, const complex<T>&);
template<class T> complex<T> pow (const T&, const complex<T>&);

§ 28.4.2 1249

© ISO/IEC N4910

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);

// 28.4.11, complex literals
inline namespace literals {
inline namespace complex_literals {
constexpr complex<long double> operator""il(long double);
constexpr complex<long double> operator""il(unsigned long long);
constexpr complex<double> operator""i(long double);
constexpr complex<double> operator""i(unsigned long long);
constexpr complex<float> operator""if(long double);
constexpr complex<float> operator""if(unsigned long long);

}
}

}

28.4.3 Class template complex [complex]
namespace std {

template<class T> class complex {
public:
using value_type = T;

constexpr complex(const T& re = T(), const T& im = T());
constexpr complex(const complex&);
template<class X> constexpr complex(const complex<X>&);

constexpr T real() const;
constexpr void real(T);
constexpr T imag() const;
constexpr void imag(T);

constexpr complex& operator= (const T&);
constexpr complex& operator+=(const T&);
constexpr complex& operator-=(const T&);
constexpr complex& operator*=(const T&);
constexpr complex& operator/=(const T&);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};
}

1 The class complex describes an object that can store the Cartesian components, real() and imag(), of a complexnumber.
28.4.4 Specializations [complex.special]
namespace std {

template<> class complex<float> {
public:
using value_type = float;

constexpr complex(float re = 0.0f, float im = 0.0f);
constexpr complex(const complex<float>&) = default;
constexpr explicit complex(const complex<double>&);
constexpr explicit complex(const complex<long double>&);

§ 28.4.4 1250

© ISO/IEC N4910

constexpr float real() const;
constexpr void real(float);
constexpr float imag() const;
constexpr void imag(float);

constexpr complex& operator= (float);
constexpr complex& operator+=(float);
constexpr complex& operator-=(float);
constexpr complex& operator*=(float);
constexpr complex& operator/=(float);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};

template<> class complex<double> {
public:
using value_type = double;

constexpr complex(double re = 0.0, double im = 0.0);
constexpr complex(const complex<float>&);
constexpr complex(const complex<double>&) = default;
constexpr explicit complex(const complex<long double>&);

constexpr double real() const;
constexpr void real(double);
constexpr double imag() const;
constexpr void imag(double);

constexpr complex& operator= (double);
constexpr complex& operator+=(double);
constexpr complex& operator-=(double);
constexpr complex& operator*=(double);
constexpr complex& operator/=(double);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};

template<> class complex<long double> {
public:
using value_type = long double;

constexpr complex(long double re = 0.0L, long double im = 0.0L);
constexpr complex(const complex<float>&);
constexpr complex(const complex<double>&);
constexpr complex(const complex<long double>&) = default;

constexpr long double real() const;
constexpr void real(long double);
constexpr long double imag() const;
constexpr void imag(long double);

constexpr complex& operator= (long double);
constexpr complex& operator+=(long double);
constexpr complex& operator-=(long double);

§ 28.4.4 1251

© ISO/IEC N4910

constexpr complex& operator*=(long double);
constexpr complex& operator/=(long double);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};
}

28.4.5 Member functions [complex.members]

template<class T> constexpr complex(const T& re = T(), const T& im = T());

1 Postconditions: real() == re && imag() == im is true.
constexpr T real() const;

2 Returns: The value of the real component.
constexpr void real(T val);

3 Effects: Assigns val to the real component.
constexpr T imag() const;

4 Returns: The value of the imaginary component.
constexpr void imag(T val);

5 Effects: Assigns val to the imaginary component.
28.4.6 Member operators [complex.member.ops]

constexpr complex& operator+=(const T& rhs);

1 Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in the real partof *this, leaving the imaginary part unchanged.
2 Returns: *this.

constexpr complex& operator-=(const T& rhs);

3 Effects: Subtracts the scalar value rhs from the real part of the complex value *this and stores the result in thereal part of *this, leaving the imaginary part unchanged.
4 Returns: *this.

constexpr complex& operator*=(const T& rhs);

5 Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this.
6 Returns: *this.

constexpr complex& operator/=(const T& rhs);

7 Effects: Divides the scalar value rhs into the complex value *this and stores the result in *this.
8 Returns: *this.

template<class X> constexpr complex& operator+=(const complex<X>& rhs);

9 Effects: Adds the complex value rhs to the complex value *this and stores the sum in *this.
10 Returns: *this.

template<class X> constexpr complex& operator-=(const complex<X>& rhs);

11 Effects: Subtracts the complex value rhs from the complex value *this and stores the difference in *this.
12 Returns: *this.

§ 28.4.6 1252

© ISO/IEC N4910

template<class X> constexpr complex& operator*=(const complex<X>& rhs);

13 Effects: Multiplies the complex value rhs by the complex value *this and stores the product in *this.
14 Returns: *this.

template<class X> constexpr complex& operator/=(const complex<X>& rhs);

15 Effects: Divides the complex value rhs into the complex value *this and stores the quotient in *this.
16 Returns: *this.
28.4.7 Non-member operations [complex.ops]

template<class T> constexpr complex<T> operator+(const complex<T>& lhs);

1 Returns: complex<T>(lhs).
template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator+(const T& lhs, const complex<T>& rhs);

2 Returns: complex<T>(lhs) += rhs.
template<class T> constexpr complex<T> operator-(const complex<T>& lhs);

3 Returns: complex<T>(-lhs.real(),-lhs.imag()).
template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator-(const T& lhs, const complex<T>& rhs);

4 Returns: complex<T>(lhs) -= rhs.
template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator*(const T& lhs, const complex<T>& rhs);

5 Returns: complex<T>(lhs) *= rhs.
template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator/(const T& lhs, const complex<T>& rhs);

6 Returns: complex<T>(lhs) /= rhs.
template<class T> constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator==(const complex<T>& lhs, const T& rhs);

7 Returns: lhs.real() == rhs.real() && lhs.imag() == rhs.imag().
8 Remarks: The imaginary part is assumed to be T(), or 0.0, for the T arguments.

template<class T, class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, complex<T>& x);

9 Preconditions: The input values are convertible to T.
10 Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the imaginarypart (31.7.4.3).
11 If bad input is encountered, calls is.setstate(ios_base::failbit) (which may throw ios_base::failure(31.5.4.4)).
12 Returns: is.
13 Remarks: This extraction is performed as a series of simpler extractions. Therefore, the skipping of whitespace isspecified to be the same for each of the simpler extractions.

template<class T, class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

14 Effects: Inserts the complex number x onto the stream o as if it were implemented as follows:
basic_ostringstream<charT, traits> s;

§ 28.4.7 1253

© ISO/IEC N4910

s.flags(o.flags());
s.imbue(o.getloc());
s.precision(o.precision());
s << '(' << x.real() << "," << x.imag() << ')';
return o << s.str();

15 [Note 1: In a locale in which comma is used as a decimal point character, the use of comma as a field separator can beambiguous. Inserting showpoint into the output stream forces all outputs to show an explicit decimal point character; as aresult, all inserted sequences of complex numbers can be extracted unambiguously. —end note]
28.4.8 Value operations [complex.value.ops]

template<class T> constexpr T real(const complex<T>& x);

1 Returns: x.real().
template<class T> constexpr T imag(const complex<T>& x);

2 Returns: x.imag().
template<class T> T abs(const complex<T>& x);

3 Returns: The magnitude of x.
template<class T> T arg(const complex<T>& x);

4 Returns: The phase angle of x, or atan2(imag(x), real(x)).
template<class T> constexpr T norm(const complex<T>& x);

5 Returns: The squared magnitude of x.
template<class T> constexpr complex<T> conj(const complex<T>& x);

6 Returns: The complex conjugate of x.
template<class T> complex<T> proj(const complex<T>& x);

7 Returns: The projection of x onto the Riemann sphere.
8 Remarks: Behaves the same as the C function cproj. See also: ISO C 7.3.9.5

template<class T> complex<T> polar(const T& rho, const T& theta = T());

9 Preconditions: rho is non-negative and non-NaN. theta is finite.
10 Returns: The complex value corresponding to a complex number whose magnitude is rho and whose phase angleis theta.
28.4.9 Transcendentals [complex.transcendentals]

template<class T> complex<T> acos(const complex<T>& x);

1 Returns: The complex arc cosine of x.
2 Remarks: Behaves the same as the C function cacos. See also: ISO C 7.3.5.1

template<class T> complex<T> asin(const complex<T>& x);

3 Returns: The complex arc sine of x.
4 Remarks: Behaves the same as the C function casin. See also: ISO C 7.3.5.2

template<class T> complex<T> atan(const complex<T>& x);

5 Returns: The complex arc tangent of x.
6 Remarks: Behaves the same as the C function catan. See also: ISO C 7.3.5.3

template<class T> complex<T> acosh(const complex<T>& x);

7 Returns: The complex arc hyperbolic cosine of x.
8 Remarks: Behaves the same as the C function cacosh. See also: ISO C 7.3.6.1

§ 28.4.9 1254

© ISO/IEC N4910

template<class T> complex<T> asinh(const complex<T>& x);

9 Returns: The complex arc hyperbolic sine of x.
10 Remarks: Behaves the same as the C function casinh. See also: ISO C 7.3.6.2

template<class T> complex<T> atanh(const complex<T>& x);

11 Returns: The complex arc hyperbolic tangent of x.
12 Remarks: Behaves the same as the C function catanh. See also: ISO C 7.3.6.3

template<class T> complex<T> cos(const complex<T>& x);

13 Returns: The complex cosine of x.
template<class T> complex<T> cosh(const complex<T>& x);

14 Returns: The complex hyperbolic cosine of x.
template<class T> complex<T> exp(const complex<T>& x);

15 Returns: The complex base-e exponential of x.
template<class T> complex<T> log(const complex<T>& x);

16 Returns: The complex natural (base-e) logarithm of x. For all x, imag(log(x)) lies in the interval [−π, π].
[Note 1: The semantics of this function are intended to be the same in C++ as they are for clog in C. —end note]

17 Remarks: The branch cuts are along the negative real axis.
template<class T> complex<T> log10(const complex<T>& x);

18 Returns: The complex common (base-10) logarithm of x, defined as log(x) / log(10).
19 Remarks: The branch cuts are along the negative real axis.

template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow(const complex<T>& x, const T& y);
template<class T> complex<T> pow(const T& x, const complex<T>& y);

20 Returns: The complex power of base x raised to the yth power, defined as exp(y * log(x)). The value returnedfor pow(0, 0) is implementation-defined.
21 Remarks: The branch cuts are along the negative real axis.

template<class T> complex<T> sin(const complex<T>& x);

22 Returns: The complex sine of x.
template<class T> complex<T> sinh(const complex<T>& x);

23 Returns: The complex hyperbolic sine of x.
template<class T> complex<T> sqrt(const complex<T>& x);

24 Returns: The complex square root of x, in the range of the right half-plane.
[Note 2: The semantics of this function are intended to be the same in C++ as they are for csqrt in C. —end note]

25 Remarks: The branch cuts are along the negative real axis.
template<class T> complex<T> tan(const complex<T>& x);

26 Returns: The complex tangent of x.
template<class T> complex<T> tanh(const complex<T>& x);

27 Returns: The complex hyperbolic tangent of x.
28.4.10 Additional overloads [cmplx.over]

1 The following function templates shall have additional overloads:

§ 28.4.10 1255

© ISO/IEC N4910

arg norm
conj proj
imag real

where norm, conj, imag, and real are constexpr overloads.
2 The additional overloads shall be sufficient to ensure:

—(2.1) If the argument has type long double, then it is effectively cast to complex<long double>.
—(2.2) Otherwise, if the argument has type double or an integer type, then it is effectively cast to complex<double>.
—(2.3) Otherwise, if the argument has type float, then it is effectively cast to complex<float>.

3 Function template pow shall have additional overloads sufficient to ensure, for a call with at least one argument of type
complex<T>:
—(3.1) If either argument has type complex<long double> or type long double, then both arguments are effectivelycast to complex<long double>.
—(3.2) Otherwise, if either argument has type complex<double>, double, or an integer type, then both arguments areeffectively cast to complex<double>.
—(3.3) Otherwise, if either argument has type complex<float> or float, then both arguments are effectively cast to

complex<float>.
28.4.11 Suffixes for complex number literals [complex.literals]

1 This subclause describes literal suffixes for constructing complex number literals. The suffixes i, il, and if createcomplex numbers of the types complex<double>, complex<long double>, and complex<float> respectively, withtheir imaginary part denoted by the given literal number and the real part being zero.
constexpr complex<long double> operator""il(long double d);
constexpr complex<long double> operator""il(unsigned long long d);

2 Returns: complex<long double>{0.0L, static_cast<long double>(d)}.
constexpr complex<double> operator""i(long double d);
constexpr complex<double> operator""i(unsigned long long d);

3 Returns: complex<double>{0.0, static_cast<double>(d)}.
constexpr complex<float> operator""if(long double d);
constexpr complex<float> operator""if(unsigned long long d);

4 Returns: complex<float>{0.0f, static_cast<float>(d)}.
28.5 Random number generation [rand]
28.5.1 General [rand.general]

1 Subclause 28.5 defines a facility for generating (pseudo-)random numbers.
2 In addition to a few utilities, four categories of entities are described: uniform random bit generators, random numberengines, random number engine adaptors, and random number distributions. These categorizations are applicable totypes that meet the corresponding requirements, to objects instantiated from such types, and to templates producingsuch types when instantiated.
[Note 1: These entities are specified in such a way as to permit the binding of any uniform random bit generator object e as theargument to any random number distribution object d, thus producing a zero-argument function object such as given by bind(d,e).—end note]

3 Each of the entities specified in 28.5 has an associated arithmetic type (6.8.2) identified as result_type. With T as the
result_type thus associated with such an entity, that entity is characterized:
—(3.1) as boolean or equivalently as boolean-valued, if T is bool;
—(3.2) otherwise as integral or equivalently as integer-valued, if numeric_limits<T>::is_integer is true;
—(3.3) otherwise as floating-point or equivalently as real-valued.

If integer-valued, an entity may optionally be further characterized as signed or unsigned, according to numeric_-
limits<T>::is_signed.

4 Unless otherwise specified, all descriptions of calculations in 28.5 use mathematical real numbers.
§ 28.5.1 1256

© ISO/IEC N4910

5 Throughout 28.5, the operators bitand, bitor, and xor denote the respective conventional bitwise operations. Further:
—(5.1) the operator rshift denotes a bitwise right shift with zero-valued bits appearing in the high bits of the result, and
—(5.2) the operator lshiftw denotes a bitwise left shift with zero-valued bits appearing in the low bits of the result, andwhose result is always taken modulo 2w.

28.5.2 Header <random> synopsis [rand.synopsis]
#include <initializer_list>

namespace std {// 28.5.3.3, uniform random bit generator requirements
template<class G>
concept uniform_random_bit_generator = see below;

// 28.5.4.2, class template linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine;

// 28.5.4.3, class template mersenne_twister_engine
template<class UIntType, size_t w, size_t n, size_t m, size_t r,

UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UIntType f>

class mersenne_twister_engine;

// 28.5.4.4, class template subtract_with_carry_engine
template<class UIntType, size_t w, size_t s, size_t r>

class subtract_with_carry_engine;

// 28.5.5.2, class template discard_block_engine
template<class Engine, size_t p, size_t r>

class discard_block_engine;

// 28.5.5.3, class template independent_bits_engine
template<class Engine, size_t w, class UIntType>

class independent_bits_engine;

// 28.5.5.4, class template shuffle_order_engine
template<class Engine, size_t k>

class shuffle_order_engine;

// 28.5.6, engines and engine adaptors with predefined parameters
using minstd_rand0 = see below;
using minstd_rand = see below;
using mt19937 = see below;
using mt19937_64 = see below;
using ranlux24_base = see below;
using ranlux48_base = see below;
using ranlux24 = see below;
using ranlux48 = see below;
using knuth_b = see below;

using default_random_engine = see below;

// 28.5.7, class random_device
class random_device;

// 28.5.8.1, class seed_seq
class seed_seq;

// 28.5.8.2, function template generate_canonical
template<class RealType, size_t bits, class URBG>

RealType generate_canonical(URBG& g);

§ 28.5.2 1257

© ISO/IEC N4910

// 28.5.9.2.1, class template uniform_int_distribution
template<class IntType = int>
class uniform_int_distribution;

// 28.5.9.2.2, class template uniform_real_distribution
template<class RealType = double>
class uniform_real_distribution;

// 28.5.9.3.1, class bernoulli_distribution
class bernoulli_distribution;

// 28.5.9.3.2, class template binomial_distribution
template<class IntType = int>

class binomial_distribution;

// 28.5.9.3.3, class template geometric_distribution
template<class IntType = int>

class geometric_distribution;

// 28.5.9.3.4, class template negative_binomial_distribution
template<class IntType = int>

class negative_binomial_distribution;

// 28.5.9.4.1, class template poisson_distribution
template<class IntType = int>

class poisson_distribution;

// 28.5.9.4.2, class template exponential_distribution
template<class RealType = double>

class exponential_distribution;

// 28.5.9.4.3, class template gamma_distribution
template<class RealType = double>

class gamma_distribution;

// 28.5.9.4.4, class template weibull_distribution
template<class RealType = double>

class weibull_distribution;

// 28.5.9.4.5, class template extreme_value_distribution
template<class RealType = double>

class extreme_value_distribution;

// 28.5.9.5.1, class template normal_distribution
template<class RealType = double>

class normal_distribution;

// 28.5.9.5.2, class template lognormal_distribution
template<class RealType = double>

class lognormal_distribution;

// 28.5.9.5.3, class template chi_squared_distribution
template<class RealType = double>

class chi_squared_distribution;

// 28.5.9.5.4, class template cauchy_distribution
template<class RealType = double>

class cauchy_distribution;

// 28.5.9.5.5, class template fisher_f_distribution
template<class RealType = double>

class fisher_f_distribution;

§ 28.5.2 1258

© ISO/IEC N4910

// 28.5.9.5.6, class template student_t_distribution
template<class RealType = double>
class student_t_distribution;

// 28.5.9.6.1, class template discrete_distribution
template<class IntType = int>
class discrete_distribution;

// 28.5.9.6.2, class template piecewise_constant_distribution
template<class RealType = double>

class piecewise_constant_distribution;

// 28.5.9.6.3, class template piecewise_linear_distribution
template<class RealType = double>

class piecewise_linear_distribution;
}

28.5.3 Requirements [rand.req]
28.5.3.1 General requirements [rand.req.genl]

1 Throughout this subclause 28.5, the effect of instantiating a template:
—(1.1) that has a template type parameter named Sseq is undefined unless the corresponding template argument iscv-unqualified and meets the requirements of seed sequence (28.5.3.2).
—(1.2) that has a template type parameter named URBG is undefined unless the corresponding template argument iscv-unqualified and meets the requirements of uniform random bit generator (28.5.3.3).
—(1.3) that has a template type parameter named Engine is undefined unless the corresponding template argument iscv-unqualified and meets the requirements of random number engine (28.5.3.4).
—(1.4) that has a template type parameter named RealType is undefined unless the corresponding template argument iscv-unqualified and is one of float, double, or long double.
—(1.5) that has a template type parameter named IntType is undefined unless the corresponding template argument iscv-unqualified and is one of short, int, long, long long, unsigned short, unsigned int, unsigned long, or

unsigned long long.
—(1.6) that has a template type parameter named UIntType is undefined unless the corresponding template argument iscv-unqualified and is one of unsigned short, unsigned int, unsigned long, or unsigned long long.

2 Throughout this subclause 28.5, phrases of the form “x is an iterator of a specific kind” shall be interpreted as equivalentto the more formal requirement that “x is a value of a type meeting the requirements of the specified iterator type”.
3 Throughout this subclause 28.5, any constructor that can be called with a single argument and that meets a requirementspecified in this subclause shall be declared explicit.
28.5.3.2 Seed sequence requirements [rand.req.seedseq]

1 A seed sequence is an object that consumes a sequence of integer-valued data and produces a requested number ofunsigned integer values i, 0 ≤ i < 232, based on the consumed data.
[Note 1: Such an object provides a mechanism to avoid replication of streams of random variates. This can be useful, for example, inapplications requiring large numbers of random number engines. —end note]

2 A class S meets the requirements of a seed sequence if the expressions shown in Table 91 are valid and have theindicated semantics, and if S also meets all other requirements of this subclause 28.5.3.2. In that Table and throughoutthis subclause:
—(2.1) T is the type named by S’s associated result_type;
—(2.2) q is a value of S and r is a possibly const value of S;
—(2.3) ib and ie are input iterators with an unsigned integer value_type of at least 32 bits;
—(2.4) rb and re are mutable random access iterators with an unsigned integer value_type of at least 32 bits;
—(2.5) ob is an output iterator; and
—(2.6) il is a value of initializer_list<T>.

§ 28.5.3.2 1259

© ISO/IEC N4910

Table 91: Seed sequence requirements [tab:rand.req.seedseq]
Expression Return type Pre/post-condition Complexity

S::result_type T T is an unsigned integer type (6.8.2)of at least 32 bits. compile-time
S() Creates a seed sequence with thesame initial state as all otherdefault-constructed seed sequencesof type S.

constant

S(ib,ie) Creates a seed sequence havinginternal state that depends on someor all of the bits of the suppliedsequence [ib, ie).

O(ie− ib)

S(il) Same as S(il.begin(),
il.end()). same as

S(il.begin(),
il.end())

q.generate(rb,re) void Does nothing if rb == re.Otherwise, fills the suppliedsequence [rb, re) with 32-bitquantities that depend on thesequence supplied to theconstructor and possibly alsodepend on the history of
generate’s previous invocations.

O(re− rb)

r.size() size_t The number of 32-bit units thatwould be copied by a call to
r.param.

constant

r.param(ob) void Copies to the given destination asequence of 32-bit units that can beprovided to the constructor of asecond object of type S, and thatwould reproduce in that secondobject a state indistinguishablefrom the state of the first object.

O(r.size())

28.5.3.3 Uniform random bit generator requirements [rand.req.urng]
1 A uniform random bit generator g of type G is a function object returning unsigned integer values such that each valuein the range of possible results has (ideally) equal probability of being returned.
[Note 1: The degree to which g’s results approximate the ideal is often determined statistically. —end note]
template<class G>

concept uniform_random_bit_generator =
invocable<G&> && unsigned_integral<invoke_result_t<G&>> &&
requires {

{ G::min() } -> same_as<invoke_result_t<G&>>;
{ G::max() } -> same_as<invoke_result_t<G&>>;
requires bool_constant<(G::min() < G::max())>::value;

};

2 Let g be an object of type G. G models uniform_random_bit_generator only if
—(2.1) G::min() <= g(),
—(2.2) g() <= G::max(), and
—(2.3) g() has amortized constant complexity.

3 A class Gmeets the uniform random bit generator requirements if Gmodels uniform_random_bit_generator, invoke_-
result_t<G&> is an unsigned integer type (6.8.2), and G provides a nested typedef-name result_type that denotes thesame type as invoke_result_t<G&>.

§ 28.5.3.3 1260

© ISO/IEC N4910

28.5.3.4 Random number engine requirements [rand.req.eng]
1 A random number engine (commonly shortened to engine) e of type E is a uniform random bit generator that additionallymeets the requirements (e.g., for seeding and for input/output) specified in this subclause.
2 At any given time, e has a state ei for some integer i ≥ 0. Upon construction, e has an initial state e0. An engine’s statemay be established via a constructor, a seed function, assignment, or a suitable operator>>.
3 E’s specification shall define:

—(3.1) the size of E’s state in multiples of the size of result_type, given as an integral constant expression;
—(3.2) the transition algorithm TA by which e’s state ei is advanced to its successor state ei+1; and
—(3.3) the generation algorithm GA by which an engine’s state is mapped to a value of type result_type.

4 A class E that meets the requirements of a uniform random bit generator (28.5.3.3) also meets the requirements of arandom number engine if the expressions shown in Table 92 are valid and have the indicated semantics, and if E alsomeets all other requirements of this subclause 28.5.3.4. In that Table and throughout this subclause:
—(4.1) T is the type named by E’s associated result_type;
—(4.2) e is a value of E, v is an lvalue of E, x and y are (possibly const) values of E;
—(4.3) s is a value of T;
—(4.4) q is an lvalue meeting the requirements of a seed sequence (28.5.3.2);
—(4.5) z is a value of type unsigned long long;
—(4.6) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
—(4.7) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;

where charT and traits are constrained according to Clause 23 and Clause 31.
Table 92: Random number engine requirements [tab:rand.req.eng]

Expression Return type Pre/post-condition Complexity
E() Creates an engine with the sameinitial state as all otherdefault-constructed engines of type

E.

O(size of state)

E(x) Creates an engine that comparesequal to x. O(size of state)
E(s) Creates an engine with initial statedetermined by s. O(size of state)
E(q)231 Creates an engine with an initialstate that depends on a sequenceproduced by one call to

q.generate.

same ascomplexity of
q.generatecalled on asequence whoselength is size ofstate

e.seed() void Postconditions: e == E(). same as E()
e.seed(s) void Postconditions: e == E(s). same as E(s)
e.seed(q) void Postconditions: e == E(q). same as E(q)
e() T Advances e’s state ei to ei+1

= TA(ei) and returns GA(ei).
per 28.5.3.3

e.discard(z)232 void Advances e’s state ei to ei+z byany means equivalent to zconsecutive calls e().
no worse than thecomplexity of zconsecutive calls
e()

231) This constructor (as well as the subsequent corresponding seed() function) can be particularly useful to applications requiring a large numberof independent random sequences.
232) This operation is common in user code, and can often be implemented in an engine-specific manner so as to provide significant performanceimprovements over an equivalent naive loop that makes z consecutive calls e().
§ 28.5.3.4 1261

© ISO/IEC N4910

Expression Return type Pre/post-condition Complexity
x == y bool This operator is an equivalencerelation. With Sx and Sy as theinfinite sequences of values thatwould be generated by repeatedfuture calls to x() and y(),respectively, returns true if

Sx = Sy; else returns false.

O(size of state)

x != y bool !(x == y). O(size of state)
os << x reference to the type of os With os.fmtflags set to

ios_base::dec|ios_base::leftand the fill character set to thespace character, writes to os thetextual representation of x’s currentstate. In the output, adjacentnumbers are separated by one ormore space characters.Postconditions: The os.fmtflagsand fill character are unchanged.

O(size of state)

is >> v reference to the type of is With is.fmtflags set to
ios_base::dec, sets v’s state asdetermined by reading its textualrepresentation from is. If bad inputis encountered, ensures that v’sstate is unchanged by the operationand calls is.setstate(ios_-
base::failbit) (which may throw
ios_base::failure (31.5.4.4)). Ifa textual representation written via
os << x was subsequently read via
is >> v, then x == v provided thatthere have been no interveninginvocations of x or of v.Preconditions: is provides atextual representation that waspreviously written using an outputstream whose imbued locale wasthe same as that of is, and whosetype’s template specializationarguments charT and traits wererespectively the same as those of
is.Postconditions: The is.fmtflagsare unchanged.

O(size of state)

5 E shall meet the Cpp17CopyConstructible (Table 31) and Cpp17CopyAssignable (Table 33) requirements. Theseoperations shall each be of complexity no worse than O(size of state).
28.5.3.5 Random number engine adaptor requirements [rand.req.adapt]

1 A random number engine adaptor (commonly shortened to adaptor) a of type A is a random number engine that takesvalues produced by some other random number engine, and applies an algorithm to those values in order to deliver asequence of values with different randomness properties. An engine b of type B adapted in this way is termed a baseengine in this context. The expression a.base() shall be valid and shall return a const reference to a’s base engine.
2 The requirements of a random number engine type shall be interpreted as follows with respect to a random numberengine adaptor type.

A::A();

3 Effects: The base engine is initialized as if by its default constructor.
§ 28.5.3.5 1262

© ISO/IEC N4910

bool operator==(const A& a1, const A& a2);

4 Returns: true if a1’s base engine is equal to a2’s base engine. Otherwise returns false.
A::A(result_type s);

5 Effects: The base engine is initialized with s.
template<class Sseq> A::A(Sseq& q);

6 Effects: The base engine is initialized with q.
void seed();

7 Effects: With b as the base engine, invokes b.seed().
void seed(result_type s);

8 Effects: With b as the base engine, invokes b.seed(s).
template<class Sseq> void seed(Sseq& q);

9 Effects: With b as the base engine, invokes b.seed(q).
10 A shall also meet the following additional requirements:

—(10.1) The complexity of each function shall not exceed the complexity of the corresponding function applied to thebase engine.
—(10.2) The state of A shall include the state of its base engine. The size of A’s state shall be no less than the size of thebase engine.
—(10.3) Copying A’s state (e.g., during copy construction or copy assignment) shall include copying the state of the baseengine of A.
—(10.4) The textual representation of A shall include the textual representation of its base engine.

28.5.3.6 Random number distribution requirements [rand.req.dist]
1 A random number distribution (commonly shortened to distribution) d of type D is a function object returning values thatare distributed according to an associated mathematical probability density function p(z) or according to an associateddiscrete probability function P (zi). A distribution’s specification identifies its associated probability function p(z) or
P (zi).

2 An associated probability function is typically expressed using certain externally-supplied quantities known as theparameters of the distribution. Such distribution parameters are identified in this context by writing, for example,
p(z | a, b) or P (zi | a, b), to name specific parameters, or by writing, for example, p(z | {p}) or P (zi | {p}), to denote adistribution’s parameters p taken as a whole.

3 A class D meets the requirements of a random number distribution if the expressions shown in Table 93 are valid andhave the indicated semantics, and if D and its associated types also meet all other requirements of this subclause 28.5.3.6.In that Table and throughout this subclause,
—(3.1) T is the type named by D’s associated result_type;
—(3.2) P is the type named by D’s associated param_type;
—(3.3) d is a value of D, and x and y are (possibly const) values of D;
—(3.4) glb and lub are values of T respectively corresponding to the greatest lower bound and the least upper bound onthe values potentially returned by d’s operator(), as determined by the current values of d’s parameters;
—(3.5) p is a (possibly const) value of P;
—(3.6) g, g1, and g2 are lvalues of a type meeting the requirements of a uniform random bit generator (28.5.3.3);
—(3.7) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
—(3.8) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;

where charT and traits are constrained according to Clause 23 and Clause 31.

§ 28.5.3.6 1263

© ISO/IEC N4910

Table 93: Random number distribution requirements [tab:rand.req.dist]
Expression Return type Pre/post-condition Complexity

D::result_type T T is an arithmetic type (6.8.2). compile-time
D::param_type P compile-time
D() Creates a distribution whosebehavior is indistinguishable fromthat of any other newlydefault-constructed distribution oftype D.

constant

D(p) Creates a distribution whosebehavior is indistinguishable fromthat of a distribution newlyconstructed directly from the valuesused to construct p.

same as p’sconstruction

d.reset() void Subsequent uses of d do not dependon values produced by any engineprior to invoking reset.
constant

x.param() P Returns a value p such that
D(p).param() == p. no worse than thecomplexity of

D(p)
d.param(p) void Postconditions: d.param() == p. no worse than thecomplexity of

D(p)
d(g) T With p = d.param(), the sequenceof numbers returned by successiveinvocations with the same object gis randomly distributed accordingto the associated p(z | {p}) or

P (zi | {p}) function.

amortizedconstant numberof invocations of
g

d(g,p) T The sequence of numbers returnedby successive invocations with thesame objects g and p is randomlydistributed according to theassociated p(z | {p}) or P (zi | {p})function.

amortizedconstant numberof invocations of
g

x.min() T Returns glb. constant
x.max() T Returns lub. constant
x == y bool This operator is an equivalencerelation. Returns true if x.param()

== y.param() and S1 = S2, where
S1 and S2 are the infinitesequences of values that would begenerated, respectively, by repeatedfuture calls to x(g1) and y(g2)whenever g1 == g2. Otherwisereturns false.

constant

x != y bool !(x == y). same as x == y.
os << x reference to the type of os Writes to os a textualrepresentation for the parametersand the additional internal data of x.Postconditions: The os.fmtflagsand fill character are unchanged.

§ 28.5.3.6 1264

© ISO/IEC N4910

Expression Return type Pre/post-condition Complexity
is >> d reference to the type of is Restores from is the parametersand additional internal data of thelvalue d. If bad input isencountered, ensures that d isunchanged by the operation andcalls is.setstate(ios_-

base::failbit) (which may throw
ios_base::failure (31.5.4.4)).Preconditions: is provides atextual representation that waspreviously written using an oswhose imbued locale and whosetype’s template specializationarguments charT and traits werethe same as those of is.Postconditions: The is.fmtflagsare unchanged.

4 D shall meet the Cpp17CopyConstructible (Table 31) and Cpp17CopyAssignable (Table 33) requirements.
5 The sequence of numbers produced by repeated invocations of d(g) shall be independent of any invocation of os << dor of any const member function of D between any of the invocations d(g).
6 If a textual representation is written using os << x and that representation is restored into the same or a different object

y of the same type using is >> y, repeated invocations of y(g) shall produce the same sequence of numbers as wouldrepeated invocations of x(g).
7 It is unspecified whether D::param_type is declared as a (nested) class or via a typedef. In this subclause 28.5,declarations of D::param_type are in the form of typedefs for convenience of exposition only.
8 P shall meet theCpp17CopyConstructible (Table 31), Cpp17CopyAssignable (Table 33), andCpp17EqualityComparable(Table 27) requirements.
9 For each of the constructors of D taking arguments corresponding to parameters of the distribution, P shall have acorresponding constructor subject to the same requirements and taking arguments identical in number, type, anddefault values. Moreover, for each of the member functions of D that return values corresponding to parameters of thedistribution, P shall have a corresponding member function with the identical name, type, and semantics.
10 P shall have a declaration of the form

using distribution_type = D;

28.5.4 Random number engine class templates [rand.eng]
28.5.4.1 General [rand.eng.general]

1 Each type instantiated from a class template specified in 28.5.4 meets the requirements of a random number engine(28.5.3.4) type.
2 Except where specified otherwise, the complexity of each function specified in 28.5.4 is constant.
3 Except where specified otherwise, no function described in 28.5.4 throws an exception.
4 Every function described in 28.5.4 that has a function parameter q of type Sseq& for a template type parameter named

Sseq that is different from type seed_seq throws what and when the invocation of q.generate throws.
5 Descriptions are provided in 28.5.4 only for engine operations that are not described in 28.5.3.4 or for operations wherethere is additional semantic information. In particular, declarations for copy constructors, for copy assignment operators,for streaming operators, and for equality and inequality operators are not shown in the synopses.
6 Each template specified in 28.5.4 requires one or more relationships, involving the value(s) of its non-type templateparameter(s), to hold. A program instantiating any of these templates is ill-formed if any such required relationship failsto hold.
7 For every random number engine and for every random number engine adaptor X defined in 28.5.4 and in 28.5.5:

—(7.1) if the constructor
§ 28.5.4.1 1265

© ISO/IEC N4910

template<class Sseq> explicit X(Sseq& q);

is called with a type Sseq that does not qualify as a seed sequence, then this constructor shall not participate inoverload resolution;
—(7.2) if the member function

template<class Sseq> void seed(Sseq& q);

is called with a type Sseq that does not qualify as a seed sequence, then this function shall not participate inoverload resolution.
The extent to which an implementation determines that a type cannot be a seed sequence is unspecified, except that as aminimum a type shall not qualify as a seed sequence if it is implicitly convertible to X::result_type.
28.5.4.2 Class template linear_congruential_engine [rand.eng.lcong]

1 A linear_congruential_engine random number engine produces unsigned integer random numbers. The state xiof a linear_congruential_engine object x is of size 1 and consists of a single integer. The transition algorithm is amodular linear function of the form TA(xi) = (a · xi + c) mod m; the generation algorithm is GA(xi) = xi+1.
namespace std {

template<class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine {
public:// types
using result_type = UIntType;

// engine characteristics
static constexpr result_type multiplier = a;
static constexpr result_type increment = c;
static constexpr result_type modulus = m;
static constexpr result_type min() { return c == 0u ? 1u: 0u; }
static constexpr result_type max() { return m - 1u; }
static constexpr result_type default_seed = 1u;

// constructors and seeding functions
linear_congruential_engine() : linear_congruential_engine(default_seed) {}
explicit linear_congruential_engine(result_type s);
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
void seed(result_type s = default_seed);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const linear_congruential_engine& x,

const linear_congruential_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const linear_congruential_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, linear_congruential_engine& x);
};

}

2 If the template parameter m is 0, the modulusm used throughout this subclause 28.5.4.2 is numeric_limits<result_-
type>::max() plus 1.
[Note 1: m need not be representable as a value of type result_type. —end note]

3 If the template parameter m is not 0, the following relations shall hold: a < m and c < m.
4 The textual representation consists of the value of xi.
§ 28.5.4.2 1266

© ISO/IEC N4910

explicit linear_congruential_engine(result_type s);

5 Effects: If c mod m is 0 and s mod m is 0, sets the engine’s state to 1, otherwise sets the engine’s state to
s mod m.

template<class Sseq> explicit linear_congruential_engine(Sseq& q);

6 Effects: With k =
⌈
log2m

32

⌉ and a an array (or equivalent) of length k+3, invokes q.generate(a+0, a+k+3)

and then computes S =
(∑k−1

j=0 aj+3 · 232j
)

mod m. If c mod m is 0 and S is 0, sets the engine’s state to 1,
else sets the engine’s state to S.

28.5.4.3 Class template mersenne_twister_engine [rand.eng.mers]
1 A mersenne_twister_engine random number engine233 produces unsigned integer random numbers in the closedinterval [0, 2w − 1]. The state xi of a mersenne_twister_engine object x is of size n and consists of a sequence X of
n values of the type delivered by x; all subscripts applied to X are to be taken modulo n.

2 The transition algorithm employs a twisted generalized feedback shift register defined by shift values n andm, a twistvalue r, and a conditional xor-mask a. To improve the uniformity of the result, the bits of the raw shift register areadditionally tempered (i.e., scrambled) according to a bit-scrambling matrix defined by values u, d, s, b, t, c, and `.
The state transition is performed as follows:
—(2.1) Concatenate the upper w− r bits ofXi−n with the lower r bits ofXi+1−n to obtain an unsigned integer value Y .
—(2.2) With α = a · (Y bitand 1), set Xi to Xi+m−n xor (Y rshift 1) xor α.

The sequence X is initialized with the help of an initialization multiplier f .
3 The generation algorithm determines the unsigned integer values z1, z2, z3, z4 as follows, then delivers z4 as its result:

—(3.1) Let z1 = Xi xor
(
(Xi rshift u) bitand d

).
—(3.2) Let z2 = z1 xor

(
(z1 lshiftw s) bitand b

).
—(3.3) Let z3 = z2 xor

(
(z2 lshiftw t) bitand c

).
—(3.4) Let z4 = z3 xor (z3 rshift `).
namespace std {

template<class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UIntType f>

class mersenne_twister_engine {
public:// types
using result_type = UIntType;

// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t state_size = n;
static constexpr size_t shift_size = m;
static constexpr size_t mask_bits = r;
static constexpr UIntType xor_mask = a;
static constexpr size_t tempering_u = u;
static constexpr UIntType tempering_d = d;
static constexpr size_t tempering_s = s;
static constexpr UIntType tempering_b = b;
static constexpr size_t tempering_t = t;
static constexpr UIntType tempering_c = c;
static constexpr size_t tempering_l = l;
static constexpr UIntType initialization_multiplier = f;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w − 1; }
static constexpr result_type default_seed = 5489u;

233) The name of this engine refers, in part, to a property of its period: For properly-selected values of the parameters, the period is closely related toa large Mersenne prime number.
§ 28.5.4.3 1267

© ISO/IEC N4910

// constructors and seeding functions
mersenne_twister_engine() : mersenne_twister_engine(default_seed) {}
explicit mersenne_twister_engine(result_type value);
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const mersenne_twister_engine& x, const mersenne_twister_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const mersenne_twister_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, mersenne_twister_engine& x);
};

}

4 The following relations shall hold: 0 < m, m <= n, 2u < w, r <= w, u <= w, s <= w, t <= w, l <= w, w <= numeric_-
limits<UIntType>::digits, a <= (1u<<w) - 1u, b <= (1u<<w) - 1u, c <= (1u<<w) - 1u, d <= (1u<<w) - 1u,and f <= (1u<<w) - 1u.

5 The textual representation of xi consists of the values of Xi−n, . . . , Xi−1, in that order.
explicit mersenne_twister_engine(result_type value);

6 Effects: Sets X−n to value mod 2w. Then, iteratively for i = 1− n, . . . ,−1, sets Xi to[
f ·
(
Xi−1 xor

(
Xi−1 rshift (w − 2)

))
+ i mod n

]
mod 2w .

7 Complexity: O(n).
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);

8 Effects: With k = dw/32e and a an array (or equivalent) of length n · k, invokes q.generate(a+ 0, a+ n · k)
and then, iteratively for i = −n, . . . ,−1, sets Xi to (∑k−1

j=0 ak(i+n)+j · 232j
)

mod 2w. Finally, if the most
significant w − r bits of X−n are zero, and if each of the other resulting Xi is 0, changes X−n to 2w−1.

28.5.4.4 Class template subtract_with_carry_engine [rand.eng.sub]
1 A subtract_with_carry_engine random number engine produces unsigned integer random numbers.
2 The state xi of a subtract_with_carry_engine object x is of size O(r), and consists of a sequence X of r integervalues 0 ≤ Xi < m = 2w; all subscripts applied to X are to be taken modulo r. The state xi additionally consists ofan integer c (known as the carry) whose value is either 0 or 1.
3 The state transition is performed as follows:

—(3.1) Let Y = Xi−s −Xi−r − c.
—(3.2) Set Xi to y = Y mod m. Set c to 1 if Y < 0, otherwise set c to 0.

[Note 1: This algorithm corresponds to a modular linear function of the form TA(xi) = (a · xi) mod b, where b is of the form
mr −ms + 1 and a = b− (b− 1)/m. —end note]

4 The generation algorithm is given by GA(xi) = y, where y is the value produced as a result of advancing the engine’sstate as described above.
namespace std {

template<class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine {
public:// types
using result_type = UIntType;

§ 28.5.4.4 1268

© ISO/IEC N4910

// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t short_lag = s;
static constexpr size_t long_lag = r;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return m− 1; }
static constexpr result_type default_seed = 19780503u;

// constructors and seeding functions
subtract_with_carry_engine() : subtract_with_carry_engine(default_seed) {}
explicit subtract_with_carry_engine(result_type value);
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const subtract_with_carry_engine& x,

const subtract_with_carry_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const subtract_with_carry_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, subtract_with_carry_engine& x);
};

}

5 The following relations shall hold: 0u < s, s < r, 0 < w, and w <= numeric_limits<UIntType>::digits.
6 The textual representation consists of the values of Xi−r, . . . , Xi−1, in that order, followed by c.

explicit subtract_with_carry_engine(result_type value);

7 Effects: Sets the values ofX−r, . . . , X−1, in that order, as specified below. IfX−1 is then 0, sets c to 1; otherwisesets c to 0.
To set the valuesXk, first construct e, a linear_congruential_engine object, as if by the following definition:
linear_congruential_engine<result_type,

40014u,0u,2147483563u> e(value == 0u ? default_seed : value);

Then, to set each Xk, obtain new values z0, . . . , zn−1 from n = dw/32e successive invocations of e. Set Xk to(∑n−1
j=0 zj · 232j

)
mod m.

8 Complexity: Exactly n · r invocations of e.
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);

9 Effects: With k = dw/32e and a an array (or equivalent) of length r · k, invokes q.generate(a+ 0, a+ r · k)
and then, iteratively for i = −r, . . . ,−1, sets Xi to (∑k−1

j=0 ak(i+r)+j · 232j
)

mod m. If X−1 is then 0, sets c
to 1; otherwise sets c to 0.

28.5.5 Random number engine adaptor class templates [rand.adapt]
28.5.5.1 In general [rand.adapt.general]

1 Each type instantiated from a class template specified in this subclause 28.5.5 meets the requirements of a randomnumber engine adaptor (28.5.3.5) type.
2 Except where specified otherwise, the complexity of each function specified in this subclause 28.5.5 is constant.
3 Except where specified otherwise, no function described in this subclause 28.5.5 throws an exception.

§ 28.5.5.1 1269

© ISO/IEC N4910

4 Every function described in this subclause 28.5.5 that has a function parameter q of type Sseq& for a template typeparameter named Sseq that is different from type seed_seq throws what and when the invocation of q.generate throws.
5 Descriptions are provided in this subclause 28.5.5 only for adaptor operations that are not described in subclause 28.5.3.5or for operations where there is additional semantic information. In particular, declarations for copy constructors, forcopy assignment operators, for streaming operators, and for equality and inequality operators are not shown in thesynopses.
6 Each template specified in this subclause 28.5.5 requires one or more relationships, involving the value(s) of its non-typetemplate parameter(s), to hold. A program instantiating any of these templates is ill-formed if any such requiredrelationship fails to hold.
28.5.5.2 Class template discard_block_engine [rand.adapt.disc]

1 A discard_block_engine random number engine adaptor produces random numbers selected from those produced bysome base engine e. The state xi of a discard_block_engine engine adaptor object x consists of the state ei of its baseengine e and an additional integer n. The size of the state is the size of e’s state plus 1.
2 The transition algorithm discards all but r > 0 values from each block of p ≥ r values delivered by e. The statetransition is performed as follows: If n ≥ r, advance the state of e from ei to ei+p−r and set n to 0. In any case, thenincrement n and advance e’s then-current state ej to ej+1.
3 The generation algorithm yields the value returned by the last invocation of e() while advancing e’s state as describedabove.

namespace std {
template<class Engine, size_t p, size_t r>
class discard_block_engine {
public:// types
using result_type = typename Engine::result_type;

// engine characteristics
static constexpr size_t block_size = p;
static constexpr size_t used_block = r;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }

// constructors and seeding functions
discard_block_engine();
explicit discard_block_engine(const Engine& e);
explicit discard_block_engine(Engine&& e);
explicit discard_block_engine(result_type s);
template<class Sseq> explicit discard_block_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const discard_block_engine& x, const discard_block_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const noexcept { return e; };

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const discard_block_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, discard_block_engine& x);

§ 28.5.5.2 1270

© ISO/IEC N4910

private:
Engine e; // exposition only
size_t n; // exposition only

};
}

4 The following relations shall hold: 0 < r and r <= p.
5 The textual representation consists of the textual representation of e followed by the value of n.
6 In addition to its behavior pursuant to subclause 28.5.3.5, each constructor that is not a copy constructor sets n to 0.
28.5.5.3 Class template independent_bits_engine [rand.adapt.ibits]

1 An independent_bits_engine random number engine adaptor combines random numbers that are produced by somebase engine e, so as to produce random numbers with a specified number of bits w. The state xi of an independent_-
bits_engine engine adaptor object x consists of the state ei of its base engine e; the size of the state is the size of e’sstate.

2 The transition and generation algorithms are described in terms of the following integral constants:
—(2.1) Let R = e.max() - e.min() + 1 andm = blog2Rc.
—(2.2) Withn as determined below, letw0 = bw/nc, n0 = n−w mod n, y0 = 2w0 bR/2w0c, and y1 = 2w0+1

⌊
R/2w0+1

⌋.
—(2.3) Let n = dw/me if and only if the relation R− y0 ≤ by0/nc holds as a result. Otherwise let n = 1 + dw/me.

[Note 1: The relation w = n0w0 + (n− n0)(w0 + 1) always holds. —end note]
3 The transition algorithm is carried out by invoking e() as often as needed to obtain n0 values less than y0 + e.min()and n− n0 values less than y1 + e.min().
4 The generation algorithm uses the values produced while advancing the state as described above to yield a quantity Sobtained as if by the following algorithm:

S = 0;
for (k = 0; k 6= n0; k += 1) {
do u = e() - e.min(); while (u ≥ y0);
S = 2w0 · S + u mod 2w0;

}
for (k = n0; k 6= n; k += 1) {
do u = e() - e.min(); while (u ≥ y1);
S = 2w0+1 · S + u mod 2w0+1;

}

template<class Engine, size_t w, class UIntType>
class independent_bits_engine {
public:// types
using result_type = UIntType;

// engine characteristics
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w − 1; }

// constructors and seeding functions
independent_bits_engine();
explicit independent_bits_engine(const Engine& e);
explicit independent_bits_engine(Engine&& e);
explicit independent_bits_engine(result_type s);
template<class Sseq> explicit independent_bits_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const independent_bits_engine& x, const independent_bits_engine& y);

// generating functions
result_type operator()();

§ 28.5.5.3 1271

© ISO/IEC N4910

void discard(unsigned long long z);

// property functions
const Engine& base() const noexcept { return e; };

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const independent_bits_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, independent_bits_engine& x);

private:
Engine e; // exposition only

};

5 The following relations shall hold: 0 < w and w <= numeric_limits<result_type>::digits.
6 The textual representation consists of the textual representation of e.
28.5.5.4 Class template shuffle_order_engine [rand.adapt.shuf]

1 A shuffle_order_engine random number engine adaptor produces the same random numbers that are produced bysome base engine e, but delivers them in a different sequence. The state xi of a shuffle_order_engine engine adaptorobject x consists of the state ei of its base engine e, an additional value Y of the type delivered by e, and an additionalsequence V of k values also of the type delivered by e. The size of the state is the size of e’s state plus k + 1.
2 The transition algorithm permutes the values produced by e. The state transition is performed as follows:

—(2.1) Calculate an integer j =
⌊
k·(Y−emin)
emax−emin+1

⌋.
—(2.2) Set Y to Vj and then set Vj to e().

3 The generation algorithm yields the last value of Y produced while advancing e’s state as described above.
namespace std {

template<class Engine, size_t k>
class shuffle_order_engine {
public:// types
using result_type = typename Engine::result_type;

// engine characteristics
static constexpr size_t table_size = k;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }

// constructors and seeding functions
shuffle_order_engine();
explicit shuffle_order_engine(const Engine& e);
explicit shuffle_order_engine(Engine&& e);
explicit shuffle_order_engine(result_type s);
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const shuffle_order_engine& x, const shuffle_order_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const noexcept { return e; };

§ 28.5.5.4 1272

© ISO/IEC N4910

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const shuffle_order_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, shuffle_order_engine& x);

private:
Engine e; // exposition only
result_type V[k]; // exposition only
result_type Y; // exposition only

};
}

4 The following relation shall hold: 0 < k.
5 The textual representation consists of the textual representation of e, followed by the k values of V , followed by thevalue of Y .
6 In addition to its behavior pursuant to subclause 28.5.3.5, each constructor that is not a copy constructor initializes

V[0], . . . , V[k-1] and Y , in that order, with values returned by successive invocations of e().
28.5.6 Engines and engine adaptors with predefined parameters [rand.predef]

using minstd_rand0 =
linear_congruential_engine<uint_fast32_t, 16’807, 0, 2’147’483’647>;

1 Required behavior: The 10000th consecutive invocation of a default-constructed object of type minstd_rand0produces the value 1043618065.
using minstd_rand =

linear_congruential_engine<uint_fast32_t, 48’271, 0, 2’147’483’647>;

2 Required behavior: The 10000th consecutive invocation of a default-constructed object of type minstd_randproduces the value 399268537.
using mt19937 =

mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
0x9908’b0df, 11, 0xffff’ffff, 7, 0x9d2c’5680, 15, 0xefc6’0000, 18, 1’812’433’253>;

3 Required behavior: The 10000th consecutive invocation of a default-constructed object of type mt19937 producesthe value 4123659995.
using mt19937_64 =

mersenne_twister_engine<uint_fast64_t, 64, 312, 156, 31,
0xb502’6f5a’a966’19e9, 29, 0x5555’5555’5555’5555, 17,
0x71d6’7fff’eda6’0000, 37, 0xfff7’eee0’0000’0000, 43, 6’364’136’223’846’793’005>;

4 Required behavior: The 10000th consecutive invocation of a default-constructed object of type mt19937_64produces the value 9981545732273789042.
using ranlux24_base =

subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>;

5 Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux24_baseproduces the value 7937952.
using ranlux48_base =

subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>;

6 Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux48_baseproduces the value 61839128582725.
using ranlux24 = discard_block_engine<ranlux24_base, 223, 23>;

7 Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux24 producesthe value 9901578.

§ 28.5.6 1273

© ISO/IEC N4910

using ranlux48 = discard_block_engine<ranlux48_base, 389, 11>;

8 Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux48 producesthe value 249142670248501.
using knuth_b = shuffle_order_engine<minstd_rand0,256>;

9 Required behavior: The 10000th consecutive invocation of a default-constructed object of type knuth_b producesthe value 1112339016.
using default_random_engine = implementation-defined;

10 Remarks: The choice of engine type named by this typedef is implementation-defined.
[Note 1: The implementation can select this type on the basis of performance, size, quality, or any combination of suchfactors, so as to provide at least acceptable engine behavior for relatively casual, inexpert, and/or lightweight use. Becausedifferent implementations can select different underlying engine types, code that uses this typedef need not generate identicalsequences across implementations. —end note]

28.5.7 Class random_device [rand.device]
1 A random_device uniform random bit generator produces nondeterministic random numbers.
2 If implementation limitations prevent generating nondeterministic random numbers, the implementation may employ arandom number engine.

namespace std {
class random_device {
public:// types
using result_type = unsigned int;

// generator characteristics
static constexpr result_type min() { return numeric_limits<result_type>::min(); }
static constexpr result_type max() { return numeric_limits<result_type>::max(); }

// constructors
random_device() : random_device(implementation-defined) {}
explicit random_device(const string& token);

// generating functions
result_type operator()();

// property functions
double entropy() const noexcept;

// no copy functions
random_device(const random_device&) = delete;
void operator=(const random_device&) = delete;

};
}

explicit random_device(const string& token);

3 Throws: A value of an implementation-defined type derived from exception if the random_device cannot beinitialized.
4 Remarks: The semantics of the token parameter and the token value used by the default constructor areimplementation-defined.234

double entropy() const noexcept;

5 Returns: If the implementation employs a random number engine, returns 0.0. Otherwise, returns an entropyestimate235 for the random numbers returned by operator(), in the range min() to log2(max() + 1).

234) The parameter is intended to allow an implementation to differentiate between different sources of randomness.
235) If a device has n states whose respective probabilities are P0, . . . , Pn−1, the device entropy S is defined as
S = −

∑n−1
i=0 Pi · logPi.

§ 28.5.7 1274

© ISO/IEC N4910

result_type operator()();

6 Returns: A nondeterministic random value, uniformly distributed between min() and max() (inclusive). It isimplementation-defined how these values are generated.
7 Throws: A value of an implementation-defined type derived from exception if a random number cannot beobtained.
28.5.8 Utilities [rand.util]
28.5.8.1 Class seed_seq [rand.util.seedseq]
namespace std {

class seed_seq {
public:// types

using result_type = uint_least32_t;

// constructors
seed_seq() noexcept;
template<class T>
seed_seq(initializer_list<T> il);

template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);

// generating functions
template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);

// property functions
size_t size() const noexcept;
template<class OutputIterator>
void param(OutputIterator dest) const;

// no copy functions
seed_seq(const seed_seq&) = delete;
void operator=(const seed_seq&) = delete;

private:
vector<result_type> v; // exposition only

};
}

seed_seq() noexcept;

1 Postconditions: v.empty() is true.
template<class T>

seed_seq(initializer_list<T> il);

2 Constraints: T is an integer type.
3 Effects: Same as seed_seq(il.begin(), il.end()).

template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);

4 Mandates: iterator_traits<InputIterator>::value_type is an integer type.
5 Preconditions: InputIterator meets the Cpp17InputIterator requirements (25.3.5.3).
6 Effects: Initializes v by the following algorithm:

for (InputIterator s = begin; s != end; ++s)
v.push_back((*s)mod232);

template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);

7 Mandates: iterator_traits<RandomAccessIterator>::value_type is an unsigned integer type capable ofaccommodating 32-bit quantities.
§ 28.5.8.1 1275

© ISO/IEC N4910

8 Preconditions: RandomAccessIterator meets the Cpp17RandomAccessIterator requirements (25.3.5.7) and therequirements of a mutable iterator.
9 Effects: Does nothing if begin == end. Otherwise, with s = v.size() and n = end− begin, fills the suppliedrange [begin, end) according to the following algorithm in which each operation is to be carried out modulo 232,each indexing operator applied to begin is to be taken modulo n, and T (x) is defined as x xor (x rshift 27):

—(9.1) By way of initialization, set each element of the range to the value 0x8b8b8b8b. Additionally, for use insubsequent steps, let p = (n− t)/2 and let q = p+ t, where
t = (n ≥ 623) ? 11 : (n ≥ 68) ? 7 : (n ≥ 39) ? 5 : (n ≥ 7) ? 3 : (n− 1)/2;

—(9.2) Withm as the larger of s+ 1 and n, transform the elements of the range: iteratively for k = 0, . . . ,m− 1,calculate values
r1 = 1664525 · T (begin[k] xor begin[k + p] xor begin[k − 1])

r2 = r1 +

 s , k = 0
k mod n+ v[k − 1] , 0 < k ≤ s

k mod n , s < k

and, in order, increment begin[k + p] by r1, increment begin[k + q] by r2, and set begin[k] to r2.
—(9.3) Transform the elements of the range again, beginning where the previous step ended: iteratively for

k = m, . . . ,m+ n− 1, calculate values
r3 = 1566083941 · T (begin[k] + begin[k + p] + begin[k − 1])

r4 = r3 − (k mod n)

and, in order, update begin[k + p] by xoring it with r3, update begin[k + q] by xoring it with r4, and set
begin[k] to r4.

10 Throws: What and when RandomAccessIterator operations of begin and end throw.
size_t size() const noexcept;

11 Returns: The number of 32-bit units that would be returned by a call to param().
12 Complexity: Constant time.

template<class OutputIterator>
void param(OutputIterator dest) const;

13 Mandates: Values of type result_type are writable (25.3.1) to dest.
14 Preconditions: OutputIterator meets the Cpp17OutputIterator requirements (25.3.5.4).
15 Effects: Copies the sequence of prepared 32-bit units to the given destination, as if by executing the followingstatement:

copy(v.begin(), v.end(), dest);

16 Throws: What and when OutputIterator operations of dest throw.
28.5.8.2 Function template generate_canonical [rand.util.canonical]

template<class RealType, size_t bits, class URBG>
RealType generate_canonical(URBG& g);

1 Effects: Invokes g() k times to obtain values g0, . . . , gk−1, respectively. Calculates a quantity
S =

k−1∑
i=0

(gi − g.min()) ·Ri

using arithmetic of type RealType.
2 Returns: S/Rk.

[Note 1: 0 ≤ S/Rk < 1. —end note]
3 Throws: What and when g throws.
§ 28.5.8.2 1276

© ISO/IEC N4910

4 Complexity: Exactly k = max(1, db/ log2Re) invocations of g, where b236 is the lesser of numeric_limits<RealType>::digitsand bits, and R is the value of g.max()− g.min() + 1.
5 [Note 2: If the values gi produced by g are uniformly distributed, the instantiation’s results are distributed as uniformly aspossible. Obtaining a value in this way can be a useful step in the process of transforming a value generated by a uniformrandom bit generator into a value that can be delivered by a random number distribution. —end note]
28.5.9 Random number distribution class templates [rand.dist]
28.5.9.1 In general [rand.dist.general]

1 Each type instantiated from a class template specified in this subclause 28.5.9 meets the requirements of a randomnumber distribution (28.5.3.6) type.
2 Descriptions are provided in this subclause 28.5.9 only for distribution operations that are not described in 28.5.3.6 orfor operations where there is additional semantic information. In particular, declarations for copy constructors, for copyassignment operators, for streaming operators, and for equality and inequality operators are not shown in the synopses.
3 The algorithms for producing each of the specified distributions are implementation-defined.
4 The value of each probability density function p(z) and of each discrete probability function P (zi) specified in thissubclause is 0 everywhere outside its stated domain.
28.5.9.2 Uniform distributions [rand.dist.uni]
28.5.9.2.1 Class template uniform_int_distribution [rand.dist.uni.int]

1 A uniform_int_distribution random number distribution produces random integers i, a ≤ i ≤ b, distributedaccording to the constant discrete probability function
P (i | a, b) = 1/(b− a+ 1) .

namespace std {
template<class IntType = int>
class uniform_int_distribution {
public:// types
using result_type = IntType;
using param_type = unspecified;

// constructors and reset functions
uniform_int_distribution() : uniform_int_distribution(0) {}
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
explicit uniform_int_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const uniform_int_distribution& x, const uniform_int_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

236) b is introduced to avoid any attempt to produce more bits of randomness than can be held in RealType.
§ 28.5.9.2.1 1277

© ISO/IEC N4910

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const uniform_int_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, uniform_int_distribution& x);
};

}

explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());

2 Preconditions: a ≤ b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

result_type a() const;

4 Returns: The value of the a parameter with which the object was constructed.
result_type b() const;

5 Returns: The value of the b parameter with which the object was constructed.
28.5.9.2.2 Class template uniform_real_distribution [rand.dist.uni.real]

1 A uniform_real_distribution random number distribution produces random numbers x, a ≤ x < b, distributedaccording to the constant probability density function
p(x | a, b) = 1/(b− a) .

[Note 1: This implies that p(x | a, b) is undefined when a == b. —end note]
namespace std {

template<class RealType = double>
class uniform_real_distribution {
public:// types

using result_type = RealType;
using param_type = unspecified;

// constructors and reset functions
uniform_real_distribution() : uniform_real_distribution(0.0) {}
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
explicit uniform_real_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const uniform_real_distribution& x,

const uniform_real_distribution& y);

// generating functions
template<class URBG>
result_type operator()(URBG& g);

template<class URBG>
result_type operator()(URBG& g, const param_type& parm);

// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

§ 28.5.9.2.2 1278

© ISO/IEC N4910

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const uniform_real_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, uniform_real_distribution& x);
};

}

explicit uniform_real_distribution(RealType a, RealType b = 1.0);

2 Preconditions: a ≤ b and b− a ≤ numeric_limits<RealType>::max().
3 Remarks: a and b correspond to the respective parameters of the distribution.

result_type a() const;

4 Returns: The value of the a parameter with which the object was constructed.
result_type b() const;

5 Returns: The value of the b parameter with which the object was constructed.
28.5.9.3 Bernoulli distributions [rand.dist.bern]
28.5.9.3.1 Class bernoulli_distribution [rand.dist.bern.bernoulli]

1 A bernoulli_distribution random number distribution produces bool values b distributed according to the discreteprobability function
P (b | p) =

{
p if b = true, or
1− p if b = false.

namespace std {
class bernoulli_distribution {
public:// types
using result_type = bool;
using param_type = unspecified;

// constructors and reset functions
bernoulli_distribution() : bernoulli_distribution(0.5) {}
explicit bernoulli_distribution(double p);
explicit bernoulli_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const bernoulli_distribution& x, const bernoulli_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bernoulli_distribution& x);

§ 28.5.9.3.1 1279

© ISO/IEC N4910

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, bernoulli_distribution& x);
};

}

explicit bernoulli_distribution(double p);

2 Preconditions: 0 ≤ p ≤ 1.
3 Remarks: p corresponds to the parameter of the distribution.

double p() const;

4 Returns: The value of the p parameter with which the object was constructed.
28.5.9.3.2 Class template binomial_distribution [rand.dist.bern.bin]

1 A binomial_distribution random number distribution produces integer values i ≥ 0 distributed according to thediscrete probability function
P (i | t, p) =

(
t

i

)
· pi · (1− p)t−i .

namespace std {
template<class IntType = int>
class binomial_distribution {
public:// types
using result_type = IntType;
using param_type = unspecified;

// constructors and reset functions
binomial_distribution() : binomial_distribution(1) {}
explicit binomial_distribution(IntType t, double p = 0.5);
explicit binomial_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const binomial_distribution& x, const binomial_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
IntType t() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const binomial_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, binomial_distribution& x);
};

}

explicit binomial_distribution(IntType t, double p = 0.5);

2 Preconditions: 0 ≤ p ≤ 1 and 0 ≤ t.
§ 28.5.9.3.2 1280

© ISO/IEC N4910

3 Remarks: t and p correspond to the respective parameters of the distribution.
IntType t() const;

4 Returns: The value of the t parameter with which the object was constructed.
double p() const;

5 Returns: The value of the p parameter with which the object was constructed.
28.5.9.3.3 Class template geometric_distribution [rand.dist.bern.geo]

1 A geometric_distribution random number distribution produces integer values i ≥ 0 distributed according to thediscrete probability function
P (i | p) = p · (1− p)i .

namespace std {
template<class IntType = int>
class geometric_distribution {
public:// types
using result_type = IntType;
using param_type = unspecified;

// constructors and reset functions
geometric_distribution() : geometric_distribution(0.5) {}
explicit geometric_distribution(double p);
explicit geometric_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const geometric_distribution& x, const geometric_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const geometric_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, geometric_distribution& x);
};

}

explicit geometric_distribution(double p);

2 Preconditions: 0 < p < 1.
3 Remarks: p corresponds to the parameter of the distribution.

double p() const;

4 Returns: The value of the p parameter with which the object was constructed.

§ 28.5.9.3.3 1281

© ISO/IEC N4910

28.5.9.3.4 Class template negative_binomial_distribution [rand.dist.bern.negbin]
1 A negative_binomial_distribution random number distribution produces random integers i ≥ 0 distributed accord-ing to the discrete probability function

P (i | k, p) =

(
k + i− 1

i

)
· pk · (1− p)i .

[Note 1: This implies that P (i | k, p) is undefined when p == 1. —end note]
namespace std {

template<class IntType = int>
class negative_binomial_distribution {
public:// types
using result_type = IntType;
using param_type = unspecified;

// constructor and reset functions
negative_binomial_distribution() : negative_binomial_distribution(1) {}
explicit negative_binomial_distribution(IntType k, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const negative_binomial_distribution& x,

const negative_binomial_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
IntType k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const negative_binomial_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, negative_binomial_distribution& x);
};

}

explicit negative_binomial_distribution(IntType k, double p = 0.5);

2 Preconditions: 0 < p ≤ 1 and 0 < k.
3 Remarks: k and p correspond to the respective parameters of the distribution.

IntType k() const;

4 Returns: The value of the k parameter with which the object was constructed.
double p() const;

5 Returns: The value of the p parameter with which the object was constructed.

§ 28.5.9.3.4 1282

© ISO/IEC N4910

28.5.9.4 Poisson distributions [rand.dist.pois]
28.5.9.4.1 Class template poisson_distribution [rand.dist.pois.poisson]

1 A poisson_distribution random number distribution produces integer values i ≥ 0 distributed according to thediscrete probability function
P (i |µ) =

e−µµi

i !
.

The distribution parameter µ is also known as this distribution’s mean.
template<class IntType = int>

class poisson_distribution
{
public:// types
using result_type = IntType;
using param_type = unspecified;

// constructors and reset functions
poisson_distribution() : poisson_distribution(1.0) {}
explicit poisson_distribution(double mean);
explicit poisson_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const poisson_distribution& x, const poisson_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
double mean() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const poisson_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, poisson_distribution& x);
};

explicit poisson_distribution(double mean);

2 Preconditions: 0 < mean.
3 Remarks: mean corresponds to the parameter of the distribution.

double mean() const;

4 Returns: The value of the mean parameter with which the object was constructed.
28.5.9.4.2 Class template exponential_distribution [rand.dist.pois.exp]

1 An exponential_distribution random number distribution produces random numbers x > 0 distributed accordingto the probability density function
p(x |λ) = λe−λx .

§ 28.5.9.4.2 1283

© ISO/IEC N4910

namespace std {
template<class RealType = double>
class exponential_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructors and reset functions
exponential_distribution() : exponential_distribution(1.0) {}
explicit exponential_distribution(RealType lambda);
explicit exponential_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const exponential_distribution& x, const exponential_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType lambda() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const exponential_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, exponential_distribution& x);
};

}

explicit exponential_distribution(RealType lambda);

2 Preconditions: 0 < lambda.
3 Remarks: lambda corresponds to the parameter of the distribution.

RealType lambda() const;

4 Returns: The value of the lambda parameter with which the object was constructed.
28.5.9.4.3 Class template gamma_distribution [rand.dist.pois.gamma]

1 A gamma_distribution random number distribution produces random numbers x > 0 distributed according to theprobability density function
p(x |α, β) =

e−x/β

βα · Γ(α)
· xα−1 .

namespace std {
template<class RealType = double>
class gamma_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

§ 28.5.9.4.3 1284

© ISO/IEC N4910

// constructors and reset functions
gamma_distribution() : gamma_distribution(1.0) {}
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
explicit gamma_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const gamma_distribution& x, const gamma_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType alpha() const;
RealType beta() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const gamma_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, gamma_distribution& x);
};

}

explicit gamma_distribution(RealType alpha, RealType beta = 1.0);

2 Preconditions: 0 < alpha and 0 < beta.
3 Remarks: alpha and beta correspond to the parameters of the distribution.

RealType alpha() const;

4 Returns: The value of the alpha parameter with which the object was constructed.
RealType beta() const;

5 Returns: The value of the beta parameter with which the object was constructed.
28.5.9.4.4 Class template weibull_distribution [rand.dist.pois.weibull]

1 A weibull_distribution random number distribution produces random numbers x ≥ 0 distributed according to theprobability density function
p(x | a, b) =

a

b
·
(x
b

)a−1
· exp

(
−
(x
b

)a) .
namespace std {

template<class RealType = double>
class weibull_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
weibull_distribution() : weibull_distribution(1.0) {}
explicit weibull_distribution(RealType a, RealType b = 1.0);
explicit weibull_distribution(const param_type& parm);
void reset();

§ 28.5.9.4.4 1285

© ISO/IEC N4910

// equality operators
friend bool operator==(const weibull_distribution& x, const weibull_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const weibull_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, weibull_distribution& x);
};

}

explicit weibull_distribution(RealType a, RealType b = 1.0);

2 Preconditions: 0 < a and 0 < b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.
RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.
28.5.9.4.5 Class template extreme_value_distribution [rand.dist.pois.extreme]

1 An extreme_value_distribution random number distribution produces random numbers x distributed according tothe probability density function237
p(x | a, b) =

1

b
· exp

(
a− x
b
− exp

(
a− x
b

))
.

namespace std {
template<class RealType = double>
class extreme_value_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
extreme_value_distribution() : extreme_value_distribution(0.0) {}
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
explicit extreme_value_distribution(const param_type& parm);
void reset();

237) The distribution corresponding to this probability density function is also known (with a possible change of variable) as the Gumbel Type I, thelog-Weibull, or the Fisher-Tippett Type I distribution.
§ 28.5.9.4.5 1286

© ISO/IEC N4910

// equality operators
friend bool operator==(const extreme_value_distribution& x,

const extreme_value_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const extreme_value_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, extreme_value_distribution& x);
};

}

explicit extreme_value_distribution(RealType a, RealType b = 1.0);

2 Preconditions: 0 < b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.
RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.
28.5.9.5 Normal distributions [rand.dist.norm]
28.5.9.5.1 Class template normal_distribution [rand.dist.norm.normal]

1 A normal_distribution random number distribution produces random numbers x distributed according to the proba-bility density function
p(x |µ, σ) =

1

σ
√

2π
· exp

(
− (x− µ)2

2σ2

)
.

The distribution parameters µ and σ are also known as this distribution’s mean and standard deviation.
namespace std {

template<class RealType = double>
class normal_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructors and reset functions
normal_distribution() : normal_distribution(0.0) {}
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
explicit normal_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const normal_distribution& x, const normal_distribution& y);

§ 28.5.9.5.1 1287

© ISO/IEC N4910

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType mean() const;
RealType stddev() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const normal_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, normal_distribution& x);
};

}

explicit normal_distribution(RealType mean, RealType stddev = 1.0);

2 Preconditions: 0 < stddev.
3 Remarks: mean and stddev correspond to the respective parameters of the distribution.

RealType mean() const;

4 Returns: The value of the mean parameter with which the object was constructed.
RealType stddev() const;

5 Returns: The value of the stddev parameter with which the object was constructed.
28.5.9.5.2 Class template lognormal_distribution [rand.dist.norm.lognormal]

1 A lognormal_distribution random number distribution produces random numbers x > 0 distributed according tothe probability density function
p(x |m, s) =

1

sx
√

2π
· exp

(
− (lnx−m)2

2s2

)
.

namespace std {
template<class RealType = double>
class lognormal_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
lognormal_distribution() : lognormal_distribution(0.0) {}
explicit lognormal_distribution(RealType m, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const lognormal_distribution& x, const lognormal_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);

§ 28.5.9.5.2 1288

© ISO/IEC N4910

template<class URBG>
result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType m() const;
RealType s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const lognormal_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, lognormal_distribution& x);
};

}

explicit lognormal_distribution(RealType m, RealType s = 1.0);

2 Preconditions: 0 < s.
3 Remarks: m and s correspond to the respective parameters of the distribution.

RealType m() const;

4 Returns: The value of the m parameter with which the object was constructed.
RealType s() const;

5 Returns: The value of the s parameter with which the object was constructed.
28.5.9.5.3 Class template chi_squared_distribution [rand.dist.norm.chisq]

1 A chi_squared_distribution random number distribution produces random numbers x > 0 distributed according tothe probability density function
p(x |n) =

x(n/2)−1 · e−x/2

Γ(n/2) · 2n/2
.

namespace std {
template<class RealType = double>
class chi_squared_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
chi_squared_distribution() : chi_squared_distribution(1.0) {}
explicit chi_squared_distribution(RealType n);
explicit chi_squared_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const chi_squared_distribution& x, const chi_squared_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

§ 28.5.9.5.3 1289

© ISO/IEC N4910

// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const chi_squared_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, chi_squared_distribution& x);
};

}

explicit chi_squared_distribution(RealType n);

2 Preconditions: 0 < n.
3 Remarks: n corresponds to the parameter of the distribution.

RealType n() const;

4 Returns: The value of the n parameter with which the object was constructed.
28.5.9.5.4 Class template cauchy_distribution [rand.dist.norm.cauchy]

1 A cauchy_distribution random number distribution produces random numbers x distributed according to the proba-bility density function
p(x | a, b) =

(
πb

(
1 +

(
x− a
b

)2
))−1

.
namespace std {

template<class RealType = double>
class cauchy_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
cauchy_distribution() : cauchy_distribution(0.0) {}
explicit cauchy_distribution(RealType a, RealType b = 1.0);
explicit cauchy_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const cauchy_distribution& x, const cauchy_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

§ 28.5.9.5.4 1290

© ISO/IEC N4910

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const cauchy_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, cauchy_distribution& x);
};

}

explicit cauchy_distribution(RealType a, RealType b = 1.0);

2 Preconditions: 0 < b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.
RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.
28.5.9.5.5 Class template fisher_f_distribution [rand.dist.norm.f]

1 A fisher_f_distribution random number distribution produces random numbers x ≥ 0 distributed according to theprobability density function
p(x |m,n) =

Γ
(
(m+ n)/2

)
Γ(m/2) Γ(n/2)

·
(m
n

)m/2
· x(m/2)−1 ·

(
1 +

mx

n

)−(m+n)/2 .
namespace std {

template<class RealType = double>
class fisher_f_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
fisher_f_distribution() : fisher_f_distribution(1.0) {}
explicit fisher_f_distribution(RealType m, RealType n = 1.0);
explicit fisher_f_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const fisher_f_distribution& x, const fisher_f_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType m() const;
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const fisher_f_distribution& x);

§ 28.5.9.5.5 1291

© ISO/IEC N4910

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, fisher_f_distribution& x);
};

}

explicit fisher_f_distribution(RealType m, RealType n = 1);

2 Preconditions: 0 < m and 0 < n.
3 Remarks: m and n correspond to the respective parameters of the distribution.

RealType m() const;

4 Returns: The value of the m parameter with which the object was constructed.
RealType n() const;

5 Returns: The value of the n parameter with which the object was constructed.
28.5.9.5.6 Class template student_t_distribution [rand.dist.norm.t]

1 A student_t_distribution random number distribution produces random numbers x distributed according to theprobability density function
p(x |n) =

1√
nπ
·

Γ
(
(n+ 1)/2

)
Γ(n/2)

·
(

1 +
x2

n

)−(n+1)/2 .
namespace std {

template<class RealType = double>
class student_t_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
student_t_distribution() : student_t_distribution(1.0) {}
explicit student_t_distribution(RealType n);
explicit student_t_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const student_t_distribution& x, const student_t_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const student_t_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, student_t_distribution& x);
};

}

§ 28.5.9.5.6 1292

© ISO/IEC N4910

explicit student_t_distribution(RealType n);

2 Preconditions: 0 < n.
3 Remarks: n corresponds to the parameter of the distribution.

RealType n() const;

4 Returns: The value of the n parameter with which the object was constructed.
28.5.9.6 Sampling distributions [rand.dist.samp]
28.5.9.6.1 Class template discrete_distribution [rand.dist.samp.discrete]

1 A discrete_distribution random number distribution produces random integers i, 0 ≤ i < n, distributed accordingto the discrete probability function
P (i | p0, . . . , pn−1) = pi .

2 Unless specified otherwise, the distribution parameters are calculated as: pk = wk/S for k = 0, . . . , n− 1, in whichthe values wk, commonly known as the weights, shall be non-negative, non-NaN, and non-infinity. Moreover, thefollowing relation shall hold: 0 < S = w0 + · · ·+ wn−1.
namespace std {

template<class IntType = int>
class discrete_distribution {
public:// types
using result_type = IntType;
using param_type = unspecified;

// constructor and reset functions
discrete_distribution();
template<class InputIterator>

discrete_distribution(InputIterator firstW, InputIterator lastW);
discrete_distribution(initializer_list<double> wl);
template<class UnaryOperation>

discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
explicit discrete_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const discrete_distribution& x, const discrete_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
vector<double> probabilities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const discrete_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, discrete_distribution& x);
};

}

§ 28.5.9.6.1 1293

© ISO/IEC N4910

discrete_distribution();

3 Effects: Constructs a discrete_distribution object with n = 1 and p0 = 1.
[Note 1: Such an object will always deliver the value 0. —end note]

template<class InputIterator>
discrete_distribution(InputIterator firstW, InputIterator lastW);

4 Mandates: is_convertible_v<iterator_traits<InputIterator>::value_type, double> is true.
5 Preconditions: InputIterator meets the Cpp17InputIterator requirements (25.3.5.3). If firstW == lastW, let

n = 1 and w0 = 1. Otherwise, [firstW, lastW) forms a sequence w of length n > 0.
6 Effects: Constructs a discrete_distribution object with probabilities given by the formula above.

discrete_distribution(initializer_list<double> wl);

7 Effects: Same as discrete_distribution(wl.begin(), wl.end()).
template<class UnaryOperation>

discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);

8 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
9 Preconditions: If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax− xmin)/n holds.
10 Effects: Constructs a discrete_distribution object with probabilities given by the formula above, using thefollowing values: If nw = 0, let w0 = 1. Otherwise, let wk = fw(xmin + k · δ + δ/2) for k = 0, . . . , n− 1.
11 Complexity: The number of invocations of fw does not exceed n.

vector<double> probabilities() const;

12 Returns: A vector<double> whose size member returns n and whose operator[] member returns pk wheninvoked with argument k for k = 0, . . . , n− 1.
28.5.9.6.2 Class template piecewise_constant_distribution [rand.dist.samp.pconst]

1 A piecewise_constant_distribution random number distribution produces random numbers x, b0 ≤ x < bn,uniformly distributed over each subinterval [bi, bi+1) according to the probability density function
p(x | b0, . . . , bn, ρ0, . . . , ρn−1) = ρi , for bi ≤ x < bi+1.

2 The n+ 1 distribution parameters bi, also known as this distribution’s interval boundaries, shall satisfy the relation
bi < bi+1 for i = 0, . . . , n− 1. Unless specified otherwise, the remaining n distribution parameters are calculated as:

ρk =
wk

S · (bk+1 − bk)
for k = 0, . . . , n− 1 ,

in which the values wk, commonly known as the weights, shall be non-negative, non-NaN, and non-infinity. Moreover,the following relation shall hold: 0 < S = w0 + · · ·+ wn−1.
namespace std {

template<class RealType = double>
class piecewise_constant_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
piecewise_constant_distribution();
template<class InputIteratorB, class InputIteratorW>

piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);

template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);

template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,

UnaryOperation fw);

§ 28.5.9.6.2 1294

© ISO/IEC N4910

explicit piecewise_constant_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const piecewise_constant_distribution& x,

const piecewise_constant_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const piecewise_constant_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, piecewise_constant_distribution& x);
};

}

piecewise_constant_distribution();

3 Effects: Constructs a piecewise_constant_distribution object with n = 1, ρ0 = 1, b0 = 0, and b1 = 1.
template<class InputIteratorB, class InputIteratorW>
piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,

InputIteratorW firstW);

4 Mandates: Both of
—(4.1) is_convertible_v<iterator_traits<InputIteratorB>::value_type, double>

—(4.2) is_convertible_v<iterator_traits<InputIteratorW>::value_type, double>

are true.
5 Preconditions: InputIteratorB and InputIteratorW each meet the Cpp17InputIterator requirements (25.3.5.3).If firstB == lastB or ++firstB == lastB, let n = 1,w0 = 1, b0 = 0, and b1 = 1. Otherwise, [firstB, lastB)forms a sequence b of length n+ 1, the length of the sequence w starting from firstW is at least n, and any wkfor k ≥ n are ignored by the distribution.
6 Effects: Constructs a piecewise_constant_distribution object with parameters as specified above.

template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);

7 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
8 Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated from the fol-lowing values: If bl.size() < 2, let n = 1,w0 = 1, b0 = 0, and b1 = 1. Otherwise, let [bl.begin(), bl.end())form a sequence b0, . . . , bn, and let wk = fw

((
bk+1 + bk

)
/2
) for k = 0, . . . , n− 1.

9 Complexity: The number of invocations of fw does not exceed n.
template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

10 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
§ 28.5.9.6.2 1295

© ISO/IEC N4910

11 Preconditions: If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax− xmin)/n holds.
12 Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated from thefollowing values: Let bk = xmin + k · δ for k = 0, . . . , n, and wk = fw(bk + δ/2) for k = 0, . . . , n− 1.
13 Complexity: The number of invocations of fw does not exceed n.

vector<result_type> intervals() const;

14 Returns: A vector<result_type> whose size member returns n+ 1 and whose operator[] member returns
bk when invoked with argument k for k = 0, . . . , n.

vector<result_type> densities() const;

15 Returns: A vector<result_type> whose size member returns n and whose operator[] member returns ρkwhen invoked with argument k for k = 0, . . . , n− 1.
28.5.9.6.3 Class template piecewise_linear_distribution [rand.dist.samp.plinear]

1 A piecewise_linear_distribution random number distribution produces random numbers x, b0 ≤ x < bn, dis-tributed over each subinterval [bi, bi+1) according to the probability density function
p(x | b0, . . . , bn, ρ0, . . . , ρn) = ρi ·

bi+1 − x
bi+1 − bi

+ ρi+1 ·
x− bi
bi+1 − bi

, for bi ≤ x < bi+1.
2 The n+ 1 distribution parameters bi, also known as this distribution’s interval boundaries, shall satisfy the relation
bi < bi+1 for i = 0, . . . , n− 1. Unless specified otherwise, the remaining n+ 1 distribution parameters are calculatedas ρk = wk/S for k = 0, . . . , n, in which the values wk, commonly known as the weights at boundaries, shall benon-negative, non-NaN, and non-infinity. Moreover, the following relation shall hold:

0 < S =
1

2
·
n−1∑
k=0

(wk + wk+1) · (bk+1 − bk) .

namespace std {
template<class RealType = double>
class piecewise_linear_distribution {
public:// types
using result_type = RealType;
using param_type = unspecified;

// constructor and reset functions
piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>

piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);

template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);

template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

explicit piecewise_linear_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const piecewise_linear_distribution& x,

const piecewise_linear_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

§ 28.5.9.6.3 1296

© ISO/IEC N4910

// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const piecewise_linear_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, piecewise_linear_distribution& x);
};

}

piecewise_linear_distribution();

3 Effects: Constructs a piecewise_linear_distribution object with n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1.
template<class InputIteratorB, class InputIteratorW>
piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,

InputIteratorW firstW);

4 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
5 Preconditions: InputIteratorB and InputIteratorW each meet the Cpp17InputIterator requirements (25.3.5.3).If firstB == lastB or ++firstB == lastB, let n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1. Otherwise,[

firstB, lastB
) forms a sequence b of length n+ 1, the length of the sequence w starting from firstW is at least

n+ 1, and any wk for k ≥ n+ 1 are ignored by the distribution.
6 Effects: Constructs a piecewise_linear_distribution object with parameters as specified above.

template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);

7 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
8 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated from thefollowing values: If bl.size() < 2, let n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1. Otherwise, let[

bl.begin(),bl.end()
) form a sequence b0, . . . , bn, and let wk = fw(bk) for k = 0, . . . , n.

9 Complexity: The number of invocations of fw does not exceed n+ 1.
template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

10 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
11 Preconditions: If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax− xmin)/n holds.
12 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated from thefollowing values: Let bk = xmin + k · δ for k = 0, . . . , n, and wk = fw(bk) for k = 0, . . . , n.
13 Complexity: The number of invocations of fw does not exceed n+ 1.

vector<result_type> intervals() const;

14 Returns: A vector<result_type> whose size member returns n+ 1 and whose operator[] member returns
bk when invoked with argument k for k = 0, . . . , n.

vector<result_type> densities() const;

15 Returns: A vector<result_type> whose size member returns n and whose operator[] member returns ρkwhen invoked with argument k for k = 0, . . . , n.
28.5.10 Low-quality random number generation [c.math.rand]

1 [Note 1: The header <cstdlib> (17.2.2) declares the functions described in this subclause. —end note]

§ 28.5.10 1297

© ISO/IEC N4910

int rand();
void srand(unsigned int seed);

2 Effects: The rand and srand functions have the semantics specified in the C standard library.
3 Remarks: The implementation may specify that particular library functions may call rand. It is implementation-defined whether the rand function may introduce data races (16.4.6.10).

[Note 2: The other random number generation facilities in this document (28.5) are often preferable to rand, because
rand’s underlying algorithm is unspecified. Use of rand therefore continues to be non-portable, with unpredictable andoft-questionable quality and performance. —end note]

See also: ISO C 7.22.2
28.6 Numeric arrays [numarray]
28.6.1 Header <valarray> synopsis [valarray.syn]
#include <initializer_list>

namespace std {
template<class T> class valarray; // An array of type T
class slice; // a BLAS-like slice out of an array
template<class T> class slice_array;
class gslice; // a generalized slice out of an array
template<class T> class gslice_array;
template<class T> class mask_array; // a masked array
template<class T> class indirect_array; // an indirected array
template<class T> void swap(valarray<T>&, valarray<T>&) noexcept;

template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator* (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator* (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator/ (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator% (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator+ (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator- (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator^ (const typename valarray<T>::value_type&,

const valarray<T>&);

§ 28.6.1 1298

© ISO/IEC N4910

template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator& (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator| (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator<<(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator>>(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator&&(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator&&(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator||(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator==(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator==(const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator!=(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator< (const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator> (const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator<=(const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);

§ 28.6.1 1299

© ISO/IEC N4910

template<class T> valarray<bool> operator>=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator>=(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);

template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> atan2(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);

template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const typename valarray<T>::value_type&);
template<class T> valarray<T> pow(const typename valarray<T>::value_type&, const valarray<T>&);

template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

template<class T> unspecified1 begin(valarray<T>& v);
template<class T> unspecified2 begin(const valarray<T>& v);
template<class T> unspecified1 end(valarray<T>& v);
template<class T> unspecified2 end(const valarray<T>& v);

}

1 The header <valarray> defines five class templates (valarray, slice_array, gslice_array, mask_array, and indirect_-
array), two classes (slice and gslice), and a series of related function templates for representing and manipulatingarrays of values.

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations on these classesto be optimized.
3 Any function returning a valarray<T> is permitted to return an object of another type, provided all the const memberfunctions of valarray<T> are also applicable to this type. This return type shall not add more than two levels of templatenesting over the most deeply nested argument type.238
4 Implementations introducing such replacement types shall provide additional functions and operators as follows:

—(4.1) for every function taking a const valarray<T>& other than begin and end (28.6.10), identical functions takingthe replacement types shall be added;
—(4.2) for every function taking two const valarray<T>& arguments, identical functions taking every combination of

const valarray<T>& and replacement types shall be added.
5 In particular, an implementation shall allow a valarray<T> to be constructed from such replacement types and shallallow assignments and compound assignments of such types to valarray<T>, slice_array<T>, gslice_array<T>,

mask_array<T> and indirect_array<T> objects.
6 These library functions are permitted to throw a bad_alloc (17.6.4.1) exception if there are not sufficient resourcesavailable to carry out the operation. Note that the exception is not mandated.

238) Annex B recommends a minimum number of recursively nested template instantiations. This requirement thus indirectly suggests a minimumallowable complexity for valarray expressions.
§ 28.6.1 1300

© ISO/IEC N4910

28.6.2 Class template valarray [template.valarray]
28.6.2.1 Overview [template.valarray.overview]
namespace std {

template<class T> class valarray {
public:
using value_type = T;

// 28.6.2.2, construct/destroy
valarray();
explicit valarray(size_t);
valarray(const T&, size_t);
valarray(const T*, size_t);
valarray(const valarray&);
valarray(valarray&&) noexcept;
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);
valarray(initializer_list<T>);
~valarray();

// 28.6.2.3, assignment
valarray& operator=(const valarray&);
valarray& operator=(valarray&&) noexcept;
valarray& operator=(initializer_list<T>);
valarray& operator=(const T&);
valarray& operator=(const slice_array<T>&);
valarray& operator=(const gslice_array<T>&);
valarray& operator=(const mask_array<T>&);
valarray& operator=(const indirect_array<T>&);

// 28.6.2.4, element access
const T& operator[](size_t) const;
T& operator[](size_t);

// 28.6.2.5, subset operations
valarray operator[](slice) const;
slice_array<T> operator[](slice);
valarray operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

// 28.6.2.6, unary operators
valarray operator+() const;
valarray operator-() const;
valarray operator~() const;
valarray<bool> operator!() const;

// 28.6.2.7, compound assignment
valarray& operator*= (const T&);
valarray& operator/= (const T&);
valarray& operator%= (const T&);
valarray& operator+= (const T&);
valarray& operator-= (const T&);
valarray& operator^= (const T&);
valarray& operator&= (const T&);
valarray& operator|= (const T&);
valarray& operator<<=(const T&);
valarray& operator>>=(const T&);

§ 28.6.2.1 1301

© ISO/IEC N4910

valarray& operator*= (const valarray&);
valarray& operator/= (const valarray&);
valarray& operator%= (const valarray&);
valarray& operator+= (const valarray&);
valarray& operator-= (const valarray&);
valarray& operator^= (const valarray&);
valarray& operator|= (const valarray&);
valarray& operator&= (const valarray&);
valarray& operator<<=(const valarray&);
valarray& operator>>=(const valarray&);

// 28.6.2.8, member functions
void swap(valarray&) noexcept;

size_t size() const;

T sum() const;
T min() const;
T max() const;

valarray shift (int) const;
valarray cshift(int) const;
valarray apply(T func(T)) const;
valarray apply(T func(const T&)) const;
void resize(size_t sz, T c = T());

};

template<class T, size_t cnt> valarray(const T(&)[cnt], size_t) -> valarray<T>;
}

1 The class template valarray<T> is a one-dimensional smart array, with elements numbered sequentially from zero.It is a representation of the mathematical concept of an ordered set of values. For convenience, an object of type
valarray<T> is referred to as an “array” throughout the remainder of 28.6. The illusion of higher dimensionality maybe produced by the familiar idiom of computed indices, together with the powerful subsetting capabilities provided bythe generalized subscript operators.239
28.6.2.2 Constructors [valarray.cons]

valarray();

1 Effects: Constructs a valarray that has zero length.240
explicit valarray(size_t n);

2 Effects: Constructs a valarray that has length n. Each element of the array is value-initialized (9.4).
valarray(const T& v, size_t n);

3 Effects: Constructs a valarray that has length n. Each element of the array is initialized with v.
valarray(const T* p, size_t n);

4 Preconditions: [p, p + n) is a valid range.
5 Effects: Constructs a valarray that has length n. The values of the elements of the array are initialized with thefirst n values pointed to by the first argument.241

239) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the proliferation oftemporary objects. Thus, the valarray template is neither a matrix class nor a field class. However, it is a very useful building block for designingsuch classes.
240) This default constructor is essential, since arrays of valarray can be useful. After initialization, the length of an empty array can be increasedwith the resize member function.
241) This constructor is the preferred method for converting a C array to a valarray object.
§ 28.6.2.2 1302

© ISO/IEC N4910

valarray(const valarray& v);

6 Effects: Constructs a valarray that has the same length as v. The elements are initialized with the values of thecorresponding elements of v.242
valarray(valarray&& v) noexcept;

7 Effects: Constructs a valarray that has the same length as v. The elements are initialized with the values of thecorresponding elements of v.
8 Complexity: Constant.

valarray(initializer_list<T> il);

9 Effects: Equivalent to valarray(il.begin(), il.size()).
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

10 These conversion constructors convert one of the four reference templates to a valarray.
~valarray();

11 Effects: The destructor is applied to every element of *this; an implementation may return all allocated memory.
28.6.2.3 Assignment [valarray.assign]

valarray& operator=(const valarray& v);

1 Effects: Each element of the *this array is assigned the value of the corresponding element of v. If the lengthof v is not equal to the length of *this, resizes *this to make the two arrays the same length, as if by calling
resize(v.size()), before performing the assignment.

2 Postconditions: size() == v.size().
3 Returns: *this.

valarray& operator=(valarray&& v) noexcept;

4 Effects: *this obtains the value of v. The value of v after the assignment is not specified.
5 Returns: *this.
6 Complexity: Linear.

valarray& operator=(initializer_list<T> il);

7 Effects: Equivalent to: return *this = valarray(il);

valarray& operator=(const T& v);

8 Effects: Assigns v to each element of *this.
9 Returns: *this.

valarray& operator=(const slice_array<T>&);
valarray& operator=(const gslice_array<T>&);
valarray& operator=(const mask_array<T>&);
valarray& operator=(const indirect_array<T>&);

10 Preconditions: The length of the array to which the argument refers equals size(). The value of an element inthe left-hand side of a valarray assignment operator does not depend on the value of another element in thatleft-hand side.
11 These operators allow the results of a generalized subscripting operation to be assigned directly to a valarray.
28.6.2.4 Element access [valarray.access]

const T& operator[](size_t n) const;

242) This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are permitted, but they wouldneed to implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.
§ 28.6.2.4 1303

© ISO/IEC N4910

T& operator[](size_t n);

1 Preconditions: n < size() is true.
2 Returns: A reference to the corresponding element of the array.

[Note 1: The expression (a[i] = q, a[i]) == q evaluates to true for any non-constant valarray<T> a, any T q, and forany size_t i such that the value of i is less than the length of a. —end note]
3 Remarks: The expression addressof(a[i+j]) == addressof(a[i]) + j evaluates to true for all size_t iand size_t j such that i+j < a.size().
4 The expression addressof(a[i]) != addressof(b[j]) evaluates to true for any two arrays a and b and forany size_t i and size_t j such that i < a.size() and j < b.size().

[Note 2: This property indicates an absence of aliasing and can be used to advantage by optimizing compilers. Compilers cantake advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from operator new, and othertechniques to generate efficient valarrays. —end note]
5 The reference returned by the subscript operator for an array shall be valid until themember function resize(size_-

t, T) (28.6.2.8) is called for that array or until the lifetime of that array ends, whichever happens first.
28.6.2.5 Subset operations [valarray.sub]

1 The member operator[] is overloaded to provide several ways to select sequences of elements from among thosecontrolled by *this. Each of these operations returns a subset of the array. The const-qualified versions return thissubset as a new valarray object. The non-const versions return a class template object which has reference semanticsto the original array, working in conjunction with various overloads of operator= and other assigning operators toallow selective replacement (slicing) of the controlled sequence. In each case the selected element(s) shall exist.
valarray operator[](slice slicearr) const;

2 Returns: A valarray containing those elements of the controlled sequence designated by slicearr.
[Example 1:
const valarray<char> v0("abcdefghijklmnop", 16);// v0[slice(2, 5, 3)] returns valarray<char>("cfilo", 5)

—end example]
slice_array<T> operator[](slice slicearr);

3 Returns: An object that holds references to elements of the controlled sequence selected by slicearr.
[Example 2:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
v0[slice(2, 5, 3)] = v1;// v0 == valarray<char>("abAdeBghCjkDmnEp", 16);

—end example]
valarray operator[](const gslice& gslicearr) const;

4 Returns: A valarray containing those elements of the controlled sequence designated by gslicearr.
[Example 3:
const valarray<char> v0("abcdefghijklmnop", 16);
const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);// v0[gslice(3, len, str)] returns// valarray<char>("dfhkmo", 6)

—end example]
gslice_array<T> operator[](const gslice& gslicearr);

5 Returns: An object that holds references to elements of the controlled sequence selected by gslicearr.
[Example 4:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDEF", 6);

§ 28.6.2.5 1304

© ISO/IEC N4910

const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);
v0[gslice(3, len, str)] = v1;// v0 == valarray<char>("abcAeBgCijDlEnFp", 16)

—end example]
valarray operator[](const valarray<bool>& boolarr) const;

6 Returns: A valarray containing those elements of the controlled sequence designated by boolarr.
[Example 5:
const valarray<char> v0("abcdefghijklmnop", 16);
const bool vb[] = { false, false, true, true, false, true };// v0[valarray<bool>(vb, 6)] returns// valarray<char>("cdf", 3)

—end example]
mask_array<T> operator[](const valarray<bool>& boolarr);

7 Returns: An object that holds references to elements of the controlled sequence selected by boolarr.
[Example 6:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABC", 3);
const bool vb[] = { false, false, true, true, false, true };
v0[valarray<bool>(vb, 6)] = v1;// v0 == valarray<char>("abABeCghijklmnop", 16)

—end example]
valarray operator[](const valarray<size_t>& indarr) const;

8 Returns: A valarray containing those elements of the controlled sequence designated by indarr.
[Example 7:
const valarray<char> v0("abcdefghijklmnop", 16);
const size_t vi[] = { 7, 5, 2, 3, 8 };// v0[valarray<size_t>(vi, 5)] returns// valarray<char>("hfcdi", 5)

—end example]
indirect_array<T> operator[](const valarray<size_t>& indarr);

9 Returns: An object that holds references to elements of the controlled sequence selected by indarr.
[Example 8:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
const size_t vi[] = { 7, 5, 2, 3, 8 };
v0[valarray<size_t>(vi, 5)] = v1;// v0 == valarray<char>("abCDeBgAEjklmnop", 16)

—end example]
28.6.2.6 Unary operators [valarray.unary]

valarray operator+() const;
valarray operator-() const;
valarray operator~() const;
valarray<bool> operator!() const;

1 Mandates: The indicated operator can be applied to operands of type T and returns a value of type T (bool for
operator!) or which may be unambiguously implicitly converted to type T (bool for operator!).

2 Returns: A valarray whose length is size(). Each element of the returned array is initialized with the result ofapplying the indicated operator to the corresponding element of the array.

§ 28.6.2.6 1305

© ISO/IEC N4910

28.6.2.7 Compound assignment [valarray.cassign]

valarray& operator*= (const valarray& v);
valarray& operator/= (const valarray& v);
valarray& operator%= (const valarray& v);
valarray& operator+= (const valarray& v);
valarray& operator-= (const valarray& v);
valarray& operator^= (const valarray& v);
valarray& operator&= (const valarray& v);
valarray& operator|= (const valarray& v);
valarray& operator<<=(const valarray& v);
valarray& operator>>=(const valarray& v);

1 Mandates: The indicated operator can be applied to two operands of type T.
2 Preconditions: size() == v.size() is true.

The value of an element in the left-hand side of a valarray compound assignment operator does not depend on thevalue of another element in that left hand side.
3 Effects: Each of these operators performs the indicated operation on each of the elements of *this and thecorresponding element of v.
4 Returns: *this.
5 Remarks: The appearance of an array on the left-hand side of a compound assignment does not invalidatereferences or pointers.

valarray& operator*= (const T& v);
valarray& operator/= (const T& v);
valarray& operator%= (const T& v);
valarray& operator+= (const T& v);
valarray& operator-= (const T& v);
valarray& operator^= (const T& v);
valarray& operator&= (const T& v);
valarray& operator|= (const T& v);
valarray& operator<<=(const T& v);
valarray& operator>>=(const T& v);

6 Mandates: The indicated operator can be applied to two operands of type T.
7 Effects: Each of these operators applies the indicated operation to each element of *this and v.
8 Returns: *this
9 Remarks: The appearance of an array on the left-hand side of a compound assignment does not invalidatereferences or pointers to the elements of the array.
28.6.2.8 Member functions [valarray.members]

void swap(valarray& v) noexcept;

1 Effects: *this obtains the value of v. v obtains the value of *this.
2 Complexity: Constant.

size_t size() const;

3 Returns: The number of elements in the array.
4 Complexity: Constant time.

T sum() const;

5 Mandates: operator+= can be applied to operands of type T.
6 Preconditions: size() > 0 is true.
7 Returns: The sum of all the elements of the array. If the array has length 1, returns the value of element 0.Otherwise, the returned value is calculated by applying operator+= to a copy of an element of the array and allother elements of the array in an unspecified order.

§ 28.6.2.8 1306

© ISO/IEC N4910

T min() const;

8 Preconditions: size() > 0 is true.
9 Returns: The minimum value contained in *this. For an array of length 1, the value of element 0 is returned. Forall other array lengths, the determination is made using operator<.

T max() const;

10 Preconditions: size() > 0 is true.
11 Returns: The maximum value contained in *this. For an array of length 1, the value of element 0 is returned.For all other array lengths, the determination is made using operator<.

valarray shift(int n) const;

12 Returns: A valarray of length size(), each of whose elements I is (*this)[I + n] if I + n is non-negativeand less than size(), otherwise T().
[Note 1: If element zero is taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill.—end note]

13 [Example 1: If the argument has the value −2, the first two elements of the result will be value-initialized (9.4); the thirdelement of the result will be assigned the value of the first element of the argument; etc. —end example]
valarray cshift(int n) const;

14 Returns: A valarray of length size() that is a circular shift of *this. If element zero is taken as the leftmostelement, a non-negative value of n shifts the elements circularly left n places and a negative value of n shifts theelements circularly right −n places.
valarray apply(T func(T)) const;
valarray apply(T func(const T&)) const;

15 Returns: A valarray whose length is size(). Each element of the returned array is assigned the value returnedby applying the argument function to the corresponding element of *this.
void resize(size_t sz, T c = T());

16 Effects: Changes the length of the *this array to sz and then assigns to each element the value of the secondargument. Resizing invalidates all pointers and references to elements in the array.
28.6.3 valarray non-member operations [valarray.nonmembers]
28.6.3.1 Binary operators [valarray.binary]

template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);

1 Mandates: The indicated operator can be applied to operands of type T and returns a value of type T or which canbe unambiguously implicitly converted to T.
2 Preconditions: The argument arrays have the same length.
3 Returns: A valarray whose length is equal to the lengths of the argument arrays. Each element of the returnedarray is initialized with the result of applying the indicated operator to the corresponding elements of the argumentarrays.

template<class T> valarray<T> operator* (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator* (const typename valarray<T>::value_type&,
const valarray<T>&);

§ 28.6.3.1 1307

© ISO/IEC N4910

template<class T> valarray<T> operator/ (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator/ (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator% (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator+ (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator- (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator^ (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator& (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator| (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator<<(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator>>(const typename valarray<T>::value_type&,
const valarray<T>&);

4 Mandates: The indicated operator can be applied to operands of type T and returns a value of type T or which canbe unambiguously implicitly converted to T.
5 Returns: A valarray whose length is equal to the length of the array argument. Each element of the returnedarray is initialized with the result of applying the indicated operator to the corresponding element of the arrayargument and the non-array argument.
28.6.3.2 Logical operators [valarray.comparison]

template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const valarray<T>&);

1 Mandates: The indicated operator can be applied to operands of type T and returns a value of type bool or whichcan be unambiguously implicitly converted to bool.
2 Preconditions: The two array arguments have the same length.
3 Returns: A valarray<bool> whose length is equal to the length of the array arguments. Each element of thereturned array is initialized with the result of applying the indicated operator to the corresponding elements of theargument arrays.

template<class T> valarray<bool> operator==(const valarray<T>&,
const typename valarray<T>::value_type&);

§ 28.6.3.2 1308

© ISO/IEC N4910

template<class T> valarray<bool> operator==(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator!=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator!=(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator< (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator> (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator> (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator<=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator<=(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator>=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator>=(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator&&(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator&&(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator||(const typename valarray<T>::value_type&,
const valarray<T>&);

4 Mandates: The indicated operator can be applied to operands of type T and returns a value of type bool or whichcan be unambiguously implicitly converted to bool.
5 Returns: A valarray<bool> whose length is equal to the length of the array argument. Each element of thereturned array is initialized with the result of applying the indicated operator to the corresponding element of thearray and the non-array argument.
28.6.3.3 Transcendentals [valarray.transcend]

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const typename valarray<T>::value_type&);
template<class T> valarray<T> atan2(const typename valarray<T>::value_type&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const typename valarray<T>::value_type&);
template<class T> valarray<T> pow (const typename valarray<T>::value_type&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

1 Mandates: A unique function with the indicated name can be applied (unqualified) to an operand of type T. Thisfunction returns a value of type T or which can be unambiguously implicitly converted to type T.

§ 28.6.3.3 1309

© ISO/IEC N4910

28.6.3.4 Specialized algorithms [valarray.special]

template<class T> void swap(valarray<T>& x, valarray<T>& y) noexcept;

1 Effects: Equivalent to x.swap(y).
28.6.4 Class slice [class.slice]
28.6.4.1 Overview [class.slice.overview]
namespace std {

class slice {
public:
slice();
slice(size_t, size_t, size_t);

size_t start() const;
size_t size() const;
size_t stride() const;

friend bool operator==(const slice& x, const slice& y);
};

}

1 The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index, a length, and astride.243
28.6.4.2 Constructors [cons.slice]

slice();
slice(size_t start, size_t length, size_t stride);
slice(const slice&);

1 The default constructor is equivalent to slice(0, 0, 0). A default constructor is provided only to permit thedeclaration of arrays of slices. The constructor with arguments for a slice takes a start, length, and stride parameter.
2 [Example 1: slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, . . . , 17 from an array. —end example]
28.6.4.3 Access functions [slice.access]

size_t start() const;
size_t size() const;
size_t stride() const;

1 Returns: The start, length, or stride specified by a slice object.
2 Complexity: Constant time.
28.6.4.4 Operators [slice.ops]

friend bool operator==(const slice& x, const slice& y);

1 Effects: Equivalent to:
return x.start() == y.start() && x.size() == y.size() && x.stride() == y.stride();

28.6.5 Class template slice_array [template.slice.array]
28.6.5.1 Overview [template.slice.array.overview]
namespace std {

template<class T> class slice_array {
public:
using value_type = T;

243) BLAS stands for Basic Linear Algebra Subprograms. C++ programs can instantiate this class. See, for example, Dongarra, Du Croz, Duff,and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS-P1-0888, Argonne National Laboratory (USA),Mathematics and Computer Science Division, August, 1988.
§ 28.6.5.1 1310

© ISO/IEC N4910

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

slice_array(const slice_array&);
~slice_array();
const slice_array& operator=(const slice_array&) const;
void operator=(const T&) const;

slice_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the slice subscript operator
slice_array<T> valarray<T>::operator[](slice);

2 It has reference semantics to a subset of an array specified by a slice object.
[Example 1: The expression a[slice(1, 5, 3)] = b; has the effect of assigning the elements of b to a slice of the elements in a.For the slice shown, the elements selected from a are 1, 4, . . . , 13. —end example]
28.6.5.2 Assignment [slice.arr.assign]

void operator=(const valarray<T>&) const;
const slice_array& operator=(const slice_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array elements toselected elements of the valarray<T> object to which the slice_array object refers.
28.6.5.3 Compound assignment [slice.arr.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements of theargument array and selected elements of the valarray<T> object to which the slice_array object refers.
28.6.5.4 Fill function [slice.arr.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T>object to which the slice_array object refers.
28.6.6 The gslice class [class.gslice]
28.6.6.1 Overview [class.gslice.overview]
namespace std {

class gslice {
public:
gslice();
gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

§ 28.6.6.1 1311

© ISO/IEC N4910

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

};
}

1 This class represents a generalized slice out of an array. A gslice is defined by a starting offset (s), a set of lengths (lj),and a set of strides (dj). The number of lengths shall equal the number of strides.
2 A gslice represents a mapping from a set of indices (ij), equal in number to the number of strides, to a single index k.It is useful for building multidimensional array classes using the valarray template, which is one-dimensional. The setof one-dimensional index values specified by a gslice are

k = s+
∑
j

ijdj

where the multidimensional indices ij range in value from 0 to lij − 1.
3 [Example 1: The gslice specification

start = 3
length = {2, 4, 3}
stride = {19, 4, 1}

yields the sequence of one-dimensional indices
k = 3 + (0, 1)× 19 + (0, 1, 2, 3)× 4 + (0, 1, 2)× 1

which are ordered as shown in the following table:
(i0, i1, i2, k) =

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 7),
(0, 1, 1, 8),
(0, 1, 2, 9),
(0, 2, 0, 11),
(0, 2, 1, 12),
(0, 2, 2, 13),
(0, 3, 0, 15),
(0, 3, 1, 16),
(0, 3, 2, 17),
(1, 0, 0, 22),
(1, 0, 1, 23),
. . .
(1, 3, 2, 36)

That is, the highest-ordered index turns fastest. —end example]
4 It is possible to have degenerate generalized slices in which an address is repeated.
5 [Example 2: If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements of the resulting sequenceof indices will be

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 4),
(0, 1, 1, 5),
(0, 1, 2, 6),
. . .

—end example]
6 If a degenerate slice is used as the argument to the non-const version of operator[](const gslice&), the behavior isundefined.

§ 28.6.6.1 1312

© ISO/IEC N4910

28.6.6.2 Constructors [gslice.cons]

gslice();
gslice(size_t start, const valarray<size_t>& lengths,

const valarray<size_t>& strides);
gslice(const gslice&);

1 The default constructor is equivalent to gslice(0, valarray<size_t>(), valarray<size_t>()). The con-structor with arguments builds a gslice based on a specification of start, lengths, and strides, as explained in theprevious subclause.
28.6.6.3 Access functions [gslice.access]

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

1 Returns: The representation of the start, lengths, or strides specified for the gslice.
2 Complexity: start() is constant time. size() and stride() are linear in the number of strides.
28.6.7 Class template gslice_array [template.gslice.array]
28.6.7.1 Overview [template.gslice.array.overview]
namespace std {

template<class T> class gslice_array {
public:
using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

gslice_array(const gslice_array&);
~gslice_array();
const gslice_array& operator=(const gslice_array&) const;
void operator=(const T&) const;

gslice_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the gslice subscript operator
gslice_array<T> valarray<T>::operator[](const gslice&);

2 It has reference semantics to a subset of an array specified by a gslice object. Thus, the expression a[gslice(1,
length, stride)] = b has the effect of assigning the elements of b to a generalized slice of the elements in a.
28.6.7.2 Assignment [gslice.array.assign]

void operator=(const valarray<T>&) const;
const gslice_array& operator=(const gslice_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array elements toselected elements of the valarray<T> object to which the gslice_array refers.

§ 28.6.7.2 1313

© ISO/IEC N4910

28.6.7.3 Compound assignment [gslice.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements of theargument array and selected elements of the valarray<T> object to which the gslice_array object refers.
28.6.7.4 Fill function [gslice.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T>object to which the gslice_array object refers.
28.6.8 Class template mask_array [template.mask.array]
28.6.8.1 Overview [template.mask.array.overview]
namespace std {

template<class T> class mask_array {
public:
using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

mask_array(const mask_array&);
~mask_array();
const mask_array& operator=(const mask_array&) const;
void operator=(const T&) const;

mask_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the mask subscript operator:
mask_array<T> valarray<T>::operator[](const valarray<bool>&).

2 It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression a[mask] = b; hasthe effect of assigning the elements of b to the masked elements in a (those for which the corresponding element in
mask is true).
28.6.8.2 Assignment [mask.array.assign]

void operator=(const valarray<T>&) const;
const mask_array& operator=(const mask_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array elements toselected elements of the valarray<T> object to which the mask_array object refers.
§ 28.6.8.2 1314

© ISO/IEC N4910

28.6.8.3 Compound assignment [mask.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements of theargument array and selected elements of the valarray<T> object to which the mask_array object refers.
28.6.8.4 Fill function [mask.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T>object to which the mask_array object refers.
28.6.9 Class template indirect_array [template.indirect.array]
28.6.9.1 Overview [template.indirect.array.overview]
namespace std {

template<class T> class indirect_array {
public:
using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

indirect_array(const indirect_array&);
~indirect_array();
const indirect_array& operator=(const indirect_array&) const;
void operator=(const T&) const;

indirect_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the indirect subscript operator
indirect_array<T> valarray<T>::operator[](const valarray<size_t>&).

2 It has reference semantics to a subset of an array specified by an indirect_array. Thus, the expression a[indirect]
= b; has the effect of assigning the elements of b to the elements in a whose indices appear in indirect.
28.6.9.2 Assignment [indirect.array.assign]

void operator=(const valarray<T>&) const;
const indirect_array& operator=(const indirect_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array elements toselected elements of the valarray<T> object to which it refers.

§ 28.6.9.2 1315

© ISO/IEC N4910

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than once, thebehavior is undefined.
3 [Example 1:

int addr[] = {2, 3, 1, 4, 4};
valarray<size_t> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
a[indirect] = b;

results in undefined behavior since element 4 is specified twice in the indirection. —end example]
28.6.9.3 Compound assignment [indirect.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements of theargument array and selected elements of the valarray<T> object to which the indirect_array object refers.
2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than once, thebehavior is undefined.
28.6.9.4 Fill function [indirect.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T>object to which the indirect_array object refers.
28.6.10 valarray range access [valarray.range]

1 In the begin and end function templates that follow, unspecified1 is a type that meets the requirements of a mutableCpp17RandomAccessIterator (25.3.5.7) and models contiguous_iterator (25.3.4.14), whose value_type is thetemplate parameter T and whose reference type is T&. unspecified2 is a type that meets the requirements of a constantCpp17RandomAccessIterator and models contiguous_iterator, whose value_type is the template parameter T andwhose reference type is const T&.
2 The iterators returned by begin and end for an array are guaranteed to be valid until the member function resize(size_t,

T) (28.6.2.8) is called for that array or until the lifetime of that array ends, whichever happens first.
template<class T> unspecified1 begin(valarray<T>& v);
template<class T> unspecified2 begin(const valarray<T>& v);

3 Returns: An iterator referencing the first value in the array.
template<class T> unspecified1 end(valarray<T>& v);
template<class T> unspecified2 end(const valarray<T>& v);

4 Returns: An iterator referencing one past the last value in the array.
28.7 Mathematical functions for floating-point types [c.math]
28.7.1 Header <cmath> synopsis [cmath.syn]
namespace std {

using float_t = see below;
using double_t = see below;

}

§ 28.7.1 1316

© ISO/IEC N4910

#define HUGE_VAL see below
#define HUGE_VALF see below
#define HUGE_VALL see below
#define INFINITY see below
#define NAN see below
#define FP_INFINITE see below
#define FP_NAN see below
#define FP_NORMAL see below
#define FP_SUBNORMAL see below
#define FP_ZERO see below
#define FP_FAST_FMA see below
#define FP_FAST_FMAF see below
#define FP_FAST_FMAL see below
#define FP_ILOGB0 see below
#define FP_ILOGBNAN see below
#define MATH_ERRNO see below
#define MATH_ERREXCEPT see below

#define math_errhandling see below

namespace std {
float acos(float x); // see 16.2
double acos(double x);
long double acos(long double x); // see 16.2
float acosf(float x);
long double acosl(long double x);

float asin(float x); // see 16.2
double asin(double x);
long double asin(long double x); // see 16.2
float asinf(float x);
long double asinl(long double x);

float atan(float x); // see 16.2
double atan(double x);
long double atan(long double x); // see 16.2
float atanf(float x);
long double atanl(long double x);

float atan2(float y, float x); // see 16.2
double atan2(double y, double x);
long double atan2(long double y, long double x); // see 16.2
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

float cos(float x); // see 16.2
double cos(double x);
long double cos(long double x); // see 16.2
float cosf(float x);
long double cosl(long double x);

float sin(float x); // see 16.2
double sin(double x);
long double sin(long double x); // see 16.2
float sinf(float x);
long double sinl(long double x);

float tan(float x); // see 16.2
double tan(double x);
long double tan(long double x); // see 16.2
float tanf(float x);
long double tanl(long double x);

§ 28.7.1 1317

© ISO/IEC N4910

float acosh(float x); // see 16.2
double acosh(double x);
long double acosh(long double x); // see 16.2
float acoshf(float x);
long double acoshl(long double x);

float asinh(float x); // see 16.2
double asinh(double x);
long double asinh(long double x); // see 16.2
float asinhf(float x);
long double asinhl(long double x);

float atanh(float x); // see 16.2
double atanh(double x);
long double atanh(long double x); // see 16.2
float atanhf(float x);
long double atanhl(long double x);

float cosh(float x); // see 16.2
double cosh(double x);
long double cosh(long double x); // see 16.2
float coshf(float x);
long double coshl(long double x);

float sinh(float x); // see 16.2
double sinh(double x);
long double sinh(long double x); // see 16.2
float sinhf(float x);
long double sinhl(long double x);

float tanh(float x); // see 16.2
double tanh(double x);
long double tanh(long double x); // see 16.2
float tanhf(float x);
long double tanhl(long double x);

float exp(float x); // see 16.2
double exp(double x);
long double exp(long double x); // see 16.2
float expf(float x);
long double expl(long double x);

float exp2(float x); // see 16.2
double exp2(double x);
long double exp2(long double x); // see 16.2
float exp2f(float x);
long double exp2l(long double x);

float expm1(float x); // see 16.2
double expm1(double x);
long double expm1(long double x); // see 16.2
float expm1f(float x);
long double expm1l(long double x);

constexpr float frexp(float value, int* exp); // see 16.2
constexpr double frexp(double value, int* exp);
constexpr long double frexp(long double value, int* exp); // see 16.2
constexpr float frexpf(float value, int* exp);
constexpr long double frexpl(long double value, int* exp);

constexpr int ilogb(float x); // see 16.2
constexpr int ilogb(double x);
constexpr int ilogb(long double x); // see 16.2
constexpr int ilogbf(float x);

§ 28.7.1 1318

© ISO/IEC N4910

constexpr int ilogbl(long double x);

constexpr float ldexp(float x, int exp); // see 16.2
constexpr double ldexp(double x, int exp);
constexpr long double ldexp(long double x, int exp); // see 16.2
constexpr float ldexpf(float x, int exp);
constexpr long double ldexpl(long double x, int exp);

float log(float x); // see 16.2
double log(double x);
long double log(long double x); // see 16.2
float logf(float x);
long double logl(long double x);

float log10(float x); // see 16.2
double log10(double x);
long double log10(long double x); // see 16.2
float log10f(float x);
long double log10l(long double x);

float log1p(float x); // see 16.2
double log1p(double x);
long double log1p(long double x); // see 16.2
float log1pf(float x);
long double log1pl(long double x);

float log2(float x); // see 16.2
double log2(double x);
long double log2(long double x); // see 16.2
float log2f(float x);
long double log2l(long double x);

constexpr float logb(float x); // see 16.2
constexpr double logb(double x);
constexpr long double logb(long double x); // see 16.2
constexpr float logbf(float x);
constexpr long double logbl(long double x);

constexpr float modf(float value, float* iptr); // see 16.2
constexpr double modf(double value, double* iptr);
constexpr long double modf(long double value, long double* iptr); // see 16.2
constexpr float modff(float value, float* iptr);
constexpr long double modfl(long double value, long double* iptr);

constexpr float scalbn(float x, int n); // see 16.2
constexpr double scalbn(double x, int n);
constexpr long double scalbn(long double x, int n); // see 16.2
constexpr float scalbnf(float x, int n);
constexpr long double scalbnl(long double x, int n);

constexpr float scalbln(float x, long int n); // see 16.2
constexpr double scalbln(double x, long int n);
constexpr long double scalbln(long double x, long int n); // see 16.2
constexpr float scalblnf(float x, long int n);
constexpr long double scalblnl(long double x, long int n);

float cbrt(float x); // see 16.2
double cbrt(double x);
long double cbrt(long double x); // see 16.2
float cbrtf(float x);
long double cbrtl(long double x);

// 28.7.2, absolute values
constexpr int abs(int j);

§ 28.7.1 1319

© ISO/IEC N4910

constexpr long int abs(long int j);
constexpr long long int abs(long long int j);
constexpr float abs(float j);
constexpr double abs(double j);
constexpr long double abs(long double j);

constexpr float fabs(float x); // see 16.2
constexpr double fabs(double x);
constexpr long double fabs(long double x); // see 16.2
constexpr float fabsf(float x);
constexpr long double fabsl(long double x);

float hypot(float x, float y); // see 16.2
double hypot(double x, double y);
long double hypot(long double x, long double y); // see 16.2
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

// 28.7.3, three-dimensional hypotenuse
float hypot(float x, float y, float z);
double hypot(double x, double y, double z);
long double hypot(long double x, long double y, long double z);

float pow(float x, float y); // see 16.2
double pow(double x, double y);
long double pow(long double x, long double y); // see 16.2
float powf(float x, float y);
long double powl(long double x, long double y);

float sqrt(float x); // see 16.2
double sqrt(double x);
long double sqrt(long double x); // see 16.2
float sqrtf(float x);
long double sqrtl(long double x);

float erf(float x); // see 16.2
double erf(double x);
long double erf(long double x); // see 16.2
float erff(float x);
long double erfl(long double x);

float erfc(float x); // see 16.2
double erfc(double x);
long double erfc(long double x); // see 16.2
float erfcf(float x);
long double erfcl(long double x);

float lgamma(float x); // see 16.2
double lgamma(double x);
long double lgamma(long double x); // see 16.2
float lgammaf(float x);
long double lgammal(long double x);

float tgamma(float x); // see 16.2
double tgamma(double x);
long double tgamma(long double x); // see 16.2
float tgammaf(float x);
long double tgammal(long double x);

constexpr float ceil(float x); // see 16.2
constexpr double ceil(double x);
constexpr long double ceil(long double x); // see 16.2
constexpr float ceilf(float x);
constexpr long double ceill(long double x);

§ 28.7.1 1320

© ISO/IEC N4910

constexpr float floor(float x); // see 16.2
constexpr double floor(double x);
constexpr long double floor(long double x); // see 16.2
constexpr float floorf(float x);
constexpr long double floorl(long double x);

float nearbyint(float x); // see 16.2
double nearbyint(double x);
long double nearbyint(long double x); // see 16.2
float nearbyintf(float x);
long double nearbyintl(long double x);

float rint(float x); // see 16.2
double rint(double x);
long double rint(long double x); // see 16.2
float rintf(float x);
long double rintl(long double x);

long int lrint(float x); // see 16.2
long int lrint(double x);
long int lrint(long double x); // see 16.2
long int lrintf(float x);
long int lrintl(long double x);

long long int llrint(float x); // see 16.2
long long int llrint(double x);
long long int llrint(long double x); // see 16.2
long long int llrintf(float x);
long long int llrintl(long double x);

constexpr float round(float x); // see 16.2
constexpr double round(double x);
constexpr long double round(long double x); // see 16.2
constexpr float roundf(float x);
constexpr long double roundl(long double x);

constexpr long int lround(float x); // see 16.2
constexpr long int lround(double x);
constexpr long int lround(long double x); // see 16.2
constexpr long int lroundf(float x);
constexpr long int lroundl(long double x);

constexpr long long int llround(float x); // see 16.2
constexpr long long int llround(double x);
constexpr long long int llround(long double x); // see 16.2
constexpr long long int llroundf(float x);
constexpr long long int llroundl(long double x);

constexpr float trunc(float x); // see 16.2
constexpr double trunc(double x);
constexpr long double trunc(long double x); // see 16.2
constexpr float truncf(float x);
constexpr long double truncl(long double x);

constexpr float fmod(float x, float y); // see 16.2
constexpr double fmod(double x, double y);
constexpr long double fmod(long double x, long double y); // see 16.2
constexpr float fmodf(float x, float y);
constexpr long double fmodl(long double x, long double y);

constexpr float remainder(float x, float y); // see 16.2
constexpr double remainder(double x, double y);
constexpr long double remainder(long double x, long double y); // see 16.2
constexpr float remainderf(float x, float y);

§ 28.7.1 1321

© ISO/IEC N4910

constexpr long double remainderl(long double x, long double y);

constexpr float remquo(float x, float y, int* quo); // see 16.2
constexpr double remquo(double x, double y, int* quo);
constexpr long double remquo(long double x, long double y, int* quo); // see 16.2
constexpr float remquof(float x, float y, int* quo);
constexpr long double remquol(long double x, long double y, int* quo);

constexpr float copysign(float x, float y); // see 16.2
constexpr double copysign(double x, double y);
constexpr long double copysign(long double x, long double y); // see 16.2
constexpr float copysignf(float x, float y);
constexpr long double copysignl(long double x, long double y);

double nan(const char* tagp);
float nanf(const char* tagp);
long double nanl(const char* tagp);

constexpr float nextafter(float x, float y); // see 16.2
constexpr double nextafter(double x, double y);
constexpr long double nextafter(long double x, long double y); // see 16.2
constexpr float nextafterf(float x, float y);
constexpr long double nextafterl(long double x, long double y);

constexpr float nexttoward(float x, long double y); // see 16.2
constexpr double nexttoward(double x, long double y);
constexpr long double nexttoward(long double x, long double y); // see 16.2
constexpr float nexttowardf(float x, long double y);
constexpr long double nexttowardl(long double x, long double y);

constexpr float fdim(float x, float y); // see 16.2
constexpr double fdim(double x, double y);
constexpr long double fdim(long double x, long double y); // see 16.2
constexpr float fdimf(float x, float y);
constexpr long double fdiml(long double x, long double y);

constexpr float fmax(float x, float y); // see 16.2
constexpr double fmax(double x, double y);
constexpr long double fmax(long double x, long double y); // see 16.2
constexpr float fmaxf(float x, float y);
constexpr long double fmaxl(long double x, long double y);

constexpr float fmin(float x, float y); // see 16.2
constexpr double fmin(double x, double y);
constexpr long double fmin(long double x, long double y); // see 16.2
constexpr float fminf(float x, float y);
constexpr long double fminl(long double x, long double y);

constexpr float fma(float x, float y, float z); // see 16.2
constexpr double fma(double x, double y, double z);
constexpr long double fma(long double x, long double y, long double z); // see 16.2
constexpr float fmaf(float x, float y, float z);
constexpr long double fmal(long double x, long double y, long double z);

// 28.7.4, linear interpolation
constexpr float lerp(float a, float b, float t) noexcept;
constexpr double lerp(double a, double b, double t) noexcept;
constexpr long double lerp(long double a, long double b, long double t) noexcept;

// 28.7.5, classification / comparison functions
constexpr int fpclassify(float x);
constexpr int fpclassify(double x);
constexpr int fpclassify(long double x);

§ 28.7.1 1322

© ISO/IEC N4910

constexpr bool isfinite(float x);
constexpr bool isfinite(double x);
constexpr bool isfinite(long double x);

constexpr bool isinf(float x);
constexpr bool isinf(double x);
constexpr bool isinf(long double x);

constexpr bool isnan(float x);
constexpr bool isnan(double x);
constexpr bool isnan(long double x);

constexpr bool isnormal(float x);
constexpr bool isnormal(double x);
constexpr bool isnormal(long double x);

constexpr bool signbit(float x);
constexpr bool signbit(double x);
constexpr bool signbit(long double x);

constexpr bool isgreater(float x, float y);
constexpr bool isgreater(double x, double y);
constexpr bool isgreater(long double x, long double y);

constexpr bool isgreaterequal(float x, float y);
constexpr bool isgreaterequal(double x, double y);
constexpr bool isgreaterequal(long double x, long double y);

constexpr bool isless(float x, float y);
constexpr bool isless(double x, double y);
constexpr bool isless(long double x, long double y);

constexpr bool islessequal(float x, float y);
constexpr bool islessequal(double x, double y);
constexpr bool islessequal(long double x, long double y);

constexpr bool islessgreater(float x, float y);
constexpr bool islessgreater(double x, double y);
constexpr bool islessgreater(long double x, long double y);

constexpr bool isunordered(float x, float y);
constexpr bool isunordered(double x, double y);
constexpr bool isunordered(long double x, long double y);

// 28.7.6, mathematical special functions
// 28.7.6.2, associated Laguerre polynomials
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// 28.7.6.3, associated Legendre functions
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// 28.7.6.4, beta function
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// 28.7.6.5, complete elliptic integral of the first kind
double comp_ellint_1(double k);
float comp_ellint_1f(float k);

§ 28.7.1 1323

© ISO/IEC N4910

long double comp_ellint_1l(long double k);

// 28.7.6.6, complete elliptic integral of the second kind
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// 28.7.6.7, complete elliptic integral of the third kind
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// 28.7.6.8, regular modified cylindrical Bessel functions
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// 28.7.6.9, cylindrical Bessel functions of the first kind
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// 28.7.6.10, irregular modified cylindrical Bessel functions
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// 28.7.6.11, cylindrical Neumann functions;// cylindrical Bessel functions of the second kind
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// 28.7.6.12, incomplete elliptic integral of the first kind
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

// 28.7.6.13, incomplete elliptic integral of the second kind
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

// 28.7.6.14, incomplete elliptic integral of the third kind
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

// 28.7.6.15, exponential integral
double expint(double x);
float expintf(float x);
long double expintl(long double x);

// 28.7.6.16, Hermite polynomials
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

// 28.7.6.17, Laguerre polynomials
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

§ 28.7.1 1324

© ISO/IEC N4910

// 28.7.6.18, Legendre polynomials
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

// 28.7.6.19, Riemann zeta function
double riemann_zeta(double x);
float riemann_zetaf(float x);
long double riemann_zetal(long double x);

// 28.7.6.20, spherical Bessel functions of the first kind
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

// 28.7.6.21, spherical associated Legendre functions
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

// 28.7.6.22, spherical Neumann functions;// spherical Bessel functions of the second kind
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

}

1 The contents andmeaning of the header <cmath> are the same as the C standard library header <math.h>, with the additionof a three-dimensional hypotenuse function (28.7.3), a linear interpolation function (28.7.4), and the mathematicalspecial functions described in 28.7.6.
[Note 1: Several functions have additional overloads in this document, but they have the same behavior as in the C standardlibrary (16.2). —end note]

2 For each set of overloaded functions within <cmath>, with the exception of abs, there shall be additional overloadssufficient to ensure:
—(2.1) If any argument of arithmetic type corresponding to a double parameter has type long double, then all argumentsof arithmetic type (6.8.2) corresponding to double parameters are effectively cast to long double.
—(2.2) Otherwise, if any argument of arithmetic type corresponding to a double parameter has type double or an integertype, then all arguments of arithmetic type corresponding to double parameters are effectively cast to double.
—(2.3) [Note 2: Otherwise, all arguments of arithmetic type corresponding to double parameters have type float. —end note]

[Note 3: abs is exempted from these rules in order to stay compatible with C. —end note]
See also: ISO C 7.12
28.7.2 Absolute values [c.math.abs]

1 [Note 1: The headers <cstdlib> (17.2.2) and <cmath> (28.7.1) declare the functions described in this subclause. —end note]
constexpr int abs(int j);
constexpr long int abs(long int j);
constexpr long long int abs(long long int j);
constexpr float abs(float j);
constexpr double abs(double j);
constexpr long double abs(long double j);

2 Effects: The abs functions have the semantics specified in the C standard library for the functions abs, labs,
llabs, fabsf, fabs, and fabsl.

3 Remarks: If abs() is called with an argument of type X for which is_unsigned_v<X> is true and if X cannot beconverted to int by integral promotion (7.3.7), the program is ill-formed.
[Note 2: Arguments that can be promoted to int are permitted for compatibility with C. —end note]

See also: ISO C 7.12.7.2, 7.22.6.1

§ 28.7.2 1325

© ISO/IEC N4910

28.7.3 Three-dimensional hypotenuse [c.math.hypot3]

float hypot(float x, float y, float z);
double hypot(double x, double y, double z);
long double hypot(long double x, long double y, long double z);

1 Returns:√x2 + y2 + z2.
28.7.4 Linear interpolation [c.math.lerp]

constexpr float lerp(float a, float b, float t) noexcept;
constexpr double lerp(double a, double b, double t) noexcept;
constexpr long double lerp(long double a, long double b, long double t) noexcept;

1 Returns: a+ t(b− a).
2 Remarks: Let r be the value returned. If isfinite(a) && isfinite(b), then:

—(2.1) If t == 0, then r == a.
—(2.2) If t == 1, then r == b.
—(2.3) If t >= 0 && t <= 1, then isfinite(r).
—(2.4) If isfinite(t) && a == b, then r == a.
—(2.5) If isfinite(t) || !isnan(t) && b-a != 0, then !isnan(r).
Let CMP(x,y) be 1 if x > y, -1 if x < y, and 0 otherwise. For any t1 and t2, the product of CMP(lerp(a, b,
t2), lerp(a, b, t1)), CMP(t2, t1), and CMP(b, a) is non-negative.

28.7.5 Classification / comparison functions [c.math.fpclass]
1 The classification / comparison functions behave the same as the C macros with the corresponding names defined in theC standard library. Each function is overloaded for the three floating-point types.
See also: ISO C 7.12.3, 7.12.4
28.7.6 Mathematical special functions [sf.cmath]
28.7.6.1 General [sf.cmath.general]

1 If any argument value to any of the functions specified in 28.7.6 is a NaN (Not a Number), the function shall return aNaN but it shall not report a domain error. Otherwise, the function shall report a domain error for just those argumentvalues for which:
—(1.1) the function description’s Returns: element explicitly specifies a domain and those argument values fall outsidethe specified domain, or
—(1.2) the corresponding mathematical function value has a nonzero imaginary component, or
—(1.3) the corresponding mathematical function is not mathematically defined.244

2 Unless otherwise specified, each function is defined for all finite values, for negative infinity, and for positive infinity.
28.7.6.2 Associated Laguerre polynomials [sf.cmath.assoc.laguerre]

double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

1 Effects: These functions compute the associated Laguerre polynomials of their respective arguments n, m, and x.
2 Returns:

Lmn (x) = (−1)m
dm

dxm
Ln+m(x) , for x ≥ 0,

where n is n,m is m, and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128 or if m >= 128.

244)A mathematical function is mathematically defined for a given set of argument values (a) if it is explicitly defined for that set of argumentvalues, or (b) if its limiting value exists and does not depend on the direction of approach.
§ 28.7.6.2 1326

© ISO/IEC N4910

28.7.6.3 Associated Legendre functions [sf.cmath.assoc.legendre]

double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

1 Effects: These functions compute the associated Legendre functions of their respective arguments l, m, and x.
2 Returns:

Pm` (x) = (1− x2)m/2
dm

dxm
P`(x) , for |x| ≤ 1,

where l is l,m is m, and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.
28.7.6.4 Beta function [sf.cmath.beta]

double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

1 Effects: These functions compute the beta function of their respective arguments x and y.
2 Returns:

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
, for x > 0, y > 0,

where x is x and y is y.
28.7.6.5 Complete elliptic integral of the first kind [sf.cmath.comp.ellint.1]

double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

1 Effects: These functions compute the complete elliptic integral of the first kind of their respective arguments k.
2 Returns:

K(k) = F(k, π/2) , for |k| ≤ 1,
where k is k.

3 See also 28.7.6.12.
28.7.6.6 Complete elliptic integral of the second kind [sf.cmath.comp.ellint.2]

double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

1 Effects: These functions compute the complete elliptic integral of the second kind of their respective arguments k.
2 Returns:

E(k) = E(k, π/2) , for |k| ≤ 1,
where k is k.

3 See also 28.7.6.13.
28.7.6.7 Complete elliptic integral of the third kind [sf.cmath.comp.ellint.3]

double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

1 Effects: These functions compute the complete elliptic integral of the third kind of their respective arguments kand nu.
2 Returns:

Π(ν, k) = Π(ν, k, π/2) , for |k| ≤ 1,
where k is k and ν is nu.

3 See also 28.7.6.14.
§ 28.7.6.7 1327

© ISO/IEC N4910

28.7.6.8 Regular modified cylindrical Bessel functions [sf.cmath.cyl.bessel.i]

double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

1 Effects: These functions compute the regular modified cylindrical Bessel functions of their respective arguments
nu and x.

2 Returns:
Iν(x) = i−νJν(ix) =

∞∑
k=0

(x/2)ν+2k

k! Γ(ν + k + 1)
, for x ≥ 0,

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
4 See also 28.7.6.9.
28.7.6.9 Cylindrical Bessel functions of the first kind [sf.cmath.cyl.bessel.j]

double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

1 Effects: These functions compute the cylindrical Bessel functions of the first kind of their respective arguments
nu and x.

2 Returns:
Jν(x) =

∞∑
k=0

(−1)k(x/2)ν+2k

k! Γ(ν + k + 1)
, for x ≥ 0,

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
28.7.6.10 Irregular modified cylindrical Bessel functions [sf.cmath.cyl.bessel.k]

double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

1 Effects: These functions compute the irregular modified cylindrical Bessel functions of their respective arguments
nu and x.

2 Returns:

Kν(x) = (π/2)iν+1(Jν(ix) + iNν(ix)) =

π

2

I−ν(x)− Iν(x)

sin νπ
, for x ≥ 0 and non-integral ν

π

2
lim
µ→ν

I−µ(x)− Iµ(x)

sinµπ
, for x ≥ 0 and integral ν

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
4 See also 28.7.6.8, 28.7.6.9, 28.7.6.11.
28.7.6.11 Cylindrical Neumann functions [sf.cmath.cyl.neumann]

double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

1 Effects: These functions compute the cylindrical Neumann functions, also known as the cylindrical Besselfunctions of the second kind, of their respective arguments nu and x.

§ 28.7.6.11 1328

© ISO/IEC N4910

2 Returns:
Nν(x) =

Jν(x) cos νπ − J−ν(x)

sin νπ
, for x ≥ 0 and non-integral ν

lim
µ→ν

Jµ(x) cosµπ − J−µ(x)

sinµπ
, for x ≥ 0 and integral ν

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
4 See also 28.7.6.9.
28.7.6.12 Incomplete elliptic integral of the first kind [sf.cmath.ellint.1]

double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

1 Effects: These functions compute the incomplete elliptic integral of the first kind of their respective arguments kand phi (phi measured in radians).
2 Returns:

F(k, φ) =

∫ φ

0

dθ√
1− k2 sin2 θ

, for |k| ≤ 1,
where k is k and φ is phi.

28.7.6.13 Incomplete elliptic integral of the second kind [sf.cmath.ellint.2]

double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

1 Effects: These functions compute the incomplete elliptic integral of the second kind of their respective arguments
k and phi (phi measured in radians).

2 Returns:
E(k, φ) =

∫ φ

0

√
1− k2 sin2 θ dθ , for |k| ≤ 1,

where k is k and φ is phi.
28.7.6.14 Incomplete elliptic integral of the third kind [sf.cmath.ellint.3]

double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

1 Effects: These functions compute the incomplete elliptic integral of the third kind of their respective arguments k,
nu, and phi (phi measured in radians).

2 Returns:
Π(ν, k, φ) =

∫ φ

0

dθ

(1− ν sin2 θ)
√

1− k2 sin2 θ
, for |k| ≤ 1,

where ν is nu, k is k, and φ is phi.
28.7.6.15 Exponential integral [sf.cmath.expint]

double expint(double x);
float expintf(float x);
long double expintl(long double x);

1 Effects: These functions compute the exponential integral of their respective arguments x.
2 Returns:

Ei(x) = −
∫ ∞
−x

e−t

t
dt

where x is x.

§ 28.7.6.15 1329

© ISO/IEC N4910

28.7.6.16 Hermite polynomials [sf.cmath.hermite]

double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

1 Effects: These functions compute the Hermite polynomials of their respective arguments n and x.
2 Returns:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

where n is n and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.
28.7.6.17 Laguerre polynomials [sf.cmath.laguerre]

double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

1 Effects: These functions compute the Laguerre polynomials of their respective arguments n and x.
2 Returns:

Ln(x) =
ex

n!

dn

dxn
(xne−x) , for x ≥ 0,

where n is n and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.
28.7.6.18 Legendre polynomials [sf.cmath.legendre]

double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

1 Effects: These functions compute the Legendre polynomials of their respective arguments l and x.
2 Returns:

P`(x) =
1

2` `!

d`

dx`
(x2 − 1)` , for |x| ≤ 1,

where l is l and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.
28.7.6.19 Riemann zeta function [sf.cmath.riemann.zeta]

double riemann_zeta(double x);
float riemann_zetaf(float x);
long double riemann_zetal(long double x);

1 Effects: These functions compute the Riemann zeta function of their respective arguments x.
2 Returns:

ζ(x) =

∞∑
k=1

k−x, for x > 1

1

1− 21−x

∞∑
k=1

(−1)k−1k−x, for 0 ≤ x ≤ 1

2xπx−1 sin(
πx

2
) Γ(1− x) ζ(1− x), for x < 0

where x is x.

§ 28.7.6.19 1330

© ISO/IEC N4910

28.7.6.20 Spherical Bessel functions of the first kind [sf.cmath.sph.bessel]

double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

1 Effects: These functions compute the spherical Bessel functions of the first kind of their respective arguments nand x.
2 Returns:

jn(x) = (π/2x)1/2Jn+1/2(x) , for x ≥ 0,
where n is n and x is x.

3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.
4 See also 28.7.6.9.
28.7.6.21 Spherical associated Legendre functions [sf.cmath.sph.legendre]

double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

1 Effects: These functions compute the spherical associated Legendre functions of their respective arguments l, m,and theta (theta measured in radians).
2 Returns:

Ym` (θ, 0)

where
Ym` (θ, φ) = (−1)m

[
(2`+ 1)

4π

(`−m)!

(`+m)!

]1/2
Pm` (cos θ)eimφ , for |m| ≤ `,

and l is l,m is m, and θ is theta.
3 Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.
4 See also 28.7.6.3.
28.7.6.22 Spherical Neumann functions [sf.cmath.sph.neumann]

double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

1 Effects: These functions compute the spherical Neumann functions, also known as the spherical Bessel functionsof the second kind, of their respective arguments n and x.
2 Returns:

nn(x) = (π/2x)1/2Nn+1/2(x) , for x ≥ 0,
where n is n and x is x.

3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.
4 See also 28.7.6.11.
28.8 Numbers [numbers]
28.8.1 Header <numbers> synopsis [numbers.syn]
namespace std::numbers {

template<class T> inline constexpr T e_v = unspecified;
template<class T> inline constexpr T log2e_v = unspecified;
template<class T> inline constexpr T log10e_v = unspecified;
template<class T> inline constexpr T pi_v = unspecified;
template<class T> inline constexpr T inv_pi_v = unspecified;
template<class T> inline constexpr T inv_sqrtpi_v = unspecified;
template<class T> inline constexpr T ln2_v = unspecified;
template<class T> inline constexpr T ln10_v = unspecified;
template<class T> inline constexpr T sqrt2_v = unspecified;
template<class T> inline constexpr T sqrt3_v = unspecified;

§ 28.8.1 1331

© ISO/IEC N4910

template<class T> inline constexpr T inv_sqrt3_v = unspecified;
template<class T> inline constexpr T egamma_v = unspecified;
template<class T> inline constexpr T phi_v = unspecified;

template<floating_point T> inline constexpr T e_v<T> = see below;
template<floating_point T> inline constexpr T log2e_v<T> = see below;
template<floating_point T> inline constexpr T log10e_v<T> = see below;
template<floating_point T> inline constexpr T pi_v<T> = see below;
template<floating_point T> inline constexpr T inv_pi_v<T> = see below;
template<floating_point T> inline constexpr T inv_sqrtpi_v<T> = see below;
template<floating_point T> inline constexpr T ln2_v<T> = see below;
template<floating_point T> inline constexpr T ln10_v<T> = see below;
template<floating_point T> inline constexpr T sqrt2_v<T> = see below;
template<floating_point T> inline constexpr T sqrt3_v<T> = see below;
template<floating_point T> inline constexpr T inv_sqrt3_v<T> = see below;
template<floating_point T> inline constexpr T egamma_v<T> = see below;
template<floating_point T> inline constexpr T phi_v<T> = see below;

inline constexpr double e = e_v<double>;
inline constexpr double log2e = log2e_v<double>;
inline constexpr double log10e = log10e_v<double>;
inline constexpr double pi = pi_v<double>;
inline constexpr double inv_pi = inv_pi_v<double>;
inline constexpr double inv_sqrtpi = inv_sqrtpi_v<double>;
inline constexpr double ln2 = ln2_v<double>;
inline constexpr double ln10 = ln10_v<double>;
inline constexpr double sqrt2 = sqrt2_v<double>;
inline constexpr double sqrt3 = sqrt3_v<double>;
inline constexpr double inv_sqrt3 = inv_sqrt3_v<double>;
inline constexpr double egamma = egamma_v<double>;
inline constexpr double phi = phi_v<double>;

}

28.8.2 Mathematical constants [math.constants]
1 The library-defined partial specializations of mathematical constant variable templates are initialized with the nearestrepresentable values of e, log2 e, log10 e, π, 1

π , 1√
π
, ln 2, ln 10,√2,√3, 1√

3
, the Euler-Mascheroni γ constant, and the

golden ratio φ constant 1+
√
5

2 , respectively.
2 Pursuant to 16.4.5.2.1, a program may partially or explicitly specialize a mathematical constant variable templateprovided that the specialization depends on a program-defined type.
3 A program that instantiates a primary template of a mathematical constant variable template is ill-formed.

§ 28.8.2 1332

© ISO/IEC N4910

29 Time library [time]
29.1 General [time.general]

1 This Clause describes the chrono library (29.2) and various C functions (29.14) that provide generally useful timeutilities, as summarized in Table 94.
Table 94: Time library summary [tab:time.summary]

Subclause Header
29.3 Cpp17Clock requirements29.4 Time-related traits <chrono>29.5 Class template duration29.6 Class template time_point29.7 Clocks29.8 Civil calendar29.9 Class template hh_mm_ss29.10 12/24 hour functions29.11 Time zones29.12 Formatting29.13 Parsing29.14 C library time utilities <ctime>

2 Let STATICALLY-WIDEN<charT>("...") be "..." if charT is char and L"..." if charT is wchar_t.
29.2 Header <chrono> synopsis [time.syn]
#include <compare> // see 17.11.1
namespace std::chrono {// 29.5, class template duration

template<class Rep, class Period = ratio<1>> class duration;

// 29.6, class template time_point
template<class Clock, class Duration = typename Clock::duration> class time_point;

}

namespace std {// 29.4.3, common_type specializations
template<class Rep1, class Period1, class Rep2, class Period2>

struct common_type<chrono::duration<Rep1, Period1>,
chrono::duration<Rep2, Period2>>;

template<class Clock, class Duration1, class Duration2>
struct common_type<chrono::time_point<Clock, Duration1>,

chrono::time_point<Clock, Duration2>>;
}

namespace std::chrono {// 29.4, customization traits
template<class Rep> struct treat_as_floating_point;
template<class Rep>

inline constexpr bool treat_as_floating_point_v = treat_as_floating_point<Rep>::value;

template<class Rep> struct duration_values;

template<class T> struct is_clock;
template<class T> inline constexpr bool is_clock_v = is_clock<T>::value;

§ 29.2 1333

© ISO/IEC N4910

// 29.5.6, duration arithmetic
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator*(const duration<Rep1, Period>& d, const Rep2& s);
template<class Rep1, class Rep2, class Period>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator*(const Rep1& s, const duration<Rep2, Period>& d);
template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator/(const duration<Rep1, Period>& d, const Rep2& s);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<Rep1, Rep2>

operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator%(const duration<Rep1, Period>& d, const Rep2& s);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

// 29.5.7, duration comparisons
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator< (const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator> (const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>
requires see below
constexpr auto operator<=>(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

// 29.5.8, conversions
template<class ToDuration, class Rep, class Period>
constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

template<class ToDuration, class Rep, class Period>
constexpr ToDuration floor(const duration<Rep, Period>& d);

template<class ToDuration, class Rep, class Period>
constexpr ToDuration ceil(const duration<Rep, Period>& d);

template<class ToDuration, class Rep, class Period>
constexpr ToDuration round(const duration<Rep, Period>& d);

// 29.5.11, duration I/O
template<class charT, class traits, class Rep, class Period>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const duration<Rep, Period>& d);

§ 29.2 1334

© ISO/IEC N4910

template<class charT, class traits, class Rep, class Period, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
duration<Rep, Period>& d,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// convenience typedefs
using nanoseconds = duration<signed integer type of at least 64 bits, nano>;
using microseconds = duration<signed integer type of at least 55 bits, micro>;
using milliseconds = duration<signed integer type of at least 45 bits, milli>;
using seconds = duration<signed integer type of at least 35 bits>;
using minutes = duration<signed integer type of at least 29 bits, ratio< 60>>;
using hours = duration<signed integer type of at least 23 bits, ratio<3600>>;
using days = duration<signed integer type of at least 25 bits,

ratio_multiply<ratio<24>, hours::period>>;
using weeks = duration<signed integer type of at least 22 bits,

ratio_multiply<ratio<7>, days::period>>;
using years = duration<signed integer type of at least 17 bits,

ratio_multiply<ratio<146097, 400>, days::period>>;
using months = duration<signed integer type of at least 20 bits,

ratio_divide<years::period, ratio<12>>>;

// 29.6.6, time_point arithmetic
template<class Clock, class Duration1, class Rep2, class Period2>

constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template<class Rep1, class Period1, class Clock, class Duration2>
constexpr time_point<Clock, common_type_t<duration<Rep1, Period1>, Duration2>>
operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, class Rep2, class Period2>
constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template<class Clock, class Duration1, class Duration2>
constexpr common_type_t<Duration1, Duration2>
operator-(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

// 29.6.7, time_point comparisons
template<class Clock, class Duration1, class Duration2>

constexpr bool operator==(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, class Duration2>
constexpr bool operator< (const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template<class Clock, class Duration1, class Duration2>

constexpr bool operator> (const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, class Duration2>
constexpr bool operator<=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template<class Clock, class Duration1, class Duration2>

constexpr bool operator>=(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, three_way_comparable_with<Duration1> Duration2>
constexpr auto operator<=>(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

// 29.6.8, conversions
template<class ToDuration, class Clock, class Duration>

constexpr time_point<Clock, ToDuration>
time_point_cast(const time_point<Clock, Duration>& t);

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> floor(const time_point<Clock, Duration>& tp);

§ 29.2 1335

© ISO/IEC N4910

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> ceil(const time_point<Clock, Duration>& tp);

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> round(const time_point<Clock, Duration>& tp);

// 29.5.10, specialized algorithms
template<class Rep, class Period>
constexpr duration<Rep, Period> abs(duration<Rep, Period> d);

// 29.7.2, class system_clock
class system_clock;

template<class Duration>
using sys_time = time_point<system_clock, Duration>;

using sys_seconds = sys_time<seconds>;
using sys_days = sys_time<days>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_time<Duration>& tp);

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_days& dp);

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
sys_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.3, class utc_clock
class utc_clock;

template<class Duration>
using utc_time = time_point<utc_clock, Duration>;

using utc_seconds = utc_time<seconds>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const utc_time<Duration>& t);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
utc_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

struct leap_second_info;

template<class Duration>
leap_second_info get_leap_second_info(const utc_time<Duration>& ut);

// 29.7.4, class tai_clock
class tai_clock;

template<class Duration>
using tai_time = time_point<tai_clock, Duration>;

using tai_seconds = tai_time<seconds>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const tai_time<Duration>& t);

§ 29.2 1336

© ISO/IEC N4910

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
tai_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.5, class gps_clock
class gps_clock;

template<class Duration>
using gps_time = time_point<gps_clock, Duration>;

using gps_seconds = gps_time<seconds>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const gps_time<Duration>& t);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
gps_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.6, type file_clock
using file_clock = see below;

template<class Duration>
using file_time = time_point<file_clock, Duration>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const file_time<Duration>& tp);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
file_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.7, class steady_clock
class steady_clock;

// 29.7.8, class high_resolution_clock
class high_resolution_clock;

// 29.7.9, local time
struct local_t {};
template<class Duration>
using local_time = time_point<local_t, Duration>;

using local_seconds = local_time<seconds>;
using local_days = local_time<days>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const local_time<Duration>& tp);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
local_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

§ 29.2 1337

© ISO/IEC N4910

// 29.7.10, time_point conversions
template<class DestClock, class SourceClock>
struct clock_time_conversion;

template<class DestClock, class SourceClock, class Duration>
auto clock_cast(const time_point<SourceClock, Duration>& t);

// 29.8.2, class last_spec
struct last_spec;

// 29.8.3, class day
class day;

constexpr bool operator==(const day& x, const day& y) noexcept;
constexpr strong_ordering operator<=>(const day& x, const day& y) noexcept;

constexpr day operator+(const day& x, const days& y) noexcept;
constexpr day operator+(const days& x, const day& y) noexcept;
constexpr day operator-(const day& x, const days& y) noexcept;
constexpr days operator-(const day& x, const day& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const day& d);
template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
day& d, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.4, class month
class month;

constexpr bool operator==(const month& x, const month& y) noexcept;
constexpr strong_ordering operator<=>(const month& x, const month& y) noexcept;

constexpr month operator+(const month& x, const months& y) noexcept;
constexpr month operator+(const months& x, const month& y) noexcept;
constexpr month operator-(const month& x, const months& y) noexcept;
constexpr months operator-(const month& x, const month& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month& m);
template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
month& m, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.5, class year
class year;

constexpr bool operator==(const year& x, const year& y) noexcept;
constexpr strong_ordering operator<=>(const year& x, const year& y) noexcept;

constexpr year operator+(const year& x, const years& y) noexcept;
constexpr year operator+(const years& x, const year& y) noexcept;
constexpr year operator-(const year& x, const years& y) noexcept;
constexpr years operator-(const year& x, const year& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year& y);

§ 29.2 1338

© ISO/IEC N4910

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year& y, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.6, class weekday
class weekday;

constexpr bool operator==(const weekday& x, const weekday& y) noexcept;

constexpr weekday operator+(const weekday& x, const days& y) noexcept;
constexpr weekday operator+(const days& x, const weekday& y) noexcept;
constexpr weekday operator-(const weekday& x, const days& y) noexcept;
constexpr days operator-(const weekday& x, const weekday& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday& wd);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
weekday& wd, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.7, class weekday_indexed
class weekday_indexed;

constexpr bool operator==(const weekday_indexed& x, const weekday_indexed& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_indexed& wdi);

// 29.8.8, class weekday_last
class weekday_last;

constexpr bool operator==(const weekday_last& x, const weekday_last& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_last& wdl);

// 29.8.9, class month_day
class month_day;

constexpr bool operator==(const month_day& x, const month_day& y) noexcept;
constexpr strong_ordering operator<=>(const month_day& x, const month_day& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_day& md);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
month_day& md, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.10, class month_day_last
class month_day_last;

§ 29.2 1339

© ISO/IEC N4910

constexpr bool operator==(const month_day_last& x, const month_day_last& y) noexcept;
constexpr strong_ordering operator<=>(const month_day_last& x,

const month_day_last& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_day_last& mdl);

// 29.8.11, class month_weekday
class month_weekday;

constexpr bool operator==(const month_weekday& x, const month_weekday& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_weekday& mwd);

// 29.8.12, class month_weekday_last
class month_weekday_last;

constexpr bool operator==(const month_weekday_last& x, const month_weekday_last& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_weekday_last& mwdl);

// 29.8.13, class year_month
class year_month;

constexpr bool operator==(const year_month& x, const year_month& y) noexcept;
constexpr strong_ordering operator<=>(const year_month& x, const year_month& y) noexcept;

constexpr year_month operator+(const year_month& ym, const months& dm) noexcept;
constexpr year_month operator+(const months& dm, const year_month& ym) noexcept;
constexpr year_month operator-(const year_month& ym, const months& dm) noexcept;
constexpr months operator-(const year_month& x, const year_month& y) noexcept;
constexpr year_month operator+(const year_month& ym, const years& dy) noexcept;
constexpr year_month operator+(const years& dy, const year_month& ym) noexcept;
constexpr year_month operator-(const year_month& ym, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month& ym);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year_month& ym, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.14, class year_month_day
class year_month_day;

constexpr bool operator==(const year_month_day& x, const year_month_day& y) noexcept;
constexpr strong_ordering operator<=>(const year_month_day& x,

const year_month_day& y) noexcept;

constexpr year_month_day operator+(const year_month_day& ymd, const months& dm) noexcept;
constexpr year_month_day operator+(const months& dm, const year_month_day& ymd) noexcept;
constexpr year_month_day operator+(const year_month_day& ymd, const years& dy) noexcept;
constexpr year_month_day operator+(const years& dy, const year_month_day& ymd) noexcept;
constexpr year_month_day operator-(const year_month_day& ymd, const months& dm) noexcept;
constexpr year_month_day operator-(const year_month_day& ymd, const years& dy) noexcept;

§ 29.2 1340

© ISO/IEC N4910

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_day& ymd);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year_month_day& ymd,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.15, class year_month_day_last
class year_month_day_last;

constexpr bool operator==(const year_month_day_last& x,
const year_month_day_last& y) noexcept;

constexpr strong_ordering operator<=>(const year_month_day_last& x,
const year_month_day_last& y) noexcept;

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const months& dm) noexcept;

constexpr year_month_day_last
operator+(const months& dm, const year_month_day_last& ymdl) noexcept;

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const years& dy) noexcept;

constexpr year_month_day_last
operator+(const years& dy, const year_month_day_last& ymdl) noexcept;

constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const months& dm) noexcept;

constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_day_last& ymdl);

// 29.8.16, class year_month_weekday
class year_month_weekday;

constexpr bool operator==(const year_month_weekday& x,
const year_month_weekday& y) noexcept;

constexpr year_month_weekday
operator+(const year_month_weekday& ymwd, const months& dm) noexcept;

constexpr year_month_weekday
operator+(const months& dm, const year_month_weekday& ymwd) noexcept;

constexpr year_month_weekday
operator+(const year_month_weekday& ymwd, const years& dy) noexcept;

constexpr year_month_weekday
operator+(const years& dy, const year_month_weekday& ymwd) noexcept;

constexpr year_month_weekday
operator-(const year_month_weekday& ymwd, const months& dm) noexcept;

constexpr year_month_weekday
operator-(const year_month_weekday& ymwd, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_weekday& ymwdi);

// 29.8.17, class year_month_weekday_last
class year_month_weekday_last;

constexpr bool operator==(const year_month_weekday_last& x,
const year_month_weekday_last& y) noexcept;

§ 29.2 1341

© ISO/IEC N4910

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

constexpr year_month_weekday_last
operator+(const months& dm, const year_month_weekday_last& ymwdl) noexcept;

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

constexpr year_month_weekday_last
operator+(const years& dy, const year_month_weekday_last& ymwdl) noexcept;

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_weekday_last& ymwdl);

// 29.8.18, civil calendar conventional syntax operators
constexpr year_month
operator/(const year& y, const month& m) noexcept;

constexpr year_month
operator/(const year& y, int m) noexcept;

constexpr month_day
operator/(const month& m, const day& d) noexcept;

constexpr month_day
operator/(const month& m, int d) noexcept;

constexpr month_day
operator/(int m, const day& d) noexcept;

constexpr month_day
operator/(const day& d, const month& m) noexcept;

constexpr month_day
operator/(const day& d, int m) noexcept;

constexpr month_day_last
operator/(const month& m, last_spec) noexcept;

constexpr month_day_last
operator/(int m, last_spec) noexcept;

constexpr month_day_last
operator/(last_spec, const month& m) noexcept;

constexpr month_day_last
operator/(last_spec, int m) noexcept;

constexpr month_weekday
operator/(const month& m, const weekday_indexed& wdi) noexcept;

constexpr month_weekday
operator/(int m, const weekday_indexed& wdi) noexcept;

constexpr month_weekday
operator/(const weekday_indexed& wdi, const month& m) noexcept;

constexpr month_weekday
operator/(const weekday_indexed& wdi, int m) noexcept;

constexpr month_weekday_last
operator/(const month& m, const weekday_last& wdl) noexcept;

constexpr month_weekday_last
operator/(int m, const weekday_last& wdl) noexcept;

constexpr month_weekday_last
operator/(const weekday_last& wdl, const month& m) noexcept;

constexpr month_weekday_last
operator/(const weekday_last& wdl, int m) noexcept;

constexpr year_month_day
operator/(const year_month& ym, const day& d) noexcept;

constexpr year_month_day
operator/(const year_month& ym, int d) noexcept;

constexpr year_month_day
operator/(const year& y, const month_day& md) noexcept;

constexpr year_month_day
operator/(int y, const month_day& md) noexcept;

§ 29.2 1342

© ISO/IEC N4910

constexpr year_month_day
operator/(const month_day& md, const year& y) noexcept;

constexpr year_month_day
operator/(const month_day& md, int y) noexcept;

constexpr year_month_day_last
operator/(const year_month& ym, last_spec) noexcept;

constexpr year_month_day_last
operator/(const year& y, const month_day_last& mdl) noexcept;

constexpr year_month_day_last
operator/(int y, const month_day_last& mdl) noexcept;

constexpr year_month_day_last
operator/(const month_day_last& mdl, const year& y) noexcept;

constexpr year_month_day_last
operator/(const month_day_last& mdl, int y) noexcept;

constexpr year_month_weekday
operator/(const year_month& ym, const weekday_indexed& wdi) noexcept;

constexpr year_month_weekday
operator/(const year& y, const month_weekday& mwd) noexcept;

constexpr year_month_weekday
operator/(int y, const month_weekday& mwd) noexcept;

constexpr year_month_weekday
operator/(const month_weekday& mwd, const year& y) noexcept;

constexpr year_month_weekday
operator/(const month_weekday& mwd, int y) noexcept;

constexpr year_month_weekday_last
operator/(const year_month& ym, const weekday_last& wdl) noexcept;

constexpr year_month_weekday_last
operator/(const year& y, const month_weekday_last& mwdl) noexcept;

constexpr year_month_weekday_last
operator/(int y, const month_weekday_last& mwdl) noexcept;

constexpr year_month_weekday_last
operator/(const month_weekday_last& mwdl, const year& y) noexcept;

constexpr year_month_weekday_last
operator/(const month_weekday_last& mwdl, int y) noexcept;

// 29.9, class template hh_mm_ss
template<class Duration> class hh_mm_ss;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const hh_mm_ss<Duration>& hms);

// 29.10, 12/24 hour functions
constexpr bool is_am(const hours& h) noexcept;
constexpr bool is_pm(const hours& h) noexcept;
constexpr hours make12(const hours& h) noexcept;
constexpr hours make24(const hours& h, bool is_pm) noexcept;

// 29.11.2, time zone database
struct tzdb;
class tzdb_list;

// 29.11.2.3, time zone database access
const tzdb& get_tzdb();
tzdb_list& get_tzdb_list();
const time_zone* locate_zone(string_view tz_name);
const time_zone* current_zone();

// 29.11.2.4, remote time zone database support
const tzdb& reload_tzdb();
string remote_version();

// 29.11.3, exception classes
class nonexistent_local_time;

§ 29.2 1343

© ISO/IEC N4910

class ambiguous_local_time;

// 29.11.4, information classes
struct sys_info;
template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_info& si);

struct local_info;
template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const local_info& li);

// 29.11.5, class time_zone
enum class choose {earliest, latest};
class time_zone;

bool operator==(const time_zone& x, const time_zone& y) noexcept;
strong_ordering operator<=>(const time_zone& x, const time_zone& y) noexcept;

// 29.11.6, class template zoned_traits
template<class T> struct zoned_traits;

// 29.11.7, class template zoned_time
template<class Duration, class TimeZonePtr = const time_zone*> class zoned_time;

using zoned_seconds = zoned_time<seconds>;

template<class Duration1, class Duration2, class TimeZonePtr>
bool operator==(const zoned_time<Duration1, TimeZonePtr>& x,

const zoned_time<Duration2, TimeZonePtr>& y);

template<class charT, class traits, class Duration, class TimeZonePtr>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const zoned_time<Duration, TimeZonePtr>& t);

// 29.11.8, leap second support
class leap_second;

constexpr bool operator==(const leap_second& x, const leap_second& y);
constexpr strong_ordering operator<=>(const leap_second& x, const leap_second& y);

template<class Duration>
constexpr bool operator==(const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator< (const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator< (const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
constexpr bool operator> (const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator> (const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
constexpr bool operator<=(const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator<=(const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
constexpr bool operator>=(const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator>=(const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
requires three_way_comparable_with<sys_seconds, sys_time<Duration>>
constexpr auto operator<=>(const leap_second& x, const sys_time<Duration>& y);

§ 29.2 1344

© ISO/IEC N4910

// 29.11.9, class time_zone_link
class time_zone_link;

bool operator==(const time_zone_link& x, const time_zone_link& y);
strong_ordering operator<=>(const time_zone_link& x, const time_zone_link& y);

// 29.12, formatting
template<class Duration> struct local-time-format-t; // exposition only
template<class Duration>
local-time-format-t<Duration>

local_time_format(local_time<Duration> time, const string* abbrev = nullptr,
const seconds* offset_sec = nullptr);

}

namespace std {
template<class Rep, class Period, class charT>
struct formatter<chrono::duration<Rep, Period>, charT>;

template<class Duration, class charT>
struct formatter<chrono::sys_time<Duration>, charT>;

template<class Duration, class charT>
struct formatter<chrono::utc_time<Duration>, charT>;

template<class Duration, class charT>
struct formatter<chrono::tai_time<Duration>, charT>;

template<class Duration, class charT>
struct formatter<chrono::gps_time<Duration>, charT>;

template<class Duration, class charT>
struct formatter<chrono::file_time<Duration>, charT>;

template<class Duration, class charT>
struct formatter<chrono::local_time<Duration>, charT>;

template<class Duration, class charT>
struct formatter<chrono::local-time-format-t<Duration>, charT>;

template<class charT> struct formatter<chrono::day, charT>;
template<class charT> struct formatter<chrono::month, charT>;
template<class charT> struct formatter<chrono::year, charT>;
template<class charT> struct formatter<chrono::weekday, charT>;
template<class charT> struct formatter<chrono::weekday_indexed, charT>;
template<class charT> struct formatter<chrono::weekday_last, charT>;
template<class charT> struct formatter<chrono::month_day, charT>;
template<class charT> struct formatter<chrono::month_day_last, charT>;
template<class charT> struct formatter<chrono::month_weekday, charT>;
template<class charT> struct formatter<chrono::month_weekday_last, charT>;
template<class charT> struct formatter<chrono::year_month, charT>;
template<class charT> struct formatter<chrono::year_month_day, charT>;
template<class charT> struct formatter<chrono::year_month_day_last, charT>;
template<class charT> struct formatter<chrono::year_month_weekday, charT>;
template<class charT> struct formatter<chrono::year_month_weekday_last, charT>;
template<class Rep, class Period, class charT>
struct formatter<chrono::hh_mm_ss<duration<Rep, Period>>, charT>;

template<class charT> struct formatter<chrono::sys_info, charT>;
template<class charT> struct formatter<chrono::local_info, charT>;
template<class Duration, class TimeZonePtr, class charT>
struct formatter<chrono::zoned_time<Duration, TimeZonePtr>, charT>;

}

namespace std::chrono {// 29.13, parsing
template<class charT, class Parsable>
unspecified
parse(const charT* fmt, Parsable& tp);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp);

§ 29.2 1345

© ISO/IEC N4910

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev);

template<class charT, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp, minutes& offset);
template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
minutes& offset);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev, minutes& offset);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev, minutes& offset);

// calendrical constants
inline constexpr last_spec last{};

inline constexpr weekday Sunday{0};
inline constexpr weekday Monday{1};
inline constexpr weekday Tuesday{2};
inline constexpr weekday Wednesday{3};
inline constexpr weekday Thursday{4};
inline constexpr weekday Friday{5};
inline constexpr weekday Saturday{6};

inline constexpr month January{1};
inline constexpr month February{2};
inline constexpr month March{3};
inline constexpr month April{4};
inline constexpr month May{5};
inline constexpr month June{6};
inline constexpr month July{7};
inline constexpr month August{8};
inline constexpr month September{9};
inline constexpr month October{10};
inline constexpr month November{11};
inline constexpr month December{12};

}

namespace std::inline literals::inline chrono_literals {// 29.5.9, suffixes for duration literals
constexpr chrono::hours operator""h(unsigned long long);
constexpr chrono::duration<unspecified, ratio<3600, 1>> operator""h(long double);

constexpr chrono::minutes operator""min(unsigned long long);
constexpr chrono::duration<unspecified, ratio<60, 1>> operator""min(long double);

constexpr chrono::seconds operator""s(unsigned long long);
constexpr chrono::duration<unspecified> operator""s(long double);

constexpr chrono::milliseconds operator""ms(unsigned long long);
constexpr chrono::duration<unspecified, milli> operator""ms(long double);

§ 29.2 1346

© ISO/IEC N4910

constexpr chrono::microseconds operator""us(unsigned long long);
constexpr chrono::duration<unspecified, micro> operator""us(long double);

constexpr chrono::nanoseconds operator""ns(unsigned long long);
constexpr chrono::duration<unspecified, nano> operator""ns(long double);

// 29.8.3.3, non-member functions
constexpr chrono::day operator""d(unsigned long long d) noexcept;

// 29.8.5.3, non-member functions
constexpr chrono::year operator""y(unsigned long long y) noexcept;

}

namespace std::chrono {
using namespace literals::chrono_literals;

}

29.3 Cpp17Clock requirements [time.clock.req]
1 A clock is a bundle consisting of a duration, a time_point, and a function now() to get the current time_point. Theorigin of the clock’s time_point is referred to as the clock’s epoch. A clock shall meet the requirements in Table 95.
2 In Table 95 C1 and C2 denote clock types. t1 and t2 are values returned by C1::now() where the call returning t1happens before (6.9.2) the call returning t2 and both of these calls occur before C1::time_point::max().
[Note 1: This means C1 did not wrap around between t1 and t2. —end note]

Table 95: Cpp17Clock requirements [tab:time.clock]
Expression Return type Operational semantics

C1::rep An arithmetic type or a class emulatingan arithmetic type The representation type of
C1::duration.

C1::period a specialization of ratio The tick period of the clock inseconds.
C1::duration chrono::duration<C1::rep,

C1::period>
The duration type of the clock.

C1::time_point chrono::time_point<C1> or
chrono::time_point<C2,
C1::duration>

The time_point type of the clock.
C1 and C2 shall refer to the sameepoch.

C1::is_steady const bool true if t1 <= t2 is always trueand the time between clock ticksis constant, otherwise false.
C1::now() C1::time_point Returns a time_point objectrepresenting the current point intime.

3 [Note 2: The relative difference in durations between those reported by a given clock and the SI definition is a measure of the qualityof implementation. —end note]
4 A type TC meets the Cpp17TrivialClock requirements if:

—(4.1) TC meets the Cpp17Clock requirements,
—(4.2) the types TC::rep, TC::duration, and TC::time_point meet the Cpp17EqualityComparable (Table 27) andCpp17LessThanComparable (Table 28) requirements and the requirements of numeric types (28.2).

[Note 3: This means, in particular, that operations on these types will not throw exceptions. —end note]
—(4.3) lvalues of the types TC::rep, TC::duration, and TC::time_point are swappable (16.4.4.3),
—(4.4) the function TC::now() does not throw exceptions, and
—(4.5) the type TC::time_point::clock meets the Cpp17TrivialClock requirements, recursively.

§ 29.3 1347

© ISO/IEC N4910

29.4 Time-related traits [time.traits]
29.4.1 treat_as_floating_point [time.traits.is.fp]

template<class Rep> struct treat_as_floating_point : is_floating_point<Rep> { };

1 The duration template uses the treat_as_floating_point trait to help determine if a duration object can be con-verted to another duration with a different tick period. If treat_as_floating_point_v<Rep> is true, then implicitconversions are allowed among durations. Otherwise, the implicit convertibility depends on the tick periods of the
durations.
[Note 1: The intention of this trait is to indicate whether a given class behaves like a floating-point type, and thus allows division ofone value by another with acceptable loss of precision. If treat_as_floating_point_v<Rep> is false, Rep will be treated as if itbehaved like an integral type for the purpose of these conversions. —end note]
29.4.2 duration_values [time.traits.duration.values]

template<class Rep>
struct duration_values {
public:
static constexpr Rep zero() noexcept;
static constexpr Rep min() noexcept;
static constexpr Rep max() noexcept;

};

1 The duration template uses the duration_values trait to construct special values of the duration’s representation (Rep).This is done because the representation can be a class type with behavior that requires some other implementation toreturn these special values. In that case, the author of that class type should specialize duration_values to return theindicated values.
static constexpr Rep zero() noexcept;

2 Returns: Rep(0).
[Note 1: Rep(0) is specified instead of Rep() because Rep() can have some other meaning, such as an uninitialized value.—end note]

3 Remarks: The value returned shall be the additive identity.
static constexpr Rep min() noexcept;

4 Returns: numeric_limits<Rep>::lowest().
5 Remarks: The value returned shall compare less than or equal to zero().

static constexpr Rep max() noexcept;

6 Returns: numeric_limits<Rep>::max().
7 Remarks: The value returned shall compare greater than zero().
29.4.3 Specializations of common_type [time.traits.specializations]

template<class Rep1, class Period1, class Rep2, class Period2>
struct common_type<chrono::duration<Rep1, Period1>, chrono::duration<Rep2, Period2>> {
using type = chrono::duration<common_type_t<Rep1, Rep2>, see below>;

};

1 The period of the duration indicated by this specialization of common_type is the greatest common divisor of Period1and Period2.
[Note 1: This can be computed by forming a ratio of the greatest common divisor of Period1::num and Period2::num and the leastcommon multiple of Period1::den and Period2::den. —end note]

2 [Note 2: The typedef name type is a synonym for the durationwith the largest tick period possible where both duration argumentswill convert to it without requiring a division operation. The representation of this type is intended to be able to hold any valueresulting from this conversion with no truncation error, although floating-point durations can have round-off errors. —end note]
template<class Clock, class Duration1, class Duration2>

struct common_type<chrono::time_point<Clock, Duration1>, chrono::time_point<Clock, Duration2>> {
using type = chrono::time_point<Clock, common_type_t<Duration1, Duration2>>;

§ 29.4.3 1348

© ISO/IEC N4910

};

3 The common type of two time_point types is a time_point with the same clock as the two types and the commontype of their two durations.
29.4.4 Class template is_clock [time.traits.is.clock]

template<class T> struct is_clock;

1 is_clock is a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of true_type if T meets the Cpp17Clockrequirements (29.3), otherwise false_type. For the purposes of the specification of this trait, the extent to whichan implementation determines that a type cannot meet the Cpp17Clock requirements is unspecified, except that as aminimum a type T shall not qualify as a Cpp17Clock unless it meets all of the following conditions:
—(1.1) the qualified-ids T::rep, T::period, T::duration, and T::time_point are valid and each denotes a type(13.10.3),
—(1.2) the expression T::is_steady is well-formed when treated as an unevaluated operand (7.2.3),
—(1.3) the expression T::now() is well-formed when treated as an unevaluated operand.

2 The behavior of a program that adds specializations for is_clock is undefined.
29.5 Class template duration [time.duration]
29.5.1 General [time.duration.general]

1 A duration type measures time between two points in time (time_points). A duration has a representation whichholds a count of ticks and a tick period. The tick period is the amount of time which occurs from one tick to the next, inunits of seconds. It is expressed as a rational constant using the template ratio.
namespace std::chrono {

template<class Rep, class Period = ratio<1>>
class duration {
public:

using rep = Rep;
using period = typename Period::type;

private:
rep rep_; // exposition only

public:// 29.5.2, construct/copy/destroy
constexpr duration() = default;
template<class Rep2>
constexpr explicit duration(const Rep2& r);

template<class Rep2, class Period2>
constexpr duration(const duration<Rep2, Period2>& d);

~duration() = default;
duration(const duration&) = default;
duration& operator=(const duration&) = default;

// 29.5.3, observer
constexpr rep count() const;

// 29.5.4, arithmetic
constexpr common_type_t<duration> operator+() const;
constexpr common_type_t<duration> operator-() const;
constexpr duration& operator++();
constexpr duration operator++(int);
constexpr duration& operator--();
constexpr duration operator--(int);

constexpr duration& operator+=(const duration& d);
constexpr duration& operator-=(const duration& d);

§ 29.5.1 1349

© ISO/IEC N4910

constexpr duration& operator*=(const rep& rhs);
constexpr duration& operator/=(const rep& rhs);
constexpr duration& operator%=(const rep& rhs);
constexpr duration& operator%=(const duration& rhs);

// 29.5.5, special values
static constexpr duration zero() noexcept;
static constexpr duration min() noexcept;
static constexpr duration max() noexcept;

};
}

2 Rep shall be an arithmetic type or a class emulating an arithmetic type. If duration is instantiated with a duration typeas the argument for the template parameter Rep, the program is ill-formed.
3 If Period is not a specialization of ratio, the program is ill-formed. If Period::num is not positive, the program isill-formed.
4 Members of duration do not throw exceptions other than those thrown by the indicated operations on their representa-tions.
5 The defaulted copy constructor of duration shall be a constexpr function if and only if the required initialization of themember rep_ for copy and move, respectively, would satisfy the requirements for a constexpr function.
6 [Example 1:

duration<long, ratio<60>> d0; // holds a count of minutes using a long
duration<long long, milli> d1; // holds a count of milliseconds using a long long
duration<double, ratio<1, 30>> d2; // holds a count with a tick period of 1

30
of a second// (30 Hz) using a double

—end example]
29.5.2 Constructors [time.duration.cons]

template<class Rep2>
constexpr explicit duration(const Rep2& r);

1 Constraints: is_convertible_v<const Rep2&, rep> is true and
—(1.1) treat_as_floating_point_v<rep> is true or
—(1.2) treat_as_floating_point_v<Rep2> is false.
[Example 1:
duration<int, milli> d(3); // OK
duration<int, milli> d(3.5); // error
— end example]

2 Effects: Initializes rep_ with r.
template<class Rep2, class Period2>

constexpr duration(const duration<Rep2, Period2>& d);

3 Constraints: No overflow is induced in the conversion and treat_as_floating_point_v<rep> is true or both
ratio_divide<Period2, period>::den is 1 and treat_as_floating_point_v<Rep2> is false.
[Note 1: This requirement prevents implicit truncation error when converting between integral-based duration types. Such aconstruction could easily lead to confusion about the value of the duration. —end note]
[Example 2:
duration<int, milli> ms(3);
duration<int, micro> us = ms; // OK
duration<int, milli> ms2 = us; // error
— end example]

4 Effects: Initializes rep_ with duration_cast<duration>(d).count().

§ 29.5.2 1350

© ISO/IEC N4910

29.5.3 Observer [time.duration.observer]

constexpr rep count() const;

1 Returns: rep_.
29.5.4 Arithmetic [time.duration.arithmetic]

constexpr common_type_t<duration> operator+() const;

1 Returns: common_type_t<duration>(*this).
constexpr common_type_t<duration> operator-() const;

2 Returns: common_type_t<duration>(-rep_).
constexpr duration& operator++();

3 Effects: Equivalent to: ++rep_.
4 Returns: *this.

constexpr duration operator++(int);

5 Effects: Equivalent to: return duration(rep_++);

constexpr duration& operator--();

6 Effects: Equivalent to: --rep_.
7 Returns: *this.

constexpr duration operator--(int);

8 Effects: Equivalent to: return duration(rep_--);

constexpr duration& operator+=(const duration& d);

9 Effects: Equivalent to: rep_ += d.count().
10 Returns: *this.

constexpr duration& operator-=(const duration& d);

11 Effects: Equivalent to: rep_ -= d.count().
12 Returns: *this.

constexpr duration& operator*=(const rep& rhs);

13 Effects: Equivalent to: rep_ *= rhs.
14 Returns: *this.

constexpr duration& operator/=(const rep& rhs);

15 Effects: Equivalent to: rep_ /= rhs.
16 Returns: *this.

constexpr duration& operator%=(const rep& rhs);

17 Effects: Equivalent to: rep_ %= rhs.
18 Returns: *this.

constexpr duration& operator%=(const duration& rhs);

19 Effects: Equivalent to: rep_ %= rhs.count().
20 Returns: *this.
29.5.5 Special values [time.duration.special]

static constexpr duration zero() noexcept;

1 Returns: duration(duration_values<rep>::zero()).
§ 29.5.5 1351

© ISO/IEC N4910

static constexpr duration min() noexcept;

2 Returns: duration(duration_values<rep>::min()).
static constexpr duration max() noexcept;

3 Returns: duration(duration_values<rep>::max()).
29.5.6 Non-member arithmetic [time.duration.nonmember]

1 In the function descriptions that follow, unless stated otherwise, let CD represent the return type of the function.
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>
operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

2 Returns: CD(CD(lhs).count() + CD(rhs).count()).
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>
operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: CD(CD(lhs).count() - CD(rhs).count()).
template<class Rep1, class Period, class Rep2>

constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator*(const duration<Rep1, Period>& d, const Rep2& s);

4 Constraints: is_convertible_v<const Rep2&, common_type_t<Rep1, Rep2>> is true.
5 Returns: CD(CD(d).count() * s).

template<class Rep1, class Rep2, class Period>
constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator*(const Rep1& s, const duration<Rep2, Period>& d);

6 Constraints: is_convertible_v<const Rep1&, common_type_t<Rep1, Rep2>> is true.
7 Returns: d * s.

template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator/(const duration<Rep1, Period>& d, const Rep2& s);

8 Constraints: is_convertible_v<const Rep2&, common_type_t<Rep1, Rep2>> is true and Rep2 is not a spe-cialization of duration.
9 Returns: CD(CD(d).count() / s).

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<Rep1, Rep2>
operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

10 Let CD be common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>.
11 Returns: CD(lhs).count() / CD(rhs).count().

template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator%(const duration<Rep1, Period>& d, const Rep2& s);

12 Constraints: is_convertible_v<const Rep2&, common_type_t<Rep1, Rep2>> is true and Rep2 is not a spe-cialization of duration.
13 Returns: CD(CD(d).count() % s).

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>
operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

14 Returns: CD(CD(lhs).count() % CD(rhs).count()).

§ 29.5.6 1352

© ISO/IEC N4910

29.5.7 Comparisons [time.duration.comparisons]
1 In the function descriptions that follow, CT represents common_type_t<A, B>, where A and B are the types of the twoarguments to the function.

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

2 Returns: CT(lhs).count() == CT(rhs).count().
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator<(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

3 Returns: CT(lhs).count() < CT(rhs).count().
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator>(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

4 Returns: rhs < lhs.
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator<=(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

5 Returns: !(rhs < lhs).
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator>=(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

6 Returns: !(lhs < rhs).
template<class Rep1, class Period1, class Rep2, class Period2>

requires three_way_comparable<typename CT::rep>
constexpr auto operator<=>(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

7 Returns: CT(lhs).count() <=> CT(rhs).count().
29.5.8 Conversions [time.duration.cast]

template<class ToDuration, class Rep, class Period>
constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

1 Constraints: ToDuration is a specialization of duration.
2 Returns: Let CF be ratio_divide<Period, typename ToDuration::period>, and CR be common_type<typename

ToDuration::rep, Rep, intmax_t>::type.
—(2.1) If CF::num == 1 and CF::den == 1, returns

ToDuration(static_cast<typename ToDuration::rep>(d.count()))

—(2.2) otherwise, if CF::num != 1 and CF::den == 1, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) * static_cast<CR>(CF::num)))

—(2.3) otherwise, if CF::num == 1 and CF::den != 1, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) / static_cast<CR>(CF::den)))

—(2.4) otherwise, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) * static_cast<CR>(CF::num) / static_cast<CR>(CF::den)))
3 [Note 1: This function does not use any implicit conversions; all conversions are done with static_cast. It avoids multi-plications and divisions when it is known at compile time that one or more arguments is 1. Intermediate computations arecarried out in the widest representation and only converted to the destination representation at the final step. —end note]

§ 29.5.8 1353

© ISO/IEC N4910

template<class ToDuration, class Rep, class Period>
constexpr ToDuration floor(const duration<Rep, Period>& d);

4 Constraints: ToDuration is a specialization of duration.
5 Returns: The greatest result t representable in ToDuration for which t <= d.

template<class ToDuration, class Rep, class Period>
constexpr ToDuration ceil(const duration<Rep, Period>& d);

6 Constraints: ToDuration is a specialization of duration.
7 Returns: The least result t representable in ToDuration for which t >= d.

template<class ToDuration, class Rep, class Period>
constexpr ToDuration round(const duration<Rep, Period>& d);

8 Constraints: ToDuration is a specialization of duration and treat_as_floating_point_v<typename ToDuration::rep>is false.
9 Returns: The value of ToDuration that is closest to d. If there are two closest values, then return the value t forwhich t % 2 == 0.
29.5.9 Suffixes for duration literals [time.duration.literals]

1 This subclause describes literal suffixes for constructing duration literals. The suffixes h, min, s, ms, us, ns denoteduration values of the corresponding types hours, minutes, seconds, milliseconds, microseconds, and nanosecondsrespectively if they are applied to integer-literals.
2 If any of these suffixes are applied to a floating-point-literal the result is a chrono::duration literal with an unspecifiedfloating-point representation.
3 If any of these suffixes are applied to an integer-literal and the resulting chrono::duration value cannot be representedin the result type because of overflow, the program is ill-formed.
4 [Example 1: The following code shows some duration literals.

using namespace std::chrono_literals;
auto constexpr aday=24h;
auto constexpr lesson=45min;
auto constexpr halfanhour=0.5h;

—end example]
constexpr chrono::hours operator""h(unsigned long long hours);
constexpr chrono::duration<unspecified, ratio<3600, 1>> operator""h(long double hours);

5 Returns: A duration literal representing hours hours.
constexpr chrono::minutes operator""min(unsigned long long minutes);
constexpr chrono::duration<unspecified, ratio<60, 1>> operator""min(long double minutes);

6 Returns: A duration literal representing minutes minutes.
constexpr chrono::seconds operator""s(unsigned long long sec);
constexpr chrono::duration<unspecified> operator""s(long double sec);

7 Returns: A duration literal representing sec seconds.
8 [Note 1: The same suffix s is used for basic_string but there is no conflict, since duration suffixes apply to numbers andstring literal suffixes apply to character array literals. —end note]

constexpr chrono::milliseconds operator""ms(unsigned long long msec);
constexpr chrono::duration<unspecified, milli> operator""ms(long double msec);

9 Returns: A duration literal representing msec milliseconds.
constexpr chrono::microseconds operator""us(unsigned long long usec);
constexpr chrono::duration<unspecified, micro> operator""us(long double usec);

10 Returns: A duration literal representing usec microseconds.
constexpr chrono::nanoseconds operator""ns(unsigned long long nsec);

§ 29.5.9 1354

© ISO/IEC N4910

constexpr chrono::duration<unspecified, nano> operator""ns(long double nsec);

11 Returns: A duration literal representing nsec nanoseconds.
29.5.10 Algorithms [time.duration.alg]

template<class Rep, class Period>
constexpr duration<Rep, Period> abs(duration<Rep, Period> d);

1 Constraints: numeric_limits<Rep>::is_signed is true.
2 Returns: If d >= d.zero(), return d, otherwise return -d.
29.5.11 I/O [time.duration.io]

template<class charT, class traits, class Rep, class Period>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const duration<Rep, Period>& d);

1 Effects: Inserts the duration d onto the stream os as if it were implemented as follows:
basic_ostringstream<charT, traits> s;
s.flags(os.flags());
s.imbue(os.getloc());
s.precision(os.precision());
s << d.count() << units-suffix;
return os << s.str();

where units-suffix depends on the type Period::type as follows:
—(1.1) If Period::type is atto, units-suffix is "as".
—(1.2) Otherwise, if Period::type is femto, units-suffix is "fs".
—(1.3) Otherwise, if Period::type is pico, units-suffix is "ps".
—(1.4) Otherwise, if Period::type is nano, units-suffix is "ns".
—(1.5) Otherwise, if Period::type is micro, it is implementation-definedwhether units-suffix is "µs" ("\u00b5\u0073")or "us".
—(1.6) Otherwise, if Period::type is milli, units-suffix is "ms".
—(1.7) Otherwise, if Period::type is centi, units-suffix is "cs".
—(1.8) Otherwise, if Period::type is deci, units-suffix is "ds".
—(1.9) Otherwise, if Period::type is ratio<1>, units-suffix is "s".
—(1.10) Otherwise, if Period::type is deca, units-suffix is "das".
—(1.11) Otherwise, if Period::type is hecto, units-suffix is "hs".
—(1.12) Otherwise, if Period::type is kilo, units-suffix is "ks".
—(1.13) Otherwise, if Period::type is mega, units-suffix is "Ms".
—(1.14) Otherwise, if Period::type is giga, units-suffix is "Gs".
—(1.15) Otherwise, if Period::type is tera, units-suffix is "Ts".
—(1.16) Otherwise, if Period::type is peta, units-suffix is "Ps".
—(1.17) Otherwise, if Period::type is exa, units-suffix is "Es".
—(1.18) Otherwise, if Period::type is ratio<60>, units-suffix is "min".
—(1.19) Otherwise, if Period::type is ratio<3600>, units-suffix is "h".
—(1.20) Otherwise, if Period::type is ratio<86400>, units-suffix is "d".
—(1.21) Otherwise, if Period::type::den == 1, units-suffix is "[num]s".
—(1.22) Otherwise, units-suffix is "[num/den]s".
In the list above, the use of num and den refer to the static data members of Period::type, which are convertedto arrays of charT using a decimal conversion with no leading zeroes.

2 Returns: os.
§ 29.5.11 1355

© ISO/IEC N4910

template<class charT, class traits, class Rep, class Period, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

duration<Rep, Period>& d,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the duration d using the format flags given in the NTCTS fmtas specified in 29.13. If the parse fails to decode a valid duration, is.setstate(ios_base::failbit) is calledand d is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null.

4 Returns: is.
29.6 Class template time_point [time.point]
29.6.1 General [time.point.general]
namespace std::chrono {

template<class Clock, class Duration = typename Clock::duration>
class time_point {
public:

using clock = Clock;
using duration = Duration;
using rep = typename duration::rep;
using period = typename duration::period;

private:
duration d_; // exposition only

public:// 29.6.2, construct
constexpr time_point(); // has value epoch
constexpr explicit time_point(const duration& d); // same as time_point() + d
template<class Duration2>
constexpr time_point(const time_point<clock, Duration2>& t);

// 29.6.3, observer
constexpr duration time_since_epoch() const;

// 29.6.4, arithmetic
constexpr time_point& operator++();
constexpr time_point operator++(int);
constexpr time_point& operator--();
constexpr time_point operator--(int);
constexpr time_point& operator+=(const duration& d);
constexpr time_point& operator-=(const duration& d);

// 29.6.5, special values
static constexpr time_point min() noexcept;
static constexpr time_point max() noexcept;

};
}

1 If Duration is not a specialization of duration, the program is ill-formed.
29.6.2 Constructors [time.point.cons]

constexpr time_point();

1 Effects: Initializes d_ with duration::zero(). Such a time_point object represents the epoch.
constexpr explicit time_point(const duration& d);

2 Effects: Initializes d_ with d. Such a time_point object represents the epoch + d.

§ 29.6.2 1356

© ISO/IEC N4910

template<class Duration2>
constexpr time_point(const time_point<clock, Duration2>& t);

3 Constraints: is_convertible_v<Duration2, duration> is true.
4 Effects: Initializes d_ with t.time_since_epoch().
29.6.3 Observer [time.point.observer]

constexpr duration time_since_epoch() const;

1 Returns: d_.
29.6.4 Arithmetic [time.point.arithmetic]

constexpr time_point& operator++();

1 Effects: Equivalent to: ++d_.
2 Returns: *this.

constexpr time_point operator++(int);

3 Effects: Equivalent to: return time_point{d_++};

constexpr time_point& operator--();

4 Effects: Equivalent to: --d_.
5 Returns: *this.

constexpr time_point operator--(int);

6 Effects: Equivalent to: return time_point{d_--};

constexpr time_point& operator+=(const duration& d);

7 Effects: Equivalent to: d_ += d.
8 Returns: *this.

constexpr time_point& operator-=(const duration& d);

9 Effects: Equivalent to: d_ -= d.
10 Returns: *this.
29.6.5 Special values [time.point.special]

static constexpr time_point min() noexcept;

1 Returns: time_point(duration::min()).
static constexpr time_point max() noexcept;

2 Returns: time_point(duration::max()).
29.6.6 Non-member arithmetic [time.point.nonmember]

template<class Clock, class Duration1, class Rep2, class Period2>
constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

1 Returns: CT(lhs.time_since_epoch() + rhs), where CT is the type of the return value.
template<class Rep1, class Period1, class Clock, class Duration2>
constexpr time_point<Clock, common_type_t<duration<Rep1, Period1>, Duration2>>

operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);

2 Returns: rhs + lhs.

§ 29.6.6 1357

© ISO/IEC N4910

template<class Clock, class Duration1, class Rep2, class Period2>
constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: CT(lhs.time_since_epoch() - rhs), where CT is the type of the return value.
template<class Clock, class Duration1, class Duration2>

constexpr common_type_t<Duration1, Duration2>
operator-(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

4 Returns: lhs.time_since_epoch() - rhs.time_since_epoch().
29.6.7 Comparisons [time.point.comparisons]

template<class Clock, class Duration1, class Duration2>
constexpr bool operator==(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

1 Returns: lhs.time_since_epoch() == rhs.time_since_epoch().
template<class Clock, class Duration1, class Duration2>

constexpr bool operator<(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

2 Returns: lhs.time_since_epoch() < rhs.time_since_epoch().
template<class Clock, class Duration1, class Duration2>

constexpr bool operator>(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

3 Returns: rhs < lhs.
template<class Clock, class Duration1, class Duration2>

constexpr bool operator<=(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

4 Returns: !(rhs < lhs).
template<class Clock, class Duration1, class Duration2>

constexpr bool operator>=(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

5 Returns: !(lhs < rhs).
template<class Clock, class Duration1,

three_way_comparable_with<Duration1> Duration2>
constexpr auto operator<=>(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

6 Returns: lhs.time_since_epoch() <=> rhs.time_since_epoch().
29.6.8 Conversions [time.point.cast]

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);

1 Constraints: ToDuration is a specialization of duration.
2 Returns:

time_point<Clock, ToDuration>(duration_cast<ToDuration>(t.time_since_epoch()))

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> floor(const time_point<Clock, Duration>& tp);

3 Constraints: ToDuration is a specialization of duration.
4 Returns: time_point<Clock, ToDuration>(floor<ToDuration>(tp.time_since_epoch())).

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> ceil(const time_point<Clock, Duration>& tp);

5 Constraints: ToDuration is a specialization of duration.
§ 29.6.8 1358

© ISO/IEC N4910

6 Returns: time_point<Clock, ToDuration>(ceil<ToDuration>(tp.time_since_epoch())).
template<class ToDuration, class Clock, class Duration>

constexpr time_point<Clock, ToDuration> round(const time_point<Clock, Duration>& tp);

7 Constraints: ToDuration is a specialization of duration, and treat_as_floating_point_v<typename ToDuration::rep>is false.
8 Returns: time_point<Clock, ToDuration>(round<ToDuration>(tp.time_since_epoch())).
29.7 Clocks [time.clock]
29.7.1 General [time.clock.general]

1 The types defined in 29.7 meet the Cpp17TrivialClock requirements (29.3) unless otherwise specified.
29.7.2 Class system_clock [time.clock.system]
29.7.2.1 Overview [time.clock.system.overview]
namespace std::chrono {

class system_clock {
public:

using rep = see below;
using period = ratio<unspecified, unspecified>;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<system_clock>;
static constexpr bool is_steady = unspecified;

static time_point now() noexcept;

// mapping to/from C type time_t
static time_t to_time_t (const time_point& t) noexcept;
static time_point from_time_t(time_t t) noexcept;

};
}

1 Objects of type system_clock represent wall clock time from the system-wide realtime clock. Objects of type sys_-
time<Duration> measure time since 1970-01-01 00:00:00 UTC excluding leap seconds. This measure is commonlyreferred to as Unix time. This measure facilitates an efficient mapping between sys_time and calendar types (29.8).
[Example 1:
sys_seconds{sys_days{1970y/January/1}}.time_since_epoch() is 0s.
sys_seconds{sys_days{2000y/January/1}}.time_since_epoch() is 946’684’800s, which is 10’957 * 86’400s.—end example]
29.7.2.2 Members [time.clock.system.members]

using system_clock::rep = unspecified;

1 Constraints: system_clock::duration::min() < system_clock::duration::zero() is true.
[Note 1: This implies that rep is a signed type. —end note]

static time_t to_time_t(const time_point& t) noexcept;

2 Returns: A time_t object that represents the same point in time as t when both values are restricted to thecoarser of the precisions of time_t and time_point. It is implementation-defined whether values are rounded ortruncated to the required precision.
static time_point from_time_t(time_t t) noexcept;

3 Returns: A time_point object that represents the same point in time as t when both values are restricted to thecoarser of the precisions of time_t and time_point. It is implementation-defined whether values are rounded ortruncated to the required precision.

§ 29.7.2.2 1359

© ISO/IEC N4910

29.7.2.3 Non-member functions [time.clock.system.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const sys_time<Duration>& tp);

1 Constraints: treat_as_floating_point_v<typename Duration::rep> is false, and Duration{1} < days{1}is true.
2 Effects: Equivalent to:

return os << format(os.getloc(), STATICALLY-WIDEN("{:L%F %T}"), tp);
3 [Example 1:

cout << sys_seconds{0s} << '\n'; // 1970-01-01 00:00:00
cout << sys_seconds{946'684'800s} << '\n'; // 2000-01-01 00:00:00
cout << sys_seconds{946'688'523s} << '\n'; // 2000-01-01 01:02:03
—end example]

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const sys_days& dp);

4 Effects: os << year_month_day{dp}.
5 Returns: os.

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

sys_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

6 Effects: Attempts to parse the input stream is into the sys_time tp using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_base::failbit) is calledand tp is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null. Additionally, the parsed offset will be subtracted from the successfully parsed timestampprior to assigning that difference to tp.

7 Returns: is.
29.7.3 Class utc_clock [time.clock.utc]
29.7.3.1 Overview [time.clock.utc.overview]
namespace std::chrono {

class utc_clock {
public:
using rep = a signed arithmetic type;
using period = ratio<unspecified, unspecified>;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<utc_clock>;
static constexpr bool is_steady = unspecified;

static time_point now();

template<class Duration>
static sys_time<common_type_t<Duration, seconds>>

to_sys(const utc_time<Duration>& t);
template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

from_sys(const sys_time<Duration>& t);
};

}

1 In contrast to sys_time, which does not take leap seconds into account, utc_clock and its associated time_point,
utc_time, count time, including leap seconds, since 1970-01-01 00:00:00 UTC.

§ 29.7.3.1 1360

© ISO/IEC N4910

[Note 1: The UTC time standard began on 1972-01-01 00:00:10 TAI. To measure time since this epoch instead, one can add/subtractthe constant sys_days{1972y/1/1} - sys_days{1970y/1/1} (63’072’000s) from the utc_time. —end note]
[Example 1:
clock_cast<utc_clock>(sys_seconds{sys_days{1970y/January/1}}).time_since_epoch() is 0s.
clock_cast<utc_clock>(sys_seconds{sys_days{2000y/January/1}}).time_since_epoch() is 946’684’822s,which is 10’957 * 86’400s + 22s.—end example]

2 utc_clock is not a Cpp17TrivialClock unless the implementation can guarantee that utc_clock::now() does notpropagate an exception.
[Note 2: noexcept(from_sys(system_clock::now())) is false. —end note]
29.7.3.2 Member functions [time.clock.utc.members]

static time_point now();

1 Returns: from_sys(system_clock::now()), or a more accurate value of utc_time.
template<class Duration>

static sys_time<common_type_t<Duration, seconds>>
to_sys(const utc_time<Duration>& u);

2 Returns: A sys_time t, such that from_sys(t) == u if such a mapping exists. Otherwise u represents a time_-
point during a positive leap second insertion, the conversion counts that leap second as not inserted, and the lastrepresentable value of sys_time prior to the insertion of the leap second is returned.

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>
from_sys(const sys_time<Duration>& t);

3 Returns: A utc_time u, such that u.time_since_epoch() - t.time_since_epoch() is equal to the sum of leapseconds that were inserted between t and 1970-01-01. If t is exactly the date of leap second insertion, then theconversion counts that leap second as inserted.
[Example 1:
auto t = sys_days{July/1/2015} - 2ns;
auto u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 25s);
t += 1ns;
u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 25s);
t += 1ns;
u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 26s);
t += 1ns;
u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 26s);

—end example]
29.7.3.3 Non-member functions [time.clock.utc.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const utc_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%F %T}"), t);

2 [Example 1:
auto t = sys_days{July/1/2015} - 500ms;
auto u = clock_cast<utc_clock>(t);
for (auto i = 0; i < 8; ++i, u += 250ms)
cout << u << " UTC\n";

Produces this output:
2015-06-30 23:59:59.500 UTC

§ 29.7.3.3 1361

© ISO/IEC N4910

2015-06-30 23:59:59.750 UTC
2015-06-30 23:59:60.000 UTC
2015-06-30 23:59:60.250 UTC
2015-06-30 23:59:60.500 UTC
2015-06-30 23:59:60.750 UTC
2015-07-01 00:00:00.000 UTC
2015-07-01 00:00:00.250 UTC

—end example]
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

utc_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the utc_time tp using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_base::failbit) is calledand tp is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null. Additionally, the parsed offset will be subtracted from the successfully parsed timestampprior to assigning that difference to tp.

4 Returns: is.
struct leap_second_info {

bool is_leap_second;
seconds elapsed;

};

5 The type leap_second_info has data members and special members specified above. It has no base classes ormembers other than those specified.
template<class Duration>

leap_second_info get_leap_second_info(const utc_time<Duration>& ut);

6 Returns: A leap_second_info lsi, where lsi.is_leap_second is true if ut is during a positive leap secondinsertion, and otherwise false. lsi.elapsed is the sum of leap seconds between 1970-01-01 and ut. If lsi.is_-
leap_second is true, the leap second referred to by ut is included in the sum.

29.7.4 Class tai_clock [time.clock.tai]
29.7.4.1 Overview [time.clock.tai.overview]
namespace std::chrono {

class tai_clock {
public:
using rep = a signed arithmetic type;
using period = ratio<unspecified, unspecified>;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<tai_clock>;
static constexpr bool is_steady = unspecified;

static time_point now();

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

to_utc(const tai_time<Duration>&) noexcept;
template<class Duration>

static tai_time<common_type_t<Duration, seconds>>
from_utc(const utc_time<Duration>&) noexcept;

};
}

1 The clock tai_clock measures seconds since 1958-01-01 00:00:00 and is offset 10s ahead of UTC at this date. Thatis, 1958-01-01 00:00:00 TAI is equivalent to 1957-12-31 23:59:50 UTC. Leap seconds are not inserted into TAI.Therefore every time a leap second is inserted into UTC, UTC shifts another second with respect to TAI. For example by
§ 29.7.4.1 1362

© ISO/IEC N4910

2000-01-01 there had been 22 positive and 0 negative leap seconds inserted so 2000-01-01 00:00:00 UTC is equivalentto 2000-01-01 00:00:32 TAI (22s plus the initial 10s offset).
2 tai_clock is not a Cpp17TrivialClock unless the implementation can guarantee that tai_clock::now() does notpropagate an exception.
[Note 1: noexcept(from_utc(utc_clock::now())) is false. —end note]
29.7.4.2 Member functions [time.clock.tai.members]

static time_point now();

1 Returns: from_utc(utc_clock::now()), or a more accurate value of tai_time.
template<class Duration>

static utc_time<common_type_t<Duration, seconds>>
to_utc(const tai_time<Duration>& t) noexcept;

2 Returns:
utc_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} - 378691210s

[Note 1:
378691210s == sys_days{1970y/January/1} - sys_days{1958y/January/1} + 10s

—end note]
template<class Duration>

static tai_time<common_type_t<Duration, seconds>>
from_utc(const utc_time<Duration>& t) noexcept;

3 Returns:
tai_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} + 378691210s

[Note 2:
378691210s == sys_days{1970y/January/1} - sys_days{1958y/January/1} + 10s

—end note]
29.7.4.3 Non-member functions [time.clock.tai.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const tai_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%F %T}"), t);

2 [Example 1:
auto st = sys_days{2000y/January/1};
auto tt = clock_cast<tai_clock>(st);
cout << format("{0:%F %T %Z} == {1:%F %T %Z}\n", st, tt);

Produces this output:
2000-01-01 00:00:00 UTC == 2000-01-01 00:00:32 TAI

—end example]
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

tai_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the tai_time tp using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_base::failbit) is calledand tp is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null. Additionally, the parsed offset will be subtracted from the successfully parsed timestampprior to assigning that difference to tp.

§ 29.7.4.3 1363

© ISO/IEC N4910

4 Returns: is.
29.7.5 Class gps_clock [time.clock.gps]
29.7.5.1 Overview [time.clock.gps.overview]
namespace std::chrono {

class gps_clock {
public:
using rep = a signed arithmetic type;
using period = ratio<unspecified, unspecified>;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<gps_clock>;
static constexpr bool is_steady = unspecified;

static time_point now();

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

to_utc(const gps_time<Duration>&) noexcept;
template<class Duration>

static gps_time<common_type_t<Duration, seconds>>
from_utc(const utc_time<Duration>&) noexcept;

};
}

1 The clock gps_clock measures seconds since the first Sunday of January, 1980 00:00:00 UTC. Leap seconds are notinserted into GPS. Therefore every time a leap second is inserted into UTC, UTC shifts another second with respect toGPS. Aside from the offset from 1958y/January/1 to 1980y/January/Sunday[1], GPS is behind TAI by 19s due tothe 10s offset between 1958 and 1970 and the additional 9 leap seconds inserted between 1970 and 1980.
2 gps_clock is not a Cpp17TrivialClock unless the implementation can guarantee that gps_clock::now() does notpropagate an exception.
[Note 1: noexcept(from_utc(utc_clock::now())) is false. —end note]
29.7.5.2 Member functions [time.clock.gps.members]

static time_point now();

1 Returns: from_utc(utc_clock::now()), or a more accurate value of gps_time.
template<class Duration>

static utc_time<common_type_t<Duration, seconds>>
to_utc(const gps_time<Duration>& t) noexcept;

2 Returns:
utc_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} + 315964809s

[Note 1:
315964809s == sys_days{1980y/January/Sunday[1]} - sys_days{1970y/January/1} + 9s

—end note]
template<class Duration>

static gps_time<common_type_t<Duration, seconds>>
from_utc(const utc_time<Duration>& t) noexcept;

3 Returns:
gps_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} - 315964809s

[Note 2:
315964809s == sys_days{1980y/January/Sunday[1]} - sys_days{1970y/January/1} + 9s

—end note]

§ 29.7.5.2 1364

© ISO/IEC N4910

29.7.5.3 Non-member functions [time.clock.gps.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const gps_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%F %T}"), t);

2 [Example 1:
auto st = sys_days{2000y/January/1};
auto gt = clock_cast<gps_clock>(st);
cout << format("{0:%F %T %Z} == {1:%F %T %Z}\n", st, gt);

Produces this output:
2000-01-01 00:00:00 UTC == 2000-01-01 00:00:13 GPS

—end example]
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

gps_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the gps_time tp using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_base::failbit) is calledand tp is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null. Additionally, the parsed offset will be subtracted from the successfully parsed timestampprior to assigning that difference to tp.

4 Returns: is.
29.7.6 Type file_clock [time.clock.file]
29.7.6.1 Overview [time.clock.file.overview]
namespace std::chrono {

using file_clock = see below;
}

1 file_clock is an alias for a type meeting the Cpp17TrivialClock requirements (29.3), and using a signed arithmetictype for file_clock::rep. file_clock is used to create the time_point system used for file_time_type (31.12). Itsepoch is unspecified, and noexcept(file_clock::now()) is true.
[Note 1: The type that file_clock denotes can be in a different namespace than std::chrono, such as std::filesystem. —endnote]
29.7.6.2 Member functions [time.clock.file.members]

1 The type denoted by file_clock provides precisely one of the following two sets of static member functions:
template<class Duration>

static sys_time<see below>
to_sys(const file_time<Duration>&);

template<class Duration>
static file_time<see below>
from_sys(const sys_time<Duration>&);

or:
template<class Duration>

static utc_time<see below>
to_utc(const file_time<Duration>&);

template<class Duration>
static file_time<see below>
from_utc(const utc_time<Duration>&);

Thesemember functions shall provide time_point conversions consistent with those specified by utc_clock, tai_clock,and gps_clock. The Duration of the resultant time_point is computed from the Duration of the input time_point.
§ 29.7.6.2 1365

© ISO/IEC N4910

29.7.6.3 Non-member functions [time.clock.file.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const file_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%F %T}"), t);

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

file_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

2 Effects: Attempts to parse the input stream is into the file_time tp using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_base::failbit) is calledand tp is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null. Additionally, the parsed offset will be subtracted from the successfully parsed timestampprior to assigning that difference to tp.

3 Returns: is.
29.7.7 Class steady_clock [time.clock.steady]
namespace std::chrono {

class steady_clock {
public:

using rep = unspecified;
using period = ratio<unspecified, unspecified>;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<unspecified, duration>;
static constexpr bool is_steady = true;

static time_point now() noexcept;
};

}

1 Objects of class steady_clock represent clocks for which values of time_point never decrease as physical timeadvances and for which values of time_point advance at a steady rate relative to real time. That is, the clock may notbe adjusted.
29.7.8 Class high_resolution_clock [time.clock.hires]
namespace std::chrono {

class high_resolution_clock {
public:
using rep = unspecified;
using period = ratio<unspecified, unspecified>;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<unspecified, duration>;
static constexpr bool is_steady = unspecified;

static time_point now() noexcept;
};

}

1 Objects of class high_resolution_clock represent clocks with the shortest tick period. high_resolution_clock maybe a synonym for system_clock or steady_clock.
29.7.9 Local time [time.clock.local]

1 The family of time points denoted by local_time<Duration> are based on the pseudo clock local_t. local_t has nomember now() and thus does not meet the clock requirements. Nevertheless local_time<Duration> serves the vitalrole of representing local time with respect to a not-yet-specified time zone. Aside from being able to get the currenttime, the complete time_point algebra is available for local_time<Duration> (just as for sys_time<Duration>).
§ 29.7.9 1366

© ISO/IEC N4910

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const local_time<Duration>& lt);

2 Effects:
os << sys_time<Duration>{lt.time_since_epoch()};

3 Returns: os.
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

local_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

4 Effects: Attempts to parse the input stream is into the local_time tp using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_base::failbit) is calledand tp is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null.

5 Returns: is.
29.7.10 time_point conversions [time.clock.cast]
29.7.10.1 Class template clock_time_conversion [time.clock.conv]
namespace std::chrono {

template<class DestClock, class SourceClock>
struct clock_time_conversion {};

}

1 clock_time_conversion serves as a trait which can be used to specify how to convert a source time_point of type
time_point<SourceClock, Duration> to a destination time_point of type time_point<DestClock, Duration> via aspecialization: clock_time_conversion<DestClock, SourceClock>. A specialization of clock_time_conversion<DestClock,
SourceClock> shall provide a const-qualified operator() that takes a parameter of type time_point<SourceClock,
Duration> and returns a time_point<DestClock, OtherDuration> representing an equivalent point in time. OtherDurationis a chrono::duration whose specialization is computed from the input Duration in a manner which can vary foreach clock_time_conversion specialization. A program may specialize clock_time_conversion if at least one of thetemplate parameters is a user-defined clock type.

2 Several specializations are provided by the implementation, as described in 29.7.10.2, 29.7.10.3, 29.7.10.4, and29.7.10.5.
29.7.10.2 Identity conversions [time.clock.cast.id]
template<class Clock>
struct clock_time_conversion<Clock, Clock> {

template<class Duration>
time_point<Clock, Duration>

operator()(const time_point<Clock, Duration>& t) const;
};

template<class Duration>
time_point<Clock, Duration>
operator()(const time_point<Clock, Duration>& t) const;

1 Returns: t.
template<>
struct clock_time_conversion<system_clock, system_clock> {

template<class Duration>
sys_time<Duration>

operator()(const sys_time<Duration>& t) const;
};

§ 29.7.10.2 1367

© ISO/IEC N4910

template<class Duration>
sys_time<Duration>
operator()(const sys_time<Duration>& t) const;

2 Returns: t.
template<>
struct clock_time_conversion<utc_clock, utc_clock> {

template<class Duration>
utc_time<Duration>

operator()(const utc_time<Duration>& t) const;
};

template<class Duration>
utc_time<Duration>
operator()(const utc_time<Duration>& t) const;

3 Returns: t.
29.7.10.3 Conversions between system_clock and utc_clock [time.clock.cast.sys.utc]
template<>
struct clock_time_conversion<utc_clock, system_clock> {

template<class Duration>
utc_time<common_type_t<Duration, seconds>>

operator()(const sys_time<Duration>& t) const;
};

template<class Duration>
utc_time<common_type_t<Duration, seconds>>
operator()(const sys_time<Duration>& t) const;

1 Returns: utc_clock::from_sys(t).
template<>
struct clock_time_conversion<system_clock, utc_clock> {

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

operator()(const utc_time<Duration>& t) const;
};

template<class Duration>
sys_time<common_type_t<Duration, seconds>>
operator()(const utc_time<Duration>& t) const;

2 Returns: utc_clock::to_sys(t).
29.7.10.4 Conversions between system_clock and other clocks [time.clock.cast.sys]
template<class SourceClock>
struct clock_time_conversion<system_clock, SourceClock> {

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const

-> decltype(SourceClock::to_sys(t));
};

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const
-> decltype(SourceClock::to_sys(t));

1 Constraints: SourceClock::to_sys(t) is well-formed.
2 Mandates: SourceClock::to_sys(t) returns a sys_time<Duration2> for some type Duration2 (29.6.1).
3 Returns: SourceClock::to_sys(t).

template<class DestClock>
struct clock_time_conversion<DestClock, system_clock> {

template<class Duration>
auto operator()(const sys_time<Duration>& t) const

-> decltype(DestClock::from_sys(t));

§ 29.7.10.4 1368

© ISO/IEC N4910

};

template<class Duration>
auto operator()(const sys_time<Duration>& t) const
-> decltype(DestClock::from_sys(t));

4 Constraints: DestClock::from_sys(t) is well-formed.
5 Mandates: DestClock::from_sys(t) returns a time_point<DestClock, Duration2> for some type Duration2(29.6.1).
6 Returns: DestClock::from_sys(t).
29.7.10.5 Conversions between utc_clock and other clocks [time.clock.cast.utc]
template<class SourceClock>
struct clock_time_conversion<utc_clock, SourceClock> {

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const
-> decltype(SourceClock::to_utc(t));

};

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const
-> decltype(SourceClock::to_utc(t));

1 Constraints: SourceClock::to_utc(t) is well-formed.
2 Mandates: SourceClock::to_utc(t) returns a utc_time<Duration2> for some type Duration2 (29.6.1).
3 Returns: SourceClock::to_utc(t).

template<class DestClock>
struct clock_time_conversion<DestClock, utc_clock> {

template<class Duration>
auto operator()(const utc_time<Duration>& t) const
-> decltype(DestClock::from_utc(t));

};

template<class Duration>
auto operator()(const utc_time<Duration>& t) const
-> decltype(DestClock::from_utc(t));

4 Constraints: DestClock::from_utc(t) is well-formed.
5 Mandates: DestClock::from_utc(t) returns a time_point<DestClock, Duration2> for some type Duration2(29.6.1).
6 Returns: DestClock::from_utc(t).
29.7.10.6 Function template clock_cast [time.clock.cast.fn]

template<class DestClock, class SourceClock, class Duration>
auto clock_cast(const time_point<SourceClock, Duration>& t);

1 Constraints: At least one of the following clock time conversion expressions is well-formed:
—(1.1) clock_time_conversion<DestClock, SourceClock>{}(t)

—(1.2) clock_time_conversion<DestClock, system_clock>{}(
clock_time_conversion<system_clock, SourceClock>{}(t))

—(1.3) clock_time_conversion<DestClock, utc_clock>{}(
clock_time_conversion<utc_clock, SourceClock>{}(t))

—(1.4) clock_time_conversion<DestClock, utc_clock>{}(
clock_time_conversion<utc_clock, system_clock>{}(
clock_time_conversion<system_clock, SourceClock>{}(t)))

—(1.5) clock_time_conversion<DestClock, system_clock>{}(
clock_time_conversion<system_clock, utc_clock>{}(
clock_time_conversion<utc_clock, SourceClock>{}(t)))

§ 29.7.10.6 1369

© ISO/IEC N4910

A clock time conversion expression is considered better than another clock time conversion expression if itinvolves fewer operator() calls on clock_time_conversion specializations.
2 Mandates: Among the well-formed clock time conversion expressions from the above list, there is a unique bestexpression.
3 Returns: The best well-formed clock time conversion expression in the above list.
29.8 The civil calendar [time.cal]
29.8.1 In general [time.cal.general]

1 The types in 29.8 describe the civil (Gregorian) calendar and its relationship to sys_days and local_days.
29.8.2 Class last_spec [time.cal.last]
namespace std::chrono {

struct last_spec {
explicit last_spec() = default;

};
}

1 The type last_spec is used in conjunction with other calendar types to specify the last in a sequence. For example,depending on context, it can represent the last day of a month, or the last day of the week of a month.
29.8.3 Class day [time.cal.day]
29.8.3.1 Overview [time.cal.day.overview]
namespace std::chrono {

class day {
unsigned char d_; // exposition only

public:
day() = default;
constexpr explicit day(unsigned d) noexcept;

constexpr day& operator++() noexcept;
constexpr day operator++(int) noexcept;
constexpr day& operator--() noexcept;
constexpr day operator--(int) noexcept;

constexpr day& operator+=(const days& d) noexcept;
constexpr day& operator-=(const days& d) noexcept;

constexpr explicit operator unsigned() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 day represents a day of a month. It normally holds values in the range 1 to 31, but may hold non-negative valuesoutside this range. It can be constructed with any unsigned value, which will be subsequently truncated to fit into day’sunspecified internal storage. day meets the Cpp17EqualityComparable (Table 27) and Cpp17LessThanComparable(Table 28) requirements, and participates in basic arithmetic with days objects, which represent a difference betweentwo day objects.
2 day is a trivially copyable and standard-layout class type.
29.8.3.2 Member functions [time.cal.day.members]

constexpr explicit day(unsigned d) noexcept;

1 Effects: Initializes d_ with d. The value held is unspecified if d is not in the range [0, 255].
constexpr day& operator++() noexcept;

2 Effects: ++d_.
3 Returns: *this.

§ 29.8.3.2 1370

© ISO/IEC N4910

constexpr day operator++(int) noexcept;

4 Effects: ++(*this).
5 Returns: A copy of *this as it existed on entry to this member function.

constexpr day& operator--() noexcept;

6 Effects: Equivalent to: --d_.
7 Returns: *this.

constexpr day operator--(int) noexcept;

8 Effects: --(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr day& operator+=(const days& d) noexcept;

10 Effects: *this = *this + d.
11 Returns: *this.

constexpr day& operator-=(const days& d) noexcept;

12 Effects: *this = *this - d.
13 Returns: *this.

constexpr explicit operator unsigned() const noexcept;

14 Returns: d_.
constexpr bool ok() const noexcept;

15 Returns: 1 <= d_ && d_ <= 31.
29.8.3.3 Non-member functions [time.cal.day.nonmembers]

constexpr bool operator==(const day& x, const day& y) noexcept;

1 Returns: unsigned{x} == unsigned{y}.
constexpr strong_ordering operator<=>(const day& x, const day& y) noexcept;

2 Returns: unsigned{x} <=> unsigned{y}.
constexpr day operator+(const day& x, const days& y) noexcept;

3 Returns: day(unsigned{x} + y.count()).
constexpr day operator+(const days& x, const day& y) noexcept;

4 Returns: y + x.
constexpr day operator-(const day& x, const days& y) noexcept;

5 Returns: x + -y.
constexpr days operator-(const day& x, const day& y) noexcept;

6 Returns: days{int(unsigned{x}) - int(unsigned{y})}.
template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const day& d);

7 Effects: Equivalent to:
return os << (d.ok() ?

format(STATICALLY-WIDEN<charT>("{:%d}"), d) :
format(STATICALLY-WIDEN<charT>("{:%d} is not a valid day"), d));

§ 29.8.3.3 1371

© ISO/IEC N4910

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

day& d, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

8 Effects: Attempts to parse the input stream is into the day d using the format flags given in the NTCTS fmt asspecified in 29.13. If the parse fails to decode a valid day, is.setstate(ios_base::failbit) is called and d isnot modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev is non-null.If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if offset isnon-null.
9 Returns: is.

constexpr chrono::day operator""d(unsigned long long d) noexcept;

10 Returns: day{static_cast<unsigned>(d)}.
29.8.4 Class month [time.cal.month]
29.8.4.1 Overview [time.cal.month.overview]
namespace std::chrono {

class month {
unsigned char m_; // exposition only

public:
month() = default;
constexpr explicit month(unsigned m) noexcept;

constexpr month& operator++() noexcept;
constexpr month operator++(int) noexcept;
constexpr month& operator--() noexcept;
constexpr month operator--(int) noexcept;

constexpr month& operator+=(const months& m) noexcept;
constexpr month& operator-=(const months& m) noexcept;

constexpr explicit operator unsigned() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month represents a month of a year. It normally holds values in the range 1 to 12, but may hold non-negative valuesoutside this range. It can be constructed with any unsigned value, which will be subsequently truncated to fit into month’sunspecified internal storage. month meets the Cpp17EqualityComparable (Table 27) and Cpp17LessThanComparable(Table 28) requirements, and participates in basic arithmetic with months objects, which represent a difference betweentwo month objects.
2 month is a trivially copyable and standard-layout class type.
29.8.4.2 Member functions [time.cal.month.members]

constexpr explicit month(unsigned m) noexcept;

1 Effects: Initializes m_ with m. The value held is unspecified if m is not in the range [0, 255].
constexpr month& operator++() noexcept;

2 Effects: *this += months{1}.
3 Returns: *this.

constexpr month operator++(int) noexcept;

4 Effects: ++(*this).
5 Returns: A copy of *this as it existed on entry to this member function.

§ 29.8.4.2 1372

© ISO/IEC N4910

constexpr month& operator--() noexcept;

6 Effects: *this -= months{1}.
7 Returns: *this.

constexpr month operator--(int) noexcept;

8 Effects: --(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr month& operator+=(const months& m) noexcept;

10 Effects: *this = *this + m.
11 Returns: *this.

constexpr month& operator-=(const months& m) noexcept;

12 Effects: *this = *this - m.
13 Returns: *this.

constexpr explicit operator unsigned() const noexcept;

14 Returns: m_.
constexpr bool ok() const noexcept;

15 Returns: 1 <= m_ && m_ <= 12.
29.8.4.3 Non-member functions [time.cal.month.nonmembers]

constexpr bool operator==(const month& x, const month& y) noexcept;

1 Returns: unsigned{x} == unsigned{y}.
constexpr strong_ordering operator<=>(const month& x, const month& y) noexcept;

2 Returns: unsigned{x} <=> unsigned{y}.
constexpr month operator+(const month& x, const months& y) noexcept;

3 Returns:
month{modulo(static_cast<long long>(unsigned{x}) + (y.count() - 1), 12) + 1}

where modulo(n, 12) computes the remainder of n divided by 12 using Euclidean division.
[Note 1: Given a divisor of 12, Euclidean division truncates towards negative infinity and always produces a remainder in therange of [0, 11]. Assuming no overflow in the signed summation, this operation results in a month holding a value in the range
[1, 12] even if !x.ok(). —end note]
[Example 1: February + months{11} == January. —end example]

constexpr month operator+(const months& x, const month& y) noexcept;

4 Returns: y + x.
constexpr month operator-(const month& x, const months& y) noexcept;

5 Returns: x + -y.
constexpr months operator-(const month& x, const month& y) noexcept;

6 Returns: If x.ok() == true and y.ok() == true, returns a value m in the range [months{0}, months{11}]satisfying y + m == x. Otherwise the value returned is unspecified.
[Example 2: January - February == months{11}. —end example]

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const month& m);

7 Effects: Equivalent to:

§ 29.8.4.3 1373

© ISO/IEC N4910

return os << (m.ok() ?
format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%b}"), m) :
format(os.getloc(), STATICALLY-WIDEN<charT>("{} is not a valid month"),

static_cast<unsigned>(m)));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

month& m, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

8 Effects: Attempts to parse the input stream is into the month m using the format flags given in the NTCTS fmtas specified in 29.13. If the parse fails to decode a valid month, is.setstate(ios_base::failbit) is calledand m is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null.

9 Returns: is.
29.8.5 Class year [time.cal.year]
29.8.5.1 Overview [time.cal.year.overview]
namespace std::chrono {

class year {
short y_; // exposition only

public:
year() = default;
constexpr explicit year(int y) noexcept;

constexpr year& operator++() noexcept;
constexpr year operator++(int) noexcept;
constexpr year& operator--() noexcept;
constexpr year operator--(int) noexcept;

constexpr year& operator+=(const years& y) noexcept;
constexpr year& operator-=(const years& y) noexcept;

constexpr year operator+() const noexcept;
constexpr year operator-() const noexcept;

constexpr bool is_leap() const noexcept;

constexpr explicit operator int() const noexcept;
constexpr bool ok() const noexcept;

static constexpr year min() noexcept;
static constexpr year max() noexcept;

};
}

1 year represents a year in the civil calendar. It can represent values in the range [min(), max()]. It can be constructedwith any int value, which will be subsequently truncated to fit into year’s unspecified internal storage. year meets theCpp17EqualityComparable (Table 27) and Cpp17LessThanComparable (Table 28) requirements, and participates inbasic arithmetic with years objects, which represent a difference between two year objects.
2 year is a trivially copyable and standard-layout class type.
29.8.5.2 Member functions [time.cal.year.members]

constexpr explicit year(int y) noexcept;

1 Effects: Initializes y_ with y. The value held is unspecified if y is not in the range [-32767, 32767].
constexpr year& operator++() noexcept;

2 Effects: ++y_.
3 Returns: *this.
§ 29.8.5.2 1374

© ISO/IEC N4910

constexpr year operator++(int) noexcept;

4 Effects: ++(*this).
5 Returns: A copy of *this as it existed on entry to this member function.

constexpr year& operator--() noexcept;

6 Effects: --y_.
7 Returns: *this.

constexpr year operator--(int) noexcept;

8 Effects: --(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr year& operator+=(const years& y) noexcept;

10 Effects: *this = *this + y.
11 Returns: *this.

constexpr year& operator-=(const years& y) noexcept;

12 Effects: *this = *this - y.
13 Returns: *this.

constexpr year operator+() const noexcept;

14 Returns: *this.
constexpr year year::operator-() const noexcept;

15 Returns: year{-y_}.
constexpr bool is_leap() const noexcept;

16 Returns: y_ % 4 == 0 && (y_ % 100 != 0 || y_ % 400 == 0).
constexpr explicit operator int() const noexcept;

17 Returns: y_.
constexpr bool ok() const noexcept;

18 Returns: min().y_ <= y_ && y_ <= max().y_.
static constexpr year min() noexcept;

19 Returns: year{-32767}.
static constexpr year max() noexcept;

20 Returns: year{32767}.
29.8.5.3 Non-member functions [time.cal.year.nonmembers]

constexpr bool operator==(const year& x, const year& y) noexcept;

1 Returns: int{x} == int{y}.
constexpr strong_ordering operator<=>(const year& x, const year& y) noexcept;

2 Returns: int{x} <=> int{y}.
constexpr year operator+(const year& x, const years& y) noexcept;

3 Returns: year{int{x} + static_cast<int>(y.count())}.
constexpr year operator+(const years& x, const year& y) noexcept;

4 Returns: y + x.

§ 29.8.5.3 1375

© ISO/IEC N4910

constexpr year operator-(const year& x, const years& y) noexcept;

5 Returns: x + -y.
constexpr years operator-(const year& x, const year& y) noexcept;

6 Returns: years{int{x} - int{y}}.
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const year& y);

7 Effects: Equivalent to:
return os << (y.ok() ?
format(STATICALLY-WIDEN<charT>("{:%Y}"), y) :
format(STATICALLY-WIDEN<charT>("{:%Y} is not a valid year"), y));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

year& y, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

8 Effects: Attempts to parse the input stream is into the year y using the format flags given in the NTCTS fmt asspecified in 29.13. If the parse fails to decode a valid year, is.setstate(ios_base::failbit) is called and y isnot modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev is non-null.If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if offset isnon-null.
9 Returns: is.

constexpr chrono::year operator""y(unsigned long long y) noexcept;

10 Returns: year{static_cast<int>(y)}.
29.8.6 Class weekday [time.cal.wd]
29.8.6.1 Overview [time.cal.wd.overview]
namespace std::chrono {

class weekday {
unsigned char wd_; // exposition only

public:
weekday() = default;
constexpr explicit weekday(unsigned wd) noexcept;
constexpr weekday(const sys_days& dp) noexcept;
constexpr explicit weekday(const local_days& dp) noexcept;

constexpr weekday& operator++() noexcept;
constexpr weekday operator++(int) noexcept;
constexpr weekday& operator--() noexcept;
constexpr weekday operator--(int) noexcept;

constexpr weekday& operator+=(const days& d) noexcept;
constexpr weekday& operator-=(const days& d) noexcept;

constexpr unsigned c_encoding() const noexcept;
constexpr unsigned iso_encoding() const noexcept;
constexpr bool ok() const noexcept;

constexpr weekday_indexed operator[](unsigned index) const noexcept;
constexpr weekday_last operator[](last_spec) const noexcept;

};
}

1 weekday represents a day of the week in the civil calendar. It normally holds values in the range 0 to 6, correspondingto Sunday through Saturday, but it may hold non-negative values outside this range. It can be constructed with any

§ 29.8.6.1 1376

© ISO/IEC N4910

unsigned value, which will be subsequently truncated to fit into weekday’s unspecified internal storage. weekday meetsthe Cpp17EqualityComparable (Table 27) requirements.
[Note 1: weekday is not Cpp17LessThanComparable because there is no universal consensus on which day is the first day of theweek. weekday’s arithmetic operations treat the days of the week as a circular range, with no beginning and no end. —end note]

2 weekday is a trivially copyable and standard-layout class type.
29.8.6.2 Member functions [time.cal.wd.members]

constexpr explicit weekday(unsigned wd) noexcept;

1 Effects: Initializes wd_ with wd == 7 ? 0 : wd. The value held is unspecified if wd is not in the range [0, 255].
constexpr weekday(const sys_days& dp) noexcept;

2 Effects: Computes what day of the week corresponds to the sys_days dp, and initializes that day of the week in
wd_.

3 [Example 1: If dp represents 1970-01-01, the constructed weekday represents Thursday by storing 4 in wd_. —end example]
constexpr explicit weekday(const local_days& dp) noexcept;

4 Effects: Computes what day of the week corresponds to the local_days dp, and initializes that day of the weekin wd_.
5 Postconditions: The value is identical to that constructed from sys_days{dp.time_since_epoch()}.

constexpr weekday& operator++() noexcept;

6 Effects: *this += days{1}.
7 Returns: *this.

constexpr weekday operator++(int) noexcept;

8 Effects: ++(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr weekday& operator--() noexcept;

10 Effects: *this -= days{1}.
11 Returns: *this.

constexpr weekday operator--(int) noexcept;

12 Effects: --(*this).
13 Returns: A copy of *this as it existed on entry to this member function.

constexpr weekday& operator+=(const days& d) noexcept;

14 Effects: *this = *this + d.
15 Returns: *this.

constexpr weekday& operator-=(const days& d) noexcept;

16 Effects: *this = *this - d.
17 Returns: *this.

constexpr unsigned c_encoding() const noexcept;

18 Returns: wd_.
constexpr unsigned iso_encoding() const noexcept;

19 Returns: wd_ == 0u ? 7u : wd_.
constexpr bool ok() const noexcept;

20 Returns: wd_ <= 6.

§ 29.8.6.2 1377

© ISO/IEC N4910

constexpr weekday_indexed operator[](unsigned index) const noexcept;

21 Returns: {*this, index}.
constexpr weekday_last operator[](last_spec) const noexcept;

22 Returns: weekday_last{*this}.
29.8.6.3 Non-member functions [time.cal.wd.nonmembers]

constexpr bool operator==(const weekday& x, const weekday& y) noexcept;

1 Returns: x.wd_ == y.wd_.
constexpr weekday operator+(const weekday& x, const days& y) noexcept;

2 Returns:
weekday{modulo(static_cast<long long>(x.wd_) + y.count(), 7)}

where modulo(n, 7) computes the remainder of n divided by 7 using Euclidean division.
[Note 1: Given a divisor of 7, Euclidean division truncates towards negative infinity and always produces a remainder in therange of [0, 6]. Assuming no overflow in the signed summation, this operation results in a weekday holding a value in therange [0, 6] even if !x.ok(). —end note]
[Example 1: Monday + days{6} == Sunday. —end example]

constexpr weekday operator+(const days& x, const weekday& y) noexcept;

3 Returns: y + x.
constexpr weekday operator-(const weekday& x, const days& y) noexcept;

4 Returns: x + -y.
constexpr days operator-(const weekday& x, const weekday& y) noexcept;

5 Returns: If x.ok() == true and y.ok() == true, returns a value d in the range [days{0}, days{6}] satisfying y
+ d == x. Otherwise the value returned is unspecified.
[Example 2: Sunday - Monday == days{6}. —end example]

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const weekday& wd);

6 Effects: Equivalent to:
return os << (wd.ok() ?
format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%a}"), wd) :
format(os.getloc(), STATICALLY-WIDEN<charT>("{} is not a valid weekday"),

static_cast<unsigned>(wd.wd_)));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

weekday& wd, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

7 Effects: Attempts to parse the input stream is into the weekday wd using the format flags given in the NTCTS fmtas specified in 29.13. If the parse fails to decode a valid weekday, is.setstate(ios_base::failbit) is calledand wd is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if abbrev isnon-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to *offset if
offset is non-null.

8 Returns: is.
29.8.7 Class weekday_indexed [time.cal.wdidx]
29.8.7.1 Overview [time.cal.wdidx.overview]
namespace std::chrono {

class weekday_indexed {
chrono::weekday wd_; // exposition only

§ 29.8.7.1 1378

© ISO/IEC N4910

unsigned char index_; // exposition only
public:
weekday_indexed() = default;
constexpr weekday_indexed(const chrono::weekday& wd, unsigned index) noexcept;

constexpr chrono::weekday weekday() const noexcept;
constexpr unsigned index() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 weekday_indexed represents a weekday and a small index in the range 1 to 5. This class is used to represent the first,second, third, fourth, or fifth weekday of a month.
2 [Note 1: A weekday_indexed object can be constructed by indexing a weekday with an unsigned. —end note]
[Example 1:
constexpr auto wdi = Sunday[2]; // wdi is the second Sunday of an as yet unspecified month
static_assert(wdi.weekday() == Sunday);
static_assert(wdi.index() == 2);

—end example]
3 weekday_indexed is a trivially copyable and standard-layout class type.
29.8.7.2 Member functions [time.cal.wdidx.members]

constexpr weekday_indexed(const chrono::weekday& wd, unsigned index) noexcept;

1 Effects: Initializes wd_ with wd and index_ with index. The values held are unspecified if !wd.ok() or index isnot in the range [0, 7].
constexpr chrono::weekday weekday() const noexcept;

2 Returns: wd_.
constexpr unsigned index() const noexcept;

3 Returns: index_.
constexpr bool ok() const noexcept;

4 Returns: wd_.ok() && 1 <= index_ && index_ <= 5.
29.8.7.3 Non-member functions [time.cal.wdidx.nonmembers]

constexpr bool operator==(const weekday_indexed& x, const weekday_indexed& y) noexcept;

1 Returns: x.weekday() == y.weekday() && x.index() == y.index().
template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_indexed& wdi);

2 Effects: Equivalent to:
auto i = wdi.index();
return os << (i >= 1 && i <= 5 ?
format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}[{}]"), wdi.weekday(), i) :
format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}[{} is not a valid index]"),

wdi.weekday(), i));

29.8.8 Class weekday_last [time.cal.wdlast]
29.8.8.1 Overview [time.cal.wdlast.overview]
namespace std::chrono {

class weekday_last {
chrono::weekday wd_; // exposition only

§ 29.8.8.1 1379

© ISO/IEC N4910

public:
constexpr explicit weekday_last(const chrono::weekday& wd) noexcept;

constexpr chrono::weekday weekday() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 weekday_last represents the last weekday of a month.
2 [Note 1: A weekday_last object can be constructed by indexing a weekday with last. —end note]
[Example 1:
constexpr auto wdl = Sunday[last]; // wdl is the last Sunday of an as yet unspecified month
static_assert(wdl.weekday() == Sunday);

—end example]
3 weekday_last is a trivially copyable and standard-layout class type.
29.8.8.2 Member functions [time.cal.wdlast.members]

constexpr explicit weekday_last(const chrono::weekday& wd) noexcept;

1 Effects: Initializes wd_ with wd.
constexpr chrono::weekday weekday() const noexcept;

2 Returns: wd_.
constexpr bool ok() const noexcept;

3 Returns: wd_.ok().
29.8.8.3 Non-member functions [time.cal.wdlast.nonmembers]

constexpr bool operator==(const weekday_last& x, const weekday_last& y) noexcept;

1 Returns: x.weekday() == y.weekday().
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const weekday_last& wdl);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}[last]"), wdl.weekday());

29.8.9 Class month_day [time.cal.md]
29.8.9.1 Overview [time.cal.md.overview]
namespace std::chrono {

class month_day {
chrono::month m_; // exposition only
chrono::day d_; // exposition only

public:
month_day() = default;
constexpr month_day(const chrono::month& m, const chrono::day& d) noexcept;

constexpr chrono::month month() const noexcept;
constexpr chrono::day day() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_day represents a specific day of a specificmonth, but with an unspecified year. month_daymeets theCpp17EqualityComparable(Table 27) and Cpp17LessThanComparable (Table 28) requirements.
2 month_day is a trivially copyable and standard-layout class type.

§ 29.8.9.1 1380

© ISO/IEC N4910

29.8.9.2 Member functions [time.cal.md.members]

constexpr month_day(const chrono::month& m, const chrono::day& d) noexcept;

1 Effects: Initializes m_ with m, and d_ with d.
constexpr chrono::month month() const noexcept;

2 Returns: m_.
constexpr chrono::day day() const noexcept;

3 Returns: d_.
constexpr bool ok() const noexcept;

4 Returns: true if m_.ok() is true, 1d <= d_, and d_ is less than or equal to the number of days in month m_;otherwise returns false. When m_ == February, the number of days is considered to be 29.
29.8.9.3 Non-member functions [time.cal.md.nonmembers]

constexpr bool operator==(const month_day& x, const month_day& y) noexcept;

1 Returns: x.month() == y.month() && x.day() == y.day().
constexpr strong_ordering operator<=>(const month_day& x, const month_day& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.month() <=> y.month(); c != 0) return c;
return x.day() <=> y.day();

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const month_day& md);

3 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}/{}"),

md.month(), md.day());

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

month_day& md, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

4 Effects: Attempts to parse the input stream is into the month_day md using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid month_day, is.setstate(ios_base::failbit) iscalled and md is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if
abbrev is non-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to
*offset if offset is non-null.

5 Returns: is.
29.8.10 Class month_day_last [time.cal.mdlast]
namespace std::chrono {

class month_day_last {
chrono::month m_; // exposition only

public:
constexpr explicit month_day_last(const chrono::month& m) noexcept;

constexpr chrono::month month() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_day_last represents the last day of a month.
2 [Note 1: A month_day_last object can be constructed using the expression m/last or last/m, where m is an expression of type

month. —end note]
§ 29.8.10 1381

© ISO/IEC N4910

[Example 1:
constexpr auto mdl = February/last; // mdl is the last day of February of an as yet unspecified year
static_assert(mdl.month() == February);

—end example]
3 month_day_last is a trivially copyable and standard-layout class type.

constexpr explicit month_day_last(const chrono::month& m) noexcept;

4 Effects: Initializes m_ with m.
constexpr month month() const noexcept;

5 Returns: m_.
constexpr bool ok() const noexcept;

6 Returns: m_.ok().
constexpr bool operator==(const month_day_last& x, const month_day_last& y) noexcept;

7 Returns: x.month() == y.month().
constexpr strong_ordering operator<=>(const month_day_last& x, const month_day_last& y) noexcept;

8 Returns: x.month() <=> y.month().
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const month_day_last& mdl);

9 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}/last"), mdl.month());

29.8.11 Class month_weekday [time.cal.mwd]
29.8.11.1 Overview [time.cal.mwd.overview]
namespace std::chrono {

class month_weekday {
chrono::month m_; // exposition only
chrono::weekday_indexed wdi_; // exposition only

public:
constexpr month_weekday(const chrono::month& m, const chrono::weekday_indexed& wdi) noexcept;

constexpr chrono::month month() const noexcept;
constexpr chrono::weekday_indexed weekday_indexed() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_weekday represents the nth weekday of a month, of an as yet unspecified year. To do this the month_weekdaystores a month and a weekday_indexed.
2 [Example 1:

constexpr auto mwd
= February/Tuesday[3]; // mwd is the third Tuesday of February of an as yet unspecified year

static_assert(mwd.month() == February);
static_assert(mwd.weekday_indexed() == Tuesday[3]);

—end example]
3 month_weekday is a trivially copyable and standard-layout class type.
29.8.11.2 Member functions [time.cal.mwd.members]

constexpr month_weekday(const chrono::month& m, const chrono::weekday_indexed& wdi) noexcept;

1 Effects: Initializes m_ with m, and wdi_ with wdi.

§ 29.8.11.2 1382

© ISO/IEC N4910

constexpr chrono::month month() const noexcept;

2 Returns: m_.
constexpr chrono::weekday_indexed weekday_indexed() const noexcept;

3 Returns: wdi_.
constexpr bool ok() const noexcept;

4 Returns: m_.ok() && wdi_.ok().
29.8.11.3 Non-member functions [time.cal.mwd.nonmembers]

constexpr bool operator==(const month_weekday& x, const month_weekday& y) noexcept;

1 Returns: x.month() == y.month() && x.weekday_indexed() == y.weekday_indexed().
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const month_weekday& mwd);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}/{:L}"),

mwd.month(), mwd.weekday_indexed());

29.8.12 Class month_weekday_last [time.cal.mwdlast]
29.8.12.1 Overview [time.cal.mwdlast.overview]
namespace std::chrono {

class month_weekday_last {
chrono::month m_; // exposition only
chrono::weekday_last wdl_; // exposition only

public:
constexpr month_weekday_last(const chrono::month& m,

const chrono::weekday_last& wdl) noexcept;

constexpr chrono::month month() const noexcept;
constexpr chrono::weekday_last weekday_last() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_weekday_last represents the last weekday of a month, of an as yet unspecified year. To do this the month_-
weekday_last stores a month and a weekday_last.

2 [Example 1:
constexpr auto mwd

= February/Tuesday[last]; // mwd is the last Tuesday of February of an as yet unspecified year
static_assert(mwd.month() == February);
static_assert(mwd.weekday_last() == Tuesday[last]);

—end example]
3 month_weekday_last is a trivially copyable and standard-layout class type.
29.8.12.2 Member functions [time.cal.mwdlast.members]

constexpr month_weekday_last(const chrono::month& m,
const chrono::weekday_last& wdl) noexcept;

1 Effects: Initializes m_ with m, and wdl_ with wdl.
constexpr chrono::month month() const noexcept;

2 Returns: m_.
constexpr chrono::weekday_last weekday_last() const noexcept;

3 Returns: wdl_.

§ 29.8.12.2 1383

© ISO/IEC N4910

constexpr bool ok() const noexcept;

4 Returns: m_.ok() && wdl_.ok().
29.8.12.3 Non-member functions [time.cal.mwdlast.nonmembers]

constexpr bool operator==(const month_weekday_last& x, const month_weekday_last& y) noexcept;

1 Returns: x.month() == y.month() && x.weekday_last() == y.weekday_last().
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const month_weekday_last& mwdl);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L}/{:L}"),

mwdl.month(), mwdl.weekday_last());

29.8.13 Class year_month [time.cal.ym]
29.8.13.1 Overview [time.cal.ym.overview]
namespace std::chrono {

class year_month {
chrono::year y_; // exposition only
chrono::month m_; // exposition only

public:
year_month() = default;
constexpr year_month(const chrono::year& y, const chrono::month& m) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;

constexpr year_month& operator+=(const months& dm) noexcept;
constexpr year_month& operator-=(const months& dm) noexcept;
constexpr year_month& operator+=(const years& dy) noexcept;
constexpr year_month& operator-=(const years& dy) noexcept;

constexpr bool ok() const noexcept;
};

}

1 year_month represents a specific month of a specific year, but with an unspecified day. year_month is a field-based time point with a resolution of months. year_month meets the Cpp17EqualityComparable (Table 27) andCpp17LessThanComparable (Table 28) requirements.
2 year_month is a trivially copyable and standard-layout class type.
29.8.13.2 Member functions [time.cal.ym.members]

constexpr year_month(const chrono::year& y, const chrono::month& m) noexcept;

1 Effects: Initializes y_ with y, and m_ with m.
constexpr chrono::year year() const noexcept;

2 Returns: y_.
constexpr chrono::month month() const noexcept;

3 Returns: m_.
constexpr year_month& operator+=(const months& dm) noexcept;

4 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
5 Effects: *this = *this + dm.
6 Returns: *this.
§ 29.8.13.2 1384

© ISO/IEC N4910

constexpr year_month& operator-=(const months& dm) noexcept;

7 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
8 Effects: *this = *this - dm.
9 Returns: *this.

constexpr year_month& operator+=(const years& dy) noexcept;

10 Effects: *this = *this + dy.
11 Returns: *this.

constexpr year_month& operator-=(const years& dy) noexcept;

12 Effects: *this = *this - dy.
13 Returns: *this.

constexpr bool ok() const noexcept;

14 Returns: y_.ok() && m_.ok().
29.8.13.3 Non-member functions [time.cal.ym.nonmembers]

constexpr bool operator==(const year_month& x, const year_month& y) noexcept;

1 Returns: x.year() == y.year() && x.month() == y.month().
constexpr strong_ordering operator<=>(const year_month& x, const year_month& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.year() <=> y.year(); c != 0) return c;
return x.month() <=> y.month();

constexpr year_month operator+(const year_month& ym, const months& dm) noexcept;

3 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
4 Returns: A year_month value z such that z.ok() && z - ym == dm is true.
5 Complexity: O(1) with respect to the value of dm.

constexpr year_month operator+(const months& dm, const year_month& ym) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
7 Returns: ym + dm.

constexpr year_month operator-(const year_month& ym, const months& dm) noexcept;

8 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
9 Returns: ym + -dm.

constexpr months operator-(const year_month& x, const year_month& y) noexcept;

10 Returns:
x.year() - y.year() + months{static_cast<int>(unsigned{x.month()}) -

static_cast<int>(unsigned{y.month()})}

constexpr year_month operator+(const year_month& ym, const years& dy) noexcept;

11 Returns: (ym.year() + dy) / ym.month().
constexpr year_month operator+(const years& dy, const year_month& ym) noexcept;

12 Returns: ym + dy.

§ 29.8.13.3 1385

© ISO/IEC N4910

constexpr year_month operator-(const year_month& ym, const years& dy) noexcept;

13 Returns: ym + -dy.
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const year_month& ym);

14 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{}/{:L}"),

ym.year(), ym.month());

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

year_month& ym, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

15 Effects: Attempts to parse the input stream is into the year_month ym using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid year_month, is.setstate(ios_base::failbit)is called and ym is not modified. If %Z is used and successfully parsed, that value will be assigned to *abbrev if
abbrev is non-null. If %z (or a modified variant) is used and successfully parsed, that value will be assigned to
*offset if offset is non-null.

16 Returns: is.
29.8.14 Class year_month_day [time.cal.ymd]
29.8.14.1 Overview [time.cal.ymd.overview]
namespace std::chrono {

class year_month_day {
chrono::year y_; // exposition only
chrono::month m_; // exposition only
chrono::day d_; // exposition only

public:
year_month_day() = default;
constexpr year_month_day(const chrono::year& y, const chrono::month& m,

const chrono::day& d) noexcept;
constexpr year_month_day(const year_month_day_last& ymdl) noexcept;
constexpr year_month_day(const sys_days& dp) noexcept;
constexpr explicit year_month_day(const local_days& dp) noexcept;

constexpr year_month_day& operator+=(const months& m) noexcept;
constexpr year_month_day& operator-=(const months& m) noexcept;
constexpr year_month_day& operator+=(const years& y) noexcept;
constexpr year_month_day& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::day day() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_day represents a specific year, month, and day. year_month_day is a field-based time point with a resolutionof days.
[Note 1: year_month_day supports years- and months-oriented arithmetic, but not days-oriented arithmetic. For the latter, there is aconversion to sys_days, which efficiently supports days-oriented arithmetic. —end note]
year_month_day meets the Cpp17EqualityComparable (Table 27) and Cpp17LessThanComparable (Table 28) require-ments.

2 year_month_day is a trivially copyable and standard-layout class type.
§ 29.8.14.1 1386

© ISO/IEC N4910

29.8.14.2 Member functions [time.cal.ymd.members]

constexpr year_month_day(const chrono::year& y, const chrono::month& m,
const chrono::day& d) noexcept;

1 Effects: Initializes y_ with y, m_ with m, and d_ with d.
constexpr year_month_day(const year_month_day_last& ymdl) noexcept;

2 Effects: Initializes y_ with ymdl.year(), m_ with ymdl.month(), and d_ with ymdl.day().
[Note 1: This conversion from year_month_day_last to year_month_day can be more efficient than converting a year_-
month_day_last to a sys_days, and then converting that sys_days to a year_month_day. —end note]

constexpr year_month_day(const sys_days& dp) noexcept;

3 Effects: Constructs an object of type year_month_day that corresponds to the date represented by dp.
4 Remarks: For any value ymd of type year_month_day for which ymd.ok() is true, ymd == year_month_-

day{sys_days{ymd}} is true.
constexpr explicit year_month_day(const local_days& dp) noexcept;

5 Effects: Equivalent to constructing with sys_days{dp.time_since_epoch()}.
constexpr year_month_day& operator+=(const months& m) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
7 Effects: *this = *this + m.
8 Returns: *this.

constexpr year_month_day& operator-=(const months& m) noexcept;

9 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
10 Effects: *this = *this - m.
11 Returns: *this.

constexpr year_month_day& year_month_day::operator+=(const years& y) noexcept;

12 Effects: *this = *this + y.
13 Returns: *this.

constexpr year_month_day& year_month_day::operator-=(const years& y) noexcept;

14 Effects: *this = *this - y.
15 Returns: *this.

constexpr chrono::year year() const noexcept;

16 Returns: y_.
constexpr chrono::month month() const noexcept;

17 Returns: m_.
constexpr chrono::day day() const noexcept;

18 Returns: d_.
constexpr operator sys_days() const noexcept;

19 Returns: If ok(), returns a sys_days holding a count of days from the sys_days epoch to *this (a negativevalue if *this represents a date prior to the sys_days epoch). Otherwise, if y_.ok() && m_.ok() is true, returns
sys_days{y_/m_/1d} + (d_ - 1d). Otherwise the value returned is unspecified.

20 Remarks: A sys_days in the range [days{-12687428}, days{11248737}]which is converted to a year_month_dayhas the same value when converted back to a sys_days.

§ 29.8.14.2 1387

© ISO/IEC N4910

21 [Example 1:
static_assert(year_month_day{sys_days{2017y/January/0}} == 2016y/December/31);
static_assert(year_month_day{sys_days{2017y/January/31}} == 2017y/January/31);
static_assert(year_month_day{sys_days{2017y/January/32}} == 2017y/February/1);

—end example]
constexpr explicit operator local_days() const noexcept;

22 Returns: local_days{sys_days{*this}.time_since_epoch()}.
constexpr bool ok() const noexcept;

23 Returns: If y_.ok() is true, and m_.ok() is true, and d_ is in the range [1d, (y_/m_/last).day()], then returns
true; otherwise returns false.

29.8.14.3 Non-member functions [time.cal.ymd.nonmembers]

constexpr bool operator==(const year_month_day& x, const year_month_day& y) noexcept;

1 Returns: x.year() == y.year() && x.month() == y.month() && x.day() == y.day().
constexpr strong_ordering operator<=>(const year_month_day& x, const year_month_day& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.year() <=> y.year(); c != 0) return c;
if (auto c = x.month() <=> y.month(); c != 0) return c;
return x.day() <=> y.day();

constexpr year_month_day operator+(const year_month_day& ymd, const months& dm) noexcept;

3 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
4 Returns: (ymd.year() / ymd.month() + dm) / ymd.day().
5 [Note 1: If ymd.day() is in the range [1d, 28d], ok() will return true for the resultant year_month_day. —end note]

constexpr year_month_day operator+(const months& dm, const year_month_day& ymd) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
7 Returns: ymd + dm.

constexpr year_month_day operator-(const year_month_day& ymd, const months& dm) noexcept;

8 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
9 Returns: ymd + (-dm).

constexpr year_month_day operator+(const year_month_day& ymd, const years& dy) noexcept;

10 Returns: (ymd.year() + dy) / ymd.month() / ymd.day().
11 [Note 2: If ymd.month() is February and ymd.day() is not in the range [1d, 28d], ok() can return false for the resultant

year_month_day. —end note]
constexpr year_month_day operator+(const years& dy, const year_month_day& ymd) noexcept;

12 Returns: ymd + dy.
constexpr year_month_day operator-(const year_month_day& ymd, const years& dy) noexcept;

13 Returns: ymd + (-dy).
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const year_month_day& ymd);

14 Effects: Equivalent to:

§ 29.8.14.3 1388

© ISO/IEC N4910

return os << (ymd.ok() ?
format(STATICALLY-WIDEN<charT>("{:%F}"), ymd) :
format(STATICALLY-WIDEN<charT>("{:%F} is not a valid date"), ymd));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

year_month_day& ymd, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

15 Effects: Attempts to parse the input stream is into the year_month_day ymd using the format flags given inthe NTCTS fmt as specified in 29.13. If the parse fails to decode a valid year_month_day, is.setstate(ios_-
base::failbit) is called and ymd is not modified. If %Z is used and successfully parsed, that value will beassigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully parsed, that valuewill be assigned to *offset if offset is non-null.

16 Returns: is.
29.8.15 Class year_month_day_last [time.cal.ymdlast]
29.8.15.1 Overview [time.cal.ymdlast.overview]
namespace std::chrono {

class year_month_day_last {
chrono::year y_; // exposition only
chrono::month_day_last mdl_; // exposition only

public:
constexpr year_month_day_last(const chrono::year& y,

const chrono::month_day_last& mdl) noexcept;

constexpr year_month_day_last& operator+=(const months& m) noexcept;
constexpr year_month_day_last& operator-=(const months& m) noexcept;
constexpr year_month_day_last& operator+=(const years& y) noexcept;
constexpr year_month_day_last& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::month_day_last month_day_last() const noexcept;
constexpr chrono::day day() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_day_last represents the last day of a specific year and month. year_month_day_last is a field-based timepoint with a resolution of days, except that it is restricted to pointing to the last day of a year and month.
[Note 1: year_month_day_last supports years- and months-oriented arithmetic, but not days-oriented arithmetic. For the latter,there is a conversion to sys_days, which efficiently supports days-oriented arithmetic. —end note]
year_month_day_last meets the Cpp17EqualityComparable (Table 27) and Cpp17LessThanComparable (Table 28)requirements.

2 year_month_day_last is a trivially copyable and standard-layout class type.
29.8.15.2 Member functions [time.cal.ymdlast.members]

constexpr year_month_day_last(const chrono::year& y,
const chrono::month_day_last& mdl) noexcept;

1 Effects: Initializes y_ with y and mdl_ with mdl.
constexpr year_month_day_last& operator+=(const months& m) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
§ 29.8.15.2 1389

© ISO/IEC N4910

3 Effects: *this = *this + m.
4 Returns: *this.

constexpr year_month_day_last& operator-=(const months& m) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
6 Effects: *this = *this - m.
7 Returns: *this.

constexpr year_month_day_last& operator+=(const years& y) noexcept;

8 Effects: *this = *this + y.
9 Returns: *this.

constexpr year_month_day_last& operator-=(const years& y) noexcept;

10 Effects: *this = *this - y.
11 Returns: *this.

constexpr chrono::year year() const noexcept;

12 Returns: y_.
constexpr chrono::month month() const noexcept;

13 Returns: mdl_.month().
constexpr chrono::month_day_last month_day_last() const noexcept;

14 Returns: mdl_.
constexpr chrono::day day() const noexcept;

15 Returns: If ok() is true, returns a day representing the last day of the (year, month) pair represented by *this.Otherwise, the returned value is unspecified.
16 [Note 1: This value might be computed on demand. —end note]

constexpr operator sys_days() const noexcept;

17 Returns: sys_days{year()/month()/day()}.
constexpr explicit operator local_days() const noexcept;

18 Returns: local_days{sys_days{*this}.time_since_epoch()}.
constexpr bool ok() const noexcept;

19 Returns: y_.ok() && mdl_.ok().
29.8.15.3 Non-member functions [time.cal.ymdlast.nonmembers]

constexpr bool operator==(const year_month_day_last& x, const year_month_day_last& y) noexcept;

1 Returns: x.year() == y.year() && x.month_day_last() == y.month_day_last().
constexpr strong_ordering operator<=>(const year_month_day_last& x,

const year_month_day_last& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.year() <=> y.year(); c != 0) return c;
return x.month_day_last() <=> y.month_day_last();

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const months& dm) noexcept;

3 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

§ 29.8.15.3 1390

© ISO/IEC N4910

4 Returns: (ymdl.year() / ymdl.month() + dm) / last.
constexpr year_month_day_last

operator+(const months& dm, const year_month_day_last& ymdl) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
6 Returns: ymdl + dm.

constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const months& dm) noexcept;

7 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
8 Returns: ymdl + (-dm).

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const years& dy) noexcept;

9 Returns: {ymdl.year()+dy, ymdl.month_day_last()}.
constexpr year_month_day_last

operator+(const years& dy, const year_month_day_last& ymdl) noexcept;

10 Returns: ymdl + dy.
constexpr year_month_day_last

operator-(const year_month_day_last& ymdl, const years& dy) noexcept;

11 Returns: ymdl + (-dy).
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const year_month_day_last& ymdl);

12 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{}/{:L}"),

ymdl.year(), ymdl.month_day_last());

29.8.16 Class year_month_weekday [time.cal.ymwd]
29.8.16.1 Overview [time.cal.ymwd.overview]
namespace std::chrono {

class year_month_weekday {
chrono::year y_; // exposition only
chrono::month m_; // exposition only
chrono::weekday_indexed wdi_; // exposition only

public:
year_month_weekday() = default;
constexpr year_month_weekday(const chrono::year& y, const chrono::month& m,

const chrono::weekday_indexed& wdi) noexcept;
constexpr year_month_weekday(const sys_days& dp) noexcept;
constexpr explicit year_month_weekday(const local_days& dp) noexcept;

constexpr year_month_weekday& operator+=(const months& m) noexcept;
constexpr year_month_weekday& operator-=(const months& m) noexcept;
constexpr year_month_weekday& operator+=(const years& y) noexcept;
constexpr year_month_weekday& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::weekday weekday() const noexcept;
constexpr unsigned index() const noexcept;
constexpr chrono::weekday_indexed weekday_indexed() const noexcept;

§ 29.8.16.1 1391

© ISO/IEC N4910

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_weekday represents a specific year, month, and nth weekday of the month. year_month_weekday is afield-based time point with a resolution of days.
[Note 1: year_month_weekday supports years- and months-oriented arithmetic, but not days-oriented arithmetic. For the latter, thereis a conversion to sys_days, which efficiently supports days-oriented arithmetic. —end note]
year_month_weekday meets the Cpp17EqualityComparable (Table 27) requirements.

2 year_month_weekday is a trivially copyable and standard-layout class type.
29.8.16.2 Member functions [time.cal.ymwd.members]

constexpr year_month_weekday(const chrono::year& y, const chrono::month& m,
const chrono::weekday_indexed& wdi) noexcept;

1 Effects: Initializes y_ with y, m_ with m, and wdi_ with wdi.
constexpr year_month_weekday(const sys_days& dp) noexcept;

2 Effects: Constructs an object of type year_month_weekday which corresponds to the date represented by dp.
3 Remarks: For any value ymwd of type year_month_weekday for which ymwd.ok() is true, ymwd == year_month_-

weekday{sys_days{ymwd}} is true.
constexpr explicit year_month_weekday(const local_days& dp) noexcept;

4 Effects: Equivalent to constructing with sys_days{dp.time_since_epoch()}.
constexpr year_month_weekday& operator+=(const months& m) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
6 Effects: *this = *this + m.
7 Returns: *this.

constexpr year_month_weekday& operator-=(const months& m) noexcept;

8 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
9 Effects: *this = *this - m.
10 Returns: *this.

constexpr year_month_weekday& operator+=(const years& y) noexcept;

11 Effects: *this = *this + y.
12 Returns: *this.

constexpr year_month_weekday& operator-=(const years& y) noexcept;

13 Effects: *this = *this - y.
14 Returns: *this.

constexpr chrono::year year() const noexcept;

15 Returns: y_.
constexpr chrono::month month() const noexcept;

16 Returns: m_.
constexpr chrono::weekday weekday() const noexcept;

17 Returns: wdi_.weekday().

§ 29.8.16.2 1392

© ISO/IEC N4910

constexpr unsigned index() const noexcept;

18 Returns: wdi_.index().
constexpr chrono::weekday_indexed weekday_indexed() const noexcept;

19 Returns: wdi_.
constexpr operator sys_days() const noexcept;

20 Returns: If y_.ok() && m_.ok() && wdi_.weekday().ok(), returns a sys_days that represents the date (index()
- 1) * 7 days after the first weekday() of year()/month(). If index() is 0 the returned sys_days represents thedate 7 days prior to the first weekday() of year()/month(). Otherwise the returned value is unspecified.

constexpr explicit operator local_days() const noexcept;

21 Returns: local_days{sys_days{*this}.time_since_epoch()}.
constexpr bool ok() const noexcept;

22 Returns: If any of y_.ok(), m_.ok(), or wdi_.ok() is false, returns false. Otherwise, if *this represents avalid date, returns true. Otherwise, returns false.
29.8.16.3 Non-member functions [time.cal.ymwd.nonmembers]

constexpr bool operator==(const year_month_weekday& x, const year_month_weekday& y) noexcept;

1 Returns:
x.year() == y.year() && x.month() == y.month() && x.weekday_indexed() == y.weekday_indexed()

constexpr year_month_weekday operator+(const year_month_weekday& ymwd, const months& dm) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
3 Returns: (ymwd.year() / ymwd.month() + dm) / ymwd.weekday_indexed().

constexpr year_month_weekday operator+(const months& dm, const year_month_weekday& ymwd) noexcept;

4 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
5 Returns: ymwd + dm.

constexpr year_month_weekday operator-(const year_month_weekday& ymwd, const months& dm) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
7 Returns: ymwd + (-dm).

constexpr year_month_weekday operator+(const year_month_weekday& ymwd, const years& dy) noexcept;

8 Returns: {ymwd.year()+dy, ymwd.month(), ymwd.weekday_indexed()}.
constexpr year_month_weekday operator+(const years& dy, const year_month_weekday& ymwd) noexcept;

9 Returns: ymwd + dy.
constexpr year_month_weekday operator-(const year_month_weekday& ymwd, const years& dy) noexcept;

10 Returns: ymwd + (-dy).
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const year_month_weekday& ymwd);

11 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{}/{:L}/{:L}"),

ymwd.year(), ymwd.month(), ymwd.weekday_indexed());

§ 29.8.16.3 1393

© ISO/IEC N4910

29.8.17 Class year_month_weekday_last [time.cal.ymwdlast]
29.8.17.1 Overview [time.cal.ymwdlast.overview]
namespace std::chrono {

class year_month_weekday_last {
chrono::year y_; // exposition only
chrono::month m_; // exposition only
chrono::weekday_last wdl_; // exposition only

public:
constexpr year_month_weekday_last(const chrono::year& y, const chrono::month& m,

const chrono::weekday_last& wdl) noexcept;

constexpr year_month_weekday_last& operator+=(const months& m) noexcept;
constexpr year_month_weekday_last& operator-=(const months& m) noexcept;
constexpr year_month_weekday_last& operator+=(const years& y) noexcept;
constexpr year_month_weekday_last& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::weekday weekday() const noexcept;
constexpr chrono::weekday_last weekday_last() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_weekday_last represents a specific year, month, and last weekday of the month. year_month_weekday_-
last is a field-based time point with a resolution of days, except that it is restricted to pointing to the last weekday of ayear and month.
[Note 1: year_month_weekday_last supports years- and months-oriented arithmetic, but not days-oriented arithmetic. For the latter,there is a conversion to sys_days, which efficiently supports days-oriented arithmetic. —end note]
year_month_weekday_last meets the Cpp17EqualityComparable (Table 27) requirements.

2 year_month_weekday_last is a trivially copyable and standard-layout class type.
29.8.17.2 Member functions [time.cal.ymwdlast.members]

constexpr year_month_weekday_last(const chrono::year& y, const chrono::month& m,
const chrono::weekday_last& wdl) noexcept;

1 Effects: Initializes y_ with y, m_ with m, and wdl_ with wdl.
constexpr year_month_weekday_last& operator+=(const months& m) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
3 Effects: *this = *this + m.
4 Returns: *this.

constexpr year_month_weekday_last& operator-=(const months& m) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
6 Effects: *this = *this - m.
7 Returns: *this.

constexpr year_month_weekday_last& operator+=(const years& y) noexcept;

8 Effects: *this = *this + y.
9 Returns: *this.

§ 29.8.17.2 1394

© ISO/IEC N4910

constexpr year_month_weekday_last& operator-=(const years& y) noexcept;

10 Effects: *this = *this - y.
11 Returns: *this.

constexpr chrono::year year() const noexcept;

12 Returns: y_.
constexpr chrono::month month() const noexcept;

13 Returns: m_.
constexpr chrono::weekday weekday() const noexcept;

14 Returns: wdl_.weekday().
constexpr chrono::weekday_last weekday_last() const noexcept;

15 Returns: wdl_.
constexpr operator sys_days() const noexcept;

16 Returns: If ok() == true, returns a sys_days that represents the last weekday() of year()/month(). Otherwisethe returned value is unspecified.
constexpr explicit operator local_days() const noexcept;

17 Returns: local_days{sys_days{*this}.time_since_epoch()}.
constexpr bool ok() const noexcept;

18 Returns: y_.ok() && m_.ok() && wdl_.ok().
29.8.17.3 Non-member functions [time.cal.ymwdlast.nonmembers]

constexpr bool operator==(const year_month_weekday_last& x,
const year_month_weekday_last& y) noexcept;

1 Returns:
x.year() == y.year() && x.month() == y.month() && x.weekday_last() == y.weekday_last()

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
3 Returns: (ymwdl.year() / ymwdl.month() + dm) / ymwdl.weekday_last().

constexpr year_month_weekday_last
operator+(const months& dm, const year_month_weekday_last& ymwdl) noexcept;

4 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
5 Returns: ymwdl + dm.

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its implicitconversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
7 Returns: ymwdl + (-dm).

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

8 Returns: {ymwdl.year()+dy, ymwdl.month(), ymwdl.weekday_last()}.

§ 29.8.17.3 1395

© ISO/IEC N4910

constexpr year_month_weekday_last
operator+(const years& dy, const year_month_weekday_last& ymwdl) noexcept;

9 Returns: ymwdl + dy.
constexpr year_month_weekday_last

operator-(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

10 Returns: ymwdl + (-dy).
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const year_month_weekday_last& ymwdl);

11 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{}/{:L}/{:L}"),

ymwdl.year(), ymwdl.month(), ymwdl.weekday_last());

29.8.18 Conventional syntax operators [time.cal.operators]
1 A set of overloaded operator/ functions provides a conventional syntax for the creation of civil calendar dates.
2 [Note 1: The year, month, and day are accepted in any of the following 3 orders:

year/month/day
month/day/year
day/month/year

Anywhere a day is required, any of the following can also be specified:
last
weekday[i]
weekday[last]

—end note]
3 [Note 2: Partial-date types such as year_month and month_day can be created by not applying the second division operator for anyof the three orders. For example:

year_month ym = 2015y/April;
month_day md1 = April/4;
month_day md2 = 4d/April;

—end note]
4 [Example 1:

auto a = 2015/4/4; // a == int(125)
auto b = 2015y/4/4; // b == year_month_day{year(2015), month(4), day(4)}
auto c = 2015y/4d/April; // error: no viable operator/ for first /
auto d = 2015/April/4; // error: no viable operator/ for first /
—end example]
constexpr year_month

operator/(const year& y, const month& m) noexcept;

5 Returns: {y, m}.
constexpr year_month

operator/(const year& y, int m) noexcept;

6 Returns: y / month(m).
constexpr month_day

operator/(const month& m, const day& d) noexcept;

7 Returns: {m, d}.
constexpr month_day

operator/(const month& m, int d) noexcept;

8 Returns: m / day(d).

§ 29.8.18 1396

© ISO/IEC N4910

constexpr month_day
operator/(int m, const day& d) noexcept;

9 Returns: month(m) / d.
constexpr month_day

operator/(const day& d, const month& m) noexcept;

10 Returns: m / d.
constexpr month_day

operator/(const day& d, int m) noexcept;

11 Returns: month(m) / d.
constexpr month_day_last

operator/(const month& m, last_spec) noexcept;

12 Returns: month_day_last{m}.
constexpr month_day_last

operator/(int m, last_spec) noexcept;

13 Returns: month(m) / last.
constexpr month_day_last

operator/(last_spec, const month& m) noexcept;

14 Returns: m / last.
constexpr month_day_last

operator/(last_spec, int m) noexcept;

15 Returns: month(m) / last.
constexpr month_weekday

operator/(const month& m, const weekday_indexed& wdi) noexcept;

16 Returns: {m, wdi}.
constexpr month_weekday

operator/(int m, const weekday_indexed& wdi) noexcept;

17 Returns: month(m) / wdi.
constexpr month_weekday

operator/(const weekday_indexed& wdi, const month& m) noexcept;

18 Returns: m / wdi.
constexpr month_weekday

operator/(const weekday_indexed& wdi, int m) noexcept;

19 Returns: month(m) / wdi.
constexpr month_weekday_last

operator/(const month& m, const weekday_last& wdl) noexcept;

20 Returns: {m, wdl}.
constexpr month_weekday_last

operator/(int m, const weekday_last& wdl) noexcept;

21 Returns: month(m) / wdl.
constexpr month_weekday_last

operator/(const weekday_last& wdl, const month& m) noexcept;

22 Returns: m / wdl.
constexpr month_weekday_last

§ 29.8.18 1397

© ISO/IEC N4910

operator/(const weekday_last& wdl, int m) noexcept;

23 Returns: month(m) / wdl.
constexpr year_month_day

operator/(const year_month& ym, const day& d) noexcept;

24 Returns: {ym.year(), ym.month(), d}.
constexpr year_month_day

operator/(const year_month& ym, int d) noexcept;

25 Returns: ym / day(d).
constexpr year_month_day

operator/(const year& y, const month_day& md) noexcept;

26 Returns: y / md.month() / md.day().
constexpr year_month_day

operator/(int y, const month_day& md) noexcept;

27 Returns: year(y) / md.
constexpr year_month_day

operator/(const month_day& md, const year& y) noexcept;

28 Returns: y / md.
constexpr year_month_day

operator/(const month_day& md, int y) noexcept;

29 Returns: year(y) / md.
constexpr year_month_day_last

operator/(const year_month& ym, last_spec) noexcept;

30 Returns: {ym.year(), month_day_last{ym.month()}}.
constexpr year_month_day_last

operator/(const year& y, const month_day_last& mdl) noexcept;

31 Returns: {y, mdl}.
constexpr year_month_day_last

operator/(int y, const month_day_last& mdl) noexcept;

32 Returns: year(y) / mdl.
constexpr year_month_day_last

operator/(const month_day_last& mdl, const year& y) noexcept;

33 Returns: y / mdl.
constexpr year_month_day_last

operator/(const month_day_last& mdl, int y) noexcept;

34 Returns: year(y) / mdl.
constexpr year_month_weekday

operator/(const year_month& ym, const weekday_indexed& wdi) noexcept;

35 Returns: {ym.year(), ym.month(), wdi}.
constexpr year_month_weekday

operator/(const year& y, const month_weekday& mwd) noexcept;

36 Returns: {y, mwd.month(), mwd.weekday_indexed()}.
constexpr year_month_weekday

operator/(int y, const month_weekday& mwd) noexcept;

37 Returns: year(y) / mwd.

§ 29.8.18 1398

© ISO/IEC N4910

constexpr year_month_weekday
operator/(const month_weekday& mwd, const year& y) noexcept;

38 Returns: y / mwd.
constexpr year_month_weekday

operator/(const month_weekday& mwd, int y) noexcept;

39 Returns: year(y) / mwd.
constexpr year_month_weekday_last

operator/(const year_month& ym, const weekday_last& wdl) noexcept;

40 Returns: {ym.year(), ym.month(), wdl}.
constexpr year_month_weekday_last

operator/(const year& y, const month_weekday_last& mwdl) noexcept;

41 Returns: {y, mwdl.month(), mwdl.weekday_last()}.
constexpr year_month_weekday_last

operator/(int y, const month_weekday_last& mwdl) noexcept;

42 Returns: year(y) / mwdl.
constexpr year_month_weekday_last

operator/(const month_weekday_last& mwdl, const year& y) noexcept;

43 Returns: y / mwdl.
constexpr year_month_weekday_last

operator/(const month_weekday_last& mwdl, int y) noexcept;

44 Returns: year(y) / mwdl.
29.9 Class template hh_mm_ss [time.hms]
29.9.1 Overview [time.hms.overview]
namespace std::chrono {

template<class Duration> class hh_mm_ss {
public:
static constexpr unsigned fractional_width = see below;
using precision = see below;

constexpr hh_mm_ss() noexcept : hh_mm_ss{Duration::zero()} {}
constexpr explicit hh_mm_ss(Duration d);

constexpr bool is_negative() const noexcept;
constexpr chrono::hours hours() const noexcept;
constexpr chrono::minutes minutes() const noexcept;
constexpr chrono::seconds seconds() const noexcept;
constexpr precision subseconds() const noexcept;

constexpr explicit operator precision() const noexcept;
constexpr precision to_duration() const noexcept;

private:
bool is_neg; // exposition only
chrono::hours h; // exposition only
chrono::minutes m; // exposition only
chrono::seconds s; // exposition only
precision ss; // exposition only

};
}

1 The hh_mm_ss class template splits a duration into a multi-field time structure hours:minutes:seconds and possiblysubseconds, where subseconds will be a duration unit based on a non-positive power of 10. The Duration templateparameter dictates the precision to which the time is split. A hh_mm_ss models negative durations with a distinct

§ 29.9.1 1399

© ISO/IEC N4910

is_negative getter that returns true when the input duration is negative. The individual duration fields always returnnon-negative durations even when is_negative() indicates the structure is representing a negative duration.
2 If Duration is not a specialization of duration, the program is ill-formed.
29.9.2 Members [time.hms.members]

static constexpr unsigned fractional_width = see below;

1 fractional_width is the number of fractional decimal digits represented by precision. fractional_width hasthe value of the smallest possible integer in the range [0, 18] such that precision will exactly represent all valuesof Duration. If no such value of fractional_width exists, then fractional_width is 6.
[Example 1: See Table 96 for some durations, the resulting fractional_width, and the formatted fractional second output of
Duration{1}.

Table 96: Examples for fractional_width [tab:time.hms.width]
Duration fractional_width Formatted fractional second output

hours, minutes, and seconds 0
milliseconds 3 0.001
microseconds 6 0.000001
nanoseconds 9 0.000000001
duration<int, ratio<1, 2>> 1 0.5
duration<int, ratio<1, 3>> 6 0.333333
duration<int, ratio<1, 4>> 2 0.25
duration<int, ratio<1, 5>> 1 0.2
duration<int, ratio<1, 6>> 6 0.166666
duration<int, ratio<1, 7>> 6 0.142857
duration<int, ratio<1, 8>> 3 0.125
duration<int, ratio<1, 9>> 6 0.111111
duration<int, ratio<1, 10>> 1 0.1
duration<int, ratio<756, 625>> 4 0.2096

—end example]
using precision = see below;

2 precision is
duration<common_type_t<Duration::rep, seconds::rep>, ratio<1, 10fractional_width>>

constexpr explicit hh_mm_ss(Duration d);

3 Effects: Constructs an object of type hh_mm_ss which represents the Duration d with precision precision.
—(3.1) Initializes is_neg with d < Duration::zero().
—(3.2) Initializes h with duration_cast<chrono::hours>(abs(d)).
—(3.3) Initializes m with duration_cast<chrono::minutes>(abs(d) - hours()).
—(3.4) Initializes s with duration_cast<chrono::seconds>(abs(d) - hours() - minutes()).
—(3.5) If treat_as_floating_point_v<precision::rep> is true, initializes sswith abs(d) - hours() - minutes()

- seconds(). Otherwise, initializes sswith duration_cast<precision>(abs(d) - hours() - minutes()
- seconds()).

[Note 1: When precision::rep is integral and precision::period is ratio<1>, subseconds() always returns a value equalto 0s. —end note]
4 Postconditions: If treat_as_floating_point_v<precision::rep> is true, to_duration() returns d, otherwise

to_duration() returns duration_cast<precision>(d).
constexpr bool is_negative() const noexcept;

5 Returns: is_neg.
constexpr chrono::hours hours() const noexcept;

6 Returns: h.
§ 29.9.2 1400

© ISO/IEC N4910

constexpr chrono::minutes minutes() const noexcept;

7 Returns: m.
constexpr chrono::seconds seconds() const noexcept;

8 Returns: s.
constexpr precision subseconds() const noexcept;

9 Returns: ss.
constexpr precision to_duration() const noexcept;

10 Returns: If is_neg, returns -(h + m + s + ss), otherwise returns h + m + s + ss.
constexpr explicit operator precision() const noexcept;

11 Returns: to_duration().
29.9.3 Non-members [time.hms.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const hh_mm_ss<Duration>& hms);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN<charT>("{:L%T}"), hms);

2 [Example 1:
for (auto ms : {-4083007ms, 4083007ms, 65745123ms}) {
hh_mm_ss hms{ms};
cout << hms << '\n';

}
cout << hh_mm_ss{65745s} << '\n';

Produces the output (assuming the "C" locale):
-01:08:03.007
01:08:03.007
18:15:45.123
18:15:45

—end example]
29.10 12/24 hours functions [time.12]

1 These functions aid in translating between a 12h format time of day and a 24h format time of day.
constexpr bool is_am(const hours& h) noexcept;

2 Returns: 0h <= h && h <= 11h.
constexpr bool is_pm(const hours& h) noexcept;

3 Returns: 12h <= h && h <= 23h.
constexpr hours make12(const hours& h) noexcept;

4 Returns: The 12-hour equivalent of h in the range [1h, 12h]. If h is not in the range [0h, 23h], the value returned isunspecified.
constexpr hours make24(const hours& h, bool is_pm) noexcept;

5 Returns: If is_pm is false, returns the 24-hour equivalent of h in the range [0h, 11h], assuming h represents anante meridiem hour. Otherwise, returns the 24-hour equivalent of h in the range [12h, 23h], assuming h representsa post meridiem hour. If h is not in the range [1h, 12h], the value returned is unspecified.

§ 29.10 1401

© ISO/IEC N4910

29.11 Time zones [time.zone]
29.11.1 In general [time.zone.general]

1 29.11 describes an interface for accessing the IANA Time Zone Database that interoperates with sys_time and local_-
time. This interface provides time zone support to both the civil calendar types (29.8) and to user-defined calendars.
29.11.2 Time zone database [time.zone.db]
29.11.2.1 Class tzdb [time.zone.db.tzdb]
namespace std::chrono {

struct tzdb {
string version;
vector<time_zone> zones;
vector<time_zone_link> links;
vector<leap_second> leap_seconds;

const time_zone* locate_zone(string_view tz_name) const;
const time_zone* current_zone() const;

};
}

1 Each vector in a tzdb object is sorted to enable fast lookup.
const time_zone* locate_zone(string_view tz_name) const;

2 Returns:
—(2.1) If zones contains an element tz for which tz.name() == tz_name, a pointer to tz;
—(2.2) otherwise, if links contains an element tz_l for which tz_l.name() == tz_name, then a pointer to theelement tz of zones for which tz.name() == tz_l.target().
[Note 1: A time_zone_link specifies an alternative name for a time_zone. —end note]

3 Throws: If a const time_zone* cannot be found as described in the Returns: element, throws a runtime_error.
[Note 2: On non-exceptional return, the return value is always a pointer to a valid time_zone. —end note]

const time_zone* current_zone() const;

4 Returns: A pointer to the time zone which the computer has set as its local time zone.
29.11.2.2 Class tzdb_list [time.zone.db.list]
namespace std::chrono {

class tzdb_list {
public:
tzdb_list(const tzdb_list&) = delete;
tzdb_list& operator=(const tzdb_list&) = delete;

// unspecified additional constructors
class const_iterator;

const tzdb& front() const noexcept;

const_iterator erase_after(const_iterator p);

const_iterator begin() const noexcept;
const_iterator end() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

};
}

1 The tzdb_list database is a singleton; the unique object of type tzdb_list can be accessed via the get_tzdb_list()function.

§ 29.11.2.2 1402

© ISO/IEC N4910

[Note 1: This access is only needed for those applications that need to have long uptimes and have a need to update the time zonedatabase while running. Other applications can implicitly access the front() of this list via the read-only namespace scope functions
get_tzdb(), locate_zone(), and current_zone(). —end note]
The tzdb_list object contains a list of tzdb objects.

2 tzdb_list::const_iterator is a constant iterator which meets the Cpp17ForwardIterator requirements and has avalue type of tzdb.
const tzdb& front() const noexcept;

3 Synchronization: This operation is thread-safe with respect to reload_tzdb().
[Note 2: reload_tzdb() pushes a new tzdb onto the front of this container. —end note]

4 Returns: A reference to the first tzdb in the container.
const_iterator erase_after(const_iterator p);

5 Preconditions: The iterator following p is dereferenceable.
6 Effects: Erases the tzdb referred to by the iterator following p.
7 Postconditions: No pointers, references, or iterators are invalidated except those referring to the erased tzdb.

[Note 3: It is not possible to erase the tzdb referred to by begin(). —end note]
8 Returns: An iterator pointing to the element following the one that was erased, or end() if no such element exists.
9 Throws: Nothing.

const_iterator begin() const noexcept;

10 Returns: An iterator referring to the first tzdb in the container.
const_iterator end() const noexcept;

11 Returns: An iterator referring to the position one past the last tzdb in the container.
const_iterator cbegin() const noexcept;

12 Returns: begin().
const_iterator cend() const noexcept;

13 Returns: end().
29.11.2.3 Time zone database access [time.zone.db.access]

tzdb_list& get_tzdb_list();

1 Effects: If this is the first access to the time zone database, initializes the database. If this call initializes thedatabase, the resulting database will be a tzdb_list holding a single initialized tzdb.
2 Synchronization: It is safe to call this function from multiple threads at one time.
3 Returns: A reference to the database.
4 Throws: runtime_error if for any reason a reference cannot be returned to a valid tzdb_list containing one ormore valid tzdbs.

const tzdb& get_tzdb();

5 Returns: get_tzdb_list().front().
const time_zone* locate_zone(string_view tz_name);

6 Returns: get_tzdb().locate_zone(tz_name).
7 [Note 1: The time zone database will be initialized if this is the first reference to the database. —end note]

const time_zone* current_zone();

8 Returns: get_tzdb().current_zone().

§ 29.11.2.3 1403

© ISO/IEC N4910

29.11.2.4 Remote time zone database support [time.zone.db.remote]
1 The local time zone database is that supplied by the implementation when the program first accesses the database, forexample via current_zone(). While the program is running, the implementation may choose to update the time zonedatabase. This update shall not impact the program in any way unless the program calls the functions in this subclause.This potentially updated time zone database is referred to as the remote time zone database.

const tzdb& reload_tzdb();

2 Effects: This function first checks the version of the remote time zone database. If the versions of the local andremote databases are the same, there are no effects. Otherwise the remote database is pushed to the front of the
tzdb_list accessed by get_tzdb_list().

3 Synchronization: This function is thread-safe with respect to get_tzdb_list().front() and get_tzdb_list().erase_-
after().

4 Postconditions: No pointers, references, or iterators are invalidated.
5 Returns: get_tzdb_list().front().
6 Throws: runtime_error if for any reason a reference cannot be returned to a valid tzdb.

string remote_version();

7 Returns: The latest remote database version.
[Note 1: This can be compared with get_tzdb().version to discover if the local and remote databases are equivalent. —endnote]

29.11.3 Exception classes [time.zone.exception]
29.11.3.1 Class nonexistent_local_time [time.zone.exception.nonexist]
namespace std::chrono {

class nonexistent_local_time : public runtime_error {
public:
template<class Duration>

nonexistent_local_time(const local_time<Duration>& tp, const local_info& i);
};

}

1 nonexistent_local_time is thrown when an attempt is made to convert a non-existent local_time to a sys_timewithout specifying choose::earliest or choose::latest.
template<class Duration>

nonexistent_local_time(const local_time<Duration>& tp, const local_info& i);

2 Preconditions: i.result == local_info::nonexistent is true.
3 Effects: Initializes the base class with a sequence of char equivalent to that produced by os.str() initialized asshown below:

ostringstream os;
os << tp << " is in a gap between\n"

<< local_seconds{i.first.end.time_since_epoch()} + i.first.offset << ' '
<< i.first.abbrev << " and\n"
<< local_seconds{i.second.begin.time_since_epoch()} + i.second.offset << ' '
<< i.second.abbrev
<< " which are both equivalent to\n"
<< i.first.end << " UTC";

4 [Example 1:
#include <chrono>
#include <iostream>

int main() {
using namespace std::chrono;
try {

auto zt = zoned_time{"America/New_York",
local_days{Sunday[2]/March/2016} + 2h + 30min};

§ 29.11.3.1 1404

© ISO/IEC N4910

} catch (const nonexistent_local_time& e) {
std::cout << e.what() << '\n';

}
}

Produces the output:
2016-03-13 02:30:00 is in a gap between
2016-03-13 02:00:00 EST and
2016-03-13 03:00:00 EDT which are both equivalent to
2016-03-13 07:00:00 UTC

—end example]
29.11.3.2 Class ambiguous_local_time [time.zone.exception.ambig]
namespace std::chrono {

class ambiguous_local_time : public runtime_error {
public:
template<class Duration>

ambiguous_local_time(const local_time<Duration>& tp, const local_info& i);
};

}

1 ambiguous_local_time is thrown when an attempt is made to convert an ambiguous local_time to a sys_timewithoutspecifying choose::earliest or choose::latest.
template<class Duration>

ambiguous_local_time(const local_time<Duration>& tp, const local_info& i);

2 Preconditions: i.result == local_info::ambiguous is true.
3 Effects: Initializes the base class with a sequence of char equivalent to that produced by os.str() initialized asshown below:

ostringstream os;
os << tp << " is ambiguous. It could be\n"

<< tp << ' ' << i.first.abbrev << " == "
<< tp - i.first.offset << " UTC or\n"
<< tp << ' ' << i.second.abbrev << " == "
<< tp - i.second.offset << " UTC";

4 [Example 1:
#include <chrono>
#include <iostream>

int main() {
using namespace std::chrono;
try {

auto zt = zoned_time{"America/New_York",
local_days{Sunday[1]/November/2016} + 1h + 30min};

} catch (const ambiguous_local_time& e) {
std::cout << e.what() << '\n';

}
}

Produces the output:
2016-11-06 01:30:00 is ambiguous. It could be
2016-11-06 01:30:00 EDT == 2016-11-06 05:30:00 UTC or
2016-11-06 01:30:00 EST == 2016-11-06 06:30:00 UTC

—end example]
29.11.4 Information classes [time.zone.info]
29.11.4.1 Class sys_info [time.zone.info.sys]
namespace std::chrono {

struct sys_info {
sys_seconds begin;

§ 29.11.4.1 1405

© ISO/IEC N4910

sys_seconds end;
seconds offset;
minutes save;
string abbrev;

};
}

1 A sys_info object can be obtained from the combination of a time_zone and either a sys_time or local_time. It canalso be obtained from a zoned_time, which is effectively a pair of a time_zone and sys_time.
2 [Note 1: This type provides a low-level interface to time zone information. Typical conversions from sys_time to local_time willuse this class implicitly, not explicitly. —end note]
3 The begin and end data members indicate that, for the associated time_zone and time_point, the offset and abbrevare in effect in the range [begin, end). This information can be used to efficiently iterate the transitions of a time_zone.
4 The offset data member indicates the UTC offset in effect for the associated time_zone and time_point. Therelationship between local_time and sys_time is:

offset = local_time - sys_time

5 The save data member is extra information not normally needed for conversion between local_time and sys_time.If save != 0min, this sys_info is said to be on “daylight saving” time, and offset - save suggests what offset this
time_zone might use if it were off daylight saving time. However, this information should not be taken as authoritative.The only sure way to get such information is to query the time_zone with a time_point that returns a sys_info where
save == 0min. There is no guarantee what time_point might return such a sys_info except that it is guaranteed notto be in the range [begin, end) (if save != 0min for this sys_info).

6 The abbrev data member indicates the current abbreviation used for the associated time_zone and time_point. Abbre-viations are not unique among the time_zones, and so one cannot reliably map abbreviations back to a time_zone andUTC offset.
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const sys_info& r);

7 Effects: Streams out the sys_info object r in an unspecified format.
8 Returns: os.
29.11.4.2 Class local_info [time.zone.info.local]
namespace std::chrono {

struct local_info {
static constexpr int unique = 0;
static constexpr int nonexistent = 1;
static constexpr int ambiguous = 2;

int result;
sys_info first;
sys_info second;

};
}

1 [Note 1: This type provides a low-level interface to time zone information. Typical conversions from local_time to sys_time willuse this class implicitly, not explicitly. —end note]
2 Describes the result of converting a local_time to a sys_time as follows:

—(2.1) When a local_time to sys_time conversion is unique, result == unique, first will be filled out with thecorrect sys_info, and second will be zero-initialized.
—(2.2) If the conversion stems from a nonexistent local_time then result == nonexistent, first will be filled outwith the sys_info that ends just prior to the local_time, and second will be filled out with the sys_info thatbegins just after the local_time.
—(2.3) If the conversion stems from an ambiguous local_time, then result == ambiguous, first will be filled outwith the sys_info that ends just after the local_time, and second will be filled out with the sys_info that startsjust before the local_time.

§ 29.11.4.2 1406

© ISO/IEC N4910

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const local_info& r);

3 Effects: Streams out the local_info object r in an unspecified format.
4 Returns: os.
29.11.5 Class time_zone [time.zone.timezone]
29.11.5.1 Overview [time.zone.overview]
namespace std::chrono {

class time_zone {
public:
time_zone(time_zone&&) = default;
time_zone& operator=(time_zone&&) = default;

// unspecified additional constructors
string_view name() const noexcept;

template<class Duration> sys_info get_info(const sys_time<Duration>& st) const;
template<class Duration> local_info get_info(const local_time<Duration>& tp) const;

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

to_sys(const local_time<Duration>& tp) const;

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

to_sys(const local_time<Duration>& tp, choose z) const;

template<class Duration>
local_time<common_type_t<Duration, seconds>>

to_local(const sys_time<Duration>& tp) const;
};

}

1 A time_zone represents all time zone transitions for a specific geographic area. time_zone construction is unspecified,and performed as part of database initialization.
[Note 1: const time_zone objects can be accessed via functions such as locate_zone. —end note]
29.11.5.2 Member functions [time.zone.members]

string_view name() const noexcept;

1 Returns: The name of the time_zone.
2 [Example 1: "America/New_York". —end example]

template<class Duration>
sys_info get_info(const sys_time<Duration>& st) const;

3 Returns: A sys_info i for which st is in the range [i.begin, i.end).
template<class Duration>

local_info get_info(const local_time<Duration>& tp) const;

4 Returns: A local_info for tp.
template<class Duration>

sys_time<common_type_t<Duration, seconds>>
to_sys(const local_time<Duration>& tp) const;

5 Returns: A sys_time that is at least as fine as seconds, and will be finer if the argument tp has finer precision.This sys_time is the UTC equivalent of tp according to the rules of this time_zone.
6 Throws: If the conversion from tp to a sys_time is ambiguous, throws ambiguous_local_time. If the tprepresents a non-existent time between two UTC time_points, throws nonexistent_local_time.
§ 29.11.5.2 1407

© ISO/IEC N4910

template<class Duration>
sys_time<common_type_t<Duration, seconds>>
to_sys(const local_time<Duration>& tp, choose z) const;

7 Returns: A sys_time that is at least as fine as seconds, and will be finer if the argument tp has finer precision.This sys_time is the UTC equivalent of tp according to the rules of this time_zone. If the conversion from
tp to a sys_time is ambiguous, returns the earlier sys_time if z == choose::earliest, and returns the later
sys_time if z == choose::latest. If the tp represents a non-existent time between two UTC time_points,then the two UTC time_points will be the same, and that UTC time_point will be returned.

template<class Duration>
local_time<common_type_t<Duration, seconds>>
to_local(const sys_time<Duration>& tp) const;

8 Returns: The local_time associated with tp and this time_zone.
29.11.5.3 Non-member functions [time.zone.nonmembers]

bool operator==(const time_zone& x, const time_zone& y) noexcept;

1 Returns: x.name() == y.name().
strong_ordering operator<=>(const time_zone& x, const time_zone& y) noexcept;

2 Returns: x.name() <=> y.name().
29.11.6 Class template zoned_traits [time.zone.zonedtraits]
namespace std::chrono {

template<class T> struct zoned_traits {};
}

1 zoned_traits provides a means for customizing the behavior of zoned_time<Duration, TimeZonePtr> for the zoned_-
time default constructor, and constructors taking string_view. A specialization for const time_zone* is provided bythe implementation:
namespace std::chrono {

template<> struct zoned_traits<const time_zone*> {
static const time_zone* default_zone();
static const time_zone* locate_zone(string_view name);

};
}

static const time_zone* default_zone();

2 Returns: std::chrono::locate_zone("UTC").
static const time_zone* locate_zone(string_view name);

3 Returns: std::chrono::locate_zone(name).
29.11.7 Class template zoned_time [time.zone.zonedtime]
29.11.7.1 Overview [time.zone.zonedtime.overview]
namespace std::chrono {

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time {
public:
using duration = common_type_t<Duration, seconds>;

private:
TimeZonePtr zone_; // exposition only
sys_time<duration> tp_; // exposition only
using traits = zoned_traits<TimeZonePtr>; // exposition only

public:
zoned_time();
zoned_time(const zoned_time&) = default;
zoned_time& operator=(const zoned_time&) = default;

§ 29.11.7.1 1408

© ISO/IEC N4910

zoned_time(const sys_time<Duration>& st);
explicit zoned_time(TimeZonePtr z);
explicit zoned_time(string_view name);

template<class Duration2>
zoned_time(const zoned_time<Duration2, TimeZonePtr>& zt);

zoned_time(TimeZonePtr z, const sys_time<Duration>& st);
zoned_time(string_view name, const sys_time<Duration>& st);

zoned_time(TimeZonePtr z, const local_time<Duration>& tp);
zoned_time(string_view name, const local_time<Duration>& tp);
zoned_time(TimeZonePtr z, const local_time<Duration>& tp, choose c);
zoned_time(string_view name, const local_time<Duration>& tp, choose c);

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& zt);

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& zt, choose);

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& zt);

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& zt, choose);

zoned_time& operator=(const sys_time<Duration>& st);
zoned_time& operator=(const local_time<Duration>& ut);

operator sys_time<duration>() const;
explicit operator local_time<duration>() const;

TimeZonePtr get_time_zone() const;
local_time<duration> get_local_time() const;
sys_time<duration> get_sys_time() const;
sys_info get_info() const;

};

zoned_time() -> zoned_time<seconds>;

template<class Duration>
zoned_time(sys_time<Duration>)

-> zoned_time<common_type_t<Duration, seconds>>;

template<class TimeZonePtrOrName>
using time-zone-representation = // exposition only

conditional_t<is_convertible_v<TimeZonePtrOrName, string_view>,
const time_zone*,
remove_cvref_t<TimeZonePtrOrName>>;

template<class TimeZonePtrOrName>
zoned_time(TimeZonePtrOrName&&)

-> zoned_time<seconds, time-zone-representation<TimeZonePtrOrName>>;

template<class TimeZonePtrOrName, class Duration>
zoned_time(TimeZonePtrOrName&&, sys_time<Duration>)

-> zoned_time<common_type_t<Duration, seconds>,
time-zone-representation<TimeZonePtrOrName>>;

template<class TimeZonePtrOrName, class Duration>
zoned_time(TimeZonePtrOrName&&, local_time<Duration>,

choose = choose::earliest)
-> zoned_time<common_type_t<Duration, seconds>,

time-zone-representation<TimeZonePtrOrName>>;

§ 29.11.7.1 1409

© ISO/IEC N4910

template<class Duration, class TimeZonePtrOrName, class TimeZonePtr2>
zoned_time(TimeZonePtrOrName&&, zoned_time<Duration, TimeZonePtr2>,

choose = choose::earliest)
-> zoned_time<common_type_t<Duration, seconds>,

time-zone-representation<TimeZonePtrOrName>>;
}

1 zoned_time represents a logical pairing of a time_zone and a time_pointwith precision Duration. zoned_time<Duration>maintains the invariant that it always refers to a valid time zone and represents a point in time that exists and is notambiguous in that time zone.
2 If Duration is not a specialization of chrono::duration, the program is ill-formed.
3 Every constructor of zoned_time that accepts a string_view as its first parameter does not participate in class templateargument deduction (12.2.2.9).
29.11.7.2 Constructors [time.zone.zonedtime.ctor]

zoned_time();

1 Constraints: traits::default_zone() is a well-formed expression.
2 Effects: Initializes zone_ with traits::default_zone() and default constructs tp_.

zoned_time(const sys_time<Duration>& st);

3 Constraints: traits::default_zone() is a well-formed expression.
4 Effects: Initializes zone_ with traits::default_zone() and tp_ with st.

explicit zoned_time(TimeZonePtr z);

5 Preconditions: z refers to a time zone.
6 Effects: Initializes zone_ with std::move(z) and default constructs tp_.

explicit zoned_time(string_view name);

7 Constraints: traits::locate_zone(string_view{}) is a well-formed expression and zoned_time is constructiblefrom the return type of traits::locate_zone(string_view{}).
8 Effects: Initializes zone_ with traits::locate_zone(name) and default constructs tp_.

template<class Duration2>
zoned_time(const zoned_time<Duration2, TimeZonePtr>& y);

9 Constraints: is_convertible_v<sys_time<Duration2>, sys_time<Duration>> is true.
10 Effects: Initializes zone_ with y.zone_ and tp_ with y.tp_.

zoned_time(TimeZonePtr z, const sys_time<Duration>& st);

11 Preconditions: z refers to a time zone.
12 Effects: Initializes zone_ with std::move(z) and tp_ with st.

zoned_time(string_view name, const sys_time<Duration>& st);

13 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name) and st.
14 Effects: Equivalent to construction with {traits::locate_zone(name), st}.

zoned_time(TimeZonePtr z, const local_time<Duration>& tp);

15 Constraints:
is_convertible_v<
decltype(declval<TimeZonePtr&>()->to_sys(local_time<Duration>{})),
sys_time<duration>>

is true.
16 Preconditions: z refers to a time zone.
17 Effects: Initializes zone_ with std::move(z) and tp_ with zone_->to_sys(tp).

§ 29.11.7.2 1410

© ISO/IEC N4910

zoned_time(string_view name, const local_time<Duration>& tp);

18 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name) and tp.
19 Effects: Equivalent to construction with {traits::locate_zone(name), tp}.

zoned_time(TimeZonePtr z, const local_time<Duration>& tp, choose c);

20 Constraints:
is_convertible_v<
decltype(declval<TimeZonePtr&>()->to_sys(local_time<Duration>{}, choose::earliest)),
sys_time<duration>>

is true.
21 Preconditions: z refers to a time zone.
22 Effects: Initializes zone_ with std::move(z) and tp_ with zone_->to_sys(tp, c).

zoned_time(string_view name, const local_time<Duration>& tp, choose c);

23 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name), local_time<Duration>,and choose.
24 Effects: Equivalent to construction with {traits::locate_zone(name), tp, c}.

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& y);

25 Constraints: is_convertible_v<sys_time<Duration2>, sys_time<Duration>> is true.
26 Preconditions: z refers to a valid time zone.
27 Effects: Initializes zone_ with std::move(z) and tp_ with y.tp_.

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& y, choose);

28 Constraints: is_convertible_v<sys_time<Duration2>, sys_time<Duration>> is true.
29 Preconditions: z refers to a valid time zone.
30 Effects: Equivalent to construction with {z, y}.
31 [Note 1: The choose parameter has no effect. —end note]

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& y);

32 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name) and the type
zoned_time<Duration2, TimeZonePtr2>.

33 Effects: Equivalent to construction with {traits::locate_zone(name), y}.
template<class Duration2, class TimeZonePtr2>

zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& y, choose c);

34 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name), the type zoned_-
time<Duration2, TimeZonePtr2>, and the type choose.

35 Effects: Equivalent to construction with {traits::locate_zone(name), y, c}.
36 [Note 2: The choose parameter has no effect. —end note]
29.11.7.3 Member functions [time.zone.zonedtime.members]

zoned_time& operator=(const sys_time<Duration>& st);

1 Effects: After assignment, get_sys_time() == st. This assignment has no effect on the return value of get_-
time_zone().

2 Returns: *this.

§ 29.11.7.3 1411

© ISO/IEC N4910

zoned_time& operator=(const local_time<Duration>& lt);

3 Effects: After assignment, get_local_time() == lt. This assignment has no effect on the return value of
get_time_zone().

4 Returns: *this.
operator sys_time<duration>() const;

5 Returns: get_sys_time().
explicit operator local_time<duration>() const;

6 Returns: get_local_time().
TimeZonePtr get_time_zone() const;

7 Returns: zone_.
local_time<duration> get_local_time() const;

8 Returns: zone_->to_local(tp_).
sys_time<duration> get_sys_time() const;

9 Returns: tp_.
sys_info get_info() const;

10 Returns: zone_->get_info(tp_).
29.11.7.4 Non-member functions [time.zone.zonedtime.nonmembers]

template<class Duration1, class Duration2, class TimeZonePtr>
bool operator==(const zoned_time<Duration1, TimeZonePtr>& x,

const zoned_time<Duration2, TimeZonePtr>& y);

1 Returns: x.zone_ == y.zone_ && x.tp_ == y.tp_.
template<class charT, class traits, class Duration, class TimeZonePtr>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

const zoned_time<Duration, TimeZonePtr>& t);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN("{:L%F %T %Z}"), t);

29.11.8 Class leap_second [time.zone.leap]
29.11.8.1 Overview [time.zone.leap.overview]
namespace std::chrono {

class leap_second {
public:
leap_second(const leap_second&) = default;
leap_second& operator=(const leap_second&) = default;

// unspecified additional constructors
constexpr sys_seconds date() const noexcept;
constexpr seconds value() const noexcept;

};
}

1 Objects of type leap_second representing the date and value of the leap second insertions are constructed and stored inthe time zone database when initialized.
2 [Example 1:

for (auto& l : get_tzdb().leap_seconds)
if (l <= 2018y/March/17d)
cout << l.date() << ": " << l.value() << '\n';

§ 29.11.8.1 1412

© ISO/IEC N4910

Produces the output:
1972-07-01 00:00:00: 1s
1973-01-01 00:00:00: 1s
1974-01-01 00:00:00: 1s
1975-01-01 00:00:00: 1s
1976-01-01 00:00:00: 1s
1977-01-01 00:00:00: 1s
1978-01-01 00:00:00: 1s
1979-01-01 00:00:00: 1s
1980-01-01 00:00:00: 1s
1981-07-01 00:00:00: 1s
1982-07-01 00:00:00: 1s
1983-07-01 00:00:00: 1s
1985-07-01 00:00:00: 1s
1988-01-01 00:00:00: 1s
1990-01-01 00:00:00: 1s
1991-01-01 00:00:00: 1s
1992-07-01 00:00:00: 1s
1993-07-01 00:00:00: 1s
1994-07-01 00:00:00: 1s
1996-01-01 00:00:00: 1s
1997-07-01 00:00:00: 1s
1999-01-01 00:00:00: 1s
2006-01-01 00:00:00: 1s
2009-01-01 00:00:00: 1s
2012-07-01 00:00:00: 1s
2015-07-01 00:00:00: 1s
2017-01-01 00:00:00: 1s

—end example]
29.11.8.2 Member functions [time.zone.leap.members]

constexpr sys_seconds date() const noexcept;

1 Returns: The date and time at which the leap second was inserted.
constexpr seconds value() const noexcept;

2 Returns: +1s to indicate a positive leap second or -1s to indicate a negative leap second.
[Note 1: All leap seconds inserted up through 2019 were positive leap seconds. —end note]

29.11.8.3 Non-member functions [time.zone.leap.nonmembers]

constexpr bool operator==(const leap_second& x, const leap_second& y) noexcept;

1 Returns: x.date() == y.date().
constexpr strong_ordering operator<=>(const leap_second& x, const leap_second& y) noexcept;

2 Returns: x.date() <=> y.date().
template<class Duration>

constexpr bool operator==(const leap_second& x, const sys_time<Duration>& y) noexcept;

3 Returns: x.date() == y.
template<class Duration>

constexpr bool operator<(const leap_second& x, const sys_time<Duration>& y) noexcept;

4 Returns: x.date() < y.
template<class Duration>

constexpr bool operator<(const sys_time<Duration>& x, const leap_second& y) noexcept;

5 Returns: x < y.date().

§ 29.11.8.3 1413

© ISO/IEC N4910

template<class Duration>
constexpr bool operator>(const leap_second& x, const sys_time<Duration>& y) noexcept;

6 Returns: y < x.
template<class Duration>

constexpr bool operator>(const sys_time<Duration>& x, const leap_second& y) noexcept;

7 Returns: y < x.
template<class Duration>

constexpr bool operator<=(const leap_second& x, const sys_time<Duration>& y) noexcept;

8 Returns: !(y < x).
template<class Duration>

constexpr bool operator<=(const sys_time<Duration>& x, const leap_second& y) noexcept;

9 Returns: !(y < x).
template<class Duration>

constexpr bool operator>=(const leap_second& x, const sys_time<Duration>& y) noexcept;

10 Returns: !(x < y).
template<class Duration>

constexpr bool operator>=(const sys_time<Duration>& x, const leap_second& y) noexcept;

11 Returns: !(x < y).
template<class Duration>

requires three_way_comparable_with<sys_seconds, sys_time<Duration>>
constexpr auto operator<=>(const leap_second& x, const sys_time<Duration>& y) noexcept;

12 Returns: x.date() <=> y.
29.11.9 Class time_zone_link [time.zone.link]
29.11.9.1 Overview [time.zone.link.overview]
namespace std::chrono {

class time_zone_link {
public:

time_zone_link(time_zone_link&&) = default;
time_zone_link& operator=(time_zone_link&&) = default;

// unspecified additional constructors
string_view name() const noexcept;
string_view target() const noexcept;

};
}

1 A time_zone_link specifies an alternative name for a time_zone. time_zone_links are constructed when the timezone database is initialized.
29.11.9.2 Member functions [time.zone.link.members]

string_view name() const noexcept;

1 Returns: The alternative name for the time zone.
string_view target() const noexcept;

2 Returns: The name of the time_zone for which this time_zone_link provides an alternative name.
29.11.9.3 Non-member functions [time.zone.link.nonmembers]

bool operator==(const time_zone_link& x, const time_zone_link& y) noexcept;

1 Returns: x.name() == y.name().

§ 29.11.9.3 1414

© ISO/IEC N4910

strong_ordering operator<=>(const time_zone_link& x, const time_zone_link& y) noexcept;

2 Returns: x.name() <=> y.name().
29.12 Formatting [time.format]

1 Each formatter (22.14.6) specialization in the chrono library (29.2) meets the Formatter requirements (22.14.6.1).The parse member functions of these formatters interpret the format specification as a chrono-format-spec accordingto the following syntax:
chrono-format-spec :

fill-and-alignopt widthopt precisionopt Lopt chrono-specsopt

chrono-specs :
conversion-spec
chrono-specs conversion-spec
chrono-specs literal-char

literal-char :any character other than {, }, or %
conversion-spec :

% modifieropt type

modifier : one of
E O

type : one of
a A b B c C d D e F g G h H I j m M n
p q Q r R S t T u U V w W x X y Y z Z %

The productions fill-and-align, width, and precision are described in 22.14.2. Giving a precision specification in the
chrono-format-spec is valid only for std::chrono::duration types where the representation type Rep is a floating-point type. For all other Rep types, an exception of type format_error is thrown if the chrono-format-spec contains a
precision specification. All ordinary multibyte characters represented by literal-char are copied unchanged to the output.

2 A formatting locale is an instance of locale used by a formatting function, defined as
—(2.1) the "C" locale if the L option is not present in chrono-format-spec , otherwise
—(2.2) the locale passed to the formatting function if any, otherwise
—(2.3) the global locale.

3 Each conversion specifier conversion-spec is replaced by appropriate characters as described in Table 97; the formatsspecified in ISO 8601:2004 shall be used where so described. Some of the conversion specifiers depend on the formattinglocale. If the formatted object does not contain the information the conversion specifier refers to, an exception of type
format_error is thrown.

4 The result of formatting a std::chrono::duration instance holding a negative value, or an hh_mm_ss object h for which
h.is_negative() is true, is equivalent to the output of the corresponding positive value, with a STATICALLY-WIDEN<charT>("-")character sequence placed before the replacement of the initial conversion specifier.
[Example 1:
cout << format("{:%T}", -10'000s); // prints: -02:46:40
cout << format("{:%H:%M:%S}", -10'000s); // prints: -02:46:40
cout << format("minutes {:%M, hours %H, seconds %S}", -10'000s);// prints: minutes -46, hours 02, seconds 40

—end example]
5 Unless explicitly requested, the result of formatting a chrono type does not contain time zone abbreviation and timezone offset information. If the information is available, the conversion specifiers %Z and %z will format this information(respectively).
[Note 1: If the information is not available and a %Z or %z conversion specifier appears in the chrono-format-spec , an exception oftype format_error is thrown, as described above. —end note]

6 If the type being formatted does not contain the information that the format flag needs, an exception of type format_erroris thrown.
[Example 2: A duration does not contain enough information to format as a weekday. —end example]

§ 29.12 1415

© ISO/IEC N4910

However, if a flag refers to a “time of day” (e.g. %H, %I, %p, etc.), then a specialization of duration is interpreted as thetime of day elapsed since midnight.
Table 97: Meaning of conversion specifiers [tab:time.format.spec]

Specifier Replacement
%a The locale’s abbreviated weekday name. If the value does not contain a valid weekday, anexception of type format_error is thrown.
%A The locale’s full weekday name. If the value does not contain a valid weekday, an exception oftype format_error is thrown.
%b The locale’s abbreviated month name. If the value does not contain a valid month, an exceptionof type format_error is thrown.
%B The locale’s full month name. If the value does not contain a valid month, an exception of type

format_error is thrown.
%c The locale’s date and time representation. The modified command %Ec produces the locale’salternate date and time representation.
%C The year divided by 100 using floored division. If the result is a single decimal digit, it isprefixed with 0. The modified command %EC produces the locale’s alternative representation ofthe century.
%d The day of month as a decimal number. If the result is a single decimal digit, it is prefixed with

0. The modified command %Od produces the locale’s alternative representation.
%D Equivalent to %m/%d/%y.
%e The day of month as a decimal number. If the result is a single decimal digit, it is prefixed witha space. The modified command %Oe produces the locale’s alternative representation.
%F Equivalent to %Y-%m-%d.
%g The last two decimal digits of the ISO week-based year. If the result is a single digit it isprefixed by 0.
%G The ISO week-based year as a decimal number. If the result is less than four digits it isleft-padded with 0 to four digits.
%h Equivalent to %b.
%H The hour (24-hour clock) as a decimal number. If the result is a single digit, it is prefixed with 0.The modified command %OH produces the locale’s alternative representation.
%I The hour (12-hour clock) as a decimal number. If the result is a single digit, it is prefixed with 0.The modified command %OI produces the locale’s alternative representation.
%j If the type being formatted is a specialization of duration, the decimal number of days withoutpadding. Otherwise, the day of the year as a decimal number. Jan 1 is 001. If the result is lessthan three digits, it is left-padded with 0 to three digits.
%m The month as a decimal number. Jan is 01. If the result is a single digit, it is prefixed with 0.The modified command %Om produces the locale’s alternative representation.
%M The minute as a decimal number. If the result is a single digit, it is prefixed with 0. Themodified command %OM produces the locale’s alternative representation.
%n A new-line character.
%p The locale’s equivalent of the AM/PM designations associated with a 12-hour clock.
%q The duration’s unit suffix as specified in 29.5.11.
%Q The duration’s numeric value (as if extracted via .count()).
%r The locale’s 12-hour clock time.
%R Equivalent to %H:%M.
%S Seconds as a decimal number. If the number of seconds is less than 10, the result is prefixedwith 0. If the precision of the input cannot be exactly represented with seconds, then the formatis a decimal floating-point number with a fixed format and a precision matching that of theprecision of the input (or to a microseconds precision if the conversion to floating-pointdecimal seconds cannot be made within 18 fractional digits). The character for the decimalpoint is localized according to the locale. The modified command %OS produces the locale’salternative representation.
%t A horizontal-tab character.
%T Equivalent to %H:%M:%S.
%u The ISO weekday as a decimal number (1-7), where Monday is 1. The modified command %Ouproduces the locale’s alternative representation.

§ 29.12 1416

© ISO/IEC N4910

Table 97: Meaning of conversion specifiers (continued)
Specifier Replacement
%U The week number of the year as a decimal number. The first Sunday of the year is the first dayof week 01. Days of the same year prior to that are in week 00. If the result is a single digit, it isprefixed with 0. The modified command %OU produces the locale’s alternative representation.
%V The ISO week-based week number as a decimal number. If the result is a single digit, it isprefixed with 0. The modified command %OV produces the locale’s alternative representation.
%w The weekday as a decimal number (0-6), where Sunday is 0. The modified command %Owproduces the locale’s alternative representation.
%W The week number of the year as a decimal number. The first Monday of the year is the first dayof week 01. Days of the same year prior to that are in week 00. If the result is a single digit, it isprefixed with 0. The modified command %OW produces the locale’s alternative representation.
%x The locale’s date representation. The modified command %Ex produces the locale’s alternatedate representation.
%X The locale’s time representation. The modified command %EX produces the locale’s alternatetime representation.
%y The last two decimal digits of the year. If the result is a single digit it is prefixed by 0. Themodified command %Oy produces the locale’s alternative representation. The modifiedcommand %Ey produces the locale’s alternative representation of offset from %EC (year only).
%Y The year as a decimal number. If the result is less than four digits it is left-padded with 0 to fourdigits. The modified command %EY produces the locale’s alternative full year representation.
%z The offset from UTC in the ISO 8601:2004 format. For example -0430 refers to 4 hours 30minutes behind UTC. If the offset is zero, +0000 is used. The modified commands %Ez and %Ozinsert a : between the hours and minutes: -04:30. If the offset information is not available, anexception of type format_error is thrown.
%Z The time zone abbreviation. If the time zone abbreviation is not available, an exception of type

format_error is thrown.
%% A % character.

7 If the chrono-specs is omitted, the chrono object is formatted as if by streaming it to std::ostringstream os with theformatting locale imbued and copying os.str() through the output iterator of the context with additional padding andadjustments as specified by the format specifiers.
[Example 3:
string s = format("{:=>8}", 42ms); // value of s is "====42ms"
—end example]
template<class Duration, class charT>

struct formatter<chrono::sys_time<Duration>, charT>;

8 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN<charT>("UTC"). If %z (or a modified variant of
%z) is used, an offset of 0min is formatted.

template<class Duration, class charT>
struct formatter<chrono::utc_time<Duration>, charT>;

9 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN<charT>("UTC"). If %z (or a modified variant of %z)is used, an offset of 0min is formatted. If the argument represents a time during a positive leap second insertion,and if a seconds field is formatted, the integral portion of that format is STATICALLY-WIDEN<charT>("60").
template<class Duration, class charT>

struct formatter<chrono::tai_time<Duration>, charT>;

10 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN<charT>("TAI"). If %z (or a modified variant of
%z) is used, an offset of 0min is formatted. The date and time formatted are equivalent to those formatted by a
sys_time initialized with
sys_time<Duration>{tp.time_since_epoch()} -
(sys_days{1970y/January/1} - sys_days{1958y/January/1})

§ 29.12 1417

© ISO/IEC N4910

template<class Duration, class charT>
struct formatter<chrono::gps_time<Duration>, charT>;

11 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN<charT>("GPS"). If %z (or a modified variant of
%z) is used, an offset of 0min is formatted. The date and time formatted are equivalent to those formatted by a
sys_time initialized with
sys_time<Duration>{tp.time_since_epoch()} +
(sys_days{1980y/January/Sunday[1]} - sys_days{1970y/January/1})

template<class Duration, class charT>
struct formatter<chrono::file_time<Duration>, charT>;

12 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN<charT>("UTC"). If %z (or a modified variant of %z)is used, an offset of 0min is formatted. The date and time formatted are equivalent to those formatted by a sys_timeinitialized with clock_cast<system_clock>(t), or by a utc_time initialized with clock_cast<utc_clock>(t),where t is the first argument to format.
template<class Duration, class charT>

struct formatter<chrono::local_time<Duration>, charT>;

13 Remarks: If %Z, %z, or a modified version of %z is used, an exception of type format_error is thrown.
template<class Duration> struct local-time-format-t { // exposition only

local_time<Duration> time; // exposition only
const string* abbrev; // exposition only
const seconds* offset_sec; // exposition only

};

template<class Duration>
local-time-format-t<Duration>
local_time_format(local_time<Duration> time, const string* abbrev = nullptr,

const seconds* offset_sec = nullptr);

14 Returns: {time, abbrev, offset_sec}.
template<class Duration, class charT>

struct formatter<chrono::local-time-format-t<Duration>, charT>;

15 Let f be a local-time-format-t<Duration> object passed to formatter::format.
16 Remarks: If %Z is used, it is replaced with *f.abbrev if f.abbrev is not a null pointer value. If %Z is used and

f.abbrev is a null pointer value, an exception of type format_error is thrown. If %z (or a modified variant of %z)is used, it is formatted with the value of *f.offset_sec if f.offset_sec is not a null pointer value. If %z (or amodified variant of %z) is used and f.offset_sec is a null pointer value, then an exception of type format_erroris thrown.
template<class Duration, class TimeZonePtr, class charT>
struct formatter<chrono::zoned_time<Duration, TimeZonePtr>, charT>

: formatter<chrono::local-time-format-t<Duration>, charT> {
template<class FormatContext>
typename FormatContext::iterator

format(const chrono::zoned_time<Duration, TimeZonePtr>& tp, FormatContext& ctx);
};

template<class FormatContext>
typename FormatContext::iterator
format(const chrono::zoned_time<Duration, TimeZonePtr>& tp, FormatContext& ctx);

17 Effects: Equivalent to:
sys_info info = tp.get_info();
return formatter<chrono::local-time-format-t<Duration>, charT>::

format({tp.get_local_time(), &info.abbrev, &info.offset}, ctx);

29.13 Parsing [time.parse]
1 Each parse overload specified in this subclause calls from_stream unqualified, so as to enable argument dependentlookup (6.5.4). In the following paragraphs, let is denote an object of type basic_istream<charT, traits> and let Ibe basic_istream<charT, traits>&, where charT and traits are template parameters in that context.
§ 29.13 1418

© ISO/IEC N4910

2 Recommended practice: Implementations should make it difficult to accidentally store or use a manipulator that maycontain a dangling reference to a format string, for example by making the manipulators produced by parse immovableand preventing stream extraction into an lvalue of such a manipulator type.
template<class charT, class Parsable>

unspecified
parse(const charT* fmt, Parsable& tp);

template<class charT, class traits, class Alloc, class Parsable>
unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp);

3 Let F be fmt for the first overload and fmt.c_str() for the second overload. Let traits be char_traits<charT>for the first overload.
4 Constraints: The expression

from_stream(declval<basic_istream<charT, traits>&>(), F, tp)

is well-formed when treated as an unevaluated operand (7.2.3).
5 Returns: A manipulator such that the expression is >> parse(fmt, tp) has type I, has value is, and calls

from_stream(is, F, tp).
template<class charT, class traits, class Alloc, class Parsable>

unspecified
parse(const charT* fmt, Parsable& tp,

basic_string<charT, traits, Alloc>& abbrev);
template<class charT, class traits, class Alloc, class Parsable>

unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,

basic_string<charT, traits, Alloc>& abbrev);

6 Let F be fmt for the first overload and fmt.c_str() for the second overload.
7 Constraints: The expression

from_stream(declval<basic_istream<charT, traits>&>(), F, tp, addressof(abbrev))

is well-formed when treated as an unevaluated operand (7.2.3).
8 Returns: A manipulator such that the expression is >> parse(fmt, tp, abbrev) has type I, has value is, andcalls from_stream(is, F, tp, addressof(abbrev)).

template<class charT, class Parsable>
unspecified
parse(const charT* fmt, Parsable& tp, minutes& offset);

template<class charT, class traits, class Alloc, class Parsable>
unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,

minutes& offset);

9 Let F be fmt for the first overload and fmt.c_str() for the second overload. Let traits be char_traits<charT>and Alloc be allocator<charT> for the first overload.
10 Constraints: The expression

from_stream(declval<basic_istream<charT, traits>&>(),
F, tp,
declval<basic_string<charT, traits, Alloc>*>(),
&offset)

is well-formed when treated as an unevaluated operand (7.2.3).
11 Returns: A manipulator such that the expression is >> parse(fmt, tp, offset) has type I, has value is, andcalls:

from_stream(is,
F, tp,
static_cast<basic_string<charT, traits, Alloc>*>(nullptr),
&offset)

§ 29.13 1419

© ISO/IEC N4910

template<class charT, class traits, class Alloc, class Parsable>
unspecified
parse(const charT* fmt, Parsable& tp,

basic_string<charT, traits, Alloc>& abbrev, minutes& offset);
template<class charT, class traits, class Alloc, class Parsable>

unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,

basic_string<charT, traits, Alloc>& abbrev, minutes& offset);

12 Let F be fmt for the first overload and fmt.c_str() for the second overload.
13 Constraints: The expression

from_stream(declval<basic_istream<charT, traits>&>(),
F, tp, addressof(abbrev), &offset)

is well-formed when treated as an unevaluated operand (7.2.3).
14 Returns: A manipulator such that the expression is >> parse(fmt, tp, abbrev, offset) has type I, has value

is, and calls from_stream(is, F, tp, addressof(abbrev), &offset).
15 All from_stream overloads behave as unformatted input functions, except that they have an unspecified effect on thevalue returned by subsequent calls to basic_istream<>::gcount(). Each overload takes a format string containingordinary characters and flags which have special meaning. Each flag begins with a %. Some flags can be modified by Eor O. During parsing each flag interprets characters as parts of date and time types according to Table 98. Some flags canbe modified by a width parameter given as a positive decimal integer called out as N below which governs how manycharacters are parsed from the stream in interpreting the flag. All characters in the format string that are not representedin Table 98, except for whitespace, are parsed unchanged from the stream. A whitespace character matches zero ormore whitespace characters in the input stream.
16 If the type being parsed cannot represent the information that the format flag refers to, is.setstate(ios_base::failbit)is called.
[Example 1: A duration cannot represent a weekday. —end example]
However, if a flag refers to a “time of day” (e.g. %H, %I, %p, etc.), then a specialization of duration is parsed as the timeof day elapsed since midnight.

17 If the from_stream overload fails to parse everything specified by the format string, or if insufficient information isparsed to specify a complete duration, time point, or calendrical data structure, setstate(ios_base::failbit) iscalled on the basic_istream.
Table 98: Meaning of parse flags [tab:time.parse.spec]

Flag Parsed value
%a The locale’s full or abbreviated case-insensitive weekday name.
%A Equivalent to %a.
%b The locale’s full or abbreviated case-insensitive month name.
%B Equivalent to %b.
%c The locale’s date and time representation. The modified command %Ec interprets the locale’salternate date and time representation.
%C The century as a decimal number. The modified command %NC specifies the maximum numberof characters to read. If N is not specified, the default is 2. Leading zeroes are permitted but notrequired. The modified command %EC interprets the locale’s alternative representation of thecentury.
%d The day of the month as a decimal number. The modified command %Nd specifies the maximumnumber of characters to read. If N is not specified, the default is 2. Leading zeroes are permittedbut not required. The modified command %Od interprets the locale’s alternative representationof the day of the month.
%D Equivalent to %m/%d/%y.
%e Equivalent to %d and can be modified like %d.
%F Equivalent to %Y-%m-%d. If modified with a width N, the width is applied to only %Y.
%g The last two decimal digits of the ISO week-based year. The modified command %Ng specifiesthe maximum number of characters to read. If N is not specified, the default is 2. Leadingzeroes are permitted but not required.

§ 29.13 1420

© ISO/IEC N4910

Table 98: Meaning of parse flags (continued)
Flag Parsed value
%G The ISO week-based year as a decimal number. The modified command %NG specifies themaximum number of characters to read. If N is not specified, the default is 4. Leading zeroesare permitted but not required.
%h Equivalent to %b.
%H The hour (24-hour clock) as a decimal number. The modified command %NH specifies themaximum number of characters to read. If N is not specified, the default is 2. Leading zeroesare permitted but not required. The modified command %OH interprets the locale’s alternativerepresentation.
%I The hour (12-hour clock) as a decimal number. The modified command %NI specifies themaximum number of characters to read. If N is not specified, the default is 2. Leading zeroesare permitted but not required. The modified command %OI interprets the locale’s alternativerepresentation.
%j If the type being parsed is a specialization of duration, a decimal number of days. Otherwise,the day of the year as a decimal number. Jan 1 is 1. In either case, the modified command %Njspecifies the maximum number of characters to read. If N is not specified, the default is 3.Leading zeroes are permitted but not required.
%m The month as a decimal number. Jan is 1. The modified command %Nm specifies the maximumnumber of characters to read. If N is not specified, the default is 2. Leading zeroes are permittedbut not required. The modified command %Om interprets the locale’s alternative representation.
%M The minutes as a decimal number. The modified command %NM specifies the maximum numberof characters to read. If N is not specified, the default is 2. Leading zeroes are permitted but notrequired. The modified command %OM interprets the locale’s alternative representation.
%n Matches one whitespace character.

[Note 1: %n, %t, and a space can be combined to match a wide range of whitespace patterns. For example,
"%n " matches one or more whitespace characters, and "%n%t%t" matches one to three whitespace
characters. —end note]

%p The locale’s equivalent of the AM/PM designations associated with a 12-hour clock.
%r The locale’s 12-hour clock time.
%R Equivalent to %H:%M.
%S The seconds as a decimal number. The modified command %NS specifies the maximum numberof characters to read. If N is not specified, the default is 2 if the input time has a precisionconvertible to seconds. Otherwise the default width is determined by the decimal precision ofthe input and the field is interpreted as a long double in a fixed format. If encountered, thelocale determines the decimal point character. Leading zeroes are permitted but not required.The modified command %OS interprets the locale’s alternative representation.
%t Matches zero or one whitespace characters.
%T Equivalent to %H:%M:%S.
%u The ISO weekday as a decimal number (1-7), where Monday is 1. The modified command %Nuspecifies the maximum number of characters to read. If N is not specified, the default is 1.Leading zeroes are permitted but not required.
%U The week number of the year as a decimal number. The first Sunday of the year is the first dayof week 01. Days of the same year prior to that are in week 00. The modified command %NUspecifies the maximum number of characters to read. If N is not specified, the default is 2.Leading zeroes are permitted but not required. The modified command %OU interprets thelocale’s alternative representation.
%V The ISO week-based week number as a decimal number. The modified command %NV specifiesthe maximum number of characters to read. If N is not specified, the default is 2. Leadingzeroes are permitted but not required.
%w The weekday as a decimal number (0-6), where Sunday is 0. The modified command %Nwspecifies the maximum number of characters to read. If N is not specified, the default is 1.Leading zeroes are permitted but not required. The modified command %Ow interprets thelocale’s alternative representation.

§ 29.13 1421

© ISO/IEC N4910

Table 98: Meaning of parse flags (continued)
Flag Parsed value
%W The week number of the year as a decimal number. The first Monday of the year is the first dayof week 01. Days of the same year prior to that are in week 00. The modified command %NWspecifies the maximum number of characters to read. If N is not specified, the default is 2.Leading zeroes are permitted but not required. The modified command %OW interprets thelocale’s alternative representation.
%x The locale’s date representation. The modified command %Ex interprets the locale’s alternatedate representation.
%X The locale’s time representation. The modified command %EX interprets the locale’s alternatetime representation.
%y The last two decimal digits of the year. If the century is not otherwise specified (e.g. with %C),values in the range [69, 99] are presumed to refer to the years 1969 to 1999, and values in therange [00, 68] are presumed to refer to the years 2000 to 2068. The modified command %Nyspecifies the maximum number of characters to read. If N is not specified, the default is 2.Leading zeroes are permitted but not required. The modified commands %Ey and %Oy interpretthe locale’s alternative representation.
%Y The year as a decimal number. The modified command %NY specifies the maximum number ofcharacters to read. If N is not specified, the default is 4. Leading zeroes are permitted but notrequired. The modified command %EY interprets the locale’s alternative representation.
%z The offset from UTC in the format [+|-]hh[mm]. For example -0430 refers to 4 hours 30minutes behind UTC, and 04 refers to 4 hours ahead of UTC. The modified commands %Ez and

%Oz parse a : between the hours and minutes and render leading zeroes on the hour fieldoptional: [+|-]h[h][:mm]. For example -04:30 refers to 4 hours 30 minutes behind UTC, and
4 refers to 4 hours ahead of UTC.

%Z The time zone abbreviation or name. A single word is parsed. This word can only containcharacters from the basic character set (5.3) that are alphanumeric, or one of ’_’, ’/’, ’-’, or
’+’.

%% A % character is extracted.

29.14 Header <ctime> synopsis [ctime.syn]
#define NULL see 17.2.3
#define CLOCKS_PER_SEC see below
#define TIME_UTC see below

namespace std {
using size_t = see 17.2.4;
using clock_t = see below;
using time_t = see below;

struct timespec;
struct tm;

clock_t clock();
double difftime(time_t time1, time_t time0);
time_t mktime(tm* timeptr);
time_t time(time_t* timer);
int timespec_get(timespec* ts, int base);
char* asctime(const tm* timeptr);
char* ctime(const time_t* timer);
tm* gmtime(const time_t* timer);
tm* localtime(const time_t* timer);
size_t strftime(char* s, size_t maxsize, const char* format, const tm* timeptr);

}

1 The contents of the header <ctime> are the same as the C standard library header <time.h>.245
2 The functions asctime, ctime, gmtime, and localtime are not required to avoid data races (16.4.6.10).

245) strftime supports the C conversion specifiers C, D, e, F, g, G, h, r, R, t, T, u, V, and z, and the modifiers E and O.
§ 29.14 1422

© ISO/IEC N4910

See also: ISO C 7.27

§ 29.14 1423

© ISO/IEC N4910

30 Localization library [localization]
30.1 General [localization.general]

1 This Clause describes components that C++ programs may use to encapsulate (and therefore be more portable whenconfronting) cultural differences. The locale facility includes internationalization support for character classificationand string collation, numeric, monetary, and date/time formatting and parsing, and message retrieval.
2 The following subclauses describe components for locales themselves, the standard facets, and facilities from the ISOC library, as summarized in Table 99.

Table 99: Localization library summary [tab:localization.summary]
Subclause Header

30.3 Locales <locale>30.4 Standard locale categories30.5 C library locales <clocale>

30.2 Header <locale> synopsis [locale.syn]
namespace std {// 30.3.1, locale

class locale;
template<class Facet> const Facet& use_facet(const locale&);
template<class Facet> bool has_facet(const locale&) noexcept;

// 30.3.3, convenience interfaces
template<class charT> bool isspace (charT c, const locale& loc);
template<class charT> bool isprint (charT c, const locale& loc);
template<class charT> bool iscntrl (charT c, const locale& loc);
template<class charT> bool isupper (charT c, const locale& loc);
template<class charT> bool islower (charT c, const locale& loc);
template<class charT> bool isalpha (charT c, const locale& loc);
template<class charT> bool isdigit (charT c, const locale& loc);
template<class charT> bool ispunct (charT c, const locale& loc);
template<class charT> bool isxdigit(charT c, const locale& loc);
template<class charT> bool isalnum (charT c, const locale& loc);
template<class charT> bool isgraph (charT c, const locale& loc);
template<class charT> bool isblank (charT c, const locale& loc);
template<class charT> charT toupper(charT c, const locale& loc);
template<class charT> charT tolower(charT c, const locale& loc);

// 30.4.2, ctype
class ctype_base;
template<class charT> class ctype;
template<> class ctype<char>; // specialization
template<class charT> class ctype_byname;
class codecvt_base;
template<class internT, class externT, class stateT> class codecvt;
template<class internT, class externT, class stateT> class codecvt_byname;

// 30.4.3, numeric
template<class charT, class InputIterator = istreambuf_iterator<charT>>

class num_get;
template<class charT, class OutputIterator = ostreambuf_iterator<charT>>

class num_put;
template<class charT>

class numpunct;
template<class charT>

class numpunct_byname;

§ 30.2 1424

© ISO/IEC N4910

// 30.4.5, collation
template<class charT> class collate;
template<class charT> class collate_byname;

// 30.4.6, date and time
class time_base;
template<class charT, class InputIterator = istreambuf_iterator<charT>>
class time_get;

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class time_get_byname;

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class time_put;

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class time_put_byname;

// 30.4.7, money
class money_base;
template<class charT, class InputIterator = istreambuf_iterator<charT>>
class money_get;

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class money_put;

template<class charT, bool Intl = false>
class moneypunct;

template<class charT, bool Intl = false>
class moneypunct_byname;

// 30.4.8, message retrieval
class messages_base;
template<class charT> class messages;
template<class charT> class messages_byname;

}

1 The header <locale> defines classes and declares functions that encapsulate and manipulate the information peculiar toa locale.246
30.3 Locales [locales]
30.3.1 Class locale [locale]
30.3.1.1 General [locale.general]
namespace std {

class locale {
public:// types
class facet;
class id;
using category = int;
static const category // values assigned here are for exposition only

none = 0,
collate = 0x010, ctype = 0x020,
monetary = 0x040, numeric = 0x080,
time = 0x100, messages = 0x200,
all = collate | ctype | monetary | numeric | time | messages;

// construct/copy/destroy
locale() noexcept;
locale(const locale& other) noexcept;
explicit locale(const char* std_name);
explicit locale(const string& std_name);
locale(const locale& other, const char* std_name, category);
locale(const locale& other, const string& std_name, category);
template<class Facet> locale(const locale& other, Facet* f);
locale(const locale& other, const locale& one, category);

246) In this subclause, the type name tm is an incomplete type that is defined in <ctime> (29.14).
§ 30.3.1.1 1425

© ISO/IEC N4910

~locale(); // not virtual
const locale& operator=(const locale& other) noexcept;
template<class Facet> locale combine(const locale& other) const;

// locale operations
string name() const;

bool operator==(const locale& other) const;

template<class charT, class traits, class Allocator>
bool operator()(const basic_string<charT, traits, Allocator>& s1,

const basic_string<charT, traits, Allocator>& s2) const;

// global locale objects
static locale global(const locale&);
static const locale& classic();

};
}

1 Class locale implements a type-safe polymorphic set of facets, indexed by facet type. In other words, a facet has adual role: in one sense, it’s just a class interface; at the same time, it’s an index into a locale’s set of facets.
2 Access to the facets of a locale is via two function templates, use_facet<> and has_facet<>.
3 [Example 1: An iostream operator<< can be implemented as:247

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>& s, Date d) {

typename basic_ostream<charT, traits>::sentry cerberos(s);
if (cerberos) {
tm tmbuf; d.extract(tmbuf);
bool failed =

use_facet<time_put<charT, ostreambuf_iterator<charT, traits>>>(
s.getloc()).put(s, s, s.fill(), &tmbuf, 'x').failed();

if (failed)
s.setstate(s.badbit); // can throw

}
return s;

}

—end example]
4 In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the namedtype. If Facet is not present in a locale, it throws the standard exception bad_cast. A C++ program can check if a localeimplements a particular facet with the function template has_facet<Facet>(). User-defined facets may be installed ina locale, and used identically as may standard facets.
5 [Note 1: All locale semantics are accessed via use_facet<> and has_facet<>, except that:

—(5.1) A member operator template
operator()(const basic_string<C, T, A>&, const basic_string<C, T, A>&)

is provided so that a locale can be used as a predicate argument to the standard collections, to collate strings.
—(5.2) Convenient global interfaces are provided for traditional ctype functions such as isdigit() and isspace(), so that given alocale object loc a C++ program can call isspace(c, loc). (This eases upgrading existing extractors (31.7.4.3).)

—end note]
6 Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains usable, and theresults from member functions of it may be cached and re-used, as long as some locale object refers to that facet.
7 In successive calls to a locale facet member function on a facet object installed in the same locale, the returned resultshall be identical.
8 A locale constructed from a name string (such as "POSIX"), or from parts of two named locales, has a name; all othersdo not. Named locales may be compared for equality; an unnamed locale is equal only to (copies of) itself. For anunnamed locale, locale::name() returns the string "*".

247) Note that in the call to put, the stream is implicitly converted to an ostreambuf_iterator<charT, traits>.
§ 30.3.1.1 1426

© ISO/IEC N4910

9 Whether there is one global locale object for the entire program or one global locale object per thread is implementation-defined. Implementations should provide one global locale object per thread. If there is a single global locale object forthe entire program, implementations are not required to avoid data races on it (16.4.6.10).
30.3.1.2 Types [locale.types]
30.3.1.2.1 Type locale::category [locale.category]

using category = int;

1 Valid category values include the locale member bitmask elements collate, ctype, monetary, numeric, time, and
messages, each of which represents a single locale category. In addition, locale member bitmask constant none isdefined as zero and represents no category. And localemember bitmask constant all is defined such that the expression
(collate | ctype | monetary | numeric | time | messages | all) == all

is true, and represents the union of all categories. Further, the expression (X | Y), where X and Y each represent asingle category, represents the union of the two categories.
2 locale member functions expecting a category argument require one of the category values defined above, or theunion of two or more such values. Such a category value identifies a set of locale categories. Each locale category, inturn, identifies a set of locale facets, including at least those shown in Table 100.

Table 100: Locale category facets [tab:locale.category.facets]
Category Includes facets
collate collate<char>, collate<wchar_t>ctype ctype<char>, ctype<wchar_t>

codecvt<char, char, mbstate_t>
codecvt<char16_t, char8_t, mbstate_t>
codecvt<char32_t, char8_t, mbstate_t>
codecvt<wchar_t, char, mbstate_t>monetary moneypunct<char>, moneypunct<wchar_t>
moneypunct<char, true>, moneypunct<wchar_t, true>
money_get<char>, money_get<wchar_t>
money_put<char>, money_put<wchar_t>numeric numpunct<char>, numpunct<wchar_t>
num_get<char>, num_get<wchar_t>
num_put<char>, num_put<wchar_t>time time_get<char>, time_get<wchar_t>
time_put<char>, time_put<wchar_t>messages messages<char>, messages<wchar_t>

3 For any locale loc either constructed, or returned by locale::classic(), and any facet Facet shown in Table 100,
has_facet<Facet>(loc) is true. Each locale member function which takes a locale::category argument operateson the corresponding set of facets.

4 An implementation is required to provide those specializations for facet templates identified as members of a category,and for those shown in Table 101.
5 The provided implementation of members of facets num_get<charT> and num_put<charT> calls use_facet<F>(l)only for facet F of types numpunct<charT> and ctype<charT>, and for locale l the value obtained by calling member

getloc() on the ios_base& argument to these functions.
6 In declarations of facets, a template parameter with name InputIterator or OutputIterator indicates the set ofall possible specializations on parameters that meet the Cpp17InputIterator requirements or Cpp17OutputIteratorrequirements, respectively (25.3). A template parameter with name C represents the set of types containing char,

wchar_t, and any other implementation-defined character types that meet the requirements for a character on which anyof the iostream components can be instantiated. A template parameter with name International represents the set ofall possible specializations on a bool parameter.

§ 30.3.1.2.1 1427

© ISO/IEC N4910

Table 101: Required specializations [tab:locale.spec]
Category Includes facets
collate collate_byname<char>, collate_byname<wchar_t>ctype ctype_byname<char>, ctype_byname<wchar_t>

codecvt_byname<char, char, mbstate_t>
codecvt_byname<char16_t, char8_t, mbstate_t>
codecvt_byname<char32_t, char8_t, mbstate_t>
codecvt_byname<wchar_t, char, mbstate_t>monetary moneypunct_byname<char, International>
moneypunct_byname<wchar_t, International>
money_get<C, InputIterator>
money_put<C, OutputIterator>numeric numpunct_byname<char>, numpunct_byname<wchar_t>
num_get<C, InputIterator>, num_put<C, OutputIterator>time time_get<char, InputIterator>
time_get_byname<char, InputIterator>
time_get<wchar_t, InputIterator>
time_get_byname<wchar_t, InputIterator>
time_put<char, OutputIterator>
time_put_byname<char, OutputIterator>
time_put<wchar_t, OutputIterator>
time_put_byname<wchar_t, OutputIterator>messages messages_byname<char>, messages_byname<wchar_t>

30.3.1.2.2 Class locale::facet [locale.facet]
namespace std {

class locale::facet {
protected:
explicit facet(size_t refs = 0);
virtual ~facet();
facet(const facet&) = delete;
void operator=(const facet&) = delete;

};
}

1 Class facet is the base class for locale feature sets. A class is a facet if it is publicly derived from another facet, or if itis a class derived from locale::facet and contains a publicly accessible declaration as follows:248
static ::std::locale::id id;

2 Template parameters in this Clause which are required to be facets are those named Facet in declarations. A programthat passes a type that is not a facet, or a type that refers to a volatile-qualified facet, as an (explicit or deduced) templateparameter to a locale function expecting a facet, is ill-formed. A const-qualified facet is a valid template argument toany locale function that expects a Facet template parameter.
3 The refs argument to the constructor is used for lifetime management. For refs == 0, the implementation performs

delete static_cast<locale::facet*>(f) (where f is a pointer to the facet) when the last locale object containingthe facet is destroyed; for refs == 1, the implementation never destroys the facet.
4 Constructors of all facets defined in this Clause take such an argument and pass it along to their facet base classconstructor. All one-argument constructors defined in this Clause are explicit, preventing their participation in implicitconversions.
5 For some standard facets a standard “. . ._byname” class, derived from it, implements the virtual function semanticsequivalent to that facet of the locale constructed by locale(const char*) with the same name. Each such facetprovides a constructor that takes a const char* argument, which names the locale, and a refs argument, which ispassed to the base class constructor. Each such facet also provides a constructor that takes a string argument str and a

refs argument, which has the same effect as calling the first constructor with the two arguments str.c_str() and refs.
248) This is a complete list of requirements; there are no other requirements. Thus, a facet class need not have a public copy constructor, assignment,default constructor, destructor, etc.
§ 30.3.1.2.2 1428

© ISO/IEC N4910

If there is no “. . ._byname” version of a facet, the base class implements named locale semantics itself by reference toother facets.
30.3.1.2.3 Class locale::id [locale.id]
namespace std {

class locale::id {
public:
id();
void operator=(const id&) = delete;
id(const id&) = delete;

};
}

1 The class locale::id provides identification of a locale facet interface, used as an index for lookup and to encapsulateinitialization.
2 [Note 1: Because facets are used by iostreams, potentially while static constructors are running, their initialization cannot dependon programmed static initialization. One initialization strategy is for locale to initialize each facet’s id member the first time aninstance of the facet is installed into a locale. This depends only on static storage being zero before constructors run (6.9.3.2). —endnote]
30.3.1.3 Constructors and destructor [locale.cons]

locale() noexcept;

1 Effects: Constructs a copy of the argument last passed to locale::global(locale&), if it has been called; else,the resulting facets have virtual function semantics identical to those of locale::classic().
[Note 1: This constructor yields a copy of the current global locale. It is commonly used as a default argument for functionparameters of type const locale&. —end note]

explicit locale(const char* std_name);

2 Effects: Constructs a locale using standard C locale names, e.g., "POSIX". The resulting locale implementssemantics defined to be associated with that name.
3 Throws: runtime_error if the argument is not valid, or is null.
4 Remarks: The set of valid string argument values is "C", "", and any implementation-defined values.

explicit locale(const string& std_name);

5 Effects: The same as locale(std_name.c_str()).
locale(const locale& other, const char* std_name, category);

6 Effects: Constructs a locale as a copy of other except for the facets identified by the category argument, whichinstead implement the same semantics as locale(std_name).
7 Throws: runtime_error if the argument is not valid, or is null.
8 Remarks: The locale has a name if and only if other has a name.

locale(const locale& other, const string& std_name, category cat);

9 Effects: The same as locale(other, std_name.c_str(), cat).
template<class Facet> locale(const locale& other, Facet* f);

10 Effects: Constructs a locale incorporating all facets from the first argument except that of type Facet, and installsthe second argument as the remaining facet. If f is null, the resulting object is a copy of other.
11 Remarks: The resulting locale has no name.

locale(const locale& other, const locale& one, category cats);

12 Effects: Constructs a locale incorporating all facets from the first argument except those that implement cats,which are instead incorporated from the second argument.
13 Remarks: The resulting locale has a name if and only if the first two arguments have names.

§ 30.3.1.3 1429

© ISO/IEC N4910

const locale& operator=(const locale& other) noexcept;

14 Effects: Creates a copy of other, replacing the current value.
15 Returns: *this.
30.3.1.4 Members [locale.members]

template<class Facet> locale combine(const locale& other) const;

1 Effects: Constructs a locale incorporating all facets from *this except for that one facet of other that is identifiedby Facet.
2 Returns: The newly created locale.
3 Throws: runtime_error if has_facet<Facet>(other) is false.
4 Remarks: The resulting locale has no name.

string name() const;

5 Returns: The name of *this, if it has one; otherwise, the string "*".
30.3.1.5 Operators [locale.operators]

bool operator==(const locale& other) const;

1 Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name and thenames are identical; false otherwise.
template<class charT, class traits, class Allocator>

bool operator()(const basic_string<charT, traits, Allocator>& s1,
const basic_string<charT, traits, Allocator>& s2) const;

2 Effects: Compares two strings according to the collate<charT> facet.
3 Returns:

use_facet<collate<charT>>(*this).compare(s1.data(), s1.data() + s1.size(),
s2.data(), s2.data() + s2.size()) < 0

4 Remarks: This member operator template (and therefore locale itself) meets the requirements for a comparatorpredicate template argument (Clause 27) applied to strings.
5 [Example 1: A vector of strings v can be collated according to collation rules in locale loc simply by (27.8.2, 24.3.11):

std::sort(v.begin(), v.end(), loc);

—end example]
30.3.1.6 Static members [locale.statics]

static locale global(const locale& loc);

1 Effects: Sets the global locale to its argument. Causes future calls to the constructor locale() to return a copy ofthe argument. If the argument has a name, does
setlocale(LC_ALL, loc.name().c_str());

otherwise, the effect on the C locale, if any, is implementation-defined.
2 Returns: The previous value of locale().
3 Remarks: No library function other than locale::global() affects the value returned by locale().

[Note 1: See 30.5 for data race considerations when setlocale is invoked. —end note]
static const locale& classic();

4 The "C" locale.
5 Returns: A locale that implements the classic "C" locale semantics, equivalent to the value locale("C").
6 Remarks: This locale, its facets, and their member functions, do not change with time.

§ 30.3.1.6 1430

© ISO/IEC N4910

30.3.2 locale globals [locale.global.templates]

template<class Facet> const Facet& use_facet(const locale& loc);

1 Mandates: Facet is a facet class whose definition contains the public static member id as defined in 30.3.1.2.2.
2 Returns: A reference to the corresponding facet of loc, if present.
3 Throws: bad_cast if has_facet<Facet>(loc) is false.
4 Remarks: The reference returned remains valid at least as long as any copy of loc exists.

template<class Facet> bool has_facet(const locale& loc) noexcept;

5 Returns: true if the facet requested is present in loc; otherwise false.
30.3.3 Convenience interfaces [locale.convenience]
30.3.3.1 Character classification [classification]

template<class charT> bool isspace (charT c, const locale& loc);
template<class charT> bool isprint (charT c, const locale& loc);
template<class charT> bool iscntrl (charT c, const locale& loc);
template<class charT> bool isupper (charT c, const locale& loc);
template<class charT> bool islower (charT c, const locale& loc);
template<class charT> bool isalpha (charT c, const locale& loc);
template<class charT> bool isdigit (charT c, const locale& loc);
template<class charT> bool ispunct (charT c, const locale& loc);
template<class charT> bool isxdigit(charT c, const locale& loc);
template<class charT> bool isalnum (charT c, const locale& loc);
template<class charT> bool isgraph (charT c, const locale& loc);
template<class charT> bool isblank (charT c, const locale& loc);

1 Each of these functions isF returns the result of the expression:
use_facet<ctype<charT>>(loc).is(ctype_base::F, c)

where F is the ctype_base::mask value corresponding to that function (30.4.2).249
30.3.3.2 Character conversions [conversions.character]

template<class charT> charT toupper(charT c, const locale& loc);

1 Returns: use_facet<ctype<charT>>(loc).toupper(c).
template<class charT> charT tolower(charT c, const locale& loc);

2 Returns: use_facet<ctype<charT>>(loc).tolower(c).
30.4 Standard locale categories [locale.categories]
30.4.1 General [locale.categories.general]

1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing of a datum,for use by standard or users’ iostream operators << and >>, as members put() and get(), respectively. Each suchmember function takes an ios_base& argument whose members flags(), precision(), and width(), specify theformat of the corresponding datum (31.5.2). Those functions which need to use other facets call its member getloc()to retrieve the locale imbued there. Formatting facets use the character argument fill to fill out the specified widthwhere necessary.
2 The put()members make no provision for error reporting. (Any failures of the OutputIterator argument can be extractedfrom the returned iterator.) The get() members take an ios_base::iostate& argument whose value they ignore, butset to ios_base::failbit in case of a parse error.
3 Within subclause 30.4 it is unspecified whether one virtual function calls another virtual function.

249)When used in a loop, it is faster to cache the ctype<> facet and use it directly, or use the vector form of ctype<>::is.
§ 30.4.1 1431

© ISO/IEC N4910

30.4.2 The ctype category [category.ctype]
30.4.2.1 General [category.ctype.general]
namespace std {

class ctype_base {
public:
using mask = see below;

// numeric values are for exposition only.
static const mask space = 1 << 0;
static const mask print = 1 << 1;
static const mask cntrl = 1 << 2;
static const mask upper = 1 << 3;
static const mask lower = 1 << 4;
static const mask alpha = 1 << 5;
static const mask digit = 1 << 6;
static const mask punct = 1 << 7;
static const mask xdigit = 1 << 8;
static const mask blank = 1 << 9;
static const mask alnum = alpha | digit;
static const mask graph = alnum | punct;

};
}

1 The type mask is a bitmask type (16.3.3.3.4).
30.4.2.2 Class template ctype [locale.ctype]
30.4.2.2.1 General [locale.ctype.general]
namespace std {

template<class charT>
class ctype : public locale::facet, public ctype_base {
public:

using char_type = charT;

explicit ctype(size_t refs = 0);

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high, mask* vec) const;
const charT* scan_is(mask m, const charT* low, const charT* high) const;
const charT* scan_not(mask m, const charT* low, const charT* high) const;
charT toupper(charT c) const;
const charT* toupper(charT* low, const charT* high) const;
charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT* high, char dfault, char* to) const;

static locale::id id;

protected:
~ctype();
virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low, const charT* high, mask* vec) const;
virtual const charT* do_scan_is(mask m, const charT* low, const charT* high) const;
virtual const charT* do_scan_not(mask m, const charT* low, const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low, const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low, const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low, const char* high, charT* dest) const;

§ 30.4.2.2.1 1432

© ISO/IEC N4910

virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low, const charT* high,

char dfault, char* dest) const;
};

}

1 Class ctype encapsulates the C library <cctype> features. istream members are required to use ctype<> for characterclassing during input parsing.
2 The specializations required in Table 100 (30.3.1.2.1), namely ctype<char> and ctype<wchar_t>, implement characterclassing appropriate to the implementation’s native character set.
30.4.2.2.2 ctype members [locale.ctype.members]

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high, mask* vec) const;

1 Returns: do_is(m, c) or do_is(low, high, vec).
const charT* scan_is(mask m, const charT* low, const charT* high) const;

2 Returns: do_scan_is(m, low, high).
const charT* scan_not(mask m, const charT* low, const charT* high) const;

3 Returns: do_scan_not(m, low, high).
charT toupper(charT) const;
const charT* toupper(charT* low, const charT* high) const;

4 Returns: do_toupper(c) or do_toupper(low, high).
charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

5 Returns: do_tolower(c) or do_tolower(low, high).
charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;

6 Returns: do_widen(c) or do_widen(low, high, to).
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT* high, char dfault, char* to) const;

7 Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to).
30.4.2.2.3 ctype virtual functions [locale.ctype.virtuals]

bool do_is(mask m, charT c) const;
const charT* do_is(const charT* low, const charT* high, mask* vec) const;

1 Effects: Classifies a character or sequence of characters. For each argument character, identifies a value M of type
ctype_base::mask. The second form identifies a value M of type ctype_base::mask for each *p where (low <=
p && p < high), and places it into vec[p - low].

2 Returns: The first form returns the result of the expression (M & m) != 0; i.e., true if the character has thecharacteristics specified. The second form returns high.
const charT* do_scan_is(mask m, const charT* low, const charT* high) const;

3 Effects: Locates a character in a buffer that conforms to a classification m.
4 Returns: The smallest pointer p in the range [low, high) such that is(m, *p) would return true; otherwise,returns high.

const charT* do_scan_not(mask m, const charT* low, const charT* high) const;

5 Effects: Locates a character in a buffer that fails to conform to a classification m.
6 Returns: The smallest pointer p, if any, in the range [low, high) such that is(m, *p) would return false;otherwise, returns high.

§ 30.4.2.2.3 1433

© ISO/IEC N4910

charT do_toupper(charT c) const;
const charT* do_toupper(charT* low, const charT* high) const;

7 Effects: Converts a character or characters to upper case. The second form replaces each character *p in the range
[low, high) for which a corresponding upper-case character exists, with that character.

8 Returns: The first form returns the corresponding upper-case character if it is known to exist, or its argument ifnot. The second form returns high.
charT do_tolower(charT c) const;
const charT* do_tolower(charT* low, const charT* high) const;

9 Effects: Converts a character or characters to lower case. The second form replaces each character *p in the range
[low, high) and for which a corresponding lower-case character exists, with that character.

10 Returns: The first form returns the corresponding lower-case character if it is known to exist, or its argument ifnot. The second form returns high.
charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high, charT* dest) const;

11 Effects: Applies the simplest reasonable transformation from a char value or sequence of char values to thecorresponding charT value or values.250 The only characters for which unique transformations are required arethose in the basic character set (5.3).
For any named ctype category with a ctype<charT> facet ctc and valid ctype_base::mask value M, (ctc.is(M,
c) || !is(M, do_widen(c))) is true.251
The second form transforms each character *p in the range [low, high), placing the result in dest[p - low].

12 Returns: The first form returns the transformed value. The second form returns high.
char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const;

13 Effects: Applies the simplest reasonable transformation from a charT value or sequence of charT values to thecorresponding char value or values.
For any character c in the basic character set (5.3) the transformation is such that
do_widen(do_narrow(c, 0)) == c

For any named ctype category with a ctype<char> facet ctc however, and ctype_base::mask value M,
(is(M, c) || !ctc.is(M, do_narrow(c, dfault)))

is true (unless do_narrow returns dfault). In addition, for any digit character c, the expression (do_narrow(c,
dfault) - ’0’) evaluates to the digit value of the character. The second form transforms each character *p inthe range [low, high), placing the result (or dfault if no simple transformation is readily available) in dest[p -
low].

14 Returns: The first form returns the transformed value; or dfault if no mapping is readily available. The secondform returns high.
30.4.2.3 Class template ctype_byname [locale.ctype.byname]
namespace std {

template<class charT>
class ctype_byname : public ctype<charT> {
public:

using mask = typename ctype<charT>::mask;
explicit ctype_byname(const char*, size_t refs = 0);
explicit ctype_byname(const string&, size_t refs = 0);

protected:
~ctype_byname();

};
}

250) The parameter c of do_widen is intended to accept values derived from character-literals for conversion to the locale’s encoding.
251) In other words, the transformed character is not a member of any character classification that c is not also a member of.
§ 30.4.2.3 1434

© ISO/IEC N4910

30.4.2.4 ctype<char> specialization [facet.ctype.special]
30.4.2.4.1 General [facet.ctype.special.general]
namespace std {

template<>
class ctype<char> : public locale::facet, public ctype_base {
public:

using char_type = char;

explicit ctype(const mask* tab = nullptr, bool del = false, size_t refs = 0);

bool is(mask m, char c) const;
const char* is(const char* low, const char* high, mask* vec) const;
const char* scan_is (mask m, const char* low, const char* high) const;
const char* scan_not(mask m, const char* low, const char* high) const;

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;
char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

char widen(char c) const;
const char* widen(const char* low, const char* high, char* to) const;
char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high, char dfault, char* to) const;

static locale::id id;
static const size_t table_size = implementation-defined;

const mask* table() const noexcept;
static const mask* classic_table() noexcept;

protected:
~ctype();
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low, const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low, const char* high, char* to) const;
virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low, const char* high,

char dfault, char* to) const;
};

}

1 A specialization ctype<char> is provided so that the member functions on type char can be implemented inline.252The implementation-defined value of member table_size is at least 256.
30.4.2.4.2 Destructor [facet.ctype.char.dtor]

~ctype();
1 Effects: If the constructor’s first argument was nonzero, and its second argument was true, does delete []

table().
30.4.2.4.3 Members [facet.ctype.char.members]

1 In the following member descriptions, for unsigned char values v where v >= table_size, table()[v] is assumedto have an implementation-specific value (possibly different for each such value v) without performing the array lookup.

252)Only the char (not unsigned char and signed char) form is provided. The specialization is specified in the standard, and not left as animplementation detail, because it affects the derivation interface for ctype<char>.
§ 30.4.2.4.3 1435

© ISO/IEC N4910

explicit ctype(const mask* tbl = nullptr, bool del = false, size_t refs = 0);

2 Preconditions: Either tbl == nullptr is true or [tbl, tbl+table_size) is a valid range.
3 Effects: Passes its refs argument to its base class constructor.

bool is(mask m, char c) const;
const char* is(const char* low, const char* high, mask* vec) const;

4 Effects: The second form, for all *p in the range [low, high), assigns into vec[p - low] the value table()[(unsigned
char)*p].

5 Returns: The first form returns table()[(unsigned char)c] & m; the second form returns high.
const char* scan_is(mask m, const char* low, const char* high) const;

6 Returns: The smallest p in the range [low, high) such that
table()[(unsigned char) *p] & m

is true.
const char* scan_not(mask m, const char* low, const char* high) const;

7 Returns: The smallest p in the range [low, high) such that
table()[(unsigned char) *p] & m

is false.
char toupper(char c) const;
const char* toupper(char* low, const char* high) const;

8 Returns: do_toupper(c) or do_toupper(low, high), respectively.
char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

9 Returns: do_tolower(c) or do_tolower(low, high), respectively.
char widen(char c) const;
const char* widen(const char* low, const char* high, char* to) const;

10 Returns: do_widen(c) or do_widen(low, high, to), respectively.
char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high, char dfault, char* to) const;

11 Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to), respectively.
const mask* table() const noexcept;

12 Returns: The first constructor argument, if it was nonzero, otherwise classic_table().
30.4.2.4.4 Static members [facet.ctype.char.statics]

static const mask* classic_table() noexcept;

1 Returns: A pointer to the initial element of an array of size table_size which represents the classifications ofcharacters in the "C" locale.
30.4.2.4.5 Virtual functions [facet.ctype.char.virtuals]
char do_toupper(char) const;
const char* do_toupper(char* low, const char* high) const;
char do_tolower(char) const;
const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low, const char* high, char* to) const;
virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low, const char* high,

char dfault, char* to) const;

1 These functions are described identically as those members of the same name in the ctype class template (30.4.2.2.2).
§ 30.4.2.4.5 1436

© ISO/IEC N4910

30.4.2.5 Class template codecvt [locale.codecvt]
30.4.2.5.1 General [locale.codecvt.general]
namespace std {

class codecvt_base {
public:
enum result { ok, partial, error, noconv };

};

template<class internT, class externT, class stateT>
class codecvt : public locale::facet, public codecvt_base {
public:

using intern_type = internT;
using extern_type = externT;
using state_type = stateT;

explicit codecvt(size_t refs = 0);

result out(
stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_end, externT*& to_next) const;

result unshift(
stateT& state,

externT* to, externT* to_end, externT*& to_next) const;

result in(
stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_end, internT*& to_next) const;

int encoding() const noexcept;
bool always_noconv() const noexcept;
int length(stateT&, const externT* from, const externT* end, size_t max) const;
int max_length() const noexcept;

static locale::id id;

protected:
~codecvt();
virtual result do_out(

stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_end, externT*& to_next) const;
virtual result do_in(

stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_end, internT*& to_next) const;
virtual result do_unshift(

stateT& state,
externT* to, externT* to_end, externT*& to_next) const;

virtual int do_encoding() const noexcept;
virtual bool do_always_noconv() const noexcept;
virtual int do_length(stateT&, const externT* from, const externT* end, size_t max) const;
virtual int do_max_length() const noexcept;

};
}

1 The class codecvt<internT, externT, stateT> is for use when converting from one character encoding to another,such as from wide characters to multibyte characters or between wide character encodings such as UTF-32 and EUC.
2 The stateT argument selects the pair of character encodings being mapped between.

§ 30.4.2.5.1 1437

© ISO/IEC N4910

3 The specializations required in Table 100 (30.3.1.2.1) convert the implementation-defined native character set. codecvt<char,
char, mbstate_t> implements a degenerate conversion; it does not convert at all. The specialization codecvt<char16_-
t, char8_t, mbstate_t> converts between the UTF-16 and UTF-8 encoding forms, and the specialization codecvt
<char32_t, char8_t, mbstate_t> converts between the UTF-32 and UTF-8 encoding forms. codecvt<wchar_t,
char, mbstate_t> converts between the native character sets for ordinary and wide characters. Specializations on
mbstate_t perform conversion between encodings known to the library implementer. Other encodings can be convertedby specializing on a program-defined stateT type. Objects of type stateT can contain any state that is useful tocommunicate to or from the specialized do_in or do_out members.
30.4.2.5.2 Members [locale.codecvt.members]

result out(
stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_end, externT*& to_next) const;

1 Returns: do_out(state, from, from_end, from_next, to, to_end, to_next).
result unshift(stateT& state, externT* to, externT* to_end, externT*& to_next) const;

2 Returns: do_unshift(state, to, to_end, to_next).
result in(

stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_end, internT*& to_next) const;

3 Returns: do_in(state, from, from_end, from_next, to, to_end, to_next).
int encoding() const noexcept;

4 Returns: do_encoding().
bool always_noconv() const noexcept;

5 Returns: do_always_noconv().
int length(stateT& state, const externT* from, const externT* from_end, size_t max) const;

6 Returns: do_length(state, from, from_end, max).
int max_length() const noexcept;

7 Returns: do_max_length().
30.4.2.5.3 Virtual functions [locale.codecvt.virtuals]

result do_out(
stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_end, externT*& to_next) const;

result do_in(
stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_end, internT*& to_next) const;

1 Preconditions: (from <= from_end && to <= to_end) is well-defined and true; state is initialized, if at thebeginning of a sequence, or else is equal to the result of converting the preceding characters in the sequence.
2 Effects: Translates characters in the source range [from, from_end), placing the results in sequential positionsstarting at destination to. Converts no more than (from_end - from) source elements, and stores no more than

(to_end - to) destination elements.
3 Stops if it encounters a character it cannot convert. It always leaves the from_next and to_next pointers pointingone beyond the last element successfully converted. If returns noconv, internT and externT are the same typeand the converted sequence is identical to the input sequence [from, from_next). to_next is set equal to to, thevalue of state is unchanged, and there are no changes to the values in [to, to_end).
4 A codecvt facet that is used by basic_filebuf (31.10) shall have the property that if
§ 30.4.2.5.3 1438

© ISO/IEC N4910

do_out(state, from, from_end, from_next, to, to_end, to_next)

would return ok, where from != from_end, then
do_out(state, from, from + 1, from_next, to, to_end, to_next)

shall also return ok, and that if
do_in(state, from, from_end, from_next, to, to_end, to_next)

would return ok, where to != to_end, then
do_in(state, from, from_end, from_next, to, to + 1, to_next)

shall also return ok.253
[Note 1: As a result of operations on state, it can return ok or partial and set from_next == from and to_next != to.—end note]

5 Returns: An enumeration value, as summarized in Table 102.
Table 102: do_in/do_out result values [tab:locale.codecvt.inout]
Value Meaning
ok completed the conversion
partial not all source characters converted
error encountered a character in [from, from_end) that cannotbe converted
noconv internT and externT are the same type, and input se-quence is identical to converted sequence

A return value of partial, if (from_next == from_end), indicates that either the destination sequence has notabsorbed all the available destination elements, or that additional source elements are needed before anotherdestination element can be produced.
6 Remarks: Its operations on state are unspecified.

[Note 2: This argument can be used, for example, to maintain shift state, to specify conversion options (such as count only),or to identify a cache of seek offsets. —end note]
result do_unshift(stateT& state, externT* to, externT* to_end, externT*& to_next) const;

7 Preconditions: (to <= to_end) is well-defined and true; state is initialized, if at the beginning of a sequence,or else is equal to the result of converting the preceding characters in the sequence.
8 Effects: Places characters starting at to that should be appended to terminate a sequence when the current stateTis given by state.254 Stores no more than (to_end - to) destination elements, and leaves the to_next pointerpointing one beyond the last element successfully stored.
9 Returns: An enumeration value, as summarized in Table 103.

Table 103: do_unshift result values [tab:locale.codecvt.unshift]
Value Meaning
ok completed the sequence
partial space for more than to_end - to destination elements wasneeded to terminate a sequence given the value of state
error an unspecified error has occurred
noconv no termination is needed for this state_type

253) Informally, this means that basic_filebuf assumes that the mappings from internal to external characters is 1 to N: that a codecvt facet that isused by basic_filebuf can translate characters one internal character at a time.
254) Typically these will be characters to return the state to stateT().
§ 30.4.2.5.3 1439

© ISO/IEC N4910

int do_encoding() const noexcept;

10 Returns: -1 if the encoding of the externT sequence is state-dependent; else the constant number of externTcharacters needed to produce an internal character; or 0 if this number is not a constant.255
bool do_always_noconv() const noexcept;

11 Returns: true if do_in() and do_out() return noconv for all valid argument values. codecvt<char, char,
mbstate_t> returns true.

int do_length(stateT& state, const externT* from, const externT* from_end, size_t max) const;

12 Preconditions: (from <= from_end) is well-defined and true; state is initialized, if at the beginning of asequence, or else is equal to the result of converting the preceding characters in the sequence.
13 Effects: The effect on the state argument is as if it called do_in(state, from, from_end, from, to, to+max,

to) for to pointing to a buffer of at least max elements.
14 Returns: (from_next-from) where from_next is the largest value in the range [from, from_end] such that thesequence of values in the range [from, from_next) represents max or fewer valid complete characters of type

internT. The specialization codecvt<char, char, mbstate_t>, returns the lesser of max and (from_end-from).
int do_max_length() const noexcept;

15 Returns: The maximum value that do_length(state, from, from_end, 1) can return for any valid range
[from, from_end) and stateT value state. The specialization codecvt<char, char, mbstate_t>::do_max_-
length() returns 1.

30.4.2.6 Class template codecvt_byname [locale.codecvt.byname]
namespace std {

template<class internT, class externT, class stateT>
class codecvt_byname : public codecvt<internT, externT, stateT> {
public:

explicit codecvt_byname(const char*, size_t refs = 0);
explicit codecvt_byname(const string&, size_t refs = 0);

protected:
~codecvt_byname();

};
}

30.4.3 The numeric category [category.numeric]
30.4.3.1 General [category.numeric.general]

1 The classes num_get<> and num_put<> handle numeric formatting and parsing. Virtual functions are provided forseveral numeric types. Implementations may (but are not required to) delegate extraction of smaller types to extractorsfor larger types.256
2 All specifications of member functions for num_put and num_get in the subclauses of 30.4.3 only apply to the spe-cializations required in Tables 100 and 101 (30.3.1.2.1), namely num_get<char>, num_get<wchar_t>, num_get<C,

InputIterator>, num_put<char>, num_put<wchar_t>, and num_put<C, OutputIterator>. These specializations re-fer to the ios_base& argument for formatting specifications (30.4), and to its imbued locale for the numpunct<> facet toidentify all numeric punctuation preferences, and also for the ctype<> facet to perform character classification.
3 Extractor and inserter members of the standard iostreams use num_get<> and num_put<>member functions for formattingand parsing numeric values (31.7.4.3.1, 31.7.5.3.1).
30.4.3.2 Class template num_get [locale.num.get]
30.4.3.2.1 General [locale.num.get.general]
namespace std {

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class num_get : public locale::facet {
public:

255) If encoding() yields -1, then more than max_length() externT elements can be consumed when producing a single internT character, andadditional externT elements can appear at the end of a sequence after those that yield the final internT character.
256) Parsing "-1" correctly into, e.g., an unsigned short requires that the corresponding member get() at least extract the sign before delegating.
§ 30.4.3.2.1 1440

© ISO/IEC N4910

using char_type = charT;
using iter_type = InputIterator;

explicit num_get(size_t refs = 0);

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, bool& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned short& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned int& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned long long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, float& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, void*& v) const;

static locale::id id;

protected:
~num_get();
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, bool& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned short& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned int& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, float& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, double& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long double& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, void*& v) const;
};

}

1 The facet num_get is used to parse numeric values from an input sequence such as an istream.
30.4.3.2.2 Members [facet.num.get.members]

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

§ 30.4.3.2.2 1441

© ISO/IEC N4910

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Returns: do_get(in, end, str, err, val).
30.4.3.2.3 Virtual functions [facet.num.get.virtuals]

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Effects: Reads characters from in, interpreting them according to str.flags(), use_facet<ctype<charT>>(loc),and use_facet<numpunct<charT>>(loc), where loc is str.getloc().
2 The details of this operation occur in three stages

—(2.1) Stage 1: Determine a conversion specifier
—(2.2) Stage 2: Extract characters from in and determine a corresponding char value for the format expected bythe conversion specification determined in stage 1.
—(2.3) Stage 3: Store results

3 The details of the stages are presented below.
Stage 1: The function initializes local variables via

fmtflags flags = str.flags();
fmtflags basefield = (flags & ios_base::basefield);
fmtflags uppercase = (flags & ios_base::uppercase);
fmtflags boolalpha = (flags & ios_base::boolalpha);
For conversion to an integral type, the function determines the integral conversion specifier as indicated inTable 104. The table is ordered. That is, the first line whose condition is true applies.
For conversions to a floating-point type the specifier is %g.
For conversions to void* the specifier is %p.

§ 30.4.3.2.3 1442

© ISO/IEC N4910

Table 104: Integer conversions [tab:facet.num.get.int]
State stdio equivalent

basefield == oct %o
basefield == hex %X
basefield == 0 %i
signed integral type %d
unsigned integral type %u

A length modifier is added to the conversion specification, if needed, as indicated in Table 105.
Table 105: Length modifier [tab:facet.num.get.length]

Type Length modifier
short h
unsigned short h
long l
unsigned long l
long long ll
unsigned long long ll
double l
long double L

Stage 2: If in == end then stage 2 terminates. Otherwise a charT is taken from in and local variables areinitialized as if by
char_type ct = *in;
char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atoms];
if (ct == use_facet<numpunct<charT>>(loc).decimal_point())

c = '.';
bool discard =

ct == use_facet<numpunct<charT>>(loc).thousands_sep()
&& use_facet<numpunct<charT>>(loc).grouping().length() != 0;

where the values src and atoms are defined as if by:
static const char src[] = "0123456789abcdefpxABCDEFPX+-";
char_type atoms[sizeof(src)];
use_facet<ctype<charT>>(loc).widen(src, src + sizeof(src), atoms);

for this value of loc.
If discard is true, then if ’.’ has not yet been accumulated, then the position of the character is remembered,but the character is otherwise ignored. Otherwise, if ’.’ has already been accumulated, the character isdiscarded and Stage 2 terminates. If it is not discarded, then a check is made to determine if c is allowed asthe next character of an input field of the conversion specifier returned by Stage 1. If so, it is accumulated.
If the character is either discarded or accumulated then in is advanced by ++in and processing returns tothe beginning of stage 2.
[Example 1: Given an input sequence of "0x1a.bp+07p",
—(3.1) if the conversion specifier returned by Stage 1 is %d, "0" is accumulated;
—(3.2) if the conversion specifier returned by Stage 1 is %i, "0x1a" are accumulated;
—(3.3) if the conversion specifier returned by Stage 1 is %g, "0x1a.bp+07" are accumulated.
In all cases, the remainder is left in the input. —end example]

Stage 3: The sequence of chars accumulated in stage 2 (the field) is converted to a numeric value by the rules ofone of the functions declared in the header <cstdlib>:
—(3.4) For a signed integer value, the function strtoll.
—(3.5) For an unsigned integer value, the function strtoull.
—(3.6) For a float value, the function strtof.
—(3.7) For a double value, the function strtod.
—(3.8) For a long double value, the function strtold.

§ 30.4.3.2.3 1443

© ISO/IEC N4910

The numeric value to be stored can be one of:
—(3.9) zero, if the conversion function does not convert the entire field.
—(3.10) the most positive (or negative) representable value, if the field to be converted to a signed integer typerepresents a value too large positive (or negative) to be represented in val.
—(3.11) the most positive representable value, if the field to be converted to an unsigned integer type representsa value that cannot be represented in val.
—(3.12) the converted value, otherwise.
The resultant numeric value is stored in val. If the conversion function does not convert the entire field, orif the field represents a value outside the range of representable values, ios_base::failbit is assigned to
err.

4 Digit grouping is checked. That is, the positions of discarded separators are examined for consistency with use_-
facet<numpunct<charT>>(loc).grouping(). If they are not consistent then ios_base::failbit is assigned to
err.

5 In any case, if stage 2 processing was terminated by the test for in == end then err |= ios_base::eofbit isperformed.
iter_type do_get(iter_type in, iter_type end, ios_base& str,

ios_base::iostate& err, bool& val) const;

6 Effects: If (str.flags()&ios_base::boolalpha) == 0 then input proceeds as it would for a long except that ifa value is being stored into val, the value is determined according to the following: If the value to be stored is 0then false is stored. If the value is 1 then true is stored. Otherwise true is stored and ios_base::failbit isassigned to err.
7 Otherwise target sequences are determined “as if” by calling the members falsename() and truename() of thefacet obtained by use_facet<numpunct<charT>>(str.getloc()). Successive characters in the range [in, end)(see 24.2.4) are obtained and matched against corresponding positions in the target sequences only as necessaryto identify a unique match. The input iterator in is compared to end only when necessary to obtain a character.If a target sequence is uniquely matched, val is set to the corresponding value. Otherwise false is stored and

ios_base::failbit is assigned to err.
8 The in iterator is always left pointing one position beyond the last character successfully matched. If val is set,then err is set to str.goodbit; or to str.eofbit if, when seeking another character to match, it is found that

(in == end). If val is not set, then err is set to str.failbit; or to (str.failbit|str.eofbit) if the reasonfor the failure was that (in == end).
[Example 2: For targets true: "a" and false: "abb", the input sequence "a" yields val == true and err == str.eofbit;the input sequence "abc" yields err = str.failbit, with in ending at the ’c’ element. For targets true: "1" and false:
"0", the input sequence "1" yields val == true and err == str.goodbit. For empty targets (""), any input sequence yields
err == str.failbit. —end example]

9 Returns: in.
30.4.3.3 Class template num_put [locale.nm.put]
30.4.3.3.1 General [locale.nm.put.general]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class num_put : public locale::facet {
public:

using char_type = charT;
using iter_type = OutputIterator;

explicit num_put(size_t refs = 0);

iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, unsigned long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, unsigned long long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, const void* v) const;

§ 30.4.3.3.1 1444

© ISO/IEC N4910

static locale::id id;

protected:
~num_put();
virtual iter_type do_put(iter_type, ios_base&, char_type fill, bool v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, long long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, unsigned long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, unsigned long long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, double v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, long double v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, const void* v) const;

};
}

1 The facet num_put is used to format numeric values to a character sequence such as an ostream.
30.4.3.3.2 Members [facet.num.put.members]

iter_type put(iter_type out, ios_base& str, char_type fill, bool val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, long long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, unsigned long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, unsigned long long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, double val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, long double val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, const void* val) const;

1 Returns: do_put(out, str, fill, val).
30.4.3.3.3 Virtual functions [facet.num.put.virtuals]

iter_type do_put(iter_type out, ios_base& str, char_type fill, long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, long long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, unsigned long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, unsigned long long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, double val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, long double val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, const void* val) const;

1 Effects: Writes characters to the sequence out, formatting val as desired. In the following description, loc namesa local variable initialized as
locale loc = str.getloc();

2 The details of this operation occur in several stages:
—(2.1) Stage 1: Determine a printf conversion specifier spec and determine the characters that would be printed by

printf (31.13) given this conversion specifier for
printf(spec, val)

assuming that the current locale is the "C" locale.
—(2.2) Stage 2: Adjust the representation by converting each char determined by stage 1 to a charT using aconversion and values returned by members of use_facet<numpunct<charT>>(loc).
—(2.3) Stage 3: Determine where padding is required.
—(2.4) Stage 4: Insert the sequence into the out.

3 Detailed descriptions of each stage follow.
4 Returns: out.

Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe this determina-tion use the following local variables
fmtflags flags = str.flags();
fmtflags basefield = (flags & (ios_base::basefield));
fmtflags uppercase = (flags & (ios_base::uppercase));
fmtflags floatfield = (flags & (ios_base::floatfield));

§ 30.4.3.3.3 1445

© ISO/IEC N4910

fmtflags showpos = (flags & (ios_base::showpos));
fmtflags showbase = (flags & (ios_base::showbase));
fmtflags showpoint = (flags & (ios_base::showpoint));

All tables used in describing stage 1 are ordered. That is, the first line whose condition is true applies. Aline without a condition is the default behavior when none of the earlier lines apply.
For conversion from an integral type other than a character type, the function determines the integralconversion specifier as indicated in Table 106.

Table 106: Integer conversions [tab:facet.num.put.int]
State stdio equivalent

basefield == ios_base::oct %o
(basefield == ios_base::hex) && !uppercase %x
(basefield == ios_base::hex) %Xfor a signed integral type %dfor an unsigned integral type %u

For conversion from a floating-point type, the function determines the floating-point conversion specifier asindicated in Table 107.
Table 107: Floating-point conversions [tab:facet.num.put.fp]

State stdio equivalent
floatfield == ios_base::fixed %f
floatfield == ios_base::scientific && !uppercase %e
floatfield == ios_base::scientific %E
floatfield == (ios_base::fixed | ios_base::scientific) && !uppercase %a
floatfield == (ios_base::fixed | ios_base::scientific) %A
!uppercase %gotherwise %G

For conversions from an integral or floating-point type a length modifier is added to the conversion specifieras indicated in Table 108.
Table 108: Length modifier [tab:facet.num.put.length]

Type Length modifier
long l
long long ll
unsigned long l
unsigned long long ll
long double Lotherwise none

The conversion specifier has the following optional additional qualifiers prepended as indicated in Table 109.
Table 109: Numeric conversions [tab:facet.num.put.conv]

Type(s) State stdio equivalent
an integral type showpos +

showbase #a floating-point type showpos +
showpoint #

For conversion from a floating-point type, if floatfield != (ios_base::fixed | ios_base::scientific),
str.precision() is specified as precision in the conversion specification. Otherwise, no precision is speci-fied.

§ 30.4.3.3.3 1446

© ISO/IEC N4910

For conversion from void* the specifier is %p.
The representations at the end of stage 1 consists of the char’s that would be printed by a call of printf(s,
val) where s is the conversion specifier determined above.

Stage 2: Any character c other than a decimal point(.) is converted to a charT via
use_facet<ctype<charT>>(loc).widen(c)

A local variable punct is initialized via
const numpunct<charT>& punct = use_facet<numpunct<charT>>(loc);

For arithmetic types, punct.thousands_sep() characters are inserted into the sequence as determined bythe value returned by punct.do_grouping() using the method described in 30.4.4.1.3.
Decimal point characters(.) are replaced by punct.decimal_point().

Stage 3: A local variable is initialized as
fmtflags adjustfield = (flags & (ios_base::adjustfield));

The location of any padding257 is determined according to Table 110.
Table 110: Fill padding [tab:facet.num.put.fill]

State Location
adjustfield == ios_base::left pad after
adjustfield == ios_base::right pad before
adjustfield == internal and a sign occurs in the rep-resentation pad after the sign
adjustfield == internal and representation afterstage 1 began with 0x or 0X pad after x or X
otherwise pad before

If str.width() is nonzero and the number of charT’s in the sequence after stage 2 is less than str.width(),then enough fill characters are added to the sequence at the position indicated for padding to bring thelength of the sequence to str.width().
str.width(0) is called.

Stage 4: The sequence of charT’s at the end of stage 3 are output via
*out++ = c

iter_type do_put(iter_type out, ios_base& str, char_type fill, bool val) const;

5 Returns: If (str.flags() & ios_base::boolalpha) == 0 returns do_put(out, str, fill,
(int)val), otherwise obtains a string s as if by
string_type s =
val ? use_facet<numpunct<charT>>(loc).truename()

: use_facet<numpunct<charT>>(loc).falsename();

and then inserts each character c of s into out via *out++ = c and returns out.
30.4.4 The numeric punctuation facet [facet.numpunct]
30.4.4.1 Class template numpunct [locale.numpunct]
30.4.4.1.1 General [locale.numpunct.general]
namespace std {

template<class charT>
class numpunct : public locale::facet {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit numpunct(size_t refs = 0);

257) The conversion specification #o generates a leading 0 which is not a padding character.
§ 30.4.4.1.1 1447

© ISO/IEC N4910

char_type decimal_point() const;
char_type thousands_sep() const;
string grouping() const;
string_type truename() const;
string_type falsename() const;

static locale::id id;

protected:
~numpunct(); // virtual
virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

1 numpunct<> specifies numeric punctuation. The specializations required in Table 100 (30.3.1.2.1), namely numpunct<
wchar_t> and numpunct<char>, provide classic "C" numeric formats, i.e., they contain information equivalent to thatcontained in the "C" locale or their wide character counterparts as if obtained by a call to widen.

2 The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags argumentvalue, and thousands-sep and decimal-point are the results of corresponding numpunct<charT> members. Integervalues have the format:
intval :

signopt units

sign :
+
-

units :
digits
digits thousands-sep units

digits :
digit digitsopt

and floating-point values have:
floatval :

signopt units fractionalopt exponentopt
signopt decimal-point digits exponentopt

fractional :
decimal-point digitsopt

exponent :
e signopt digits

e :
e
E

where the number of digits between thousands-seps is as specified by do_grouping(). For parsing, if the digits portioncontains no thousands-separators, no grouping constraint is applied.
30.4.4.1.2 Members [facet.numpunct.members]

char_type decimal_point() const;

1 Returns: do_decimal_point().
char_type thousands_sep() const;

2 Returns: do_thousands_sep().
string grouping() const;

3 Returns: do_grouping().
§ 30.4.4.1.2 1448

© ISO/IEC N4910

string_type truename() const;
string_type falsename() const;

4 Returns: do_truename() or do_falsename(), respectively.
30.4.4.1.3 Virtual functions [facet.numpunct.virtuals]

char_type do_decimal_point() const;

1 Returns: A character for use as the decimal radix separator. The required specializations return ’.’ or L’.’.
char_type do_thousands_sep() const;

2 Returns: A character for use as the digit group separator. The required specializations return ’,’ or L’,’.
string do_grouping() const;

3 Returns: A string vec used as a vector of integer values, in which each element vec[i] represents the numberof digits258 in the group at position i, starting with position 0 as the rightmost group. If vec.size() <= i, thenumber is the same as group (i - 1); if (i < 0 || vec[i] <= 0 || vec[i] == CHAR_MAX), the size of thedigit group is unlimited.
4 The required specializations return the empty string, indicating no grouping.

string_type do_truename() const;
string_type do_falsename() const;

5 Returns: A string representing the name of the boolean value true or false, respectively.
6 In the base class implementation these names are "true" and "false", or L"true" and L"false".
30.4.4.2 Class template numpunct_byname [locale.numpunct.byname]
namespace std {

template<class charT>
class numpunct_byname : public numpunct<charT> {// this class is specialized for char and wchar_t.
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit numpunct_byname(const char*, size_t refs = 0);
explicit numpunct_byname(const string&, size_t refs = 0);

protected:
~numpunct_byname();

};
}

30.4.5 The collate category [category.collate]
30.4.5.1 Class template collate [locale.collate]
30.4.5.1.1 General [locale.collate.general]
namespace std {

template<class charT>
class collate : public locale::facet {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit collate(size_t refs = 0);

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

string_type transform(const charT* low, const charT* high) const;
long hash(const charT* low, const charT* high) const;

258) Thus, the string "\003" specifies groups of 3 digits each, and "3" probably indicates groups of 51 (!) digits each, because 51 is the ASCII valueof "3".
§ 30.4.5.1.1 1449

© ISO/IEC N4910

static locale::id id;

protected:
~collate();
virtual int do_compare(const charT* low1, const charT* high1,

const charT* low2, const charT* high2) const;
virtual string_type do_transform(const charT* low, const charT* high) const;
virtual long do_hash (const charT* low, const charT* high) const;

};
}

1 The class collate<charT> provides features for use in the collation (comparison) and hashing of strings. A localemember function template, operator(), uses the collate facet to allow a locale to act directly as the predicate argumentfor standard algorithms (Clause 27) and containers operating on strings. The specializations required in Table 100(30.3.1.2.1), namely collate<char> and collate<wchar_t>, apply lexicographic ordering (27.8.11).
2 Each function compares a string of characters *p in the range [low, high).
30.4.5.1.2 Members [locale.collate.members]

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: do_compare(low1, high1, low2, high2).
string_type transform(const charT* low, const charT* high) const;

2 Returns: do_transform(low, high).
long hash(const charT* low, const charT* high) const;

3 Returns: do_hash(low, high).
30.4.5.1.3 Virtual functions [locale.collate.virtuals]

int do_compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: 1 if the first string is greater than the second, -1 if less, zero otherwise. The specializations required inTable 100 (30.3.1.2.1), namely collate<char> and collate<wchar_t>, implement a lexicographical comparison(27.8.11).
string_type do_transform(const charT* low, const charT* high) const;

2 Returns: A basic_string<charT> value that, compared lexicographically with the result of calling transform()on another string, yields the same result as calling do_compare() on the same two strings.259
long do_hash(const charT* low, const charT* high) const;

3 Returns: An integer value equal to the result of calling hash() on any other string for which do_compare()returns 0 (equal) when passed the two strings.
4 Recommended practice: The probability that the result equals that for another string which does not compareequal should be very small, approaching (1.0/numeric_limits<unsigned long>::max()).
30.4.5.2 Class template collate_byname [locale.collate.byname]
namespace std {

template<class charT>
class collate_byname : public collate<charT> {
public:

using string_type = basic_string<charT>;

explicit collate_byname(const char*, size_t refs = 0);
explicit collate_byname(const string&, size_t refs = 0);

259) This function is useful when one string is being compared to many other strings.
§ 30.4.5.2 1450

© ISO/IEC N4910

protected:
~collate_byname();

};
}

30.4.6 The time category [category.time]
30.4.6.1 General [category.time.general]

1 Templates time_get<charT, InputIterator> and time_put<charT, OutputIterator> provide date and time for-matting and parsing. All specifications of member functions for time_put and time_get in the subclauses of 30.4.6only apply to the specializations required in Tables 100 and 101 (30.3.1.2.1). Their members use their ios_base&,
ios_base::iostate&, and fill arguments as described in 30.4, and the ctype<> facet, to determine formatting details.
30.4.6.2 Class template time_get [locale.time.get]
30.4.6.2.1 General [locale.time.get.general]
namespace std {

class time_base {
public:
enum dateorder { no_order, dmy, mdy, ymd, ydm };

};

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class time_get : public locale::facet, public time_base {
public:

using char_type = charT;
using iter_type = InputIterator;

explicit time_get(size_t refs = 0);

dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_date(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_weekday(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_monthname(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_year(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t, char format, char modifier = 0) const;
iter_type get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t, const char_type* fmt,
const char_type* fmtend) const;

static locale::id id;

protected:
~time_get();
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t, char format, char modifier) const;

§ 30.4.6.2.1 1451

© ISO/IEC N4910

};
}

1 time_get is used to parse a character sequence, extracting components of a time or date into a tm object. Each getmember parses a format as produced by a corresponding format specifier to time_put<>::put. If the sequence beingparsed matches the correct format, the corresponding members of the tm argument are set to the values used to producethe sequence; otherwise either an error is reported or unspecified values are assigned.260
2 If the end iterator is reached during parsing by any of the get() member functions, the member sets ios_base::eofbitin err.
30.4.6.2.2 Members [locale.time.get.members]

dateorder date_order() const;

1 Returns: do_date_order().
iter_type get_time(iter_type s, iter_type end, ios_base& str,

ios_base::iostate& err, tm* t) const;

2 Returns: do_get_time(s, end, str, err, t).
iter_type get_date(iter_type s, iter_type end, ios_base& str,

ios_base::iostate& err, tm* t) const;

3 Returns: do_get_date(s, end, str, err, t).
iter_type get_weekday(iter_type s, iter_type end, ios_base& str,

ios_base::iostate& err, tm* t) const;
iter_type get_monthname(iter_type s, iter_type end, ios_base& str,

ios_base::iostate& err, tm* t) const;

4 Returns: do_get_weekday(s, end, str, err, t) or do_get_monthname(s, end, str, err, t).
iter_type get_year(iter_type s, iter_type end, ios_base& str,

ios_base::iostate& err, tm* t) const;

5 Returns: do_get_year(s, end, str, err, t).
iter_type get(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err,

tm* t, char format, char modifier = 0) const;

6 Returns: do_get(s, end, f, err, t, format, modifier).
iter_type get(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err,

tm* t, const char_type* fmt, const char_type* fmtend) const;

7 Preconditions: [fmt, fmtend) is a valid range.
8 Effects: The function starts by evaluating err = ios_base::goodbit. It then enters a loop, reading zero or morecharacters from s at each iteration. Unless otherwise specified below, the loop terminates when the first of thefollowing conditions holds:

—(8.1) The expression fmt == fmtend evaluates to true.
—(8.2) The expression err == ios_base::goodbit evaluates to false.
—(8.3) The expression s == end evaluates to true, in which case the function evaluates err = ios_base::eofbit

| ios_base::failbit.
—(8.4) The next element of fmt is equal to ’%’, optionally followed by a modifier character, followed by aconversion specifier character, format, together forming a conversion specification valid for the POSIXfunction strptime. If the number of elements in the range [fmt, fmtend) is not sufficient to unambigu-ously determine whether the conversion specification is complete and valid, the function evaluates err

= ios_base::failbit. Otherwise, the function evaluates s = do_get(s, end, f, err, t, format,
modifier), where the value of modifier is ’\0’ when the optional modifier is absent from the conversionspecification. If err == ios_base::goodbit holds after the evaluation of the expression, the functionincrements fmt to point just past the end of the conversion specification and continues looping.

260) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats can be parsedreliably. This allows parsers to be aggressive about interpreting user variations on standard formats.
§ 30.4.6.2.2 1452

© ISO/IEC N4910

—(8.5) The expression isspace(*fmt, f.getloc()) evaluates to true, in which case the function first increments
fmt until fmt == fmtend || !isspace(*fmt, f.getloc()) evaluates to true, then advances s until s ==
end || !isspace(*s, f.getloc()) is true, and finally resumes looping.

—(8.6) The next character read from s matches the element pointed to by fmt in a case-insensitive comparison, inwhich case the function evaluates ++fmt, ++s and continues looping. Otherwise, the function evaluates
err = ios_base::failbit.

9 [Note 1: The function uses the ctype<charT> facet installed in f’s locale to determine valid whitespace characters. It isunspecified by what means the function performs case-insensitive comparison or whether multi-character sequences areconsidered while doing so. —end note]
10 Returns: s.
30.4.6.2.3 Virtual functions [locale.time.get.virtuals]

dateorder do_date_order() const;

1 Returns: An enumeration value indicating the preferred order of components for those date formats that arecomposed of day, month, and year.261 Returns no_order if the date format specified by ’x’ contains other variablecomponents (e.g., Julian day, week number, week day).
iter_type do_get_time(iter_type s, iter_type end, ios_base& str,

ios_base::iostate& err, tm* t) const;

2 Effects: Reads characters starting at s until it has extracted those tm members, and remaining format characters,used by time_put<>::put to produce the format specified by "%H:%M:%S", or until it encounters an error or endof sequence.
3 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid time.

iter_type do_get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Effects: Reads characters starting at s until it has extracted those tm members and remaining format charactersused by time_put<>::put to produce one of the following formats, or until it encounters an error. The formatdepends on the value returned by date_order() as shown in Table 111.
Table 111: do_get_date effects [tab:locale.time.get.dogetdate]

date_order() Format
no_order "%m%d%y"
dmy "%d%m%y"
mdy "%m%d%y"
ymd "%y%m%d"
ydm "%y%d%m"

5 An implementation may also accept additional implementation-defined formats.
6 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid date.

iter_type do_get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type do_get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

7 Effects: Reads characters starting at s until it has extracted the (perhaps abbreviated) name of a weekday ormonth. If it finds an abbreviation that is followed by characters that can match a full name, it continues readinguntil it matches the full name or fails. It sets the appropriate tm member accordingly.
8 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid name.

261) This function is intended as a convenience only, for common formats, and can return no_order in valid locales.
§ 30.4.6.2.3 1453

© ISO/IEC N4910

iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

9 Effects: Reads characters starting at s until it has extracted an unambiguous year identifier. It is implementation-defined whether two-digit year numbers are accepted, and (if so) what century they are assumed to lie in. Sets the
t->tm_year member accordingly.

10 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year identifier.
iter_type do_get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t, char format, char modifier) const;

11 Preconditions: t points to an object.
12 Effects: The function starts by evaluating err = ios_base::goodbit. It then reads characters starting at suntil it encounters an error, or until it has extracted and assigned those tm members, and any remaining formatcharacters, corresponding to a conversion specification appropriate for the POSIX function strptime, formed byconcatenating ’%’, the modifier character, when non-NUL, and the format character. When the concatenationfails to yield a complete valid directive the function leaves the object pointed to by t unchanged and evaluates

err |= ios_base::failbit. When s == end evaluates to true after reading a character the function evaluates
err |= ios_base::eofbit.

13 For complex conversion specifications such as %c, %x, or %X, or conversion specifications that involve the optionalmodifiers E or O, when the function is unable to unambiguously determine some or all tm members from the inputsequence [s, end), it evaluates err |= ios_base::eofbit. In such cases the values of those tm members areunspecified and may be outside their valid range.
14 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid inputsequence for the given format and modifier.
15 Remarks: It is unspecified whether multiple calls to do_get() with the address of the same tm object will updatethe current contents of the object or simply overwrite its members. Portable programs should zero out the objectbefore invoking the function.
30.4.6.3 Class template time_get_byname [locale.time.get.byname]
namespace std {

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class time_get_byname : public time_get<charT, InputIterator> {
public:

using dateorder = time_base::dateorder;
using iter_type = InputIterator;

explicit time_get_byname(const char*, size_t refs = 0);
explicit time_get_byname(const string&, size_t refs = 0);

protected:
~time_get_byname();

};
}

30.4.6.4 Class template time_put [locale.time.put]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class time_put : public locale::facet {
public:

using char_type = charT;
using iter_type = OutputIterator;

explicit time_put(size_t refs = 0);

// the following is implemented in terms of other member functions.
iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,

const charT* pattern, const charT* pat_end) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

const tm* tmb, char format, char modifier = 0) const;

§ 30.4.6.4 1454

© ISO/IEC N4910

static locale::id id;

protected:
~time_put();
virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,

char format, char modifier) const;
};

}

30.4.6.4.1 Members [locale.time.put.members]

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
const charT* pattern, const charT* pat_end) const;

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
char format, char modifier = 0) const;

1 Effects: The first form steps through the sequence from pattern to pat_end, identifying characters that are part ofa format sequence. Each character that is not part of a format sequence is written to s immediately, and each formatsequence, as it is identified, results in a call to do_put; thus, format elements and other characters are interleavedin the output in the order in which they appear in the pattern. Format sequences are identified by converting eachcharacter c to a char value as if by ct.narrow(c, 0), where ct is a reference to ctype<charT> obtained from
str.getloc(). The first character of each sequence is equal to ’%’, followed by an optional modifier character
mod262 and a format specifier character spec as defined for the function strftime. If no modifier character ispresent, mod is zero. For each valid format sequence identified, calls do_put(s, str, fill, t, spec, mod).

2 The second form calls do_put(s, str, fill, t, format, modifier).
3 [Note 1: The fill argument can be used in the implementation-defined formats or by derivations. A space character is areasonable default for this argument. —end note]
4 Returns: An iterator pointing immediately after the last character produced.
30.4.6.4.2 Virtual functions [locale.time.put.virtuals]

iter_type do_put(iter_type s, ios_base&, char_type fill, const tm* t,
char format, char modifier) const;

1 Effects: Formats the contents of the parameter t into characters placed on the output sequence s. Formatting iscontrolled by the parameters format and modifier, interpreted identically as the format specifiers in the stringargument to the standard library function strftime(), except that the sequence of characters produced for thosespecifiers that are described as depending on the C locale are instead implementation-defined.
[Note 1: Interpretation of the modifier argument is implementation-defined. —end note]

2 Returns: An iterator pointing immediately after the last character produced.
[Note 2: The fill argument can be used in the implementation-defined formats or by derivations. A space character is areasonable default for this argument. —end note]

3 Recommended practice: Interpretation of the modifier should follow POSIX conventions. Implementationsshould refer to other standards such as POSIX for a specification of the character sequences produced for thosespecifiers described as depending on the C locale.
30.4.6.5 Class template time_put_byname [locale.time.put.byname]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class time_put_byname : public time_put<charT, OutputIterator> {
public:

using char_type = charT;
using iter_type = OutputIterator;

explicit time_put_byname(const char*, size_t refs = 0);
explicit time_put_byname(const string&, size_t refs = 0);

262) Although the C programming language defines no modifiers, most vendors do.
§ 30.4.6.5 1455

© ISO/IEC N4910

protected:
~time_put_byname();

};
}

30.4.7 The monetary category [category.monetary]
30.4.7.1 General [category.monetary.general]

1 These templates handle monetary formats. A template parameter indicates whether local or international monetaryformats are to be used.
2 All specifications of member functions for money_put and money_get in the subclauses of 30.4.7 only apply to thespecializations required in Tables 100 and 101 (30.3.1.2.1). Their members use their ios_base&, ios_base::iostate&,and fill arguments as described in 30.4, and the moneypunct<> and ctype<> facets, to determine formatting details.
30.4.7.2 Class template money_get [locale.money.get]
namespace std {

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class money_get : public locale::facet {
public:

using char_type = charT;
using iter_type = InputIterator;
using string_type = basic_string<charT>;

explicit money_get(size_t refs = 0);

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
long double& units) const;

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
string_type& digits) const;

static locale::id id;

protected:
~money_get();
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, long double& units) const;
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, string_type& digits) const;
};

}

30.4.7.2.1 Members [locale.money.get.members]

iter_type get(iter_type s, iter_type end, bool intl, ios_base& f,
ios_base::iostate& err, long double& quant) const;

iter_type get(iter_type s, iter_type end, bool intl, ios_base& f,
ios_base::iostate& err, string_type& quant) const;

1 Returns: do_get(s, end, intl, f, err, quant).
30.4.7.2.2 Virtual functions [locale.money.get.virtuals]

iter_type do_get(iter_type s, iter_type end, bool intl, ios_base& str,
ios_base::iostate& err, long double& units) const;

iter_type do_get(iter_type s, iter_type end, bool intl, ios_base& str,
ios_base::iostate& err, string_type& digits) const;

1 Effects: Reads characters from s to parse and construct a monetary value according to the format specifiedby a moneypunct<charT, Intl> facet reference mp and the character mapping specified by a ctype<charT>facet reference ct obtained from the locale returned by str.getloc(), and str.flags(). If a valid sequence isrecognized, does not change err; otherwise, sets err to (err|str.failbit), or (err|str.failbit|str.eof-
bit) if no more characters are available, and does not change units or digits. Uses the pattern returned by

§ 30.4.7.2.2 1456

© ISO/IEC N4910

mp.neg_format() to parse all values. The result is returned as an integral value stored in units or as a sequenceof digits possibly preceded by a minus sign (as produced by ct.widen(c) where c is ’-’ or in the range from ’0’through ’9’ (inclusive)) stored in digits.
[Example 1: The sequence $1,056.23 in a common United States locale would yield, for units, 105623, or, for digits,
"105623". —end example]
If mp.grouping() indicates that no thousands separators are permitted, any such characters are not read, andparsing is terminated at the point where they first appear. Otherwise, thousands separators are optional; if present,they are checked for correct placement only after all format components have been read.

2 Where money_base::space or money_base::none appears as the last element in the format pattern, no whitespaceis consumed. Otherwise, where money_base::space appears in any of the initial elements of the format pattern,at least one whitespace character is required. Where money_base::none appears in any of the initial elementsof the format pattern, whitespace is allowed but not required. If (str.flags() & str.showbase) is false, thecurrency symbol is optional and is consumed only if other characters are needed to complete the format; otherwise,the currency symbol is required.
3 If the first character (if any) in the string pos returned by mp.positive_sign() or the string neg returned by

mp.negative_sign() is recognized in the position indicated by sign in the format pattern, it is consumed andany remaining characters in the string are required after all the other format components.
[Example 2: If showbase is off, then for a neg value of "()" and a currency symbol of "L", in "(100 L)" the "L" is consumed;but if neg is "-", the "L" in "-100 L" is not consumed. —end example]
If pos or neg is empty, the sign component is optional, and if no sign is detected, the result is given the sign thatcorresponds to the source of the empty string. Otherwise, the character in the indicated position must match thefirst character of pos or neg, and the result is given the corresponding sign. If the first character of pos is equal tothe first character of neg, or if both strings are empty, the result is given a positive sign.

4 Digits in the numeric monetary component are extracted and placed in digits, or into a character buffer buf1 forconversion to produce a value for units, in the order in which they appear, preceded by a minus sign if and onlyif the result is negative. The value units is produced as if by263
for (int i = 0; i < n; ++i)
buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];

buf2[n] = 0;
sscanf(buf2, "%Lf", &units);

where n is the number of characters placed in buf1, buf2 is a character buffer, and the values src and atoms aredefined as if by
static const char src[] = "0123456789-";
charT atoms[sizeof(src)];
ct.widen(src, src + sizeof(src) - 1, atoms);

5 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid monetaryquantity.
30.4.7.3 Class template money_put [locale.money.put]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class money_put : public locale::facet {
public:

using char_type = charT;
using iter_type = OutputIterator;
using string_type = basic_string<charT>;

explicit money_put(size_t refs = 0);

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, long double units) const;

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, const string_type& digits) const;

static locale::id id;

263) The semantics here are different from ct.narrow.
§ 30.4.7.3 1457

© ISO/IEC N4910

protected:
~money_put();
virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,

long double units) const;
virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,

const string_type& digits) const;
};

}

30.4.7.3.1 Members [locale.money.put.members]

iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, long double quant) const;
iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, const string_type& quant) const;

1 Returns: do_put(s, intl, f, loc, quant).
30.4.7.3.2 Virtual functions [locale.money.put.virtuals]

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, long double units) const;

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, const string_type& digits) const;

1 Effects: Writes characters to s according to the format specified by a moneypunct<charT, Intl> facet reference
mp and the character mapping specified by a ctype<charT> facet reference ct obtained from the locale returnedby str.getloc(), and str.flags(). The argument units is transformed into a sequence of wide characters asif by
ct.widen(buf1, buf1 + sprintf(buf1, "%.0Lf", units), buf2)

for character buffers buf1 and buf2. If the first character in digits or buf2 is equal to ct.widen(’-’), thenthe pattern used for formatting is the result of mp.neg_format(); otherwise the pattern is the result of mp.pos_-
format(). Digit characters are written, interspersed with any thousands separators and decimal point specifiedby the format, in the order they appear (after the optional leading minus sign) in digits or buf2. In digits,only the optional leading minus sign and the immediately subsequent digit characters (as classified according to
ct) are used; any trailing characters (including digits appearing after a non-digit character) are ignored. Calls
str.width(0).

2 Returns: An iterator pointing immediately after the last character produced.
3 Remarks: The currency symbol is generated if and only if (str.flags() & str.showbase) is nonzero. If thenumber of characters generated for the specified format is less than the value returned by str.width() on entryto the function, then copies of fill are inserted as necessary to pad to the specified width. For the value af equalto (str.flags() & str.adjustfield), if (af == str.internal) is true, the fill characters are placed where

none or space appears in the formatting pattern; otherwise if (af == str.left) is true, they are placed afterthe other characters; otherwise, they are placed before the other characters.
[Note 1: It is possible, with some combinations of format patterns and flag values, to produce output that cannot be parsedusing num_get<>::get. —end note]

30.4.7.4 Class template moneypunct [locale.moneypunct]
30.4.7.4.1 General [locale.moneypunct.general]
namespace std {

class money_base {
public:
enum part { none, space, symbol, sign, value };
struct pattern { char field[4]; };

};

template<class charT, bool International = false>
class moneypunct : public locale::facet, public money_base {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit moneypunct(size_t refs = 0);

§ 30.4.7.4.1 1458

© ISO/IEC N4910

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

static locale::id id;
static const bool intl = International;

protected:
~moneypunct();
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

1 The moneypunct<> facet defines monetary formatting parameters used by money_get<> and money_put<>. A mon-etary format is a sequence of four components, specified by a pattern value p, such that the part value static_-
cast<part>(p.field[i]) determines the ith component of the format264 In the field member of a pattern object,each value symbol, sign, value, and either space or none appears exactly once. The value none, if present, is not first;the value space, if present, is neither first nor last.

2 Where none or space appears, whitespace is permitted in the format, except where none appears at the end, in whichcase no whitespace is permitted. The value space indicates that at least one space is required at that position. Where
symbol appears, the sequence of characters returned by curr_symbol() is permitted, and can be required. Where signappears, the first (if any) of the sequence of characters returned by positive_sign() or negative_sign() (respectivelyas the monetary value is non-negative or negative) is required. Any remaining characters of the sign sequence arerequired after all other format components. Where value appears, the absolute numeric monetary value is required.

3 The format of the numeric monetary value is a decimal number:
value :

units fractionalopt
decimal-point digits

fractional :
decimal-point digitsopt

if frac_digits() returns a positive value, or
value :

units

otherwise. The symbol decimal-point indicates the character returned by decimal_point(). The other symbols aredefined as follows:
units :

digits
digits thousands-sep units

digits :
adigit digitsopt

In the syntax specification, the symbol adigit is any of the values ct.widen(c) for c in the range ’0’ through ’9’(inclusive) and ct is a reference of type const ctype<charT>& obtained as described in the definitions of money_get<>and money_put<>. The symbol thousands-sep is the character returned by thousands_sep(). The space character used
264) An array of char, rather than an array of part, is specified for pattern::field purely for efficiency.
§ 30.4.7.4.1 1459

© ISO/IEC N4910

is the value ct.widen(’ ’). Whitespace characters are those characters c for which ci.is(space, c) returns true.The number of digits required after the decimal point (if any) is exactly the value returned by frac_digits().
4 The placement of thousands-separator characters (if any) is determined by the value returned by grouping(), definedidentically as the member numpunct<>::do_grouping().
30.4.7.4.2 Members [locale.moneypunct.members]
charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

1 Each of these functions F returns the result of calling the corresponding virtual member function do_F().
30.4.7.4.3 Virtual functions [locale.moneypunct.virtuals]

charT do_decimal_point() const;

1 Returns: The radix separator to use in case do_frac_digits() is greater than zero.265
charT do_thousands_sep() const;

2 Returns: The digit group separator to use in case do_grouping() specifies a digit grouping pattern.266
string do_grouping() const;

3 Returns: A pattern defined identically as, but not necessarily equal to, the result of numpunct<charT>::do_-
grouping().267

string_type do_curr_symbol() const;

4 Returns: A string to use as the currency identifier symbol.
[Note 1: For specializations where the second template parameter is true, this is typically four characters long: a three-lettercode as specified by ISO 4217 followed by a space. —end note]

string_type do_positive_sign() const;
string_type do_negative_sign() const;

5 Returns: do_positive_sign() returns the string to use to indicate a positive monetary value;268 do_negative_-
sign() returns the string to use to indicate a negative value.

int do_frac_digits() const;

6 Returns: The number of digits after the decimal radix separator, if any.269
pattern do_pos_format() const;
pattern do_neg_format() const;

7 Returns: The specializations required in Table 101 (30.3.1.2.1), namely
—(7.1) moneypunct<char>,
—(7.2) moneypunct<wchar_t>,
—(7.3) moneypunct<char, true>, and
—(7.4) moneypunct<wchar_t, true>,
return an object of type pattern initialized to { symbol, sign, none, value }.270

265) In common U.S. locales this is ’.’.
266) In common U.S. locales this is ’,’.
267) To specify grouping by 3s, the value is "\003" not "3".
268) This is usually the empty string.
269) In common U.S. locales, this is 2.
270) Note that the international symbol returned by do_curr_symbol() usually contains a space, itself; for example, "USD ".
§ 30.4.7.4.3 1460

© ISO/IEC N4910

30.4.7.5 Class template moneypunct_byname [locale.moneypunct.byname]
namespace std {

template<class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {
public:

using pattern = money_base::pattern;
using string_type = basic_string<charT>;

explicit moneypunct_byname(const char*, size_t refs = 0);
explicit moneypunct_byname(const string&, size_t refs = 0);

protected:
~moneypunct_byname();

};
}

30.4.8 The message retrieval category [category.messages]
30.4.8.1 General [category.messages.general]

1 Class messages<charT> implements retrieval of strings from message catalogs.
30.4.8.2 Class template messages [locale.messages]
30.4.8.2.1 General [locale.messages.general]
namespace std {

class messages_base {
public:
using catalog = unspecified signed integer type;

};

template<class charT>
class messages : public locale::facet, public messages_base {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit messages(size_t refs = 0);

catalog open(const string& fn, const locale&) const;
string_type get(catalog c, int set, int msgid,

const string_type& dfault) const;
void close(catalog c) const;

static locale::id id;

protected:
~messages();
virtual catalog do_open(const string&, const locale&) const;
virtual string_type do_get(catalog, int set, int msgid,

const string_type& dfault) const;
virtual void do_close(catalog) const;

};
}

1 Values of type messages_base::catalog usable as arguments to members get and close can be obtained only bycalling member open.
30.4.8.2.2 Members [locale.messages.members]

catalog open(const string& name, const locale& loc) const;

1 Returns: do_open(name, loc).
string_type get(catalog cat, int set, int msgid, const string_type& dfault) const;

2 Returns: do_get(cat, set, msgid, dfault).
§ 30.4.8.2.2 1461

© ISO/IEC N4910

void close(catalog cat) const;

3 Effects: Calls do_close(cat).
30.4.8.2.3 Virtual functions [locale.messages.virtuals]

catalog do_open(const string& name, const locale& loc) const;

1 Returns: A value that may be passed to get() to retrieve a message from the message catalog identified by thestring name according to an implementation-defined mapping. The result can be used until it is passed to close().
2 Returns a value less than 0 if no such catalog can be opened.
3 Remarks: The locale argument loc is used for character set code conversion when retrieving messages, if needed.

string_type do_get(catalog cat, int set, int msgid, const string_type& dfault) const;

4 Preconditions: cat is a catalog obtained from open() and not yet closed.
5 Returns: A message identified by arguments set, msgid, and dfault, according to an implementation-definedmapping. If no such message can be found, returns dfault.

void do_close(catalog cat) const;

6 Preconditions: cat is a catalog obtained from open() and not yet closed.
7 Effects: Releases unspecified resources associated with cat.
8 Remarks: The limit on such resources, if any, is implementation-defined.
30.4.8.3 Class template messages_byname [locale.messages.byname]
namespace std {

template<class charT>
class messages_byname : public messages<charT> {
public:

using catalog = messages_base::catalog;
using string_type = basic_string<charT>;

explicit messages_byname(const char*, size_t refs = 0);
explicit messages_byname(const string&, size_t refs = 0);

protected:
~messages_byname();

};
}

30.5 C library locales [c.locales]
30.5.1 Header <clocale> synopsis [clocale.syn]
namespace std {

struct lconv;

char* setlocale(int category, const char* locale);
lconv* localeconv();

}

#define NULL see 17.2.3
#define LC_ALL see below
#define LC_COLLATE see below
#define LC_CTYPE see below
#define LC_MONETARY see below
#define LC_NUMERIC see below
#define LC_TIME see below

1 The contents and meaning of the header <clocale> are the same as the C standard library header <locale.h>.
30.5.2 Data races [clocale.data.races]

1 Calls to the function setlocale may introduce a data race (16.4.6.10) with other calls to setlocale or with calls to thefunctions listed in Table 112.
§ 30.5.2 1462

© ISO/IEC N4910

See also: ISO C 7.11
Table 112: Potential setlocale data races [tab:setlocale.data.races]

fprintf isprint iswdigit localeconv tolower
fscanf ispunct iswgraph mblen toupper
isalnum isspace iswlower mbstowcs towlower
isalpha isupper iswprint mbtowc towupper
isblank iswalnum iswpunct setlocale wcscoll
iscntrl iswalpha iswspace strcoll wcstod
isdigit iswblank iswupper strerror wcstombs
isgraph iswcntrl iswxdigit strtod wcsxfrm
islower iswctype isxdigit strxfrm wctomb

§ 30.5.2 1463

© ISO/IEC N4910

31 Input/output library [input.output]
31.1 General [input.output.general]

1 This Clause describes components that C++ programs may use to perform input/output operations.
2 The following subclauses describe requirements for stream parameters, and components for forward declarations ofiostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream formatting and manipulators,string streams, and file streams, as summarized in Table 113.

Table 113: Input/output library summary [tab:iostreams.summary]
Subclause Header

31.2 Requirements31.3 Forward declarations <iosfwd>31.4 Standard iostream objects <iostream>31.5 Iostreams base classes <ios>31.6 Stream buffers <streambuf>31.7 Formatting and manipulators <iomanip>, <istream>, <ostream>31.8 String streams <sstream>31.9 Span-based streams <spanstream>31.10 File streams <fstream>31.11 Synchronized output streams <syncstream>31.12 File systems <filesystem>31.13 C library files <cstdio>, <cinttypes>

31.2 Iostreams requirements [iostreams.requirements]
31.2.1 Imbue limitations [iostream.limits.imbue]

1 No function described in Clause 31 except for ios_base::imbue and basic_filebuf::pubimbue causes any instanceof basic_ios::imbue or basic_streambuf::imbue to be called. If any user function called from a function declared inClause 31 or as an overriding virtual function of any class declared in Clause 31 calls imbue, the behavior is undefined.
31.2.2 Types [stream.types]

using streamoff = implementation-defined;

1 The type streamoff is a synonym for one of the signed basic integral types of sufficient size to represent themaximum possible file size for the operating system.271
using streamsize = implementation-defined;

2 The type streamsize is a synonym for one of the signed basic integral types. It is used to represent the numberof characters transferred in an I/O operation, or the size of I/O buffers.272
31.2.3 Positioning type limitations [iostreams.limits.pos]

1 The classes of Clause 31 with template arguments charT and traits behave as described if traits::pos_type and
traits::off_type are streampos and streamoff respectively. Except as noted explicitly below, their behavior when
traits::pos_type and traits::off_type are other types is implementation-defined.

2 [Note 1: For each of the specializations of char_traits defined in 23.2.4, state_type denotes mbstate_t, pos_type denotes
fpos<mbstate_t>, and off_type denotes streamoff. —end note]

3 In the classes of Clause 31, a template parameter with name charT represents a member of the set of types containing
char, wchar_t, and any other implementation-defined character types that meet the requirements for a character onwhich any of the iostream components can be instantiated.
271) Typically long long.
272)Most places where streamsize is used would use size_t in ISO C, or ssize_t in POSIX.
§ 31.2.3 1464

© ISO/IEC N4910

31.2.4 Thread safety [iostreams.threadsafety]
1 Concurrent access to a stream object (31.8, 31.10), stream buffer object (31.6), or C Library stream (31.13) by multiplethreads may result in a data race (6.9.2) unless otherwise specified (31.4).
[Note 1: Data races result in undefined behavior (6.9.2). —end note]

2 If one thread makes a library call a that writes a value to a stream and, as a result, another thread reads this value fromthe stream through a library call b such that this does not result in a data race, then a’s write synchronizes with b’s read.
31.3 Forward declarations [iostream.forward]
31.3.1 Header <iosfwd> synopsis [iosfwd.syn]
namespace std {

template<class charT> struct char_traits;
template<> struct char_traits<char>;
template<> struct char_traits<char8_t>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

template<class T> class allocator;

template<class charT, class traits = char_traits<charT>>
class basic_ios;

template<class charT, class traits = char_traits<charT>>
class basic_streambuf;

template<class charT, class traits = char_traits<charT>>
class basic_istream;

template<class charT, class traits = char_traits<charT>>
class basic_ostream;

template<class charT, class traits = char_traits<charT>>
class basic_iostream;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_stringbuf;
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_istringstream;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_ostringstream;
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_stringstream;

template<class charT, class traits = char_traits<charT>>
class basic_spanbuf;

template<class charT, class traits = char_traits<charT>>
class basic_ispanstream;

template<class charT, class traits = char_traits<charT>>
class basic_ospanstream;

template<class charT, class traits = char_traits<charT>>
class basic_spanstream;

template<class charT, class traits = char_traits<charT>>
class basic_filebuf;

template<class charT, class traits = char_traits<charT>>
class basic_ifstream;

template<class charT, class traits = char_traits<charT>>
class basic_ofstream;

template<class charT, class traits = char_traits<charT>>
class basic_fstream;

§ 31.3.1 1465

© ISO/IEC N4910

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_syncbuf;
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_osyncstream;

template<class charT, class traits = char_traits<charT>>
class istreambuf_iterator;

template<class charT, class traits = char_traits<charT>>
class ostreambuf_iterator;

using ios = basic_ios<char>;
using wios = basic_ios<wchar_t>;

using streambuf = basic_streambuf<char>;
using istream = basic_istream<char>;
using ostream = basic_ostream<char>;
using iostream = basic_iostream<char>;

using stringbuf = basic_stringbuf<char>;
using istringstream = basic_istringstream<char>;
using ostringstream = basic_ostringstream<char>;
using stringstream = basic_stringstream<char>;

using spanbuf = basic_spanbuf<char>;
using ispanstream = basic_ispanstream<char>;
using ospanstream = basic_ospanstream<char>;
using spanstream = basic_spanstream<char>;

using filebuf = basic_filebuf<char>;
using ifstream = basic_ifstream<char>;
using ofstream = basic_ofstream<char>;
using fstream = basic_fstream<char>;

using syncbuf = basic_syncbuf<char>;
using osyncstream = basic_osyncstream<char>;

using wstreambuf = basic_streambuf<wchar_t>;
using wistream = basic_istream<wchar_t>;
using wostream = basic_ostream<wchar_t>;
using wiostream = basic_iostream<wchar_t>;

using wstringbuf = basic_stringbuf<wchar_t>;
using wistringstream = basic_istringstream<wchar_t>;
using wostringstream = basic_ostringstream<wchar_t>;
using wstringstream = basic_stringstream<wchar_t>;

using wspanbuf = basic_spanbuf<wchar_t>;
using wispanstream = basic_ispanstream<wchar_t>;
using wospanstream = basic_ospanstream<wchar_t>;
using wspanstream = basic_spanstream<wchar_t>;

using wfilebuf = basic_filebuf<wchar_t>;
using wifstream = basic_ifstream<wchar_t>;
using wofstream = basic_ofstream<wchar_t>;
using wfstream = basic_fstream<wchar_t>;

using wsyncbuf = basic_syncbuf<wchar_t>;
using wosyncstream = basic_osyncstream<wchar_t>;

template<class state> class fpos;
using streampos = fpos<char_traits<char>::state_type>;
using wstreampos = fpos<char_traits<wchar_t>::state_type>;

§ 31.3.1 1466

© ISO/IEC N4910

using u8streampos = fpos<char_traits<char8_t>::state_type>;
using u16streampos = fpos<char_traits<char16_t>::state_type>;
using u32streampos = fpos<char_traits<char32_t>::state_type>;

}

1 Default template arguments are described as appearing both in <iosfwd> and in the synopsis of other headers but it iswell-formed to include both <iosfwd> and one or more of the other headers.273
31.3.2 Overview [iostream.forward.overview]

1 The class template specialization basic_ios<charT, traits> serves as a virtual base class for the class templates
basic_istream, basic_ostream, and class templates derived from them. basic_iostream is a class template derivedfrom both basic_istream<charT, traits> and basic_ostream<charT, traits>.

2 The class template specialization basic_streambuf<charT, traits> serves as a base class for class templates basic_-
stringbuf, basic_filebuf, and basic_syncbuf.

3 The class template specialization basic_istream<charT, traits> serves as a base class for class templates basic_-
istringstream and basic_ifstream.

4 The class template specialization basic_ostream<charT, traits> serves as a base class for class templates basic_-
ostringstream, basic_ofstream, and basic_osyncstream.

5 The class template specialization basic_iostream<charT, traits> serves as a base class for class templates basic_-
stringstream and basic_fstream.

6 [Note 1: For each of the class templates above, the program is ill-formed if traits::char_type is not the same type as charT (23.2).—end note]
7 Other typedef-names define instances of class templates specialized for char or wchar_t types.
8 Specializations of the class template fpos are used for specifying file position information.
[Example 1: The types streampos and wstreampos are used for positioning streams specialized on char and wchar_t respectively.—end example]

9 [Note 2: This synopsis suggests a circularity between streampos and char_traits<char>. An implementation can avoid thiscircularity by substituting equivalent types. —end note]
31.4 Standard iostream objects [iostream.objects]
31.4.1 Header <iostream> synopsis [iostream.syn]
#include <ios> // see 31.5.1
#include <streambuf> // see 31.6.1
#include <istream> // see 31.7.1
#include <ostream> // see 31.7.2
namespace std {

extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

}

31.4.2 Overview [iostream.objects.overview]
1 In this Clause, the type name FILE refers to the type FILE declared in <cstdio> (31.13.1).
2 The header <iostream> declares objects that associate objects with the standard C streams provided for by the functionsdeclared in <cstdio>, and includes all the headers necessary to use these objects.

273) It is the implementation’s responsibility to implement headers so that including <iosfwd> and other headers does not violate the rules aboutmultiple occurrences of default arguments.
§ 31.4.2 1467

© ISO/IEC N4910

3 The objects are constructed and the associations are established at some time prior to or during the first time an object ofclass ios_base::Init is constructed, and in any case before the body of main (6.9.3.1) begins execution. The objectsare not destroyed during program execution.274
4 Recommended practice: If it is possible for them to do so, implementations should initialize the objects earlier thanrequired.
5 The results of including <iostream> in a translation unit shall be as if <iostream> defined an instance of ios_base::Initwith static storage duration.
6 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as mixing suchoperations on FILEs, as specified in the C standard library.
7 Concurrent access to a synchronized (31.5.2.5) standard iostream object’s formatted and unformatted input (31.7.4.2)and output (31.7.5.2) functions or a standard C stream by multiple threads does not result in a data race (6.9.2).
[Note 1: Unsynchronized concurrent use of these objects and streams by multiple threads can result in interleaved characters. —endnote]
See also: ISO C 7.21.2
31.4.3 Narrow stream objects [narrow.stream.objects]

istream cin;

1 The object cin controls input from a stream buffer associated with the object stdin, declared in <cstdio>(31.13.1).
2 After the object cin is initialized, cin.tie() returns &cout. Its state is otherwise the same as required for

basic_ios<char>::init (31.5.4.2).
ostream cout;

3 The object cout controls output to a stream buffer associated with the object stdout, declared in <cstdio>(31.13.1).
ostream cerr;

4 The object cerr controls output to a stream buffer associated with the object stderr, declared in <cstdio>(31.13.1).
5 After the object cerr is initialized, cerr.flags() & unitbuf is nonzero and cerr.tie() returns &cout. Its stateis otherwise the same as required for basic_ios<char>::init (31.5.4.2).

ostream clog;

6 The object clog controls output to a stream buffer associated with the object stderr, declared in <cstdio>(31.13.1).
31.4.4 Wide stream objects [wide.stream.objects]

wistream wcin;

1 The object wcin controls input from a stream buffer associated with the object stdin, declared in <cstdio>(31.13.1).
2 After the object wcin is initialized, wcin.tie() returns &wcout. Its state is otherwise the same as required for

basic_ios<wchar_t>::init (31.5.4.2).
wostream wcout;

3 The object wcout controls output to a stream buffer associated with the object stdout, declared in <cstdio>(31.13.1).
wostream wcerr;

4 The object wcerr controls output to a stream buffer associated with the object stderr, declared in <cstdio>(31.13.1).

274) Constructors and destructors for objects with static storage duration can access these objects to read input from stdin or write output to stdoutor stderr.
§ 31.4.4 1468

© ISO/IEC N4910

5 After the object wcerr is initialized, wcerr.flags() & unitbuf is nonzero and wcerr.tie() returns &wcout. Itsstate is otherwise the same as required for basic_ios<wchar_t>::init (31.5.4.2).
wostream wclog;

6 The object wclog controls output to a stream buffer associated with the object stderr, declared in <cstdio>(31.13.1).
31.5 Iostreams base classes [iostreams.base]
31.5.1 Header <ios> synopsis [ios.syn]
#include <iosfwd> // see 31.3.1
namespace std {

using streamoff = implementation-defined;
using streamsize = implementation-defined;
template<class stateT> class fpos;

class ios_base;
template<class charT, class traits = char_traits<charT>>

class basic_ios;

// 31.5.5, manipulators
ios_base& boolalpha (ios_base& str);
ios_base& noboolalpha(ios_base& str);

ios_base& showbase (ios_base& str);
ios_base& noshowbase (ios_base& str);

ios_base& showpoint (ios_base& str);
ios_base& noshowpoint(ios_base& str);

ios_base& showpos (ios_base& str);
ios_base& noshowpos (ios_base& str);

ios_base& skipws (ios_base& str);
ios_base& noskipws (ios_base& str);

ios_base& uppercase (ios_base& str);
ios_base& nouppercase(ios_base& str);

ios_base& unitbuf (ios_base& str);
ios_base& nounitbuf (ios_base& str);

// 31.5.5.2, adjustfield
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);

// 31.5.5.3, basefield
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

// 31.5.5.4, floatfield
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);
ios_base& hexfloat (ios_base& str);
ios_base& defaultfloat(ios_base& str);

// 31.5.6, error reporting
enum class io_errc {

stream = 1
};

§ 31.5.1 1469

© ISO/IEC N4910

template<> struct is_error_code_enum<io_errc> : public true_type { };
error_code make_error_code(io_errc e) noexcept;
error_condition make_error_condition(io_errc e) noexcept;
const error_category& iostream_category() noexcept;

}

31.5.2 Class ios_base [ios.base]
31.5.2.1 General [ios.base.general]
namespace std {

class ios_base {
public:
class failure; // see below
// 31.5.2.2.2, fmtflags
using fmtflags = T1;
static constexpr fmtflags boolalpha = unspecified;
static constexpr fmtflags dec = unspecified;
static constexpr fmtflags fixed = unspecified;
static constexpr fmtflags hex = unspecified;
static constexpr fmtflags internal = unspecified;
static constexpr fmtflags left = unspecified;
static constexpr fmtflags oct = unspecified;
static constexpr fmtflags right = unspecified;
static constexpr fmtflags scientific = unspecified;
static constexpr fmtflags showbase = unspecified;
static constexpr fmtflags showpoint = unspecified;
static constexpr fmtflags showpos = unspecified;
static constexpr fmtflags skipws = unspecified;
static constexpr fmtflags unitbuf = unspecified;
static constexpr fmtflags uppercase = unspecified;
static constexpr fmtflags adjustfield = see below;
static constexpr fmtflags basefield = see below;
static constexpr fmtflags floatfield = see below;

// 31.5.2.2.3, iostate
using iostate = T2;
static constexpr iostate badbit = unspecified;
static constexpr iostate eofbit = unspecified;
static constexpr iostate failbit = unspecified;
static constexpr iostate goodbit = see below;

// 31.5.2.2.4, openmode
using openmode = T3;
static constexpr openmode app = unspecified;
static constexpr openmode ate = unspecified;
static constexpr openmode binary = unspecified;
static constexpr openmode in = unspecified;
static constexpr openmode out = unspecified;
static constexpr openmode trunc = unspecified;

// 31.5.2.2.5, seekdir
using seekdir = T4;
static constexpr seekdir beg = unspecified;
static constexpr seekdir cur = unspecified;
static constexpr seekdir end = unspecified;

class Init;

// 31.5.2.3, fmtflags state
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl, fmtflags mask);

§ 31.5.2.1 1470

© ISO/IEC N4910

void unsetf(fmtflags mask);

streamsize precision() const;
streamsize precision(streamsize prec);
streamsize width() const;
streamsize width(streamsize wide);

// 31.5.2.4, locales
locale imbue(const locale& loc);
locale getloc() const;

// 31.5.2.6, storage
static int xalloc();
long& iword(int idx);
void*& pword(int idx);

// destructor
virtual ~ios_base();

// 31.5.2.7, callbacks
enum event { erase_event, imbue_event, copyfmt_event };
using event_callback = void (*)(event, ios_base&, int idx);
void register_callback(event_callback fn, int idx);

ios_base(const ios_base&) = delete;
ios_base& operator=(const ios_base&) = delete;

static bool sync_with_stdio(bool sync = true);

protected:
ios_base();

private:
static int index; // exposition only
long* iarray; // exposition only
void** parray; // exposition only

};
}

1 ios_base defines several member types:
—(1.1) a type failure, defined as either a class derived from system_error or a synonym for a class derived from

system_error;
—(1.2) a class Init;
—(1.3) three bitmask types, fmtflags, iostate, and openmode;
—(1.4) an enumerated type, seekdir.

2 It maintains several kinds of data:
—(2.1) state information that reflects the integrity of the stream buffer;
—(2.2) control information that influences how to interpret (format) input sequences and how to generate (format) outputsequences;
—(2.3) additional information that is stored by the program for its private use.

3 [Note 1: For the sake of exposition, the maintained data is presented here as:
—(3.1) static int index, specifies the next available unique index for the integer or pointer arrays maintained for the private useof the program, initialized to an unspecified value;
—(3.2) long* iarray, points to the first element of an arbitrary-length long array maintained for the private use of the program;
—(3.3) void** parray, points to the first element of an arbitrary-length pointer array maintained for the private use of the program.

—end note]

§ 31.5.2.1 1471

© ISO/IEC N4910

31.5.2.2 Types [ios.types]
31.5.2.2.1 Class ios_base::failure [ios.failure]
namespace std {

class ios_base::failure : public system_error {
public:
explicit failure(const string& msg, const error_code& ec = io_errc::stream);
explicit failure(const char* msg, const error_code& ec = io_errc::stream);

};
}

1 An implementation is permitted to define ios_base::failure as a synonym for a class with equivalent functionality toclass ios_base::failure shown in this subclause.
[Note 1: When ios_base::failure is a synonym for another type, that type is required to provide a nested type failure to emulatethe injected-class-name. —end note]
The class failure defines the base class for the types of all objects thrown as exceptions, by functions in the iostreamslibrary, to report errors detected during stream buffer operations.

2 When throwing ios_base::failure exceptions, implementations should provide values of ec that identify the specificreason for the failure.
[Note 2: Errors arising from the operating system would typically be reported as system_category() errors with an error value ofthe error number reported by the operating system. Errors arising from within the stream library would typically be reported as
error_code(io_errc::stream, iostream_category()). —end note]
explicit failure(const string& msg, const error_code& ec = io_errc::stream);

3 Effects: Constructs the base class with msg and ec.
explicit failure(const char* msg, const error_code& ec = io_errc::stream);

4 Effects: Constructs the base class with msg and ec.
31.5.2.2.2 Type ios_base::fmtflags [ios.fmtflags]

using fmtflags = T1;

1 The type fmtflags is a bitmask type (16.3.3.3.4). Setting its elements has the effects indicated in Table 114.
Table 114: fmtflags effects [tab:ios.fmtflags]

Element Effect(s) if set
boolalpha insert and extract bool type in alphabetic format
dec converts integer input or generates integer output in decimal base
fixed generate floating-point output in fixed-point notation
hex converts integer input or generates integer output in hexadecimal base
internal adds fill characters at a designated internal point in certain generated output, oridentical to right if no such point is designated
left adds fill characters on the right (final positions) of certain generated output
oct converts integer input or generates integer output in octal base
right adds fill characters on the left (initial positions) of certain generated output
scientific generates floating-point output in scientific notation
showbase generates a prefix indicating the numeric base of generated integer output
showpoint generates a decimal-point character unconditionally in generated floating-pointoutput
showpos generates a + sign in non-negative generated numeric output
skipws skips leading whitespace before certain input operations
unitbuf flushes output after each output operation
uppercase replaces certain lowercase letters with their uppercase equivalents in generatedoutput

2 Type fmtflags also defines the constants indicated in Table 115.

§ 31.5.2.2.2 1472

© ISO/IEC N4910

Table 115: fmtflags constants [tab:ios.fmtflags.const]
Constant Allowable values

adjustfield left | right | internal
basefield dec | oct | hex
floatfield scientific | fixed

31.5.2.2.3 Type ios_base::iostate [ios.iostate]

using iostate = T2;

1 The type iostate is a bitmask type (16.3.3.3.4) that contains the elements indicated in Table 116.
Table 116: iostate effects [tab:ios.iostate]

Element Effect(s) if set
badbit indicates a loss of integrity in an input or output sequence (such as an irrecoverableread error from a file);
eofbit indicates that an input operation reached the end of an input sequence;
failbit indicates that an input operation failed to read the expected characters, or that anoutput operation failed to generate the desired characters.

2 Type iostate also defines the constant:
—(2.1) goodbit, the value zero.

31.5.2.2.4 Type ios_base::openmode [ios.openmode]

using openmode = T3;

1 The type openmode is a bitmask type (16.3.3.3.4). It contains the elements indicated in Table 117.
Table 117: openmode effects [tab:ios.openmode]

Element Effect(s) if set
app seek to end before each write
ate open and seek to end immediately after opening
binary perform input and output in binary mode (as opposed to text mode)
in open for input
out open for output
trunc truncate an existing stream when opening

31.5.2.2.5 Type ios_base::seekdir [ios.seekdir]

using seekdir = T4;

1 The type seekdir is an enumerated type (16.3.3.3.3) that contains the elements indicated in Table 118.
Table 118: seekdir effects [tab:ios.seekdir]

Element Meaning
beg request a seek (for subsequent input or output) relative to the beginning of thestream
cur request a seek relative to the current position within the sequence
end request a seek relative to the current end of the sequence

§ 31.5.2.2.5 1473

© ISO/IEC N4910

31.5.2.2.6 Class ios_base::Init [ios.init]
namespace std {

class ios_base::Init {
public:
Init();
Init(const Init&) = default;
~Init();
Init& operator=(const Init&) = default;

private:
static int init_cnt; // exposition only

};
}

1 The class Init describes an object whose construction ensures the construction of the eight objects declared in
<iostream> (31.4) that associate file stream buffers with the standard C streams provided for by the functions declaredin <cstdio> (31.13.1).

2 For the sake of exposition, the maintained data is presented here as:
—(2.1) static int init_cnt, counts the number of constructor and destructor calls for class Init, initialized to zero.

Init();

3 Effects: Constructs and initializes the objects cin, cout, cerr, clog, wcin, wcout, wcerr, and wclog if they havenot already been constructed and initialized.
~Init();

4 Effects: If there are no other instances of the class still in existence, calls cout.flush(), cerr.flush(),
clog.flush(), wcout.flush(), wcerr.flush(), wclog.flush().

31.5.2.3 State functions [fmtflags.state]

fmtflags flags() const;

1 Returns: The format control information for both input and output.
fmtflags flags(fmtflags fmtfl);

2 Postconditions: fmtfl == flags().
3 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl);

4 Effects: Sets fmtfl in flags().
5 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl, fmtflags mask);

6 Effects: Clears mask in flags(), sets fmtfl & mask in flags().
7 Returns: The previous value of flags().

void unsetf(fmtflags mask);

8 Effects: Clears mask in flags().
streamsize precision() const;

9 Returns: The precision to generate on certain output conversions.
streamsize precision(streamsize prec);

10 Postconditions: prec == precision().
11 Returns: The previous value of precision().

streamsize width() const;

12 Returns: The minimum field width (number of characters) to generate on certain output conversions.

§ 31.5.2.3 1474

© ISO/IEC N4910

streamsize width(streamsize wide);

13 Postconditions: wide == width().
14 Returns: The previous value of width().
31.5.2.4 Functions [ios.base.locales]

locale imbue(const locale& loc);

1 Effects: Calls each registered callback pair (fn, idx) (31.5.2.7) as (*fn)(imbue_event, *this, idx) at sucha time that a call to ios_base::getloc() from within fn returns the new locale value loc.
2 Postconditions: loc == getloc().
3 Returns: The previous value of getloc().

locale getloc() const;

4 Returns: If no locale has been imbued, a copy of the global C++ locale, locale(), in effect at the time ofconstruction. Otherwise, returns the imbued locale, to be used to perform locale-dependent input and outputoperations.
31.5.2.5 Static members [ios.members.static]

static bool sync_with_stdio(bool sync = true);

1 Effects: If any input or output operation has occurred using the standard streams prior to the call, the effect isimplementation-defined. Otherwise, called with a false argument, it allows the standard streams to operateindependently of the standard C streams.
2 Returns: true if the previous state of the standard iostream objects (31.4) was synchronized and otherwise returns

false. The first time it is called, the function returns true.
3 Remarks: When a standard iostream object str is synchronized with a standard stdio stream f, the effect ofinserting a character c by

fputc(f, c);

is the same as the effect of
str.rdbuf()->sputc(c);

for any sequences of characters; the effect of extracting a character c by
c = fgetc(f);

is the same as the effect of
c = str.rdbuf()->sbumpc();

for any sequences of characters; and the effect of pushing back a character c by
ungetc(c, f);

is the same as the effect of
str.rdbuf()->sputbackc(c);

for any sequence of characters.275
31.5.2.6 Storage functions [ios.base.storage]

static int xalloc();

1 Returns: index ++.
2 Remarks: Concurrent access to this function by multiple threads does not result in a data race (6.9.2).

long& iword(int idx);

3 Preconditions: idx is a value obtained by a call to xalloc.
4 Effects: If iarray is a null pointer, allocates an array of long of unspecified size and stores a pointer to its firstelement in iarray. The function then extends the array pointed at by iarray as necessary to include the element

275) This implies that operations on a standard iostream object can be mixed arbitrarily with operations on the corresponding stdio stream. Inpractical terms, synchronization usually means that a standard iostream object and a standard stdio object share a buffer.
§ 31.5.2.6 1475

© ISO/IEC N4910

iarray[idx]. Each newly allocated element of the array is initialized to zero. The reference returned is invalidafter any other operations on the object.276 However, the value of the storage referred to is retained, so that untilthe next call to copyfmt, calling iword with the same index yields another reference to the same value. If thefunction fails277 and *this is a base class subobject of a basic_ios<> object or subobject, the effect is equivalentto calling basic_ios<>::setstate(badbit) on the derived object (which may throw failure).
5 Returns: On success iarray[idx]. On failure, a valid long& initialized to 0.

void*& pword(int idx);

6 Preconditions: idx is a value obtained by a call to xalloc.
7 Effects: If parray is a null pointer, allocates an array of pointers to void of unspecified size and stores a pointerto its first element in parray. The function then extends the array pointed at by parray as necessary to includethe element parray[idx]. Each newly allocated element of the array is initialized to a null pointer. The referencereturned is invalid after any other operations on the object. However, the value of the storage referred to isretained, so that until the next call to copyfmt, calling pword with the same index yields another reference to thesame value. If the function fails278 and *this is a base class subobject of a basic_ios<> object or subobject,the effect is equivalent to calling basic_ios<>::setstate(badbit) on the derived object (which may throw

failure).
8 Returns: On success parray[idx]. On failure a valid void*& initialized to 0.
9 Remarks: After a subsequent call to pword(int) for the same object, the earlier return value may no longer bevalid.
31.5.2.7 Callbacks [ios.base.callback]

void register_callback(event_callback fn, int idx);

1 Preconditions: The function fn does not throw exceptions.
2 Effects: Registers the pair (fn, idx) such that during calls to imbue() (31.5.2.4), copyfmt(), or ~ios_base()(31.5.2.8), the function fn is called with argument idx. Functions registered are called when an event occurs, inopposite order of registration. Functions registered while a callback function is active are not called until the nextevent.
3 Remarks: Identical pairs are not merged. A function registered twice will be called twice.
31.5.2.8 Constructors and destructor [ios.base.cons]

ios_base();

1 Effects: Each ios_base member has an indeterminate value after construction. The object’s members shall beinitialized by calling basic_ios::init before the object’s first use or before it is destroyed, whichever comesfirst; otherwise the behavior is undefined.
~ios_base();

2 Effects: Calls each registered callback pair (fn, idx) (31.5.2.7) as (*fn)(erase_event, *this, idx) at suchtime that any ios_base member function called from within fn has well-defined results. Then, any memoryobtained is deallocated.
31.5.3 Class template fpos [fpos]
namespace std {

template<class stateT> class fpos {
public:// 31.5.3.1, members
stateT state() const;
void state(stateT);

private;
stateT st; // exposition only

};
}

276) An implementation is free to implement both the integer array pointed at by iarray and the pointer array pointed at by parray as sparse datastructures, possibly with a one-element cache for each.
277) For example, because it cannot allocate space.
278) For example, because it cannot allocate space.
§ 31.5.3 1476

© ISO/IEC N4910

31.5.3.1 Members [fpos.members]

void state(stateT s);

1 Effects: Assigns s to st.
stateT state() const;

2 Returns: Current value of st.
31.5.3.2 Requirements [fpos.operations]

1 An fpos type specifies file position information. It holds a state object whose type is equal to the template pa-rameter stateT. Type stateT shall meet the Cpp17DefaultConstructible (Table 29), Cpp17CopyConstructible (Ta-ble 31), Cpp17CopyAssignable (Table 33), and Cpp17Destructible (Table 34) requirements. If is_trivially_-
copy_constructible_v<stateT> is true, then fpos<stateT> has a trivial copy constructor. If is_trivially_copy_-
assignable<stateT> is true, then fpos<stateT> has a trivial copy assignment operator. If is_trivially_destructible_-
v<stateT> is true, then fpos<stateT> has a trivial destructor. All specializations of fposmeet theCpp17DefaultConstructible,Cpp17CopyConstructible, Cpp17CopyAssignable, Cpp17Destructible, and Cpp17EqualityComparable (Table 27) re-quirements. In addition, the expressions shown in Table 119 are valid and have the indicated semantics. In thattable,
—(1.1) P refers to a specialization of fpos,
—(1.2) p and q refer to values of type P or const P,
—(1.3) pl and ql refer to modifiable lvalues of type P,
—(1.4) O refers to type streamoff, and
—(1.5) o refers to a value of type streamoff or const streamoff.

Table 119: Position type requirements [tab:fpos.operations]
Expression Return type Operational Assertion/note

semantics pre-/post-condition
P(o) P converts from offset Effects: Value-initializes the stateobject.
P p(o);
P p = o;

Effects: Value-initializes the stateobject.Postconditions: p == P(o)
P() P P(0)
P p; P p(0);
O(p) streamoff converts to offset P(O(p)) == p
p != q convertible to bool !(p == q)
p + o P + offset Remarks: With ql = p + o;, then:

ql - o == p
pl += o P& += offset Remarks: With ql = pl; beforethe +=, then: pl - o == ql
p - o P - offset Remarks: With ql = p - o;, then:

ql + o == p
pl -= o P& -= offset Remarks: With ql = pl; beforethe -=, then: pl + o == ql
o + p convertible to P p + o P(o + p) == p + o
p - q streamoff distance p == q + (p - q)

2 Stream operations that return a value of type traits::pos_type return P(O(-1)) as an invalid value to signal anerror. If this value is used as an argument to any istream, ostream, or streambuf member that accepts a value of type
traits::pos_type then the behavior of that function is undefined.
31.5.4 Class template basic_ios [ios]
31.5.4.1 Overview [ios.overview]
namespace std {

template<class charT, class traits = char_traits<charT>>

§ 31.5.4.1 1477

© ISO/IEC N4910

class basic_ios : public ios_base {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.5.4.4, flags functions
explicit operator bool() const;
bool operator!() const;
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;

iostate exceptions() const;
void exceptions(iostate except);

// 31.5.4.2, constructor/destructor
explicit basic_ios(basic_streambuf<charT, traits>* sb);
virtual ~basic_ios();

// 31.5.4.3, members
basic_ostream<charT, traits>* tie() const;
basic_ostream<charT, traits>* tie(basic_ostream<charT, traits>* tiestr);

basic_streambuf<charT, traits>* rdbuf() const;
basic_streambuf<charT, traits>* rdbuf(basic_streambuf<charT, traits>* sb);

basic_ios& copyfmt(const basic_ios& rhs);

char_type fill() const;
char_type fill(char_type ch);

locale imbue(const locale& loc);

char narrow(char_type c, char dfault) const;
char_type widen(char c) const;

basic_ios(const basic_ios&) = delete;
basic_ios& operator=(const basic_ios&) = delete;

protected:
basic_ios();
void init(basic_streambuf<charT, traits>* sb);
void move(basic_ios& rhs);
void move(basic_ios&& rhs);
void swap(basic_ios& rhs) noexcept;
void set_rdbuf(basic_streambuf<charT, traits>* sb);

};
}

31.5.4.2 Constructors [basic.ios.cons]

explicit basic_ios(basic_streambuf<charT, traits>* sb);

1 Effects: Assigns initial values to its member objects by calling init(sb).

§ 31.5.4.2 1478

© ISO/IEC N4910

basic_ios();

2 Effects: Leaves its member objects uninitialized. The object shall be initialized by calling basic_ios::initbefore its first use or before it is destroyed, whichever comes first; otherwise the behavior is undefined.
~basic_ios();

3 Remarks: The destructor does not destroy rdbuf().
void init(basic_streambuf<charT, traits>* sb);

4 Postconditions: The postconditions of this function are indicated in Table 120.
Table 120: basic_ios::init() effects [tab:basic.ios.cons]

Element Value
rdbuf() sb
tie() 0
rdstate() goodbit if sb is not a null pointer, otherwise badbit.
exceptions() goodbit
flags() skipws | dec
width() 0
precision() 6
fill() widen(’ ’)
getloc() a copy of the value returned by locale()
iarray a null pointer
parray a null pointer

31.5.4.3 Member functions [basic.ios.members]

basic_ostream<charT, traits>* tie() const;

1 Returns: An output sequence that is tied to (synchronized with) the sequence controlled by the stream buffer.
basic_ostream<charT, traits>* tie(basic_ostream<charT, traits>* tiestr);

2 Preconditions: If tiestr is not null, tiestr is not reachable by traversing the linked list of tied stream objectsstarting from tiestr->tie().
3 Postconditions: tiestr == tie().
4 Returns: The previous value of tie().

basic_streambuf<charT, traits>* rdbuf() const;

5 Returns: A pointer to the streambuf associated with the stream.
basic_streambuf<charT, traits>* rdbuf(basic_streambuf<charT, traits>* sb);

6 Effects: Calls clear().
7 Postconditions: sb == rdbuf().
8 Returns: The previous value of rdbuf().

locale imbue(const locale& loc);

9 Effects: Calls ios_base::imbue(loc) (31.5.2.4) and if rdbuf() != 0 then rdbuf()->pubimbue(loc) (31.6.3.3.1).
10 Returns: The prior value of ios_base::imbue().

char narrow(char_type c, char dfault) const;

11 Returns: use_facet<ctype<char_type>>(getloc()).narrow(c, dfault)

char_type widen(char c) const;

12 Returns: use_facet<ctype<char_type>>(getloc()).widen(c)

§ 31.5.4.3 1479

© ISO/IEC N4910

char_type fill() const;

13 Returns: The character used to pad (fill) an output conversion to the specified field width.
char_type fill(char_type fillch);

14 Postconditions: traits::eq(fillch, fill()).
15 Returns: The previous value of fill().

basic_ios& copyfmt(const basic_ios& rhs);

16 Effects: If (this == addressof(rhs)) is true does nothing. Otherwise assigns to the member objects of *thisthe corresponding member objects of rhs as follows:
—(16.1) calls each registered callback pair (fn, idx) as (*fn)(erase_event, *this, idx);
—(16.2) then, assigns to the member objects of *this the corresponding member objects of rhs, except that

—(16.2.1) rdstate(), rdbuf(), and exceptions() are left unchanged;
—(16.2.2) the contents of arrays pointed at by pword and iword are copied, not the pointers themselves;279 and
—(16.2.3) if any newly stored pointer values in *this point at objects stored outside the object rhs and thoseobjects are destroyed when rhs is destroyed, the newly stored pointer values are altered to point atnewly constructed copies of the objects;

—(16.3) then, calls each callback pair that was copied from rhs as (*fn)(copyfmt_event, *this, idx);
—(16.4) then, calls exceptions(rhs.exceptions()).

17 [Note 1: The second pass through the callback pairs permits a copied pword value to be zeroed, or to have its referent deepcopied or reference counted, or to have other special action taken. —end note]
18 Postconditions: The postconditions of this function are indicated in Table 121.

Table 121: basic_ios::copyfmt() effects [tab:basic.ios.copyfmt]
Element Value

rdbuf() unchanged
tie() rhs.tie()
rdstate() unchanged
exceptions() rhs.exceptions()
flags() rhs.flags()
width() rhs.width()
precision() rhs.precision()
fill() rhs.fill()
getloc() rhs.getloc()

19 Returns: *this.
void move(basic_ios& rhs);
void move(basic_ios&& rhs);

20 Postconditions: *this has the state that rhs had before the function call, except that rdbuf() returns nullptr.
rhs is in a valid but unspecified state, except that rhs.rdbuf() returns the same value as it returned before thefunction call, and rhs.tie() returns nullptr.

void swap(basic_ios& rhs) noexcept;

21 Effects: The states of *this and rhs are exchanged, except that rdbuf() returns the same value as it returnedbefore the function call, and rhs.rdbuf() returns the same value as it returned before the function call.
void set_rdbuf(basic_streambuf<charT, traits>* sb);

22 Preconditions: sb != nullptr is true.
23 Effects: Associates the basic_streambuf object pointed to by sb with this stream without calling clear().

279) This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays that is nonzero.
§ 31.5.4.3 1480

© ISO/IEC N4910

24 Postconditions: rdbuf() == sb is true.
25 Throws: Nothing.
31.5.4.4 Flags functions [iostate.flags]

explicit operator bool() const;

1 Returns: !fail().
bool operator!() const;

2 Returns: fail().
iostate rdstate() const;

3 Returns: The error state of the stream buffer.
void clear(iostate state = goodbit);

4 Effects: If ((state | (rdbuf() ? goodbit : badbit)) & exceptions()) == 0, returns. Otherwise, thefunction throws an object of class ios_base::failure (31.5.2.2.1), constructed with implementation-definedargument values.
5 Postconditions: If rdbuf() != 0 then state == rdstate(); otherwise rdstate() == (state | ios_base::badbit).

void setstate(iostate state);

6 Effects: Calls clear(rdstate() | state) (which may throw ios_base::failure (31.5.2.2.1)).
bool good() const;

7 Returns: rdstate() == 0

bool eof() const;

8 Returns: true if eofbit is set in rdstate().
bool fail() const;

9 Returns: true if failbit or badbit is set in rdstate().280
bool bad() const;

10 Returns: true if badbit is set in rdstate().
iostate exceptions() const;

11 Returns: A mask that determines what elements set in rdstate() cause exceptions to be thrown.
void exceptions(iostate except);

12 Effects: Calls clear(rdstate()).
13 Postconditions: except == exceptions().
31.5.5 ios_base manipulators [std.ios.manip]
31.5.5.1 fmtflags manipulators [fmtflags.manip]

1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).
ios_base& boolalpha(ios_base& str);

2 Effects: Calls str.setf(ios_base::boolalpha).
3 Returns: str.

ios_base& noboolalpha(ios_base& str);

4 Effects: Calls str.unsetf(ios_base::boolalpha).
5 Returns: str.

280) Checking badbit also for fail() is historical practice.
§ 31.5.5.1 1481

© ISO/IEC N4910

ios_base& showbase(ios_base& str);

6 Effects: Calls str.setf(ios_base::showbase).
7 Returns: str.

ios_base& noshowbase(ios_base& str);

8 Effects: Calls str.unsetf(ios_base::showbase).
9 Returns: str.

ios_base& showpoint(ios_base& str);

10 Effects: Calls str.setf(ios_base::showpoint).
11 Returns: str.

ios_base& noshowpoint(ios_base& str);

12 Effects: Calls str.unsetf(ios_base::showpoint).
13 Returns: str.

ios_base& showpos(ios_base& str);

14 Effects: Calls str.setf(ios_base::showpos).
15 Returns: str.

ios_base& noshowpos(ios_base& str);

16 Effects: Calls str.unsetf(ios_base::showpos).
17 Returns: str.

ios_base& skipws(ios_base& str);

18 Effects: Calls str.setf(ios_base::skipws).
19 Returns: str.

ios_base& noskipws(ios_base& str);

20 Effects: Calls str.unsetf(ios_base::skipws).
21 Returns: str.

ios_base& uppercase(ios_base& str);

22 Effects: Calls str.setf(ios_base::uppercase).
23 Returns: str.

ios_base& nouppercase(ios_base& str);

24 Effects: Calls str.unsetf(ios_base::uppercase).
25 Returns: str.

ios_base& unitbuf(ios_base& str);

26 Effects: Calls str.setf(ios_base::unitbuf).
27 Returns: str.

ios_base& nounitbuf(ios_base& str);

28 Effects: Calls str.unsetf(ios_base::unitbuf).
29 Returns: str.
31.5.5.2 adjustfield manipulators [adjustfield.manip]

1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).
ios_base& internal(ios_base& str);

2 Effects: Calls str.setf(ios_base::internal, ios_base::adjustfield).
§ 31.5.5.2 1482

© ISO/IEC N4910

3 Returns: str.
ios_base& left(ios_base& str);

4 Effects: Calls str.setf(ios_base::left, ios_base::adjustfield).
5 Returns: str.

ios_base& right(ios_base& str);

6 Effects: Calls str.setf(ios_base::right, ios_base::adjustfield).
7 Returns: str.
31.5.5.3 basefield manipulators [basefield.manip]

1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).
ios_base& dec(ios_base& str);

2 Effects: Calls str.setf(ios_base::dec, ios_base::basefield).
3 Returns: str.281

ios_base& hex(ios_base& str);

4 Effects: Calls str.setf(ios_base::hex, ios_base::basefield).
5 Returns: str.

ios_base& oct(ios_base& str);

6 Effects: Calls str.setf(ios_base::oct, ios_base::basefield).
7 Returns: str.
31.5.5.4 floatfield manipulators [floatfield.manip]

1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).
ios_base& fixed(ios_base& str);

2 Effects: Calls str.setf(ios_base::fixed, ios_base::floatfield).
3 Returns: str.

ios_base& scientific(ios_base& str);

4 Effects: Calls str.setf(ios_base::scientific, ios_base::floatfield).
5 Returns: str.

ios_base& hexfloat(ios_base& str);

6 Effects: Calls str.setf(ios_base::fixed | ios_base::scientific, ios_base::floatfield).
7 Returns: str.
8 [Note 1: ios_base::hex cannot be used to specify a hexadecimal floating-point format, because it is not part of ios_base::floatfield(Table 115). —end note]

ios_base& defaultfloat(ios_base& str);

9 Effects: Calls str.unsetf(ios_base::floatfield).
10 Returns: str.
31.5.6 Error reporting [error.reporting]

error_code make_error_code(io_errc e) noexcept;

1 Returns: error_code(static_cast<int>(e), iostream_category()).

281) The function signature dec(ios_base&) can be called by the function signature basic_ostream& stream::operator<<(ios_base& (*)(ios_-
base&)) to permit expressions of the form cout << dec to change the format flags stored in cout.
§ 31.5.6 1483

© ISO/IEC N4910

error_condition make_error_condition(io_errc e) noexcept;

2 Returns: error_condition(static_cast<int>(e), iostream_category()).
const error_category& iostream_category() noexcept;

3 Returns: A reference to an object of a type derived from class error_category.
4 The object’s default_error_condition and equivalent virtual functions shall behave as specified for the class

error_category. The object’s name virtual function shall return a pointer to the string "iostream".
31.6 Stream buffers [stream.buffers]
31.6.1 Header <streambuf> synopsis [streambuf.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_streambuf;

using streambuf = basic_streambuf<char>;
using wstreambuf = basic_streambuf<wchar_t>;

}

1 The header <streambuf> defines types that control input from and output to character sequences.
31.6.2 Stream buffer requirements [streambuf.reqts]

1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:
—(1.1) The controlled input sequence can be not readable.
—(1.2) The controlled output sequence can be not writable.
—(1.3) The controlled sequences can be associated with the contents of other representations for character sequences,such as external files.
—(1.4) The controlled sequences can support operations directly to or from associated sequences.
—(1.5) The controlled sequences can impose limitations on how the program can read characters from a sequence, writecharacters to a sequence, put characters back into an input sequence, or alter the stream position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the same charT array object. Thearray object represents, at any moment, a (sub)sequence of characters from the sequence. Operations performed on asequence alter the values stored in these pointers, perform reads and writes directly to or from associated sequences,and alter “the stream position” and conversion state as needed to maintain this subsequence relationship. The threepointers are:
—(2.1) the beginning pointer, or lowest element address in the array (called xbeg here);
—(2.2) the next pointer, or next element address that is a current candidate for reading or writing (called xnext here);
—(2.3) the end pointer, or first element address beyond the end of the array (called xend here).

3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the pointernames given immediately above:
—(3.1) If xnext is not a null pointer, then xbeg and xend shall also be non-null pointers into the same charT array, asdescribed above; otherwise, xbeg and xend shall also be null.
—(3.2) If xnext is not a null pointer and xnext < xend for an output sequence, then a write position is available. Inthis case, *xnext shall be assignable as the next element to write (to put, or to store a character value, into thesequence).
—(3.3) If xnext is not a null pointer and xbeg < xnext for an input sequence, then a putback position is available. Inthis case, xnext[-1] shall have a defined value and is the next (preceding) element to store a character that is putback into the input sequence.
—(3.4) If xnext is not a null pointer and xnext < xend for an input sequence, then a read position is available. In thiscase, *xnext shall have a defined value and is the next element to read (to get, or to obtain a character value,from the sequence).

§ 31.6.2 1484

© ISO/IEC N4910

31.6.3 Class template basic_streambuf [streambuf]
31.6.3.1 General [streambuf.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_streambuf {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

virtual ~basic_streambuf();

// 31.6.3.3.1, locales
locale pubimbue(const locale& loc);
locale getloc() const;

// 31.6.3.3.2, buffer and positioning
basic_streambuf* pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out);
int pubsync();

// get and put areas// 31.6.3.3.3, get area
streamsize in_avail();
int_type snextc();
int_type sbumpc();
int_type sgetc();
streamsize sgetn(char_type* s, streamsize n);

// 31.6.3.3.4, putback
int_type sputbackc(char_type c);
int_type sungetc();

// 31.6.3.3.5, put area
int_type sputc(char_type c);
streamsize sputn(const char_type* s, streamsize n);

protected:
basic_streambuf();
basic_streambuf(const basic_streambuf& rhs);
basic_streambuf& operator=(const basic_streambuf& rhs);

void swap(basic_streambuf& rhs);

// 31.6.3.4.2, get area access
char_type* eback() const;
char_type* gptr() const;
char_type* egptr() const;
void gbump(int n);
void setg(char_type* gbeg, char_type* gnext, char_type* gend);

// 31.6.3.4.3, put area access
char_type* pbase() const;
char_type* pptr() const;
char_type* epptr() const;
void pbump(int n);

§ 31.6.3.1 1485

© ISO/IEC N4910

void setp(char_type* pbeg, char_type* pend);

// 31.6.3.5, virtual functions// 31.6.3.5.1, locales
virtual void imbue(const locale& loc);

// 31.6.3.5.2, buffer management and positioning
virtual basic_streambuf* setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual int sync();

// 31.6.3.5.3, get area
virtual streamsize showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();

// 31.6.3.5.4, putback
virtual int_type pbackfail(int_type c = traits::eof());

// 31.6.3.5.5, put area
virtual streamsize xsputn(const char_type* s, streamsize n);
virtual int_type overflow(int_type c = traits::eof());

};
}

1 The class template basic_streambuf serves as an abstract base class for deriving various stream buffers whose objectseach control two character sequences:
—(1.1) a character input sequence;
—(1.2) a character output sequence.

31.6.3.2 Constructors [streambuf.cons]

basic_streambuf();

1 Effects: Initializes:282
—(1.1) all pointer member objects to null pointers,
—(1.2) the getloc() member to a copy the global locale, locale(), at the time of construction.

2 Remarks: Once the getloc() member is initialized, results of calling locale member functions, and of membersof facets so obtained, can safely be cached until the next time the member imbue is called.
basic_streambuf(const basic_streambuf& rhs);

3 Postconditions:
—(3.1) eback() == rhs.eback()

—(3.2) gptr() == rhs.gptr()

—(3.3) egptr() == rhs.egptr()

—(3.4) pbase() == rhs.pbase()

—(3.5) pptr() == rhs.pptr()

—(3.6) epptr() == rhs.epptr()

—(3.7) getloc() == rhs.getloc()

282) The default constructor is protected for class basic_streambuf to assure that only objects for classes derived from this class can be constructed.
§ 31.6.3.2 1486

© ISO/IEC N4910

~basic_streambuf();
4 Effects: None.
31.6.3.3 Public member functions [streambuf.members]
31.6.3.3.1 Locales [streambuf.locales]

locale pubimbue(const locale& loc);

1 Effects: Calls imbue(loc).
2 Postconditions: loc == getloc().
3 Returns: Previous value of getloc().

locale getloc() const;

4 Returns: If pubimbue() has ever been called, then the last value of loc supplied, otherwise the current globallocale, locale(), in effect at the time of construction. If called after pubimbue() has been called but before
pubimbue has returned (i.e., from within the call of imbue()) then it returns the previous value.

31.6.3.3.2 Buffer management and positioning [streambuf.buffer]

basic_streambuf* pubsetbuf(char_type* s, streamsize n);

1 Returns: setbuf(s, n).
pos_type pubseekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

2 Returns: seekoff(off, way, which).
pos_type pubseekpos(pos_type sp,

ios_base::openmode which
= ios_base::in | ios_base::out);

3 Returns: seekpos(sp, which).
int pubsync();

4 Returns: sync().
31.6.3.3.3 Get area [streambuf.pub.get]

streamsize in_avail();

1 Returns: If a read position is available, returns egptr() - gptr(). Otherwise returns showmanyc() (31.6.3.5.3).
int_type snextc();

2 Effects: Calls sbumpc().
3 Returns: If that function returns traits::eof(), returns traits::eof(). Otherwise, returns sgetc().

int_type sbumpc();

4 Effects: If the input sequence read position is not available, returns uflow(). Otherwise, returns traits::to_-
int_type(*gptr()) and increments the next pointer for the input sequence.

int_type sgetc();

5 Returns: If the input sequence read position is not available, returns underflow(). Otherwise, returns traits::to_-
int_type(*gptr()).

streamsize sgetn(char_type* s, streamsize n);

6 Returns: xsgetn(s, n).

§ 31.6.3.3.3 1487

© ISO/IEC N4910

31.6.3.3.4 Putback [streambuf.pub.pback]

int_type sputbackc(char_type c);

1 Effects: If the input sequence putback position is not available, or if traits::eq(c, gptr()[-1]) is false,returns pbackfail(traits::to_int_type(c)). Otherwise, decrements the next pointer for the input sequenceand returns traits::to_int_type(*gptr()).
int_type sungetc();

2 Effects: If the input sequence putback position is not available, returns pbackfail(). Otherwise, decrements thenext pointer for the input sequence and returns traits::to_int_type(*gptr()).
31.6.3.3.5 Put area [streambuf.pub.put]

int_type sputc(char_type c);

1 Effects: If the output sequence write position is not available, returns overflow(traits::to_int_type(c)).Otherwise, stores c at the next pointer for the output sequence, increments the pointer, and returns traits::to_-
int_type(c).

streamsize sputn(const char_type* s, streamsize n);

2 Returns: xsputn(s, n).
31.6.3.4 Protected member functions [streambuf.protected]
31.6.3.4.1 Assignment [streambuf.assign]

basic_streambuf& operator=(const basic_streambuf& rhs);

1 Postconditions:
—(1.1) eback() == rhs.eback()

—(1.2) gptr() == rhs.gptr()

—(1.3) egptr() == rhs.egptr()

—(1.4) pbase() == rhs.pbase()

—(1.5) pptr() == rhs.pptr()

—(1.6) epptr() == rhs.epptr()

—(1.7) getloc() == rhs.getloc()
2 Returns: *this.

void swap(basic_streambuf& rhs);

3 Effects: Swaps the data members of rhs and *this.
31.6.3.4.2 Get area access [streambuf.get.area]

char_type* eback() const;

1 Returns: The beginning pointer for the input sequence.
char_type* gptr() const;

2 Returns: The next pointer for the input sequence.
char_type* egptr() const;

3 Returns: The end pointer for the input sequence.
void gbump(int n);

4 Effects: Adds n to the next pointer for the input sequence.
void setg(char_type* gbeg, char_type* gnext, char_type* gend);

5 Postconditions: gbeg == eback(), gnext == gptr(), and gend == egptr() are all true.

§ 31.6.3.4.2 1488

© ISO/IEC N4910

31.6.3.4.3 Put area access [streambuf.put.area]

char_type* pbase() const;

1 Returns: The beginning pointer for the output sequence.
char_type* pptr() const;

2 Returns: The next pointer for the output sequence.
char_type* epptr() const;

3 Returns: The end pointer for the output sequence.
void pbump(int n);

4 Effects: Adds n to the next pointer for the output sequence.
void setp(char_type* pbeg, char_type* pend);

5 Postconditions: pbeg == pbase(), pbeg == pptr(), and pend == epptr() are all true.
31.6.3.5 Virtual functions [streambuf.virtuals]
31.6.3.5.1 Locales [streambuf.virt.locales]

void imbue(const locale&);

1 Effects: Change any translations based on locale.
2 Remarks: Allows the derived class to be informed of changes in locale at the time they occur. Between invocationsof this function a class derived from streambuf can safely cache results of calls to locale functions and to membersof facets so obtained.
3 Default behavior: Does nothing.
31.6.3.5.2 Buffer management and positioning [streambuf.virt.buffer]

basic_streambuf* setbuf(char_type* s, streamsize n);

1 Effects: Influences stream buffering in a way that is defined separately for each class derived from basic_-
streambuf in this Clause (31.8.2.5, 31.10.2.5).

2 Default behavior: Does nothing. Returns this.
pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

3 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is definedseparately for each class derived from basic_streambuf in this Clause (31.8.2.5, 31.10.2.5).
4 Default behavior: Returns pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out);

5 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is definedseparately for each class derived from basic_streambuf in this Clause (31.8.2, 31.10.2).
6 Default behavior: Returns pos_type(off_type(-1)).

int sync();

7 Effects: Synchronizes the controlled sequences with the arrays. That is, if pbase() is non-null the charactersbetween pbase() and pptr() are written to the controlled sequence. The pointers may then be reset as appropriate.
8 Returns: -1 on failure. What constitutes failure is determined by each derived class (31.10.2.5).
9 Default behavior: Returns zero.

§ 31.6.3.5.2 1489

© ISO/IEC N4910

31.6.3.5.3 Get area [streambuf.virt.get]

streamsize showmanyc();283
1 Returns: An estimate of the number of characters available in the sequence, or −1. If it returns a positive value,then successive calls to underflow() will not return traits::eof() until at least that number of characters havebeen extracted from the stream. If showmanyc() returns −1, then calls to underflow() or uflow() will fail.284
2 Default behavior: Returns zero.
3 Remarks: Uses traits::eof().

streamsize xsgetn(char_type* s, streamsize n);

4 Effects: Assigns up to n characters to successive elements of the array whose first element is designated by s.The characters assigned are read from the input sequence as if by repeated calls to sbumpc(). Assigning stopswhen either n characters have been assigned or a call to sbumpc() would return traits::eof().
5 Returns: The number of characters assigned.285
6 Remarks: Uses traits::eof().

int_type underflow();

7 The pending sequence of characters is defined as the concatenation of
—(7.1) the empty sequence if gptr() is null, otherwise the characters in [gptr(), egptr()), followed by
—(7.2) some (possibly empty) sequence of characters read from the input sequence.

8 The result character is the first character of the pending sequence if it is non-empty, otherwise the next characterthat would be read from the input sequence.
9 The backup sequence is the empty sequence if eback() is null, otherwise the characters in [eback(), gptr()).
10 Effects: The function sets up the gptr() and egptr() such that if the pending sequence is non-empty, then

egptr() is non-null and the characters in [gptr(), egptr()) are the characters in the pending sequence, otherwiseeither gptr() is null or gptr() == egptr().
11 If eback() and gptr() are non-null then the function is not constrained as to their contents, but the “usual backupcondition” is that either

—(11.1) the backup sequence contains at least gptr() - eback() characters, in which case the characters in
[eback(), gptr()) agree with the last gptr() - eback() characters of the backup sequence, or

—(11.2) the characters in [gptr() - n, gptr()) agree with the backup sequence (where n is the length of the backupsequence).
12 Returns: traits::to_int_type(c), where c is the first character of the pending sequence, without movingthe input sequence position past it. If the pending sequence is null then the function returns traits::eof() toindicate failure.
13 Default behavior: Returns traits::eof().
14 Remarks: The public members of basic_streambuf call this virtual function only if gptr() is null or gptr() >=

egptr().
int_type uflow();

15 Preconditions: The constraints are the same as for underflow(), except that the result character is transferredfrom the pending sequence to the backup sequence, and the pending sequence is not empty before the transfer.
16 Default behavior: Calls underflow(). If underflow() returns traits::eof(), returns traits::eof(). Other-wise, returns the value of traits::to_int_type(*gptr()) and increment the value of the next pointer for theinput sequence.
17 Returns: traits::eof() to indicate failure.

283) The morphemes of showmanyc are “es-how-many-see”, not “show-manic”.
284) underflow or uflow can fail by throwing an exception prematurely. The intention is not only that the calls will not return eof() but that theywill return “immediately”.
285) Classes derived from basic_streambuf can provide more efficient ways to implement xsgetn() and xsputn() by overriding these definitionsfrom the base class.
§ 31.6.3.5.3 1490

© ISO/IEC N4910

31.6.3.5.4 Putback [streambuf.virt.pback]

int_type pbackfail(int_type c = traits::eof());

1 The pending sequence is defined as for underflow(), with the modifications that
—(1.1) If traits::eq_int_type(c, traits::eof()) returns true, then the input sequence is backed up onecharacter before the pending sequence is determined.
—(1.2) If traits::eq_int_type(c, traits::eof()) returns false, then c is prepended. Whether the inputsequence is backed up or modified in any other way is unspecified.

2 Postconditions: On return, the constraints of gptr(), eback(), and pptr() are the same as for underflow().
3 Returns: traits::eof() to indicate failure. Failure may occur because the input sequence could not be backedup, or if for some other reason the pointers cannot be set consistent with the constraints. pbackfail() is calledonly when put back has really failed.
4 Returns some value other than traits::eof() to indicate success.
5 Default behavior: Returns traits::eof().
6 Remarks: The public functions of basic_streambuf call this virtual function only when gptr() is null, gptr()

== eback(), or traits::eq(traits::to_char_type(c), gptr()[-1]) returns false. Other calls shall alsosatisfy that constraint.
31.6.3.5.5 Put area [streambuf.virt.put]

streamsize xsputn(const char_type* s, streamsize n);

1 Effects: Writes up to n characters to the output sequence as if by repeated calls to sputc(c). The characterswritten are obtained from successive elements of the array whose first element is designated by s. Writing stopswhen either n characters have been written or a call to sputc(c) would return traits::eof(). It is unspecifiedwhether the function calls overflow() when pptr() == epptr() becomes true or whether it achieves the sameeffects by other means.
2 Returns: The number of characters written.

int_type overflow(int_type c = traits::eof());

3 Effects: Consumes some initial subsequence of the characters of the pending sequence. The pending sequence isdefined as the concatenation of
—(3.1) the empty sequence if pbase() is null, otherwise the pptr() - pbase() characters beginning at pbase(),followed by
—(3.2) the empty sequence if traits::eq_int_type(c, traits::eof()) returns true, otherwise the sequenceconsisting of c.

4 Preconditions: Every overriding definition of this virtual function obeys the following constraints:
—(4.1) The effect of consuming a character on the associated output sequence is specified.286
—(4.2) Let r be the number of characters in the pending sequence not consumed. If r is nonzero then pbase() and

pptr() are set so that: pptr() - pbase() == r and the r characters starting at pbase() are the associatedoutput stream. In case r is zero (all characters of the pending sequence have been consumed) then either
pbase() is set to nullptr, or pbase() and pptr() are both set to the same non-null value.

—(4.3) The function may fail if either appending some character to the associated output stream fails or if it isunable to establish pbase() and pptr() according to the above rules.
5 Returns: traits::eof() or throws an exception if the function fails.

Otherwise, returns some value other than traits::eof() to indicate success.287
6 Default behavior: Returns traits::eof().
7 Remarks: The member functions sputc() and sputn() call this function in case that no room can be found in theput buffer enough to accommodate the argument character sequence.

286) That is, for each class derived from a specialization of basic_streambuf in this Clause (31.8.2, 31.10.2), a specification of how consuming acharacter effects the associated output sequence is given. There is no requirement on a program-defined class.
287) Typically, overflow returns c to indicate success, except when traits::eq_int_type(c, traits::eof()) returns true, in which case itreturns traits::not_eof(c).
§ 31.6.3.5.5 1491

© ISO/IEC N4910

31.7 Formatting and manipulators [iostream.format]
31.7.1 Header <istream> synopsis [istream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_istream;

using istream = basic_istream<char>;
using wistream = basic_istream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_iostream;

using iostream = basic_iostream<char>;
using wiostream = basic_iostream<wchar_t>;

template<class charT, class traits>
basic_istream<charT, traits>& ws(basic_istream<charT, traits>& is);

template<class Istream, class T>
Istream&& operator>>(Istream&& is, T&& x);

}

31.7.2 Header <ostream> synopsis [ostream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ostream;

using ostream = basic_ostream<char>;
using wostream = basic_ostream<wchar_t>;

template<class charT, class traits>
basic_ostream<charT, traits>& endl(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& ends(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& flush(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& emit_on_flush(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& noemit_on_flush(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& flush_emit(basic_ostream<charT, traits>& os);

template<class Ostream, class T>
Ostream&& operator<<(Ostream&& os, const T& x);

}

31.7.3 Header <iomanip> synopsis [iomanip.syn]
namespace std {

unspecified resetiosflags(ios_base::fmtflags mask);
unspecified setiosflags (ios_base::fmtflags mask);
unspecified setbase(int base);
template<class charT> unspecified setfill(charT c);
unspecified setprecision(int n);
unspecified setw(int n);
template<class moneyT> unspecified get_money(moneyT& mon, bool intl = false);
template<class moneyT> unspecified put_money(const moneyT& mon, bool intl = false);
template<class charT> unspecified get_time(tm* tmb, const charT* fmt);
template<class charT> unspecified put_time(const tm* tmb, const charT* fmt);

template<class charT>
unspecified quoted(const charT* s, charT delim = charT('"'), charT escape = charT('\\'));

§ 31.7.3 1492

© ISO/IEC N4910

template<class charT, class traits, class Allocator>
unspecified quoted(const basic_string<charT, traits, Allocator>& s,

charT delim = charT('"'), charT escape = charT('\\'));

template<class charT, class traits, class Allocator>
unspecified quoted(basic_string<charT, traits, Allocator>& s,

charT delim = charT('"'), charT escape = charT('\\'));

template<class charT, class traits>
unspecified quoted(basic_string_view<charT, traits> s,

charT delim = charT('"'), charT escape = charT('\\'));
}

31.7.4 Input streams [input.streams]
31.7.4.1 General [input.streams.general]

1 The header <istream> defines two class templates and a function template that control input from a stream buffer, alongwith a function template that extracts from stream rvalues.
31.7.4.2 Class template basic_istream [istream]
31.7.4.2.1 General [istream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_istream : virtual public basic_ios<charT, traits> {
public:// types (inherited from basic_ios (31.5.4))
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.7.4.2.2, constructor/destructor
explicit basic_istream(basic_streambuf<charT, traits>* sb);
virtual ~basic_istream();

// 31.7.4.2.4, prefix/suffix
class sentry;

// 31.7.4.3, formatted input
basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));
basic_istream& operator>>(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));
basic_istream& operator>>(ios_base& (*pf)(ios_base&));

basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(long& n);
basic_istream& operator>>(unsigned long& n);
basic_istream& operator>>(long long& n);
basic_istream& operator>>(unsigned long long& n);
basic_istream& operator>>(float& f);
basic_istream& operator>>(double& f);
basic_istream& operator>>(long double& f);

basic_istream& operator>>(void*& p);
basic_istream& operator>>(basic_streambuf<char_type, traits>* sb);

// 31.7.4.4, unformatted input
streamsize gcount() const;
int_type get();

§ 31.7.4.2.1 1493

© ISO/IEC N4910

basic_istream& get(char_type& c);
basic_istream& get(char_type* s, streamsize n);
basic_istream& get(char_type* s, streamsize n, char_type delim);
basic_istream& get(basic_streambuf<char_type, traits>& sb);
basic_istream& get(basic_streambuf<char_type, traits>& sb, char_type delim);

basic_istream& getline(char_type* s, streamsize n);
basic_istream& getline(char_type* s, streamsize n, char_type delim);

basic_istream& ignore(streamsize n = 1, int_type delim = traits::eof());
int_type peek();
basic_istream& read (char_type* s, streamsize n);
streamsize readsome(char_type* s, streamsize n);

basic_istream& putback(char_type c);
basic_istream& unget();
int sync();

pos_type tellg();
basic_istream& seekg(pos_type);
basic_istream& seekg(off_type, ios_base::seekdir);

protected:// 31.7.4.2.2, copy/move constructor
basic_istream(const basic_istream&) = delete;
basic_istream(basic_istream&& rhs);

// 31.7.4.2.3, assignment and swap
basic_istream& operator=(const basic_istream&) = delete;
basic_istream& operator=(basic_istream&& rhs);
void swap(basic_istream& rhs);

};

// 31.7.4.3.3, character extraction templates
template<class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, charT&);

template<class traits>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, unsigned char&);

template<class traits>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, signed char&);

template<class charT, class traits, size_t N>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, charT(&)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, unsigned char(&)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, signed char(&)[N]);

}

1 The class template basic_istream defines a number of member function signatures that assist in reading and interpretinginput from sequences controlled by a stream buffer.
2 Two groups of member function signatures share common properties: the formatted input functions (or extractors)and the unformatted input functions. Both groups of input functions are described as if they obtain (or extract) inputcharacters by calling rdbuf()->sbumpc() or rdbuf()->sgetc(). They may use other public members of istream.
3 If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits::eof(), then the input function, except as explicitly notedotherwise, completes its actions and does setstate(eofbit), which may throw ios_base::failure (31.5.4.4), beforereturning.
4 If one of these called functions throws an exception, then unless explicitly noted otherwise, the input function sets

badbit in the error state. If badbit is set in exceptions(), the input function rethrows the exception without completingits actions, otherwise it does not throw anything and proceeds as if the called function had returned a failure indication.

§ 31.7.4.2.1 1494

© ISO/IEC N4910

31.7.4.2.2 Constructors [istream.cons]

explicit basic_istream(basic_streambuf<charT, traits>* sb);

1 Effects: Initializes the base class subobject with basic_ios::init(sb) (31.5.4.2).
2 Postconditions: gcount() == 0.

basic_istream(basic_istream&& rhs);

3 Effects: Default constructs the base class, copies the gcount() from rhs, calls basic_ios<charT, traits>::move(rhs)to initialize the base class, and sets the gcount() for rhs to 0.
virtual ~basic_istream();

4 Remarks: Does not perform any operations of rdbuf().
31.7.4.2.3 Assignment and swap [istream.assign]

basic_istream& operator=(basic_istream&& rhs);

1 Effects: Equivalent to: swap(rhs).
2 Returns: *this.

void swap(basic_istream& rhs);

3 Effects: Calls basic_ios<charT, traits>::swap(rhs). Exchanges the values returned by gcount() and
rhs.gcount().

31.7.4.2.4 Class basic_istream::sentry [istream.sentry]
namespace std {

template<class charT, class traits>
class basic_istream<charT, traits>::sentry {
bool ok_; // exposition only

public:
explicit sentry(basic_istream& is, bool noskipws = false);
~sentry();
explicit operator bool() const { return ok_; }
sentry(const sentry&) = delete;
sentry& operator=(const sentry&) = delete;

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.
explicit sentry(basic_istream& is, bool noskipws = false);

2 Effects: If is.good() is false, calls is.setstate(failbit). Otherwise, prepares for formatted or unformattedinput. First, if is.tie() is not a null pointer, the function calls is.tie()->flush() to synchronize the outputsequence with any associated external C stream. Except that this call can be suppressed if the put area of is.tie()is empty. Further an implementation is allowed to defer the call to flush until a call of is.rdbuf()->underflow()occurs. If no such call occurs before the sentry object is destroyed, the call to flushmay be eliminated entirely.288If noskipws is zero and is.flags() & ios_base::skipws is nonzero, the function extracts and discards eachcharacter as long as the next available input character c is a whitespace character. If is.rdbuf()->sbumpc()or is.rdbuf()->sgetc() returns traits::eof(), the function calls setstate(failbit | eofbit) (which maythrow ios_base::failure).
3 Remarks: The constructor

explicit sentry(basic_istream& is, bool noskipws = false)

uses the currently imbued locale in is, to determine whether the next input character is whitespace or not.
4 To decide if the character c is a whitespace character, the constructor performs as if it executes the followingcode fragment:

const ctype<charT>& ctype = use_facet<ctype<charT>>(is.getloc());
if (ctype.is(ctype.space, c) != 0)// c is a whitespace character.

288) This will be possible only in functions that are part of the library. The semantics of the constructor used in user code is as specified.
§ 31.7.4.2.4 1495

© ISO/IEC N4910

5 If, after any preparation is completed, is.good() is true, ok_ != false otherwise, ok_ == false. Duringpreparation, the constructor may call setstate(failbit) (which may throw ios_base::failure (31.5.4.4)).289
~sentry();

6 Effects: None.
explicit operator bool() const;

7 Returns: ok_.
31.7.4.3 Formatted input functions [istream.formatted]
31.7.4.3.1 Common requirements [istream.formatted.reqmts]

1 Each formatted input function begins execution by constructing an object of class sentry with the noskipws (second)argument false. If the sentry object returns true, when converted to a value of type bool, the function endeavors toobtain the requested input. If an exception is thrown during input then ios_base::badbit is turned on290 in *this’serror state. If (exceptions()&badbit) != 0 then the exception is rethrown. In any case, the formatted input functiondestroys the sentry object. If no exception has been thrown, it returns *this.
31.7.4.3.2 Arithmetic extractors [istream.formatted.arithmetic]

basic_istream& operator>>(unsigned short& val);
basic_istream& operator>>(unsigned int& val);
basic_istream& operator>>(long& val);
basic_istream& operator>>(unsigned long& val);
basic_istream& operator>>(long long& val);
basic_istream& operator>>(unsigned long long& val);
basic_istream& operator>>(float& val);
basic_istream& operator>>(double& val);
basic_istream& operator>>(long double& val);
basic_istream& operator>>(bool& val);
basic_istream& operator>>(void*& val);

1 As in the case of the inserters, these extractors depend on the locale’s num_get<> (30.4.3.2) object to performparsing the input stream data. These extractors behave as formatted input functions (as described in 31.7.4.3.1).After a sentry object is constructed, the conversion occurs as if performed by the following code fragment:
using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = iostate::goodbit;
use_facet<numget>(loc).get(*this, 0, *this, err, val);
setstate(err);

In the above fragment, loc stands for the private member of the basic_ios class.
[Note 1: The first argument provides an object of the istreambuf_iterator class which is an iterator pointed to an inputstream. It bypasses istreams and uses streambufs directly. —end note]
Class locale relies on this type as its interface to istream, so that it does not need to depend directly on istream.

basic_istream& operator>>(short& val);

2 The conversion occurs as if performed by the following code fragment (using the same notation as for thepreceding code fragment):
using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = ios_base::goodbit;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err, lval);
if (lval < numeric_limits<short>::min()) {
err |= ios_base::failbit;
val = numeric_limits<short>::min();

} else if (numeric_limits<short>::max() < lval) {
err |= ios_base::failbit;
val = numeric_limits<short>::max();

} else

289) The sentry constructor and destructor can also perform additional implementation-dependent operations.
290) This is done without causing an ios_base::failure to be thrown.
§ 31.7.4.3.2 1496

© ISO/IEC N4910

val = static_cast<short>(lval);
setstate(err);

basic_istream& operator>>(int& val);

3 The conversion occurs as if performed by the following code fragment (using the same notation as for thepreceding code fragment):
using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = ios_base::goodbit;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err, lval);
if (lval < numeric_limits<int>::min()) {
err |= ios_base::failbit;
val = numeric_limits<int>::min();

} else if (numeric_limits<int>::max() < lval) {
err |= ios_base::failbit;
val = numeric_limits<int>::max();

} else
val = static_cast<int>(lval);

setstate(err);

31.7.4.3.3 basic_istream::operator>> [istream.extractors]

basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));

1 Effects: None. This extractor does not behave as a formatted input function (as described in 31.7.4.3.1).
2 Returns: pf(*this).291

basic_istream& operator>>(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));

3 Effects: Calls pf(*this). This extractor does not behave as a formatted input function (as described in 31.7.4.3.1).
4 Returns: *this.

basic_istream& operator>>(ios_base& (*pf)(ios_base&));

5 Effects: Calls pf(*this).292 This extractor does not behave as a formatted input function (as describedin 31.7.4.3.1).
6 Returns: *this.

template<class charT, class traits, size_t N>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& in, charT (&s)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, unsigned char (&s)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, signed char (&s)[N]);

7 Effects: Behaves like a formatted input member (as described in 31.7.4.3.1) of in. After a sentry objectis constructed, operator>> extracts characters and stores them into s. If width() is greater than zero, n is
min(size_t(width()), N). Otherwise n is N. n is the maximum number of characters stored.

8 Characters are extracted and stored until any of the following occurs:
—(8.1) n-1 characters are stored;
—(8.2) end of file occurs on the input sequence;
—(8.3) letting ct be use_facet<ctype<charT>>(in.getloc()), ct.is(ct.space, c) is true.

9 operator>> then stores a null byte (charT()) in the next position, which may be the first position if no characterswere extracted. operator>> then calls width(0).
10 If the function extracted no characters, it calls setstate(failbit), which may throw ios_base::failure(31.5.4.4).
11 Returns: in.

291) See, for example, the function signature ws(basic_istream&) (31.7.4.5).
292) See, for example, the function signature dec(ios_base&) (31.5.5.3).
§ 31.7.4.3.3 1497

© ISO/IEC N4910

template<class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& in, charT& c);

template<class traits>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, unsigned char& c);

template<class traits>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, signed char& c);

12 Effects: Behaves like a formatted input member (as described in 31.7.4.3.1) of in. After a sentry object isconstructed a character is extracted from in, if one is available, and stored in c. Otherwise, the function calls
in.setstate(failbit).

13 Returns: in.
basic_istream& operator>>(basic_streambuf<charT, traits>* sb);

14 Effects: Behaves as an unformatted input function (31.7.4.4). If sb is null, calls setstate(failbit), whichmay throw ios_base::failure (31.5.4.4). After a sentry object is constructed, extracts characters from *thisand inserts them in the output sequence controlled by sb. Characters are extracted and inserted until any of thefollowing occurs:
—(14.1) end-of-file occurs on the input sequence;
—(14.2) inserting in the output sequence fails (in which case the character to be inserted is not extracted);
—(14.3) an exception occurs (in which case the exception is caught).

15 If the function inserts no characters, it calls setstate(failbit), whichmay throw ios_base::failure (31.5.4.4).If it inserted no characters because it caught an exception thrown while extracting characters from *this and
failbit is set in exceptions() (31.5.4.4), then the caught exception is rethrown.

16 Returns: *this.
31.7.4.4 Unformatted input functions [istream.unformatted]

1 Each unformatted input function begins execution by constructing an object of class sentry with the default argument
noskipws (second) argument true. If the sentry object returns true, when converted to a value of type bool, thefunction endeavors to obtain the requested input. Otherwise, if the sentry constructor exits by throwing an exceptionor if the sentry object returns false, when converted to a value of type bool, the function returns without attemptingto obtain any input. In either case the number of extracted characters is set to 0; unformatted input functions taking acharacter array of nonzero size as an argument shall also store a null character (using charT()) in the first location of thearray. If an exception is thrown during input then ios_base::badbit is turned on293 in *this’s error state. (Exceptionsthrown from basic_ios<>::clear() are not caught or rethrown.) If (exceptions()&badbit) != 0 then the exceptionis rethrown. It also counts the number of characters extracted. If no exception has been thrown it ends by storing thecount in a member object and returning the value specified. In any event the sentry object is destroyed before leavingthe unformatted input function.
streamsize gcount() const;

2 Effects: None. This member function does not behave as an unformatted input function (as described above).
3 Returns: The number of characters extracted by the last unformatted input member function called for the object.If the number cannot be represented, returns numeric_limits<streamsize>::max().

int_type get();

4 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object,extracts a character c, if one is available. Otherwise, the function calls setstate(failbit), which may throw
ios_base::failure (31.5.4.4).

5 Returns: c if available, otherwise traits::eof().
basic_istream& get(char_type& c);

6 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object,extracts a character, if one is available, and assigns it to c.294 Otherwise, the function calls setstate(failbit)(which may throw ios_base::failure (31.5.4.4)).
7 Returns: *this.

293) This is done without causing an ios_base::failure to be thrown.
294) Note that this function is not overloaded on types signed char and unsigned char.
§ 31.7.4.4 1498

© ISO/IEC N4910

basic_istream& get(char_type* s, streamsize n, char_type delim);

8 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object,extracts characters and stores them into successive locations of an array whose first element is designated by
s.295 Characters are extracted and stored until any of the following occurs:
—(8.1) n is less than one or n - 1 characters are stored;
—(8.2) end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));
—(8.3) traits::eq(c, delim) for the next available input character c (in which case c is not extracted).

9 If the function stores no characters, it calls setstate(failbit) (whichmay throw ios_base::failure (31.5.4.4)).In any case, if n is greater than zero it then stores a null character into the next successive location of the array.
10 Returns: *this.

basic_istream& get(char_type* s, streamsize n);

11 Effects: Calls get(s, n, widen(’\n’)).
12 Returns: Value returned by the call.

basic_istream& get(basic_streambuf<char_type, traits>& sb, char_type delim);

13 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object,extracts characters and inserts them in the output sequence controlled by sb. Characters are extracted and inserteduntil any of the following occurs:
—(13.1) end-of-file occurs on the input sequence;
—(13.2) inserting in the output sequence fails (in which case the character to be inserted is not extracted);
—(13.3) traits::eq(c, delim) for the next available input character c (in which case c is not extracted);
—(13.4) an exception occurs (in which case, the exception is caught but not rethrown).

14 If the function inserts no characters, it calls setstate(failbit), whichmay throw ios_base::failure (31.5.4.4).
15 Returns: *this.

basic_istream& get(basic_streambuf<char_type, traits>& sb);

16 Effects: Calls get(sb, widen(’\n’)).
17 Returns: Value returned by the call.

basic_istream& getline(char_type* s, streamsize n, char_type delim);

18 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object,extracts characters and stores them into successive locations of an array whose first element is designated by
s.296 Characters are extracted and stored until one of the following occurs:
1. end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));
2. traits::eq(c, delim) for the next available input character c (in which case the input character is extractedbut not stored);297
3. n is less than one or n - 1 characters are stored (in which case the function calls setstate(failbit)).

19 These conditions are tested in the order shown.298
20 If the function extracts no characters, it calls setstate(failbit) (which may throw ios_base::failure(31.5.4.4)).299
21 In any case, if n is greater than zero, it then stores a null character (using charT()) into the next successivelocation of the array.
22 Returns: *this.

295) Note that this function is not overloaded on types signed char and unsigned char.
296) Note that this function is not overloaded on types signed char and unsigned char.
297) Since the final input character is “extracted”, it is counted in the gcount(), even though it is not stored.
298) This allows an input line which exactly fills the buffer, without setting failbit. This is different behavior than the historical AT&T implemen-tation.
299) This implies an empty input line will not cause failbit to be set.
§ 31.7.4.4 1499

© ISO/IEC N4910

23 [Example 1:
#include <iostream>

int main() {
using namespace std;
const int line_buffer_size = 100;

char buffer[line_buffer_size];
int line_number = 0;
while (cin.getline(buffer, line_buffer_size, '\n') || cin.gcount()) {
int count = cin.gcount();
if (cin.eof())

cout << "Partial final line"; // cin.fail() is false
else if (cin.fail()) {

cout << "Partial long line";
cin.clear(cin.rdstate() & ~ios_base::failbit);

} else {
count--; // Don’t include newline in count
cout << "Line " << ++line_number;

}
cout << " (" << count << " chars): " << buffer << endl;

}
}

—end example]
basic_istream& getline(char_type* s, streamsize n);

24 Returns: getline(s, n, widen(’\n’))

basic_istream& ignore(streamsize n = 1, int_type delim = traits::eof());

25 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object,extracts characters and discards them. Characters are extracted until any of the following occurs:
—(25.1) n != numeric_limits<streamsize>::max() (17.3.5) and n characters have been extracted so far
—(25.2) end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit), which maythrow ios_base::failure (31.5.4.4));
—(25.3) traits::eq_int_type(traits::to_int_type(c), delim) for the next available input character c (inwhich case c is extracted).
[Note 1: The last condition will never occur if traits::eq_int_type(delim, traits::eof()). —end note]

26 Returns: *this.
int_type peek();

27 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object, readsbut does not extract the current input character.
28 Returns: traits::eof() if good() is false. Otherwise, returns rdbuf()->sgetc().

basic_istream& read(char_type* s, streamsize n);

29 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object, if
!good() calls setstate(failbit) which may throw an exception, and return. Otherwise extracts charactersand stores them into successive locations of an array whose first element is designated by s.300 Characters areextracted and stored until either of the following occurs:
—(29.1) n characters are stored;
—(29.2) end-of-file occurs on the input sequence (in which case the function calls setstate(failbit | eofbit),which may throw ios_base::failure (31.5.4.4)).

30 Returns: *this.

300) Note that this function is not overloaded on types signed char and unsigned char.
§ 31.7.4.4 1500

© ISO/IEC N4910

streamsize readsome(char_type* s, streamsize n);

31 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry object, if
!good() calls setstate(failbit) which may throw an exception, and return. Otherwise extracts characters andstores them into successive locations of an array whose first element is designated by s. If rdbuf()->in_avail()
== -1, calls setstate(eofbit) (which may throw ios_base::failure (31.5.4.4)), and extracts no characters;
—(31.1) If rdbuf()->in_avail() == 0, extracts no characters
—(31.2) If rdbuf()->in_avail() > 0, extracts min(rdbuf()->in_avail(), n)).

32 Returns: The number of characters extracted.
basic_istream& putback(char_type c);

33 Effects: Behaves as an unformatted input function (as described above), except that the function first clears
eofbit. After constructing a sentry object, if !good() calls setstate(failbit) which may throw an exception,and return. If rdbuf() is not null, calls rdbuf()->sputbackc(c). If rdbuf() is null, or if sputbackc returns
traits::eof(), calls setstate(badbit) (which may throw ios_base::failure (31.5.4.4)).
[Note 2: This function extracts no characters, so the value returned by the next call to gcount() is 0. —end note]

34 Returns: *this.
basic_istream& unget();

35 Effects: Behaves as an unformatted input function (as described above), except that the function first clears eofbit.After constructing a sentry object, if !good() calls setstate(failbit) which may throw an exception, andreturn. If rdbuf() is not null, calls rdbuf()->sungetc(). If rdbuf() is null, or if sungetc returns traits::eof(),calls setstate(badbit) (which may throw ios_base::failure (31.5.4.4)).
[Note 3: This function extracts no characters, so the value returned by the next call to gcount() is 0. —end note]

36 Returns: *this.
int sync();

37 Effects: Behaves as an unformatted input function (as described above), except that it does not count the number ofcharacters extracted and does not affect the value returned by subsequent calls to gcount(). After constructing a
sentry object, if rdbuf() is a null pointer, returns -1. Otherwise, calls rdbuf()->pubsync() and, if that functionreturns -1 calls setstate(badbit) (which may throw ios_base::failure (31.5.4.4), and returns -1. Otherwise,returns zero.

pos_type tellg();

38 Effects: Behaves as an unformatted input function (as described above), except that it does not count the numberof characters extracted and does not affect the value returned by subsequent calls to gcount().
39 Returns: After constructing a sentry object, if fail() != false, returns pos_type(-1) to indicate failure.Otherwise, returns rdbuf()->pubseekoff(0, cur, in).

basic_istream& seekg(pos_type pos);

40 Effects: Behaves as an unformatted input function (as described above), except that the function first clears eofbit,it does not count the number of characters extracted, and it does not affect the value returned by subsequent calls to
gcount(). After constructing a sentry object, if fail() != true, executes rdbuf()->pubseekpos(pos, ios_-
base::in). In case of failure, the function calls setstate(failbit) (which may throw ios_base::failure).

41 Returns: *this.
basic_istream& seekg(off_type off, ios_base::seekdir dir);

42 Effects: Behaves as an unformatted input function (as described above), except that the function first clears eofbit,does not count the number of characters extracted, and does not affect the value returned by subsequent callsto gcount(). After constructing a sentry object, if fail() != true, executes rdbuf()->pubseekoff(off, dir,
ios_base::in). In case of failure, the function calls setstate(failbit) (whichmay throw ios_base::failure).

43 Returns: *this.
31.7.4.5 Standard basic_istream manipulators [istream.manip]

1 Each instantiation of the function template specified in this subclause is a designated addressable function (16.4.5.2.1).
§ 31.7.4.5 1501

© ISO/IEC N4910

template<class charT, class traits>
basic_istream<charT, traits>& ws(basic_istream<charT, traits>& is);

2 Effects: Behaves as an unformatted input function (31.7.4.4), except that it does not count the number ofcharacters extracted and does not affect the value returned by subsequent calls to is.gcount(). After constructinga sentry object extracts characters as long as the next available character c is whitespace or until there are nomore characters in the sequence. Whitespace characters are distinguished with the same criterion as used by
sentry::sentry (31.7.4.2.4). If ws stops extracting characters because there are no more available it sets eofbit,but not failbit.

3 Returns: is.
31.7.4.6 Rvalue stream extraction [istream.rvalue]

template<class Istream, class T>
Istream&& operator>>(Istream&& is, T&& x);

1 Constraints: The expression is >> std::forward<T>(x) is well-formed when treated as an unevaluated operand(7.2.3) and Istream is publicly and unambiguously derived from ios_base.
2 Effects: Equivalent to:

is >> std::forward<T>(x);
return std::move(is);

31.7.4.7 Class template basic_iostream [iostreamclass]
31.7.4.7.1 General [iostreamclass.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_iostream

: public basic_istream<charT, traits>,
public basic_ostream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.7.4.7.2, constructor
explicit basic_iostream(basic_streambuf<charT, traits>* sb);

// 31.7.4.7.3, destructor
virtual ~basic_iostream();

protected:// 31.7.4.7.2, constructor
basic_iostream(const basic_iostream&) = delete;
basic_iostream(basic_iostream&& rhs);

// 31.7.4.7.4, assignment and swap
basic_iostream& operator=(const basic_iostream&) = delete;
basic_iostream& operator=(basic_iostream&& rhs);
void swap(basic_iostream& rhs);

};
}

1 The class template basic_iostream inherits a number of functions that allow reading input and writing output tosequences controlled by a stream buffer.
31.7.4.7.2 Constructors [iostream.cons]

explicit basic_iostream(basic_streambuf<charT, traits>* sb);

1 Effects: Initializes the base class subobjects with basic_istream<charT, traits>(sb) (31.7.4.2) and basic_-
ostream<charT, traits>(sb) (31.7.5.2).

2 Postconditions: rdbuf() == sb and gcount() == 0.
§ 31.7.4.7.2 1502

© ISO/IEC N4910

basic_iostream(basic_iostream&& rhs);

3 Effects: Move constructs from the rvalue rhs by constructing the basic_istream base class with move(rhs).
31.7.4.7.3 Destructor [iostream.dest]

virtual ~basic_iostream();
1 Remarks: Does not perform any operations on rdbuf().
31.7.4.7.4 Assignment and swap [iostream.assign]

basic_iostream& operator=(basic_iostream&& rhs);

1 Effects: Equivalent to: swap(rhs).
void swap(basic_iostream& rhs);

2 Effects: Calls basic_istream<charT, traits>::swap(rhs).
31.7.5 Output streams [output.streams]
31.7.5.1 General [output.streams.general]

1 The header <ostream> defines a class template and several function templates that control output to a stream buffer,along with a function template that inserts into stream rvalues.
31.7.5.2 Class template basic_ostream [ostream]
31.7.5.2.1 General [ostream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ostream : virtual public basic_ios<charT, traits> {
public:// types (inherited from basic_ios (31.5.4))
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.7.5.2.2, constructor/destructor
explicit basic_ostream(basic_streambuf<char_type, traits>* sb);
virtual ~basic_ostream();

// 31.7.5.2.4, prefix/suffix
class sentry;

// 31.7.5.3, formatted output
basic_ostream& operator<<(basic_ostream& (*pf)(basic_ostream&));
basic_ostream& operator<<(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));
basic_ostream& operator<<(ios_base& (*pf)(ios_base&));

basic_ostream& operator<<(bool n);
basic_ostream& operator<<(short n);
basic_ostream& operator<<(unsigned short n);
basic_ostream& operator<<(int n);
basic_ostream& operator<<(unsigned int n);
basic_ostream& operator<<(long n);
basic_ostream& operator<<(unsigned long n);
basic_ostream& operator<<(long long n);
basic_ostream& operator<<(unsigned long long n);
basic_ostream& operator<<(float f);
basic_ostream& operator<<(double f);
basic_ostream& operator<<(long double f);

§ 31.7.5.2.1 1503

© ISO/IEC N4910

basic_ostream& operator<<(const void* p);
basic_ostream& operator<<(const volatile void* p);
basic_ostream& operator<<(nullptr_t);
basic_ostream& operator<<(basic_streambuf<char_type, traits>* sb);

// 31.7.5.4, unformatted output
basic_ostream& put(char_type c);
basic_ostream& write(const char_type* s, streamsize n);

basic_ostream& flush();

// 31.7.5.2.5, seeks
pos_type tellp();
basic_ostream& seekp(pos_type);
basic_ostream& seekp(off_type, ios_base::seekdir);

protected:// 31.7.5.2.2, copy/move constructor
basic_ostream(const basic_ostream&) = delete;
basic_ostream(basic_ostream&& rhs);

// 31.7.5.2.3, assignment and swap
basic_ostream& operator=(const basic_ostream&) = delete;
basic_ostream& operator=(basic_ostream&& rhs);
void swap(basic_ostream& rhs);

};

// 31.7.5.3.4, character inserters
template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, charT);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, signed char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, unsigned char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, wchar_t) = delete;

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char8_t) = delete;

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char16_t) = delete;

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char32_t) = delete;

template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, char8_t) = delete;
template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, char16_t) = delete;
template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, char32_t) = delete;

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const charT*);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const char*);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, const char*);

§ 31.7.5.2.1 1504

© ISO/IEC N4910

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, const signed char*);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, const unsigned char*);

template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const wchar_t*) = delete;
template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const char8_t*) = delete;
template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const char16_t*) = delete;
template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const char32_t*) = delete;
template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, const char8_t*) = delete;
template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, const char16_t*) = delete;
template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, const char32_t*) = delete;
}

1 The class template basic_ostream defines a number of member function signatures that assist in formatting and writingoutput to output sequences controlled by a stream buffer.
2 Two groups of member function signatures share common properties: the formatted output functions (or inserters) andthe unformatted output functions. Both groups of output functions generate (or insert) output characters by actionsequivalent to calling rdbuf()->sputc(int_type). They may use other public members of basic_ostream except thatthey shall not invoke any virtual members of rdbuf() except overflow(), xsputn(), and sync().
3 If one of these called functions throws an exception, then unless explicitly noted otherwise the output function sets badbitin the error state. If badbit is set in exceptions(), the output function rethrows the exception without completing itsactions, otherwise it does not throw anything and proceeds as if the called function had returned a failure indication.
4 [Note 1: The deleted overloads of operator<< prevent formatting characters as integers and strings as pointers. —end note]
31.7.5.2.2 Constructors [ostream.cons]

explicit basic_ostream(basic_streambuf<charT, traits>* sb);

1 Effects: Initializes the base class subobject with basic_ios<charT, traits>::init(sb) (31.5.4.2).
2 Postconditions: rdbuf() == sb.

basic_ostream(basic_ostream&& rhs);

3 Effects: Move constructs from the rvalue rhs. This is accomplished by default constructing the base class andcalling basic_ios<charT, traits>::move(rhs) to initialize the base class.
virtual ~basic_ostream();

4 Remarks: Does not perform any operations on rdbuf().
31.7.5.2.3 Assignment and swap [ostream.assign]

basic_ostream& operator=(basic_ostream&& rhs);

1 Effects: Equivalent to: swap(rhs).
2 Returns: *this.

void swap(basic_ostream& rhs);

3 Effects: Calls basic_ios<charT, traits>::swap(rhs).
§ 31.7.5.2.3 1505

© ISO/IEC N4910

31.7.5.2.4 Class basic_ostream::sentry [ostream.sentry]
namespace std {

template<class charT, class traits>
class basic_ostream<charT, traits>::sentry {
bool ok_; // exposition only

public:
explicit sentry(basic_ostream& os);
~sentry();
explicit operator bool() const { return ok_; }

sentry(const sentry&) = delete;
sentry& operator=(const sentry&) = delete;

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.
explicit sentry(basic_ostream& os);

2 If os.good() is nonzero, prepares for formatted or unformatted output. If os.tie() is not a null pointer, calls
os.tie()->flush().301

3 If, after any preparation is completed, os.good() is true, ok_ == true otherwise, ok_ == false. Duringpreparation, the constructor may call setstate(failbit) (which may throw ios_base::failure (31.5.4.4)).302
~sentry();

4 If (os.flags() & ios_base::unitbuf) && !uncaught_exceptions() && os.good() is true, calls os.rdbuf()->pubsync().If that function returns −1, sets badbit in os.rdstate() without propagating an exception.
explicit operator bool() const;

5 Effects: Returns ok_.
31.7.5.2.5 Seek members [ostream.seeks]

1 Each seek member function begins execution by constructing an object of class sentry. It returns by destroying the
sentry object.
pos_type tellp();

2 Returns: If fail() != false, returns pos_type(-1) to indicate failure. Otherwise, returns rdbuf()->pubseek-
off(0, cur, out).

basic_ostream& seekp(pos_type pos);

3 Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out). In case of failure, thefunction calls setstate(failbit) (which may throw ios_base::failure).
4 Returns: *this.

basic_ostream& seekp(off_type off, ios_base::seekdir dir);

5 Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out). In case of failure,the function calls setstate(failbit) (which may throw ios_base::failure).
6 Returns: *this.
31.7.5.3 Formatted output functions [ostream.formatted]
31.7.5.3.1 Common requirements [ostream.formatted.reqmts]

1 Each formatted output function begins execution by constructing an object of class sentry. If that object returns truewhen converted to a value of type bool, the function endeavors to generate the requested output. If the generation fails,then the formatted output function does setstate(ios_base::failbit), which can throw an exception. If an exceptionis thrown during output, then ios_base::badbit is turned on303 in *this’s error state. If (exceptions()&badbit) !=

301) The call os.tie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.
302) The sentry constructor and destructor can also perform additional implementation-dependent operations.
303) This is done without causing an ios_base::failure to be thrown.
§ 31.7.5.3.1 1506

© ISO/IEC N4910

0 then the exception is rethrown. Whether or not an exception is thrown, the sentry object is destroyed before leavingthe formatted output function. If no exception is thrown, the result of the formatted output function is *this.
2 The descriptions of the individual formatted output functions describe how they perform output and do not mention the

sentry object.
3 If a formatted output function of a stream os determines padding, it does so as follows. Given a charT charactersequence seq where charT is the character type of the stream, if the length of seq is less than os.width(), then enoughcopies of os.fill() are added to this sequence as necessary to pad to a width of os.width() characters. If (os.flags()

& ios_base::adjustfield) == ios_base::left is true, the fill characters are placed after the character sequence;otherwise, they are placed before the character sequence.
31.7.5.3.2 Arithmetic inserters [ostream.inserters.arithmetic]

basic_ostream& operator<<(bool val);
basic_ostream& operator<<(short val);
basic_ostream& operator<<(unsigned short val);
basic_ostream& operator<<(int val);
basic_ostream& operator<<(unsigned int val);
basic_ostream& operator<<(long val);
basic_ostream& operator<<(unsigned long val);
basic_ostream& operator<<(long long val);
basic_ostream& operator<<(unsigned long long val);
basic_ostream& operator<<(float val);
basic_ostream& operator<<(double val);
basic_ostream& operator<<(long double val);
basic_ostream& operator<<(const void* val);

1 Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and parsing. Theseinserter functions use the imbued locale value to perform numeric formatting. When val is of type bool,
long, unsigned long, long long, unsigned long long, double, long double, or const void*, the formattingconversion occurs as if it performed the following code fragment:
bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(), val).failed();

When val is of type short the formatting conversion occurs as if it performed the following code fragment:
ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned short>(val))
: static_cast<long>(val)).failed();

When val is of type int the formatting conversion occurs as if it performed the following code fragment:
ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned int>(val))
: static_cast<long>(val)).failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it performed thefollowing code fragment:
bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
static_cast<unsigned long>(val)).failed();

When val is of type float the formatting conversion occurs as if it performed the following code fragment:

§ 31.7.5.3.2 1507

© ISO/IEC N4910

bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
static_cast<double>(val)).failed();

2 The first argument provides an object of the ostreambuf_iterator<> class which is an iterator for class basic_-
ostream<>. It bypasses ostreams and uses streambufs directly. Class locale relies on these types as its interfaceto iostreams, since for flexibility it has been abstracted away from direct dependence on ostream. The secondparameter is a reference to the base class subobject of type ios_base. It provides formatting specifications suchas field width, and a locale from which to obtain other facets. If failed is true then does setstate(badbit),which may throw an exception, and returns.

3 Returns: *this.
basic_ostream& operator<<(const volatile void* p);

4 Effects: Equivalent to: return operator<<(const_cast<const void*>(p));

31.7.5.3.3 basic_ostream::operator<< [ostream.inserters]

basic_ostream& operator<<(basic_ostream& (*pf)(basic_ostream&));

1 Effects: None. Does not behave as a formatted output function (as described in 31.7.5.3.1).
2 Returns: pf(*this).304

basic_ostream& operator<<(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));

3 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described in 31.7.5.3.1).
4 Returns: *this.305

basic_ostream& operator<<(ios_base& (*pf)(ios_base&));

5 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described in 31.7.5.3.1).
6 Returns: *this.

basic_ostream& operator<<(basic_streambuf<charT, traits>* sb);

7 Effects: Behaves as an unformatted output function (31.7.5.4). After the sentry object is constructed, if sb isnull calls setstate(badbit) (which may throw ios_base::failure).
8 Gets characters from sb and inserts them in *this. Characters are read from sb and inserted until any of thefollowing occurs:

—(8.1) end-of-file occurs on the input sequence;
—(8.2) inserting in the output sequence fails (in which case the character to be inserted is not extracted);
—(8.3) an exception occurs while getting a character from sb.

9 If the function inserts no characters, it calls setstate(failbit) (whichmay throw ios_base::failure (31.5.4.4)).If an exception was thrown while extracting a character, the function sets failbit in the error state, and if failbitis set in exceptions() the caught exception is rethrown.
10 Returns: *this.

basic_ostream& operator<<(nullptr_t);

11 Effects: Equivalent to:
return *this << s;

where s is an implementation-defined NTCTS (3.37).
31.7.5.3.4 Character inserter function templates [ostream.inserters.character]

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, charT c);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, char c);

304) See, for example, the function signature endl(basic_ostream&) (31.7.5.5).
305) See, for example, the function signature dec(ios_base&) (31.5.5.3).
§ 31.7.5.3.4 1508

© ISO/IEC N4910

// specialization
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, char c);// signed and unsigned
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, signed char c);
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, unsigned char c);

1 Effects: Behaves as a formatted output function (31.7.5.3.1) of out. Constructs a character sequence seq. If c hastype char and the character type of the stream is not char, then seq consists of out.widen(c); otherwise seqconsists of c. Determines padding for seq as described in 31.7.5.3.1. Inserts seq into out. Calls os.width(0).
2 Returns: out.

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, const charT* s);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, const char* s);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, const char* s);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, const signed char* s);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out,

const unsigned char* s);

3 Preconditions: s is not a null pointer.
4 Effects: Behaves like a formatted inserter (as described in 31.7.5.3.1) of out. Creates a character sequence seqof n characters starting at s, each widened using out.widen() (31.5.4.3), where n is the number that would becomputed as if by:

—(4.1) traits::length(s) for the overload where the first argument is of type basic_ostream<charT, traits>&and the second is of type const charT*, and also for the overload where the first argument is of type
basic_ostream<char, traits>& and the second is of type const char*,

—(4.2) char_traits<char>::length(s) for the overloadwhere the first argument is of type basic_ostream<charT,
traits>& and the second is of type const char*,

—(4.3) traits::length(reinterpret_cast<const char*>(s)) for the other two overloads.
Determines padding for seq as described in 31.7.5.3.1. Inserts seq into out. Calls width(0).

5 Returns: out.
31.7.5.4 Unformatted output functions [ostream.unformatted]

1 Each unformatted output function begins execution by constructing an object of class sentry. If that object returns
true, while converting to a value of type bool, the function endeavors to generate the requested output. If an exceptionis thrown during output, then ios_base::badbit is turned on306 in *this’s error state. If (exceptions() & badbit)
!= 0 then the exception is rethrown. In any case, the unformatted output function ends by destroying the sentry object,then, if no exception was thrown, returning the value specified for the unformatted output function.
basic_ostream& put(char_type c);

2 Effects: Behaves as an unformatted output function (as described above). After constructing a sentry object,inserts the character c, if possible.307
3 Otherwise, calls setstate(badbit) (which may throw ios_base::failure (31.5.4.4)).
4 Returns: *this.

306) This is done without causing an ios_base::failure to be thrown.
307) Note that this function is not overloaded on types signed char and unsigned char.
§ 31.7.5.4 1509

© ISO/IEC N4910

basic_ostream& write(const char_type* s, streamsize n);

5 Effects: Behaves as an unformatted output function (as described above). After constructing a sentry object,obtains characters to insert from successive locations of an array whose first element is designated by s.308Characters are inserted until either of the following occurs:
—(5.1) n characters are inserted;
—(5.2) inserting in the output sequence fails (in which case the function calls setstate(badbit), which may throw

ios_base::failure (31.5.4.4)).
6 Returns: *this.

basic_ostream& flush();

7 Effects: Behaves as an unformatted output function (as described above). If rdbuf() is not a null pointer,constructs a sentry object. If that object returns true when converted to a value of type bool the func-tion calls rdbuf()->pubsync(). If that function returns −1 calls setstate(badbit) (which may throw ios_-
base::failure (31.5.4.4)). Otherwise, if the sentry object returns false, does nothing.

8 Returns: *this.
31.7.5.5 Standard manipulators [ostream.manip]

1 Each instantiation of any of the function templates specified in this subclause is a designated addressable function(16.4.5.2.1).
template<class charT, class traits>

basic_ostream<charT, traits>& endl(basic_ostream<charT, traits>& os);

2 Effects: Calls os.put(os.widen(’\n’)), then os.flush().
3 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& ends(basic_ostream<charT, traits>& os);

4 Effects: Inserts a null character into the output sequence: calls os.put(charT()).
5 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& flush(basic_ostream<charT, traits>& os);

6 Effects: Calls os.flush().
7 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& emit_on_flush(basic_ostream<charT, traits>& os);

8 Effects: If os.rdbuf() is a basic_syncbuf<charT, traits, Allocator>*, called buf for the purpose of expo-sition, calls buf->set_emit_on_sync(true). Otherwise this manipulator has no effect.
[Note 1: To work around the issue that the Allocator template argument cannot be deduced, implementations can introducean intermediate base class to basic_syncbuf that manages its emit_on_sync flag. —end note]

9 Returns: os.
template<class charT, class traits>

basic_ostream<charT, traits>& noemit_on_flush(basic_ostream<charT, traits>& os);

10 Effects: If os.rdbuf() is a basic_syncbuf<charT, traits, Allocator>*, called buf for the purpose of expo-sition, calls buf->set_emit_on_sync(false). Otherwise this manipulator has no effect.
11 Returns: os.

308) Note that this function is not overloaded on types signed char and unsigned char.
§ 31.7.5.5 1510

© ISO/IEC N4910

template<class charT, class traits>
basic_ostream<charT, traits>& flush_emit(basic_ostream<charT, traits>& os);

12 Effects: Calls os.flush(). Then, if os.rdbuf() is a basic_syncbuf<charT, traits, Allocator>*, called buffor the purpose of exposition, behaves as an unformatted output function (31.7.5.4) of os. After constructing a
sentry object, calls buf->emit(). If that call returns false, calls os.setstate(ios_base::badbit).

13 Returns: os.
31.7.5.6 Rvalue stream insertion [ostream.rvalue]

template<class Ostream, class T>
Ostream&& operator<<(Ostream&& os, const T& x);

1 Constraints: The expression os << x is well-formed when treated as an unevaluated operand and Ostream ispublicly and unambiguously derived from ios_base.
2 Effects: As if by: os << x;
3 Returns: std::move(os).
31.7.6 Standard manipulators [std.manip]

1 The header <iomanip> defines several functions that support extractors and inserters that alter information maintainedby class ios_base and its derived classes.
unspecified resetiosflags(ios_base::fmtflags mask);

2 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits>then the expression out << resetiosflags(mask) behaves as if it called f(out, mask), or if in is an object oftype basic_istream<charT, traits> then the expression in >> resetiosflags(mask) behaves as if it called
f(in, mask), where the function f is defined as:309
void f(ios_base& str, ios_base::fmtflags mask) {// reset specified flags
str.setf(ios_base::fmtflags(0), mask);

}

The expression out << resetiosflags(mask) has type basic_ostream<charT, traits>& and value out. Theexpression in >> resetiosflags(mask) has type basic_istream<charT, traits>& and value in.
unspecified setiosflags(ios_base::fmtflags mask);

3 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> thenthe expression out << setiosflags(mask) behaves as if it called f(out, mask), or if in is an object of type
basic_istream<charT, traits> then the expression in >> setiosflags(mask) behaves as if it called f(in,
mask), where the function f is defined as:
void f(ios_base& str, ios_base::fmtflags mask) {// set specified flags
str.setf(mask);

}

The expression out << setiosflags(mask) has type basic_ostream<charT, traits>& and value out. Theexpression in >> setiosflags(mask) has type basic_istream<charT, traits>& and value in.
unspecified setbase(int base);

4 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits>then the expression out << setbase(base) behaves as if it called f(out, base), or if in is an object of type
basic_istream<charT, traits> then the expression in >> setbase(base) behaves as if it called f(in, base),where the function f is defined as:

309) The expression cin >> resetiosflags(ios_base::skipws) clears ios_base::skipws in the format flags stored in the basic_istream<charT,
traits> object cin (the same as cin >> noskipws), and the expression cout << resetiosflags(ios_base::showbase) clears ios_-
base::showbase in the format flags stored in the basic_ostream<charT, traits> object cout (the same as cout << noshowbase).
§ 31.7.6 1511

© ISO/IEC N4910

void f(ios_base& str, int base) {// set basefield
str.setf(base == 8 ? ios_base::oct :

base == 10 ? ios_base::dec :
base == 16 ? ios_base::hex :
ios_base::fmtflags(0), ios_base::basefield);

}

The expression out << setbase(base) has type basic_ostream<charT, traits>& and value out. The expres-sion in >> setbase(base) has type basic_istream<charT, traits>& and value in.
unspecified setfill(char_type c);

5 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> and
c has type charT then the expression out << setfill(c) behaves as if it called f(out, c), where the function
f is defined as:
template<class charT, class traits>
void f(basic_ios<charT, traits>& str, charT c) {// set fill character
str.fill(c);

}

The expression out << setfill(c) has type basic_ostream<charT, traits>& and value out.
unspecified setprecision(int n);

6 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits>then the expression out << setprecision(n) behaves as if it called f(out, n), or if in is an object of type
basic_istream<charT, traits> then the expression in >> setprecision(n) behaves as if it called f(in, n),where the function f is defined as:
void f(ios_base& str, int n) {// set precision
str.precision(n);

}

The expression out << setprecision(n) has type basic_ostream<charT, traits>& and value out. The ex-pression in >> setprecision(n) has type basic_istream<charT, traits>& and value in.
unspecified setw(int n);

7 Returns: An object of unspecified type such that if out is an instance of basic_ostream<charT, traits> then theexpression out << setw(n) behaves as if it called f(out, n), or if in is an object of type basic_istream<charT,
traits> then the expression in >> setw(n) behaves as if it called f(in, n), where the function f is defined as:
void f(ios_base& str, int n) {// set width
str.width(n);

}

The expression out << setw(n) has type basic_ostream<charT, traits>& and value out. The expression in
>> setw(n) has type basic_istream<charT, traits>& and value in.

31.7.7 Extended manipulators [ext.manip]
1 The header <iomanip> defines several functions that support extractors and inserters that allow for the parsing andformatting of sequences and values for money and time.

template<class moneyT> unspecified get_money(moneyT& mon, bool intl = false);

2 Mandates: The type moneyT is either long double or a specialization of the basic_string template (Clause 23).
3 Effects: The expression in >> get_money(mon, intl) described below behaves as a formatted input function(31.7.4.3.1).
4 Returns: An object of unspecified type such that if in is an object of type basic_istream<charT, traits> thenthe expression in >> get_money(mon, intl) behaves as if it called f(in, mon, intl), where the function f isdefined as:

§ 31.7.7 1512

© ISO/IEC N4910

template<class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>& str, moneyT& mon, bool intl) {
using Iter = istreambuf_iterator<charT, traits>;
using MoneyGet = money_get<charT, Iter>;

ios_base::iostate err = ios_base::goodbit;
const MoneyGet& mg = use_facet<MoneyGet>(str.getloc());

mg.get(Iter(str.rdbuf()), Iter(), intl, str, err, mon);

if (ios_base::goodbit != err)
str.setstate(err);

}

The expression in >> get_money(mon, intl) has type basic_istream<charT, traits>& and value in.
template<class moneyT> unspecified put_money(const moneyT& mon, bool intl = false);

5 Mandates: The type moneyT is either long double or a specialization of the basic_string template (Clause 23).
6 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits> thenthe expression out << put_money(mon, intl) behaves as a formatted output function (31.7.5.3.1) that calls

f(out, mon, intl), where the function f is defined as:
template<class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>& str, const moneyT& mon, bool intl) {
using Iter = ostreambuf_iterator<charT, traits>;
using MoneyPut = money_put<charT, Iter>;

const MoneyPut& mp = use_facet<MoneyPut>(str.getloc());
const Iter end = mp.put(Iter(str.rdbuf()), intl, str, str.fill(), mon);

if (end.failed())
str.setstate(ios_base::badbit);

}

The expression out << put_money(mon, intl) has type basic_ostream<charT, traits>& and value out.
template<class charT> unspecified get_time(tm* tmb, const charT* fmt);

7 Preconditions: The argument tmb is a valid pointer to an object of type tm, and [fmt, fmt + char_traits<charT>::length(fmt))is a valid range.
8 Returns: An object of unspecified type such that if in is an object of type basic_istream<charT, traits> thenthe expression in >> get_time(tmb, fmt) behaves as if it called f(in, tmb, fmt), where the function f isdefined as:

template<class charT, class traits>
void f(basic_ios<charT, traits>& str, tm* tmb, const charT* fmt) {
using Iter = istreambuf_iterator<charT, traits>;
using TimeGet = time_get<charT, Iter>;

ios_base::iostate err = ios_base::goodbit;
const TimeGet& tg = use_facet<TimeGet>(str.getloc());

tg.get(Iter(str.rdbuf()), Iter(), str, err, tmb,
fmt, fmt + traits::length(fmt));

if (err != ios_base::goodbit)
str.setstate(err);

}

The expression in >> get_time(tmb, fmt) has type basic_istream<charT, traits>& and value in.
template<class charT> unspecified put_time(const tm* tmb, const charT* fmt);

9 Preconditions: The argument tmb is a valid pointer to an object of type tm, and [fmt, fmt + char_traits<charT>::length(fmt))is a valid range.

§ 31.7.7 1513

© ISO/IEC N4910

10 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT, traits>then the expression out << put_time(tmb, fmt) behaves as if it called f(out, tmb, fmt), where the function
f is defined as:
template<class charT, class traits>
void f(basic_ios<charT, traits>& str, const tm* tmb, const charT* fmt) {
using Iter = ostreambuf_iterator<charT, traits>;
using TimePut = time_put<charT, Iter>;

const TimePut& tp = use_facet<TimePut>(str.getloc());
const Iter end = tp.put(Iter(str.rdbuf()), str, str.fill(), tmb,

fmt, fmt + traits::length(fmt));

if (end.failed())
str.setstate(ios_base::badbit);

}

The expression out << put_time(tmb, fmt) has type basic_ostream<charT, traits>& and value out.
31.7.8 Quoted manipulators [quoted.manip]

1 [Note 1: Quoted manipulators provide string insertion and extraction of quoted strings (for example, XML and CSV formats).Quoted manipulators are useful in ensuring that the content of a string with embedded spaces remains unchanged if inserted and thenextracted via stream I/O. —end note]
template<class charT>

unspecified quoted(const charT* s, charT delim = charT(’"’), charT escape = charT(’\\’));
template<class charT, class traits, class Allocator>

unspecified quoted(const basic_string<charT, traits, Allocator>& s,
charT delim = charT(’"’), charT escape = charT(’\\’));

template<class charT, class traits>
unspecified quoted(basic_string_view<charT, traits> s,

charT delim = charT(’"’), charT escape = charT(’\\’));

2 Returns: An object of unspecified type such that if out is an instance of basic_ostream with member type
char_type the same as charT and with member type traits_type, which in the second and third forms isthe same as traits, then the expression out << quoted(s, delim, escape) behaves as a formatted outputfunction (31.7.5.3.1) of out. This forms a character sequence seq, initially consisting of the following elements:
—(2.1) delim.
—(2.2) Each character in s. If the character to be output is equal to escape or delim, as determined by traits_-

type::eq, first output escape.
—(2.3) delim.
Let x be the number of elements initially in seq. Then padding is determined for seq as described in 31.7.5.3.1,
seq is inserted as if by calling out.rdbuf()->sputn(seq, n), where n is the larger of out.width() and x, and
out.width(0) is called. The expression out << quoted(s, delim, escape) has type basic_ostream<charT,
traits>& and value out.

template<class charT, class traits, class Allocator>
unspecified quoted(basic_string<charT, traits, Allocator>& s,

charT delim = charT(’"’), charT escape = charT(’\\’));

3 Returns: An object of unspecified type such that:
—(3.1) If in is an instance of basic_istreamwithmember types char_type and traits_type the same as charT and

traits, respectively, then the expression in >> quoted(s, delim, escape) behaves as if it extracts thefollowing characters from in using operator>>(basic_istream<charT, traits>&, charT&) (31.7.4.3.3)which may throw ios_base::failure (31.5.2.2.1):
—(3.1.1) If the first character extracted is equal to delim, as determined by traits_type::eq, then:

—(3.1.1.1) Turn off the skipws flag.
—(3.1.1.2) s.clear()

—(3.1.1.3) Until an unescaped delim character is reached or !in, extract characters from in and append themto s, except that if an escape is reached, ignore it and append the next character to s.
§ 31.7.8 1514

© ISO/IEC N4910

—(3.1.1.4) Discard the final delim character.
—(3.1.1.5) Restore the skipws flag to its original value.

—(3.1.2) Otherwise, in >> s.
—(3.2) If out is an instance of basic_ostream with member types char_type and traits_type the same as charTand traits, respectively, then the expression out << quoted(s, delim, escape) behaves as specifiedfor the const basic_string<charT, traits, Allocator>& overload of the quoted function.
—(3.3) The expression in >> quoted(s, delim, escape) has type basic_istream<charT, traits>& and value

in.
—(3.4) The expression out << quoted(s, delim, escape) has type basic_ostream<charT, traits>& and value

out.
31.8 String-based streams [string.streams]
31.8.1 Header <sstream> synopsis [sstream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_stringbuf;

template<class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

basic_stringbuf<charT, traits, Allocator>& y) noexcept(noexcept(x.swap(y)));

using stringbuf = basic_stringbuf<char>;
using wstringbuf = basic_stringbuf<wchar_t>;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_istringstream;

template<class charT, class traits, class Allocator>
void swap(basic_istringstream<charT, traits, Allocator>& x,

basic_istringstream<charT, traits, Allocator>& y);

using istringstream = basic_istringstream<char>;
using wistringstream = basic_istringstream<wchar_t>;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_ostringstream;

template<class charT, class traits, class Allocator>
void swap(basic_ostringstream<charT, traits, Allocator>& x,

basic_ostringstream<charT, traits, Allocator>& y);

using ostringstream = basic_ostringstream<char>;
using wostringstream = basic_ostringstream<wchar_t>;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_stringstream;

template<class charT, class traits, class Allocator>
void swap(basic_stringstream<charT, traits, Allocator>& x,

basic_stringstream<charT, traits, Allocator>& y);

using stringstream = basic_stringstream<char>;
using wstringstream = basic_stringstream<wchar_t>;

}

1 The header <sstream> defines four class templates and eight types that associate stream buffers with objects of class
basic_string, as described in 23.4.
§ 31.8.1 1515

© ISO/IEC N4910

31.8.2 Class template basic_stringbuf [stringbuf]
31.8.2.1 General [stringbuf.general]
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_stringbuf : public basic_streambuf<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.2.2, constructors
basic_stringbuf() : basic_stringbuf(ios_base::in | ios_base::out) {}
explicit basic_stringbuf(ios_base::openmode which);
explicit basic_stringbuf(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

explicit basic_stringbuf(const Allocator& a)
: basic_stringbuf(ios_base::in | ios_base::out, a) {}

basic_stringbuf(ios_base::openmode which, const Allocator& a);
explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_stringbuf(s, ios_base::in | ios_base::out, a) {}

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringbuf(const basic_stringbuf&) = delete;
basic_stringbuf(basic_stringbuf&& rhs);
basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

// 31.8.2.3, assignment and swap
basic_stringbuf& operator=(const basic_stringbuf&) = delete;
basic_stringbuf& operator=(basic_stringbuf&& rhs);
void swap(basic_stringbuf& rhs) noexcept(see below);

// 31.8.2.4, getters and setters
allocator_type get_allocator() const noexcept;

basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

§ 31.8.2.1 1516

© ISO/IEC N4910

protected:// 31.8.2.5, overridden virtual functions
int_type underflow() override;
int_type pbackfail(int_type c = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

private:
ios_base::openmode mode; // exposition only
basic_string<charT, traits, Allocator> buf; // exposition only
void init_buf_ptrs(); // exposition only

};
}

1 The class basic_stringbuf is derived from basic_streambuf to associate possibly the input sequence and possiblythe output sequence with a sequence of arbitrary characters. The sequence can be initialized from, or made available as,an object of class basic_string.
2 For the sake of exposition, the maintained data and internal pointer initialization is presented here as:

—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the output sequence canbe written.
—(2.2) basic_string<charT, traits, Allocator> buf contains the underlying character sequence.
—(2.3) init_buf_ptrs() sets the base class’ get area (31.6.3.4.2) and put area (31.6.3.4.3) pointers after initializing,moving from, or assigning to buf accordingly.

31.8.2.2 Constructors [stringbuf.cons]

explicit basic_stringbuf(ios_base::openmode which);

1 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), and mode with which. It is implementation-defined whether the sequence pointers (eback(), gptr(), egptr(), pbase(), pptr(), epptr()) are initialized tonull pointers.
2 Postconditions: str().empty() is true.

explicit basic_stringbuf(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with s, then calls
init_buf_ptrs().

basic_stringbuf(ios_base::openmode which, const Allocator &a);

4 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with a, then calls
init_buf_ptrs().

5 Postconditions: str().empty() is true.
explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

6 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), modewith which, and bufwith std::move(s),then calls init_buf_ptrs().
template<class SAlloc>

basic_stringbuf(
const basic_string<charT, traits, SAlloc>& s,

§ 31.8.2.2 1517

© ISO/IEC N4910

ios_base::openmode which, const Allocator &a);

7 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with {s,a}, thencalls init_buf_ptrs().
template<class SAlloc>

explicit basic_stringbuf(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

8 Constraints: is_same_v<SAlloc, Allocator> is false.
9 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with s, then calls

init_buf_ptrs().
basic_stringbuf(basic_stringbuf&& rhs);
basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

10 Effects: Copy constructs the base class from rhs and initializes mode with rhs.mode. In the first form buf isinitialized from std::move(rhs).str(). In the second form buf is initialized from {std::move(rhs).str(),
a}. It is implementation-defined whether the sequence pointers in *this (eback(), gptr(), egptr(), pbase(),
pptr(), epptr()) obtain the values which rhs had.

11 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer to the state of
rhs just after this construction.
—(11.1) str() == rhs_p.str()

—(11.2) gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

—(11.3) egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

—(11.4) pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

—(11.5) epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

—(11.6) if (eback()) eback() != rhs_a.eback()

—(11.7) if (gptr()) gptr() != rhs_a.gptr()

—(11.8) if (egptr()) egptr() != rhs_a.egptr()

—(11.9) if (pbase()) pbase() != rhs_a.pbase()

—(11.10) if (pptr()) pptr() != rhs_a.pptr()

—(11.11) if (epptr()) epptr() != rhs_a.epptr()

—(11.12) getloc() == rhs_p.getloc()

—(11.13) rhs is empty but usable, as if std::move(rhs).str() was called.
31.8.2.3 Assignment and swap [stringbuf.assign]

basic_stringbuf& operator=(basic_stringbuf&& rhs);

1 Effects: After the move assignment *this has the observable state it would have had if it had been moveconstructed from rhs (see 31.8.2.2).
2 Returns: *this.

void swap(basic_stringbuf& rhs) noexcept(see below);

3 Preconditions: allocator_traits<Allocator>::propagate_on_container_swap::value is true or get_allocator()
== rhs.get_allocator() is true.

4 Effects: Exchanges the state of *this and rhs.
5 Remarks: The exception specification is equivalent to:

allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value.

template<class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

§ 31.8.2.3 1518

© ISO/IEC N4910

basic_stringbuf<charT, traits, Allocator>& y) noexcept(noexcept(x.swap(y)));

6 Effects: Equivalent to: x.swap(y).
31.8.2.4 Member functions [stringbuf.members]

1 The member functions getting the underlying character sequence all refer to a high_mark value, where high_markrepresents the position one past the highest initialized character in the buffer. Characters can be initialized by writingto the stream, by constructing the basic_stringbuf passing a basic_string argument, or by calling one of the strmember functions passing a basic_string as an argument. In the latter case, all characters initialized prior to the callare now considered uninitialized (except for those characters re-initialized by the new basic_string).
void init_buf_ptrs(); // exposition only

2 Effects: Initializes the input and output sequences from buf according to mode.
3 Postconditions:

—(3.1) If ios_base::out is set in mode, pbase() points to buf.front() and epptr() >= pbase() + buf.size()is true;
—(3.1.1) in addition, if ios_base::ate is set in mode, pptr() == pbase() + buf.size() is true,
—(3.1.2) otherwise pptr() == pbase() is true.

—(3.2) If ios_base::in is set in mode, eback() points to buf.front(), and (gptr() == eback() && egptr() ==
eback() + buf.size()) is true.

4 [Note 1: For efficiency reasons, stream buffer operations can violate invariants of buf while it is held encapsulated in the
basic_stringbuf, e.g., by writing to characters in the range [buf.data() + buf.size(), buf.data() + buf.capacity()).All operations retrieving a basic_string from buf ensure that the basic_string invariants hold on the returned value. —endnote]

allocator_type get_allocator() const noexcept;

5 Returns: buf.get_allocator().
basic_string<charT, traits, Allocator> str() const &;

6 Effects: Equivalent to:
return basic_string<charT, traits, Allocator>(view(), get_allocator());

template<class SAlloc>
basic_string<charT, traits, SAlloc> str(const SAlloc& sa) const;

7 Constraints: SAlloc is a type that qualifies as an allocator (24.2.2.1).
8 Effects: Equivalent to:

return basic_string<charT, traits, SAlloc>(view(), sa);

basic_string<charT, traits, Allocator> str() &&;

9 Postconditions: The underlying character sequence buf is empty and pbase(), pptr(), epptr(), eback(), gptr(),and egptr() are initialized as if by calling init_buf_ptrs() with an empty buf.
10 Returns: A basic_string<charT, traits, Allocator> object move constructed from the basic_stringbuf’sunderlying character sequence in buf. This can be achieved by first adjusting buf to have the same content as

view().
basic_string_view<charT, traits> view() const noexcept;

11 Let sv be basic_string_view<charT, traits>.
12 Returns: A sv object referring to the basic_stringbuf’s underlying character sequence in buf:

—(12.1) If ios_base::out is set in mode, then sv(pbase(), high_mark-pbase()) is returned.
—(12.2) Otherwise, if ios_base::in is set in mode, then sv(eback(), egptr()-eback()) is returned.
—(12.3) Otherwise, sv() is returned.

13 [Note 2: Using the returned sv object after destruction or invalidation of the character sequence underlying *this is undefinedbehavior, unless sv.empty() is true. —end note]

§ 31.8.2.4 1519

© ISO/IEC N4910

void str(const basic_string<charT, traits, Allocator>& s);

14 Effects: Equivalent to:
buf = s;
init_buf_ptrs();

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

15 Constraints: is_same_v<SAlloc,Allocator> is false.
16 Effects: Equivalent to:

buf = s;
init_buf_ptrs();

void str(basic_string<charT, traits, Allocator>&& s);

17 Effects: Equivalent to:
buf = std::move(s);
init_buf_ptrs();

31.8.2.5 Overridden virtual functions [stringbuf.virtuals]

int_type underflow() override;

1 Returns: If the input sequence has a read position available, returns traits::to_int_type(*gptr()). Otherwise,returns traits::eof(). Any character in the underlying buffer which has been initialized is considered to bepart of the input sequence.
int_type pbackfail(int_type c = traits::eof()) override;

2 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three ways:
—(2.1) If traits::eq_int_type(c, traits::eof()) returns false and if the input sequence has a putback posi-tion available, and if traits::eq(to_char_type(c), gptr()[-1]) returns true, assigns gptr() - 1 to

gptr().
Returns: c.

—(2.2) If traits::eq_int_type(c, traits::eof()) returns false and if the input sequence has a putback posi-tion available, and if mode & ios_base::out is nonzero, assigns c to *--gptr().
Returns: c.

—(2.3) If traits::eq_int_type(c, traits::eof()) returns true and if the input sequence has a putback positionavailable, assigns gptr() - 1 to gptr().
Returns: traits::not_eof(c).

3 Returns: As specified above, or traits::eof() to indicate failure.
4 Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

int_type overflow(int_type c = traits::eof()) override;

5 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:
—(5.1) If traits::eq_int_type(c, traits::eof()) returns false and if either the output sequence has a writeposition available or the function makes a write position available (as described below), the function calls

sputc(c).
Signals success by returning c.

—(5.2) If traits::eq_int_type(c, traits::eof()) returns true, there is no character to append.
Signals success by returning a value other than traits::eof().

6 Returns: As specified above, or traits::eof() to indicate failure.
7 Remarks: The function can alter the number of write positions available as a result of any call.
8 The function can make a write position available only if ios_base::out is set in mode. To make a write positionavailable, the function reallocates (or initially allocates) an array object with a sufficient number of elements to

§ 31.8.2.5 1520

© ISO/IEC N4910

hold the current array object (if any), plus at least one additional write position. If ios_base::in is set in mode,the function alters the read end pointer egptr() to point just past the new write position.
pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out) override;

9 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table 122.
Table 122: seekoff positioning [tab:stringbuf.seekoff.pos]
Conditions Result

ios_base::in is set in which positions the input sequence
ios_base::out is set in which positions the output sequenceboth ios_base::in and ios_base::out areset in which and either
way == ios_base::beg or
way == ios_base::end

positions both the input and the output sequences

Otherwise the positioning operation fails.
10 For a sequence to be positioned, the function determines newoff as indicated in Table 123. If the sequence’s nextpointer (either gptr() or pptr()) is a null pointer and newoff is nonzero, the positioning operation fails.

Table 123: newoff values [tab:stringbuf.seekoff.newoff]
Condition newoff Value

way == ios_base::beg 0
way == ios_base::cur the next pointer minus the beginningpointer (xnext - xbeg).
way == ios_base::end the high mark pointer minus thebeginning pointer (high_mark -

xbeg).
11 If (newoff + off) < 0, or if newoff + off refers to an uninitialized character (31.8.2.4), the positioning opera-tion fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.
12 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that stores theresultant stream position, if possible. If the positioning operation fails, or if the constructed object cannot representthe resultant stream position, the return value is pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

13 Effects: Equivalent to seekoff(off_type(sp), ios_base::beg, which).
14 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n);

15 Effects: implementation-defined, except that setbuf(0, 0) has no effect.
16 Returns: this.
31.8.3 Class template basic_istringstream [istringstream]
31.8.3.1 General [istringstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_istringstream : public basic_istream<charT, traits> {
public:
using char_type = charT;

§ 31.8.3.1 1521

© ISO/IEC N4910

using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.3.2, constructors
basic_istringstream() : basic_istringstream(ios_base::in) {}
explicit basic_istringstream(ios_base::openmode which);
explicit basic_istringstream(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in);

basic_istringstream(ios_base::openmode which, const Allocator& a);
explicit basic_istringstream(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in);

template<class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_istringstream(s, ios_base::in, a) {}

template<class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in);

basic_istringstream(const basic_istringstream&) = delete;
basic_istringstream(basic_istringstream&& rhs);

basic_istringstream& operator=(const basic_istringstream&) = delete;
basic_istringstream& operator=(basic_istringstream&& rhs);

// 31.8.3.3, swap
void swap(basic_istringstream& rhs);

// 31.8.3.4, members
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;
basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

private:
basic_stringbuf<charT, traits, Allocator> sb; // exposition only

};
}

1 The class basic_istringstream<charT, traits, Allocator> supports reading objects of class basic_string<charT,
traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object to control the associated stor-age. For the sake of exposition, the maintained data is presented here as:
—(1.1) sb, the stringbuf object.

§ 31.8.3.1 1522

© ISO/IEC N4910

31.8.3.2 Constructors [istringstream.cons]

explicit basic_istringstream(ios_base::openmode which);

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2) and sb with
basic_stringbuf<charT, traits, Allocator>(which | ios_base::in) (31.8.2.2).

explicit basic_istringstream(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in);

2 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2) and sb with
basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in)(31.8.2.2).

basic_istringstream(ios_base::openmode which, const Allocator& a);

3 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2) and sb with
basic_stringbuf<charT, traits, Allocator>(which | ios_base::in, a) (31.8.2.2).

explicit basic_istringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in);

4 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2) and sb with
basic_stringbuf<charT, traits, Allocator>(std::move(s), which | ios_base::in) (31.8.2.2).

template<class SAlloc>
basic_istringstream(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

5 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2) and sb with
basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in, a)(31.8.2.2).

template<class SAlloc>
explicit basic_istringstream(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in);

6 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2) and sb with
basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in) (31.8.2.2).

basic_istringstream(basic_istringstream&& rhs);

7 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base class, andthe contained basic_stringbuf. Then calls basic_istream<charT, traits>::set_rdbuf(addressof(sb)) toinstall the contained basic_stringbuf.
31.8.3.3 Swap [istringstream.swap]

void swap(basic_istringstream& rhs);

1 Effects: Equivalent to:
basic_istream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits, class Allocator>
void swap(basic_istringstream<charT, traits, Allocator>& x,

basic_istringstream<charT, traits, Allocator>& y);

2 Effects: Equivalent to: x.swap(y).
31.8.3.4 Member functions [istringstream.members]

basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT, traits, Allocator>*>(addressof(sb)).

§ 31.8.3.4 1523

© ISO/IEC N4910

basic_string<charT, traits, Allocator> str() const &;

2 Effects: Equivalent to: return rdbuf()->str();

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

3 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

4 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

5 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

6 Effects: Equivalent to: rdbuf()->str(s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);

7 Effects: Equivalent to: rdbuf()->str(s);
void str(basic_string<charT, traits, Allocator>&& s);

8 Effects: Equivalent to: rdbuf()->str(std::move(s));
31.8.4 Class template basic_ostringstream [ostringstream]
31.8.4.1 General [ostringstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_ostringstream : public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.4.2, constructors
basic_ostringstream() : basic_ostringstream(ios_base::out) {}
explicit basic_ostringstream(ios_base::openmode which);
explicit basic_ostringstream(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out);

basic_ostringstream(ios_base::openmode which, const Allocator& a);
explicit basic_ostringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out);

template<class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_ostringstream(s, ios_base::out, a) {}

template<class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out);

basic_ostringstream(const basic_ostringstream&) = delete;
basic_ostringstream(basic_ostringstream&& rhs);

§ 31.8.4.1 1524

© ISO/IEC N4910

basic_ostringstream& operator=(const basic_ostringstream&) = delete;
basic_ostringstream& operator=(basic_ostringstream&& rhs);

// 31.8.4.3, swap
void swap(basic_ostringstream& rhs);

// 31.8.4.4, members
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

private:
basic_stringbuf<charT, traits, Allocator> sb; // exposition only

};
}

1 The class basic_ostringstream<charT, traits, Allocator> supports writing objects of class basic_string<charT,
traits, Allocator>. It uses a basic_stringbuf object to control the associated storage. For the sake of exposition,the maintained data is presented here as:
—(1.1) sb, the stringbuf object.

31.8.4.2 Constructors [ostringstream.cons]

explicit basic_ostringstream(ios_base::openmode which);

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2) and sb with
basic_stringbuf<charT, traits, Allocator>(which | ios_base::out) (31.8.2.2).

explicit basic_ostringstream(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out);

2 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2) and sb with
basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out)(31.8.2.2).

basic_ostringstream(ios_base::openmode which, const Allocator& a);

3 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2) and sb with
basic_stringbuf<charT, traits, Allocator>(which | ios_base::out, a)(31.8.2.2).

explicit basic_ostringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out);

4 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2) and sb with
basic_stringbuf<charT, traits, Allocator>(std::move(s), which | ios_base::out) (31.8.2.2).

template<class SAlloc>
basic_ostringstream(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

5 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2) and sb with
basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out, a)(31.8.2.2).

§ 31.8.4.2 1525

© ISO/IEC N4910

template<class SAlloc>
explicit basic_ostringstream(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out);

6 Constraints: is_same_v<SAlloc,Allocator> is false.
7 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2) and sb with

basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out)(31.8.2.2).
basic_ostringstream(basic_ostringstream&& rhs);

8 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base class, andthe contained basic_stringbuf. Then calls basic_ostream<charT, traits>::set_rdbuf(addressof(sb)) toinstall the contained basic_stringbuf.
31.8.4.3 Swap [ostringstream.swap]

void swap(basic_ostringstream& rhs);

1 Effects: Equivalent to:
basic_ostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits, class Allocator>
void swap(basic_ostringstream<charT, traits, Allocator>& x,

basic_ostringstream<charT, traits, Allocator>& y);

2 Effects: Equivalent to: x.swap(y).
31.8.4.4 Member functions [ostringstream.members]

basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT, traits, Allocator>*>(addressof(sb)).
basic_string<charT, traits, Allocator> str() const &;

2 Effects: Equivalent to: return rdbuf()->str();

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

3 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

4 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

5 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

6 Effects: Equivalent to: rdbuf()->str(s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);

7 Effects: Equivalent to: rdbuf()->str(s);
void str(basic_string<charT, traits, Allocator>&& s);

8 Effects: Equivalent to: rdbuf()->str(std::move(s));
31.8.5 Class template basic_stringstream [stringstream]
31.8.5.1 General [stringstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>,

§ 31.8.5.1 1526

© ISO/IEC N4910

class Allocator = allocator<charT>>
class basic_stringstream : public basic_iostream<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.5.2, constructors
basic_stringstream() : basic_stringstream(ios_base::out | ios_base::in) {}
explicit basic_stringstream(ios_base::openmode which);
explicit basic_stringstream(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_stringstream(ios_base::openmode which, const Allocator& a);
explicit basic_stringstream(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out | ios_base::in);

template<class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_stringstream(s, ios_base::out | ios_base::in, a) {}

template<class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_stringstream(const basic_stringstream&) = delete;
basic_stringstream(basic_stringstream&& rhs);

basic_stringstream& operator=(const basic_stringstream&) = delete;
basic_stringstream& operator=(basic_stringstream&& rhs);

// 31.8.5.3, swap
void swap(basic_stringstream& rhs);

// 31.8.5.4, members
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

private:
basic_stringbuf<charT, traits> sb; // exposition only

};
}

1 The class template basic_stringstream<charT, traits> supports reading and writing from objects of class basic_-
string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object to control theassociated sequence. For the sake of exposition, the maintained data is presented here as
—(1.1) sb, the stringbuf object.

§ 31.8.5.1 1527

© ISO/IEC N4910

31.8.5.2 Constructors [stringstream.cons]

explicit basic_stringstream(ios_base::openmode which);

1 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_stringbuf<charT, traits, Allocator>(which).
explicit basic_stringstream(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

2 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_stringbuf<charT, traits, Allocator>(s, which).
basic_stringstream(ios_base::openmode which, const Allocator& a);

3 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_stringbuf<charT, traits, Allocator>(which, a) (31.8.2.2).
explicit basic_stringstream(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out | ios_base::in);

4 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_stringbuf<charT, traits, Allocator>(std::move(s), which) (31.8.2.2).
template<class SAlloc>

basic_stringstream(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

5 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_stringbuf<charT, traits, Allocator>(s, which, a) (31.8.2.2).
template<class SAlloc>

explicit basic_stringstream(
const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

6 Constraints: is_same_v<SAlloc,Allocator> is false.
7 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_stringbuf<charT, traits, Allocator>(s, which) (31.8.2.2).

basic_stringstream(basic_stringstream&& rhs);

8 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base class, andthe contained basic_stringbuf. Then calls basic_istream<charT, traits>::set_rdbuf(addressof(sb)) toinstall the contained basic_stringbuf.
31.8.5.3 Swap [stringstream.swap]

void swap(basic_stringstream& rhs);

1 Effects: Equivalent to:
basic_iostream<charT,traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits, class Allocator>
void swap(basic_stringstream<charT, traits, Allocator>& x,

basic_stringstream<charT, traits, Allocator>& y);

2 Effects: Equivalent to: x.swap(y).
31.8.5.4 Member functions [stringstream.members]

basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT, traits, Allocator>*>(addressof(sb)).

§ 31.8.5.4 1528

© ISO/IEC N4910

basic_string<charT, traits, Allocator> str() const &;

2 Effects: Equivalent to: return rdbuf()->str();

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

3 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

4 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

5 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

6 Effects: Equivalent to: rdbuf()->str(s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);

7 Effects: Equivalent to: rdbuf()->str(s);
void str(basic_string<charT, traits, Allocator>&& s);

8 Effects: Equivalent to: rdbuf()->str(std::move(s));
31.9 Span-based streams [span.streams]
31.9.1 Overview [span.streams.overview]

1 The header <spanstream> defines class templates and types that associate stream buffers with objects whose types arespecializations of span as described in 24.7.3.
[Note 1: A user of these classes is responsible for ensuring that the character sequence represented by the given span outlives theuse of the sequence by objects of the classes in subclause 31.9. Using multiple basic_spanbuf objects referring to overlappingunderlying sequences from different threads, where at least one basic_spanbuf object is used for writing to the sequence, results ina data race. —end note]
31.9.2 Header <spanstream> synopsis [spanstream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_spanbuf;

using spanbuf = basic_spanbuf<char>;
using wspanbuf = basic_spanbuf<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ispanstream;

using ispanstream = basic_ispanstream<char>;
using wispanstream = basic_ispanstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ospanstream;

using ospanstream = basic_ospanstream<char>;
using wospanstream = basic_ospanstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_spanstream;

using spanstream = basic_spanstream<char>;
using wspanstream = basic_spanstream<wchar_t>;

}

§ 31.9.2 1529

© ISO/IEC N4910

31.9.3 Class template spanbuf [spanbuf]
31.9.3.1 General [spanbuf.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_spanbuf
: public basic_streambuf<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.3.2, constructors
basic_spanbuf() : basic_spanbuf(ios_base::in | ios_base::out) {}
explicit basic_spanbuf(ios_base::openmode which)

: basic_spanbuf(std::span<charT>(), which) {}
explicit basic_spanbuf(std::span<charT> s,

ios_base::openmode which = ios_base::in | ios_base::out);
basic_spanbuf(const basic_spanbuf&) = delete;
basic_spanbuf(basic_spanbuf&& rhs);

// 31.9.3.3, assignment and swap
basic_spanbuf& operator=(const basic_spanbuf&) = delete;
basic_spanbuf& operator=(basic_spanbuf&& rhs);
void swap(basic_spanbuf& rhs);

// 31.9.3.4, member functions
std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

protected:// 31.9.3.5, overridden virtual functions
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;
pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out) override;
pos_type seekpos(pos_type sp,

ios_base::openmode which = ios_base::in | ios_base::out) override;
private:
ios_base::openmode mode; // exposition only
std::span<charT> buf; // exposition only

};

template<class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x, basic_spanbuf<charT, traits>& y);

}

1 The class template basic_spanbuf is derived from basic_streambuf to associate possibly the input sequence andpossibly the output sequence with a sequence of arbitrary characters. The sequence is provided by an object of class
span<charT>.

2 For the sake of exposition, the maintained data is presented here as:
—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the output sequence canbe written.
—(2.2) std::span<charT> buf is the view to the underlying character sequence.

31.9.3.2 Constructors [spanbuf.ctor]

explicit basic_spanbuf(std::span<charT> s,
ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), and modewith which. Initializes the internalpointers as if calling span(s).

§ 31.9.3.2 1530

© ISO/IEC N4910

basic_spanbuf(basic_spanbuf&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and mode with std::move(rhs.mode) and buf with
std::move(rhs.buf). The sequence pointers in *this (eback(), gptr(), egptr(), pbase(), pptr(), epptr())obtain the values which rhs had. It is implementation-defined whether rhs.buf.empty() returns true after themove.

3 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction.
—(3.1) span().data() == rhs_p.span().data()

—(3.2) span().size() == rhs_p.span().size()

—(3.3) eback() == rhs_p.eback()

—(3.4) gptr() == rhs_p.gptr()

—(3.5) egptr() == rhs_p.egptr()

—(3.6) pbase() == rhs_p.pbase()

—(3.7) pptr() == rhs_p.pptr()

—(3.8) epptr() == rhs_p.epptr()

—(3.9) getloc() == rhs_p.getloc()

31.9.3.3 Assignment and swap [spanbuf.assign]

basic_spanbuf& operator=(basic_spanbuf&& rhs);

1 Effects: Equivalent to:
basic_spanbuf tmp{std::move(rhs)};
this->swap(tmp);
return *this;

void swap(basic_spanbuf& rhs);

2 Effects: Equivalent to:
basic_streambuf<charT, traits>::swap(rhs);
std::swap(mode, rhs.mode);
std::swap(buf, rhs.buf);

template<class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x, basic_spanbuf<charT, traits>& y);

3 Effects: Equivalent to x.swap(y).
31.9.3.4 Member functions [spanbuf.members]

std::span<charT> span() const noexcept;

1 Returns: If ios_base::out is set in mode, returns std::span<charT>(pbase(), pptr()), otherwise returns buf.
[Note 1: In contrast to basic_stringbuf, the underlying sequence never grows and is not owned. An owning copy can beobtained by converting the result to basic_string<charT>. —end note]

void span(std::span<charT> s) noexcept;

2 Effects: buf = s. Initializes the input and output sequences according to mode.
3 Postconditions:

—(3.1) If ios_base::out is set in mode, pbase() == s.data() && epptr() == pbase() + s.size() is true;
—(3.1.1) in addition, if ios_base::ate is set in mode, pptr() == pbase() + s.size() is true,
—(3.1.2) otherwise pptr() == pbase() is true.

—(3.2) If ios_base::in is set in mode, eback() == s.data() && gptr() == eback() && egptr() == eback()
+ s.size() is true.

31.9.3.5 Overridden virtual functions [spanbuf.virtuals]
1 [Note 1: Because the underlying buffer is of fixed size, neither overflow, underflow, nor pbackfail can provide useful behavior.—end note]
§ 31.9.3.5 1531

© ISO/IEC N4910

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out) override;

2 Effects: Alters the stream position within one or both of the controlled sequences, if possible, as follows:
—(2.1) If ios_base::in is set in which, positions the input sequence; xnext is gptr(), xbeg is eback().
—(2.2) If ios_base::out is set in which, positions the output sequence; xnext is pptr(), xbeg is pbase().

3 If both ios_base::in and ios_base::out are set in which and way is ios_base::cur, the positioning operationfails.
4 For a sequence to be positioned, if its next pointer xnext (either gptr() or pptr()) is a null pointer and the newoffset newoff as computed below is nonzero, the positioning operation fails. Otherwise, the function determines

baseoff as a value of type off_type as follows:
—(4.1) 0 when way is ios_base::beg;
—(4.2) (pptr() - pbase()) for the output sequence, or (gptr() - eback()) for the input sequence when way is

ios_base::cur;
—(4.3) when way is ios_base::end :

—(4.3.1) (pptr() - pbase()) if ios_base::out is set in mode and ios_base::in is not set in mode,
—(4.3.2) buf.size() otherwise.

5 If baseoff + off would overflow, or if baseoff + off is less than zero, or if baseoff + off is greater than
buf.size(), the positioning operation fails. Otherwise, the function computes
off_type newoff = baseoff + off;

and assigns xbeg + newoff to the next pointer xnext.
6 Returns: pos_type(off_type(-1)) if the positioning operation fails; pos_type(newoff) otherwise.

pos_type seekpos(pos_type sp, ios_base::openmode which = ios_base::in | ios_base::out) override;

7 Effects: Equivalent to:
return seekoff(off_type(sp), ios_base::beg, which);

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n) override;

8 Effects: Equivalent to:
this->span(std::span<charT>(s, n));
return this;

31.9.4 Class template basic_ispanstream [ispanstream]
31.9.4.1 General [ispanstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ispanstream

: public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.4.2, constructors
explicit basic_ispanstream(std::span<charT> s,

ios_base::openmode which = ios_base::in);
basic_ispanstream(const basic_ispanstream&) = delete;
basic_ispanstream(basic_ispanstream&& rhs);
template<class ROS> explicit basic_ispanstream(ROS&& s);

basic_ispanstream& operator=(const basic_ispanstream&) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs);

§ 31.9.4.1 1532

© ISO/IEC N4910

// 31.9.4.3, swap
void swap(basic_ispanstream& rhs);

// 31.9.4.4, member functions
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<const charT> span() const noexcept;
void span(std::span<charT> s) noexcept;
template<class ROS> void span(ROS&& s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template<class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x, basic_ispanstream<charT, traits>& y);

}
1 [Note 1: Constructing an ispanstream from a string-literal includes the termination character ’\0’ in the underlying spanbuf.—end note]
31.9.4.2 Constructors [ispanstream.ctor]

explicit basic_ispanstream(std::span<charT> s, ios_base::openmode which = ios_base::in);

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) and sb with basic_-
spanbuf<charT, traits>(s, which | ios_base::in) (31.9.3.2).

basic_ispanstream(basic_ispanstream&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and sbwith std::move(rhs.sb). Next, basic_istream<charT,
traits>::set_rdbuf(addressof(sb)) is called to install the contained basic_spanbuf.

template<class ROS> explicit basic_ispanstream(ROS&& s)

3 Constraints: ROSmodels ranges::borrowed_range. !convertible_to<ROS, std::span<charT>> && convertible_-
to<ROS, std::span<charT const>> is true.

4 Effects: Let sp be std::span<const charT>(std::forward<ROS>(s)). Equivalent to
basic_ispanstream(std::span<charT>(const_cast<charT*>(sp.data()), sp.size()))

31.9.4.3 Swap [ispanstream.swap]

void swap(basic_ispanstream& rhs);

1 Effects: Equivalent to:
basic_istream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x, basic_ispanstream<charT, traits>& y);

2 Effects: Equivalent to x.swap(y).
31.9.4.4 Member functions [ispanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<const charT> span() const noexcept;

2 Effects: Equivalent to: return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to rdbuf()->span(s).

§ 31.9.4.4 1533

© ISO/IEC N4910

template<class ROS> void span(ROS&& s) noexcept;

4 Constraints: ROSmodels ranges::borrowed_range. (!convertible_to<ROS, std::span<charT>>) && convertible_-
to<ROS, std::span<const charT>> is true.

5 Effects: Let sp be std::span<const charT>(std::forward<ROS>(s)). Equivalent to:
this->span(std::span<charT>(const_cast<charT*>(sp.data()), sp.size()))

31.9.5 Class template basic_ospanstream [ospanstream]
31.9.5.1 General [ospanstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ospanstream
: public basic_ostream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.5.2, constructors
explicit basic_ospanstream(std::span<charT> s,

ios_base::openmode which = ios_base::out);
basic_ospanstream(const basic_ospanstream&) = delete;
basic_ospanstream(basic_ospanstream&& rhs);

basic_ospanstream& operator=(const basic_ospanstream&) = delete;
basic_ospanstream& operator=(basic_ospanstream&& rhs);

// 31.9.5.3, swap
void swap(basic_ospanstream& rhs);

// 31.9.5.4, member functions
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template<class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x, basic_ospanstream<charT, traits>& y);

}

31.9.5.2 Constructors [ospanstream.ctor]

explicit basic_ospanstream(std::span<charT> s,
ios_base::openmode which = ios_base::out);

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) and sb with basic_-
spanbuf<charT, traits>(s, which | ios_base::out) (31.9.3.2).

basic_ospanstream(basic_ospanstream&& rhs) noexcept;

2 Effects: Initializes the base class with std::move(rhs) and sbwith std::move(rhs.sb). Next, basic_ostream<charT,
traits>::set_rdbuf(addressof(sb)) is called to install the contained basic_spanbuf.

31.9.5.3 Swap [ospanstream.swap]

void swap(basic_ospanstream& rhs);

1 Effects: Equivalent to:
basic_ostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

§ 31.9.5.3 1534

© ISO/IEC N4910

template<class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x, basic_ospanstream<charT, traits>& y);

2 Effects: Equivalent to x.swap(y).
31.9.5.4 Member functions [ospanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<charT> span() const noexcept;

2 Effects: Equivalent to: return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to rdbuf()->span(s).
31.9.6 Class template basic_spanstream [spanstream]
31.9.6.1 General [spanstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_spanstream
: public basic_iostream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.6.2, constructors
explicit basic_spanstream(std::span<charT> s,

ios_base::openmode which = ios_base::out | ios_base::in);
basic_spanstream(const basic_spanstream&) = delete;
basic_spanstream(basic_spanstream&& rhs);

basic_spanstream& operator=(const basic_spanstream&) = delete;
basic_spanstream& operator=(basic_spanstream&& rhs);

// 31.9.6.3, swap
void swap(basic_spanstream& rhs);

// 31.9.6.4, members
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template<class charT, class traits>
void swap(basic_spanstream<charT, traits>& x, basic_spanstream<charT, traits>& y);

}

31.9.6.2 Constructors [spanstream.ctor]

explicit basic_spanstream(std::span<charT> s,
ios_base::openmode which = ios_base::out | ios_bas::in);

1 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) and sb with basic_-
spanbuf<charT, traits>(s, which) (31.9.3.2).

§ 31.9.6.2 1535

© ISO/IEC N4910

basic_spanstream(basic_spanstream&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and sbwith std::move(rhs.sb). Next, basic_iostream<charT,
traits>::set_rdbuf(addressof(sb)) is called to install the contained basic_spanbuf.

31.9.6.3 Swap [spanstream.swap]

void swap(basic_spanstream& rhs);

1 Effects: Equivalent to:
basic_iostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits>
void swap(basic_spanstream<charT, traits>& x, basic_spanstream<charT, traits>& y);

2 Effects: Equivalent to x.swap(y).
31.9.6.4 Member functions [spanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<charT> span() const noexcept;

2 Effects: Equivalent to: return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to rdbuf()->span(s).
31.10 File-based streams [file.streams]
31.10.1 Header <fstream> synopsis [fstream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_filebuf;

template<class charT, class traits>
void swap(basic_filebuf<charT, traits>& x, basic_filebuf<charT, traits>& y);

using filebuf = basic_filebuf<char>;
using wfilebuf = basic_filebuf<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ifstream;

template<class charT, class traits>
void swap(basic_ifstream<charT, traits>& x, basic_ifstream<charT, traits>& y);

using ifstream = basic_ifstream<char>;
using wifstream = basic_ifstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ofstream;

template<class charT, class traits>
void swap(basic_ofstream<charT, traits>& x, basic_ofstream<charT, traits>& y);

using ofstream = basic_ofstream<char>;
using wofstream = basic_ofstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_fstream;

§ 31.10.1 1536

© ISO/IEC N4910

template<class charT, class traits>
void swap(basic_fstream<charT, traits>& x, basic_fstream<charT, traits>& y);

using fstream = basic_fstream<char>;
using wfstream = basic_fstream<wchar_t>;

}

1 The header <fstream> defines four class templates and eight types that associate stream buffers with files and assistreading and writing files.
2 [Note 1: The class template basic_filebuf treats a file as a source or sink of bytes. In an environment that uses a large character set,the file typically holds multibyte character sequences and the basic_filebuf object converts those multibyte sequences into widecharacter sequences. —end note]
3 In subclause 31.10, member functions taking arguments of const filesystem::path::value_type* are only providedon systems where filesystem::path::value_type (31.12.6) is not char.
[Note 2: These functions enable class path support for systems with a wide native path character type, such as wchar_t. —end note]
31.10.2 Class template basic_filebuf [filebuf]
31.10.2.1 General [filebuf.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_filebuf : public basic_streambuf<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.2.2, constructors/destructor
basic_filebuf();
basic_filebuf(const basic_filebuf&) = delete;
basic_filebuf(basic_filebuf&& rhs);
virtual ~basic_filebuf();

// 31.10.2.3, assignment and swap
basic_filebuf& operator=(const basic_filebuf&) = delete;
basic_filebuf& operator=(basic_filebuf&& rhs);
void swap(basic_filebuf& rhs);

// 31.10.2.4, members
bool is_open() const;
basic_filebuf* open(const char* s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path::value_type* s,

ios_base::openmode mode); // wide systems only; see 31.10.1
basic_filebuf* open(const string& s,

ios_base::openmode mode);
basic_filebuf* open(const filesystem::path& s,

ios_base::openmode mode);
basic_filebuf* close();

protected:// 31.10.2.5, overridden virtual functions
streamsize showmanyc() override;
int_type underflow() override;
int_type uflow() override;
int_type pbackfail(int_type c = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;

basic_streambuf<charT, traits>* setbuf(char_type* s,
streamsize n) override;

§ 31.10.2.1 1537

© ISO/IEC N4910

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

int sync() override;
void imbue(const locale& loc) override;

};
}

1 The class basic_filebuf<charT, traits> associates both the input sequence and the output sequence with a file.
2 The restrictions on reading and writing a sequence controlled by an object of class basic_filebuf<charT, traits>are the same as for reading and writing with the C standard library FILEs.
3 In particular:

—(3.1) If the file is not open for reading the input sequence cannot be read.
—(3.2) If the file is not open for writing the output sequence cannot be written.
—(3.3) A joint file position is maintained for both the input sequence and the output sequence.

4 An instance of basic_filebuf behaves as described in 31.10.2 provided traits::pos_type is fpos<traits::state_-
type>. Otherwise the behavior is undefined.

5 In order to support file I/O and multibyte/wide character conversion, conversions are performed using members of afacet, referred to as a_codecvt in following subclauses, obtained as if by
const codecvt<charT, char, typename traits::state_type>& a_codecvt =

use_facet<codecvt<charT, char, typename traits::state_type>>(getloc());

31.10.2.2 Constructors [filebuf.cons]

basic_filebuf();

1 Effects: Initializes the base class with basic_streambuf<charT, traits>() (31.6.3.2).
2 Postconditions: is_open() == false.

basic_filebuf(basic_filebuf&& rhs);

3 Effects: It is implementation-defined whether the sequence pointers in *this (eback(), gptr(), egptr(), pbase(),
pptr(), epptr()) obtain the values which rhs had. Whether they do or not, *this and rhs reference separatebuffers (if any at all) after the construction. Additionally *this references the file which rhs did before theconstruction, and rhs references no file after the construction. The openmode, locale and any other state of rhs isalso copied.

4 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer to the state of
rhs just after this construction.
—(4.1) is_open() == rhs_p.is_open()

—(4.2) rhs_a.is_open() == false

—(4.3) gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

—(4.4) egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

—(4.5) pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

—(4.6) epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

—(4.7) if (eback()) eback() != rhs_a.eback()

—(4.8) if (gptr()) gptr() != rhs_a.gptr()

—(4.9) if (egptr()) egptr() != rhs_a.egptr()

—(4.10) if (pbase()) pbase() != rhs_a.pbase()

—(4.11) if (pptr()) pptr() != rhs_a.pptr()

—(4.12) if (epptr()) epptr() != rhs_a.epptr()

§ 31.10.2.2 1538

© ISO/IEC N4910

virtual ~basic_filebuf();
5 Effects: Calls close(). If an exception occurs during the destruction of the object, including the call to close(),the exception is caught but not rethrown (see 16.4.6.13).
31.10.2.3 Assignment and swap [filebuf.assign]

basic_filebuf& operator=(basic_filebuf&& rhs);

1 Effects: Calls close() then move assigns from rhs. After the move assignment *this has the observable state itwould have had if it had been move constructed from rhs (see 31.10.2.2).
2 Returns: *this.

void swap(basic_filebuf& rhs);

3 Effects: Exchanges the state of *this and rhs.
template<class charT, class traits>

void swap(basic_filebuf<charT, traits>& x, basic_filebuf<charT, traits>& y);

4 Effects: Equivalent to: x.swap(y).
31.10.2.4 Member functions [filebuf.members]

bool is_open() const;

1 Returns: true if a previous call to open succeeded (returned a non-null value) and there has been no interveningcall to close.
basic_filebuf* open(const char* s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path::value_type* s,

ios_base::openmode mode); // wide systems only; see 31.10.1
2 Preconditions: s points to a NTCTS (3.37).
3 Effects: If is_open() != false, returns a null pointer. Otherwise, initializes the filebuf as required. It thenopens the file to which s resolves, if possible, as if by a call to fopen with the second argument determined from

mode & ~ios_base::ate as indicated in Table 124. If mode is not some combination of flags shown in the tablethen the open fails.
Table 124: File open modes [tab:filebuf.open.modes]

ios_base flag combination stdio equivalent
binary in out trunc app

+ "w"+ + "w"+ + "a"+ "a"+ "r"+ + "r+"+ + + "w+"+ + + "a+"+ + "a+"+ + "wb"+ + + "wb"+ + + "ab"+ + "ab"+ + "rb"+ + + "r+b"+ + + + "w+b"+ + + + "a+b"+ + + "a+b"

§ 31.10.2.4 1539

© ISO/IEC N4910

4 If the open operation succeeds and ios_base::ate is set in mode, positions the file to the end (as if by calling
fseek(file, 0, SEEK_END), where file is the pointer returned by calling fopen).310

5 If the repositioning operation fails, calls close() and returns a null pointer to indicate failure.
6 Returns: this if successful, a null pointer otherwise.

basic_filebuf* open(const string& s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path& s, ios_base::openmode mode);

7 Returns: open(s.c_str(), mode);

basic_filebuf* close();

8 Effects: If is_open() == false, returns a null pointer. If a put area exists, calls overflow(traits::eof()) toflush characters. If the last virtual member function called on *this (between underflow, overflow, seekoff,and seekpos) was overflow then calls a_codecvt.unshift (possibly several times) to determine a terminationsequence, inserts those characters and calls overflow(traits::eof()) again. Finally, regardless of whether anyof the preceding calls fails or throws an exception, the function closes the file (as if by calling fclose(file)). Ifany of the calls made by the function, including fclose, fails, close fails by returning a null pointer. If one ofthese calls throws an exception, the exception is caught and rethrown after closing the file.
9 Postconditions: is_open() == false.
10 Returns: this on success, a null pointer otherwise.
31.10.2.5 Overridden virtual functions [filebuf.virtuals]

streamsize showmanyc() override;

1 Effects: Behaves the same as basic_streambuf::showmanyc() (31.6.3.5).
2 Remarks: An implementation may provide an overriding definition for this function signature if it can determinewhether more characters can be read from the input sequence.

int_type underflow() override;

3 Effects: Behaves according to the description of basic_streambuf<charT, traits>::underflow(), with thespecialization that a sequence of characters is read from the input sequence as if by reading from the associatedfile into an internal buffer (extern_buf) and then as if by doing:
char extern_buf[XSIZE];
char* extern_end;
charT intern_buf[ISIZE];
charT* intern_end;
codecvt_base::result r =
a_codecvt.in(state, extern_buf, extern_buf+XSIZE, extern_end,

intern_buf, intern_buf+ISIZE, intern_end);

This shall be done in such a way that the class can recover the position (fpos_t) corresponding to each characterbetween intern_buf and intern_end. If the value of r indicates that a_codecvt.in() ran out of space in
intern_buf, retry with a larger intern_buf.

int_type uflow() override;

4 Effects: Behaves according to the description of basic_streambuf<charT, traits>::uflow(), with the special-ization that a sequence of characters is read from the input with the same method as used by underflow.
int_type pbackfail(int_type c = traits::eof()) override;

5 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three ways:
—(5.1) If traits::eq_int_type(c, traits::eof()) returns false and if the function makes a putback positionavailable and if traits::eq(to_char_type(c), gptr()[-1]) returns true, decrements the next pointerfor the input sequence, gptr().
Returns: c.

310) The macro SEEK_END is defined, and the function signatures fopen(const char*, const char*) and fseek(FILE*, long, int) are declared,in <cstdio> (31.13.1).
§ 31.10.2.5 1540

© ISO/IEC N4910

—(5.2) If traits::eq_int_type(c, traits::eof()) returns false and if the function makes a putback positionavailable and if the function is permitted to assign to the putback position, decrements the next pointer forthe input sequence, and stores c there.
Returns: c.

—(5.3) If traits::eq_int_type(c, traits::eof()) returns true, and if either the input sequence has a putbackposition available or the function makes a putback position available, decrements the next pointer for theinput sequence, gptr().
Returns: traits::not_eof(c).

6 Returns: As specified above, or traits::eof() to indicate failure.
7 Remarks: If is_open() == false, the function always fails.
8 The function does not put back a character directly to the input sequence.
9 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The functioncan alter the number of putback positions available as a result of any call.

int_type overflow(int_type c = traits::eof()) override;

10 Effects: Behaves according to the description of basic_streambuf<charT, traits>::overflow(c), except thatthe behavior of “consuming characters” is performed by first converting as if by:
charT* b = pbase();
charT* p = pptr();
charT* end;
char xbuf[XSIZE];
char* xbuf_end;
codecvt_base::result r =
a_codecvt.out(state, b, p, end, xbuf, xbuf+XSIZE, xbuf_end);

and then
—(10.1) If r == codecvt_base::error then fail.
—(10.2) If r == codecvt_base::noconv then output characters from b up to (and not including) p.
—(10.3) If r == codecvt_base::partial then output to the file characters from xbuf up to xbuf_end, and repeatusing characters from end to p. If output fails, fail (without repeating).
—(10.4) Otherwise output from xbuf to xbuf_end, and fail if output fails. At this point if b != p and b == end(xbuf isn’t large enough) then increase XSIZE and repeat from the beginning.

11 Returns: traits::not_eof(c) to indicate success, and traits::eof() to indicate failure. If is_open() ==
false, the function always fails.

basic_streambuf* setbuf(char_type* s, streamsize n) override;

12 Effects: If setbuf(0, 0) is called on a stream before any I/O has occurred on that stream, the stream becomesunbuffered. Otherwise the results are implementation-defined. “Unbuffered” means that pbase() and pptr()always return null and output to the file should appear as soon as possible.
pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out) override;

13 Effects: Let width denote a_codecvt.encoding(). If is_open() == false, or off != 0 && width <= 0, thenthe positioning operation fails. Otherwise, if way != basic_ios::cur or off != 0, and if the last operation wasoutput, then update the output sequence and write any unshift sequence. Next, seek to the new position: if width
> 0, call fseek(file, width * off, whence), otherwise call fseek(file, 0, whence).

14 Returns: A newly constructed pos_type object that stores the resultant stream position, if possible. If thepositioning operation fails, or if the object cannot represent the resultant stream position, returns pos_type(off_-
type(-1)).

15 Remarks: “The last operation was output” means either the last virtual operation was overflow or the put buffer isnon-empty. “Write any unshift sequence” means, if width if less than zero then call a_codecvt.unshift(state,
xbuf, xbuf+XSIZE, xbuf_end) and output the resulting unshift sequence. The function determines one of threevalues for the argument whence, of type int, as indicated in Table 125.

§ 31.10.2.5 1541

© ISO/IEC N4910

Table 125: seekoff effects [tab:filebuf.seekoff]
way Value stdio Equivalent

basic_ios::beg SEEK_SET
basic_ios::cur SEEK_CUR
basic_ios::end SEEK_END

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

16 Alters the file position, if possible, to correspond to the position stored in sp (as described below). Altering thefile position performs as follows:
1. if (om & ios_base::out) != 0, then update the output sequence and write any unshift sequence;
2. set the file position to sp as if by a call to fsetpos;
3. if (om & ios_base::in) != 0, then update the input sequence;

where om is the open mode passed to the last call to open(). The operation fails if is_open() returns false.
17 If sp is an invalid stream position, or if the function positions neither sequence, the positioning operation fails. If

sp has not been obtained by a previous successful call to one of the positioning functions (seekoff or seekpos)on the same file the effects are undefined.
18 Returns: sp on success. Otherwise returns pos_type(off_type(-1)).

int sync() override;

19 Effects: If a put area exists, calls filebuf::overflow to write the characters to the file, then flushes the file as ifby calling fflush(file). If a get area exists, the effect is implementation-defined.
void imbue(const locale& loc) override;

20 Preconditions: If the file is not positioned at its beginning and the encoding of the current locale as determined by
a_codecvt.encoding() is state-dependent (30.4.2.5.3) then that facet is the same as the corresponding facet of
loc.

21 Effects: Causes characters inserted or extracted after this call to be converted according to loc until another callof imbue.
22 Remarks: This may require reconversion of previously converted characters. This in turn may require theimplementation to be able to reconstruct the original contents of the file.
31.10.3 Class template basic_ifstream [ifstream]
31.10.3.1 General [ifstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ifstream : public basic_istream<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.3.2, constructors
basic_ifstream();
explicit basic_ifstream(const char* s,

ios_base::openmode mode = ios_base::in);
explicit basic_ifstream(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in);// wide systems only; see 31.10.1
explicit basic_ifstream(const string& s,

ios_base::openmode mode = ios_base::in);

§ 31.10.3.1 1542

© ISO/IEC N4910

template<class T>
explicit basic_ifstream(const T& s, ios_base::openmode mode = ios_base::in);

basic_ifstream(const basic_ifstream&) = delete;
basic_ifstream(basic_ifstream&& rhs);

basic_ifstream& operator=(const basic_ifstream&) = delete;
basic_ifstream& operator=(basic_ifstream&& rhs);

// 31.10.3.3, swap
void swap(basic_ifstream& rhs);

// 31.10.3.4, members
basic_filebuf<charT, traits>* rdbuf() const;

bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in); // wide systems only; see 31.10.1
void open(const string& s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::in);
void close();

private:
basic_filebuf<charT, traits> sb; // exposition only

};
}

1 The class basic_ifstream<charT, traits> supports reading from named files. It uses a basic_filebuf<charT,
traits> object to control the associated sequence. For the sake of exposition, the maintained data is presented here as:
—(1.1) sb, the filebuf object.

31.10.3.2 Constructors [ifstream.cons]

basic_ifstream();

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2.2) and sbwith basic_filebuf<charT, traits>() (31.10.2.2).
explicit basic_ifstream(const char* s,

ios_base::openmode mode = ios_base::in);
explicit basic_ifstream(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in); // wide systems only; see 31.10.1
2 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.4.2.2) and sbwith basic_filebuf<charT, traits>() (31.10.2.2), then calls rdbuf()->open(s, mode | ios_base::in). Ifthat function returns a null pointer, calls setstate(failbit).

explicit basic_ifstream(const string& s,
ios_base::openmode mode = ios_base::in);

3 Effects: Equivalent to: basic_ifstream(s.c_str(), mode).
template<class T>

explicit basic_ifstream(const T& s, ios_base::openmode mode = ios_base::in);

4 Constraints: is_same_v<T, filesystem::path> is true.
5 Effects: Equivalent to: basic_ifstream(s.c_str(), mode).

basic_ifstream(basic_ifstream&& rhs);

6 Effects: Move constructs the base class, and the contained basic_filebuf. Then calls basic_istream<charT,
traits>::set_rdbuf(addressof(sb)) to install the contained basic_filebuf.

§ 31.10.3.2 1543

© ISO/IEC N4910

31.10.3.3 Swap [ifstream.swap]

void swap(basic_ifstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling basic_istream<charT, traits>::swap(rhs) and
sb.swap(rhs.sb).

template<class charT, class traits>
void swap(basic_ifstream<charT, traits>& x, basic_ifstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).
31.10.3.4 Member functions [ifstream.members]

basic_filebuf<charT, traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT, traits>*>(addressof(sb)).
bool is_open() const;

2 Returns: rdbuf()->is_open().
void open(const char* s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in); // wide systems only; see 31.10.1
3 Effects: Calls rdbuf()->open(s, mode | ios_base::in). If that function does not return a null pointer calls

clear(), otherwise calls setstate(failbit) (which may throw ios_base::failure) (31.5.4.4).
void open(const string& s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::in);

4 Effects: Calls open(s.c_str(), mode).
void close();

5 Effects: Calls rdbuf()->close() and, if that function returns a null pointer, calls setstate(failbit) (whichmay throw ios_base::failure) (31.5.4.4).
31.10.4 Class template basic_ofstream [ofstream]
31.10.4.1 General [ofstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ofstream : public basic_ostream<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.4.2, constructors
basic_ofstream();
explicit basic_ofstream(const char* s,

ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const filesystem::path::value_type* s, // wide systems only; see 31.10.1

ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const string& s,

ios_base::openmode mode = ios_base::out);
template<class T>

explicit basic_ofstream(const T& s, ios_base::openmode mode = ios_base::out);
basic_ofstream(const basic_ofstream&) = delete;
basic_ofstream(basic_ofstream&& rhs);

basic_ofstream& operator=(const basic_ofstream&) = delete;
basic_ofstream& operator=(basic_ofstream&& rhs);

§ 31.10.4.1 1544

© ISO/IEC N4910

// 31.10.4.3, swap
void swap(basic_ofstream& rhs);

// 31.10.4.4, members
basic_filebuf<charT, traits>* rdbuf() const;

bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::out); // wide systems only; see 31.10.1
void open(const string& s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::out);
void close();

private:
basic_filebuf<charT, traits> sb; // exposition only

};
}

1 The class basic_ofstream<charT, traits> supports writing to named files. It uses a basic_filebuf<charT, traits>object to control the associated sequence. For the sake of exposition, the maintained data is presented here as:
—(1.1) sb, the filebuf object.

31.10.4.2 Constructors [ofstream.cons]

basic_ofstream();

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2.2) and sbwith basic_filebuf<charT, traits>() (31.10.2.2).
explicit basic_ofstream(const char* s,

ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::out); // wide systems only; see 31.10.1
2 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.5.2.2) and sbwith basic_filebuf<charT, traits>() (31.10.2.2), then calls rdbuf()->open(s, mode | ios_base::out).If that function returns a null pointer, calls setstate(failbit).

explicit basic_ofstream(const string& s,
ios_base::openmode mode = ios_base::out);

3 Effects: Equivalent to: basic_ofstream(s.c_str(), mode).
template<class T>

explicit basic_ofstream(const T& s, ios_base::openmode mode = ios_base::out);

4 Constraints: is_same_v<T, filesystem::path> is true.
5 Effects: Equivalent to: basic_ofstream(s.c_str(), mode).

basic_ofstream(basic_ofstream&& rhs);

6 Effects: Move constructs the base class, and the contained basic_filebuf. Then calls basic_ostream<charT,
traits>::set_rdbuf(addressof(sb)) to install the contained basic_filebuf.

31.10.4.3 Swap [ofstream.swap]

void swap(basic_ofstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling basic_ostream<charT, traits>::swap(rhs) and
sb.swap(rhs.sb).

template<class charT, class traits>
void swap(basic_ofstream<charT, traits>& x, basic_ofstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

§ 31.10.4.3 1545

© ISO/IEC N4910

31.10.4.4 Member functions [ofstream.members]

basic_filebuf<charT, traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT, traits>*>(addressof(sb)).
bool is_open() const;

2 Returns: rdbuf()->is_open().
void open(const char* s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::out); // wide systems only; see 31.10.1
3 Effects: Calls rdbuf()->open(s, mode | ios_base::out). If that function does not return a null pointer calls

clear(), otherwise calls setstate(failbit) (which may throw ios_base::failure) (31.5.4.4).
void close();

4 Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls setstate(failbit)(which may throw ios_base::failure) (31.5.4.4).
void open(const string& s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::out);

5 Effects: Calls open(s.c_str(), mode).
31.10.5 Class template basic_fstream [fstream]
31.10.5.1 General [fstream.general]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_fstream : public basic_iostream<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.5.2, constructors
basic_fstream();
explicit basic_fstream(

const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

explicit basic_fstream(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in|ios_base::out); // wide systems only; see 31.10.1

explicit basic_fstream(
const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

template<class T>
explicit basic_fstream(const T& s, ios_base::openmode mode = ios_base::in | ios_base::out);

basic_fstream(const basic_fstream&) = delete;
basic_fstream(basic_fstream&& rhs);

basic_fstream& operator=(const basic_fstream&) = delete;
basic_fstream& operator=(basic_fstream&& rhs);

// 31.10.5.3, swap
void swap(basic_fstream& rhs);

// 31.10.5.4, members
basic_filebuf<charT, traits>* rdbuf() const;
bool is_open() const;

§ 31.10.5.1 1546

© ISO/IEC N4910

void open(
const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in|ios_base::out); // wide systems only; see 31.10.1

void open(
const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void close();

private:
basic_filebuf<charT, traits> sb; // exposition only

};
}

1 The class template basic_fstream<charT, traits> supports reading and writing from named files. It uses a basic_-
filebuf<charT, traits> object to control the associated sequences. For the sake of exposition, the maintained data ispresented here as:
—(1.1) sb, the basic_filebuf object.

31.10.5.2 Constructors [fstream.cons]

basic_fstream();

1 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_filebuf<charT, traits>().
explicit basic_fstream(

const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

explicit basic_fstream(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in | ios_base::out); // wide systems only; see 31.10.1

2 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.4.7.2) and sbwith basic_filebuf<charT, traits>(). Then calls rdbuf()->open(s, mode). If that function returns a nullpointer, calls setstate(failbit).
explicit basic_fstream(

const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

3 Effects: Equivalent to: basic_fstream(s.c_str(), mode).
template<class T>

explicit basic_fstream(const T& s, ios_base::openmode mode = ios_base::in | ios_base::out);

4 Constraints: is_same_v<T, filesystem::path> is true.
5 Effects: Equivalent to: basic_fstream(s.c_str(), mode).

basic_fstream(basic_fstream&& rhs);

6 Effects: Move constructs the base class, and the contained basic_filebuf. Then calls basic_istream<charT,
traits>::set_rdbuf(addressof(sb)) to install the contained basic_filebuf.

31.10.5.3 Swap [fstream.swap]

void swap(basic_fstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling basic_iostream<charT,traits>::swap(rhs) and
sb.swap(rhs.sb).

§ 31.10.5.3 1547

© ISO/IEC N4910

template<class charT, class traits>
void swap(basic_fstream<charT, traits>& x,

basic_fstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).
31.10.5.4 Member functions [fstream.members]

basic_filebuf<charT, traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT, traits>*>(addressof(sb)).
bool is_open() const;

2 Returns: rdbuf()->is_open().
void open(

const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in | ios_base::out); // wide systems only; see 31.10.1

3 Effects: Calls rdbuf()->open(s, mode). If that function does not return a null pointer calls clear(), otherwisecalls setstate(failbit) (which may throw ios_base::failure) (31.5.4.4).
void open(

const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

4 Effects: Calls open(s.c_str(), mode).
void close();

5 Effects: Calls rdbuf()->close() and, if that function returns a null pointer, calls setstate(failbit) (whichmay throw ios_base::failure) (31.5.4.4).
31.11 Synchronized output streams [syncstream]
31.11.1 Header <syncstream> synopsis [syncstream.syn]
#include <ostream> // see 31.7.2
namespace std {

template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_syncbuf;

// 31.11.2.6, specialized algorithms
template<class charT, class traits, class Allocator>
void swap(basic_syncbuf<charT, traits, Allocator>&,

basic_syncbuf<charT, traits, Allocator>&);

using syncbuf = basic_syncbuf<char>;
using wsyncbuf = basic_syncbuf<wchar_t>;

template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_osyncstream;

using osyncstream = basic_osyncstream<char>;
using wosyncstream = basic_osyncstream<wchar_t>;

}

1 The header <syncstream> provides a mechanism to synchronize execution agents writing to the same stream.

§ 31.11.1 1548

© ISO/IEC N4910

31.11.2 Class template basic_syncbuf [syncstream.syncbuf]
31.11.2.1 Overview [syncstream.syncbuf.overview]
namespace std {

template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_syncbuf : public basic_streambuf<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

using streambuf_type = basic_streambuf<charT, traits>;

// 31.11.2.2, construction and destruction
basic_syncbuf()

: basic_syncbuf(nullptr) {}
explicit basic_syncbuf(streambuf_type* obuf)

: basic_syncbuf(obuf, Allocator()) {}
basic_syncbuf(streambuf_type*, const Allocator&);
basic_syncbuf(basic_syncbuf&&);
~basic_syncbuf();

// 31.11.2.3, assignment and swap
basic_syncbuf& operator=(basic_syncbuf&&);
void swap(basic_syncbuf&);

// 31.11.2.4, member functions
bool emit();
streambuf_type* get_wrapped() const noexcept;
allocator_type get_allocator() const noexcept;
void set_emit_on_sync(bool) noexcept;

protected:// 31.11.2.5, overridden virtual functions
int sync() override;

private:
streambuf_type* wrapped; // exposition only
bool emit_on_sync{}; // exposition only

};
}

1 Class template basic_syncbuf stores character data written to it, known as the associated output, into internal buffersallocated using the object’s allocator. The associated output is transferred to the wrapped stream buffer object *wrappedwhen emit() is called or when the basic_syncbuf object is destroyed. Such transfers are atomic with respect totransfers by other basic_syncbuf objects with the same wrapped stream buffer object.
31.11.2.2 Construction and destruction [syncstream.syncbuf.cons]

basic_syncbuf(streambuf_type* obuf, const Allocator& allocator);

1 Effects: Sets wrapped to obuf.
2 Postconditions: get_wrapped() == obuf and get_allocator() == allocator are true.
3 Throws: Nothing unless an exception is thrown by the construction of a mutex or by memory allocation.
4 Remarks: A copy of allocator is used to allocate memory for internal buffers holding the associated output.

basic_syncbuf(basic_syncbuf&& other);

5 Postconditions: The value returned by this->get_wrapped() is the value returned by other.get_wrapped()prior to calling this constructor. Output stored in other prior to calling this constructor will be stored in *thisafterwards. other.pbase() == other.pptr() and other.get_wrapped() == nullptr are true.
§ 31.11.2.2 1549

© ISO/IEC N4910

6 Remarks: This constructor disassociates other from its wrapped stream buffer, ensuring destruction of otherproduces no output.
~basic_syncbuf();

7 Effects: Calls emit().
8 Throws: Nothing. If an exception is thrown from emit(), the destructor catches and ignores that exception.
31.11.2.3 Assignment and swap [syncstream.syncbuf.assign]

basic_syncbuf& operator=(basic_syncbuf&& rhs);

1 Effects: Calls emit() then move assigns from rhs. After the move assignment *this has the observable state itwould have had if it had been move constructed from rhs (31.11.2.2).
2 Postconditions:

—(2.1) rhs.get_wrapped() == nullptr is true.
—(2.2) this->get_allocator() == rhs.get_allocator() is true when

allocator_traits<Allocator>::propagate_on_container_move_assignment::value

is true; otherwise, the allocator is unchanged.
3 Returns: *this.
4 Remarks: This assignment operator disassociates rhs from its wrapped stream buffer, ensuring destruction of rhsproduces no output.

void swap(basic_syncbuf& other);

5 Preconditions: Either allocator_traits<Allocator>::propagate_on_container_swap::value is true or this->get_-
allocator() == other.get_allocator() is true.

6 Effects: Exchanges the state of *this and other.
31.11.2.4 Member functions [syncstream.syncbuf.members]

bool emit();

1 Effects: Atomically transfers the associated output of *this to the stream buffer *wrapped, so that it appears inthe output stream as a contiguous sequence of characters. wrapped->pubsync() is called if and only if a call wasmade to sync() since the most recent call to emit(), if any.
2 Synchronization: All emit() calls transferring characters to the same stream buffer object appear to execute in atotal order consistent with the “happens before” relation (6.9.2.2), where each emit() call synchronizes withsubsequent emit() calls in that total order.
3 Postconditions: On success, the associated output is empty.
4 Returns: true if all of the following conditions hold; otherwise false:

—(4.1) wrapped == nullptr is false.
—(4.2) All of the characters in the associated output were successfully transferred.
—(4.3) The call to wrapped->pubsync() (if any) succeeded.

5 Remarks: May call member functions of wrapped while holding a lock uniquely associated with wrapped.
streambuf_type* get_wrapped() const noexcept;

6 Returns: wrapped.
allocator_type get_allocator() const noexcept;

7 Returns: A copy of the allocator that was set in the constructor or assignment operator.
void set_emit_on_sync(bool b) noexcept;

8 Effects: emit_on_sync = b.

§ 31.11.2.4 1550

© ISO/IEC N4910

31.11.2.5 Overridden virtual functions [syncstream.syncbuf.virtuals]

int sync() override;

1 Effects: Records that the wrapped stream buffer is to be flushed. Then, if emit_on_sync is true, calls emit().
[Note 1: If emit_on_sync is false, the actual flush is delayed until a call to emit(). —end note]

2 Returns: If emit() was called and returned false, returns -1; otherwise 0.
31.11.2.6 Specialized algorithms [syncstream.syncbuf.special]

template<class charT, class traits, class Allocator>
void swap(basic_syncbuf<charT, traits, Allocator>& a,

basic_syncbuf<charT, traits, Allocator>& b);

1 Effects: Equivalent to a.swap(b).
31.11.3 Class template basic_osyncstream [syncstream.osyncstream]
31.11.3.1 Overview [syncstream.osyncstream.overview]
namespace std {

template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_osyncstream : public basic_ostream<charT, traits> {
public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

using allocator_type = Allocator;
using streambuf_type = basic_streambuf<charT, traits>;
using syncbuf_type = basic_syncbuf<charT, traits, Allocator>;

// 31.11.3.2, construction and destruction
basic_osyncstream(streambuf_type*, const Allocator&);
explicit basic_osyncstream(streambuf_type* obuf)

: basic_osyncstream(obuf, Allocator()) {}
basic_osyncstream(basic_ostream<charT, traits>& os, const Allocator& allocator)

: basic_osyncstream(os.rdbuf(), allocator) {}
explicit basic_osyncstream(basic_ostream<charT, traits>& os)

: basic_osyncstream(os, Allocator()) {}
basic_osyncstream(basic_osyncstream&&) noexcept;
~basic_osyncstream();

// assignment
basic_osyncstream& operator=(basic_osyncstream&&) noexcept;

// 31.11.3.3, member functions
void emit();
streambuf_type* get_wrapped() const noexcept;
syncbuf_type* rdbuf() const noexcept { return const_cast<syncbuf_type*>(addressof(sb)); }

private:
syncbuf_type sb; // exposition only

};
}

1 Allocator shall meet the Cpp17Allocator requirements (16.4.4.6.1).
2 [Example 1: A named variable can be used within a block statement for streaming.

{
osyncstream bout(cout);
bout << "Hello, ";
bout << "World!";
bout << endl; // flush is noted

§ 31.11.3.1 1551

© ISO/IEC N4910

bout << "and more!\n";
} // characters are transferred and cout is flushed
—end example]

3 [Example 2: A temporary object can be used for streaming within a single statement.
osyncstream(cout) << "Hello, " << "World!" << '\n';

In this example, cout is not flushed. —end example]
31.11.3.2 Construction and destruction [syncstream.osyncstream.cons]

basic_osyncstream(streambuf_type* buf, const Allocator& allocator);

1 Effects: Initializes sb from buf and allocator. Initializes the base class with basic_ostream<charT, traits>(addressof(sb)).
2 [Note 1: The member functions of the provided stream buffer can be called from emit() while a lock is held, which mightresult in a deadlock if used incautiously. —end note]
3 Postconditions: get_wrapped() == buf is true.

basic_osyncstream(basic_osyncstream&& other) noexcept;

4 Effects: Move constructs the base class and sb from the corresponding subobjects of other, and calls basic_-
ostream<charT, traits>::set_rdbuf(addressof(sb)).

5 Postconditions: The value returned by get_wrapped() is the value returned by os.get_wrapped() prior to callingthis constructor. nullptr == other.get_wrapped() is true.
31.11.3.3 Member functions [syncstream.osyncstream.members]

void emit();

1 Effects: Behaves as an unformatted output function (31.7.5.4). After constructing a sentry object, calls sb.emit().If that call returns false, calls setstate(ios_base::badbit).
2 [Example 1: A flush on a basic_osyncstream does not flush immediately:

{
osyncstream bout(cout);
bout << "Hello," << '\n'; // no flush
bout.emit(); // characters transferred; cout not flushed
bout << "World!" << endl; // flush noted; cout not flushed
bout.emit(); // characters transferred; cout flushed
bout << "Greetings." << '\n'; // no flush

} // characters transferred; cout not flushed
—end example]

3 [Example 2: The function emit() can be used to handle exceptions from operations on the underlying stream.
{
osyncstream bout(cout);
bout << "Hello, " << "World!" << '\n';
try {

bout.emit();
} catch (...) {// handle exception
}

}

—end example]
streambuf_type* get_wrapped() const noexcept;

4 Returns: sb.get_wrapped().
5 [Example 3: Obtaining the wrapped stream buffer with get_wrapped() allows wrapping it again with an osyncstream. Forexample,

{
osyncstream bout1(cout);
bout1 << "Hello, ";

§ 31.11.3.3 1552

© ISO/IEC N4910

{
osyncstream(bout1.get_wrapped()) << "Goodbye, " << "Planet!" << '\n';

}
bout1 << "World!" << '\n';

}

produces the uninterleaved output
Goodbye, Planet!
Hello, World!

—end example]
31.12 File systems [filesystems]
31.12.1 General [fs.general]

1 Subclause 31.12 describes operations on file systems and their components, such as paths, regular files, and directories.
2 A file system is a collection of files and their attributes.
3 A file is an object within a file system that holds user or system data. Files can be written to, or read from, or both. Afile has certain attributes, including type. File types include regular files and directories. Other types of files, such assymbolic links, may be supported by the implementation.
4 A directory is a file within a file system that acts as a container of directory entries that contain information about otherfiles, possibly including other directory files. The parent directory of a directory is the directory that both contains adirectory entry for the given directory and is represented by the dot-dot filename (31.12.6.2) in the given directory. Theparent directory of other types of files is a directory containing a directory entry for the file under discussion.
5 A link is an object that associates a filename with a file. Several links can associate names with the same file. A hardlink is a link to an existing file. Some file systems support multiple hard links to a file. If the last hard link to a file isremoved, the file itself is removed.
[Note 1: A hard link can be thought of as a shared-ownership smart pointer to a file. —end note]
A symbolic link is a type of file with the property that when the file is encountered during pathname resolution (31.12.6),a string stored by the file is used to modify the pathname resolution.
[Note 2: Symbolic links are often called symlinks. A symbolic link can be thought of as a raw pointer to a file. If the file pointed todoes not exist, the symbolic link is said to be a “dangling” symbolic link. —end note]
31.12.2 Conformance [fs.conformance]
31.12.2.1 General [fs.conformance.general]

1 Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the conformancesubclauses take that into account.
31.12.2.2 POSIX conformance [fs.conform.9945]

1 Some behavior is specified by reference to POSIX. How such behavior is actually implemented is unspecified.
[Note 1: This constitutes an “as if” rule allowing implementations to call native operating system or other APIs. —end note]

2 Implementations should provide such behavior as it is defined by POSIX. Implementations shall document any behaviorthat differs from the behavior defined by POSIX. Implementations that do not support exact POSIX behavior shouldprovide behavior as close to POSIX behavior as is reasonable given the limitations of actual operating systems and filesystems. If an implementation cannot provide any reasonable behavior, the implementation shall report an error asspecified in 31.12.5.
[Note 2: This allows users to rely on an exception being thrown or an error code being set when an implementation cannot provideany reasonable behavior. —end note]

3 Implementations are not required to provide behavior that is not supported by a particular file system.
[Example 1: The FAT file system used by some memory cards, camera memory, and floppy disks does not support hard links,symlinks, and many other features of more capable file systems, so implementations are not required to support those features on theFAT file system but instead are required to report an error as described above. —end example]

§ 31.12.2.2 1553

© ISO/IEC N4910

31.12.2.3 Operating system dependent behavior conformance [fs.conform.os]
1 Behavior that is specified as being operating system dependent is dependent upon the behavior and characteristics of anoperating system. The operating system an implementation is dependent upon is implementation-defined.
2 It is permissible for an implementation to be dependent upon an operating system emulator rather than the actualunderlying operating system.
31.12.2.4 File system race behavior [fs.race.behavior]

1 A file system race is the condition that occurs when multiple threads, processes, or computers interleave accessand modification of the same object within a file system. Behavior is undefined if calls to functions provided bysubclause 31.12 introduce a file system race.
2 If the possibility of a file system race would make it unreliable for a program to test for a precondition before calling afunction described herein, Preconditions: is not specified for the function.
[Note 1: As a design practice, preconditions are not specified when it is unreasonable for a program to detect them prior to calling thefunction. —end note]
31.12.3 Requirements [fs.req]

1 Throughout subclause 31.12, char, wchar_t, char8_t, char16_t, and char32_t are collectively called encoded char-acter types.
2 Functions with template parameters named EcharT shall not participate in overload resolution unless EcharT is one ofthe encoded character types.
3 Template parameters named InputIterator shall meet the Cpp17InputIterator requirements (25.3.5.3) and shall havea value type that is one of the encoded character types.
4 [Note 1: Use of an encoded character type implies an associated character set and encoding. Since signed char and unsigned charhave no implied character set and encoding, they are not included as permitted types. —end note]
5 Template parameters named Allocator shall meet the Cpp17Allocator requirements (16.4.4.6.1).
31.12.4 Header <filesystem> synopsis [fs.filesystem.syn]
#include <compare> // see 17.11.1
namespace std::filesystem {// 31.12.6, paths

class path;

// 31.12.6.8, path non-member functions
void swap(path& lhs, path& rhs) noexcept;
size_t hash_value(const path& p) noexcept;

// 31.12.7, filesystem errors
class filesystem_error;

// 31.12.10, directory entries
class directory_entry;

// 31.12.11, directory iterators
class directory_iterator;

// 31.12.11.3, range access for directory iterators
directory_iterator begin(directory_iterator iter) noexcept;
directory_iterator end(directory_iterator) noexcept;

// 31.12.12, recursive directory iterators
class recursive_directory_iterator;

// 31.12.12.3, range access for recursive directory iterators
recursive_directory_iterator begin(recursive_directory_iterator iter) noexcept;
recursive_directory_iterator end(recursive_directory_iterator) noexcept;

// 31.12.9, file status
class file_status;

§ 31.12.4 1554

© ISO/IEC N4910

struct space_info {
uintmax_t capacity;
uintmax_t free;
uintmax_t available;

friend bool operator==(const space_info&, const space_info&) = default;
};

// 31.12.8, enumerations
enum class file_type;
enum class perms;
enum class perm_options;
enum class copy_options;
enum class directory_options;

using file_time_type = chrono::time_point<chrono::file_clock>;

// 31.12.13, filesystem operations
path absolute(const path& p);
path absolute(const path& p, error_code& ec);

path canonical(const path& p);
path canonical(const path& p, error_code& ec);

void copy(const path& from, const path& to);
void copy(const path& from, const path& to, error_code& ec);
void copy(const path& from, const path& to, copy_options options);
void copy(const path& from, const path& to, copy_options options,

error_code& ec);

bool copy_file(const path& from, const path& to);
bool copy_file(const path& from, const path& to, error_code& ec);
bool copy_file(const path& from, const path& to, copy_options option);
bool copy_file(const path& from, const path& to, copy_options option,

error_code& ec);

void copy_symlink(const path& existing_symlink, const path& new_symlink);
void copy_symlink(const path& existing_symlink, const path& new_symlink,

error_code& ec) noexcept;

bool create_directories(const path& p);
bool create_directories(const path& p, error_code& ec);

bool create_directory(const path& p);
bool create_directory(const path& p, error_code& ec) noexcept;

bool create_directory(const path& p, const path& attributes);
bool create_directory(const path& p, const path& attributes,

error_code& ec) noexcept;

void create_directory_symlink(const path& to, const path& new_symlink);
void create_directory_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

void create_hard_link(const path& to, const path& new_hard_link);
void create_hard_link(const path& to, const path& new_hard_link,

error_code& ec) noexcept;

void create_symlink(const path& to, const path& new_symlink);
void create_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

path current_path();
path current_path(error_code& ec);

§ 31.12.4 1555

© ISO/IEC N4910

void current_path(const path& p);
void current_path(const path& p, error_code& ec) noexcept;

bool equivalent(const path& p1, const path& p2);
bool equivalent(const path& p1, const path& p2, error_code& ec) noexcept;

bool exists(file_status s) noexcept;
bool exists(const path& p);
bool exists(const path& p, error_code& ec) noexcept;

uintmax_t file_size(const path& p);
uintmax_t file_size(const path& p, error_code& ec) noexcept;

uintmax_t hard_link_count(const path& p);
uintmax_t hard_link_count(const path& p, error_code& ec) noexcept;

bool is_block_file(file_status s) noexcept;
bool is_block_file(const path& p);
bool is_block_file(const path& p, error_code& ec) noexcept;

bool is_character_file(file_status s) noexcept;
bool is_character_file(const path& p);
bool is_character_file(const path& p, error_code& ec) noexcept;

bool is_directory(file_status s) noexcept;
bool is_directory(const path& p);
bool is_directory(const path& p, error_code& ec) noexcept;

bool is_empty(const path& p);
bool is_empty(const path& p, error_code& ec);

bool is_fifo(file_status s) noexcept;
bool is_fifo(const path& p);
bool is_fifo(const path& p, error_code& ec) noexcept;

bool is_other(file_status s) noexcept;
bool is_other(const path& p);
bool is_other(const path& p, error_code& ec) noexcept;

bool is_regular_file(file_status s) noexcept;
bool is_regular_file(const path& p);
bool is_regular_file(const path& p, error_code& ec) noexcept;

bool is_socket(file_status s) noexcept;
bool is_socket(const path& p);
bool is_socket(const path& p, error_code& ec) noexcept;

bool is_symlink(file_status s) noexcept;
bool is_symlink(const path& p);
bool is_symlink(const path& p, error_code& ec) noexcept;

file_time_type last_write_time(const path& p);
file_time_type last_write_time(const path& p, error_code& ec) noexcept;
void last_write_time(const path& p, file_time_type new_time);
void last_write_time(const path& p, file_time_type new_time,

error_code& ec) noexcept;

void permissions(const path& p, perms prms, perm_options opts=perm_options::replace);
void permissions(const path& p, perms prms, error_code& ec) noexcept;
void permissions(const path& p, perms prms, perm_options opts, error_code& ec);

path proximate(const path& p, error_code& ec);
path proximate(const path& p, const path& base = current_path());
path proximate(const path& p, const path& base, error_code& ec);

§ 31.12.4 1556

© ISO/IEC N4910

path read_symlink(const path& p);
path read_symlink(const path& p, error_code& ec);

path relative(const path& p, error_code& ec);
path relative(const path& p, const path& base = current_path());
path relative(const path& p, const path& base, error_code& ec);

bool remove(const path& p);
bool remove(const path& p, error_code& ec) noexcept;

uintmax_t remove_all(const path& p);
uintmax_t remove_all(const path& p, error_code& ec);

void rename(const path& from, const path& to);
void rename(const path& from, const path& to, error_code& ec) noexcept;

void resize_file(const path& p, uintmax_t size);
void resize_file(const path& p, uintmax_t size, error_code& ec) noexcept;

space_info space(const path& p);
space_info space(const path& p, error_code& ec) noexcept;

file_status status(const path& p);
file_status status(const path& p, error_code& ec) noexcept;

bool status_known(file_status s) noexcept;

file_status symlink_status(const path& p);
file_status symlink_status(const path& p, error_code& ec) noexcept;

path temp_directory_path();
path temp_directory_path(error_code& ec);

path weakly_canonical(const path& p);
path weakly_canonical(const path& p, error_code& ec);

}

// 31.12.6.9, hash support
namespace std {

template<class T> struct hash;
template<> struct hash<filesystem::path>;

}

namespace std::ranges {
template<>
inline constexpr bool enable_borrowed_range<filesystem::directory_iterator> = true;

template<>
inline constexpr bool enable_borrowed_range<filesystem::recursive_directory_iterator> = true;

template<>
inline constexpr bool enable_view<filesystem::directory_iterator> = true;

template<>
inline constexpr bool enable_view<filesystem::recursive_directory_iterator> = true;

}

1 Implementations should ensure that the resolution and range of file_time_type reflect the operating system dependentresolution and range of file time values.
31.12.5 Error reporting [fs.err.report]

1 Filesystem library functions often provide two overloads, one that throws an exception to report file system errors, andanother that sets an error_code.
[Note 1: This supports two common use cases:

§ 31.12.5 1557

© ISO/IEC N4910

—(1.1) Uses where file system errors are truly exceptional and indicate a serious failure. Throwing an exception is an appropriateresponse.
—(1.2) Uses where file system errors are routine and do not necessarily represent failure. Returning an error code is the mostappropriate response. This allows application specific error handling, including simply ignoring the error.

—end note]
2 Functions not having an argument of type error_code& handle errors as follows, unless otherwise specified:

—(2.1) When a call by the implementation to an operating system or other underlying API results in an error thatprevents the function from meeting its specifications, an exception of type filesystem_error shall be thrown.For functions with a single path argument, that argument shall be passed to the filesystem_error constructorwith a single path argument. For functions with two path arguments, the first of these arguments shall be passed tothe filesystem_error constructor as the path1 argument, and the second shall be passed as the path2 argument.The filesystem_error constructor’s error_code argument is set as appropriate for the specific operating systemdependent error.
—(2.2) Failure to allocate storage is reported by throwing an exception as described in 16.4.6.13.
—(2.3) Destructors throw nothing.

3 Functions having an argument of type error_code& handle errors as follows, unless otherwise specified:
—(3.1) If a call by the implementation to an operating system or other underlying API results in an error that prevents thefunction from meeting its specifications, the error_code& argument is set as appropriate for the specific operatingsystem dependent error. Otherwise, clear() is called on the error_code& argument.

31.12.6 Class path [fs.class.path]
31.12.6.1 General [fs.class.path.general]

1 An object of class path represents a path and contains a pathname. Such an object is concerned only with the lexical andsyntactic aspects of a path. The path does not necessarily exist in external storage, and the pathname is not necessarilyvalid for the current operating system or for a particular file system.
2 [Note 1: Class path is used to support the differences between the string types used by different operating systems to representpathnames, and to perform conversions between encodings when necessary. —end note]
3 A path is a sequence of elements that identify the location of a file within a filesystem. The elements are the root-

nameopt , root-directoryopt , and an optional sequence of filenames (31.12.6.2). The maximum number of elements inthe sequence is operating system dependent (31.12.2.3).
4 An absolute path is a path that unambiguously identifies the location of a file without reference to an additional startinglocation. The elements of a path that determine if it is absolute are operating system dependent. A relative path is apath that is not absolute, and as such, only unambiguously identifies the location of a file when resolved relative to animplied starting location. The elements of a path that determine if it is relative are operating system dependent.
[Note 2: Pathnames “.” and “..” are relative paths. —end note]

5 A pathname is a character string that represents the name of a path. Pathnames are formatted according to the genericpathname format grammar (31.12.6.2) or according to an operating system dependent native pathname format acceptedby the host operating system.
6 Pathname resolution is the operating system dependent mechanism for resolving a pathname to a particular file in a filehierarchy. There may be multiple pathnames that resolve to the same file.
[Example 1: POSIX specifies the mechanism in section 4.12, Pathname resolution. —end example]
namespace std::filesystem {

class path {
public:
using value_type = see below;
using string_type = basic_string<value_type>;
static constexpr value_type preferred_separator = see below;

// 31.12.8.1, enumeration format
enum format;

// 31.12.6.5.1, constructors and destructor
path() noexcept;
path(const path& p);

§ 31.12.6.1 1558

© ISO/IEC N4910

path(path&& p) noexcept;
path(string_type&& source, format fmt = auto_format);
template<class Source>

path(const Source& source, format fmt = auto_format);
template<class InputIterator>

path(InputIterator first, InputIterator last, format fmt = auto_format);
template<class Source>

path(const Source& source, const locale& loc, format fmt = auto_format);
template<class InputIterator>

path(InputIterator first, InputIterator last, const locale& loc, format fmt = auto_format);
~path();

// 31.12.6.5.2, assignments
path& operator=(const path& p);
path& operator=(path&& p) noexcept;
path& operator=(string_type&& source);
path& assign(string_type&& source);
template<class Source>

path& operator=(const Source& source);
template<class Source>

path& assign(const Source& source);
template<class InputIterator>

path& assign(InputIterator first, InputIterator last);

// 31.12.6.5.3, appends
path& operator/=(const path& p);
template<class Source>

path& operator/=(const Source& source);
template<class Source>

path& append(const Source& source);
template<class InputIterator>

path& append(InputIterator first, InputIterator last);

// 31.12.6.5.4, concatenation
path& operator+=(const path& x);
path& operator+=(const string_type& x);
path& operator+=(basic_string_view<value_type> x);
path& operator+=(const value_type* x);
path& operator+=(value_type x);
template<class Source>

path& operator+=(const Source& x);
template<class EcharT>

path& operator+=(EcharT x);
template<class Source>

path& concat(const Source& x);
template<class InputIterator>

path& concat(InputIterator first, InputIterator last);

// 31.12.6.5.5, modifiers
void clear() noexcept;
path& make_preferred();
path& remove_filename();
path& replace_filename(const path& replacement);
path& replace_extension(const path& replacement = path());
void swap(path& rhs) noexcept;

// 31.12.6.8, non-member operators
friend bool operator==(const path& lhs, const path& rhs) noexcept;
friend strong_ordering operator<=>(const path& lhs, const path& rhs) noexcept;

friend path operator/(const path& lhs, const path& rhs);

// 31.12.6.5.6, native format observers
const string_type& native() const noexcept;

§ 31.12.6.1 1559

© ISO/IEC N4910

const value_type* c_str() const noexcept;
operator string_type() const;

template<class EcharT, class traits = char_traits<EcharT>,
class Allocator = allocator<EcharT>>

basic_string<EcharT, traits, Allocator>
string(const Allocator& a = Allocator()) const;

std::string string() const;
std::wstring wstring() const;
std::u8string u8string() const;
std::u16string u16string() const;
std::u32string u32string() const;

// 31.12.6.5.7, generic format observers
template<class EcharT, class traits = char_traits<EcharT>,

class Allocator = allocator<EcharT>>
basic_string<EcharT, traits, Allocator>

generic_string(const Allocator& a = Allocator()) const;
std::string generic_string() const;
std::wstring generic_wstring() const;
std::u8string generic_u8string() const;
std::u16string generic_u16string() const;
std::u32string generic_u32string() const;

// 31.12.6.5.8, compare
int compare(const path& p) const noexcept;
int compare(const string_type& s) const;
int compare(basic_string_view<value_type> s) const;
int compare(const value_type* s) const;

// 31.12.6.5.9, decomposition
path root_name() const;
path root_directory() const;
path root_path() const;
path relative_path() const;
path parent_path() const;
path filename() const;
path stem() const;
path extension() const;

// 31.12.6.5.10, query
[[nodiscard]] bool empty() const noexcept;
bool has_root_name() const;
bool has_root_directory() const;
bool has_root_path() const;
bool has_relative_path() const;
bool has_parent_path() const;
bool has_filename() const;
bool has_stem() const;
bool has_extension() const;
bool is_absolute() const;
bool is_relative() const;

// 31.12.6.5.11, generation
path lexically_normal() const;
path lexically_relative(const path& base) const;
path lexically_proximate(const path& base) const;

// 31.12.6.6, iterators
class iterator;
using const_iterator = iterator;

iterator begin() const;
iterator end() const;

§ 31.12.6.1 1560

© ISO/IEC N4910

// 31.12.6.7, path inserter and extractor
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const path& p);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, path& p);
};

}

7 value_type is a typedef for the operating system dependent encoded character type used to represent pathnames.
8 The value of the preferred_separator member is the operating system dependent preferred-separator character(31.12.6.2).
9 [Example 2: For POSIX-based operating systems, value_type is char and preferred_separator is the slash character (’/’). ForWindows-based operating systems, value_type is wchar_t and preferred_separator is the backslash character (L’\\’). —endexample]
31.12.6.2 Generic pathname format [fs.path.generic]

pathname :
root-nameopt root-directoryopt relative-path

root-name :operating system dependent sequences of charactersimplementation-defined sequences of characters
root-directory :

directory-separator

relative-path :
filename
filename directory-separator relative-pathan empty path

filename :non-empty sequence of characters other than directory-separator characters
directory-separator :

preferred-separator directory-separatoropt
fallback-separator directory-separatoropt

preferred-separator :operating system dependent directory separator character
fallback-separator :

/, if preferred-separator is not /
1 A filename is the name of a file. The dot and dot-dot filenames, consisting solely of one and two period charactersrespectively, have special meaning. The following characteristics of filenames are operating system dependent:

—(1.1) The permitted characters.
[Example 1: Some operating systems prohibit the ASCII control characters (0x00 – 0x1F) in filenames. —end example]
[Note 1: Wider portability can be achieved by limiting filename characters to the POSIX Portable Filename Character Set:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ - —end note]

—(1.2) The maximum permitted length.
—(1.3) Filenames that are not permitted.
—(1.4) Filenames that have special meaning.
—(1.5) Case awareness and sensitivity during path resolution.
—(1.6) Special rules that may apply to file types other than regular files, such as directories.

2 Except in a root-name, multiple successive directory-separator characters are considered to be the same as one
directory-separator character.

§ 31.12.6.2 1561

© ISO/IEC N4910

3 The dot filename is treated as a reference to the current directory. The dot-dot filename is treated as a reference to theparent directory. What the dot-dot filename refers to relative to root-directory is implementation-defined. Specificfilenames may have special meanings for a particular operating system.
4 A root-name identifies the starting location for pathname resolution (31.12.6). If there are no operating system dependent

root-names, at least one implementation-defined root-name is required.
[Note 2: Many operating systems define a name beginning with two directory-separator characters as a root-name that identifiesnetwork or other resource locations. Some operating systems define a single letter followed by a colon as a drive specifier – a
root-name identifying a specific device such as a disk drive. —end note]

5 If a root-name is otherwise ambiguous, the possibility with the longest sequence of characters is chosen.
[Note 3: On a POSIX-like operating system, it is impossible to have a root-name and a relative-path without an intervening
root-directory element. —end note]

6 Normalization of a generic format pathname means:
1. If the path is empty, stop.
2. Replace each slash character in the root-name with a preferred-separator .
3. Replace each directory-separator with a preferred-separator .
[Note 4: The generic pathname grammar defines directory-separator as one or more slashes and preferred-separators. —endnote]

4. Remove each dot filename and any immediately following directory-separator .
5. As long as any appear, remove a non-dot-dot filename immediately followed by a directory-separator and adot-dot filename, along with any immediately following directory-separator .
6. If there is a root-directory , remove all dot-dot filenames and any directory-separators immediately followingthem.
[Note 5: These dot-dot filenames attempt to refer to nonexistent parent directories. —end note]

7. If the last filename is dot-dot, remove any trailing directory-separator .
8. If the path is empty, add a dot.

The result of normalization is a path in normal form, which is said to be normalized.
31.12.6.3 Conversions [fs.path.cvt]
31.12.6.3.1 Argument format conversions [fs.path.fmt.cvt]

1 [Note 1: The format conversions described in this subclause are not applied on POSIX-based operating systems because on thesesystems:
—(1.1) The generic format is acceptable as a native path.
—(1.2) There is no need to distinguish between native format and generic format in function arguments.
—(1.3) Paths for regular files and paths for directories share the same syntax.

—end note]
2 Several functions are defined to accept detected-format arguments, which are character sequences. A detected-formatargument represents a path using either a pathname in the generic format (31.12.6.2) or a pathname in the nativeformat (31.12.6). Such an argument is taken to be in the generic format if and only if it matches the generic format andis not acceptable to the operating system as a native path.
3 [Note 2: Some operating systems have no unambiguous way to distinguish between native format and generic format arguments.This is by design as it simplifies use for operating systems that do not require disambiguation. An implementation for an operatingsystem where disambiguation is required is permitted to distinguish between the formats. —end note]
4 Pathnames are converted as needed between the generic and native formats in an operating-system-dependent manner.Let G(n) and N(g) in a mathematical sense be the implementation’s functions that convert native-to-generic andgeneric-to-native formats respectively. If g=G(n) for some n, then G(N(g))=g; if n=N(g) for some g, then N(G(n))=n.
[Note 3: Neither G nor N need be invertible. —end note]

5 If the native format requires paths for regular files to be formatted differently from paths for directories, the path shall betreated as a directory path if its last element is a directory-separator , otherwise it shall be treated as a path to a regularfile.

§ 31.12.6.3.1 1562

© ISO/IEC N4910

6 [Note 4: A path stores a native format pathname (31.12.6.5.6) and acts as if it also stores a generic format pathname, related as givenbelow. The implementation can generate the generic format pathname based on the native format pathname (and possibly otherinformation) when requested. —end note]
7 When a path is constructed from or is assigned a single representation separate from any path, the other representationis selected by the appropriate conversion function (G or N).
8 When the (new) value p of one representation of a path is derived from the representation of that or another path, avalue q is chosen for the other representation. The value q converts to p (by G or N as appropriate) if any such valuedoes so; q is otherwise unspecified.
[Note 5: If q is the result of converting any path at all, it is the result of converting p. —end note]
31.12.6.3.2 Type and encoding conversions [fs.path.type.cvt]

1 The native encoding of an ordinary character string is the operating system dependent current encoding for pathnames(31.12.6). The native encoding for wide character strings is the implementation-defined execution wide-character setencoding (16.3.3.3.5).
2 For member function arguments that take character sequences representing paths and for member functions returningstrings, value type and encoding conversion is performed if the value type of the argument or return value differs from

path::value_type. For the argument or return value, the method of conversion and the encoding to be converted to isdetermined by its value type:
—(2.1) char: The encoding is the native ordinary encoding. The method of conversion, if any, is operating systemdependent.

[Note 1: For POSIX-based operating systems path::value_type is char so no conversion from char value type argumentsor to char value type return values is performed. For Windows-based operating systems, the native ordinary encoding isdetermined by calling a Windows API function. —end note]
[Note 2: This results in behavior identical to other C and C++ standard library functions that perform file operations usingordinary character strings to identify paths. Changing this behavior would be surprising and error prone. —end note]

—(2.2) wchar_t: The encoding is the native wide encoding. The method of conversion is unspecified.
[Note 3: For Windows-based operating systems path::value_type is wchar_t so no conversion from wchar_t value typearguments or to wchar_t value type return values is performed. —end note]

—(2.3) char8_t: The encoding is UTF-8. The method of conversion is unspecified.
—(2.4) char16_t: The encoding is UTF-16. The method of conversion is unspecified.
—(2.5) char32_t: The encoding is UTF-32. The method of conversion is unspecified.

3 If the encoding being converted to has no representation for source characters, the resulting converted characters, if any,are unspecified. Implementations should not modify member function arguments if already of type path::value_type.
31.12.6.4 Requirements [fs.path.req]

1 In addition to the requirements (31.12.3), function template parameters named Source shall be one of:
—(1.1) basic_string<EcharT, traits, Allocator>. A function argument const Source& source shall have an ef-fective range [source.begin(), source.end()).
—(1.2) basic_string_view<EcharT, traits>. A function argument const Source& source shall have an effectiverange [source.begin(), source.end()).
—(1.3) A type meeting the Cpp17InputIterator requirements that iterates over a NTCTS. The value type shall be anencoded character type. A function argument const Source& source shall have an effective range [source, end)where end is the first iterator value with an element value equal to iterator_traits<Source>::value_type().
—(1.4) A character array that after array-to-pointer decay results in a pointer to the start of a NTCTS. The value typeshall be an encoded character type. A function argument const Source& source shall have an effective range

[source, end) where end is the first iterator value with an element value equal to iterator_traits<decay_-
t<Source>>::value_type().

2 Functions taking template parameters named Source shall not participate in overload resolution unless Source denotesa type other than path, and either
—(2.1) Source is a specialization of basic_string or basic_string_view, or
—(2.2) the qualified-id iterator_traits<decay_t<Source>>::value_type is valid and denotes a possibly const en-coded character type (13.10.3).

§ 31.12.6.4 1563

© ISO/IEC N4910

3 [Note 1: See path conversions (31.12.6.3) for how the value types above and their encodings convert to path::value_type and itsencoding. —end note]
4 Arguments of type Source shall not be null pointers.
31.12.6.5 Members [fs.path.member]
31.12.6.5.1 Constructors [fs.path.construct]

path() noexcept;

1 Postconditions: empty() == true.
path(const path& p);
path(path&& p) noexcept;

2 Effects: Constructs an object of class path having the same pathname in the native and generic formats, respectively,as the original value of p. In the second form, p is left in a valid but unspecified state.
path(string_type&& source, format fmt = auto_format);

3 Effects: Constructs an object of class path for which the pathname in the detected-format of source has theoriginal value of source (31.12.6.3.1), converting format if required (31.12.6.3.1). source is left in a valid butunspecified state.
template<class Source>

path(const Source& source, format fmt = auto_format);
template<class InputIterator>

path(InputIterator first, InputIterator last, format fmt = auto_format);

4 Effects: Let s be the effective range of source (31.12.6.4) or the range [first, last), with the encoding convertedif required (31.12.6.3). Finds the detected-format of s (31.12.6.3.1) and constructs an object of class path forwhich the pathname in that format is s.
template<class Source>

path(const Source& source, const locale& loc, format fmt = auto_format);
template<class InputIterator>

path(InputIterator first, InputIterator last, const locale& loc, format fmt = auto_format);

5 Mandates: The value type of Source and InputIterator is char.
6 Effects: Let s be the effective range of source or the range [first, last), after converting the encoding asfollows:

—(6.1) If value_type is wchar_t, converts to the native wide encoding (31.12.6.3.2) using the codecvt<wchar_t,
char, mbstate_t> facet of loc.

—(6.2) Otherwise a conversion is performed using the codecvt<wchar_t, char, mbstate_t> facet of loc, andthen a second conversion to the current ordinary encoding.
7 Finds the detected-format of s (31.12.6.3.1) and constructs an object of class path for which the pathname in thatformat is s.

[Example 1: A string is to be read from a database that is encoded in ISO/IEC 8859-1, and used to create a directory:
namespace fs = std::filesystem;
std::string latin1_string = read_latin1_data();
codecvt_8859_1<wchar_t> latin1_facet;
std::locale latin1_locale(std::locale(), latin1_facet);
fs::create_directory(fs::path(latin1_string, latin1_locale));

For POSIX-based operating systems, the path is constructed by first using latin1_facet to convert ISO/IEC 8859-1 encoded
latin1_string to a wide character string in the native wide encoding (31.12.6.3.2). The resulting wide string is then convertedto an ordinary character pathname string in the current native ordinary encoding. If the native wide encoding is UTF-16or UTF-32, and the current native ordinary encoding is UTF-8, all of the characters in the ISO/IEC 8859-1 character setwill be converted to their Unicode representation, but for other native ordinary encodings some characters may have norepresentation.
For Windows-based operating systems, the path is constructed by using latin1_facet to convert ISO/IEC 8859-1 encoded
latin1_string to a UTF-16 encoded wide character pathname string. All of the characters in the ISO/IEC 8859-1 characterset will be converted to their Unicode representation. —end example]

§ 31.12.6.5.1 1564

© ISO/IEC N4910

31.12.6.5.2 Assignments [fs.path.assign]

path& operator=(const path& p);

1 Effects: If *this and p are the same object, has no effect. Otherwise, sets both respective pathnames of *this tothe respective pathnames of p.
2 Returns: *this.

path& operator=(path&& p) noexcept;

3 Effects: If *this and p are the same object, has no effect. Otherwise, sets both respective pathnames of *this tothe respective pathnames of p. p is left in a valid but unspecified state.
[Note 1: A valid implementation is swap(p). —end note]

4 Returns: *this.
path& operator=(string_type&& source);
path& assign(string_type&& source);

5 Effects: Sets the pathname in the detected-format of source to the original value of source. source is left in avalid but unspecified state.
6 Returns: *this.

template<class Source>
path& operator=(const Source& source);

template<class Source>
path& assign(const Source& source);

template<class InputIterator>
path& assign(InputIterator first, InputIterator last);

7 Effects: Let s be the effective range of source (31.12.6.4) or the range [first, last), with the encoding convertedif required (31.12.6.3). Finds the detected-format of s (31.12.6.3.1) and sets the pathname in that format to s.
8 Returns: *this.
31.12.6.5.3 Appends [fs.path.append]

1 The append operations use operator/= to denote their semantic effect of appending preferred-separator when needed.
path& operator/=(const path& p);

2 Effects: If p.is_absolute() || (p.has_root_name() && p.root_name() != root_name()), then operator=(p).
3 Otherwise, modifies *this as if by these steps:

—(3.1) If p.has_root_directory(), then removes any root directory and relative path from the generic formatpathname. Otherwise, if !has_root_directory() && is_absolute() is true or if has_filename() is
true, then appends path::preferred_separator to the generic format pathname.

—(3.2) Then appends the native format pathname of p, omitting any root-name from its generic format pathname,to the native format pathname.
4 [Example 1: Even if //host is interpreted as a root-name, both of the paths path("//host")/"foo" and path("//host/")/"foo"equal "//host/foo" (although the former might use backslash as the preferred separator).

Expression examples:
// On POSIX,
path("foo") /= path(""); // yields path("foo/")
path("foo") /= path("/bar"); // yields path("/bar")
// On Windows,
path("foo") /= path(""); // yields path("foo\\")
path("foo") /= path("/bar"); // yields path("/bar")
path("foo") /= path("c:/bar"); // yields path("c:/bar")
path("foo") /= path("c:"); // yields path("c:")
path("c:") /= path(""); // yields path("c:")
path("c:foo") /= path("/bar"); // yields path("c:/bar")
path("c:foo") /= path("c:bar"); // yields path("c:foo\\bar")

§ 31.12.6.5.3 1565

© ISO/IEC N4910

—end example]
5 Returns: *this.

template<class Source>
path& operator/=(const Source& source);

template<class Source>
path& append(const Source& source);

6 Effects: Equivalent to: return operator/=(path(source));

template<class InputIterator>
path& append(InputIterator first, InputIterator last);

7 Effects: Equivalent to: return operator/=(path(first, last));

31.12.6.5.4 Concatenation [fs.path.concat]

path& operator+=(const path& x);
path& operator+=(const string_type& x);
path& operator+=(basic_string_view<value_type> x);
path& operator+=(const value_type* x);
template<class Source>

path& operator+=(const Source& x);
template<class Source>

path& concat(const Source& x);

1 Effects: Appends path(x).native() to the pathname in the native format.
[Note 1: This directly manipulates the value of native(), which is not necessarily portable between operating systems. —endnote]

2 Returns: *this.
path& operator+=(value_type x);
template<class EcharT>

path& operator+=(EcharT x);

3 Effects: Equivalent to: return *this += basic_string_view(&x, 1);

template<class InputIterator>
path& concat(InputIterator first, InputIterator last);

4 Effects: Equivalent to: return *this += path(first, last);

31.12.6.5.5 Modifiers [fs.path.modifiers]

void clear() noexcept;

1 Postconditions: empty() == true.
path& make_preferred();

2 Effects: Each directory-separator of the pathname in the generic format is converted to preferred-separator .
3 Returns: *this.
4 [Example 1:

path p("foo/bar");
std::cout << p << '\n';
p.make_preferred();
std::cout << p << '\n';

On an operating system where preferred-separator is a slash, the output is:
"foo/bar"
"foo/bar"

On an operating system where preferred-separator is a backslash, the output is:
"foo/bar"
"foo\bar"

—end example]
§ 31.12.6.5.5 1566

© ISO/IEC N4910

path& remove_filename();

5 Effects: Remove the generic format pathname of filename() from the generic format pathname.
6 Postconditions: !has_filename().
7 Returns: *this.
8 [Example 2:

path("foo/bar").remove_filename(); // yields "foo/"
path("foo/").remove_filename(); // yields "foo/"
path("/foo").remove_filename(); // yields "/"
path("/").remove_filename(); // yields "/"
—end example]

path& replace_filename(const path& replacement);

9 Effects: Equivalent to:
remove_filename();
operator/=(replacement);

10 Returns: *this.
11 [Example 3:

path("/foo").replace_filename("bar"); // yields "/bar" on POSIX
path("/").replace_filename("bar"); // yields "/bar" on POSIX
—end example]

path& replace_extension(const path& replacement = path());

12 Effects:
—(12.1) Any existing extension() (31.12.6.5.9) is removed from the pathname in the generic format, then
—(12.2) If replacement is not empty and does not begin with a dot character, a dot character is appended to thepathname in the generic format, then
—(12.3) operator+=(replacement);.

13 Returns: *this.
void swap(path& rhs) noexcept;

14 Effects: Swaps the contents (in all formats) of the two paths.
15 Complexity: Constant time.
31.12.6.5.6 Native format observers [fs.path.native.obs]

1 The string returned by all native format observers is in the native pathname format (31.12.6).
const string_type& native() const noexcept;

2 Returns: The pathname in the native format.
const value_type* c_str() const noexcept;

3 Effects: Equivalent to: return native().c_str();

operator string_type() const;

4 Returns: native().
template<class EcharT, class traits = char_traits<EcharT>,

class Allocator = allocator<EcharT>>
basic_string<EcharT, traits, Allocator>
string(const Allocator& a = Allocator()) const;

5 Returns: native().
6 Remarks: All memory allocation, including for the return value, shall be performed by a. Conversion, if any, isspecified by 31.12.6.3.

§ 31.12.6.5.6 1567

© ISO/IEC N4910

std::string string() const;
std::wstring wstring() const;
std::u8string u8string() const;
std::u16string u16string() const;
std::u32string u32string() const;

7 Returns: native().
8 Remarks: Conversion, if any, is performed as specified by 31.12.6.3.
31.12.6.5.7 Generic format observers [fs.path.generic.obs]

1 Generic format observer functions return strings formatted according to the generic pathname format (31.12.6.2). Asingle slash (’/’) character is used as the directory-separator .
2 [Example 1: On an operating system that uses backslash as its preferred-separator ,

path("foo\\bar").generic_string()

returns "foo/bar". —end example]
template<class EcharT, class traits = char_traits<EcharT>,

class Allocator = allocator<EcharT>>
basic_string<EcharT, traits, Allocator>
generic_string(const Allocator& a = Allocator()) const;

3 Returns: The pathname in the generic format.
4 Remarks: All memory allocation, including for the return value, shall be performed by a. Conversion, if any, isspecified by 31.12.6.3.

std::string generic_string() const;
std::wstring generic_wstring() const;
std::u8string generic_u8string() const;
std::u16string generic_u16string() const;
std::u32string generic_u32string() const;

5 Returns: The pathname in the generic format.
6 Remarks: Conversion, if any, is specified by 31.12.6.3.
31.12.6.5.8 Compare [fs.path.compare]

int compare(const path& p) const noexcept;

1 Returns:
—(1.1) Let rootNameComparison be the result of this->root_name().native().compare(p.root_name().native()).If rootNameComparison is not 0, rootNameComparison.
—(1.2) Otherwise, if !this->has_root_directory() and p.has_root_directory(), a value less than 0.
—(1.3) Otherwise, if this->has_root_directory() and !p.has_root_directory(), a value greater than 0.
—(1.4) Otherwise, if native() for the elements of this->relative_path() are lexicographically less than native()for the elements of p.relative_path(), a value less than 0.
—(1.5) Otherwise, if native() for the elements of this->relative_path() are lexicographically greater than

native() for the elements of p.relative_path(), a value greater than 0.
—(1.6) Otherwise, 0.

int compare(const string_type& s) const;
int compare(basic_string_view<value_type> s) const;
int compare(const value_type* s) const;

2 Effects: Equivalent to: return compare(path(s));

31.12.6.5.9 Decomposition [fs.path.decompose]

path root_name() const;

1 Returns: root-name, if the pathname in the generic format includes root-name, otherwise path().

§ 31.12.6.5.9 1568

© ISO/IEC N4910

path root_directory() const;

2 Returns: root-directory , if the pathname in the generic format includes root-directory , otherwise path().
path root_path() const;

3 Returns: root_name() / root_directory().
path relative_path() const;

4 Returns: A path composed from the pathname in the generic format, if empty() is false, beginning with thefirst filename after root_path(). Otherwise, path().
path parent_path() const;

5 Returns: *this if has_relative_path() is false, otherwise a path whose generic format pathname is the longestprefix of the generic format pathname of *this that produces one fewer element in its iteration.
path filename() const;

6 Returns: relative_path().empty() ? path() : *--end().
7 [Example 1:

path("/foo/bar.txt").filename(); // yields "bar.txt"
path("/foo/bar").filename(); // yields "bar"
path("/foo/bar/").filename(); // yields ""
path("/").filename(); // yields ""
path("//host").filename(); // yields ""
path(".").filename(); // yields "."
path("..").filename(); // yields ".."
—end example]

path stem() const;

8 Returns: Let f be the generic format pathname of filename(). Returns a path whose pathname in the genericformat is
—(8.1) f, if it contains no periods other than a leading period or consists solely of one or two periods;
—(8.2) otherwise, the prefix of f ending before its last period.

9 [Example 2:
std::cout << path("/foo/bar.txt").stem(); // outputs "bar"
path p = "foo.bar.baz.tar";
for (; !p.extension().empty(); p = p.stem())
std::cout << p.extension() << '\n';// outputs: .tar// .baz// .bar

—end example]
path extension() const;

10 Returns: A path whose pathname in the generic format is the suffix of filename() not included in stem().
11 [Example 3:

path("/foo/bar.txt").extension(); // yields ".txt" and stem() is "bar"
path("/foo/bar").extension(); // yields "" and stem() is "bar"
path("/foo/.profile").extension(); // yields "" and stem() is ".profile"
path(".bar").extension(); // yields "" and stem() is ".bar"
path("..bar").extension(); // yields ".bar" and stem() is "."
—end example]

12 [Note 1: The period is included in the return value so that it is possible to distinguish between no extension and an emptyextension. —end note]
13 [Note 2: On non-POSIX operating systems, for a path p, it is possible that p.stem() + p.extension() == p.filename() is

false, even though the generic format pathnames are the same. —end note]

§ 31.12.6.5.9 1569

© ISO/IEC N4910

31.12.6.5.10 Query [fs.path.query]

[[nodiscard]] bool empty() const noexcept;

1 Returns: true if the pathname in the generic format is empty, otherwise false.
bool has_root_path() const;

2 Returns: !root_path().empty().
bool has_root_name() const;

3 Returns: !root_name().empty().
bool has_root_directory() const;

4 Returns: !root_directory().empty().
bool has_relative_path() const;

5 Returns: !relative_path().empty().
bool has_parent_path() const;

6 Returns: !parent_path().empty().
bool has_filename() const;

7 Returns: !filename().empty().
bool has_stem() const;

8 Returns: !stem().empty().
bool has_extension() const;

9 Returns: !extension().empty().
bool is_absolute() const;

10 Returns: true if the pathname in the native format contains an absolute path (31.12.6), otherwise false.
11 [Example 1: path("/").is_absolute() is true for POSIX-based operating systems, and false for Windows-based operatingsystems. —end example]

bool is_relative() const;

12 Returns: !is_absolute().
31.12.6.5.11 Generation [fs.path.gen]

path lexically_normal() const;

1 Returns: A path whose pathname in the generic format is the normal form (31.12.6.2) of the pathname in thegeneric format of *this.
2 [Example 1:

assert(path("foo/./bar/..").lexically_normal() == "foo/");
assert(path("foo/.///bar/../").lexically_normal() == "foo/");

The above assertions will succeed. On Windows, the returned path’s directory-separator characters will be backslashes ratherthan slashes, but that does not affect path equality. —end example]
path lexically_relative(const path& base) const;

3 Effects: If:
—(3.1) root_name() != base.root_name() is true, or
—(3.2) is_absolute() != base.is_absolute() is true, or
—(3.3) !has_root_directory() && base.has_root_directory() is true, or
—(3.4) any filename in relative_path() or base.relative_path() can be interpreted as a root-name,

§ 31.12.6.5.11 1570

© ISO/IEC N4910

returns path().
[Note 1: On a POSIX implementation, no filename in a relative-path is acceptable as a root-name. —end note]
Determines the first mismatched element of *this and base as if by:
auto [a, b] = mismatch(begin(), end(), base.begin(), base.end());

Then,
—(3.5) if a == end() and b == base.end(), returns path("."); otherwise
—(3.6) let n be the number of filename elements in [b, base.end()) that are not dot or dot-dot or empty, minus thenumber that are dot-dot. If n<0, returns path(); otherwise
—(3.7) if n == 0 and (a == end() || a->empty()), returns path("."); otherwise
—(3.8) returns an object of class path that is default-constructed, followed by

—(3.8.1) application of operator/=(path("..")) n times, and then
—(3.8.2) application of operator/= for each element in [a, end()).

4 Returns: *this made relative to base. Does not resolve (31.12.6) symlinks. Does not first normalize (31.12.6.2)
*this or base.

5 [Example 2:
assert(path("/a/d").lexically_relative("/a/b/c") == "../../d");
assert(path("/a/b/c").lexically_relative("/a/d") == "../b/c");
assert(path("a/b/c").lexically_relative("a") == "b/c");
assert(path("a/b/c").lexically_relative("a/b/c/x/y") == "../..");
assert(path("a/b/c").lexically_relative("a/b/c") == ".");
assert(path("a/b").lexically_relative("c/d") == "../../a/b");

The above assertions will succeed. On Windows, the returned path’s directory-separator characters will be backslashes ratherthan slashes, but that does not affect path equality. —end example]
6 [Note 2: If symlink following semantics are desired, use the operational function relative(). —end note]
7 [Note 3: If normalization (31.12.6.2) is needed to ensure consistent matching of elements, apply lexically_normal() to

*this, base, or both. —end note]
path lexically_proximate(const path& base) const;

8 Returns: If the value of lexically_relative(base) is not an empty path, return it. Otherwise return *this.
9 [Note 4: If symlink following semantics are desired, use the operational function proximate(). —end note]
10 [Note 5: If normalization (31.12.6.2) is needed to ensure consistent matching of elements, apply lexically_normal() to

*this, base, or both. —end note]
31.12.6.6 Iterators [fs.path.itr]

1 Path iterators iterate over the elements of the pathname in the generic format (31.12.6.2).
2 A path::iterator is a constant iterator meeting all the requirements of a bidirectional iterator (25.3.5.6) except that,for dereferenceable iterators a and b of type path::iterator with a == b, there is no requirement that *a and *b arebound to the same object. Its value_type is path.
3 Calling any non-const member function of a path object invalidates all iterators referring to elements of that object.
4 For the elements of the pathname in the generic format, the forward traversal order is as follows:

—(4.1) The root-name element, if present.
—(4.2) The root-directory element, if present.

[Note 1: The generic format is required to ensure lexicographical comparison works correctly. —end note]
—(4.3) Each successive filename element, if present.
—(4.4) An empty element, if a trailing non-root directory-separator is present.

5 The backward traversal order is the reverse of forward traversal.
iterator begin() const;

6 Returns: An iterator for the first present element in the traversal list above. If no elements are present, the enditerator.
§ 31.12.6.6 1571

© ISO/IEC N4910

iterator end() const;

7 Returns: The end iterator.
31.12.6.7 Inserter and extractor [fs.path.io]

template<class charT, class traits>
friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const path& p);

1 Effects: Equivalent to os << quoted(p.string<charT, traits>()).
[Note 1: The quoted function is described in 31.7.8. —end note]

2 Returns: os.
template<class charT, class traits>

friend basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, path& p);

3 Effects: Equivalent to:
basic_string<charT, traits> tmp;
is >> quoted(tmp);
p = tmp;

4 Returns: is.
31.12.6.8 Non-member functions [fs.path.nonmember]

void swap(path& lhs, path& rhs) noexcept;

1 Effects: Equivalent to lhs.swap(rhs).
size_t hash_value(const path& p) noexcept;

2 Returns: A hash value for the path p. If for two paths, p1 == p2 then hash_value(p1) == hash_value(p2).
friend bool operator==(const path& lhs, const path& rhs) noexcept;

3 Returns: lhs.compare(rhs) == 0.
4 [Note 1: Path equality and path equivalence have different semantics.

—(4.1) Equality is determined by the path non-member operator==, which considers the two paths’ lexical representationsonly.
[Example 1: path("foo") == "bar" is never true. —end example]

—(4.2) Equivalence is determined by the equivalent() non-member function, which determines if two paths resolve (31.12.6)to the same file system entity.
[Example 2: equivalent("foo", "bar") will be true when both paths resolve to the same file. —end example]

—end note]
friend strong_ordering operator<=>(const path& lhs, const path& rhs) noexcept;

5 Returns: lhs.compare(rhs) <=> 0.
friend path operator/(const path& lhs, const path& rhs);

6 Effects: Equivalent to: return path(lhs) /= rhs;

31.12.6.9 Hash support [fs.path.hash]

template<> struct hash<filesystem::path>;

1 For an object p of type filesystem::path, hash<filesystem::path>()(p) evaluates to the same result as
filesystem::hash_value(p).

§ 31.12.6.9 1572

© ISO/IEC N4910

31.12.7 Class filesystem_error [fs.class.filesystem.error]
31.12.7.1 General [fs.class.filesystem.error.general]
namespace std::filesystem {

class filesystem_error : public system_error {
public:
filesystem_error(const string& what_arg, error_code ec);
filesystem_error(const string& what_arg,

const path& p1, error_code ec);
filesystem_error(const string& what_arg,

const path& p1, const path& p2, error_code ec);

const path& path1() const noexcept;
const path& path2() const noexcept;
const char* what() const noexcept override;

};
}

1 The class filesystem_error defines the type of objects thrown as exceptions to report file system errors from functionsdescribed in subclause 31.12.
31.12.7.2 Members [fs.filesystem.error.members]

1 Constructors are provided that store zero, one, or two paths associated with an error.
filesystem_error(const string& what_arg, error_code ec);

2 Postconditions:
—(2.1) code() == ec,
—(2.2) path1().empty() == true,
—(2.3) path2().empty() == true, and
—(2.4) string_view(what()).find(what_arg.c_str()) != string_view::npos.

filesystem_error(const string& what_arg, const path& p1, error_code ec);

3 Postconditions:
—(3.1) code() == ec,
—(3.2) path1() returns a reference to the stored copy of p1,
—(3.3) path2().empty() == true, and
—(3.4) string_view(what()).find(what_arg.c_str()) != string_view::npos.

filesystem_error(const string& what_arg, const path& p1, const path& p2, error_code ec);

4 Postconditions:
—(4.1) code() == ec,
—(4.2) path1() returns a reference to the stored copy of p1,
—(4.3) path2() returns a reference to the stored copy of p2, and
—(4.4) string_view(what()).find(what_arg.c_str()) != string_view::npos.

const path& path1() const noexcept;

5 Returns: A reference to the copy of p1 stored by the constructor, or, if none, an empty path.
const path& path2() const noexcept;

6 Returns: A reference to the copy of p2 stored by the constructor, or, if none, an empty path.
const char* what() const noexcept override;

7 Returns: An ntbs that incorporates the what_arg argument supplied to the constructor. The exact format isunspecified. Implementations should include the system_error::what() string and the pathnames of path1 and
path2 in the native format in the returned string.

§ 31.12.7.2 1573

© ISO/IEC N4910

31.12.8 Enumerations [fs.enum]
31.12.8.1 Enum path::format [fs.enum.path.format]

1 This enum specifies constants used to identify the format of the character sequence, with the meanings listed in Table 126.
Table 126: Enum path::format [tab:fs.enum.path.format]

Name Meaning
native_format The native pathname format.
generic_format The generic pathname format.
auto_format The interpretation of the format of the character sequence isimplementation-defined. The implementation may inspect the content ofthe character sequence to determine the format.Recommended practice: For POSIX-based systems, native and genericformats are equivalent and the character sequence should always be inter-preted in the same way.

31.12.8.2 Enum class file_type [fs.enum.file.type]
1 This enum class specifies constants used to identify file types, with the meanings listed in Table 127. The values of theconstants are distinct.

Table 127: Enum class file_type [tab:fs.enum.file.type]
Constant Meaning

none The type of the file has not been determined or an error occurred while trying todetermine the type.
not_found Pseudo-type indicating the file was not found.

[Note 1: The file not being found is not considered an error while determining the type of a
file. —end note]

regular Regular file
directory Directory file
symlink Symbolic link file
block Block special file
character Character special file
fifo FIFO or pipe file
socket Socket file
implementation-defined Implementations that support file systems having file types in addition to the above

file_type types shall supply implementation-defined file_type constants to sep-arately identify each of those additional file types
unknown The file exists but the type cannot be determined

31.12.8.3 Enum class copy_options [fs.enum.copy.opts]
1 The enum class type copy_options is a bitmask type (16.3.3.3.4) that specifies bitmask constants used to controlthe semantics of copy operations. The constants are specified in option groups with the meanings listed in Table 128.The constant none represents the empty bitmask, and is shown in each option group for purposes of exposition;implementations shall provide only a single definition. Every other constant in the table represents a distinct bitmaskelement.
31.12.8.4 Enum class perms [fs.enum.perms]

1 The enum class type perms is a bitmask type (16.3.3.3.4) that specifies bitmask constants used to identify file permis-sions, with the meanings listed in Table 129.
31.12.8.5 Enum class perm_options [fs.enum.perm.opts]

1 The enum class type perm_options is a bitmask type (16.3.3.3.4) that specifies bitmask constants used to control thesemantics of permissions operations, with the meanings listed in Table 130. The bitmask constants are bitmask elements.In Table 130 perm denotes a value of type perms passed to permissions.
§ 31.12.8.5 1574

© ISO/IEC N4910

Table 128: Enum class copy_options [tab:fs.enum.copy.opts]
Option group controlling copy_file function effects for existing target files

Constant Meaning
none (Default) Error; file already exists.
skip_existing Do not overwrite existing file, do not report an error.
overwrite_existing Overwrite the existing file.
update_existing Overwrite the existing file if it is older than the replacement file.

Option group controlling copy function effects for sub-directories
Constant Meaning

none (Default) Do not copy sub-directories.
recursive Recursively copy sub-directories and their contents.

Option group controlling copy function effects for symbolic links
Constant Meaning

none (Default) Follow symbolic links.
copy_symlinks Copy symbolic links as symbolic links rather than copying the files thatthey point to.
skip_symlinks Ignore symbolic links.

Option group controlling copy function effects for choosing the form of copying
Constant Meaning

none (Default) Copy content.
directories_only Copy directory structure only, do not copy non-directory files.
create_symlinks Make symbolic links instead of copies of files. The source path shall bean absolute path unless the destination path is in the current directory.
create_hard_links Make hard links instead of copies of files.

Table 129: Enum class perms [tab:fs.enum.perms]
Name Value POSIX Definition or notes

(octal) macro
none 0 There are no permissions set for the file.
owner_read 0400 S_IRUSR Read permission, owner
owner_write 0200 S_IWUSR Write permission, owner
owner_exec 0100 S_IXUSR Execute/search permission, owner
owner_all 0700 S_IRWXU Read, write, execute/search by owner;

owner_read | owner_write | owner_exec
group_read 040 S_IRGRP Read permission, group
group_write 020 S_IWGRP Write permission, group
group_exec 010 S_IXGRP Execute/search permission, group
group_all 070 S_IRWXG Read, write, execute/search by group;

group_read | group_write | group_exec
others_read 04 S_IROTH Read permission, others
others_write 02 S_IWOTH Write permission, others
others_exec 01 S_IXOTH Execute/search permission, others
others_all 07 S_IRWXO Read, write, execute/search by others;

others_read | others_write | others_exec
all 0777 owner_all | group_all | others_all
set_uid 04000 S_ISUID Set-user-ID on execution
set_gid 02000 S_ISGID Set-group-ID on execution
sticky_bit 01000 S_ISVTX Operating system dependent.
mask 07777 all | set_uid | set_gid | sticky_bit
unknown 0xFFFF The permissions are not known, such as when a file_-

status object is created without specifying the permissions

§ 31.12.8.5 1575

© ISO/IEC N4910

Table 130: Enum class perm_options [tab:fs.enum.perm.opts]
Name Meaning

replace permissions shall replace the file’s permission bits with perm
add permissions shall replace the file’s permission bits with the bitwise OR of permand the file’s current permission bits.
remove permissions shall replace the file’s permission bits with the bitwise AND of thecomplement of perm and the file’s current permission bits.
nofollow permissions shall change the permissions of a symbolic link itself rather than thepermissions of the file the link resolves to.

31.12.8.6 Enum class directory_options [fs.enum.dir.opts]
1 The enum class type directory_options is a bitmask type (16.3.3.3.4) that specifies bitmask constants used to identifydirectory traversal options, with the meanings listed in Table 131. The constant none represents the empty bitmask;every other constant in the table represents a distinct bitmask element.

Table 131: Enum class directory_options [tab:fs.enum.dir.opts]
Name Meaning

none (Default) Skip directory symlinks, permission deniedis an error.
follow_directory_symlink Follow rather than skip directory symlinks.
skip_permission_denied Skip directories that would otherwise result in permis-sion denied.

31.12.9 Class file_status [fs.class.file.status]
31.12.9.1 General [fs.class.file.status.general]
namespace std::filesystem {

class file_status {
public:// 31.12.9.2, constructors and destructor
file_status() noexcept : file_status(file_type::none) {}
explicit file_status(file_type ft,

perms prms = perms::unknown) noexcept;
file_status(const file_status&) noexcept = default;
file_status(file_status&&) noexcept = default;
~file_status();

// assignments
file_status& operator=(const file_status&) noexcept = default;
file_status& operator=(file_status&&) noexcept = default;

// 31.12.9.4, modifiers
void type(file_type ft) noexcept;
void permissions(perms prms) noexcept;

// 31.12.9.3, observers
file_type type() const noexcept;
perms permissions() const noexcept;

friend bool operator==(const file_status& lhs, const file_status& rhs) noexcept
{ return lhs.type() == rhs.type() && lhs.permissions() == rhs.permissions(); }

};
}

1 An object of type file_status stores information about the type and permissions of a file.

§ 31.12.9.1 1576

© ISO/IEC N4910

31.12.9.2 Constructors [fs.file.status.cons]

explicit file_status(file_type ft, perms prms = perms::unknown) noexcept;

1 Postconditions: type() == ft and permissions() == prms.
31.12.9.3 Observers [fs.file.status.obs]

file_type type() const noexcept;

1 Returns: The value of type() specified by the postconditions of the most recent call to a constructor, operator=,or type(file_type) function.
perms permissions() const noexcept;

2 Returns: The value of permissions() specified by the postconditions of the most recent call to a constructor,
operator=, or permissions(perms) function.

31.12.9.4 Modifiers [fs.file.status.mods]

void type(file_type ft) noexcept;

1 Postconditions: type() == ft.
void permissions(perms prms) noexcept;

2 Postconditions: permissions() == prms.
31.12.10 Class directory_entry [fs.class.directory.entry]
31.12.10.1 General [fs.class.directory.entry.general]
namespace std::filesystem {

class directory_entry {
public:// 31.12.10.2, constructors and destructor
directory_entry() noexcept = default;
directory_entry(const directory_entry&) = default;
directory_entry(directory_entry&&) noexcept = default;
explicit directory_entry(const filesystem::path& p);
directory_entry(const filesystem::path& p, error_code& ec);
~directory_entry();

// assignments
directory_entry& operator=(const directory_entry&) = default;
directory_entry& operator=(directory_entry&&) noexcept = default;

// 31.12.10.3, modifiers
void assign(const filesystem::path& p);
void assign(const filesystem::path& p, error_code& ec);
void replace_filename(const filesystem::path& p);
void replace_filename(const filesystem::path& p, error_code& ec);
void refresh();
void refresh(error_code& ec) noexcept;

// 31.12.10.4, observers
const filesystem::path& path() const noexcept;
operator const filesystem::path&() const noexcept;
bool exists() const;
bool exists(error_code& ec) const noexcept;
bool is_block_file() const;
bool is_block_file(error_code& ec) const noexcept;
bool is_character_file() const;
bool is_character_file(error_code& ec) const noexcept;
bool is_directory() const;
bool is_directory(error_code& ec) const noexcept;
bool is_fifo() const;
bool is_fifo(error_code& ec) const noexcept;
bool is_other() const;

§ 31.12.10.1 1577

© ISO/IEC N4910

bool is_other(error_code& ec) const noexcept;
bool is_regular_file() const;
bool is_regular_file(error_code& ec) const noexcept;
bool is_socket() const;
bool is_socket(error_code& ec) const noexcept;
bool is_symlink() const;
bool is_symlink(error_code& ec) const noexcept;
uintmax_t file_size() const;
uintmax_t file_size(error_code& ec) const noexcept;
uintmax_t hard_link_count() const;
uintmax_t hard_link_count(error_code& ec) const noexcept;
file_time_type last_write_time() const;
file_time_type last_write_time(error_code& ec) const noexcept;
file_status status() const;
file_status status(error_code& ec) const noexcept;
file_status symlink_status() const;
file_status symlink_status(error_code& ec) const noexcept;

bool operator==(const directory_entry& rhs) const noexcept;
strong_ordering operator<=>(const directory_entry& rhs) const noexcept;

// 31.12.10.5, inserter
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const directory_entry& d);

private:
filesystem::path pathobject; // exposition only
friend class directory_iterator; // exposition only

};
}

1 A directory_entry object stores a path object and may store additional objects for file attributes such as hard linkcount, status, symlink status, file size, and last write time.
2 Implementations should store such additional file attributes during directory iteration if their values are available andstoring the values would allow the implementation to eliminate file system accesses by directory_entry observerfunctions (31.12.13). Such stored file attribute values are said to be cached.
3 [Note 1: For purposes of exposition, class directory_iterator (31.12.11) is shown above as a friend of class directory_entry.Friendship allows the directory_iterator implementation to cache already available attribute values directly into a directory_-

entry object without the cost of an unneeded call to refresh(). —end note]
4 [Example 1:

using namespace std::filesystem;

// use possibly cached last write time to minimize disk accesses
for (auto&& x : directory_iterator("."))
{

std::cout << x.path() << " " << x.last_write_time() << std::endl;
}

// call refresh() to refresh a stale cache
for (auto&& x : directory_iterator("."))
{

lengthy_function(x.path()); // cache becomes stale
x.refresh();
std::cout << x.path() << " " << x.last_write_time() << std::endl;

}

On implementations that do not cache the last write time, both loopswill result in a potentially expensive call to the std::filesystem::last_-
write_time function. On implementations that do cache the last write time, the first loop will use the cached value and so will not resultin a potentially expensive call to the std::filesystem::last_write_time function. The code is portable to any implementation,regardless of whether or not it employs caching. —end example]

§ 31.12.10.1 1578

© ISO/IEC N4910

31.12.10.2 Constructors [fs.dir.entry.cons]

explicit directory_entry(const filesystem::path& p);
directory_entry(const filesystem::path& p, error_code& ec);

1 Effects: Calls refresh() or refresh(ec), respectively.
2 Postconditions: path() == p if no error occurs, otherwise path() == filesystem::path().
3 Throws: As specified in 31.12.5.
31.12.10.3 Modifiers [fs.dir.entry.mods]

void assign(const filesystem::path& p);
void assign(const filesystem::path& p, error_code& ec);

1 Effects: Equivalent to pathobject = p, then refresh() or refresh(ec), respectively. If an error occurs, thevalues of any cached attributes are unspecified.
2 Throws: As specified in 31.12.5.

void replace_filename(const filesystem::path& p);
void replace_filename(const filesystem::path& p, error_code& ec);

3 Effects: Equivalent to pathobject.replace_filename(p), then refresh() or refresh(ec), respectively. If anerror occurs, the values of any cached attributes are unspecified.
4 Throws: As specified in 31.12.5.

void refresh();
void refresh(error_code& ec) noexcept;

5 Effects: Stores the current values of any cached attributes of the file p resolves to. If an error occurs, an error isreported (31.12.5) and the values of any cached attributes are unspecified.
6 Throws: As specified in 31.12.5.
7 [Note 1: Implementations of directory_iterator (31.12.11) are prohibited from directly or indirectly calling the refreshfunction as described in 31.12.11.1. —end note]
31.12.10.4 Observers [fs.dir.entry.obs]

1 Unqualified function names in the Returns: elements of the directory_entry observers described below refer tomembers of the std::filesystem namespace.
const filesystem::path& path() const noexcept;
operator const filesystem::path&() const noexcept;

2 Returns: pathobject.
bool exists() const;
bool exists(error_code& ec) const noexcept;

3 Returns: exists(this->status()) or exists(this->status(ec)), respectively.
4 Throws: As specified in 31.12.5.

bool is_block_file() const;
bool is_block_file(error_code& ec) const noexcept;

5 Returns: is_block_file(this->status()) or is_block_file(this->status(ec)), respectively.
6 Throws: As specified in 31.12.5.

bool is_character_file() const;
bool is_character_file(error_code& ec) const noexcept;

7 Returns: is_character_file(this->status()) or is_character_file(this->status(ec)), respectively.
8 Throws: As specified in 31.12.5.

bool is_directory() const;
bool is_directory(error_code& ec) const noexcept;

9 Returns: is_directory(this->status()) or is_directory(this->status(ec)), respectively.
§ 31.12.10.4 1579

© ISO/IEC N4910

10 Throws: As specified in 31.12.5.
bool is_fifo() const;
bool is_fifo(error_code& ec) const noexcept;

11 Returns: is_fifo(this->status()) or is_fifo(this->status(ec)), respectively.
12 Throws: As specified in 31.12.5.

bool is_other() const;
bool is_other(error_code& ec) const noexcept;

13 Returns: is_other(this->status()) or is_other(this->status(ec)), respectively.
14 Throws: As specified in 31.12.5.

bool is_regular_file() const;
bool is_regular_file(error_code& ec) const noexcept;

15 Returns: is_regular_file(this->status()) or is_regular_file(this->status(ec)), respectively.
16 Throws: As specified in 31.12.5.

bool is_socket() const;
bool is_socket(error_code& ec) const noexcept;

17 Returns: is_socket(this->status()) or is_socket(this->status(ec)), respectively.
18 Throws: As specified in 31.12.5.

bool is_symlink() const;
bool is_symlink(error_code& ec) const noexcept;

19 Returns: is_symlink(this->symlink_status()) or is_symlink(this->symlink_status(ec)), respectively.
20 Throws: As specified in 31.12.5.

uintmax_t file_size() const;
uintmax_t file_size(error_code& ec) const noexcept;

21 Returns: If cached, the file size attribute value. Otherwise, file_size(path()) or file_size(path(), ec),respectively.
22 Throws: As specified in 31.12.5.

uintmax_t hard_link_count() const;
uintmax_t hard_link_count(error_code& ec) const noexcept;

23 Returns: If cached, the hard link count attribute value. Otherwise, hard_link_count(path()) or hard_link_-
count(path(), ec), respectively.

24 Throws: As specified in 31.12.5.
file_time_type last_write_time() const;
file_time_type last_write_time(error_code& ec) const noexcept;

25 Returns: If cached, the last write time attribute value. Otherwise, last_write_time(path()) or last_write_-
time(path(), ec), respectively.

26 Throws: As specified in 31.12.5.
file_status status() const;
file_status status(error_code& ec) const noexcept;

27 Returns: If cached, the status attribute value. Otherwise, status(path()) or status(path(), ec), respectively.
28 Throws: As specified in 31.12.5.

file_status symlink_status() const;
file_status symlink_status(error_code& ec) const noexcept;

29 Returns: If cached, the symlink status attribute value. Otherwise, symlink_status(path()) or symlink_-
status(path(), ec), respectively.

30 Throws: As specified in 31.12.5.
§ 31.12.10.4 1580

© ISO/IEC N4910

bool operator==(const directory_entry& rhs) const noexcept;

31 Returns: pathobject == rhs.pathobject.
strong_ordering operator<=>(const directory_entry& rhs) const noexcept;

32 Returns: pathobject <=> rhs.pathobject.
31.12.10.5 Inserter [fs.dir.entry.io]

template<class charT, class traits>
friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const directory_entry& d);

1 Effects: Equivalent to: return os << d.path();

31.12.11 Class directory_iterator [fs.class.directory.iterator]
31.12.11.1 General [fs.class.directory.iterator.general]

1 An object of type directory_iterator provides an iterator for a sequence of directory_entry elements representingthe path and any cached attribute values (31.12.10) for each file in a directory or in an implementation-defined directory-like file type.
[Note 1: For iteration into sub-directories, see class recursive_directory_iterator (31.12.12). —end note]
namespace std::filesystem {

class directory_iterator {
public:

using iterator_category = input_iterator_tag;
using value_type = directory_entry;
using difference_type = ptrdiff_t;
using pointer = const directory_entry*;
using reference = const directory_entry&;

// 31.12.11.2, member functions
directory_iterator() noexcept;
explicit directory_iterator(const path& p);
directory_iterator(const path& p, directory_options options);
directory_iterator(const path& p, error_code& ec);
directory_iterator(const path& p, directory_options options,

error_code& ec);
directory_iterator(const directory_iterator& rhs);
directory_iterator(directory_iterator&& rhs) noexcept;
~directory_iterator();

directory_iterator& operator=(const directory_iterator& rhs);
directory_iterator& operator=(directory_iterator&& rhs) noexcept;

const directory_entry& operator*() const;
const directory_entry* operator->() const;
directory_iterator& operator++();
directory_iterator& increment(error_code& ec);

// other members as required by 25.3.5.3, input iterators
};

}

2 directory_iterator meets the Cpp17InputIterator requirements (25.3.5.3).
3 If an iterator of type directory_iterator reports an error or is advanced past the last directory element, that iteratorshall become equal to the end iterator value. The directory_iterator default constructor shall create an iterator equalto the end iterator value, and this shall be the only valid iterator for the end condition.
4 The end iterator is not dereferenceable.
5 Two end iterators are always equal. An end iterator shall not be equal to a non-end iterator.

§ 31.12.11.1 1581

© ISO/IEC N4910

6 The result of calling the path() member of the directory_entry object obtained by dereferencing a directory_-
iterator is a reference to a path object composed of the directory argument from which the iterator was constructedwith the filename of the directory entry appended as if by operator/=.

7 Directory iteration shall not yield directory entries for the current (dot) and parent (dot-dot) directories.
8 The order of directory entries obtained by dereferencing successive increments of a directory_iterator is unspecified.
9 Constructors and non-const directory_iteratormember functions store the values of any cached attributes (31.12.10)in the directory_entry element returned by operator*(). directory_iterator member functions shall not directlyor indirectly call any directory_entry refresh function.
[Note 2: The exact mechanism for storing cached attribute values is not exposed to users. For exposition, class directory_iteratoris shown in 31.12.10 as a friend of class directory_entry. —end note]

10 [Note 3: A path obtained by dereferencing a directory iterator might not actually exist; it could be a symbolic link to a non-existentfile. Recursively walking directory trees for purposes of removing and renaming entries might invalidate symbolic links that arebeing followed. —end note]
11 [Note 4: If a file is removed from or added to a directory after the construction of a directory_iterator for the directory, it isunspecified whether or not subsequently incrementing the iterator will ever result in an iterator referencing the removed or addeddirectory entry. See POSIX readdir. —end note]
31.12.11.2 Members [fs.dir.itr.members]

directory_iterator() noexcept;

1 Effects: Constructs the end iterator.
explicit directory_iterator(const path& p);
directory_iterator(const path& p, directory_options options);
directory_iterator(const path& p, error_code& ec);
directory_iterator(const path& p, directory_options options, error_code& ec);

2 Effects: For the directory that p resolves to, constructs an iterator for the first element in a sequence of directory_-
entry elements representing the files in the directory, if any; otherwise the end iterator. However, if
(options & directory_options::skip_permission_denied) != directory_options::none

and construction encounters an error indicating that permission to access p is denied, constructs the end iteratorand does not report an error.
3 Throws: As specified in 31.12.5.
4 [Note 1: To iterate over the current directory, use directory_iterator(".") rather than directory_iterator(""). —endnote]

directory_iterator(const directory_iterator& rhs);
directory_iterator(directory_iterator&& rhs) noexcept;

5 Postconditions: *this has the original value of rhs.
directory_iterator& operator=(const directory_iterator& rhs);
directory_iterator& operator=(directory_iterator&& rhs) noexcept;

6 Effects: If *this and rhs are the same object, the member has no effect.
7 Postconditions: *this has the original value of rhs.
8 Returns: *this.

directory_iterator& operator++();
directory_iterator& increment(error_code& ec);

9 Effects: As specified for the prefix increment operation of Input iterators (25.3.5.3).
10 Returns: *this.
11 Throws: As specified in 31.12.5.
31.12.11.3 Non-member functions [fs.dir.itr.nonmembers]

1 These functions enable range access for directory_iterator.

§ 31.12.11.3 1582

© ISO/IEC N4910

directory_iterator begin(directory_iterator iter) noexcept;

2 Returns: iter.
directory_iterator end(directory_iterator) noexcept;

3 Returns: directory_iterator().
31.12.12 Class recursive_directory_iterator [fs.class.rec.dir.itr]
31.12.12.1 General [fs.class.rec.dir.itr.general]

1 An object of type recursive_directory_iterator provides an iterator for a sequence of directory_entry elementsrepresenting the files in a directory or in an implementation-defined directory-like file type, and its sub-directories.
namespace std::filesystem {

class recursive_directory_iterator {
public:
using iterator_category = input_iterator_tag;
using value_type = directory_entry;
using difference_type = ptrdiff_t;
using pointer = const directory_entry*;
using reference = const directory_entry&;

// 31.12.12.2, constructors and destructor
recursive_directory_iterator() noexcept;
explicit recursive_directory_iterator(const path& p);
recursive_directory_iterator(const path& p, directory_options options);
recursive_directory_iterator(const path& p, directory_options options,

error_code& ec);
recursive_directory_iterator(const path& p, error_code& ec);
recursive_directory_iterator(const recursive_directory_iterator& rhs);
recursive_directory_iterator(recursive_directory_iterator&& rhs) noexcept;
~recursive_directory_iterator();

// 31.12.12.2, observers
directory_options options() const;
int depth() const;
bool recursion_pending() const;

const directory_entry& operator*() const;
const directory_entry* operator->() const;

// 31.12.12.2, modifiers
recursive_directory_iterator&

operator=(const recursive_directory_iterator& rhs);
recursive_directory_iterator&

operator=(recursive_directory_iterator&& rhs) noexcept;

recursive_directory_iterator& operator++();
recursive_directory_iterator& increment(error_code& ec);

void pop();
void pop(error_code& ec);
void disable_recursion_pending();

// other members as required by 25.3.5.3, input iterators
};

}

2 Calling options, depth, recursion_pending, pop or disable_recursion_pending on an iterator that is not derefer-enceable results in undefined behavior.
3 The behavior of a recursive_directory_iterator is the same as a directory_iterator unless otherwise specified.
4 [Note 1: If the directory structure being iterated over contains cycles then it is possible that the end iterator is unreachable. —endnote]

§ 31.12.12.1 1583

© ISO/IEC N4910

31.12.12.2 Members [fs.rec.dir.itr.members]

recursive_directory_iterator() noexcept;

1 Effects: Constructs the end iterator.
explicit recursive_directory_iterator(const path& p);
recursive_directory_iterator(const path& p, directory_options options);
recursive_directory_iterator(const path& p, directory_options options, error_code& ec);
recursive_directory_iterator(const path& p, error_code& ec);

2 Effects: Constructs an iterator representing the first entry in the directory to which p resolves, if any; otherwise,the end iterator. However, if
(options & directory_options::skip_permission_denied) != directory_options::none

and construction encounters an error indicating that permission to access p is denied, constructs the end iteratorand does not report an error.
3 Postconditions: options() == options for the signatures with a directory_options argument, otherwise

options() == directory_options::none.
4 Throws: As specified in 31.12.5.
5 [Note 1: Use recursive_directory_iterator(".") rather than recursive_directory_iterator("") to iterate over thecurrent directory. —end note]
6 [Note 2: By default, recursive_directory_iterator does not follow directory symlinks. To follow directory symlinks,specify options as directory_options::follow_directory_symlink. —end note]

recursive_directory_iterator(const recursive_directory_iterator& rhs);

7 Postconditions:
—(7.1) options() == rhs.options()

—(7.2) depth() == rhs.depth()

—(7.3) recursion_pending() == rhs.recursion_pending()

recursive_directory_iterator(recursive_directory_iterator&& rhs) noexcept;

8 Postconditions: options(), depth(), and recursion_pending() have the values that rhs.options(), rhs.depth(),and rhs.recursion_pending(), respectively, had before the function call.
recursive_directory_iterator& operator=(const recursive_directory_iterator& rhs);

9 Effects: If *this and rhs are the same object, the member has no effect.
10 Postconditions:

—(10.1) options() == rhs.options()

—(10.2) depth() == rhs.depth()

—(10.3) recursion_pending() == rhs.recursion_pending()
11 Returns: *this.

recursive_directory_iterator& operator=(recursive_directory_iterator&& rhs) noexcept;

12 Effects: If *this and rhs are the same object, the member has no effect.
13 Postconditions: options(), depth(), and recursion_pending() have the values that rhs.options(), rhs.depth(),and rhs.recursion_pending(), respectively, had before the function call.
14 Returns: *this.

directory_options options() const;

15 Returns: The value of the argument passed to the constructor for the options parameter, if present, otherwise
directory_options::none.

16 Throws: Nothing.

§ 31.12.12.2 1584

© ISO/IEC N4910

int depth() const;

17 Returns: The current depth of the directory tree being traversed.
[Note 3: The initial directory is depth 0, its immediate subdirectories are depth 1, and so forth. —end note]

18 Throws: Nothing.
bool recursion_pending() const;

19 Returns: true if disable_recursion_pending() has not been called subsequent to the prior construction orincrement operation, otherwise false.
20 Throws: Nothing.

recursive_directory_iterator& operator++();
recursive_directory_iterator& increment(error_code& ec);

21 Effects: As specified for the prefix increment operation of Input iterators (25.3.5.3), except that:
—(21.1) If there are no more entries at the current depth, then if depth() != 0 iteration over the parent directoryresumes; otherwise *this = recursive_directory_iterator().
—(21.2) Otherwise if

recursion_pending() && is_directory((*this)->status()) &&
(!is_symlink((*this)->symlink_status()) ||
(options() & directory_options::follow_directory_symlink) != directory_options::none)

then either directory (*this)->path() is recursively iterated into or, if
(options() & directory_options::skip_permission_denied) != directory_options::none

and an error occurs indicating that permission to access directory (*this)->path() is denied, then directory
(*this)->path() is treated as an empty directory and no error is reported.

22 Returns: *this.
23 Throws: As specified in 31.12.5.

void pop();
void pop(error_code& ec);

24 Effects: If depth() == 0, set *this to recursive_directory_iterator(). Otherwise, cease iteration of thedirectory currently being iterated over, and continue iteration over the parent directory.
25 Throws: As specified in 31.12.5.
26 Remarks: Any copies of the previous value of *this are no longer required to be dereferenceable nor to be in thedomain of ==.

void disable_recursion_pending();

27 Postconditions: recursion_pending() == false.
28 [Note 4: disable_recursion_pending() is used to prevent unwanted recursion into a directory. —end note]
31.12.12.3 Non-member functions [fs.rec.dir.itr.nonmembers]

1 These functions enable use of recursive_directory_iterator with range-based for statements.
recursive_directory_iterator begin(recursive_directory_iterator iter) noexcept;

2 Returns: iter.
recursive_directory_iterator end(recursive_directory_iterator) noexcept;

3 Returns: recursive_directory_iterator().
31.12.13 Filesystem operation functions [fs.op.funcs]
31.12.13.1 General [fs.op.funcs.general]

1 Filesystem operation functions query or modify files, including directories, in external storage.
2 [Note 1: Because hardware failures, network failures, file system races (31.12.2.4), and many other kinds of errors occur frequentlyin file system operations, any filesystem operation function, no matter how apparently innocuous, can encounter an error; see 31.12.5.—end note]
§ 31.12.13.1 1585

© ISO/IEC N4910

31.12.13.2 Absolute [fs.op.absolute]

path filesystem::absolute(const path& p);
path filesystem::absolute(const path& p, error_code& ec);

1 Effects: Composes an absolute path referencing the same file system location as p according to the operatingsystem (31.12.2.3).
2 Returns: The composed path. The signature with argument ec returns path() if an error occurs.
3 [Note 1: For the returned path, rp, rp.is_absolute() is true unless an error occurs. —end note]
4 Throws: As specified in 31.12.5.
5 [Note 2: To resolve symlinks or perform other sanitization that can involve queries to secondary storage, such as hard disks,consider canonical (31.12.13.3). —end note]
6 [Note 3: Implementations are strongly encouraged to not query secondary storage, and not consider !exists(p) an error.—end note]
7 [Example 1: For POSIX-based operating systems, absolute(p) is simply current_path()/p. For Windows-based operatingsystems, absolute might have the same semantics as GetFullPathNameW. —end example]
31.12.13.3 Canonical [fs.op.canonical]

path filesystem::canonical(const path& p);
path filesystem::canonical(const path& p, error_code& ec);

1 Effects: Converts p to an absolute path that has no symbolic link, dot, or dot-dot elements in its pathname in thegeneric format.
2 Returns: A path that refers to the same file system object as absolute(p). The signature with argument ec returns

path() if an error occurs.
3 Throws: As specified in 31.12.5.
4 Remarks: !exists(p) is an error.
31.12.13.4 Copy [fs.op.copy]

void filesystem::copy(const path& from, const path& to);

1 Effects: Equivalent to copy(from, to, copy_options::none).
void filesystem::copy(const path& from, const path& to, error_code& ec);

2 Effects: Equivalent to copy(from, to, copy_options::none, ec).
void filesystem::copy(const path& from, const path& to, copy_options options);
void filesystem::copy(const path& from, const path& to, copy_options options,

error_code& ec);

3 Preconditions: At most one element from each option group (31.12.8.3) is set in options.
4 Effects: Before the first use of f and t:

—(4.1) If
(options & copy_options::create_symlinks) != copy_options::none ||
(options & copy_options::skip_symlinks) != copy_options::none

then auto f = symlink_status(from) and if needed auto t = symlink_status(to).
—(4.2) Otherwise, if

(options & copy_options::copy_symlinks) != copy_options::none

then auto f = symlink_status(from) and if needed auto t = status(to).
—(4.3) Otherwise, auto f = status(from) and if needed auto t = status(to).
Effects are then as follows:
—(4.4) If f.type() or t.type() is an implementation-defined file type (31.12.8.2), then the effects are implementation-defined.
—(4.5) Otherwise, an error is reported as specified in 31.12.5 if:

§ 31.12.13.4 1586

© ISO/IEC N4910

—(4.5.1) exists(f) is false, or
—(4.5.2) equivalent(from, to) is true, or
—(4.5.3) is_other(f) || is_other(t) is true, or
—(4.5.4) is_directory(f) && is_regular_file(t) is true.

—(4.6) Otherwise, if is_symlink(f), then:
—(4.6.1) If (options & copy_options::skip_symlinks) != copy_options::none then return.
—(4.6.2) Otherwise if

!exists(t) && (options & copy_options::copy_symlinks) != copy_options::none

then copy_symlink(from, to).
—(4.6.3) Otherwise report an error as specified in 31.12.5.

—(4.7) Otherwise, if is_regular_file(f), then:
—(4.7.1) If (options & copy_options::directories_only) != copy_options::none, then return.
—(4.7.2) Otherwise, if (options & copy_options::create_symlinks) != copy_options::none, then cre-ate a symbolic link to the source file.
—(4.7.3) Otherwise, if (options & copy_options::create_hard_links) != copy_options::none, then cre-ate a hard link to the source file.
—(4.7.4) Otherwise, if is_directory(t), then copy_file(from, to/from.filename(), options).
—(4.7.5) Otherwise, copy_file(from, to, options).

—(4.8) Otherwise, if
is_directory(f) &&
(options & copy_options::create_symlinks) != copy_options::none

then report an error with an error_code argument equal to make_error_code(errc::is_a_directory).
—(4.9) Otherwise, if

is_directory(f) &&
((options & copy_options::recursive) != copy_options::none ||
options == copy_options::none)

then:
—(4.9.1) If exists(t) is false, then create_directory(to, from).
—(4.9.2) Then, iterate over the files in from, as if by

for (const directory_entry& x : directory_iterator(from))
copy(x.path(), to/x.path().filename(),

options | copy_options::in-recursive-copy);

where in-recursive-copy is a bitmask element of copy_options that is not one of the elementsin 31.12.8.3.
—(4.10) Otherwise, for the signature with argument ec, ec.clear().
—(4.11) Otherwise, no effects.

5 Throws: As specified in 31.12.5.
6 Remarks: For the signature with argument ec, any library functions called by the implementation shall have an

error_code argument if applicable.
7 [Example 1: Given this directory structure:

/dir1
file1
file2
dir2

file3

Calling copy("/dir1", "/dir3") would result in:

§ 31.12.13.4 1587

© ISO/IEC N4910

/dir1
file1
file2
dir2

file3
/dir3
file1
file2

Alternatively, calling copy("/dir1", "/dir3", copy_options::recursive) would result in:
/dir1
file1
file2
dir2

file3
/dir3
file1
file2
dir2

file3

—end example]
31.12.13.5 Copy file [fs.op.copy.file]

bool filesystem::copy_file(const path& from, const path& to);
bool filesystem::copy_file(const path& from, const path& to, error_code& ec);

1 Returns: copy_file(from, to, copy_options::none) or
copy_file(from, to, copy_options::none, ec), respectively.

2 Throws: As specified in 31.12.5.
bool filesystem::copy_file(const path& from, const path& to, copy_options options);
bool filesystem::copy_file(const path& from, const path& to, copy_options options,

error_code& ec);

3 Preconditions: At most one element from each option group (31.12.8.3) is set in options.
4 Effects: As follows:

—(4.1) Report an error as specified in 31.12.5 if:
—(4.1.1) is_regular_file(from) is false, or
—(4.1.2) exists(to) is true and is_regular_file(to) is false, or
—(4.1.3) exists(to) is true and equivalent(from, to) is true, or
—(4.1.4) exists(to) is true and

(options & (copy_options::skip_existing |
copy_options::overwrite_existing |
copy_options::update_existing)) == copy_options::none

—(4.2) Otherwise, copy the contents and attributes of the file from resolves to, to the file to resolves to, if:
—(4.2.1) exists(to) is false, or
—(4.2.2) (options & copy_options::overwrite_existing) != copy_options::none, or
—(4.2.3) (options & copy_options::update_existing) != copy_options::none and from is more re-cent than to, determined as if by use of the last_write_time function (31.12.13.26).

—(4.3) Otherwise, no effects.
5 Returns: true if the from file was copied, otherwise false. The signature with argument ec returns false if anerror occurs.
6 Throws: As specified in 31.12.5.
7 Complexity: At most one direct or indirect invocation of status(to).

§ 31.12.13.5 1588

© ISO/IEC N4910

31.12.13.6 Copy symlink [fs.op.copy.symlink]

void filesystem::copy_symlink(const path& existing_symlink, const path& new_symlink);
void filesystem::copy_symlink(const path& existing_symlink, const path& new_symlink,

error_code& ec) noexcept;

1 Effects: Equivalent to function(read_symlink(existing_symlink), new_symlink) or
function(read_symlink(existing_symlink, ec), new_symlink, ec), respectively, where in each case functionis create_symlink or create_directory_symlink as appropriate.

2 Throws: As specified in 31.12.5.
31.12.13.7 Create directories [fs.op.create.directories]

bool filesystem::create_directories(const path& p);
bool filesystem::create_directories(const path& p, error_code& ec);

1 Effects: Calls create_directory() for each element of p that does not exist.
2 Returns: true if a new directory was created for the directory p resolves to, otherwise false.
3 Throws: As specified in 31.12.5.
4 Complexity: O(n) where n is the number of elements of p.
31.12.13.8 Create directory [fs.op.create.directory]

bool filesystem::create_directory(const path& p);
bool filesystem::create_directory(const path& p, error_code& ec) noexcept;

1 Effects: Creates the directory p resolves to, as if by POSIX mkdirwith a second argument of static_cast<int>(perms::all).If mkdir fails because p resolves to an existing directory, no error is reported. Otherwise on failure an error isreported.
2 Returns: true if a new directory was created, otherwise false.
3 Throws: As specified in 31.12.5.

bool filesystem::create_directory(const path& p, const path& existing_p);
bool filesystem::create_directory(const path& p, const path& existing_p, error_code& ec) noexcept;

4 Effects: Creates the directory p resolves to, with attributes copied from directory existing_p. The set of attributescopied is operating system dependent. If mkdir fails because p resolves to an existing directory, no error isreported. Otherwise on failure an error is reported.
[Note 1: For POSIX-based operating systems, the attributes are those copied by native API stat(existing_p.c_str(),
&attributes_stat) followed by mkdir(p.c_str(), attributes_stat.st_mode). For Windows-based operating systems,the attributes are those copied by native API CreateDirectoryExW(existing_p.c_str(), p.c_str(), 0). —end note]

5 Returns: true if a new directory was created with attributes copied from directory existing_p, otherwise false.
6 Throws: As specified in 31.12.5.
31.12.13.9 Create directory symlink [fs.op.create.dir.symlk]

void filesystem::create_directory_symlink(const path& to, const path& new_symlink);
void filesystem::create_directory_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

1 Effects: Establishes the postcondition, as if by POSIX symlink().
2 Postconditions: new_symlink resolves to a symbolic link file that contains an unspecified representation of to.
3 Throws: As specified in 31.12.5.
4 [Note 1: Some operating systems require symlink creation to identify that the link is to a directory. Thus, create_symlink()(instead of create_directory_symlink()) cannot be used reliably to create directory symlinks. —end note]
5 [Note 2: Some operating systems do not support symbolic links at all or support them only for regular files. Some file systems(such as the FAT file system) do not support symbolic links regardless of the operating system. —end note]
31.12.13.10 Create hard link [fs.op.create.hard.lk]

void filesystem::create_hard_link(const path& to, const path& new_hard_link);

§ 31.12.13.10 1589

© ISO/IEC N4910

void filesystem::create_hard_link(const path& to, const path& new_hard_link,
error_code& ec) noexcept;

1 Effects: Establishes the postcondition, as if by POSIX link().
2 Postconditions:

—(2.1) exists(to) && exists(new_hard_link) && equivalent(to, new_hard_link)

—(2.2) The contents of the file or directory to resolves to are unchanged.
3 Throws: As specified in 31.12.5.
4 [Note 1: Some operating systems do not support hard links at all or support them only for regular files. Some file systems(such as the FAT file system) do not support hard links regardless of the operating system. Some file systems limit the numberof links per file. —end note]
31.12.13.11 Create symlink [fs.op.create.symlink]

void filesystem::create_symlink(const path& to, const path& new_symlink);
void filesystem::create_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

1 Effects: Establishes the postcondition, as if by POSIX symlink().
2 Postconditions: new_symlink resolves to a symbolic link file that contains an unspecified representation of to.
3 Throws: As specified in 31.12.5.
4 [Note 1: Some operating systems do not support symbolic links at all or support them only for regular files. Some file systems(such as the FAT file system) do not support symbolic links regardless of the operating system. —end note]
31.12.13.12 Current path [fs.op.current.path]

path filesystem::current_path();
path filesystem::current_path(error_code& ec);

1 Returns: The absolute path of the current working directory, whose pathname in the native format is obtained asif by POSIX getcwd(). The signature with argument ec returns path() if an error occurs.
2 Throws: As specified in 31.12.5.
3 Remarks: The current working directory is the directory, associated with the process, that is used as the startinglocation in pathname resolution for relative paths.
4 [Note 1: The current_path() name was chosen to emphasize that the returned value is a path, not just a single directoryname. —end note]
5 [Note 2: The current path as returned by many operating systems is a dangerous global variable and can be changedunexpectedly by third-party or system library functions, or by another thread. —end note]

void filesystem::current_path(const path& p);
void filesystem::current_path(const path& p, error_code& ec) noexcept;

6 Effects: Establishes the postcondition, as if by POSIX chdir().
7 Postconditions: equivalent(p, current_path()).
8 Throws: As specified in 31.12.5.
9 [Note 3: The current path for many operating systems is a dangerous global state and can be changed unexpectedly bythird-party or system library functions, or by another thread. —end note]
31.12.13.13 Equivalent [fs.op.equivalent]

bool filesystem::equivalent(const path& p1, const path& p2);
bool filesystem::equivalent(const path& p1, const path& p2, error_code& ec) noexcept;

1 Two paths are considered to resolve to the same file system entity if two candidate entities reside on the samedevice at the same location.
[Note 1: On POSIX platforms, this is determined as if by the values of the POSIX stat class, obtained as if by stat() for thetwo paths, having equal st_dev values and equal st_ino values. —end note]

2 Returns: true, if p1 and p2 resolve to the same file system entity, otherwise false. The signature with argument
ec returns false if an error occurs.

§ 31.12.13.13 1590

© ISO/IEC N4910

3 Throws: As specified in 31.12.5.
4 Remarks: !exists(p1) || !exists(p2) is an error.
31.12.13.14 Exists [fs.op.exists]

bool filesystem::exists(file_status s) noexcept;

1 Returns: status_known(s) && s.type() != file_type::not_found.
bool filesystem::exists(const path& p);
bool filesystem::exists(const path& p, error_code& ec) noexcept;

2 Let s be a file_status, determined as if by status(p) or status(p, ec), respectively.
3 Effects: The signature with argument ec calls ec.clear() if status_known(s).
4 Returns: exists(s).
5 Throws: As specified in 31.12.5.
31.12.13.15 File size [fs.op.file.size]

uintmax_t filesystem::file_size(const path& p);
uintmax_t filesystem::file_size(const path& p, error_code& ec) noexcept;

1 Effects: If exists(p) is false, an error is reported (31.12.5).
2 Returns:

—(2.1) If is_regular_file(p), the size in bytes of the file p resolves to, determined as if by the value of the POSIX
stat class member st_size obtained as if by POSIX stat().

—(2.2) Otherwise, the result is implementation-defined.
The signature with argument ec returns static_cast<uintmax_t>(-1) if an error occurs.

3 Throws: As specified in 31.12.5.
31.12.13.16 Hard link count [fs.op.hard.lk.ct]

uintmax_t filesystem::hard_link_count(const path& p);
uintmax_t filesystem::hard_link_count(const path& p, error_code& ec) noexcept;

1 Returns: The number of hard links for p. The signature with argument ec returns static_cast<uintmax_t>(-1)if an error occurs.
2 Throws: As specified in 31.12.5.
31.12.13.17 Is block file [fs.op.is.block.file]

bool filesystem::is_block_file(file_status s) noexcept;

1 Returns: s.type() == file_type::block.
bool filesystem::is_block_file(const path& p);
bool filesystem::is_block_file(const path& p, error_code& ec) noexcept;

2 Returns: is_block_file(status(p)) or is_block_file(status(p, ec)), respectively. The signature withargument ec returns false if an error occurs.
3 Throws: As specified in 31.12.5.
31.12.13.18 Is character file [fs.op.is.char.file]

bool filesystem::is_character_file(file_status s) noexcept;

1 Returns: s.type() == file_type::character.
bool filesystem::is_character_file(const path& p);
bool filesystem::is_character_file(const path& p, error_code& ec) noexcept;

2 Returns: is_character_file(status(p)) or is_character_file(status(p, ec)), respectively.The signature with argument ec returns false if an error occurs.
3 Throws: As specified in 31.12.5.
§ 31.12.13.18 1591

© ISO/IEC N4910

31.12.13.19 Is directory [fs.op.is.directory]

bool filesystem::is_directory(file_status s) noexcept;

1 Returns: s.type() == file_type::directory.
bool filesystem::is_directory(const path& p);
bool filesystem::is_directory(const path& p, error_code& ec) noexcept;

2 Returns: is_directory(status(p)) or is_directory(status(p, ec)), respectively. The signature with argu-ment ec returns false if an error occurs.
3 Throws: As specified in 31.12.5.
31.12.13.20 Is empty [fs.op.is.empty]

bool filesystem::is_empty(const path& p);
bool filesystem::is_empty(const path& p, error_code& ec);

1 Effects:
—(1.1) Determine file_status s, as if by status(p) or status(p, ec), respectively.
—(1.2) For the signature with argument ec, return false if an error occurred.
—(1.3) Otherwise, if is_directory(s):

—(1.3.1) Create a variable itr, as if by directory_iterator itr(p) or directory_iterator itr(p, ec),respectively.
—(1.3.2) For the signature with argument ec, return false if an error occurred.
—(1.3.3) Otherwise, return itr == directory_iterator().

—(1.4) Otherwise:
—(1.4.1) Determine uintmax_t sz, as if by file_size(p) or file_size(p, ec), respectively.
—(1.4.2) For the signature with argument ec, return false if an error occurred.
—(1.4.3) Otherwise, return sz == 0.

2 Throws: As specified in 31.12.5.
31.12.13.21 Is fifo [fs.op.is.fifo]

bool filesystem::is_fifo(file_status s) noexcept;

1 Returns: s.type() == file_type::fifo.
bool filesystem::is_fifo(const path& p);
bool filesystem::is_fifo(const path& p, error_code& ec) noexcept;

2 Returns: is_fifo(status(p)) or is_fifo(status(p, ec)), respectively. The signature with argument ecreturns false if an error occurs.
3 Throws: As specified in 31.12.5.
31.12.13.22 Is other [fs.op.is.other]

bool filesystem::is_other(file_status s) noexcept;

1 Returns: exists(s) && !is_regular_file(s) && !is_directory(s) && !is_symlink(s).
bool filesystem::is_other(const path& p);
bool filesystem::is_other(const path& p, error_code& ec) noexcept;

2 Returns: is_other(status(p)) or is_other(status(p, ec)), respectively. The signature with argument ecreturns false if an error occurs.
3 Throws: As specified in 31.12.5.
31.12.13.23 Is regular file [fs.op.is.regular.file]

bool filesystem::is_regular_file(file_status s) noexcept;

1 Returns: s.type() == file_type::regular.
§ 31.12.13.23 1592

© ISO/IEC N4910

bool filesystem::is_regular_file(const path& p);

2 Returns: is_regular_file(status(p)).
3 Throws: filesystem_error if status(p) would throw filesystem_error.

bool filesystem::is_regular_file(const path& p, error_code& ec) noexcept;

4 Effects: Sets ec as if by status(p, ec).
[Note 1: file_type::none, file_type::not_found and file_type::unknown cases set ec to error values. To distinguishbetween cases, call the status function directly. —end note]

5 Returns: is_regular_file(status(p, ec)). Returns false if an error occurs.
31.12.13.24 Is socket [fs.op.is.socket]

bool filesystem::is_socket(file_status s) noexcept;

1 Returns: s.type() == file_type::socket.
bool filesystem::is_socket(const path& p);
bool filesystem::is_socket(const path& p, error_code& ec) noexcept;

2 Returns: is_socket(status(p)) or is_socket(status(p, ec)), respectively. The signature with argument ecreturns false if an error occurs.
3 Throws: As specified in 31.12.5.
31.12.13.25 Is symlink [fs.op.is.symlink]

bool filesystem::is_symlink(file_status s) noexcept;

1 Returns: s.type() == file_type::symlink.
bool filesystem::is_symlink(const path& p);
bool filesystem::is_symlink(const path& p, error_code& ec) noexcept;

2 Returns: is_symlink(symlink_status(p)) or is_symlink(symlink_status(p, ec)), respectively. The signa-ture with argument ec returns false if an error occurs.
3 Throws: As specified in 31.12.5.
31.12.13.26 Last write time [fs.op.last.write.time]

file_time_type filesystem::last_write_time(const path& p);
file_time_type filesystem::last_write_time(const path& p, error_code& ec) noexcept;

1 Returns: The time of last data modification of p, determined as if by the value of the POSIX stat class member
st_mtime obtained as if by POSIX stat(). The signature with argument ec returns file_time_type::min() ifan error occurs.

2 Throws: As specified in 31.12.5.
void filesystem::last_write_time(const path& p, file_time_type new_time);
void filesystem::last_write_time(const path& p, file_time_type new_time,

error_code& ec) noexcept;

3 Effects: Sets the time of last data modification of the file resolved to by p to new_time, as if by POSIX futimens().
4 Throws: As specified in 31.12.5.
5 [Note 1: A postcondition of last_write_time(p) == new_time is not specified because it does not necessarily hold for filesystems with coarse time granularity. —end note]
31.12.13.27 Permissions [fs.op.permissions]

void filesystem::permissions(const path& p, perms prms, perm_options opts=perm_options::replace);
void filesystem::permissions(const path& p, perms prms, error_code& ec) noexcept;
void filesystem::permissions(const path& p, perms prms, perm_options opts, error_code& ec);

1 Preconditions: Exactly one of the perm_options constants replace, add, or remove is present in opts.
2 Effects: Applies the action specified by opts to the file p resolves to, or to file p itself if p is a symbolic link and

perm_options::nofollow is set in opts. The action is applied as if by POSIX fchmodat().
§ 31.12.13.27 1593

© ISO/IEC N4910

3 [Note 1: Conceptually permissions are viewed as bits, but the actual implementation can use some other mechanism. —endnote]
4 Throws: As specified in 31.12.5.
5 Remarks: The second signature behaves as if it had an additional parameter perm_options opts with an argumentof perm_options::replace.
31.12.13.28 Proximate [fs.op.proximate]

path filesystem::proximate(const path& p, error_code& ec);

1 Returns: proximate(p, current_path(), ec).
2 Throws: As specified in 31.12.5.

path filesystem::proximate(const path& p, const path& base = current_path());
path filesystem::proximate(const path& p, const path& base, error_code& ec);

3 Returns: For the first form:
weakly_canonical(p).lexically_proximate(weakly_canonical(base));

For the second form:
weakly_canonical(p, ec).lexically_proximate(weakly_canonical(base, ec));

or path() at the first error occurrence, if any.
4 Throws: As specified in 31.12.5.
31.12.13.29 Read symlink [fs.op.read.symlink]

path filesystem::read_symlink(const path& p);
path filesystem::read_symlink(const path& p, error_code& ec);

1 Returns: If p resolves to a symbolic link, a path object containing the contents of that symbolic link. The signaturewith argument ec returns path() if an error occurs.
2 Throws: As specified in 31.12.5.

[Note 1: It is an error if p does not resolve to a symbolic link. —end note]
31.12.13.30 Relative [fs.op.relative]

path filesystem::relative(const path& p, error_code& ec);

1 Returns: relative(p, current_path(), ec).
2 Throws: As specified in 31.12.5.

path filesystem::relative(const path& p, const path& base = current_path());
path filesystem::relative(const path& p, const path& base, error_code& ec);

3 Returns: For the first form:
weakly_canonical(p).lexically_relative(weakly_canonical(base));

For the second form:
weakly_canonical(p, ec).lexically_relative(weakly_canonical(base, ec));

or path() at the first error occurrence, if any.
4 Throws: As specified in 31.12.5.
31.12.13.31 Remove [fs.op.remove]

bool filesystem::remove(const path& p);
bool filesystem::remove(const path& p, error_code& ec) noexcept;

1 Effects: If exists(symlink_status(p, ec)), the file p is removed as if by POSIX remove().
[Note 1: A symbolic link is itself removed, rather than the file it resolves to. —end note]

2 Postconditions: exists(symlink_status(p)) is false.
3 Returns: false if p did not exist, otherwise true. The signature with argument ec returns false if an error occurs.

§ 31.12.13.31 1594

© ISO/IEC N4910

4 Throws: As specified in 31.12.5.
31.12.13.32 Remove all [fs.op.remove.all]

uintmax_t filesystem::remove_all(const path& p);
uintmax_t filesystem::remove_all(const path& p, error_code& ec);

1 Effects: Recursively deletes the contents of p if it exists, then deletes file p itself, as if by POSIX remove().
[Note 1: A symbolic link is itself removed, rather than the file it resolves to. —end note]

2 Postconditions: exists(symlink_status(p)) is false.
3 Returns: The number of files removed. The signature with argument ec returns static_cast< uintmax_t>(-1)if an error occurs.
4 Throws: As specified in 31.12.5.
31.12.13.33 Rename [fs.op.rename]

void filesystem::rename(const path& old_p, const path& new_p);
void filesystem::rename(const path& old_p, const path& new_p, error_code& ec) noexcept;

1 Effects: Renames old_p to new_p, as if by POSIX rename().
[Note 1:
—(1.1) If old_p and new_p resolve to the same existing file, no action is taken.
—(1.2) Otherwise, the rename can include the following effects:

—(1.2.1) if new_p resolves to an existing non-directory file, new_p is removed; otherwise,
—(1.2.2) if new_p resolves to an existing directory, new_p is removed if empty on POSIX compliant operating systems butmight be an error on other operating systems.

A symbolic link is itself renamed, rather than the file it resolves to. —end note]
2 Throws: As specified in 31.12.5.
31.12.13.34 Resize file [fs.op.resize.file]

void filesystem::resize_file(const path& p, uintmax_t new_size);
void filesystem::resize_file(const path& p, uintmax_t new_size, error_code& ec) noexcept;

1 Effects: Causes the size that would be returned by file_size(p) to be equal to new_size, as if by POSIX
truncate().

2 Throws: As specified in 31.12.5.
31.12.13.35 Space [fs.op.space]

space_info filesystem::space(const path& p);
space_info filesystem::space(const path& p, error_code& ec) noexcept;

1 Returns: An object of type space_info. The value of the space_info object is determined as if by usingPOSIX statvfs to obtain a POSIX struct statvfs, and then multiplying its f_blocks, f_bfree, and f_bavailmembers by its f_frsize member, and assigning the results to the capacity, free, and available membersrespectively. Any members for which the value cannot be determined shall be set to static_cast<uintmax_-
t>(-1). For the signature with argument ec, all members are set to static_cast<uintmax_t>(-1) if an erroroccurs.

2 Throws: As specified in 31.12.5.
3 Remarks: The value of member space_info::available is operating system dependent.

[Note 1: available might be less than free. —end note]
31.12.13.36 Status [fs.op.status]

file_status filesystem::status(const path& p);

1 Effects: As if:
error_code ec;
file_status result = status(p, ec);

§ 31.12.13.36 1595

© ISO/IEC N4910

if (result.type() == file_type::none)
throw filesystem_error(implementation-supplied-message, p, ec);

return result;

2 Returns: See above.
3 Throws: filesystem_error.

[Note 1: result values of file_status(file_type::not_found) and file_status(file_type::unknown) are not consid-ered failures and do not cause an exception to be thrown. —end note]
file_status filesystem::status(const path& p, error_code& ec) noexcept;

4 Effects: If possible, determines the attributes of the file p resolves to, as if by using POSIX stat() to obtain aPOSIX struct stat. If, during attribute determination, the underlying file system API reports an error, sets ecto indicate the specific error reported. Otherwise, ec.clear().
[Note 2: This allows users to inspect the specifics of underlying API errors even when the value returned by status() is not
file_status(file_type::none). —end note]

5 Let prms denote the result of (m & perms::mask), where m is determined as if by converting the st_modememberof the obtained struct stat to the type perms.
6 Returns:

—(6.1) If ec != error_code():
—(6.1.1) If the specific error indicates that p cannot be resolved because some element of the path does not exist,returns file_status(file_type::not_found).
—(6.1.2) Otherwise, if the specific error indicates that p can be resolved but the attributes cannot be determined,returns file_status(file_type::unknown).
—(6.1.3) Otherwise, returns file_status(file_type::none).
[Note 3: These semantics distinguish between p being known not to exist, p existing but not being able to determine itsattributes, and there being an error that prevents even knowing if p exists. These distinctions are important to some usecases. —end note]

—(6.2) Otherwise,
—(6.2.1) If the attributes indicate a regular file, as if by POSIX S_ISREG, returns file_status(file_type::regular,

prms).
[Note 4: file_type::regular implies appropriate <fstream> operations would succeed, assuming no hardware,permission, access, or file system race errors. Lack of file_type::regular does not necessarily imply <fstream>operations would fail on a directory. —end note]

—(6.2.2) Otherwise, if the attributes indicate a directory, as if by POSIX S_ISDIR, returns file_status(file_-
type::directory, prms).
[Note 5: file_type::directory implies that calling directory_iterator(p) would succeed. —end note]

—(6.2.3) Otherwise, if the attributes indicate a block special file, as if by POSIX S_ISBLK, returns file_-
status(file_type::block, prms).

—(6.2.4) Otherwise, if the attributes indicate a character special file, as if by POSIX S_ISCHR, returns file_-
status(file_type::character, prms).

—(6.2.5) Otherwise, if the attributes indicate a fifo or pipe file, as if by POSIX S_ISFIFO, returns file_-
status(file_type::fifo, prms).

—(6.2.6) Otherwise, if the attributes indicate a socket, as if by POSIX S_ISSOCK, returns file_status(file_-
type::socket, prms).

—(6.2.7) Otherwise, if the attributes indicate an implementation-defined file type (31.12.8.2), returns file_-
status(file_type::A, prms), where A is the constant for the implementation-defined file type.

—(6.2.8) Otherwise, returns file_status(file_type::unknown, prms).
7 Remarks: If a symbolic link is encountered during pathname resolution, pathname resolution continues using thecontents of the symbolic link.

§ 31.12.13.36 1596

© ISO/IEC N4910

31.12.13.37 Status known [fs.op.status.known]

bool filesystem::status_known(file_status s) noexcept;

1 Returns: s.type() != file_type::none.
31.12.13.38 Symlink status [fs.op.symlink.status]

file_status filesystem::symlink_status(const path& p);
file_status filesystem::symlink_status(const path& p, error_code& ec) noexcept;

1 Effects: Same as status(), above, except that the attributes of p are determined as if by using POSIX lstat() toobtain a POSIX struct stat.
2 Let prms denote the result of (m & perms::mask), where m is determined as if by converting the st_modememberof the obtained struct stat to the type perms.
3 Returns: Same as status(), above, except that if the attributes indicate a symbolic link, as if by POSIX

S_ISLNK, returns file_status(file_type::symlink, prms). The signature with argument ec returns file_-
status(file_type::none) if an error occurs.

4 Throws: As specified in 31.12.5.
5 Remarks: Pathname resolution terminates if p names a symbolic link.
31.12.13.39 Temporary directory path [fs.op.temp.dir.path]

path filesystem::temp_directory_path();
path filesystem::temp_directory_path(error_code& ec);

1 Let p be an unspecified directory path suitable for temporary files.
2 Effects: If exists(p) is false or is_directory(p) is false, an error is reported (31.12.5).
3 Returns: The path p. The signature with argument ec returns path() if an error occurs.
4 Throws: As specified in 31.12.5.
5 [Example 1: For POSIX-based operating systems, an implementation might return the path supplied by the first environmentvariable found in the list TMPDIR, TMP, TEMP, TEMPDIR, or if none of these are found, "/tmp".

For Windows-based operating systems, an implementation might return the path reported by the Windows GetTempPath APIfunction. —end example]
31.12.13.40 Weakly canonical [fs.op.weakly.canonical]

path filesystem::weakly_canonical(const path& p);
path filesystem::weakly_canonical(const path& p, error_code& ec);

1 Effects: Using status(p) or status(p, ec), respectively, to determine existence, return a path composed by
operator/= from the result of calling canonical() with a path argument composed of the leading elements of
p that exist, if any, followed by the elements of p that do not exist, if any. For the first form, canonical() iscalled without an error_code argument. For the second form, canonical() is called with ec as an error_codeargument, and path() is returned at the first error occurrence, if any.

2 Postconditions: The returned path is in normal form (31.12.6.2).
3 Returns: p with symlinks resolved and the result normalized (31.12.6.2).
4 Throws: As specified in 31.12.5.
5 Remarks: Implementations should avoid unnecessary normalization such as when canonical has already beencalled on the entirety of p.
31.13 C library files [c.files]
31.13.1 Header <cstdio> synopsis [cstdio.syn]
namespace std {

using size_t = see 17.2.4;
using FILE = see below;
using fpos_t = see below;

}

§ 31.13.1 1597

© ISO/IEC N4910

#define NULL see 17.2.3
#define _IOFBF see below
#define _IOLBF see below
#define _IONBF see below
#define BUFSIZ see below
#define EOF see below
#define FOPEN_MAX see below
#define FILENAME_MAX see below
#define L_tmpnam see below
#define SEEK_CUR see below
#define SEEK_END see below
#define SEEK_SET see below
#define TMP_MAX see below
#define stderr see below
#define stdin see below
#define stdout see below

namespace std {
int remove(const char* filename);
int rename(const char* old_p, const char* new_p);
FILE* tmpfile();
char* tmpnam(char* s);
int fclose(FILE* stream);
int fflush(FILE* stream);
FILE* fopen(const char* filename, const char* mode);
FILE* freopen(const char* filename, const char* mode, FILE* stream);
void setbuf(FILE* stream, char* buf);
int setvbuf(FILE* stream, char* buf, int mode, size_t size);
int fprintf(FILE* stream, const char* format, ...);
int fscanf(FILE* stream, const char* format, ...);
int printf(const char* format, ...);
int scanf(const char* format, ...);
int snprintf(char* s, size_t n, const char* format, ...);
int sprintf(char* s, const char* format, ...);
int sscanf(const char* s, const char* format, ...);
int vfprintf(FILE* stream, const char* format, va_list arg);
int vfscanf(FILE* stream, const char* format, va_list arg);
int vprintf(const char* format, va_list arg);
int vscanf(const char* format, va_list arg);
int vsnprintf(char* s, size_t n, const char* format, va_list arg);
int vsprintf(char* s, const char* format, va_list arg);
int vsscanf(const char* s, const char* format, va_list arg);
int fgetc(FILE* stream);
char* fgets(char* s, int n, FILE* stream);
int fputc(int c, FILE* stream);
int fputs(const char* s, FILE* stream);
int getc(FILE* stream);
int getchar();
int putc(int c, FILE* stream);
int putchar(int c);
int puts(const char* s);
int ungetc(int c, FILE* stream);
size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream);
size_t fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream);
int fgetpos(FILE* stream, fpos_t* pos);
int fseek(FILE* stream, long int offset, int whence);
int fsetpos(FILE* stream, const fpos_t* pos);
long int ftell(FILE* stream);
void rewind(FILE* stream);
void clearerr(FILE* stream);
int feof(FILE* stream);
int ferror(FILE* stream);
void perror(const char* s);

}

§ 31.13.1 1598

© ISO/IEC N4910

1 The contents and meaning of the header <cstdio> are the same as the C standard library header <stdio.h>.
2 Calls to the function tmpnam with an argument that is a null pointer value may introduce a data race (16.4.6.10) withother calls to tmpnam with an argument that is a null pointer value.
See also: ISO C 7.21
31.13.2 Header <cinttypes> synopsis [cinttypes.syn]
#include <cstdint> // see 17.4.2
namespace std {

using imaxdiv_t = see below;

intmax_t imaxabs(intmax_t j);
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);
intmax_t strtoimax(const char* nptr, char** endptr, int base);
uintmax_t strtoumax(const char* nptr, char** endptr, int base);
intmax_t wcstoimax(const wchar_t* nptr, wchar_t** endptr, int base);
uintmax_t wcstoumax(const wchar_t* nptr, wchar_t** endptr, int base);

intmax_t abs(intmax_t); // optional, see below
imaxdiv_t div(intmax_t, intmax_t); // optional, see below

}

#define PRIdN see below
#define PRIiN see below
#define PRIoN see below
#define PRIuN see below
#define PRIxN see below
#define PRIXN see below
#define SCNdN see below
#define SCNiN see below
#define SCNoN see below
#define SCNuN see below
#define SCNxN see below
#define PRIdLEASTN see below
#define PRIiLEASTN see below
#define PRIoLEASTN see below
#define PRIuLEASTN see below
#define PRIxLEASTN see below
#define PRIXLEASTN see below
#define SCNdLEASTN see below
#define SCNiLEASTN see below
#define SCNoLEASTN see below
#define SCNuLEASTN see below
#define SCNxLEASTN see below
#define PRIdFASTN see below
#define PRIiFASTN see below
#define PRIoFASTN see below
#define PRIuFASTN see below
#define PRIxFASTN see below
#define PRIXFASTN see below
#define SCNdFASTN see below
#define SCNiFASTN see below
#define SCNoFASTN see below
#define SCNuFASTN see below
#define SCNxFASTN see below
#define PRIdMAX see below
#define PRIiMAX see below
#define PRIoMAX see below
#define PRIuMAX see below
#define PRIxMAX see below
#define PRIXMAX see below
#define SCNdMAX see below

§ 31.13.2 1599

© ISO/IEC N4910

#define SCNiMAX see below
#define SCNoMAX see below
#define SCNuMAX see below
#define SCNxMAX see below
#define PRIdPTR see below
#define PRIiPTR see below
#define PRIoPTR see below
#define PRIuPTR see below
#define PRIxPTR see below
#define PRIXPTR see below
#define SCNdPTR see below
#define SCNiPTR see below
#define SCNoPTR see below
#define SCNuPTR see below
#define SCNxPTR see below

1 The contents and meaning of the header <cinttypes> are the same as the C standard library header <inttypes.h>,with the following changes:
—(1.1) The header <cinttypes> includes the header <cstdint> (17.4.2) instead of <stdint.h>, and
—(1.2) if and only if the type intmax_t designates an extended integer type (6.8.2), the following function signatures areadded:

intmax_t abs(intmax_t);
imaxdiv_t div(intmax_t, intmax_t);

which shall have the same semantics as the function signatures intmax_t imaxabs(intmax_t) and imaxdiv_t
imaxdiv(intmax_t, intmax_t), respectively.

See also: ISO C 7.8
2 Each of the PRI macros listed in this subclause is defined if and only if the implementation defines the corresponding

typedef-name in 17.4.2. Each of the SCN macros listed in this subclause is defined if and only if the implementationdefines the corresponding typedef-name in 17.4.2 and has a suitable fscanf length modifier for the type.

§ 31.13.2 1600

© ISO/IEC N4910

32 Regular expressions library [re]
32.1 General [re.general]

1 This Clause describes components that C++ programs may use to perform operations involving regular expressionmatching and searching.
2 The following subclauses describe a basic regular expression class template and its traits that can handle char-like (23.1)template arguments, two specializations of this class template that handle sequences of char and wchar_t, a classtemplate that holds the result of a regular expression match, a series of algorithms that allow a character sequenceto be operated upon by a regular expression, and two iterator types for enumerating regular expression matches, assummarized in Table 132.

Table 132: Regular expressions library summary [tab:re.summary]
Subclause Header

32.2 Requirements32.4 Constants <regex>32.5 Exception type32.6 Traits32.7 Regular expression template32.8 Submatches32.9 Match results32.10 Algorithms32.11 Iterators32.12 Grammar

32.2 Requirements [re.req]
1 This subclause defines requirements on classes representing regular expression traits.
[Note 1: The class template regex_traits, defined in 32.6, meets these requirements. —end note]

2 The class template basic_regex, defined in 32.7, needs a set of related types and functions to complete the definition ofits semantics. These types and functions are provided as a set of member typedef-names and functions in the templateparameter traits used by the basic_regex class template. This subclause defines the semantics of these members.
3 To specialize class template basic_regex for a character container CharT and its related regular expression traits class

Traits, use basic_regex<CharT, Traits>.
4 In the following requirements,

—(4.1) X denotes a traits class defining types and functions for the character container type charT;
—(4.2) u is an object of type X;
—(4.3) v is an object of type const X;
—(4.4) p is a value of type const charT*;
—(4.5) I1 and I2 are input iterators (25.3.5.3);
—(4.6) F1 and F2 are forward iterators (25.3.5.5);
—(4.7) c is a value of type const charT;
—(4.8) s is an object of type X::string_type;
—(4.9) cs is an object of type const X::string_type;
—(4.10) b is a value of type bool;
—(4.11) I is a value of type int;
—(4.12) cl is an object of type X::char_class_type; and

§ 32.2 1601

© ISO/IEC N4910

—(4.13) loc is an object of type X::locale_type.
5 A traits class X meets the regular expression traits requirements if the following types and expressions are well-formedand have the specified semantics.

typename X::char_type

6 Result: charT, the character container type used in the implementation of class template basic_regex.
typename X::string_type

7 Result: basic_string<charT>
typename X::locale_type

8 Result: A copy constructible type that represents the locale used by the traits class.
typename X::char_class_type

9 Result: A bitmask type (16.3.3.3.4) representing a particular character classification.
X::length(p)

10 Result: size_t
11 Returns: The smallest i such that p[i] == 0.
12 Complexity: Linear in i.

v.translate(c)

13 Result: X::char_type
14 Returns: A character such that for any character d that is to be considered equivalent to c then v.translate(c)

== v.translate(d).
v.translate_nocase(c)

15 Result: X::char_type
16 Returns: For all characters C that are to be considered equivalent to c when comparisons are to be performedwithout regard to case, then v.translate_nocase(c) == v.translate_nocase(C).

v.transform(F1, F2)

17 Result: X::string_type
18 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if the charactersequence [G1, G2) sorts before the character sequence [H1, H2) then v.transform(G1, G2) < v.transform(H1,

H2).
v.transform_primary(F1, F2)

19 Result: X::string_type
20 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if the char-acter sequence [G1, G2) sorts before the character sequence [H1, H2) when character case is not considered then

v.transform_primary(G1, G2) < v.transform_primary(H1, H2).
v.lookup_collatename(F1, F2)

21 Result: X::string_type
22 Returns: A sequence of characters that represents the collating element consisting of the character sequencedesignated by the iterator range [F1, F2). Returns an empty string if the character sequence is not a valid collatingelement.

v.lookup_classname(F1, F2, b)

23 Result: X::char_class_type
24 Returns: Converts the character sequence designated by the iterator range [F1, F2) into a value of a bitmasktype that can subsequently be passed to isctype. Values returned from lookup_classname can be bitwise OR’edtogether; the resulting value represents membership in either of the corresponding character classes. If b is true,

§ 32.2 1602

© ISO/IEC N4910

the returned bitmask is suitable for matching characters without regard to their case. Returns 0 if the charactersequence is not the name of a character class recognized by X. The value returned shall be independent of thecase of the characters in the sequence.
v.isctype(c, cl)

25 Result: bool
26 Returns: Returns true if character c is a member of one of the character classes designated by cl, false otherwise.

v.value(c, I)

27 Result: int
28 Returns: Returns the value represented by the digit c in base I if the character c is a valid digit in base I; otherwisereturns -1.

[Note 2: The value of I will only be 8, 10, or 16. —end note]
u.imbue(loc)

29 Result: X::locale_type
30 Effects: Imbues u with the locale loc and returns the previous locale used by u if any.

v.getloc()

31 Result: X::locale_type
32 Returns: Returns the current locale used by v, if any.
33 [Note 3: Class template regex_traits meets the requirements for a regular expression traits class when it is specialized for char or

wchar_t. This class template is described in the header <regex>, and is described in 32.6. —end note]
32.3 Header <regex> synopsis [re.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
namespace std {// 32.4, regex constants

namespace regex_constants {
using syntax_option_type = T1;
using match_flag_type = T2;
using error_type = T3;

}

// 32.5, class regex_error
class regex_error;

// 32.6, class template regex_traits
template<class charT> struct regex_traits;

// 32.7, class template basic_regex
template<class charT, class traits = regex_traits<charT>> class basic_regex;

using regex = basic_regex<char>;
using wregex = basic_regex<wchar_t>;

// 32.7.6, basic_regex swap
template<class charT, class traits>

void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);

// 32.8, class template sub_match
template<class BidirectionalIterator>

class sub_match;

using csub_match = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;
using ssub_match = sub_match<string::const_iterator>;

§ 32.3 1603

© ISO/IEC N4910

using wssub_match = sub_match<wstring::const_iterator>;

// 32.8.3, sub_match non-member operators
template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

template<class BiIter>
auto operator<=>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

template<class BiIter, class ST, class SA>
bool operator==(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

template<class BiIter, class ST, class SA>
auto operator<=>(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type* rhs);
template<class BiIter>
auto operator<=>(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type* rhs);

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type& rhs);
template<class BiIter>
auto operator<=>(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type& rhs);

template<class charT, class ST, class BiIter>
basic_ostream<charT, ST>&

operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

// 32.9, class template match_results
template<class BidirectionalIterator,

class Allocator = allocator<sub_match<BidirectionalIterator>>>
class match_results;

using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;

// match_results comparisons
template<class BidirectionalIterator, class Allocator>
bool operator==(const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

// 32.9.8, match_results swap
template<class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,

match_results<BidirectionalIterator, Allocator>& m2);

// 32.10.2, function template regex_match
template<class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,

§ 32.3 1604

© ISO/IEC N4910

regex_constants::match_flag_type flags = regex_constants::match_default);
template<class charT, class Allocator, class traits>
bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>&&,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>&,

const basic_regex<charT, traits>&,
regex_constants::match_flag_type = regex_constants::match_default) = delete;

template<class charT, class traits>
bool regex_match(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

// 32.10.3, function template regex_search
template<class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class BidirectionalIterator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class charT, class Allocator, class traits>
bool regex_search(const charT* str,

match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class charT, class traits>
bool regex_search(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>&&,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>&,

const basic_regex<charT, traits>&,
regex_constants::match_flag_type

= regex_constants::match_default) = delete;

§ 32.3 1605

© ISO/IEC N4910

// 32.10.4, function template regex_replace
template<class OutputIterator, class BidirectionalIterator,

class traits, class charT, class ST, class SA>
OutputIterator

regex_replace(OutputIterator out,
BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator

regex_replace(OutputIterator out,
BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA, class FST, class FSA>
basic_string<charT, ST, SA>

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const basic_string<charT, FST, FSA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA>
basic_string<charT, ST, SA>

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA>
basic_string<charT>

regex_replace(const charT* s,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT>
basic_string<charT>

regex_replace(const charT* s,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

// 32.11.1, class template regex_iterator
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_iterator;

using cregex_iterator = regex_iterator<const char*>;
using wcregex_iterator = regex_iterator<const wchar_t*>;
using sregex_iterator = regex_iterator<string::const_iterator>;
using wsregex_iterator = regex_iterator<wstring::const_iterator>;

// 32.11.2, class template regex_token_iterator
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_token_iterator;

using cregex_token_iterator = regex_token_iterator<const char*>;
using wcregex_token_iterator = regex_token_iterator<const wchar_t*>;
using sregex_token_iterator = regex_token_iterator<string::const_iterator>;
using wsregex_token_iterator = regex_token_iterator<wstring::const_iterator>;

§ 32.3 1606

© ISO/IEC N4910

namespace pmr {
template<class BidirectionalIterator>

using match_results =
std::match_results<BidirectionalIterator,

polymorphic_allocator<sub_match<BidirectionalIterator>>>;

using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;

}
}

32.4 Namespace std::regex_constants [re.const]
32.4.1 General [re.const.general]

1 The namespace std::regex_constants holds symbolic constants used by the regular expression library. This namespaceprovides three types, syntax_option_type, match_flag_type, and error_type, along with several constants of thesetypes.
32.4.2 Bitmask type syntax_option_type [re.synopt]
namespace std::regex_constants {

using syntax_option_type = T1;
inline constexpr syntax_option_type icase = unspecified;
inline constexpr syntax_option_type nosubs = unspecified;
inline constexpr syntax_option_type optimize = unspecified;
inline constexpr syntax_option_type collate = unspecified;
inline constexpr syntax_option_type ECMAScript = unspecified;
inline constexpr syntax_option_type basic = unspecified;
inline constexpr syntax_option_type extended = unspecified;
inline constexpr syntax_option_type awk = unspecified;
inline constexpr syntax_option_type grep = unspecified;
inline constexpr syntax_option_type egrep = unspecified;
inline constexpr syntax_option_type multiline = unspecified;

}

1 The type syntax_option_type is an implementation-defined bitmask type (16.3.3.3.4). Setting its elements has theeffects listed in Table 133. A valid value of type syntax_option_type shall have at most one of the grammar elements
ECMAScript, basic, extended, awk, grep, egrep, set. If no grammar element is set, the default grammar is ECMAScript.
32.4.3 Bitmask type match_flag_type [re.matchflag]
namespace std::regex_constants {

using match_flag_type = T2;
inline constexpr match_flag_type match_default = {};
inline constexpr match_flag_type match_not_bol = unspecified;
inline constexpr match_flag_type match_not_eol = unspecified;
inline constexpr match_flag_type match_not_bow = unspecified;
inline constexpr match_flag_type match_not_eow = unspecified;
inline constexpr match_flag_type match_any = unspecified;
inline constexpr match_flag_type match_not_null = unspecified;
inline constexpr match_flag_type match_continuous = unspecified;
inline constexpr match_flag_type match_prev_avail = unspecified;
inline constexpr match_flag_type format_default = {};
inline constexpr match_flag_type format_sed = unspecified;
inline constexpr match_flag_type format_no_copy = unspecified;
inline constexpr match_flag_type format_first_only = unspecified;

}

1 The type match_flag_type is an implementation-defined bitmask type (16.3.3.3.4). The constants of that type, exceptfor match_default and format_default, are bitmask elements. The match_default and format_default constantsare empty bitmasks. Matching a regular expression against a sequence of characters [first, last) proceeds according tothe rules of the grammar specified for the regular expression object, modified according to the effects listed in Table 134for any bitmask elements set.

§ 32.4.3 1607

© ISO/IEC N4910

Table 133: syntax_option_type effects [tab:re.synopt]
Element Effect(s) if set

icase Specifies that matching of regular expressions against a character container se-quence shall be performed without regard to case.
nosubs Specifies that no sub-expressions shall be considered to be marked, so that whena regular expression is matched against a character container sequence, no sub-expression matches shall be stored in the supplied match_results object.
optimize Specifies that the regular expression engine should pay more attention to the speedwith which regular expressions are matched, and less to the speed with whichregular expression objects are constructed. Otherwise it has no detectable effect onthe program output.
collate Specifies that character ranges of the form "[a-b]" shall be locale sensitive.
ECMAScript Specifies that the grammar recognized by the regular expression engine shall bethat used by ECMAScript in ECMA-262, as modified in 32.12.See also: ECMA-262 15.10
basic Specifies that the grammar recognized by the regular expression engine shall bethat used by basic regular expressions in POSIX.See also: POSIX, Base Definitions and Headers, Section 9.3
extended Specifies that the grammar recognized by the regular expression engine shall bethat used by extended regular expressions in POSIX.See also: POSIX, Base Definitions and Headers, Section 9.4
awk Specifies that the grammar recognized by the regular expression engine shall bethat used by the utility awk in POSIX.
grep Specifies that the grammar recognized by the regular expression engine shall bethat used by the utility grep in POSIX.
egrep Specifies that the grammar recognized by the regular expression engine shall bethat used by the utility grep when given the -E option in POSIX.
multiline Specifies that ^ shall match the beginning of a line and $ shall match the end of aline, if the ECMAScript engine is selected.

Table 134: regex_constants::match_flag_type effects when obtaining a match against a character containersequence [first, last). [tab:re.matchflag]
Element Effect(s) if set

match_not_bol The first character in the sequence [first, last) shall be treated as though it isnot at the beginning of a line, so the character ^ in the regular expression shall notmatch [first, first).
match_not_eol The last character in the sequence [first, last) shall be treated as though it is notat the end of a line, so the character "$" in the regular expression shall not match

[last, last).
match_not_bow The expression "\\b" shall not match the sub-sequence [first, first).
match_not_eow The expression "\\b" shall not match the sub-sequence [last, last).
match_any If more than one match is possible then any match is an acceptable result.
match_not_null The expression shall not match an empty sequence.
match_continuous The expression shall only match a sub-sequence that begins at first.
match_prev_avail --first is a valid iterator position. When this flag is set the flags match_not_boland match_not_bow shall be ignored by the regular expression algorithms (32.10)and iterators (32.11).
format_default When a regular expression match is to be replaced by a new string, the new stringshall be constructed using the rules used by the ECMAScript replace function inECMA-262, part 15.5.4.11 String.prototype.replace. In addition, during search andreplace operations all non-overlapping occurrences of the regular expression shallbe located and replaced, and sections of the input that did not match the expressionshall be copied unchanged to the output string.
format_sed When a regular expression match is to be replaced by a new string, the new stringshall be constructed using the rules used by the sed utility in POSIX.

§ 32.4.3 1608

© ISO/IEC N4910

Table 134: regex_constants::match_flag_type effects when obtaining a match against a character containersequence [first, last). (continued)
Element Effect(s) if set

format_no_copy During a search and replace operation, sections of the character container sequencebeing searched that do not match the regular expression shall not be copied to theoutput string.
format_first_only When specified during a search and replace operation, only the first occurrence ofthe regular expression shall be replaced.

32.4.4 Implementation-defined error_type [re.err]
namespace std::regex_constants {

using error_type = T3;
inline constexpr error_type error_collate = unspecified;
inline constexpr error_type error_ctype = unspecified;
inline constexpr error_type error_escape = unspecified;
inline constexpr error_type error_backref = unspecified;
inline constexpr error_type error_brack = unspecified;
inline constexpr error_type error_paren = unspecified;
inline constexpr error_type error_brace = unspecified;
inline constexpr error_type error_badbrace = unspecified;
inline constexpr error_type error_range = unspecified;
inline constexpr error_type error_space = unspecified;
inline constexpr error_type error_badrepeat = unspecified;
inline constexpr error_type error_complexity = unspecified;
inline constexpr error_type error_stack = unspecified;

}

1 The type error_type is an implementation-defined enumerated type (16.3.3.3.3). Values of type error_type representthe error conditions described in Table 135:
Table 135: error_type values in the C locale [tab:re.err]

Value Error condition
error_collate The expression contains an invalid collating element name.
error_ctype The expression contains an invalid character class name.
error_escape The expression contains an invalid escaped character, or a trailing escape.
error_backref The expression contains an invalid back reference.
error_brack The expression contains mismatched [and].
error_paren The expression contains mismatched (and).
error_brace The expression contains mismatched { and }
error_badbrace The expression contains an invalid range in a {} expression.
error_range The expression contains an invalid character range, such as [b-a] in most encod-ings.
error_space There is insufficient memory to convert the expression into a finite state machine.
error_badrepeat One of *?+{ is not preceded by a valid regular expression.
error_complexity The complexity of an attempted match against a regular expression exceeds apre-set level.
error_stack There is insufficient memory to determine whether the regular expression matchesthe specified character sequence.

32.5 Class regex_error [re.badexp]
namespace std {

class regex_error : public runtime_error {
public:
explicit regex_error(regex_constants::error_type ecode);
regex_constants::error_type code() const;

};
}

§ 32.5 1609

© ISO/IEC N4910

1 The class regex_error defines the type of objects thrown as exceptions to report errors from the regular expressionlibrary.
regex_error(regex_constants::error_type ecode);

2 Postconditions: ecode == code().
regex_constants::error_type code() const;

3 Returns: The error code that was passed to the constructor.
32.6 Class template regex_traits [re.traits]
namespace std {

template<class charT>
struct regex_traits {

using char_type = charT;
using string_type = basic_string<char_type>;
using locale_type = locale;
using char_class_type = bitmask_type;

regex_traits();
static size_t length(const char_type* p);
charT translate(charT c) const;
charT translate_nocase(charT c) const;
template<class ForwardIterator>

string_type transform(ForwardIterator first, ForwardIterator last) const;
template<class ForwardIterator>

string_type transform_primary(
ForwardIterator first, ForwardIterator last) const;

template<class ForwardIterator>
string_type lookup_collatename(

ForwardIterator first, ForwardIterator last) const;
template<class ForwardIterator>

char_class_type lookup_classname(
ForwardIterator first, ForwardIterator last, bool icase = false) const;

bool isctype(charT c, char_class_type f) const;
int value(charT ch, int radix) const;
locale_type imbue(locale_type l);
locale_type getloc() const;

};
}

1 The specializations regex_traits<char> and regex_traits<wchar_t> meet the requirements for a regular expressiontraits class (32.2).
using char_class_type = bitmask_type;

2 The type char_class_type is used to represent a character classification and is capable of holding an implemen-tation specific set returned by lookup_classname.
static size_t length(const char_type* p);

3 Returns: char_traits<charT>::length(p).
charT translate(charT c) const;

4 Returns: c.
charT translate_nocase(charT c) const;

5 Returns: use_facet<ctype<charT>>(getloc()).tolower(c).
template<class ForwardIterator>

string_type transform(ForwardIterator first, ForwardIterator last) const;

6 Effects: As if by:
string_type str(first, last);

§ 32.6 1610

© ISO/IEC N4910

return use_facet<collate<charT>>(
getloc()).transform(str.data(), str.data() + str.length());

template<class ForwardIterator>
string_type transform_primary(ForwardIterator first, ForwardIterator last) const;

7 Effects: If
typeid(use_facet<collate<charT>>) == typeid(collate_byname<charT>)

and the form of the sort key returned by collate_byname<charT>::transform(first, last) is known and canbe converted into a primary sort key then returns that key, otherwise returns an empty string.
template<class ForwardIterator>

string_type lookup_collatename(ForwardIterator first, ForwardIterator last) const;

8 Returns: A sequence of one or more characters that represents the collating element consisting of the charactersequence designated by the iterator range [first, last). Returns an empty string if the character sequence is nota valid collating element.
template<class ForwardIterator>

char_class_type lookup_classname(
ForwardIterator first, ForwardIterator last, bool icase = false) const;

9 Returns: An unspecified value that represents the character classification named by the character sequencedesignated by the iterator range [first, last). If the parameter icase is true then the returned mask identifiesthe character classification without regard to the case of the characters being matched, otherwise it does honorthe case of the characters being matched.311 The value returned shall be independent of the case of the charactersin the character sequence. If the name is not recognized then returns char_class_type().
10 Remarks: For regex_traits<char>, at least the narrow character names in Table 136 shall be recognized. For

regex_traits<wchar_t>, at least the wide character names in Table 136 shall be recognized.
bool isctype(charT c, char_class_type f) const;

11 Effects: Determines if the character c is a member of the character classification represented by f.
12 Returns: Given the following function declaration:

// for exposition only
template<class C>
ctype_base::mask convert(typename regex_traits<C>::char_class_type f);

that returns a value in which each ctype_base::mask value corresponding to a value in f named in Table 136 isset, then the result is determined as if by:
ctype_base::mask m = convert<charT>(f);
const ctype<charT>& ct = use_facet<ctype<charT>>(getloc());
if (ct.is(m, c)) {
return true;

} else if (c == ct.widen('_')) {
charT w[1] = { ct.widen('w') };
char_class_type x = lookup_classname(w, w+1);
return (f&x) == x;

} else {
return false;

}

[Example 1:
regex_traits<char> t;
string d("d");
string u("upper");
regex_traits<char>::char_class_type f;
f = t.lookup_classname(d.begin(), d.end());
f |= t.lookup_classname(u.begin(), u.end());
ctype_base::mask m = convert<char>(f); // m == ctype_base::digit|ctype_base::upper

—end example]
311) For example, if the parameter icase is true then [[:lower:]] is the same as [[:alpha:]].
§ 32.6 1611

© ISO/IEC N4910

[Example 2:
regex_traits<char> t;
string w("w");
regex_traits<char>::char_class_type f;
f = t.lookup_classname(w.begin(), w.end());
t.isctype('A', f); // returns true
t.isctype('_', f); // returns true
t.isctype(' ', f); // returns false
—end example]

int value(charT ch, int radix) const;

13 Preconditions: The value of radix is 8, 10, or 16.
14 Returns: The value represented by the digit ch in base radix if the character ch is a valid digit in base radix;otherwise returns -1.

locale_type imbue(locale_type loc);

15 Effects: Imbues this with a copy of the locale loc.
[Note 1: Calling imbue with a different locale than the one currently in use invalidates all cached data held by *this. —endnote]

16 Postconditions: getloc() == loc.
17 Returns: If no locale has been previously imbued then a copy of the global locale in effect at the time ofconstruction of *this, otherwise a copy of the last argument passed to imbue.

locale_type getloc() const;

18 Returns: If no locale has been imbued then a copy of the global locale in effect at the time of construction of
*this, otherwise a copy of the last argument passed to imbue.

Table 136: Character class names and corresponding ctype masks [tab:re.traits.classnames]
Narrow character name Wide character name Corresponding ctype_base::mask value
"alnum" L"alnum" ctype_base::alnum
"alpha" L"alpha" ctype_base::alpha
"blank" L"blank" ctype_base::blank
"cntrl" L"cntrl" ctype_base::cntrl
"digit" L"digit" ctype_base::digit
"d" L"d" ctype_base::digit
"graph" L"graph" ctype_base::graph
"lower" L"lower" ctype_base::lower
"print" L"print" ctype_base::print
"punct" L"punct" ctype_base::punct
"space" L"space" ctype_base::space
"s" L"s" ctype_base::space
"upper" L"upper" ctype_base::upper
"w" L"w" ctype_base::alnum
"xdigit" L"xdigit" ctype_base::xdigit

32.7 Class template basic_regex [re.regex]
32.7.1 General [re.regex.general]

1 For a char-like type charT, specializations of class template basic_regex represent regular expressions constructedfrom character sequences of charT characters. In the rest of 32.7, charT denotes a given char-like type. Storage for aregular expression is allocated and freed as necessary by the member functions of class basic_regex.
2 Objects of type specialization of basic_regex are responsible for converting the sequence of charT objects to an internalrepresentation. It is not specified what form this representation takes, nor how it is accessed by algorithms that operateon regular expressions.
§ 32.7.1 1612

© ISO/IEC N4910

[Note 1: Implementations will typically declare some function templates as friends of basic_regex to achieve this. —end note]
3 The functions described in 32.7 report errors by throwing exceptions of type regex_error.

namespace std {
template<class charT, class traits = regex_traits<charT>>
class basic_regex {
public:// types

using value_type = charT;
using traits_type = traits;
using string_type = typename traits::string_type;
using flag_type = regex_constants::syntax_option_type;
using locale_type = typename traits::locale_type;

// 32.4.2, constants
static constexpr flag_type icase = regex_constants::icase;
static constexpr flag_type nosubs = regex_constants::nosubs;
static constexpr flag_type optimize = regex_constants::optimize;
static constexpr flag_type collate = regex_constants::collate;
static constexpr flag_type ECMAScript = regex_constants::ECMAScript;
static constexpr flag_type basic = regex_constants::basic;
static constexpr flag_type extended = regex_constants::extended;
static constexpr flag_type awk = regex_constants::awk;
static constexpr flag_type grep = regex_constants::grep;
static constexpr flag_type egrep = regex_constants::egrep;
static constexpr flag_type multiline = regex_constants::multiline;

// 32.7.2, construct/copy/destroy
basic_regex();
explicit basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);
basic_regex(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
basic_regex(const basic_regex&);
basic_regex(basic_regex&&) noexcept;
template<class ST, class SA>

explicit basic_regex(const basic_string<charT, ST, SA>& s,
flag_type f = regex_constants::ECMAScript);

template<class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,

flag_type f = regex_constants::ECMAScript);
basic_regex(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);

~basic_regex();

// 32.7.3, assign
basic_regex& operator=(const basic_regex& e);
basic_regex& operator=(basic_regex&& e) noexcept;
basic_regex& operator=(const charT* p);
basic_regex& operator=(initializer_list<charT> il);
template<class ST, class SA>

basic_regex& operator=(const basic_string<charT, ST, SA>& s);

basic_regex& assign(const basic_regex& e);
basic_regex& assign(basic_regex&& e) noexcept;
basic_regex& assign(const charT* p, flag_type f = regex_constants::ECMAScript);
basic_regex& assign(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
template<class ST, class SA>

basic_regex& assign(const basic_string<charT, ST, SA>& s,
flag_type f = regex_constants::ECMAScript);

template<class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

flag_type f = regex_constants::ECMAScript);
basic_regex& assign(initializer_list<charT>,

flag_type f = regex_constants::ECMAScript);

§ 32.7.1 1613

© ISO/IEC N4910

// 32.7.4, const operations
unsigned mark_count() const;
flag_type flags() const;

// 32.7.5, locale
locale_type imbue(locale_type loc);
locale_type getloc() const;

// 32.7.6, swap
void swap(basic_regex&);

};

template<class ForwardIterator>
basic_regex(ForwardIterator, ForwardIterator,

regex_constants::syntax_option_type = regex_constants::ECMAScript)
-> basic_regex<typename iterator_traits<ForwardIterator>::value_type>;

}

32.7.2 Constructors [re.regex.construct]

basic_regex();

1 Postconditions: *this does not match any character sequence.
explicit basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);

2 Preconditions: [p, p + char_traits<charT>::length(p)) is a valid range.
3 Effects: The object’s internal finite state machine is constructed from the regular expression contained in thesequence of characters [p, p + char_traits<charT>::length(p)), and interpreted according to the flags f.
4 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within theexpression.
5 Throws: regex_error if [p, p + char_traits<charT>::length(p)) is not a valid regular expression.

basic_regex(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);

6 Preconditions: [p, p + len) is a valid range.
7 Effects: The object’s internal finite state machine is constructed from the regular expression contained in thesequence of characters [p, p + len), and interpreted according the flags specified in f.
8 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within theexpression.
9 Throws: regex_error if [p, p + len) is not a valid regular expression.

basic_regex(const basic_regex& e);

10 Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively.
basic_regex(basic_regex&& e) noexcept;

11 Postconditions: flags() and mark_count() return the values that e.flags() and e.mark_count(), respectively,had before construction.
template<class ST, class SA>

explicit basic_regex(const basic_string<charT, ST, SA>& s,
flag_type f = regex_constants::ECMAScript);

12 Effects: The object’s internal finite state machine is constructed from the regular expression contained in thestring s, and interpreted according to the flags specified in f.
13 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within theexpression.
14 Throws: regex_error if s is not a valid regular expression.

§ 32.7.2 1614

© ISO/IEC N4910

template<class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,

flag_type f = regex_constants::ECMAScript);

15 Effects: The object’s internal finite state machine is constructed from the regular expression contained in thesequence of characters [first, last), and interpreted according to the flags specified in f.
16 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within theexpression.
17 Throws: regex_error if the sequence [first, last) is not a valid regular expression.

basic_regex(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);

18 Effects: Same as basic_regex(il.begin(), il.end(), f).
32.7.3 Assignment [re.regex.assign]

basic_regex& operator=(const basic_regex& e);

1 Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively.
basic_regex& operator=(basic_regex&& e) noexcept;

2 Postconditions: flags() and mark_count() return the values that e.flags() and e.mark_count(), respectively,had before assignment. e is in a valid state with unspecified value.
basic_regex& operator=(const charT* p);

3 Effects: Equivalent to: return assign(p);

basic_regex& operator=(initializer_list<charT> il);

4 Effects: Equivalent to: return assign(il.begin(), il.end());

template<class ST, class SA>
basic_regex& operator=(const basic_string<charT, ST, SA>& s);

5 Effects: Equivalent to: return assign(s);

basic_regex& assign(const basic_regex& e);

6 Effects: Equivalent to: return *this = e;

basic_regex& assign(basic_regex&& e) noexcept;

7 Effects: Equivalent to: return *this = std::move(e);

basic_regex& assign(const charT* p, flag_type f = regex_constants::ECMAScript);

8 Effects: Equivalent to: return assign(string_type(p), f);

basic_regex& assign(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);

9 Effects: Equivalent to: return assign(string_type(p, len), f);

template<class ST, class SA>
basic_regex& assign(const basic_string<charT, ST, SA>& s,

flag_type f = regex_constants::ECMAScript);

10 Effects: Assigns the regular expression contained in the string s, interpreted according the flags specified in f. Ifan exception is thrown, *this is unchanged.
11 Postconditions: If no exception is thrown, flags() returns f and mark_count() returns the number of markedsub-expressions within the expression.
12 Returns: *this.
13 Throws: regex_error if s is not a valid regular expression.

template<class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

§ 32.7.3 1615

© ISO/IEC N4910

flag_type f = regex_constants::ECMAScript);

14 Effects: Equivalent to: return assign(string_type(first, last), f);

basic_regex& assign(initializer_list<charT> il,
flag_type f = regex_constants::ECMAScript);

15 Effects: Equivalent to: return assign(il.begin(), il.end(), f);

32.7.4 Constant operations [re.regex.operations]

unsigned mark_count() const;

1 Effects: Returns the number of marked sub-expressions within the regular expression.
flag_type flags() const;

2 Effects: Returns a copy of the regular expression syntax flags that were passed to the object’s constructor or tothe last call to assign.
32.7.5 Locale [re.regex.locale]

locale_type imbue(locale_type loc);

1 Effects: Returns the result of traits_inst.imbue(loc) where traits_inst is a (default-initialized) instance ofthe template type argument traits stored within the object. After a call to imbue the basic_regex object doesnot match any character sequence.
locale_type getloc() const;

2 Effects: Returns the result of traits_inst.getloc() where traits_inst is a (default-initialized) instance ofthe template parameter traits stored within the object.
32.7.6 Swap [re.regex.swap]

void swap(basic_regex& e);

1 Effects: Swaps the contents of the two regular expressions.
2 Postconditions: *this contains the regular expression that was in e, e contains the regular expression that was in

*this.
3 Complexity: Constant time.
32.7.7 Non-member functions [re.regex.nonmemb]

template<class charT, class traits>
void swap(basic_regex<charT, traits>& lhs, basic_regex<charT, traits>& rhs);

1 Effects: Calls lhs.swap(rhs).
32.8 Class template sub_match [re.submatch]
32.8.1 General [re.submatch.general]

1 Class template sub_match denotes the sequence of characters matched by a particular marked sub-expression.
namespace std {

template<class BidirectionalIterator>
class sub_match : public pair<BidirectionalIterator, BidirectionalIterator> {
public:

using value_type =
typename iterator_traits<BidirectionalIterator>::value_type;

using difference_type =
typename iterator_traits<BidirectionalIterator>::difference_type;

using iterator = BidirectionalIterator;
using string_type = basic_string<value_type>;

bool matched;

constexpr sub_match();

§ 32.8.1 1616

© ISO/IEC N4910

difference_type length() const;
operator string_type() const;
string_type str() const;

int compare(const sub_match& s) const;
int compare(const string_type& s) const;
int compare(const value_type* s) const;

};
}

32.8.2 Members [re.submatch.members]

constexpr sub_match();

1 Effects: Value-initializes the pair base class subobject and the member matched.
difference_type length() const;

2 Returns: matched ? distance(first, second) : 0.
operator string_type() const;

3 Returns: matched ? string_type(first, second) : string_type().
string_type str() const;

4 Returns: matched ? string_type(first, second) : string_type().
int compare(const sub_match& s) const;

5 Returns: str().compare(s.str()).
int compare(const string_type& s) const;

6 Returns: str().compare(s).
int compare(const value_type* s) const;

7 Returns: str().compare(s).
32.8.3 Non-member operators [re.submatch.op]

1 Let SM-CAT(I) be
compare_three_way_result_t<basic_string<typename iterator_traits<I>::value_type>>

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

2 Returns: lhs.compare(rhs) == 0.
template<class BiIter>

auto operator<=>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

3 Returns: static_cast<SM-CAT(BiIter)>(lhs.compare(rhs) <=> 0).
template<class BiIter, class ST, class SA>

bool operator==(
const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

4 Returns:
lhs.compare(typename sub_match<BiIter>::string_type(rhs.data(), rhs.size())) == 0

template<class BiIter, class ST, class SA>
auto operator<=>(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

5 Returns:

§ 32.8.3 1617

© ISO/IEC N4910

static_cast<SM-CAT(BiIter)>(lhs.compare(
typename sub_match<BiIter>::string_type(rhs.data(), rhs.size()))

<=> 0
)

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type* rhs);

6 Returns: lhs.compare(rhs) == 0.
template<class BiIter>

auto operator<=>(const sub_match<BiIter>& lhs,
const typename iterator_traits<BiIter>::value_type* rhs);

7 Returns: static_cast<SM-CAT(BiIter)>(lhs.compare(rhs) <=> 0).
template<class BiIter>

bool operator==(const sub_match<BiIter>& lhs,
const typename iterator_traits<BiIter>::value_type& rhs);

8 Returns: lhs.compare(typename sub_match<BiIter>::string_type(1, rhs)) == 0.
template<class BiIter>

auto operator<=>(const sub_match<BiIter>& lhs,
const typename iterator_traits<BiIter>::value_type& rhs);

9 Returns:
static_cast<SM-CAT(BiIter)>(lhs.compare(

typename sub_match<BiIter>::string_type(1, rhs))
<=> 0

)

template<class charT, class ST, class BiIter>
basic_ostream<charT, ST>&
operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

10 Returns: os << m.str().
32.9 Class template match_results [re.results]
32.9.1 General [re.results.general]

1 Class template match_results denotes a collection of character sequences representing the result of a regular expressionmatch. Storage for the collection is allocated and freed as necessary by the member functions of class template match_-
results.

2 The class template match_results meets the requirements of an allocator-aware container and of a sequence container(24.2.2.1, 24.2.4) except that only copy assignment, move assignment, and operations defined for const-qualifiedsequence containers are supported and that the semantics of the comparison operator functions are different from thoserequired for a container.
3 A default-constructed match_results object has no fully established result state. A match result is ready when, as aconsequence of a completed regular expression match modifying such an object, its result state becomes fully established.The effects of calling most member functions from a match_results object that is not ready are undefined.
4 The sub_match object stored at index 0 represents sub-expression 0, i.e., the whole match. In this case the sub_-

match member matched is always true. The sub_match object stored at index n denotes what matched the markedsub-expression n within the matched expression. If the sub-expression n participated in a regular expression matchthen the sub_match member matched evaluates to true, and members first and second denote the range of characters
[first, second) which formed that match. Otherwise matched is false, and members first and second point to theend of the sequence that was searched.
[Note 1: The sub_match objects representing different sub-expressions that did not participate in a regular expression match need notbe distinct. —end note]
namespace std {

template<class BidirectionalIterator,
class Allocator = allocator<sub_match<BidirectionalIterator>>>

§ 32.9.1 1618

© ISO/IEC N4910

class match_results {
public:

using value_type = sub_match<BidirectionalIterator>;
using const_reference = const value_type&;
using reference = value_type&;
using const_iterator = implementation-defined;
using iterator = const_iterator;
using difference_type =

typename iterator_traits<BidirectionalIterator>::difference_type;
using size_type = typename allocator_traits<Allocator>::size_type;
using allocator_type = Allocator;
using char_type =

typename iterator_traits<BidirectionalIterator>::value_type;
using string_type = basic_string<char_type>;

// 32.9.2, construct/copy/destroy
match_results() : match_results(Allocator()) {}
explicit match_results(const Allocator&);
match_results(const match_results& m);
match_results(match_results&& m) noexcept;
match_results& operator=(const match_results& m);
match_results& operator=(match_results&& m);
~match_results();

// 32.9.3, state
bool ready() const;

// 32.9.4, size
size_type size() const;
size_type max_size() const;
[[nodiscard]] bool empty() const;

// 32.9.5, element access
difference_type length(size_type sub = 0) const;
difference_type position(size_type sub = 0) const;
string_type str(size_type sub = 0) const;
const_reference operator[](size_type n) const;

const_reference prefix() const;
const_reference suffix() const;
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// 32.9.6, format
template<class OutputIter>

OutputIter
format(OutputIter out,

const char_type* fmt_first, const char_type* fmt_last,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

template<class OutputIter, class ST, class SA>
OutputIter

format(OutputIter out,
const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

template<class ST, class SA>
basic_string<char_type, ST, SA>

format(const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

string_type
format(const char_type* fmt,

regex_constants::match_flag_type flags = regex_constants::format_default) const;

§ 32.9.1 1619

© ISO/IEC N4910

// 32.9.7, allocator
allocator_type get_allocator() const;

// 32.9.8, swap
void swap(match_results& that);

};
}

32.9.2 Constructors [re.results.const]
1 Table 137 lists the postconditions of match_results copy/move constructors and copy/move assignment operators. Formove operations, the results of the expressions depending on the parameter m denote the values they had before therespective function calls.

explicit match_results(const Allocator& a);

2 Postconditions: ready() returns false. size() returns 0.
match_results(const match_results& m);

3 Postconditions: As specified in Table 137.
match_results(match_results&& m) noexcept;

4 Effects: The stored Allocator value is move constructed from m.get_allocator().
5 Postconditions: As specified in Table 137.

match_results& operator=(const match_results& m);

6 Postconditions: As specified in Table 137.
match_results& operator=(match_results&& m);

7 Postconditions: As specified in Table 137.
Table 137: match_results copy/move operation postconditions [tab:re.results.const]

Element Value
ready() m.ready()
size() m.size()
str(n) m.str(n) for all non-negative integers n < m.size()
prefix() m.prefix()
suffix() m.suffix()
(*this)[n] m[n] for all non-negative integers n < m.size()
length(n) m.length(n) for all non-negative integers n <

m.size()
position(n) m.position(n) for all non-negative integers n <

m.size()

32.9.3 State [re.results.state]

bool ready() const;

1 Returns: true if *this has a fully established result state, otherwise false.
32.9.4 Size [re.results.size]

size_type size() const;

1 Returns: One plus the number of marked sub-expressions in the regular expression that was matched if *thisrepresents the result of a successful match. Otherwise returns 0.
[Note 1: The state of a match_results object can be modified only by passing that object to regex_match or regex_search.Subclauses 32.10.2 and 32.10.3 specify the effects of those algorithms on their match_results arguments. —end note]

§ 32.9.4 1620

© ISO/IEC N4910

size_type max_size() const;

2 Returns: The maximum number of sub_match elements that can be stored in *this.
[[nodiscard]] bool empty() const;

3 Returns: size() == 0.
32.9.5 Element access [re.results.acc]

difference_type length(size_type sub = 0) const;

1 Preconditions: ready() == true.
2 Returns: (*this)[sub].length().

difference_type position(size_type sub = 0) const;

3 Preconditions: ready() == true.
4 Returns: The distance from the start of the target sequence to (*this)[sub].first.

string_type str(size_type sub = 0) const;

5 Preconditions: ready() == true.
6 Returns: string_type((*this)[sub]).

const_reference operator[](size_type n) const;

7 Preconditions: ready() == true.
8 Returns: A reference to the sub_match object representing the character sequence that matched marked sub-expression n. If n == 0 then returns a reference to a sub_match object representing the character sequencethat matched the whole regular expression. If n >= size() then returns a sub_match object representing anunmatched sub-expression.

const_reference prefix() const;

9 Preconditions: ready() == true.
10 Returns: A reference to the sub_match object representing the character sequence from the start of the stringbeing matched/searched to the start of the match found.

const_reference suffix() const;

11 Preconditions: ready() == true.
12 Returns: A reference to the sub_match object representing the character sequence from the end of the matchfound to the end of the string being matched/searched.

const_iterator begin() const;
const_iterator cbegin() const;

13 Returns: A starting iterator that enumerates over all the sub-expressions stored in *this.
const_iterator end() const;
const_iterator cend() const;

14 Returns: A terminating iterator that enumerates over all the sub-expressions stored in *this.
32.9.6 Formatting [re.results.form]

template<class OutputIter>
OutputIter format(

OutputIter out,
const char_type* fmt_first, const char_type* fmt_last,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

1 Preconditions: ready() == true and OutputIter meets the requirements for a Cpp17OutputIterator (25.3.5.4).
2 Effects: Copies the character sequence [fmt_first, fmt_last) to OutputIter out. Replaces each format specifieror escape sequence in the copied range with either the character(s) it represents or the sequence of characters

§ 32.9.6 1621

© ISO/IEC N4910

within *this to which it refers. The bitmasks specified in flags determine which format specifiers and escapesequences are recognized.
3 Returns: out.

template<class OutputIter, class ST, class SA>
OutputIter format(

OutputIter out,
const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

4 Effects: Equivalent to:
return format(out, fmt.data(), fmt.data() + fmt.size(), flags);

template<class ST, class SA>
basic_string<char_type, ST, SA> format(

const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

5 Preconditions: ready() == true.
6 Effects: Constructs an empty string result of type basic_string<char_type, ST, SA> and calls:

format(back_inserter(result), fmt, flags);

7 Returns: result.
string_type format(

const char_type* fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

8 Preconditions: ready() == true.
9 Effects: Constructs an empty string result of type string_type and calls:

format(back_inserter(result), fmt, fmt + char_traits<char_type>::length(fmt), flags);

10 Returns: result.
32.9.7 Allocator [re.results.all]

allocator_type get_allocator() const;

1 Returns: A copy of the Allocator that was passed to the object’s constructor or, if that allocator has been replaced,a copy of the most recent replacement.
32.9.8 Swap [re.results.swap]

void swap(match_results& that);

1 Effects: Swaps the contents of the two sequences.
2 Postconditions: *this contains the sequence of matched sub-expressions that were in that, that contains thesequence of matched sub-expressions that were in *this.
3 Complexity: Constant time.

template<class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,

match_results<BidirectionalIterator, Allocator>& m2);

4 Effects: As if by m1.swap(m2).
32.9.9 Non-member functions [re.results.nonmember]

template<class BidirectionalIterator, class Allocator>
bool operator==(const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

1 Returns: true if neither match result is ready, false if one match result is ready and the other is not. If bothmatch results are ready, returns true only if:
—(1.1) m1.empty() && m2.empty(), or

§ 32.9.9 1622

© ISO/IEC N4910

—(1.2) !m1.empty() && !m2.empty(), and the following conditions are satisfied:
—(1.2.1) m1.prefix() == m2.prefix(),
—(1.2.2) m1.size() == m2.size() && equal(m1.begin(), m1.end(), m2.begin()), and
—(1.2.3) m1.suffix() == m2.suffix().

[Note 1: The algorithm equal is defined in Clause 27. —end note]
32.10 Regular expression algorithms [re.alg]
32.10.1 Exceptions [re.except]

1 The algorithms described in subclause 32.10 may throw an exception of type regex_error. If such an exception e isthrown, e.code() shall return either regex_constants::error_complexity or regex_constants::error_stack.
32.10.2 regex_match [re.alg.match]

template<class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

1 Preconditions: BidirectionalIterator meets the Cpp17BidirectionalIterator requirements (25.3.5.6).
2 Effects: Determines whether there is a match between the regular expression e, and all of the character sequence

[first, last). The parameter flags is used to control how the expression is matched against the charactersequence. When determining if there is a match, only potential matches that match the entire character sequenceare considered. Returns true if such a match exists, false otherwise.
[Example 1:
std::regex re("Get|GetValue");
std::cmatch m;
regex_search("GetValue", m, re); // returns true, and m[0] contains "Get"
regex_match ("GetValue", m, re); // returns true, and m[0] contains "GetValue"
regex_search("GetValues", m, re); // returns true, and m[0] contains "Get"
regex_match ("GetValues", m, re); // returns false
—end example]

3 Postconditions: m.ready() == true in all cases. If the function returns false, then the effect on parameter m isunspecified except that m.size() returns 0 and m.empty() returns true. Otherwise the effects on parameter m aregiven in Table 138.
Table 138: Effects of regex_match algorithm [tab:re.alg.match]

Element Value
m.size() 1 + e.mark_count()
m.empty() false
m.prefix().first first
m.prefix().second first
m.prefix().matched false
m.suffix().first last
m.suffix().second last
m.suffix().matched false
m[0].first first
m[0].second last
m[0].matched true
m[n].first For all integers 0 < n < m.size(), the start of the sequence thatmatched sub-expression n. Alternatively, if sub-expression n didnot participate in the match, then last.
m[n].second For all integers 0 < n < m.size(), the end of the sequence thatmatched sub-expression n. Alternatively, if sub-expression n didnot participate in the match, then last.

§ 32.10.2 1623

© ISO/IEC N4910

Table 138: Effects of regex_match algorithm (continued)
Element Value

m[n].matched For all integers 0 < n < m.size(), true if sub-expression nparticipated in the match, false otherwise.

template<class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

4 Effects: Behaves “as if” by constructing an instance of match_results<BidirectionalIterator> what, andthen returning the result of regex_match(first, last, what, e, flags).
template<class charT, class Allocator, class traits>

bool regex_match(const charT* str,
match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

5 Returns: regex_match(str, str + char_traits<charT>::length(str), m, e, flags).
template<class ST, class SA, class Allocator, class charT, class traits>

bool regex_match(const basic_string<charT, ST, SA>& s,
match_results<typename basic_string<charT, ST, SA>::const_iterator,

Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

6 Returns: regex_match(s.begin(), s.end(), m, e, flags).
template<class charT, class traits>

bool regex_match(const charT* str,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

7 Returns: regex_match(str, str + char_traits<charT>::length(str), e, flags)

template<class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

8 Returns: regex_match(s.begin(), s.end(), e, flags).
32.10.3 regex_search [re.alg.search]

template<class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

1 Preconditions: BidirectionalIterator meets the Cpp17BidirectionalIterator requirements (25.3.5.6).
2 Effects: Determines whether there is some sub-sequence within [first, last) that matches the regular expression

e. The parameter flags is used to control how the expression is matched against the character sequence. Returns
true if such a sequence exists, false otherwise.

3 Postconditions: m.ready() == true in all cases. If the function returns false, then the effect on parameter m isunspecified except that m.size() returns 0 and m.empty() returns true. Otherwise the effects on parameter m aregiven in Table 139.

§ 32.10.3 1624

© ISO/IEC N4910

Table 139: Effects of regex_search algorithm [tab:re.alg.search]
Element Value

m.size() 1 + e.mark_count()
m.empty() false
m.prefix().first first
m.prefix().second m[0].first
m.prefix().matched m.prefix().first != m.prefix().second
m.suffix().first m[0].second
m.suffix().second last
m.suffix().matched m.suffix().first != m.suffix().second
m[0].first The start of the sequence of characters that matched the regularexpression
m[0].second The end of the sequence of characters that matched the regularexpression
m[0].matched true
m[n].first For all integers 0 < n < m.size(), the start of the sequence thatmatched sub-expression n. Alternatively, if sub-expression n didnot participate in the match, then last.
m[n].second For all integers 0 < n < m.size(), the end of the sequence thatmatched sub-expression n. Alternatively, if sub-expression n didnot participate in the match, then last.
m[n].matched For all integers 0 < n < m.size(), true if sub-expression nparticipated in the match, false otherwise.

template<class charT, class Allocator, class traits>
bool regex_search(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

4 Returns: regex_search(str, str + char_traits<charT>::length(str), m, e, flags).
template<class ST, class SA, class Allocator, class charT, class traits>

bool regex_search(const basic_string<charT, ST, SA>& s,
match_results<typename basic_string<charT, ST, SA>::const_iterator,

Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

5 Returns: regex_search(s.begin(), s.end(), m, e, flags).
template<class BidirectionalIterator, class charT, class traits>

bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

6 Effects: Behaves “as if” by constructing an object what of type match_results<BidirectionalIterator> andreturning regex_search(first, last, what, e, flags).
template<class charT, class traits>

bool regex_search(const charT* str,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

7 Returns: regex_search(str, str + char_traits<charT>::length(str), e, flags).
template<class ST, class SA, class charT, class traits>

bool regex_search(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

8 Returns: regex_search(s.begin(), s.end(), e, flags).

§ 32.10.3 1625

© ISO/IEC N4910

32.10.4 regex_replace [re.alg.replace]

template<class OutputIterator, class BidirectionalIterator,
class traits, class charT, class ST, class SA>

OutputIterator
regex_replace(OutputIterator out,

BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator
regex_replace(OutputIterator out,

BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

1 Effects: Constructs a regex_iterator object i as if by
regex_iterator<BidirectionalIterator, charT, traits> i(first, last, e, flags)

and uses i to enumerate through all of the matches m of type match_results<BidirectionalIterator> that occurwithin the sequence [first, last). If no such matches are found and !(flags & regex_constants::format_-
no_copy), then calls
out = copy(first, last, out)

If any matches are found then, for each such match:
—(1.1) If !(flags & regex_constants::format_no_copy), calls

out = copy(m.prefix().first, m.prefix().second, out)

—(1.2) Then calls
out = m.format(out, fmt, flags)

for the first form of the function and
out = m.format(out, fmt, fmt + char_traits<charT>::length(fmt), flags)

for the second.
Finally, if such a match is found and !(flags & regex_constants::format_no_copy), calls
out = copy(last_m.suffix().first, last_m.suffix().second, out)

where last_m is a copy of the last match found. If flags & regex_constants::format_first_only is nonzero,then only the first match found is replaced.
2 Returns: out.

template<class traits, class charT, class ST, class SA, class FST, class FSA>
basic_string<charT, ST, SA>
regex_replace(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
const basic_string<charT, FST, FSA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA>
basic_string<charT, ST, SA>
regex_replace(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

3 Effects: Constructs an empty string result of type basic_string<charT, ST, SA> and calls:
regex_replace(back_inserter(result), s.begin(), s.end(), e, fmt, flags);

4 Returns: result.

§ 32.10.4 1626

© ISO/IEC N4910

template<class traits, class charT, class ST, class SA>
basic_string<charT>
regex_replace(const charT* s,

const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT>
basic_string<charT>
regex_replace(const charT* s,

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

5 Effects: Constructs an empty string result of type basic_string<charT> and calls:
regex_replace(back_inserter(result), s, s + char_traits<charT>::length(s), e, fmt, flags);

6 Returns: result.
32.11 Regular expression iterators [re.iter]
32.11.1 Class template regex_iterator [re.regiter]
32.11.1.1 General [re.regiter.general]

1 The class template regex_iterator is an iterator adaptor. It represents a new view of an existing iterator sequence,by enumerating all the occurrences of a regular expression within that sequence. A regex_iterator uses regex_-
search to find successive regular expression matches within the sequence from which it was constructed. Afterthe iterator is constructed, and every time operator++ is used, the iterator finds and stores a value of match_-
results<BidirectionalIterator>. If the end of the sequence is reached (regex_search returns false), the iteratorbecomes equal to the end-of-sequence iterator value. The default constructor constructs an end-of-sequence iteratorobject, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end-of-sequence iterator is not defined. For any other iterator value a const match_results<BidirectionalIterator>& isreturned. The result of operator-> on an end-of-sequence iterator is not defined. For any other iterator value a const
match_results<BidirectionalIterator>* is returned. It is impossible to store things into regex_iterators. Twoend-of-sequence iterators are always equal. An end-of-sequence iterator is not equal to a non-end-of-sequence iterator.Two non-end-of-sequence iterators are equal when they are constructed from the same arguments.
namespace std {

template<class BidirectionalIterator,
class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_iterator {
public:

using regex_type = basic_regex<charT, traits>;
using iterator_category = forward_iterator_tag;
using value_type = match_results<BidirectionalIterator>;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;

regex_iterator();
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
regex_constants::match_flag_type m = regex_constants::match_default);

regex_iterator(BidirectionalIterator, BidirectionalIterator,
const regex_type&&,
regex_constants::match_flag_type = regex_constants::match_default) = delete;

regex_iterator(const regex_iterator&);
regex_iterator& operator=(const regex_iterator&);
bool operator==(const regex_iterator&) const;
const value_type& operator*() const;
const value_type* operator->() const;
regex_iterator& operator++();
regex_iterator operator++(int);

§ 32.11.1.1 1627

© ISO/IEC N4910

private:
BidirectionalIterator begin; // exposition only
BidirectionalIterator end; // exposition only
const regex_type* pregex; // exposition only
regex_constants::match_flag_type flags; // exposition only
match_results<BidirectionalIterator> match; // exposition only

};
}

2 An object of type regex_iterator that is not an end-of-sequence iterator holds a zero-length match if match[0].matched
== true and match[0].first == match[0].second.
[Note 1: For example, this can occur when the part of the regular expression that matched consists only of an assertion (such as ’^’,
’$’, ’\b’, ’\B’). —end note]
32.11.1.2 Constructors [re.regiter.cnstr]

regex_iterator();

1 Effects: Constructs an end-of-sequence iterator.
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
regex_constants::match_flag_type m = regex_constants::match_default);

2 Effects: Initializes begin and end to a and b, respectively, sets pregex to addressof(re), sets flags to m, then calls
regex_search(begin, end, match, *pregex, flags). If this call returns false the constructor sets *this tothe end-of-sequence iterator.

32.11.1.3 Comparisons [re.regiter.comp]

bool operator==(const regex_iterator& right) const;

1 Returns: true if *this and right are both end-of-sequence iterators or if the following conditions all hold:
—(1.1) begin == right.begin,
—(1.2) end == right.end,
—(1.3) pregex == right.pregex,
—(1.4) flags == right.flags, and
—(1.5) match[0] == right.match[0];
otherwise false.

32.11.1.4 Indirection [re.regiter.deref]

const value_type& operator*() const;

1 Returns: match.
const value_type* operator->() const;

2 Returns: addressof(match).
32.11.1.5 Increment [re.regiter.incr]

regex_iterator& operator++();

1 Effects: Constructs a local variable start of type BidirectionalIterator and initializes it with the value of
match[0].second.

2 If the iterator holds a zero-length match and start == end the operator sets *this to the end-of-sequence iteratorand returns *this.
3 Otherwise, if the iterator holds a zero-length match, the operator calls:

regex_search(start, end, match, *pregex,
flags | regex_constants::match_not_null | regex_constants::match_continuous)

If the call returns true the operator returns *this. Otherwise the operator increments start and continues as ifthe most recent match was not a zero-length match.
§ 32.11.1.5 1628

© ISO/IEC N4910

4 If themost recentmatchwas not a zero-lengthmatch, the operator sets flags to flags | regex_constants::match_-
prev_avail and calls regex_search(start, end, match, *pregex, flags). If the call returns false the iter-ator sets *this to the end-of-sequence iterator. The iterator then returns *this.

5 In all cases in which the call to regex_search returns true, match.prefix().first shall be equal to the pre-vious value of match[0].second, and for each index i in the half-open range [0, match.size()) for which
match[i].matched is true, match.position(i) shall return distance(begin, match[i].first).

6 [Note 1: This means that match.position(i) gives the offset from the beginning of the target sequence, which is often notthe same as the offset from the sequence passed in the call to regex_search. —end note]
7 It is unspecified how the implementation makes these adjustments.
8 [Note 2: This means that an implementation can call an implementation-specific search function, in which case a program-defined specialization of regex_search will not be called. —end note]

regex_iterator operator++(int);

9 Effects: As if by:
regex_iterator tmp = *this;
++(*this);
return tmp;

32.11.2 Class template regex_token_iterator [re.tokiter]
32.11.2.1 General [re.tokiter.general]

1 The class template regex_token_iterator is an iterator adaptor; that is to say it represents a new view of an existingiterator sequence, by enumerating all the occurrences of a regular expression within that sequence, and presenting oneor more sub-expressions for each match found. Each position enumerated by the iterator is a sub_match class templateinstance that represents what matched a particular sub-expression within the regular expression.
2 When class regex_token_iterator is used to enumerate a single sub-expression with index −1 the iterator performsfield splitting: that is to say it enumerates one sub-expression for each section of the character container sequence thatdoes not match the regular expression specified.
3 After it is constructed, the iterator finds and stores a value regex_iterator<BidirectionalIterator> position andsets the internal count N to zero. It also maintains a sequence subs which contains a list of the sub-expressions whichwill be enumerated. Every time operator++ is used the count N is incremented; if N exceeds or equals subs.size(),then the iterator increments member position and sets count N to zero.
4 If the end of sequence is reached (position is equal to the end of sequence iterator), the iterator becomes equal to theend-of-sequence iterator value, unless the sub-expression being enumerated has index −1, in which case the iteratorenumerates one last sub-expression that contains all the characters from the end of the last regular expression match tothe end of the input sequence being enumerated, provided that this would not be an empty sub-expression.
5 The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to be used forthe end condition. The result of operator* on an end-of-sequence iterator is not defined. For any other iterator value a

const sub_match<BidirectionalIterator>& is returned. The result of operator-> on an end-of-sequence iterator isnot defined. For any other iterator value a const sub_match<BidirectionalIterator>* is returned.
6 It is impossible to store things into regex_token_iterators. Two end-of-sequence iterators are always equal. Anend-of-sequence iterator is not equal to a non-end-of-sequence iterator. Two non-end-of-sequence iterators are equalwhen they are constructed from the same arguments.

namespace std {
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_token_iterator {
public:

using regex_type = basic_regex<charT, traits>;
using iterator_category = forward_iterator_tag;
using value_type = sub_match<BidirectionalIterator>;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;

§ 32.11.2.1 1629

© ISO/IEC N4910

regex_token_iterator();
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
int submatch = 0,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
const vector<int>& submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);
template<size_t N>

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
const int (&submatches)[N],
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
int submatch = 0,
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
const vector<int>& submatches,
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
template<size_t N>
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
const int (&submatches)[N],
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
regex_token_iterator(const regex_token_iterator&);
regex_token_iterator& operator=(const regex_token_iterator&);
bool operator==(const regex_token_iterator&) const;
const value_type& operator*() const;
const value_type* operator->() const;
regex_token_iterator& operator++();
regex_token_iterator operator++(int);

private:
using position_iterator =

regex_iterator<BidirectionalIterator, charT, traits>; // exposition only
position_iterator position; // exposition only
const value_type* result; // exposition only
value_type suffix; // exposition only
size_t N; // exposition only
vector<int> subs; // exposition only

};
}

7 A suffix iterator is a regex_token_iterator object that points to a final sequence of characters at the end of the targetsequence. In a suffix iterator the member result holds a pointer to the data member suffix, the value of the member
§ 32.11.2.1 1630

© ISO/IEC N4910

suffix.match is true, suffix.first points to the beginning of the final sequence, and suffix.second points to theend of the final sequence.
8 [Note 1: For a suffix iterator, data member suffix.first is the same as the end of the last match found, and suffix.second is thesame as the end of the target sequence. —end note]
9 The current match is (*position).prefix() if subs[N] == -1, or (*position)[subs[N]] for any other value of

subs[N].
32.11.2.2 Constructors [re.tokiter.cnstr]

regex_token_iterator();

1 Effects: Constructs the end-of-sequence iterator.
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
int submatch = 0,
regex_constants::match_flag_type m = regex_constants::match_default);

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
const vector<int>& submatches,
regex_constants::match_flag_type m = regex_constants::match_default);

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m = regex_constants::match_default);

template<size_t N>
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
const int (&submatches)[N],
regex_constants::match_flag_type m = regex_constants::match_default);

2 Preconditions: Each of the initialization values of submatches is >= -1.
3 Effects: The first constructor initializes the member subs to hold the single value submatch. The second, third,and fourth constructors initialize the member subs to hold a copy of the sequence of integer values pointed to bythe iterator range [begin(submatches), end(submatches)).
4 Each constructor then sets N to 0, and position to position_iterator(a, b, re, m). If position is not anend-of-sequence iterator the constructor sets result to the address of the current match. Otherwise if any of thevalues stored in subs is equal to −1 the constructor sets *this to a suffix iterator that points to the range [a, b),otherwise the constructor sets *this to an end-of-sequence iterator.
32.11.2.3 Comparisons [re.tokiter.comp]

bool operator==(const regex_token_iterator& right) const;

1 Returns: true if *this and right are both end-of-sequence iterators, or if *this and right are both suffix iteratorsand suffix == right.suffix; otherwise returns false if *this or right is an end-of-sequence iterator or a suffixiterator. Otherwise returns true if position == right.position, N == right.N, and subs == right.subs.Otherwise returns false.
32.11.2.4 Indirection [re.tokiter.deref]

const value_type& operator*() const;

1 Returns: *result.
const value_type* operator->() const;

2 Returns: result.

§ 32.11.2.4 1631

© ISO/IEC N4910

32.11.2.5 Increment [re.tokiter.incr]

regex_token_iterator& operator++();

1 Effects: Constructs a local variable prev of type position_iterator, initialized with the value of position.
2 If *this is a suffix iterator, sets *this to an end-of-sequence iterator.
3 Otherwise, if N + 1 < subs.size(), increments N and sets result to the address of the current match.
4 Otherwise, sets N to 0 and increments position. If position is not an end-of-sequence iterator the operator sets

result to the address of the current match.
5 Otherwise, if any of the values stored in subs is equal to−1 and prev->suffix().length() is not 0 the operatorsets *this to a suffix iterator that points to the range [prev->suffix().first, prev->suffix().second).
6 Otherwise, sets *this to an end-of-sequence iterator.
7 Returns: *this

regex_token_iterator& operator++(int);

8 Effects: Constructs a copy tmp of *this, then calls ++(*this).
9 Returns: tmp.
32.12 Modified ECMAScript regular expression grammar [re.grammar]

1 The regular expression grammar recognized by basic_regex objects constructed with the ECMAScript flag is thatspecified by ECMA-262, except as specified below.
2 Objects of type specialization of basic_regex store within themselves a default-constructed instance of their traitstemplate parameter, henceforth referred to as traits_inst. This traits_inst object is used to support localization ofthe regular expression; basic_regex member functions shall not call any locale dependent C or C++ API, including theformatted string input functions. Instead they shall call the appropriate traits member function to achieve the requiredeffect.
3 The following productions within the ECMAScript grammar are modified as follows:

ClassAtom ::
-ClassAtomNoDashClassAtomExClassClassAtomCollatingElementClassAtomEquivalence

IdentityEscape ::SourceCharacter but not c
4 The following new productions are then added:

ClassAtomExClass ::
[: ClassName :]

ClassAtomCollatingElement ::
[. ClassName .]

ClassAtomEquivalence ::
[= ClassName =]

ClassName ::ClassNameCharacterClassNameCharacter ClassName
ClassNameCharacter ::SourceCharacter but not one of . or = or :

5 The productions ClassAtomExClass, ClassAtomCollatingElement and ClassAtomEquivalence provide functionalityequivalent to that of the same features in regular expressions in POSIX.
6 The regular expression grammar may be modified by any regex_constants::syntax_option_type flags specifiedwhen constructing an object of type specialization of basic_regex according to the rules in Table 133.
7 A ClassName production, when used in ClassAtomExClass, is not valid if traits_inst.lookup_classname returnszero for that name. The names recognized as valid ClassNames are determined by the type of the traits class, but at

§ 32.12 1632

© ISO/IEC N4910

least the following names shall be recognized: alnum, alpha, blank, cntrl, digit, graph, lower, print, punct, space,
upper, xdigit, d, s, w. In addition the following expressions shall be equivalent:
\d and [[:digit:]]

\D and [^[:digit:]]

\s and [[:space:]]

\S and [^[:space:]]

\w and [_[:alnum:]]

\W and [^_[:alnum:]]

8 A ClassName production when used in a ClassAtomCollatingElement production is not valid if the value returned by
traits_inst.lookup_collatename for that name is an empty string.

9 The results from multiple calls to traits_inst.lookup_classname can be bitwise OR’ed together and subsequentlypassed to traits_inst.isctype.
10 A ClassName production when used in a ClassAtomEquivalence production is not valid if the value returned by traits_-

inst.lookup_collatename for that name is an empty string or if the value returned by traits_inst.transform_-
primary for the result of the call to traits_inst.lookup_collatename is an empty string.

11 When the sequence of characters being transformed to a finite state machine contains an invalid class name the translatorshall throw an exception object of type regex_error.
12 If the CV of a UnicodeEscapeSequence is greater than the largest value that can be held in an object of type charT thetranslator shall throw an exception object of type regex_error.
[Note 1: This means that values of the form "uxxxx" that do not fit in a character are invalid. —end note]

13 Where the regular expression grammar requires the conversion of a sequence of characters to an integral value, this isaccomplished by calling traits_inst.value.
14 The behavior of the internal finite state machine representation when used to match a sequence of characters is asdescribed in ECMA-262. The behavior is modified according to any match_flag_type flags (32.4.3) specified whenusing the regular expression object in one of the regular expression algorithms (32.10). The behavior is also localizedby interaction with the traits class template parameter as follows:

—(14.1) During matching of a regular expression finite state machine against a sequence of characters, two characters cand d are compared using the following rules:
—(14.1.1) if (flags() & regex_constants::icase) the two characters are equal if traits_inst.translate_nocase(c)

== traits_inst.translate_nocase(d);
—(14.1.2) otherwise, if flags() & regex_constants::collate the two characters are equal if traits_inst.translate(c)

== traits_inst.translate(d);
—(14.1.3) otherwise, the two characters are equal if c == d.

—(14.2) During matching of a regular expression finite state machine against a sequence of characters, comparison of a col-lating element range c1-c2 against a character c is conducted as follows: if flags() & regex_constants::collateis false then the character c is matched if c1 <= c && c <= c2, otherwise c is matched in accordance with thefollowing algorithm:
string_type str1 = string_type(1,
flags() & icase ?

traits_inst.translate_nocase(c1) : traits_inst.translate(c1));
string_type str2 = string_type(1,
flags() & icase ?

traits_inst.translate_nocase(c2) : traits_inst.translate(c2));
string_type str = string_type(1,
flags() & icase ?

traits_inst.translate_nocase(c) : traits_inst.translate(c));
return traits_inst.transform(str1.begin(), str1.end())

<= traits_inst.transform(str.begin(), str.end())
&& traits_inst.transform(str.begin(), str.end())

<= traits_inst.transform(str2.begin(), str2.end());

§ 32.12 1633

© ISO/IEC N4910

—(14.3) During matching of a regular expression finite state machine against a sequence of characters, testing whethera collating element is a member of a primary equivalence class is conducted by first converting the collatingelement and the equivalence class to sort keys using traits::transform_primary, and then comparing the sortkeys for equality.
—(14.4) During matching of a regular expression finite state machine against a sequence of characters, a character

c is a member of a character class designated by an iterator range [first, last) if traits_inst.isctype(c,
traits_inst.lookup_classname(first, last, flags() & icase)) is true.

See also: ECMA-262 15.10

§ 32.12 1634

© ISO/IEC N4910

33 Concurrency support library [thread]
33.1 General [thread.general]

1 The following subclauses describe components to create and manage threads (6.9.2), perform mutual exclusion, andcommunicate conditions and values between threads, as summarized in Table 140.
Table 140: Thread support library summary [tab:thread.summary]

Subclause Header
33.2 Requirements33.3 Stop tokens <stop_token>33.4 Threads <thread>33.5 Atomic operations <atomic> <atomic_ref> <stdatomic.h>33.6 Mutual exclusion <mutex>, <shared_mutex>33.7 Condition variables <condition_variable>33.8 Semaphores <semaphore>33.9 Coordination types <latch> <barrier>33.10 Futures <future>

33.2 Requirements [thread.req]
33.2.1 Template parameter names [thread.req.paramname]

1 Throughout this Clause, the names of template parameters are used to express type requirements. If a template parameteris named Predicate, operator() applied to the template argument shall return a value that is convertible to bool. If atemplate parameter is named Clock, the corresponding template argument shall be a type C that meets the Cpp17Clockrequirements (29.3); the program is ill-formed if is_clock_v<C> is false.
33.2.2 Exceptions [thread.req.exception]

1 Some functions described in this Clause are specified to throw exceptions of type system_error (19.5.8). Suchexceptions are thrown if any of the function’s error conditions is detected or a call to an operating system or otherunderlying API results in an error that prevents the library function from meeting its specifications. Failure to allocatestorage is reported as described in 16.4.6.13.
[Example 1: Consider a function in this Clause that is specified to throw exceptions of type system_error and specifies errorconditions that include operation_not_permitted for a thread that does not have the privilege to perform the operation. Assumethat, during the execution of this function, an errno of EPERM is reported by a POSIX API call used by the implementation. SincePOSIX specifies an errno of EPERM when “the caller does not have the privilege to perform the operation”, the implementationmaps EPERM to an error_condition of operation_not_permitted (19.5) and an exception of type system_error is thrown. —endexample]

2 The error_code reported by such an exception’s code() member function compares equal to one of the conditionsspecified in the function’s error condition element.
33.2.3 Native handles [thread.req.native]

1 Several classes described in this Clause have members native_handle_type and native_handle. The presence ofthese members and their semantics is implementation-defined.
[Note 1: These members allow implementations to provide access to implementation details. Their names are specified to facilitateportable compile-time detection. Actual use of these members is inherently non-portable. —end note]
33.2.4 Timing specifications [thread.req.timing]

1 Several functions described in this Clause take an argument to specify a timeout. These timeouts are specified as eithera duration or a time_point type as specified in Clause 29.
2 Implementations necessarily have some delay in returning from a timeout. Any overhead in interrupt response, functionreturn, and scheduling induces a “quality of implementation” delay, expressed as duration Di. Ideally, this delay
§ 33.2.4 1635

© ISO/IEC N4910

would be zero. Further, any contention for processor and memory resources induces a “quality of management” delay,expressed as duration Dm. The delay durations may vary from timeout to timeout, but in all cases shorter is better.
3 The functions whose names end in _for take an argument that specifies a duration. These functions produce relativetimeouts. Implementations should use a steady clock to measure time for these functions.312 Given a duration argument
Dt, the real-time duration of the timeout is Dt +Di +Dm.

4 The functions whose names end in _until take an argument that specifies a time point. These functions produceabsolute timeouts. Implementations should use the clock specified in the time point to measure time for these functions.Given a clock time point argument Ct, the clock time point of the return from timeout should be Ct +Di +Dm whenthe clock is not adjusted during the timeout. If the clock is adjusted to the time Ca during the timeout, the behaviorshould be as follows:
—(4.1) If Ca > Ct, the waiting function should wake as soon as possible, i.e., Ca + Di + Dm, since the timeout isalready satisfied. This specification may result in the total duration of the wait decreasing when measured againsta steady clock.
—(4.2) If Ca ≤ Ct, the waiting function should not time out until Clock::now() returns a time Cn ≥ Ct, i.e., waking at

Ct +Di +Dm.
[Note 1: When the clock is adjusted backwards, this specification can result in the total duration of the wait increasing whenmeasured against a steady clock. When the clock is adjusted forwards, this specification can result in the total duration of thewait decreasing when measured against a steady clock. —end note]

An implementation returns from such a timeout at any point from the time specified above to the time it would returnfrom a steady-clock relative timeout on the difference between Ct and the time point of the call to the _until function.
Recommended practice: Implementations should decrease the duration of the wait when the clock is adjusted forwards.

5 [Note 2: If the clock is not synchronized with a steady clock, e.g., a CPU time clock, these timeouts can fail to provide usefulfunctionality. —end note]
6 The resolution of timing provided by an implementation depends on both operating system and hardware. The finestresolution provided by an implementation is called the native resolution.
7 Implementation-provided clocks that are used for these functions meet the Cpp17TrivialClock requirements (29.3).
8 A function that takes an argument which specifies a timeout will throw if, during its execution, a clock, time point, ortime duration throws an exception. Such exceptions are referred to as timeout-related exceptions.
[Note 3: Instantiations of clock, time point and duration types supplied by the implementation as specified in 29.7 do not throwexceptions. —end note]
33.2.5 Requirements for Cpp17Lockable types [thread.req.lockable]
33.2.5.1 In general [thread.req.lockable.general]

1 An execution agent is an entity such as a thread that may perform work in parallel with other execution agents.
[Note 1: Implementations or users can introduce other kinds of agents such as processes or thread-pool tasks. —end note]
The calling agent is determined by context, e.g., the calling thread that contains the call, and so on.

2 [Note 2: Some lockable objects are “agent oblivious” in that they work for any execution agent model because they do not determineor store the agent’s ID (e.g., an ordinary spin lock). —end note]
3 The standard library templates unique_lock (33.6.5.4), shared_lock (33.6.5.5), scoped_lock (33.6.5.3), lock_guard(33.6.5.2), lock, try_lock (33.6.6), and condition_variable_any (33.7.5) all operate on user-supplied lockable objects.The Cpp17BasicLockable requirements, the Cpp17Lockable requirements, the Cpp17TimedLockable requirements, theCpp17SharedLockable requirements, and the Cpp17SharedTimedLockable requirements list the requirements imposedby these library types in order to acquire or release ownership of a lock by a given execution agent.
[Note 3: The nature of any lock ownership and any synchronization it entails are not part of these requirements. —end note]

4 A lock on an object m is said to be
—(4.1) a non-shared lock if it is acquired by a call to lock, try_lock, try_lock_for, or try_lock_until on m, or
—(4.2) a shared lock if it is acquired by a call to lock_shared, try_lock_shared, try_lock_shared_for, or try_lock_-

shared_until on m.
[Note 4: Only the method of lock acquisition is considered; the nature of any lock ownership is not part of these definitions. —endnote]
312) Implementations for which standard time units are meaningful will typically have a steady clock within their hardware implementation.
§ 33.2.5.1 1636

© ISO/IEC N4910

33.2.5.2 Cpp17BasicLockable requirements [thread.req.lockable.basic]
1 A type L meets the Cpp17BasicLockable requirements if the following expressions are well-formed and have thespecified semantics (m denotes a value of type L).

m.lock()

2 Effects: Blocks until a lock can be acquired for the current execution agent. If an exception is thrown then a lockshall not have been acquired for the current execution agent.
m.unlock()

3 Preconditions: The current execution agent holds a non-shared lock on m.
4 Effects: Releases a non-shared lock on m held by the current execution agent.
5 Throws: Nothing.
33.2.5.3 Cpp17Lockable requirements [thread.req.lockable.req]

1 A type L meets the Cpp17Lockable requirements if it meets the Cpp17BasicLockable requirements and the followingexpressions are well-formed and have the specified semantics (m denotes a value of type L).
m.try_lock()

2 Effects: Attempts to acquire a lock for the current execution agent without blocking. If an exception is thrownthen a lock shall not have been acquired for the current execution agent.
3 Return type: bool.
4 Returns: true if the lock was acquired, otherwise false.
33.2.5.4 Cpp17TimedLockable requirements [thread.req.lockable.timed]

1 A type L meets the Cpp17TimedLockable requirements if it meets the Cpp17Lockable requirements and the followingexpressions are well-formed and have the specified semantics (m denotes a value of type L, rel_time denotes a value ofan instantiation of duration (29.5), and abs_time denotes a value of an instantiation of time_point (29.6)).
m.try_lock_for(rel_time)

2 Effects: Attempts to acquire a lock for the current execution agent within the relative timeout (33.2.4) specifiedby rel_time. The function will not return within the timeout specified by rel_time unless it has obtained a lockon m for the current execution agent. If an exception is thrown then a lock has not been acquired for the currentexecution agent.
3 Return type: bool.
4 Returns: true if the lock was acquired, otherwise false.

m.try_lock_until(abs_time)

5 Effects: Attempts to acquire a lock for the current execution agent before the absolute timeout (33.2.4) specifiedby abs_time. The function will not return before the timeout specified by abs_time unless it has obtained a lockon m for the current execution agent. If an exception is thrown then a lock has not been acquired for the currentexecution agent.
6 Return type: bool.
7 Returns: true if the lock was acquired, otherwise false.
33.2.5.5 Cpp17SharedLockable requirements [thread.req.lockable.shared]

1 A type L meets the Cpp17SharedLockable requirements if the following expressions are well-formed, have the specifiedsemantics, and the expression m.try_lock_shared() has type bool (m denotes a value of type L):
m.lock_shared()

2 Effects: Blocks until a lock can be acquired for the current execution agent. If an exception is thrown then a lockshall not have been acquired for the current execution agent.
m.try_lock_shared()

3 Effects: Attempts to acquire a lock for the current execution agent without blocking. If an exception is thrownthen a lock shall not have been acquired for the current execution agent.
§ 33.2.5.5 1637

© ISO/IEC N4910

4 Returns: true if the lock was acquired, false otherwise.
m.unlock_shared()

5 Preconditions: The current execution agent holds a shared lock on m.
6 Effects: Releases a shared lock on m held by the current execution agent.
7 Throws: Nothing.
33.2.5.6 Cpp17SharedTimedLockable requirements [thread.req.lockable.shared.timed]

1 A type L meets the Cpp17SharedTimedLockable requirements if it meets the Cpp17SharedLockable requirements, andthe following expressions are well-formed, have type bool, and have the specified semantics (m denotes a value of type
L, rel_time denotes a value of a specialization of chrono::duration, and abs_time denotes a value of a specializationof chrono::time_point).
m.try_lock_shared_for(rel_time)

2 Effects: Attempts to acquire a lock for the current execution agent within the relative timeout (33.2.4) specifiedby rel_time. The function will not return within the timeout specified by rel_time unless it has obtained a lockon m for the current execution agent. If an exception is thrown then a lock has not been acquired for the currentexecution agent.
3 Returns: true if the lock was acquired, false otherwise.

m.try_lock_shared_until(abs_time)

4 Effects: Attempts to acquire a lock for the current execution agent before the absolute timeout (33.2.4) specifiedby abs_time. The function will not return before the timeout specified by abs_time unless it has obtained a lockon m for the current execution agent. If an exception is thrown then a lock has not been acquired for the currentexecution agent.
5 Returns: true if the lock was acquired, false otherwise.
33.3 Stop tokens [thread.stoptoken]
33.3.1 Introduction [thread.stoptoken.intro]

1 Subclause 33.3 describes components that can be used to asynchronously request that an operation stops execution in atimely manner, typically because the result is no longer required. Such a request is called a stop request.
2 stop_source, stop_token, and stop_callback implement semantics of shared ownership of a stop state. Any stop_-

source, stop_token, or stop_callback that shares ownership of the same stop state is an associated stop_source,
stop_token, or stop_callback, respectively. The last remaining owner of the stop state automatically releases theresources associated with the stop state.

3 A stop_token can be passed to an operation which can either
—(3.1) actively poll the token to check if there has been a stop request, or
—(3.2) register a callback using the stop_callback class template which will be called in the event that a stop request ismade.

A stop request made via a stop_source will be visible to all associated stop_token and stop_source objects. Once astop request has been made it cannot be withdrawn (a subsequent stop request has no effect).
4 Callbacks registered via a stop_callback object are called when a stop request is first made by any associated stop_-

source object.
5 Calls to the functions request_stop, stop_requested, and stop_possible do not introduce data races. A call to

request_stop that returns true synchronizes with a call to stop_requested on an associated stop_token or stop_-
source object that returns true. Registration of a callback synchronizes with the invocation of that callback.
33.3.2 Header <stop_token> synopsis [thread.stoptoken.syn]
namespace std {// 33.3.3, class stop_token

class stop_token;

// 33.3.4, class stop_source
class stop_source;

§ 33.3.2 1638

© ISO/IEC N4910

// no-shared-stop-state indicator
struct nostopstate_t {
explicit nostopstate_t() = default;

};
inline constexpr nostopstate_t nostopstate{};

// 33.3.5, class stop_callback
template<class Callback>
class stop_callback;

}

33.3.3 Class stop_token [stoptoken]
33.3.3.1 General [stoptoken.general]

1 The class stop_token provides an interface for querying whether a stop request has been made (stop_requested) orcan ever be made (stop_possible) using an associated stop_source object (33.3.4). A stop_token can also be passedto a stop_callback (33.3.5) constructor to register a callback to be called when a stop request has been made from anassociated stop_source.
namespace std {

class stop_token {
public:// 33.3.3.2, constructors, copy, and assignment
stop_token() noexcept;

stop_token(const stop_token&) noexcept;
stop_token(stop_token&&) noexcept;
stop_token& operator=(const stop_token&) noexcept;
stop_token& operator=(stop_token&&) noexcept;
~stop_token();
void swap(stop_token&) noexcept;

// 33.3.3.3, stop handling
[[nodiscard]] bool stop_requested() const noexcept;
[[nodiscard]] bool stop_possible() const noexcept;

[[nodiscard]] friend bool operator==(const stop_token& lhs, const stop_token& rhs) noexcept;
friend void swap(stop_token& lhs, stop_token& rhs) noexcept;

};
}

33.3.3.2 Constructors, copy, and assignment [stoptoken.cons]

stop_token() noexcept;

1 Postconditions: stop_possible() is false and stop_requested() is false.
[Note 1: Because the created stop_token object can never receive a stop request, no resources are allocated for a stop state.—end note]

stop_token(const stop_token& rhs) noexcept;

2 Postconditions: *this == rhs is true.
[Note 2: *this and rhs share the ownership of the same stop state, if any. —end note]

stop_token(stop_token&& rhs) noexcept;

3 Postconditions: *this contains the value of rhs prior to the start of construction and rhs.stop_possible() is
false.

~stop_token();
4 Effects: Releases ownership of the stop state, if any.

stop_token& operator=(const stop_token& rhs) noexcept;

5 Effects: Equivalent to: stop_token(rhs).swap(*this).
6 Returns: *this.
§ 33.3.3.2 1639

© ISO/IEC N4910

stop_token& operator=(stop_token&& rhs) noexcept;

7 Effects: Equivalent to: stop_token(std::move(rhs)).swap(*this).
8 Returns: *this.

void swap(stop_token& rhs) noexcept;

9 Effects: Exchanges the values of *this and rhs.
33.3.3.3 Members [stoptoken.mem]

[[nodiscard]] bool stop_requested() const noexcept;

1 Returns: true if *this has ownership of a stop state that has received a stop request; otherwise, false.
[[nodiscard]] bool stop_possible() const noexcept;

2 Returns: false if:
—(2.1) *this does not have ownership of a stop state, or
—(2.2) a stop request was not made and there are no associated stop_source objects;
otherwise, true.

33.3.3.4 Non-member functions [stoptoken.nonmembers]

[[nodiscard]] bool operator==(const stop_token& lhs, const stop_token& rhs) noexcept;

1 Returns: true if lhs and rhs have ownership of the same stop state or if both lhs and rhs do not have ownershipof a stop state; otherwise false.
friend void swap(stop_token& x, stop_token& y) noexcept;

2 Effects: Equivalent to: x.swap(y).
33.3.4 Class stop_source [stopsource]
33.3.4.1 General [stopsource.general]

1 The class stop_source implements the semantics of making a stop request. A stop request made on a stop_sourceobject is visible to all associated stop_source and stop_token (33.3.3) objects. Once a stop request has been made itcannot be withdrawn (a subsequent stop request has no effect).
namespace std {// no-shared-stop-state indicator

struct nostopstate_t {
explicit nostopstate_t() = default;

};
inline constexpr nostopstate_t nostopstate{};

class stop_source {
public:// 33.3.4.2, constructors, copy, and assignment
stop_source();
explicit stop_source(nostopstate_t) noexcept;

stop_source(const stop_source&) noexcept;
stop_source(stop_source&&) noexcept;
stop_source& operator=(const stop_source&) noexcept;
stop_source& operator=(stop_source&&) noexcept;
~stop_source();
void swap(stop_source&) noexcept;

// 33.3.4.3, stop handling
[[nodiscard]] stop_token get_token() const noexcept;
[[nodiscard]] bool stop_possible() const noexcept;
[[nodiscard]] bool stop_requested() const noexcept;
bool request_stop() noexcept;

§ 33.3.4.1 1640

© ISO/IEC N4910

[[nodiscard]] friend bool
operator==(const stop_source& lhs, const stop_source& rhs) noexcept;

friend void swap(stop_source& lhs, stop_source& rhs) noexcept;
};

}

33.3.4.2 Constructors, copy, and assignment [stopsource.cons]

stop_source();

1 Effects: Initialises *this to have ownership of a new stop state.
2 Postconditions: stop_possible() is true and stop_requested() is false.
3 Throws: bad_alloc if memory cannot be allocated for the stop state.

explicit stop_source(nostopstate_t) noexcept;

4 Postconditions: stop_possible() is false and stop_requested() is false.
[Note 1: No resources are allocated for the state. —end note]

stop_source(const stop_source& rhs) noexcept;

5 Postconditions: *this == rhs is true.
[Note 2: *this and rhs share the ownership of the same stop state, if any. —end note]

stop_source(stop_source&& rhs) noexcept;

6 Postconditions: *this contains the value of rhs prior to the start of construction and rhs.stop_possible() is
false.

~stop_source();
7 Effects: Releases ownership of the stop state, if any.

stop_source& operator=(const stop_source& rhs) noexcept;

8 Effects: Equivalent to: stop_source(rhs).swap(*this).
9 Returns: *this.

stop_source& operator=(stop_source&& rhs) noexcept;

10 Effects: Equivalent to: stop_source(std::move(rhs)).swap(*this).
11 Returns: *this.

void swap(stop_source& rhs) noexcept;

12 Effects: Exchanges the values of *this and rhs.
33.3.4.3 Members [stopsource.mem]

[[nodiscard]] stop_token get_token() const noexcept;

1 Returns: stop_token() if stop_possible() is false; otherwise a new associated stop_token object.
[[nodiscard]] bool stop_possible() const noexcept;

2 Returns: true if *this has ownership of a stop state; otherwise, false.
[[nodiscard]] bool stop_requested() const noexcept;

3 Returns: true if *this has ownership of a stop state that has received a stop request; otherwise, false.
bool request_stop() noexcept;

4 Effects: If *this does not have ownership of a stop state, returns false. Otherwise, atomically determineswhether the owned stop state has received a stop request, and if not, makes a stop request. The determinationand making of the stop request are an atomic read-modify-write operation (6.9.2.2). If the request was made,the callbacks registered by associated stop_callback objects are synchronously called. If an invocation of acallback exits via an exception then terminate is invoked (14.6.2).

§ 33.3.4.3 1641

© ISO/IEC N4910

[Note 1: A stop request includes notifying all condition variables of type condition_variable_any temporarily registeredduring an interruptible wait (33.7.5.3). —end note]
5 Postconditions: stop_possible() is false or stop_requested() is true.
6 Returns: true if this call made a stop request; otherwise false.
33.3.4.4 Non-member functions [stopsource.nonmembers]

[[nodiscard]] friend bool
operator==(const stop_source& lhs, const stop_source& rhs) noexcept;

1 Returns: true if lhs and rhs have ownership of the same stop state or if both lhs and rhs do not have ownershipof a stop state; otherwise false.
friend void swap(stop_source& x, stop_source& y) noexcept;

2 Effects: Equivalent to: x.swap(y).
33.3.5 Class template stop_callback [stopcallback]
33.3.5.1 General [stopcallback.general]

1 namespace std {
template<class Callback>
class stop_callback {
public:
using callback_type = Callback;

// 33.3.5.2, constructors and destructor
template<class C>

explicit stop_callback(const stop_token& st, C&& cb)
noexcept(is_nothrow_constructible_v<Callback, C>);

template<class C>
explicit stop_callback(stop_token&& st, C&& cb)

noexcept(is_nothrow_constructible_v<Callback, C>);
~stop_callback();

stop_callback(const stop_callback&) = delete;
stop_callback(stop_callback&&) = delete;
stop_callback& operator=(const stop_callback&) = delete;
stop_callback& operator=(stop_callback&&) = delete;

private:
Callback callback; // exposition only

};

template<class Callback>
stop_callback(stop_token, Callback) -> stop_callback<Callback>;

}

2 Mandates: stop_callback is instantiated with an argument for the template parameter Callback that satisfies both
invocable and destructible.

3 Preconditions: stop_callback is instantiated with an argument for the template parameter Callback that models both
invocable and destructible.
33.3.5.2 Constructors and destructor [stopcallback.cons]

template<class C>
explicit stop_callback(const stop_token& st, C&& cb)

noexcept(is_nothrow_constructible_v<Callback, C>);
template<class C>
explicit stop_callback(stop_token&& st, C&& cb)

noexcept(is_nothrow_constructible_v<Callback, C>);

1 Constraints: Callback and C satisfy constructible_from<Callback, C>.
2 Preconditions: Callback and C model constructible_from<Callback, C>.

§ 33.3.5.2 1642

© ISO/IEC N4910

3 Effects: Initializes callbackwith std::forward<C>(cb). If st.stop_requested() is true, then std::forward<Callback>(callback)()is evaluated in the current thread before the constructor returns. Otherwise, if st has ownership of a stopstate, acquires shared ownership of that stop state and registers the callback with that stop state such that
std::forward<Callback>(callback)() is evaluated by the first call to request_stop() on an associated stop_-
source.

4 Throws: Any exception thrown by the initialization of callback.
5 Remarks: If evaluating std::forward<Callback>(callback)() exits via an exception, then terminate is in-voked (14.6.2).
~stop_callback();

6 Effects: Unregisters the callback from the owned stop state, if any. The destructor does not block waiting for theexecution of another callback registered by an associated stop_callback. If callback is concurrently executingon another thread, then the return from the invocation of callback strongly happens before (6.9.2.2) callback isdestroyed. If callback is executing on the current thread, then the destructor does not block (3.7) waiting for thereturn from the invocation of callback. Releases ownership of the stop state, if any.
33.4 Threads [thread.threads]
33.4.1 General [thread.threads.general]

1 33.4 describes components that can be used to create and manage threads.
[Note 1: These threads are intended to map one-to-one with operating system threads. —end note]
33.4.2 Header <thread> synopsis [thread.syn]
#include <compare> // see 17.11.1
namespace std {// 33.4.3, class thread

class thread;

void swap(thread& x, thread& y) noexcept;

// 33.4.4, class jthread
class jthread;

// 33.4.5, namespace this_thread
namespace this_thread {

thread::id get_id() noexcept;

void yield() noexcept;
template<class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);

template<class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

}
}

33.4.3 Class thread [thread.thread.class]
33.4.3.1 General [thread.thread.class.general]

1 The class thread provides a mechanism to create a new thread of execution, to join with a thread (i.e., wait for a threadto complete), and to perform other operations that manage and query the state of a thread. A thread object uniquelyrepresents a particular thread of execution. That representation may be transferred to other thread objects in such a waythat no two thread objects simultaneously represent the same thread of execution. A thread of execution is detachedwhen no thread object represents that thread. Objects of class thread can be in a state that does not represent a threadof execution.
[Note 1: A thread object does not represent a thread of execution after default construction, after being moved from, or after asuccessful call to detach or join. —end note]

§ 33.4.3.1 1643

© ISO/IEC N4910

namespace std {
class thread {
public:// 33.4.3.2, class thread::id
class id;
using native_handle_type = implementation-defined; // see 33.2.3
// construct/copy/destroy
thread() noexcept;
template<class F, class... Args> explicit thread(F&& f, Args&&... args);
~thread();
thread(const thread&) = delete;
thread(thread&&) noexcept;
thread& operator=(const thread&) = delete;
thread& operator=(thread&&) noexcept;

// 33.4.3.6, members
void swap(thread&) noexcept;
bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
native_handle_type native_handle(); // see 33.2.3
// static members
static unsigned int hardware_concurrency() noexcept;

};
}

33.4.3.2 Class thread::id [thread.thread.id]
namespace std {

class thread::id {
public:
id() noexcept;

};

bool operator==(thread::id x, thread::id y) noexcept;
strong_ordering operator<=>(thread::id x, thread::id y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& out, thread::id id);

// hash support
template<class T> struct hash;
template<> struct hash<thread::id>;

}

1 An object of type thread::id provides a unique identifier for each thread of execution and a single distinct value forall thread objects that do not represent a thread of execution (33.4.3). Each thread of execution has an associated
thread::id object that is not equal to the thread::id object of any other thread of execution and that is not equal tothe thread::id object of any thread object that does not represent threads of execution.

2 thread::id is a trivially copyable class (11.2). The library may reuse the value of a thread::id of a terminated threadthat can no longer be joined.
3 [Note 1: Relational operators allow thread::id objects to be used as keys in associative containers. —end note]

id() noexcept;

4 Postconditions: The constructed object does not represent a thread of execution.
bool operator==(thread::id x, thread::id y) noexcept;

5 Returns: true only if x and y represent the same thread of execution or neither x nor y represents a thread ofexecution.
§ 33.4.3.2 1644

© ISO/IEC N4910

strong_ordering operator<=>(thread::id x, thread::id y) noexcept;

6 Let P (x, y) be an unspecified total ordering over thread::id as described in 27.8.
7 Returns: strong_ordering::less if P (x, y) is true. Otherwise, strong_ordering::greater if P (y, x) is true.Otherwise, strong_ordering::equal.

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>& out, thread::id id);

8 Effects: Inserts an unspecified text representation of id into out. For two objects of type thread::id x and y,if x == y the thread::id objects have the same text representation and if x != y the thread::id objects havedistinct text representations.
9 Returns: out.

template<> struct hash<thread::id>;

10 The specialization is enabled (22.10.19).
33.4.3.3 Constructors [thread.thread.constr]

thread() noexcept;

1 Effects: The object does not represent a thread of execution.
2 Postconditions: get_id() == id().

template<class F, class... Args> explicit thread(F&& f, Args&&... args);

3 Constraints: remove_cvref_t<F> is not the same type as thread.
4 Mandates: The following are all true:

—(4.1) is_constructible_v<decay_t<F>, F>,
—(4.2) (is_constructible_v<decay_t<Args>, Args> && ...), and
—(4.3) is_invocable_v<decay_t<F>, decay_t<Args>...>.

5 Effects: The new thread of execution executes
invoke(auto(std::forward<F>(f)), auto(std::forward<Args>(args))...)

with the values produced by auto being materialized (7.3.5) in the constructing thread. Any return value fromthis invocation is ignored.
[Note 1: This implies that any exceptions not thrown from the invocation of the copy of f will be thrown in the constructingthread, not the new thread. —end note]
If the invocation of invoke terminates with an uncaught exception, terminate is invoked (14.6.2).

6 Synchronization: The completion of the invocation of the constructor synchronizes with the beginning of theinvocation of the copy of f.
7 Postconditions: get_id() != id(). *this represents the newly started thread.
8 Throws: system_error if unable to start the new thread.
9 Error conditions:

—(9.1) resource_unavailable_try_again— the system lacked the necessary resources to create another thread,or the system-imposed limit on the number of threads in a process would be exceeded.
thread(thread&& x) noexcept;

10 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the start of con-struction.
33.4.3.4 Destructor [thread.thread.destr]

~thread();
1 Effects: If joinable(), invokes terminate (14.6.2). Otherwise, has no effects.

§ 33.4.3.4 1645

© ISO/IEC N4910

[Note 1: Either implicitly detaching or joining a joinable() thread in its destructor can result in difficult to debug correctness(for detach) or performance (for join) bugs encountered only when an exception is thrown. These bugs can be avoided byensuring that the destructor is never executed while the thread is still joinable. —end note]
33.4.3.5 Assignment [thread.thread.assign]

thread& operator=(thread&& x) noexcept;

1 Effects: If joinable(), invokes terminate (14.6.2). Otherwise, assigns the state of x to *this and sets x to adefault constructed state.
2 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the assignment.
3 Returns: *this.
33.4.3.6 Members [thread.thread.member]

void swap(thread& x) noexcept;

1 Effects: Swaps the state of *this and x.
bool joinable() const noexcept;

2 Returns: get_id() != id().
void join();

3 Effects: Blocks until the thread represented by *this has completed.
4 Synchronization: The completion of the thread represented by *this synchronizes with (6.9.2) the correspondingsuccessful join() return.

[Note 1: Operations on *this are not synchronized. —end note]
5 Postconditions: The thread represented by *this has completed. get_id() == id().
6 Throws: system_error when an exception is required (33.2.2).
7 Error conditions:

—(7.1) resource_deadlock_would_occur— if deadlock is detected or get_id() == this_thread::get_id().
—(7.2) no_such_process— if the thread is not valid.
—(7.3) invalid_argument— if the thread is not joinable.

void detach();

8 Effects: The thread represented by *this continues execution without the calling thread blocking. When detach()returns, *this no longer represents the possibly continuing thread of execution. When the thread previouslyrepresented by *this ends execution, the implementation releases any owned resources.
9 Postconditions: get_id() == id().
10 Throws: system_error when an exception is required (33.2.2).
11 Error conditions:

—(11.1) no_such_process— if the thread is not valid.
—(11.2) invalid_argument— if the thread is not joinable.

id get_id() const noexcept;

12 Returns: A default constructed id object if *this does not represent a thread, otherwise this_thread::get_id()for the thread of execution represented by *this.
33.4.3.7 Static members [thread.thread.static]

unsigned hardware_concurrency() noexcept;

1 Returns: The number of hardware thread contexts.
[Note 1: This value should only be considered to be a hint. —end note]
If this value is not computable or well-defined, an implementation should return 0.

§ 33.4.3.7 1646

© ISO/IEC N4910

33.4.3.8 Specialized algorithms [thread.thread.algorithm]

void swap(thread& x, thread& y) noexcept;

1 Effects: As if by x.swap(y).
33.4.4 Class jthread [thread.jthread.class]
33.4.4.1 General [thread.jthread.class.general]

1 The class jthread provides a mechanism to create a new thread of execution. The functionality is the same as for class
thread (33.4.3) with the additional abilities to provide a stop_token (33.3) to the new thread of execution, make stoprequests, and automatically join.
namespace std {

class jthread {
public:// types
using id = thread::id;
using native_handle_type = thread::native_handle_type;

// 33.4.4.2, constructors, move, and assignment
jthread() noexcept;
template<class F, class... Args> explicit jthread(F&& f, Args&&... args);
~jthread();
jthread(const jthread&) = delete;
jthread(jthread&&) noexcept;
jthread& operator=(const jthread&) = delete;
jthread& operator=(jthread&&) noexcept;

// 33.4.4.3, members
void swap(jthread&) noexcept;
[[nodiscard]] bool joinable() const noexcept;
void join();
void detach();
[[nodiscard]] id get_id() const noexcept;
[[nodiscard]] native_handle_type native_handle(); // see 33.2.3
// 33.4.4.4, stop token handling
[[nodiscard]] stop_source get_stop_source() noexcept;
[[nodiscard]] stop_token get_stop_token() const noexcept;
bool request_stop() noexcept;

// 33.4.4.5, specialized algorithms
friend void swap(jthread& lhs, jthread& rhs) noexcept;

// 33.4.4.6, static members
[[nodiscard]] static unsigned int hardware_concurrency() noexcept;

private:
stop_source ssource; // exposition only

};
}

33.4.4.2 Constructors, move, and assignment [thread.jthread.cons]

jthread() noexcept;

1 Effects: Constructs a jthread object that does not represent a thread of execution.
2 Postconditions: get_id() == id() is true and ssource.stop_possible() is false.

template<class F, class... Args> explicit jthread(F&& f, Args&&... args);

3 Constraints: remove_cvref_t<F> is not the same type as jthread.
4 Mandates: The following are all true:

—(4.1) is_constructible_v<decay_t<F>, F>,
§ 33.4.4.2 1647

© ISO/IEC N4910

—(4.2) (is_constructible_v<decay_t<Args>, Args> && ...), and
—(4.3) is_invocable_v<decay_t<F>, decay_t<Args>...> ||

is_invocable_v<decay_t<F>, stop_token, decay_t<Args>...>.
5 Effects: Initializes ssource. The new thread of execution executes

invoke(auto(std::forward<F>(f)), get_stop_token(),
auto(std::forward<Args>(args))...)

if that expression is well-formed, otherwise
invoke(auto(std::forward<F>(f)), auto(std::forward<Args>(args))...)

with the values produced by auto being materialized (7.3.5) in the constructing thread. Any return value fromthis invocation is ignored.
[Note 1: This implies that any exceptions not thrown from the invocation of the copy of f will be thrown in the constructingthread, not the new thread. —end note]
If the invoke expression exits via an exception, terminate is called.

6 Synchronization: The completion of the invocation of the constructor synchronizes with the beginning of theinvocation of the copy of f.
7 Postconditions: get_id() != id() is true and ssource.stop_possible() is true and *this represents thenewly started thread.

[Note 2: The calling thread can make a stop request only once, because it cannot replace this stop token. —end note]
8 Throws: system_error if unable to start the new thread.
9 Error conditions:

—(9.1) resource_unavailable_try_again— the system lacked the necessary resources to create another thread,or the system-imposed limit on the number of threads in a process would be exceeded.
jthread(jthread&& x) noexcept;

10 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the start of con-struction. ssource has the value of x.ssource prior to the start of construction and x.ssource.stop_possible()is false.
~jthread();

11 Effects: If joinable() is true, calls request_stop() and then join().
[Note 3: Operations on *this are not synchronized. —end note]

jthread& operator=(jthread&& x) noexcept;

12 Effects: If joinable() is true, calls request_stop() and then join(). Assigns the state of x to *this and sets
x to a default constructed state.

13 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the assignment.
ssource has the value of x.ssource prior to the assignment and x.ssource.stop_possible() is false.

14 Returns: *this.
33.4.4.3 Members [thread.jthread.mem]

void swap(jthread& x) noexcept;

1 Effects: Exchanges the values of *this and x.
[[nodiscard]] bool joinable() const noexcept;

2 Returns: get_id() != id().
void join();

3 Effects: Blocks until the thread represented by *this has completed.
4 Synchronization: The completion of the thread represented by *this synchronizes with (6.9.2) the correspondingsuccessful join() return.

[Note 1: Operations on *this are not synchronized. —end note]
§ 33.4.4.3 1648

© ISO/IEC N4910

5 Postconditions: The thread represented by *this has completed. get_id() == id().
6 Throws: system_error when an exception is required (33.2.2).
7 Error conditions:

—(7.1) resource_deadlock_would_occur— if deadlock is detected or get_id() == this_thread::get_id().
—(7.2) no_such_process— if the thread is not valid.
—(7.3) invalid_argument— if the thread is not joinable.

void detach();

8 Effects: The thread represented by *this continues execution without the calling thread blocking. When detach()returns, *this no longer represents the possibly continuing thread of execution. When the thread previouslyrepresented by *this ends execution, the implementation releases any owned resources.
9 Postconditions: get_id() == id().
10 Throws: system_error when an exception is required (33.2.2).
11 Error conditions:

—(11.1) no_such_process— if the thread is not valid.
—(11.2) invalid_argument— if the thread is not joinable.

id get_id() const noexcept;

12 Returns: A default constructed id object if *this does not represent a thread, otherwise this_thread::get_id()for the thread of execution represented by *this.
33.4.4.4 Stop token handling [thread.jthread.stop]

[[nodiscard]] stop_source get_stop_source() noexcept;

1 Effects: Equivalent to: return ssource;

[[nodiscard]] stop_token get_stop_token() const noexcept;

2 Effects: Equivalent to: return ssource.get_token();

bool request_stop() noexcept;

3 Effects: Equivalent to: return ssource.request_stop();

33.4.4.5 Specialized algorithms [thread.jthread.special]

friend void swap(jthread& x, jthread& y) noexcept;

1 Effects: Equivalent to: x.swap(y).
33.4.4.6 Static members [thread.jthread.static]

[[nodiscard]] static unsigned int hardware_concurrency() noexcept;

1 Returns: thread::hardware_concurrency().
33.4.5 Namespace this_thread [thread.thread.this]
namespace std::this_thread {

thread::id get_id() noexcept;

void yield() noexcept;
template<class Clock, class Duration>

void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

void sleep_for(const chrono::duration<Rep, Period>& rel_time);
}

§ 33.4.5 1649

© ISO/IEC N4910

thread::id this_thread::get_id() noexcept;

1 Returns: An object of type thread::id that uniquely identifies the current thread of execution. No other threadof execution has this id and this thread of execution always has this id. The object returned does not compareequal to a default constructed thread::id.
void this_thread::yield() noexcept;

2 Effects: Offers the implementation the opportunity to reschedule.
3 Synchronization: None.

template<class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);

4 Effects: Blocks the calling thread for the absolute timeout (33.2.4) specified by abs_time.
5 Synchronization: None.
6 Throws: Timeout-related exceptions (33.2.4).

template<class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

7 Effects: Blocks the calling thread for the relative timeout (33.2.4) specified by rel_time.
8 Synchronization: None.
9 Throws: Timeout-related exceptions (33.2.4).
33.5 Atomic operations [atomics]
33.5.1 General [atomics.general]

1 Subclause 33.5 describes components for fine-grained atomic access. This access is provided via operations on atomicobjects.
33.5.2 Header <atomic> synopsis [atomics.syn]
namespace std {// 33.5.4, order and consistency

enum class memory_order : unspecified;
template<class T>
T kill_dependency(T y) noexcept;

}

// 33.5.5, lock-free property
#define ATOMIC_BOOL_LOCK_FREE unspecified
#define ATOMIC_CHAR_LOCK_FREE unspecified
#define ATOMIC_CHAR8_T_LOCK_FREE unspecified
#define ATOMIC_CHAR16_T_LOCK_FREE unspecified
#define ATOMIC_CHAR32_T_LOCK_FREE unspecified
#define ATOMIC_WCHAR_T_LOCK_FREE unspecified
#define ATOMIC_SHORT_LOCK_FREE unspecified
#define ATOMIC_INT_LOCK_FREE unspecified
#define ATOMIC_LONG_LOCK_FREE unspecified
#define ATOMIC_LLONG_LOCK_FREE unspecified
#define ATOMIC_POINTER_LOCK_FREE unspecified

namespace std {// 33.5.7, class template atomic_ref
template<class T> struct atomic_ref;// 33.5.7.5, partial specialization for pointers
template<class T> struct atomic_ref<T*>;

// 33.5.8, class template atomic
template<class T> struct atomic;// 33.5.8.5, partial specialization for pointers
template<class T> struct atomic<T*>;

§ 33.5.2 1650

© ISO/IEC N4910

// 33.5.9, non-member functions
template<class T>
bool atomic_is_lock_free(const volatile atomic<T>*) noexcept;

template<class T>
bool atomic_is_lock_free(const atomic<T>*) noexcept;

template<class T>
void atomic_store(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
void atomic_store(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
void atomic_store_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
void atomic_store_explicit(atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_load(const volatile atomic<T>*) noexcept;

template<class T>
T atomic_load(const atomic<T>*) noexcept;

template<class T>
T atomic_load_explicit(const volatile atomic<T>*, memory_order) noexcept;

template<class T>
T atomic_load_explicit(const atomic<T>*, memory_order) noexcept;

template<class T>
T atomic_exchange(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_exchange(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_exchange_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>

T atomic_exchange_explicit(atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
bool atomic_compare_exchange_weak(volatile atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_weak(atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_strong(volatile atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_strong(atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_weak_explicit(volatile atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
bool atomic_compare_exchange_weak_explicit(atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
bool atomic_compare_exchange_strong_explicit(volatile atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

§ 33.5.2 1651

© ISO/IEC N4910

template<class T>
bool atomic_compare_exchange_strong_explicit(atomic<T>*,

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
T atomic_fetch_add(volatile atomic<T>*, typename atomic<T>::difference_type) noexcept;

template<class T>
T atomic_fetch_add(atomic<T>*, typename atomic<T>::difference_type) noexcept;

template<class T>
T atomic_fetch_add_explicit(volatile atomic<T>*, typename atomic<T>::difference_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_add_explicit(atomic<T>*, typename atomic<T>::difference_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_sub(volatile atomic<T>*, typename atomic<T>::difference_type) noexcept;

template<class T>
T atomic_fetch_sub(atomic<T>*, typename atomic<T>::difference_type) noexcept;

template<class T>
T atomic_fetch_sub_explicit(volatile atomic<T>*, typename atomic<T>::difference_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_sub_explicit(atomic<T>*, typename atomic<T>::difference_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_and(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_and(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_and_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_and_explicit(atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_or(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_or(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_or_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_or_explicit(atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_xor(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_xor(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_xor_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_xor_explicit(atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;

template<class T>
void atomic_wait(const volatile atomic<T>*, typename atomic<T>::value_type);

template<class T>
void atomic_wait(const atomic<T>*, typename atomic<T>::value_type);

template<class T>
void atomic_wait_explicit(const volatile atomic<T>*, typename atomic<T>::value_type,

memory_order);

§ 33.5.2 1652

© ISO/IEC N4910

template<class T>
void atomic_wait_explicit(const atomic<T>*, typename atomic<T>::value_type,

memory_order);
template<class T>
void atomic_notify_one(volatile atomic<T>*);

template<class T>
void atomic_notify_one(atomic<T>*);

template<class T>
void atomic_notify_all(volatile atomic<T>*);

template<class T>
void atomic_notify_all(atomic<T>*);

// 33.5.3, type aliases
using atomic_bool = atomic<bool>;
using atomic_char = atomic<char>;
using atomic_schar = atomic<signed char>;
using atomic_uchar = atomic<unsigned char>;
using atomic_short = atomic<short>;
using atomic_ushort = atomic<unsigned short>;
using atomic_int = atomic<int>;
using atomic_uint = atomic<unsigned int>;
using atomic_long = atomic<long>;
using atomic_ulong = atomic<unsigned long>;
using atomic_llong = atomic<long long>;
using atomic_ullong = atomic<unsigned long long>;
using atomic_char8_t = atomic<char8_t>;
using atomic_char16_t = atomic<char16_t>;
using atomic_char32_t = atomic<char32_t>;
using atomic_wchar_t = atomic<wchar_t>;

using atomic_int8_t = atomic<int8_t>;
using atomic_uint8_t = atomic<uint8_t>;
using atomic_int16_t = atomic<int16_t>;
using atomic_uint16_t = atomic<uint16_t>;
using atomic_int32_t = atomic<int32_t>;
using atomic_uint32_t = atomic<uint32_t>;
using atomic_int64_t = atomic<int64_t>;
using atomic_uint64_t = atomic<uint64_t>;

using atomic_int_least8_t = atomic<int_least8_t>;
using atomic_uint_least8_t = atomic<uint_least8_t>;
using atomic_int_least16_t = atomic<int_least16_t>;
using atomic_uint_least16_t = atomic<uint_least16_t>;
using atomic_int_least32_t = atomic<int_least32_t>;
using atomic_uint_least32_t = atomic<uint_least32_t>;
using atomic_int_least64_t = atomic<int_least64_t>;
using atomic_uint_least64_t = atomic<uint_least64_t>;

using atomic_int_fast8_t = atomic<int_fast8_t>;
using atomic_uint_fast8_t = atomic<uint_fast8_t>;
using atomic_int_fast16_t = atomic<int_fast16_t>;
using atomic_uint_fast16_t = atomic<uint_fast16_t>;
using atomic_int_fast32_t = atomic<int_fast32_t>;
using atomic_uint_fast32_t = atomic<uint_fast32_t>;
using atomic_int_fast64_t = atomic<int_fast64_t>;
using atomic_uint_fast64_t = atomic<uint_fast64_t>;

using atomic_intptr_t = atomic<intptr_t>;
using atomic_uintptr_t = atomic<uintptr_t>;
using atomic_size_t = atomic<size_t>;
using atomic_ptrdiff_t = atomic<ptrdiff_t>;
using atomic_intmax_t = atomic<intmax_t>;
using atomic_uintmax_t = atomic<uintmax_t>;

§ 33.5.2 1653

© ISO/IEC N4910

using atomic_signed_lock_free = see below;
using atomic_unsigned_lock_free = see below;

// 33.5.10, flag type and operations
struct atomic_flag;

bool atomic_flag_test(const volatile atomic_flag*) noexcept;
bool atomic_flag_test(const atomic_flag*) noexcept;
bool atomic_flag_test_explicit(const volatile atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_explicit(const atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept;
bool atomic_flag_test_and_set(atomic_flag*) noexcept;
bool atomic_flag_test_and_set_explicit(volatile atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order) noexcept;
void atomic_flag_clear(volatile atomic_flag*) noexcept;
void atomic_flag_clear(atomic_flag*) noexcept;
void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order) noexcept;
void atomic_flag_clear_explicit(atomic_flag*, memory_order) noexcept;

void atomic_flag_wait(const volatile atomic_flag*, bool) noexcept;
void atomic_flag_wait(const atomic_flag*, bool) noexcept;
void atomic_flag_wait_explicit(const volatile atomic_flag*,

bool, memory_order) noexcept;
void atomic_flag_wait_explicit(const atomic_flag*,

bool, memory_order) noexcept;
void atomic_flag_notify_one(volatile atomic_flag*) noexcept;
void atomic_flag_notify_one(atomic_flag*) noexcept;
void atomic_flag_notify_all(volatile atomic_flag*) noexcept;
void atomic_flag_notify_all(atomic_flag*) noexcept;

// 33.5.11, fences
extern "C" void atomic_thread_fence(memory_order) noexcept;
extern "C" void atomic_signal_fence(memory_order) noexcept;

}

33.5.3 Type aliases [atomics.alias]
1 The type aliases atomic_intN_t, atomic_uintN_t, atomic_intptr_t, and atomic_uintptr_t are defined if andonly if intN_t, uintN_t, intptr_t, and uintptr_t are defined, respectively.
2 The type aliases atomic_signed_lock_free and atomic_unsigned_lock_free name specializations of atomic whosetemplate arguments are integral types, respectively signed and unsigned, and whose is_always_lock_free property is

true.
[Note 1: These aliases are optional in freestanding implementations (16.4.2.4). —end note]
Implementations should choose for these aliases the integral specializations of atomic for which the atomic waiting andnotifying operations (33.5.6) are most efficient.
33.5.4 Order and consistency [atomics.order]
namespace std {

enum class memory_order : unspecified {
relaxed, consume, acquire, release, acq_rel, seq_cst

};
inline constexpr memory_order memory_order_relaxed = memory_order::relaxed;
inline constexpr memory_order memory_order_consume = memory_order::consume;
inline constexpr memory_order memory_order_acquire = memory_order::acquire;
inline constexpr memory_order memory_order_release = memory_order::release;
inline constexpr memory_order memory_order_acq_rel = memory_order::acq_rel;
inline constexpr memory_order memory_order_seq_cst = memory_order::seq_cst;

}

1 The enumeration memory_order specifies the detailed regular (non-atomic) memory synchronization order as defined in6.9.2 and may provide for operation ordering. Its enumerated values and their meanings are as follows:
—(1.1) memory_order::relaxed: no operation orders memory.

§ 33.5.4 1654

© ISO/IEC N4910

—(1.2) memory_order::release, memory_order::acq_rel, and memory_order::seq_cst: a store operation performs arelease operation on the affected memory location.
—(1.3) memory_order::consume: a load operation performs a consume operation on the affected memory location.

[Note 1: Prefer memory_order::acquire, which provides stronger guarantees than memory_order::consume. Implementationshave found it infeasible to provide performance better than that of memory_order::acquire. Specification revisions are underconsideration. —end note]
—(1.4) memory_order::acquire, memory_order::acq_rel, and memory_order::seq_cst: a load operation performsan acquire operation on the affected memory location.

[Note 2: Atomic operations specifying memory_order::relaxed are relaxed with respect to memory ordering. Implementations muststill guarantee that any given atomic access to a particular atomic object be indivisible with respect to all other atomic accesses tothat object. —end note]
2 An atomic operation A that performs a release operation on an atomic objectM synchronizes with an atomic operation
B that performs an acquire operation onM and takes its value from any side effect in the release sequence headed by A.

3 An atomic operation A on some atomic objectM is coherence-ordered before another atomic operation B onM if
—(3.1) A is a modification, and B reads the value stored by A, or
—(3.2) A precedes B in the modification order ofM , or
—(3.3) A and B are not the same atomic read-modify-write operation, and there exists an atomic modification X ofMsuch that A reads the value stored by X and X precedes B in the modification order ofM , or
—(3.4) there exists an atomicmodificationX ofM such thatA is coherence-ordered beforeX andX is coherence-orderedbefore B.

4 There is a single total order S on all memory_order::seq_cst operations, including fences, that satisfies the followingconstraints. First, ifA andB are memory_order::seq_cst operations andA strongly happens beforeB, thenA precedes
B in S. Second, for every pair of atomic operations A and B on an objectM , where A is coherence-ordered before B,the following four conditions are required to be satisfied by S:
—(4.1) if A and B are both memory_order::seq_cst operations, then A precedes B in S; and
—(4.2) if A is a memory_order::seq_cst operation and B happens before a memory_order::seq_cst fence Y , then Aprecedes Y in S; and
—(4.3) if a memory_order::seq_cst fence X happens before A and B is a memory_order::seq_cst operation, then Xprecedes B in S; and
—(4.4) if a memory_order::seq_cst fenceX happens before A and B happens before a memory_order::seq_cst fence

Y , then X precedes Y in S.
5 [Note 3: This definition ensures that S is consistent with the modification order of any atomic objectM . It also ensures that a

memory_order::seq_cst load A ofM gets its value either from the last modification ofM that precedes A in S or from somenon-memory_order::seq_cst modification ofM that does not happen before any modification ofM that precedes A in S. —endnote]
6 [Note 4: We do not require that S be consistent with “happens before” (6.9.2.2). This allows more efficient implementation of

memory_order::acquire and memory_order::release on some machine architectures. It can produce surprising results when theseare mixed with memory_order::seq_cst accesses. —end note]
7 [Note 5: memory_order::seq_cst ensures sequential consistency only for a program that is free of data races and uses exclusively

memory_order::seq_cst atomic operations. Any use of weaker ordering will invalidate this guarantee unless extreme care is used.In many cases, memory_order::seq_cst atomic operations are reorderable with respect to other atomic operations performed by thesame thread. —end note]
8 Implementations should ensure that no “out-of-thin-air” values are computed that circularly depend on their owncomputation.
[Note 6: For example, with x and y initially zero,
// Thread 1:
r1 = y.load(memory_order::relaxed);
x.store(r1, memory_order::relaxed);

// Thread 2:
r2 = x.load(memory_order::relaxed);
y.store(r2, memory_order::relaxed);

§ 33.5.4 1655

© ISO/IEC N4910

this recommendation discourages producing r1 == r2 == 42, since the store of 42 to y is only possible if the store to x stores 42,which circularly depends on the store to y storing 42. Note that without this restriction, such an execution is possible. —end note]
9 [Note 7: The recommendation similarly disallows r1 == r2 == 42 in the following example, with x and y again initially zero:

// Thread 1:
r1 = x.load(memory_order::relaxed);
if (r1 == 42) y.store(42, memory_order::relaxed);

// Thread 2:
r2 = y.load(memory_order::relaxed);
if (r2 == 42) x.store(42, memory_order::relaxed);

—end note]
10 Atomic read-modify-write operations shall always read the last value (in the modification order) written before thewrite associated with the read-modify-write operation.
11 Implementations should make atomic stores visible to atomic loads within a reasonable amount of time.

template<class T>
T kill_dependency(T y) noexcept;

12 Effects: The argument does not carry a dependency to the return value (6.9.2).
13 Returns: y.
33.5.5 Lock-free property [atomics.lockfree]
#define ATOMIC_BOOL_LOCK_FREE unspecified
#define ATOMIC_CHAR_LOCK_FREE unspecified
#define ATOMIC_CHAR8_T_LOCK_FREE unspecified
#define ATOMIC_CHAR16_T_LOCK_FREE unspecified
#define ATOMIC_CHAR32_T_LOCK_FREE unspecified
#define ATOMIC_WCHAR_T_LOCK_FREE unspecified
#define ATOMIC_SHORT_LOCK_FREE unspecified
#define ATOMIC_INT_LOCK_FREE unspecified
#define ATOMIC_LONG_LOCK_FREE unspecified
#define ATOMIC_LLONG_LOCK_FREE unspecified
#define ATOMIC_POINTER_LOCK_FREE unspecified

1 The ATOMIC_..._LOCK_FREE macros indicate the lock-free property of the corresponding atomic types, with the signedand unsigned variants grouped together. The properties also apply to the corresponding (partial) specializations of the
atomic template. A value of 0 indicates that the types are never lock-free. A value of 1 indicates that the types aresometimes lock-free. A value of 2 indicates that the types are always lock-free.

2 At least one signed integral specialization of the atomic template, along with the specialization for the correspondingunsigned type (6.8.2), is always lock-free.
[Note 1: This requirement is optional in freestanding implementations (16.4.2.4). —end note]

3 The functions atomic<T>::is_lock_free and atomic_is_lock_free (33.5.8.2) indicate whether the object is lock-free.In any given program execution, the result of the lock-free query is the same for all atomic objects of the same type.
4 Atomic operations that are not lock-free are considered to potentially block (6.9.2.3).
5 Recommended practice: Operations that are lock-free should also be address-free.313 The implementation of theseoperations should not depend on any per-process state.
[Note 2: This restriction enables communication by memory that is mapped into a process more than once and by memory that isshared between two processes. —end note]
33.5.6 Waiting and notifying [atomics.wait]

1 Atomic waiting operations and atomic notifying operations provide a mechanism to wait for the value of an atomicobject to change more efficiently than can be achieved with polling. An atomic waiting operation may block until it isunblocked by an atomic notifying operation, according to each function’s effects.
[Note 1: Programs are not guaranteed to observe transient atomic values, an issue known as the A-B-A problem, resulting in continuedblocking if a condition is only temporarily met. —end note]

2 [Note 2: The following functions are atomic waiting operations:
313) That is, atomic operations on the same memory location via two different addresses will communicate atomically.
§ 33.5.6 1656

© ISO/IEC N4910

—(2.1) atomic<T>::wait,
—(2.2) atomic_flag::wait,
—(2.3) atomic_wait and atomic_wait_explicit,
—(2.4) atomic_flag_wait and atomic_flag_wait_explicit, and
—(2.5) atomic_ref<T>::wait.

—end note]
3 [Note 3: The following functions are atomic notifying operations:

—(3.1) atomic<T>::notify_one and atomic<T>::notify_all,
—(3.2) atomic_flag::notify_one and atomic_flag::notify_all,
—(3.3) atomic_notify_one and atomic_notify_all,
—(3.4) atomic_flag_notify_one and atomic_flag_notify_all, and
—(3.5) atomic_ref<T>::notify_one and atomic_ref<T>::notify_all.

—end note]
4 A call to an atomic waiting operation on an atomic object M is eligible to be unblocked by a call to an atomic notifyingoperation on M if there exist side effects X and Y on M such that:

—(4.1) the atomic waiting operation has blocked after observing the result of X,
—(4.2) X precedes Y in the modification order of M, and
—(4.3) Y happens before the call to the atomic notifying operation.

33.5.7 Class template atomic_ref [atomics.ref.generic]
33.5.7.1 General [atomics.ref.generic.general]
namespace std {

template<class T> struct atomic_ref {
private:

T* ptr; // exposition only
public:

using value_type = T;
static constexpr size_t required_alignment = implementation-defined;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;

explicit atomic_ref(T&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(T, memory_order = memory_order::seq_cst) const noexcept;
T operator=(T) const noexcept;
T load(memory_order = memory_order::seq_cst) const noexcept;
operator T() const noexcept;

T exchange(T, memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(T&, T,

memory_order, memory_order) const noexcept;
bool compare_exchange_strong(T&, T,

memory_order, memory_order) const noexcept;
bool compare_exchange_weak(T&, T,

memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(T&, T,

memory_order = memory_order::seq_cst) const noexcept;

void wait(T, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}

§ 33.5.7.1 1657

© ISO/IEC N4910

1 An atomic_ref object applies atomic operations (33.5.1) to the object referenced by *ptr such that, for the lifetime (6.7.3)of the atomic_ref object, the object referenced by *ptr is an atomic object (6.9.2.2).
2 The program is ill-formed if is_trivially_copyable_v<T> is false.
3 The lifetime (6.7.3) of an object referenced by *ptr shall exceed the lifetime of all atomic_refs that reference theobject. While any atomic_ref instances exist that reference the *ptr object, all accesses to that object shall exclusivelyoccur through those atomic_ref instances. No subobject of the object referenced by atomic_ref shall be concurrentlyreferenced by any other atomic_ref object.
4 Atomic operations applied to an object through a referencing atomic_ref are atomic with respect to atomic operationsapplied through any other atomic_ref referencing the same object.
[Note 1: Atomic operations or the atomic_ref constructor can acquire a shared resource, such as a lock associated with the referencedobject, to enable atomic operations to be applied to the referenced object. —end note]
33.5.7.2 Operations [atomics.ref.ops]

static constexpr size_t required_alignment;

1 The alignment required for an object to be referenced by an atomic reference, which is at least alignof(T).
2 [Note 1: Hardware could require an object referenced by an atomic_ref to have stricter alignment (6.7.6) than other objectsof type T. Further, whether operations on an atomic_ref are lock-free could depend on the alignment of the referenced object.For example, lock-free operations on std::complex<double> could be supported only if aligned to 2*alignof(double).—end note]

static constexpr bool is_always_lock_free;

3 The static data member is_always_lock_free is true if the atomic_ref type’s operations are always lock-free,and false otherwise.
bool is_lock_free() const noexcept;

4 Returns: true if operations on all objects of the type atomic_ref<T> are lock-free, false otherwise.
atomic_ref(T& obj);

5 Preconditions: The referenced object is aligned to required_alignment.
6 Postconditions: *this references obj.
7 Throws: Nothing.

atomic_ref(const atomic_ref& ref) noexcept;

8 Postconditions: *this references the object referenced by ref.
void store(T desired, memory_order order = memory_order::seq_cst) const noexcept;

9 Preconditions: The order argument is neither memory_order::consume, memory_order::acquire, nor memory_-
order::acq_rel.

10 Effects: Atomically replaces the value referenced by *ptr with the value of desired. Memory is affectedaccording to the value of order.
T operator=(T desired) const noexcept;

11 Effects: Equivalent to:
store(desired);
return desired;

T load(memory_order order = memory_order::seq_cst) const noexcept;

12 Preconditions: The order argument is neither memory_order::release nor memory_order::acq_rel.
13 Effects: Memory is affected according to the value of order.
14 Returns: Atomically returns the value referenced by *ptr.

operator T() const noexcept;

15 Effects: Equivalent to: return load();

§ 33.5.7.2 1658

© ISO/IEC N4910

T exchange(T desired, memory_order order = memory_order::seq_cst) const noexcept;

16 Effects: Atomically replaces the value referenced by *ptr with desired. Memory is affected according to thevalue of order. This operation is an atomic read-modify-write operation (6.9.2).
17 Returns: Atomically returns the value referenced by *ptr immediately before the effects.

bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) const noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) const noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) const noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) const noexcept;

18 Preconditions: The failure argument is neither memory_order::release nor memory_order::acq_rel.
19 Effects: Retrieves the value in expected. It then atomically compares the value representation of the valuereferenced by *ptr for equality with that previously retrieved from expected, and if true, replaces the valuereferenced by *ptr with that in desired. If and only if the comparison is true, memory is affected accordingto the value of success, and if the comparison is false, memory is affected according to the value of failure.When only one memory_order argument is supplied, the value of success is order, and the value of failure is

order except that a value of memory_order::acq_rel shall be replaced by the value memory_order::acquireand a value of memory_order::release shall be replaced by the value memory_order::relaxed. If and only ifthe comparison is false then, after the atomic operation, the value in expected is replaced by the value readfrom the value referenced by *ptr during the atomic comparison. If the operation returns true, these operationsare atomic read-modify-write operations (6.9.2.2) on the value referenced by *ptr. Otherwise, these operationsare atomic load operations on that memory.
20 Returns: The result of the comparison.
21 Remarks: A weak compare-and-exchange operation may fail spuriously. That is, even when the contents ofmemory referred to by expected and ptr are equal, it may return false and store back to expected the samememory contents that were originally there.

[Note 2: This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g., load-locked store-conditional machines. A consequence of spurious failure is that nearly all uses of weak compare-and-exchangewill be in a loop. When a compare-and-exchange is in a loop, the weak version will yield better performance on someplatforms. When a weak compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.—end note]
void wait(T old, memory_order order = memory_order::seq_cst) const noexcept;

22 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
23 Effects: Repeatedly performs the following steps, in order:

—(23.1) Evaluates load(order) and compares its value representation for equality against that of old.
—(23.2) If they compare unequal, returns.
—(23.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

24 Remarks: This function is an atomic waiting operation (33.5.6) on atomic object *ptr.
void notify_one() const noexcept;

25 Effects: Unblocks the execution of at least one atomic waiting operation on *ptr that is eligible to be unblocked(33.5.6) by this call, if any such atomic waiting operations exist.
26 Remarks: This function is an atomic notifying operation (33.5.6) on atomic object *ptr.

void notify_all() const noexcept;

27 Effects: Unblocks the execution of all atomic waiting operations on *ptr that are eligible to be unblocked (33.5.6)by this call.
28 Remarks: This function is an atomic notifying operation (33.5.6) on atomic object *ptr.
§ 33.5.7.2 1659

© ISO/IEC N4910

33.5.7.3 Specializations for integral types [atomics.ref.int]
1 There are specializations of the atomic_ref class template for the integral types char, signed char, unsigned

char, short, unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long long, char8_t,
char16_t, char32_t, wchar_t, and any other types needed by the typedefs in the header <cstdint> (17.4.2). For eachsuch type integral, the specialization atomic_ref<integral> provides additional atomic operations appropriate tointegral types.
[Note 1: The specialization atomic_ref<bool> uses the primary template (33.5.7). —end note]
namespace std {

template<> struct atomic_ref<integral> {
private:

integral* ptr; // exposition only
public:

using value_type = integral;
using difference_type = value_type;
static constexpr size_t required_alignment = implementation-defined;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;

explicit atomic_ref(integral&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(integral, memory_order = memory_order::seq_cst) const noexcept;
integral operator=(integral) const noexcept;
integral load(memory_order = memory_order::seq_cst) const noexcept;
operator integral() const noexcept;

integral exchange(integral,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_weak(integral&, integral,
memory_order, memory_order) const noexcept;

bool compare_exchange_strong(integral&, integral,
memory_order, memory_order) const noexcept;

bool compare_exchange_weak(integral&, integral,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_strong(integral&, integral,
memory_order = memory_order::seq_cst) const noexcept;

integral fetch_add(integral,
memory_order = memory_order::seq_cst) const noexcept;

integral fetch_sub(integral,
memory_order = memory_order::seq_cst) const noexcept;

integral fetch_and(integral,
memory_order = memory_order::seq_cst) const noexcept;

integral fetch_or(integral,
memory_order = memory_order::seq_cst) const noexcept;

integral fetch_xor(integral,
memory_order = memory_order::seq_cst) const noexcept;

integral operator++(int) const noexcept;
integral operator--(int) const noexcept;
integral operator++() const noexcept;
integral operator--() const noexcept;
integral operator+=(integral) const noexcept;
integral operator-=(integral) const noexcept;
integral operator&=(integral) const noexcept;
integral operator|=(integral) const noexcept;
integral operator^=(integral) const noexcept;

void wait(integral, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;

§ 33.5.7.3 1660

© ISO/IEC N4910

void notify_all() const noexcept;
};

}

2 Descriptions are provided below only for members that differ from the primary template.
3 The following operations perform arithmetic computations. The correspondence among key, operator, and computationis specified in Table 141.

integral fetch_key(integral operand, memory_order order = memory_order::seq_cst) const noexcept;

4 Effects: Atomically replaces the value referenced by *ptr with the result of the computation applied to the valuereferenced by *ptr and the given operand. Memory is affected according to the value of order. These operationsare atomic read-modify-write operations (6.9.2.2).
5 Returns: Atomically, the value referenced by *ptr immediately before the effects.
6 Remarks: For signed integer types, the result is as if the object value and parameters were converted to theircorresponding unsigned types, the computation performed on those types, and the result converted back to thesigned type.

[Note 2: There are no undefined results arising from the computation. —end note]
integral operator op=(integral operand) const noexcept;

7 Effects: Equivalent to: return fetch_key(operand) op operand;

33.5.7.4 Specializations for floating-point types [atomics.ref.float]
1 There are specializations of the atomic_ref class template for the floating-point types float, double, and long double.For each such type floating-point, the specialization atomic_ref<floating-point> provides additional atomicoperations appropriate to floating-point types.

namespace std {
template<> struct atomic_ref<floating-point> {
private:
floating-point* ptr; // exposition only

public:
using value_type = floating-point;
using difference_type = value_type;
static constexpr size_t required_alignment = implementation-defined;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;

explicit atomic_ref(floating-point&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(floating-point, memory_order = memory_order::seq_cst) const noexcept;
floating-point operator=(floating-point) const noexcept;
floating-point load(memory_order = memory_order::seq_cst) const noexcept;
operator floating-point() const noexcept;

floating-point exchange(floating-point,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_weak(floating-point&, floating-point,
memory_order, memory_order) const noexcept;

bool compare_exchange_strong(floating-point&, floating-point,
memory_order, memory_order) const noexcept;

bool compare_exchange_weak(floating-point&, floating-point,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_strong(floating-point&, floating-point,
memory_order = memory_order::seq_cst) const noexcept;

floating-point fetch_add(floating-point,
memory_order = memory_order::seq_cst) const noexcept;

§ 33.5.7.4 1661

© ISO/IEC N4910

floating-point fetch_sub(floating-point,
memory_order = memory_order::seq_cst) const noexcept;

floating-point operator+=(floating-point) const noexcept;
floating-point operator-=(floating-point) const noexcept;

void wait(floating-point, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}

2 Descriptions are provided below only for members that differ from the primary template.
3 The following operations perform arithmetic computations. The correspondence among key, operator, and computationis specified in Table 141.

floating-point fetch_key(floating-point operand,
memory_order order = memory_order::seq_cst) const noexcept;

4 Effects: Atomically replaces the value referenced by *ptr with the result of the computation applied to the valuereferenced by *ptr and the given operand. Memory is affected according to the value of order. These operationsare atomic read-modify-write operations (6.9.2.2).
5 Returns: Atomically, the value referenced by *ptr immediately before the effects.
6 Remarks: If the result is not a representable value for its type (7.1), the result is unspecified, but the operationsotherwise have no undefined behavior. Atomic arithmetic operations on floating-point should conform to the

std::numeric_limits<floating-point> traits associated with the floating-point type (17.3.3). The floating-point environment (28.3) for atomic arithmetic operations on floating-point may be different than the callingthread’s floating-point environment.
floating-point operator op=(floating-point operand) const noexcept;

7 Effects: Equivalent to: return fetch_key(operand) op operand;

33.5.7.5 Partial specialization for pointers [atomics.ref.pointer]
namespace std {

template<class T> struct atomic_ref<T*> {
private:

T** ptr; // exposition only
public:

using value_type = T*;
using difference_type = ptrdiff_t;
static constexpr size_t required_alignment = implementation-defined;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;

explicit atomic_ref(T*&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(T*, memory_order = memory_order::seq_cst) const noexcept;
T* operator=(T*) const noexcept;
T* load(memory_order = memory_order::seq_cst) const noexcept;
operator T*() const noexcept;

T* exchange(T*, memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order, memory_order) const noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order, memory_order) const noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order = memory_order::seq_cst) const noexcept;

§ 33.5.7.5 1662

© ISO/IEC N4910

bool compare_exchange_strong(T*&, T*,
memory_order = memory_order::seq_cst) const noexcept;

T* fetch_add(difference_type, memory_order = memory_order::seq_cst) const noexcept;
T* fetch_sub(difference_type, memory_order = memory_order::seq_cst) const noexcept;

T* operator++(int) const noexcept;
T* operator--(int) const noexcept;
T* operator++() const noexcept;
T* operator--() const noexcept;
T* operator+=(difference_type) const noexcept;
T* operator-=(difference_type) const noexcept;

void wait(T*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}

1 Descriptions are provided below only for members that differ from the primary template.
2 The following operations perform arithmetic computations. The correspondence among key, operator, and computationis specified in Table 142.

T* fetch_key(difference_type operand, memory_order order = memory_order::seq_cst) const noexcept;

3 Mandates: T is a complete object type.
4 Effects: Atomically replaces the value referenced by *ptr with the result of the computation applied to the valuereferenced by *ptr and the given operand. Memory is affected according to the value of order. These operationsare atomic read-modify-write operations (6.9.2.2).
5 Returns: Atomically, the value referenced by *ptr immediately before the effects.
6 Remarks: The result may be an undefined address, but the operations otherwise have no undefined behavior.

T* operator op=(difference_type operand) const noexcept;

7 Effects: Equivalent to: return fetch_key(operand) op operand;

33.5.7.6 Member operators common to integers and pointers to objects [atomics.ref.memop]

value_type operator++(int) const noexcept;

1 Effects: Equivalent to: return fetch_add(1);

value_type operator--(int) const noexcept;

2 Effects: Equivalent to: return fetch_sub(1);

value_type operator++() const noexcept;

3 Effects: Equivalent to: return fetch_add(1) + 1;

value_type operator--() const noexcept;

4 Effects: Equivalent to: return fetch_sub(1) - 1;

33.5.8 Class template atomic [atomics.types.generic]
33.5.8.1 General [atomics.types.generic.general]
namespace std {

template<class T> struct atomic {
using value_type = T;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

§ 33.5.8.1 1663

© ISO/IEC N4910

// 33.5.8.2, operations on atomic types
constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>);
constexpr atomic(T) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

T load(memory_order = memory_order::seq_cst) const volatile noexcept;
T load(memory_order = memory_order::seq_cst) const noexcept;
operator T() const volatile noexcept;
operator T() const noexcept;
void store(T, memory_order = memory_order::seq_cst) volatile noexcept;
void store(T, memory_order = memory_order::seq_cst) noexcept;
T operator=(T) volatile noexcept;
T operator=(T) noexcept;

T exchange(T, memory_order = memory_order::seq_cst) volatile noexcept;
T exchange(T, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order::seq_cst) noexcept;

void wait(T, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(T, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

1 The template argument for T shall meet the Cpp17CopyConstructible and Cpp17CopyAssignable requirements. Theprogram is ill-formed if any of
—(1.1) is_trivially_copyable_v<T>,
—(1.2) is_copy_constructible_v<T>,
—(1.3) is_move_constructible_v<T>,
—(1.4) is_copy_assignable_v<T>, or
—(1.5) is_move_assignable_v<T>

is false.
[Note 1: Type arguments that are not also statically initializable can be difficult to use. —end note]

2 The specialization atomic<bool> is a standard-layout struct.
3 [Note 2: The representation of an atomic specialization need not have the same size and alignment requirement as its correspondingargument type. —end note]
33.5.8.2 Operations on atomic types [atomics.types.operations]

constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>);

1 Mandates: is_default_constructible_v<T> is true.
2 Effects: Initializes the atomic object with the value of T(). Initialization is not an atomic operation (6.9.2).

constexpr atomic(T desired) noexcept;

3 Effects: Initializes the object with the value desired. Initialization is not an atomic operation (6.9.2).

§ 33.5.8.2 1664

© ISO/IEC N4910

[Note 1: It is possible to have an access to an atomic object A race with its construction, for example by communicating theaddress of the just-constructed object A to another thread via memory_order::relaxed operations on a suitable atomic pointervariable, and then immediately accessing A in the receiving thread. This results in undefined behavior. —end note]
static constexpr bool is_always_lock_free = implementation-defined;

4 The static data member is_always_lock_free is true if the atomic type’s operations are always lock-free, and
false otherwise.
[Note 2: The value of is_always_lock_free is consistent with the value of the corresponding ATOMIC_..._LOCK_FREEmacro,if defined. —end note]

bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

5 Returns: true if the object’s operations are lock-free, false otherwise.
[Note 3: The return value of the is_lock_free member function is consistent with the value of is_always_lock_free forthe same type. —end note]

void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
void store(T desired, memory_order order = memory_order::seq_cst) noexcept;

6 Constraints: For the volatile overload of this function, is_always_lock_free is true.
7 Preconditions: The order argument is neither memory_order::consume, memory_order::acquire, nor memory_-

order::acq_rel.
8 Effects: Atomically replaces the value pointed to by thiswith the value of desired. Memory is affected accordingto the value of order.

T operator=(T desired) volatile noexcept;
T operator=(T desired) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to store(desired).
11 Returns: desired.

T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const noexcept;

12 Constraints: For the volatile overload of this function, is_always_lock_free is true.
13 Preconditions: The order argument is neither memory_order::release nor memory_order::acq_rel.
14 Effects: Memory is affected according to the value of order.
15 Returns: Atomically returns the value pointed to by this.

operator T() const volatile noexcept;
operator T() const noexcept;

16 Constraints: For the volatile overload of this function, is_always_lock_free is true.
17 Effects: Equivalent to: return load();

T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) noexcept;

18 Constraints: For the volatile overload of this function, is_always_lock_free is true.
19 Effects: Atomically replaces the value pointed to by this with desired. Memory is affected according to thevalue of order. These operations are atomic read-modify-write operations (6.9.2).
20 Returns: Atomically returns the value pointed to by this immediately before the effects.

bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;

§ 33.5.8.2 1665

© ISO/IEC N4910

bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) noexcept;

21 Constraints: For the volatile overload of this function, is_always_lock_free is true.
22 Preconditions: The failure argument is neither memory_order::release nor memory_order::acq_rel.
23 Effects: Retrieves the value in expected. It then atomically compares the value representation of the value pointedto by this for equality with that previously retrieved from expected, and if true, replaces the value pointedto by this with that in desired. If and only if the comparison is true, memory is affected according to thevalue of success, and if the comparison is false, memory is affected according to the value of failure. Whenonly one memory_order argument is supplied, the value of success is order, and the value of failure is orderexcept that a value of memory_order::acq_rel shall be replaced by the value memory_order::acquire and avalue of memory_order::release shall be replaced by the value memory_order::relaxed. If and only if thecomparison is false then, after the atomic operation, the value in expected is replaced by the value pointed to by

this during the atomic comparison. If the operation returns true, these operations are atomic read-modify-writeoperations (6.9.2) on the memory pointed to by this. Otherwise, these operations are atomic load operations onthat memory.
24 Returns: The result of the comparison.
25 [Note 4: For example, the effect of compare_exchange_strong on objects without padding bits (6.8.1) is

if (memcmp(this, &expected, sizeof(*this)) == 0)
memcpy(this, &desired, sizeof(*this));

else
memcpy(&expected, this, sizeof(*this));

—end note]
[Example 1: The expected use of the compare-and-exchange operations is as follows. The compare-and-exchange operationswill update expected when another iteration of the loop is needed.
expected = current.load();
do {
desired = function(expected);

} while (!current.compare_exchange_weak(expected, desired));

—end example]
[Example 2: Because the expected value is updated only on failure, code releasing the memory containing the expected valueon success will work. For example, list head insertion will act atomically and would not introduce a data race in the followingcode:
do {
p->next = head; // make new list node point to the current head

} while (!head.compare_exchange_weak(p->next, p)); // try to insert
— end example]

26 Implementations should ensure that weak compare-and-exchange operations do not consistently return falseunless either the atomic object has value different from expected or there are concurrent modifications to theatomic object.
27 Remarks: A weak compare-and-exchange operation may fail spuriously. That is, even when the contents ofmemory referred to by expected and this are equal, it may return false and store back to expected the samememory contents that were originally there.

[Note 5: This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g., load-locked store-conditional machines. A consequence of spurious failure is that nearly all uses of weak compare-and-exchangewill be in a loop. When a compare-and-exchange is in a loop, the weak version will yield better performance on someplatforms. When a weak compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.—end note]

§ 33.5.8.2 1666

© ISO/IEC N4910

28 [Note 6: Under cases where the memcpy and memcmp semantics of the compare-and-exchange operations apply, the comparisonscan fail for values that compare equal with operator== if the value representation has trap bits or alternate representations ofthe same value. Notably, on implementations conforming to ISO/IEC/IEEE 60559, floating-point -0.0 and +0.0 will notcompare equal with memcmp but will compare equal with operator==, and NaNs with the same payload will compare equalwith memcmp but will not compare equal with operator==. —end note]
[Note 7: Because compare-and-exchange acts on an object’s value representation, padding bits that never participate in theobject’s value representation are ignored. As a consequence, the following code is guaranteed to avoid spurious failure:
struct padded {
char clank = 0x42;// Padding here.
unsigned biff = 0xC0DEFEFE;

};
atomic<padded> pad = {};

bool zap() {
padded expected, desired{0, 0};
return pad.compare_exchange_strong(expected, desired);

}

—end note]
[Note 8: For a union with bits that participate in the value representation of some members but not others, compare-and-exchange might always fail. This is because such padding bits have an indeterminate value when they do not participate in thevalue representation of the active member. As a consequence, the following code is not guaranteed to ever succeed:
union pony {
double celestia = 0.;
short luna; // padded

};
atomic<pony> princesses = {};

bool party(pony desired) {
pony expected;
return princesses.compare_exchange_strong(expected, desired);

}

—end note]
void wait(T old, memory_order order = memory_order::seq_cst) const volatile noexcept;
void wait(T old, memory_order order = memory_order::seq_cst) const noexcept;

29 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
30 Effects: Repeatedly performs the following steps, in order:

—(30.1) Evaluates load(order) and compares its value representation for equality against that of old.
—(30.2) If they compare unequal, returns.
—(30.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

31 Remarks: This function is an atomic waiting operation (33.5.6).
void notify_one() volatile noexcept;
void notify_one() noexcept;

32 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked (33.5.6)by this call, if any such atomic waiting operations exist.
33 Remarks: This function is an atomic notifying operation (33.5.6).

void notify_all() volatile noexcept;
void notify_all() noexcept;

34 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6) by thiscall.
35 Remarks: This function is an atomic notifying operation (33.5.6).

§ 33.5.8.2 1667

© ISO/IEC N4910

33.5.8.3 Specializations for integers [atomics.types.int]
1 There are specializations of the atomic class template for the integral types char, signed char, unsigned char, short,

unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long long, char8_t, char16_t,
char32_t, wchar_t, and any other types needed by the typedefs in the header <cstdint> (17.4.2). For each such type
integral, the specialization atomic<integral> provides additional atomic operations appropriate to integral types.
[Note 1: The specialization atomic<bool> uses the primary template (33.5.8). —end note]
namespace std {

template<> struct atomic<integral> {
using value_type = integral;
using difference_type = value_type;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(integral) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

void store(integral, memory_order = memory_order::seq_cst) volatile noexcept;
void store(integral, memory_order = memory_order::seq_cst) noexcept;
integral operator=(integral) volatile noexcept;
integral operator=(integral) noexcept;
integral load(memory_order = memory_order::seq_cst) const volatile noexcept;
integral load(memory_order = memory_order::seq_cst) const noexcept;
operator integral() const volatile noexcept;
operator integral() const noexcept;

integral exchange(integral, memory_order = memory_order::seq_cst) volatile noexcept;
integral exchange(integral, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(integral&, integral,

memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(integral&, integral,

memory_order, memory_order) noexcept;
bool compare_exchange_strong(integral&, integral,

memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(integral&, integral,

memory_order, memory_order) noexcept;
bool compare_exchange_weak(integral&, integral,

memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(integral&, integral,

memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(integral&, integral,

memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(integral&, integral,

memory_order = memory_order::seq_cst) noexcept;

integral fetch_add(integral, memory_order = memory_order::seq_cst) volatile noexcept;
integral fetch_add(integral, memory_order = memory_order::seq_cst) noexcept;
integral fetch_sub(integral, memory_order = memory_order::seq_cst) volatile noexcept;
integral fetch_sub(integral, memory_order = memory_order::seq_cst) noexcept;
integral fetch_and(integral, memory_order = memory_order::seq_cst) volatile noexcept;
integral fetch_and(integral, memory_order = memory_order::seq_cst) noexcept;
integral fetch_or(integral, memory_order = memory_order::seq_cst) volatile noexcept;
integral fetch_or(integral, memory_order = memory_order::seq_cst) noexcept;
integral fetch_xor(integral, memory_order = memory_order::seq_cst) volatile noexcept;
integral fetch_xor(integral, memory_order = memory_order::seq_cst) noexcept;

integral operator++(int) volatile noexcept;
integral operator++(int) noexcept;

§ 33.5.8.3 1668

© ISO/IEC N4910

integral operator--(int) volatile noexcept;
integral operator--(int) noexcept;
integral operator++() volatile noexcept;
integral operator++() noexcept;
integral operator--() volatile noexcept;
integral operator--() noexcept;
integral operator+=(integral) volatile noexcept;
integral operator+=(integral) noexcept;
integral operator-=(integral) volatile noexcept;
integral operator-=(integral) noexcept;
integral operator&=(integral) volatile noexcept;
integral operator&=(integral) noexcept;
integral operator|=(integral) volatile noexcept;
integral operator|=(integral) noexcept;
integral operator^=(integral) volatile noexcept;
integral operator^=(integral) noexcept;

void wait(integral, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(integral, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

2 The atomic integral specializations are standard-layout structs. They each have a trivial destructor.
3 Descriptions are provided below only for members that differ from the primary template.
4 The following operations perform arithmetic computations. The correspondence among key, operator, and computationis specified in Table 141.

Table 141: Atomic arithmetic computations [tab:atomic.types.int.comp]
key Op Computation key Op Computation
add + addition sub - subtraction
or | bitwise inclusive or xor ^ bitwise exclusive or
and & bitwise and

T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) noexcept;

5 Constraints: For the volatile overload of this function, is_always_lock_free is true.
6 Effects: Atomically replaces the value pointed to by this with the result of the computation applied to the valuepointed to by this and the given operand. Memory is affected according to the value of order. These operationsare atomic read-modify-write operations (6.9.2).
7 Returns: Atomically, the value pointed to by this immediately before the effects.
8 Remarks: For signed integer types, the result is as if the object value and parameters were converted to theircorresponding unsigned types, the computation performed on those types, and the result converted back to thesigned type.

[Note 2: There are no undefined results arising from the computation. —end note]
T operator op=(T operand) volatile noexcept;
T operator op=(T operand) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to: return fetch_key(operand) op operand;

§ 33.5.8.3 1669

© ISO/IEC N4910

33.5.8.4 Specializations for floating-point types [atomics.types.float]
1 There are specializations of the atomic class template for the floating-point types float, double, and long double. Foreach such type floating-point, the specialization atomic<floating-point> provides additional atomic operationsappropriate to floating-point types.

namespace std {
template<> struct atomic<floating-point> {
using value_type = floating-point;
using difference_type = value_type;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(floating-point) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

void store(floating-point, memory_order = memory_order::seq_cst) volatile noexcept;
void store(floating-point, memory_order = memory_order::seq_cst) noexcept;
floating-point operator=(floating-point) volatile noexcept;
floating-point operator=(floating-point) noexcept;
floating-point load(memory_order = memory_order::seq_cst) volatile noexcept;
floating-point load(memory_order = memory_order::seq_cst) noexcept;
operator floating-point() volatile noexcept;
operator floating-point() noexcept;

floating-point exchange(floating-point,
memory_order = memory_order::seq_cst) volatile noexcept;

floating-point exchange(floating-point,
memory_order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(floating-point&, floating-point,
memory_order, memory_order) volatile noexcept;

bool compare_exchange_weak(floating-point&, floating-point,
memory_order, memory_order) noexcept;

bool compare_exchange_strong(floating-point&, floating-point,
memory_order, memory_order) volatile noexcept;

bool compare_exchange_strong(floating-point&, floating-point,
memory_order, memory_order) noexcept;

bool compare_exchange_weak(floating-point&, floating-point,
memory_order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_weak(floating-point&, floating-point,
memory_order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(floating-point&, floating-point,
memory_order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_strong(floating-point&, floating-point,
memory_order = memory_order::seq_cst) noexcept;

floating-point fetch_add(floating-point,
memory_order = memory_order::seq_cst) volatile noexcept;

floating-point fetch_add(floating-point,
memory_order = memory_order::seq_cst) noexcept;

floating-point fetch_sub(floating-point,
memory_order = memory_order::seq_cst) volatile noexcept;

floating-point fetch_sub(floating-point,
memory_order = memory_order::seq_cst) noexcept;

floating-point operator+=(floating-point) volatile noexcept;
floating-point operator+=(floating-point) noexcept;
floating-point operator-=(floating-point) volatile noexcept;
floating-point operator-=(floating-point) noexcept;

§ 33.5.8.4 1670

© ISO/IEC N4910

void wait(floating-point, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(floating-point, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

2 The atomic floating-point specializations are standard-layout structs. They each have a trivial destructor.
3 Descriptions are provided below only for members that differ from the primary template.
4 The following operations perform arithmetic addition and subtraction computations. The correspondence among key,operator, and computation is specified in Table 141.

T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) noexcept;

5 Constraints: For the volatile overload of this function, is_always_lock_free is true.
6 Effects: Atomically replaces the value pointed to by this with the result of the computation applied to the valuepointed to by this and the given operand. Memory is affected according to the value of order. These operationsare atomic read-modify-write operations (6.9.2).
7 Returns: Atomically, the value pointed to by this immediately before the effects.
8 Remarks: If the result is not a representable value for its type (7.1) the result is unspecified, but the operationsotherwise have no undefined behavior. Atomic arithmetic operations on floating-point should conform to the

std::numeric_limits<floating-point> traits associated with the floating-point type (17.3.3). The floating-point environment (28.3) for atomic arithmetic operations on floating-point may be different than the callingthread’s floating-point environment.
T operator op=(T operand) volatile noexcept;
T operator op=(T operand) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to: return fetch_key(operand) op operand;
11 Remarks: If the result is not a representable value for its type (7.1) the result is unspecified, but the operationsotherwise have no undefined behavior. Atomic arithmetic operations on floating-point should conform to the

std::numeric_limits<floating-point> traits associated with the floating-point type (17.3.3). The floating-point environment (28.3) for atomic arithmetic operations on floating-point may be different than the callingthread’s floating-point environment.
33.5.8.5 Partial specialization for pointers [atomics.types.pointer]
namespace std {

template<class T> struct atomic<T*> {
using value_type = T*;
using difference_type = ptrdiff_t;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(T*) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

void store(T*, memory_order = memory_order::seq_cst) volatile noexcept;
void store(T*, memory_order = memory_order::seq_cst) noexcept;
T* operator=(T*) volatile noexcept;
T* operator=(T*) noexcept;
T* load(memory_order = memory_order::seq_cst) const volatile noexcept;
T* load(memory_order = memory_order::seq_cst) const noexcept;

§ 33.5.8.5 1671

© ISO/IEC N4910

operator T*() const volatile noexcept;
operator T*() const noexcept;

T* exchange(T*, memory_order = memory_order::seq_cst) volatile noexcept;
T* exchange(T*, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order = memory_order::seq_cst) noexcept;

T* fetch_add(ptrdiff_t, memory_order = memory_order::seq_cst) volatile noexcept;
T* fetch_add(ptrdiff_t, memory_order = memory_order::seq_cst) noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order::seq_cst) volatile noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order::seq_cst) noexcept;

T* operator++(int) volatile noexcept;
T* operator++(int) noexcept;
T* operator--(int) volatile noexcept;
T* operator--(int) noexcept;
T* operator++() volatile noexcept;
T* operator++() noexcept;
T* operator--() volatile noexcept;
T* operator--() noexcept;
T* operator+=(ptrdiff_t) volatile noexcept;
T* operator+=(ptrdiff_t) noexcept;
T* operator-=(ptrdiff_t) volatile noexcept;
T* operator-=(ptrdiff_t) noexcept;

void wait(T*, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(T*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

1 There is a partial specialization of the atomic class template for pointers. Specializations of this partial specializationare standard-layout structs. They each have a trivial destructor.
2 Descriptions are provided below only for members that differ from the primary template.
3 The following operations perform pointer arithmetic. The correspondence among key, operator, and computation isspecified in Table 142.

Table 142: Atomic pointer computations [tab:atomic.types.pointer.comp]
key Op Computation key Op Computation
add + addition sub - subtraction

T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) noexcept;

4 Constraints: For the volatile overload of this function, is_always_lock_free is true.
5 Mandates: T is a complete object type.

§ 33.5.8.5 1672

© ISO/IEC N4910

[Note 1: Pointer arithmetic on void* or function pointers is ill-formed. —end note]
6 Effects: Atomically replaces the value pointed to by this with the result of the computation applied to the valuepointed to by this and the given operand. Memory is affected according to the value of order. These operationsare atomic read-modify-write operations (6.9.2).
7 Returns: Atomically, the value pointed to by this immediately before the effects.
8 Remarks: The result may be an undefined address, but the operations otherwise have no undefined behavior.

T* operator op=(ptrdiff_t operand) volatile noexcept;
T* operator op=(ptrdiff_t operand) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to: return fetch_key(operand) op operand;

33.5.8.6 Member operators common to integers and pointers to objects [atomics.types.memop]

value_type operator++(int) volatile noexcept;
value_type operator++(int) noexcept;

1 Constraints: For the volatile overload of this function, is_always_lock_free is true.
2 Effects: Equivalent to: return fetch_add(1);

value_type operator--(int) volatile noexcept;
value_type operator--(int) noexcept;

3 Constraints: For the volatile overload of this function, is_always_lock_free is true.
4 Effects: Equivalent to: return fetch_sub(1);

value_type operator++() volatile noexcept;
value_type operator++() noexcept;

5 Constraints: For the volatile overload of this function, is_always_lock_free is true.
6 Effects: Equivalent to: return fetch_add(1) + 1;

value_type operator--() volatile noexcept;
value_type operator--() noexcept;

7 Constraints: For the volatile overload of this function, is_always_lock_free is true.
8 Effects: Equivalent to: return fetch_sub(1) - 1;

33.5.8.7 Partial specializations for smart pointers [util.smartptr.atomic]
33.5.8.7.1 General [util.smartptr.atomic.general]

1 The library provides partial specializations of the atomic template for shared-ownership smart pointers (20.3.2).
[Note 1: The partial specializations are declared in header <memory> (20.2.2). —end note]
The behavior of all operations is as specified in 33.5.8, unless specified otherwise. The template parameter T of thesepartial specializations may be an incomplete type.

2 All changes to an atomic smart pointer in 33.5.8.7, and all associated use_count increments, are guaranteed to beperformed atomically. Associated use_count decrements are sequenced after the atomic operation, but are not requiredto be part of it. Any associated deletion and deallocation are sequenced after the atomic update step and are not part ofthe atomic operation.
[Note 2: If the atomic operation uses locks, locks acquired by the implementation will be held when any use_count adjustments areperformed, and will not be held when any destruction or deallocation resulting from this is performed. —end note]

3 [Example 1:
template<typename T> class atomic_list {

struct node {
T t;
shared_ptr<node> next;

};
atomic<shared_ptr<node>> head;

§ 33.5.8.7.1 1673

© ISO/IEC N4910

public:
auto find(T t) const {
auto p = head.load();
while (p && p->t != t)

p = p->next;

return shared_ptr<node>(move(p));
}

void push_front(T t) {
auto p = make_shared<node>();
p->t = t;
p->next = head;
while (!head.compare_exchange_weak(p->next, p)) {}

}
};

—end example]
33.5.8.7.2 Partial specialization for shared_ptr [util.smartptr.atomic.shared]
namespace std {

template<class T> struct atomic<shared_ptr<T>> {
using value_type = shared_ptr<T>;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(nullptr_t) noexcept : atomic() { }
atomic(shared_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;

shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator shared_ptr<T>() const noexcept;
void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
void operator=(shared_ptr<T> desired) noexcept;

shared_ptr<T> exchange(shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

void wait(shared_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;
void notify_one() noexcept;
void notify_all() noexcept;

private:
shared_ptr<T> p; // exposition only

};
}

constexpr atomic() noexcept;

1 Effects: Initializes p{}.
atomic(shared_ptr<T> desired) noexcept;

2 Effects: Initializes the object with the value desired. Initialization is not an atomic operation (6.9.2).

§ 33.5.8.7.2 1674

© ISO/IEC N4910

[Note 1: It is possible to have an access to an atomic object A race with its construction, for example, by communicating theaddress of the just-constructed object A to another thread via memory_order::relaxed operations on a suitable atomic pointervariable, and then immediately accessing A in the receiving thread. This results in undefined behavior. —end note]
void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

3 Preconditions: order is neither memory_order::consume, memory_order::acquire, nor memory_order::acq_-
rel.

4 Effects: Atomically replaces the value pointed to by this with the value of desired as if by p.swap(desired).Memory is affected according to the value of order.
void operator=(shared_ptr<T> desired) noexcept;

5 Effects: Equivalent to store(desired).
shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;

6 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
7 Effects: Memory is affected according to the value of order.
8 Returns: Atomically returns p.

operator shared_ptr<T>() const noexcept;

9 Effects: Equivalent to: return load();

shared_ptr<T> exchange(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

10 Effects: Atomically replaces p with desired as if by p.swap(desired). Memory is affected according to thevalue of order. This is an atomic read-modify-write operation (6.9.2.2).
11 Returns: Atomically returns the value of p immediately before the effects.

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

12 Preconditions: failure is neither memory_order::release nor memory_order::acq_rel.
13 Effects: If p is equivalent to expected, assigns desired to p and has synchronization semantics corresponding tothe value of success, otherwise assigns p to expected and has synchronization semantics corresponding to thevalue of failure.
14 Returns: true if p was equivalent to expected, false otherwise.
15 Remarks: Two shared_ptr objects are equivalent if they store the same pointer value and either share ownershipor are both empty. The weak form may fail spuriously. See 33.5.8.2.
16 If the operation returns true, expected is not accessed after the atomic update and the operation is an atomicread-modify-write operation (6.9.2) on the memory pointed to by this. Otherwise, the operation is an atomicload operation on that memory, and expected is updated with the existing value read from the atomic object inthe attempted atomic update. The use_count update corresponding to the write to expected is part of the atomicoperation. The write to expected itself is not required to be part of the atomic operation.

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

17 Effects: Equivalent to:
return compare_exchange_weak(expected, desired, order, fail_order);

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced by thevalue memory_order::acquire and a value of memory_order::release shall be replaced by the value memory_-
order::relaxed.

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

18 Effects: Equivalent to:
return compare_exchange_strong(expected, desired, order, fail_order);

§ 33.5.8.7.2 1675

© ISO/IEC N4910

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced by thevalue memory_order::acquire and a value of memory_order::release shall be replaced by the value memory_-
order::relaxed.

void wait(shared_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;

19 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
20 Effects: Repeatedly performs the following steps, in order:

—(20.1) Evaluates load(order) and compares it to old.
—(20.2) If the two are not equivalent, returns.
—(20.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

21 Remarks: Two shared_ptr objects are equivalent if they store the same pointer and either share ownership or areboth empty. This function is an atomic waiting operation (33.5.6).
void notify_one() noexcept;

22 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked (33.5.6)by this call, if any such atomic waiting operations exist.
23 Remarks: This function is an atomic notifying operation (33.5.6).

void notify_all() noexcept;

24 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6) by thiscall.
25 Remarks: This function is an atomic notifying operation (33.5.6).
33.5.8.7.3 Partial specialization for weak_ptr [util.smartptr.atomic.weak]
namespace std {

template<class T> struct atomic<weak_ptr<T>> {
using value_type = weak_ptr<T>;

static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
atomic(weak_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;

weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator weak_ptr<T>() const noexcept;
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
void operator=(weak_ptr<T> desired) noexcept;

weak_ptr<T> exchange(weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

void wait(weak_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;
void notify_one() noexcept;
void notify_all() noexcept;

private:
weak_ptr<T> p; // exposition only

§ 33.5.8.7.3 1676

© ISO/IEC N4910

};
}

constexpr atomic() noexcept;

1 Effects: Initializes p{}.
atomic(weak_ptr<T> desired) noexcept;

2 Effects: Initializes the object with the value desired. Initialization is not an atomic operation (6.9.2).
[Note 1: It is possible to have an access to an atomic object A race with its construction, for example, by communicating theaddress of the just-constructed object A to another thread via memory_order::relaxed operations on a suitable atomic pointervariable, and then immediately accessing A in the receiving thread. This results in undefined behavior. —end note]

void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

3 Preconditions: order is neither memory_order::consume, memory_order::acquire, nor memory_order::acq_-
rel.

4 Effects: Atomically replaces the value pointed to by this with the value of desired as if by p.swap(desired).Memory is affected according to the value of order.
void operator=(weak_ptr<T> desired) noexcept;

5 Effects: Equivalent to store(desired).
weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;

6 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
7 Effects: Memory is affected according to the value of order.
8 Returns: Atomically returns p.

operator weak_ptr<T>() const noexcept;

9 Effects: Equivalent to: return load();

weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

10 Effects: Atomically replaces p with desired as if by p.swap(desired). Memory is affected according to thevalue of order. This is an atomic read-modify-write operation (6.9.2.2).
11 Returns: Atomically returns the value of p immediately before the effects.

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

12 Preconditions: failure is neither memory_order::release nor memory_order::acq_rel.
13 Effects: If p is equivalent to expected, assigns desired to p and has synchronization semantics corresponding tothe value of success, otherwise assigns p to expected and has synchronization semantics corresponding to thevalue of failure.
14 Returns: true if p was equivalent to expected, false otherwise.
15 Remarks: Two weak_ptr objects are equivalent if they store the same pointer value and either share ownership orare both empty. The weak form may fail spuriously. See 33.5.8.2.
16 If the operation returns true, expected is not accessed after the atomic update and the operation is an atomicread-modify-write operation (6.9.2) on the memory pointed to by this. Otherwise, the operation is an atomicload operation on that memory, and expected is updated with the existing value read from the atomic object inthe attempted atomic update. The use_count update corresponding to the write to expected is part of the atomicoperation. The write to expected itself is not required to be part of the atomic operation.

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

17 Effects: Equivalent to:
return compare_exchange_weak(expected, desired, order, fail_order);

§ 33.5.8.7.3 1677

© ISO/IEC N4910

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced by thevalue memory_order::acquire and a value of memory_order::release shall be replaced by the value memory_-
order::relaxed.

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

18 Effects: Equivalent to:
return compare_exchange_strong(expected, desired, order, fail_order);

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced by thevalue memory_order::acquire and a value of memory_order::release shall be replaced by the value memory_-
order::relaxed.

void wait(weak_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;

19 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
20 Effects: Repeatedly performs the following steps, in order:

—(20.1) Evaluates load(order) and compares it to old.
—(20.2) If the two are not equivalent, returns.
—(20.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

21 Remarks: Two weak_ptr objects are equivalent if they store the same pointer and either share ownership or areboth empty. This function is an atomic waiting operation (33.5.6).
void notify_one() noexcept;

22 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked (33.5.6)by this call, if any such atomic waiting operations exist.
23 Remarks: This function is an atomic notifying operation (33.5.6).

void notify_all() noexcept;

24 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6) by thiscall.
25 Remarks: This function is an atomic notifying operation (33.5.6).
33.5.9 Non-member functions [atomics.nonmembers]

1 A non-member function template whose name matches the pattern atomic_f or the pattern atomic_f_explicit invokesthe member function f, with the value of the first parameter as the object expression and the values of the remainingparameters (if any) as the arguments of the member function call, in order. An argument for a parameter of type
atomic<T>::value_type* is dereferenced when passed to the member function call. If no such member function exists,the program is ill-formed.

2 [Note 1: The non-member functions enable programmers to write code that can be compiled as either C or C++, for example in ashared header file. —end note]
33.5.10 Flag type and operations [atomics.flag]
namespace std {

struct atomic_flag {
constexpr atomic_flag() noexcept;
atomic_flag(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) volatile = delete;

bool test(memory_order = memory_order::seq_cst) const volatile noexcept;
bool test(memory_order = memory_order::seq_cst) const noexcept;
bool test_and_set(memory_order = memory_order::seq_cst) volatile noexcept;
bool test_and_set(memory_order = memory_order::seq_cst) noexcept;
void clear(memory_order = memory_order::seq_cst) volatile noexcept;
void clear(memory_order = memory_order::seq_cst) noexcept;

§ 33.5.10 1678

© ISO/IEC N4910

void wait(bool, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(bool, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.
2 Operations on an object of type atomic_flag shall be lock-free. The operations should also be address-free.
3 The atomic_flag type is a standard-layout struct. It has a trivial destructor.

constexpr atomic_flag::atomic_flag() noexcept;

4 Effects: Initializes *this to the clear state.
bool atomic_flag_test(const volatile atomic_flag* object) noexcept;
bool atomic_flag_test(const atomic_flag* object) noexcept;
bool atomic_flag_test_explicit(const volatile atomic_flag* object,

memory_order order) noexcept;
bool atomic_flag_test_explicit(const atomic_flag* object,

memory_order order) noexcept;
bool atomic_flag::test(memory_order order = memory_order::seq_cst) const volatile noexcept;
bool atomic_flag::test(memory_order order = memory_order::seq_cst) const noexcept;

5 For atomic_flag_test, let order be memory_order::seq_cst.
6 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
7 Effects: Memory is affected according to the value of order.
8 Returns: Atomically returns the value pointed to by object or this.

bool atomic_flag_test_and_set(volatile atomic_flag* object) noexcept;
bool atomic_flag_test_and_set(atomic_flag* object) noexcept;
bool atomic_flag_test_and_set_explicit(volatile atomic_flag* object, memory_order order) noexcept;
bool atomic_flag_test_and_set_explicit(atomic_flag* object, memory_order order) noexcept;
bool atomic_flag::test_and_set(memory_order order = memory_order::seq_cst) volatile noexcept;
bool atomic_flag::test_and_set(memory_order order = memory_order::seq_cst) noexcept;

9 Effects: Atomically sets the value pointed to by object or by this to true. Memory is affected according to thevalue of order. These operations are atomic read-modify-write operations (6.9.2).
10 Returns: Atomically, the value of the object immediately before the effects.

void atomic_flag_clear(volatile atomic_flag* object) noexcept;
void atomic_flag_clear(atomic_flag* object) noexcept;
void atomic_flag_clear_explicit(volatile atomic_flag* object, memory_order order) noexcept;
void atomic_flag_clear_explicit(atomic_flag* object, memory_order order) noexcept;
void atomic_flag::clear(memory_order order = memory_order::seq_cst) volatile noexcept;
void atomic_flag::clear(memory_order order = memory_order::seq_cst) noexcept;

11 Preconditions: The order argument is neither memory_order::consume, memory_order::acquire, nor memory_-
order::acq_rel.

12 Effects: Atomically sets the value pointed to by object or by this to false. Memory is affected according to thevalue of order.
void atomic_flag_wait(const volatile atomic_flag* object, bool old) noexcept;
void atomic_flag_wait(const atomic_flag* object, bool old) noexcept;
void atomic_flag_wait_explicit(const volatile atomic_flag* object,

bool old, memory_order order) noexcept;
void atomic_flag_wait_explicit(const atomic_flag* object,

bool old, memory_order order) noexcept;
void atomic_flag::wait(bool old, memory_order order =

memory_order::seq_cst) const volatile noexcept;

§ 33.5.10 1679

© ISO/IEC N4910

void atomic_flag::wait(bool old, memory_order order =
memory_order::seq_cst) const noexcept;

13 For atomic_flag_wait, let order be memory_order::seq_cst. Let flag be object for the non-member functionsand this for the member functions.
14 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
15 Effects: Repeatedly performs the following steps, in order:

—(15.1) Evaluates flag->test(order) != old.
—(15.2) If the result of that evaluation is true, returns.
—(15.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

16 Remarks: This function is an atomic waiting operation (33.5.6).
void atomic_flag_notify_one(volatile atomic_flag* object) noexcept;
void atomic_flag_notify_one(atomic_flag* object) noexcept;
void atomic_flag::notify_one() volatile noexcept;
void atomic_flag::notify_one() noexcept;

17 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked (33.5.6)by this call, if any such atomic waiting operations exist.
18 Remarks: This function is an atomic notifying operation (33.5.6).

void atomic_flag_notify_all(volatile atomic_flag* object) noexcept;
void atomic_flag_notify_all(atomic_flag* object) noexcept;
void atomic_flag::notify_all() volatile noexcept;
void atomic_flag::notify_all() noexcept;

19 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6) by thiscall.
20 Remarks: This function is an atomic notifying operation (33.5.6).
33.5.11 Fences [atomics.fences]

1 This subclause introduces synchronization primitives called fences. Fences can have acquire semantics, release semantics,or both. A fence with acquire semantics is called an acquire fence. A fence with release semantics is called a releasefence.
2 A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y , both operating onsome atomic objectM , such that A is sequenced before X , X modifiesM , Y is sequenced before B, and Y reads thevalue written by X or a value written by any side effect in the hypothetical release sequence X would head if it were arelease operation.
3 A release fenceA synchronizes with an atomic operationB that performs an acquire operation on an atomic objectM ifthere exists an atomic operationX such that A is sequenced beforeX ,X modifiesM , and B reads the value written by
X or a value written by any side effect in the hypothetical release sequenceX would head if it were a release operation.

4 An atomic operation A that is a release operation on an atomic objectM synchronizes with an acquire fence B if thereexists some atomic operation X onM such that X is sequenced before B and reads the value written by A or a valuewritten by any side effect in the release sequence headed by A.
extern "C" void atomic_thread_fence(memory_order order) noexcept;

5 Effects: Depending on the value of order, this operation:
—(5.1) has no effects, if order == memory_order::relaxed;
—(5.2) is an acquire fence, if order == memory_order::acquire or order == memory_order::consume;
—(5.3) is a release fence, if order == memory_order::release;
—(5.4) is both an acquire fence and a release fence, if order == memory_order::acq_rel;
—(5.5) is a sequentially consistent acquire and release fence, if order == memory_order::seq_cst.

§ 33.5.11 1680

© ISO/IEC N4910

extern "C" void atomic_signal_fence(memory_order order) noexcept;

6 Effects: Equivalent to atomic_thread_fence(order), except that the resulting ordering constraints are establishedonly between a thread and a signal handler executed in the same thread.
7 [Note 1: atomic_signal_fence can be used to specify the order in which actions performed by the thread become visibleto the signal handler. Compiler optimizations and reorderings of loads and stores are inhibited in the same way as with

atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence would have inserted are not emitted.—end note]
33.5.12 C compatibility [stdatomic.h.syn]
The header <stdatomic.h> provides the following definitions:
template<class T>

using std-atomic = std::atomic<T>; // exposition only
#define _Atomic(T) std-atomic<T>

#define ATOMIC_BOOL_LOCK_FREE see below
#define ATOMIC_CHAR_LOCK_FREE see below
#define ATOMIC_CHAR16_T_LOCK_FREE see below
#define ATOMIC_CHAR32_T_LOCK_FREE see below
#define ATOMIC_WCHAR_T_LOCK_FREE see below
#define ATOMIC_SHORT_LOCK_FREE see below
#define ATOMIC_INT_LOCK_FREE see below
#define ATOMIC_LONG_LOCK_FREE see below
#define ATOMIC_LLONG_LOCK_FREE see below
#define ATOMIC_POINTER_LOCK_FREE see below

using std::memory_order; // see below
using std::memory_order_relaxed; // see below
using std::memory_order_consume; // see below
using std::memory_order_acquire; // see below
using std::memory_order_release; // see below
using std::memory_order_acq_rel; // see below
using std::memory_order_seq_cst; // see below

using std::atomic_flag; // see below

using std::atomic_bool; // see below
using std::atomic_char; // see below
using std::atomic_schar; // see below
using std::atomic_uchar; // see below
using std::atomic_short; // see below
using std::atomic_ushort; // see below
using std::atomic_int; // see below
using std::atomic_uint; // see below
using std::atomic_long; // see below
using std::atomic_ulong; // see below
using std::atomic_llong; // see below
using std::atomic_ullong; // see below
using std::atomic_char8_t; // see below
using std::atomic_char16_t; // see below
using std::atomic_char32_t; // see below
using std::atomic_wchar_t; // see below
using std::atomic_int8_t; // see below
using std::atomic_uint8_t; // see below
using std::atomic_int16_t; // see below
using std::atomic_uint16_t; // see below
using std::atomic_int32_t; // see below
using std::atomic_uint32_t; // see below
using std::atomic_int64_t; // see below
using std::atomic_uint64_t; // see below
using std::atomic_int_least8_t; // see below
using std::atomic_uint_least8_t; // see below

§ 33.5.12 1681

© ISO/IEC N4910

using std::atomic_int_least16_t; // see below
using std::atomic_uint_least16_t; // see below
using std::atomic_int_least32_t; // see below
using std::atomic_uint_least32_t; // see below
using std::atomic_int_least64_t; // see below
using std::atomic_uint_least64_t; // see below
using std::atomic_int_fast8_t; // see below
using std::atomic_uint_fast8_t; // see below
using std::atomic_int_fast16_t; // see below
using std::atomic_uint_fast16_t; // see below
using std::atomic_int_fast32_t; // see below
using std::atomic_uint_fast32_t; // see below
using std::atomic_int_fast64_t; // see below
using std::atomic_uint_fast64_t; // see below
using std::atomic_intptr_t; // see below
using std::atomic_uintptr_t; // see below
using std::atomic_size_t; // see below
using std::atomic_ptrdiff_t; // see below
using std::atomic_intmax_t; // see below
using std::atomic_uintmax_t; // see below

using std::atomic_is_lock_free; // see below
using std::atomic_load; // see below
using std::atomic_load_explicit; // see below
using std::atomic_store; // see below
using std::atomic_store_explicit; // see below
using std::atomic_exchange; // see below
using std::atomic_exchange_explicit; // see below
using std::atomic_compare_exchange_strong; // see below
using std::atomic_compare_exchange_strong_explicit; // see below
using std::atomic_compare_exchange_weak; // see below
using std::atomic_compare_exchange_weak_explicit; // see below
using std::atomic_fetch_add; // see below
using std::atomic_fetch_add_explicit; // see below
using std::atomic_fetch_sub; // see below
using std::atomic_fetch_sub_explicit; // see below
using std::atomic_fetch_or; // see below
using std::atomic_fetch_or_explicit; // see below
using std::atomic_fetch_and; // see below
using std::atomic_fetch_and_explicit; // see below
using std::atomic_flag_test_and_set; // see below
using std::atomic_flag_test_and_set_explicit; // see below
using std::atomic_flag_clear; // see below
using std::atomic_flag_clear_explicit; // see below

using std::atomic_thread_fence; // see below
using std::atomic_signal_fence; // see below

1 Each using-declaration for some name A in the synopsis above makes available the same entity as std::A declared in
<atomic> (33.5.2). Each macro listed above other than _Atomic(T) is defined as in <atomic>. It is unspecified whether
<stdatomic.h> makes available any declarations in namespace std.

2 Each of the using-declarations for intN_t, uintN_t, intptr_t, and uintptr_t listed above is defined if and only ifthe implementation defines the corresponding typedef-name in 33.5.2.
3 Neither the _Atomic macro, nor any of the non-macro global namespace declarations, are provided by any C++ standardlibrary header other than <stdatomic.h>.
4 Recommended practice: Implementations should ensure that C and C++ representations of atomic objects are compatible,so that the same object can be accessed as both an _Atomic(T) from C code and an atomic<T> from C++ code. Therepresentations should be the same, and the mechanisms used to ensure atomicity and memory ordering should becompatible.

§ 33.5.12 1682

© ISO/IEC N4910

33.6 Mutual exclusion [thread.mutex]
33.6.1 General [thread.mutex.general]

1 Subclause 33.6 provides mechanisms for mutual exclusion: mutexes, locks, and call once. These mechanisms ease theproduction of race-free programs (6.9.2).
33.6.2 Header <mutex> synopsis [mutex.syn]
namespace std {// 33.6.4.2.2, class mutex

class mutex;// 33.6.4.2.3, class recursive_mutex
class recursive_mutex;// 33.6.4.3.2 class timed_mutex
class timed_mutex;// 33.6.4.3.3, class recursive_timed_mutex
class recursive_timed_mutex;

struct defer_lock_t { explicit defer_lock_t() = default; };
struct try_to_lock_t { explicit try_to_lock_t() = default; };
struct adopt_lock_t { explicit adopt_lock_t() = default; };

inline constexpr defer_lock_t defer_lock { };
inline constexpr try_to_lock_t try_to_lock { };
inline constexpr adopt_lock_t adopt_lock { };

// 33.6.5, locks
template<class Mutex> class lock_guard;
template<class... MutexTypes> class scoped_lock;
template<class Mutex> class unique_lock;

template<class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept;

// 33.6.6, generic locking algorithms
template<class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);
template<class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

struct once_flag;

template<class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args);

}

33.6.3 Header <shared_mutex> synopsis [shared.mutex.syn]
namespace std {// 33.6.4.4.2, class shared_mutex

class shared_mutex;// 33.6.4.5.2, class shared_timed_mutex
class shared_timed_mutex;// 33.6.5.5, class template shared_lock
template<class Mutex> class shared_lock;
template<class Mutex>

void swap(shared_lock<Mutex>& x, shared_lock<Mutex>& y) noexcept;
}

33.6.4 Mutex requirements [thread.mutex.requirements]
33.6.4.1 In general [thread.mutex.requirements.general]

1 A mutex object facilitates protection against data races and allows safe synchronization of data between executionagents (33.2.5). An execution agent owns a mutex from the time it successfully calls one of the lock functions until itcalls unlock. Mutexes can be either recursive or non-recursive, and can grant simultaneous ownership to one or manyexecution agents. Both recursive and non-recursive mutexes are supplied.

§ 33.6.4.1 1683

© ISO/IEC N4910

33.6.4.2 Mutex types [thread.mutex.requirements.mutex]
33.6.4.2.1 General [thread.mutex.requirements.mutex.general]

1 The mutex types are the standard library types mutex, recursive_mutex, timed_mutex, recursive_timed_mutex,
shared_mutex, and shared_timed_mutex. They meet the requirements set out in 33.6.4.2. In this description, m denotesan object of a mutex type.
[Note 1: The mutex types meet the Cpp17Lockable requirements (33.2.5.3). —end note]

2 The mutex types meet Cpp17DefaultConstructible and Cpp17Destructible. If initialization of an object of a mutex typefails, an exception of type system_error is thrown. The mutex types are neither copyable nor movable.
3 The error conditions for error codes, if any, reported by member functions of the mutex types are as follows:

—(3.1) resource_unavailable_try_again— if any native handle type manipulated is not available.
—(3.2) operation_not_permitted— if the thread does not have the privilege to perform the operation.
—(3.3) invalid_argument— if any native handle type manipulated as part of mutex construction is incorrect.

4 The implementation provides lock and unlock operations, as described below. For purposes of determining the existenceof a data race, these behave as atomic operations (6.9.2). The lock and unlock operations on a single mutex appears tooccur in a single total order.
[Note 2: This can be viewed as the modification order (6.9.2) of the mutex. —end note]
[Note 3: Construction and destruction of an object of a mutex type need not be thread-safe; other synchronization can be used toensure that mutex objects are initialized and visible to other threads. —end note]

5 The expression m.lock() is well-formed and has the following semantics:
6 Preconditions: If m is of type mutex, timed_mutex, shared_mutex, or shared_timed_mutex, the calling threaddoes not own the mutex.
7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the calling thread.
8 Synchronization: Prior unlock() operations on the same object synchronize with (6.9.2) this operation.
9 Postconditions: The calling thread owns the mutex.
10 Return type: void.
11 Throws: system_error when an exception is required (33.2.2).
12 Error conditions:

—(12.1) operation_not_permitted— if the thread does not have the privilege to perform the operation.
—(12.2) resource_deadlock_would_occur— if the implementation detects that a deadlock would occur.

13 The expression m.try_lock() is well-formed and has the following semantics:
14 Preconditions: If m is of type mutex, timed_mutex, shared_mutex, or shared_timed_mutex, the calling threaddoes not own the mutex.
15 Effects: Attempts to obtain ownership of the mutex for the calling thread without blocking. If ownership is notobtained, there is no effect and try_lock() immediately returns. An implementation may fail to obtain the lockeven if it is not held by any other thread.

[Note 4: This spurious failure is normally uncommon, but allows interesting implementations based on a simple compare andexchange (33.5). —end note]
An implementation should ensure that try_lock() does not consistently return false in the absence of contendingmutex acquisitions.

16 Synchronization: If try_lock() returns true, prior unlock() operations on the same object synchronize with(6.9.2) this operation.
[Note 5: Since lock() does not synchronize with a failed subsequent try_lock(), the visibility rules are weak enough thatlittle would be known about the state after a failure, even in the absence of spurious failures. —end note]

17 Return type: bool.
18 Returns: true if ownership was obtained, otherwise false.
19 Throws: Nothing.

§ 33.6.4.2.1 1684

© ISO/IEC N4910

20 The expression m.unlock() is well-formed and has the following semantics:
21 Preconditions: The calling thread owns the mutex.
22 Effects: Releases the calling thread’s ownership of the mutex.
23 Return type: void.
24 Synchronization: This operation synchronizes with (6.9.2) subsequent lock operations that obtain ownership onthe same object.
25 Throws: Nothing.
33.6.4.2.2 Class mutex [thread.mutex.class]
namespace std {

class mutex {
public:

constexpr mutex() noexcept;
~mutex();

mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;

void lock();
bool try_lock();
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class mutex provides a non-recursive mutex with exclusive ownership semantics. If one thread owns a mutexobject, attempts by another thread to acquire ownership of that object will fail (for try_lock()) or block (for lock())until the owning thread has released ownership with a call to unlock().
2 [Note 1: After a thread A has called unlock(), releasing a mutex, it is possible for another thread B to lock the same mutex, observethat it is no longer in use, unlock it, and destroy it, before thread A appears to have returned from its unlock call. Implementations arerequired to handle such scenarios correctly, as long as thread A doesn’t access the mutex after the unlock call returns. These casestypically occur when a reference-counted object contains a mutex that is used to protect the reference count. —end note]
3 The class mutex meets all of the mutex requirements (33.6.4). It is a standard-layout class (11.2).
4 [Note 2: A program can deadlock if the thread that owns a mutex object calls lock() on that object. If the implementation can detectthe deadlock, a resource_deadlock_would_occur error condition might be observed. —end note]
5 The behavior of a program is undefined if it destroys a mutex object owned by any thread or a thread terminates whileowning a mutex object.
33.6.4.2.3 Class recursive_mutex [thread.mutex.recursive]
namespace std {

class recursive_mutex {
public:

recursive_mutex();
~recursive_mutex();

recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;

void lock();
bool try_lock() noexcept;
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

§ 33.6.4.2.3 1685

© ISO/IEC N4910

1 The class recursive_mutex provides a recursive mutex with exclusive ownership semantics. If one thread owns a
recursive_mutex object, attempts by another thread to acquire ownership of that object will fail (for try_lock()) orblock (for lock()) until the first thread has completely released ownership.

2 The class recursive_mutex meets all of the mutex requirements (33.6.4). It is a standard-layout class (11.2).
3 A thread that owns a recursive_mutex object may acquire additional levels of ownership by calling lock() or try_-

lock() on that object. It is unspecified how many levels of ownership may be acquired by a single thread. If a threadhas already acquired the maximum level of ownership for a recursive_mutex object, additional calls to try_lock()fail, and additional calls to lock() throw an exception of type system_error. A thread shall call unlock() once foreach level of ownership acquired by calls to lock() and try_lock(). Only when all levels of ownership have beenreleased may ownership be acquired by another thread.
4 The behavior of a program is undefined if:

—(4.1) it destroys a recursive_mutex object owned by any thread or
—(4.2) a thread terminates while owning a recursive_mutex object.

33.6.4.3 Timed mutex types [thread.timedmutex.requirements]
33.6.4.3.1 General [thread.timedmutex.requirements.general]

1 The timed mutex types are the standard library types timed_mutex, recursive_timed_mutex, and shared_timed_mutex.They meet the requirements set out below. In this description, m denotes an object of a mutex type, rel_time denotes anobject of an instantiation of duration (29.5), and abs_time denotes an object of an instantiation of time_point (29.6).
[Note 1: The timed mutex types meet the Cpp17TimedLockable requirements (33.2.5.4). —end note]

2 The expression m.try_lock_for(rel_time) is well-formed and has the following semantics:
3 Preconditions: If m is of type timed_mutex or shared_timed_mutex, the calling thread does not own the mutex.
4 Effects: The function attempts to obtain ownership of the mutex within the relative timeout (33.2.4) specifiedby rel_time. If the time specified by rel_time is less than or equal to rel_time.zero(), the function attemptsto obtain ownership without blocking (as if by calling try_lock()). The function returns within the timeoutspecified by rel_time only if it has obtained ownership of the mutex object.

[Note 2: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementationsare expected to make a strong effort to do so. —end note]
5 Synchronization: If try_lock_for() returns true, prior unlock() operations on the same object synchronizewith (6.9.2) this operation.
6 Return type: bool.
7 Returns: true if ownership was obtained, otherwise false.
8 Throws: Timeout-related exceptions (33.2.4).
9 The expression m.try_lock_until(abs_time) is well-formed and has the following semantics:
10 Preconditions: If m is of type timed_mutex or shared_timed_mutex, the calling thread does not own the mutex.
11 Effects: The function attempts to obtain ownership of the mutex. If abs_time has already passed, the functionattempts to obtain ownership without blocking (as if by calling try_lock()). The function returns before theabsolute timeout (33.2.4) specified by abs_time only if it has obtained ownership of the mutex object.

[Note 3: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementationsare expected to make a strong effort to do so. —end note]
12 Synchronization: If try_lock_until() returns true, prior unlock() operations on the same object synchronizewith (6.9.2) this operation.
13 Return type: bool.
14 Returns: true if ownership was obtained, otherwise false.
15 Throws: Timeout-related exceptions (33.2.4).
33.6.4.3.2 Class timed_mutex [thread.timedmutex.class]
namespace std {

class timed_mutex {
public:
timed_mutex();

§ 33.6.4.3.2 1686

© ISO/IEC N4910

~timed_mutex();

timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;

void lock(); // blocking
bool try_lock();
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class timed_mutex provides a non-recursive mutex with exclusive ownership semantics. If one thread owns a
timed_mutex object, attempts by another thread to acquire ownership of that object will fail (for try_lock()) or block(for lock(), try_lock_for(), and try_lock_until()) until the owning thread has released ownership with a call to
unlock() or the call to try_lock_for() or try_lock_until() times out (having failed to obtain ownership).

2 The class timed_mutex meets all of the timed mutex requirements (33.6.4.3). It is a standard-layout class (11.2).
3 The behavior of a program is undefined if:

—(3.1) it destroys a timed_mutex object owned by any thread,
—(3.2) a thread that owns a timed_mutex object calls lock(), try_lock(), try_lock_for(), or try_lock_until() onthat object, or
—(3.3) a thread terminates while owning a timed_mutex object.

33.6.4.3.3 Class recursive_timed_mutex [thread.timedmutex.recursive]
namespace std {

class recursive_timed_mutex {
public:
recursive_timed_mutex();
~recursive_timed_mutex();

recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;

void lock(); // blocking
bool try_lock() noexcept;
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class recursive_timed_mutex provides a recursive mutex with exclusive ownership semantics. If one threadowns a recursive_timed_mutex object, attempts by another thread to acquire ownership of that object will fail (for
try_lock()) or block (for lock(), try_lock_for(), and try_lock_until()) until the owning thread has completelyreleased ownership or the call to try_lock_for() or try_lock_until() times out (having failed to obtain ownership).

2 The class recursive_timed_mutex meets all of the timed mutex requirements (33.6.4.3). It is a standard-layoutclass (11.2).
3 A thread that owns a recursive_timed_mutex object may acquire additional levels of ownership by calling lock(),

try_lock(), try_lock_for(), or try_lock_until() on that object. It is unspecified how many levels of ownership
§ 33.6.4.3.3 1687

© ISO/IEC N4910

may be acquired by a single thread. If a thread has already acquired the maximum level of ownership for a recursive_-
timed_mutex object, additional calls to try_lock(), try_lock_for(), or try_lock_until() fail, and additional callsto lock() throw an exception of type system_error. A thread shall call unlock() once for each level of ownershipacquired by calls to lock(), try_lock(), try_lock_for(), and try_lock_until(). Only when all levels of ownershiphave been released may ownership of the object be acquired by another thread.

4 The behavior of a program is undefined if:
—(4.1) it destroys a recursive_timed_mutex object owned by any thread, or
—(4.2) a thread terminates while owning a recursive_timed_mutex object.

33.6.4.4 Shared mutex types [thread.sharedmutex.requirements]
33.6.4.4.1 General [thread.sharedmutex.requirements.general]

1 The standard library types shared_mutex and shared_timed_mutex are shared mutex types. Shared mutex types meetthe requirements of mutex types (33.6.4.2) and additionally meet the requirements set out below. In this description, mdenotes an object of a shared mutex type.
[Note 1: The shared mutex types meet the Cpp17SharedLockable requirements (33.2.5.5). —end note]

2 In addition to the exclusive lock ownership mode specified in 33.6.4.2, shared mutex types provide a shared lockownership mode. Multiple execution agents can simultaneously hold a shared lock ownership of a shared mutex type.But no execution agent holds a shared lock while another execution agent holds an exclusive lock on the same sharedmutex type, and vice-versa. The maximum number of execution agents which can share a shared lock on a single sharedmutex type is unspecified, but is at least 10000. If more than the maximum number of execution agents attempt to obtaina shared lock, the excess execution agents block until the number of shared locks are reduced below the maximumamount by other execution agents releasing their shared lock.
3 The expression m.lock_shared() is well-formed and has the following semantics:
4 Preconditions: The calling thread has no ownership of the mutex.
5 Effects: Blocks the calling thread until shared ownership of the mutex can be obtained for the calling thread. If anexception is thrown then a shared lock has not been acquired for the current thread.
6 Synchronization: Prior unlock() operations on the same object synchronize with (6.9.2) this operation.
7 Postconditions: The calling thread has a shared lock on the mutex.
8 Return type: void.
9 Throws: system_error when an exception is required (33.2.2).
10 Error conditions:

—(10.1) operation_not_permitted— if the thread does not have the privilege to perform the operation.
—(10.2) resource_deadlock_would_occur— if the implementation detects that a deadlock would occur.

11 The expression m.unlock_shared() is well-formed and has the following semantics:
12 Preconditions: The calling thread holds a shared lock on the mutex.
13 Effects: Releases a shared lock on the mutex held by the calling thread.
14 Return type: void.
15 Synchronization: This operation synchronizes with (6.9.2) subsequent lock() operations that obtain ownershipon the same object.
16 Throws: Nothing.
17 The expression m.try_lock_shared() is well-formed and has the following semantics:
18 Preconditions: The calling thread has no ownership of the mutex.
19 Effects: Attempts to obtain shared ownership of the mutex for the calling thread without blocking. If sharedownership is not obtained, there is no effect and try_lock_shared() immediately returns. An implementationmay fail to obtain the lock even if it is not held by any other thread.
20 Synchronization: If try_lock_shared() returns true, prior unlock() operations on the same object synchronizewith (6.9.2) this operation.
21 Return type: bool.

§ 33.6.4.4.1 1688

© ISO/IEC N4910

22 Returns: true if the shared lock was acquired, otherwise false.
23 Throws: Nothing.
33.6.4.4.2 Class shared_mutex [thread.sharedmutex.class]
namespace std {

class shared_mutex {
public:
shared_mutex();
~shared_mutex();

shared_mutex(const shared_mutex&) = delete;
shared_mutex& operator=(const shared_mutex&) = delete;

// exclusive ownership
void lock(); // blocking
bool try_lock();
void unlock();

// shared ownership
void lock_shared(); // blocking
bool try_lock_shared();
void unlock_shared();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class shared_mutex provides a non-recursive mutex with shared ownership semantics.
2 The class shared_mutex meets all of the shared mutex requirements (33.6.4.4). It is a standard-layout class (11.2).
3 The behavior of a program is undefined if:

—(3.1) it destroys a shared_mutex object owned by any thread,
—(3.2) a thread attempts to recursively gain any ownership of a shared_mutex, or
—(3.3) a thread terminates while possessing any ownership of a shared_mutex.

4 shared_mutex may be a synonym for shared_timed_mutex.
33.6.4.5 Shared timed mutex types [thread.sharedtimedmutex.requirements]
33.6.4.5.1 General [thread.sharedtimedmutex.requirements.general]

1 The standard library type shared_timed_mutex is a shared timed mutex type. Shared timed mutex types meet therequirements of timed mutex types (33.6.4.3), shared mutex types (33.6.4.4), and additionally meet the requirementsset out below. In this description, m denotes an object of a shared timed mutex type, rel_time denotes an object of aninstantiation of duration (29.5), and abs_time denotes an object of an instantiation of time_point (29.6).
[Note 1: The shared timed mutex types meet the Cpp17SharedTimedLockable requirements (33.2.5.6). —end note]

2 The expression m.try_lock_shared_for(rel_time) is well-formed and has the following semantics:
3 Preconditions: The calling thread has no ownership of the mutex.
4 Effects: Attempts to obtain shared lock ownership for the calling thread within the relative timeout (33.2.4)specified by rel_time. If the time specified by rel_time is less than or equal to rel_time.zero(), the functionattempts to obtain ownership without blocking (as if by calling try_lock_shared()). The function returns withinthe timeout specified by rel_time only if it has obtained shared ownership of the mutex object.

[Note 2: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementationsare expected to make a strong effort to do so. —end note]
If an exception is thrown then a shared lock has not been acquired for the current thread.

5 Synchronization: If try_lock_shared_for() returns true, prior unlock() operations on the same object syn-chronize with (6.9.2) this operation.
6 Return type: bool.

§ 33.6.4.5.1 1689

© ISO/IEC N4910

7 Returns: true if the shared lock was acquired, otherwise false.
8 Throws: Timeout-related exceptions (33.2.4).
9 The expression m.try_lock_shared_until(abs_time) is well-formed and has the following semantics:
10 Preconditions: The calling thread has no ownership of the mutex.
11 Effects: The function attempts to obtain shared ownership of the mutex. If abs_time has already passed, thefunction attempts to obtain shared ownership without blocking (as if by calling try_lock_shared()). The functionreturns before the absolute timeout (33.2.4) specified by abs_time only if it has obtained shared ownership of themutex object.

[Note 3: As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but implementationsare expected to make a strong effort to do so. —end note]
If an exception is thrown then a shared lock has not been acquired for the current thread.

12 Synchronization: If try_lock_shared_until() returns true, prior unlock() operations on the same objectsynchronize with (6.9.2) this operation.
13 Return type: bool.
14 Returns: true if the shared lock was acquired, otherwise false.
15 Throws: Timeout-related exceptions (33.2.4).
33.6.4.5.2 Class shared_timed_mutex [thread.sharedtimedmutex.class]
namespace std {

class shared_timed_mutex {
public:
shared_timed_mutex();
~shared_timed_mutex();

shared_timed_mutex(const shared_timed_mutex&) = delete;
shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;

// exclusive ownership
void lock(); // blocking
bool try_lock();
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

// shared ownership
void lock_shared(); // blocking
bool try_lock_shared();
template<class Rep, class Period>

bool try_lock_shared_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_shared_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock_shared();

};
}

1 The class shared_timed_mutex provides a non-recursive mutex with shared ownership semantics.
2 The class shared_timed_mutex meets all of the shared timed mutex requirements (33.6.4.5). It is a standard-layoutclass (11.2).
3 The behavior of a program is undefined if:

—(3.1) it destroys a shared_timed_mutex object owned by any thread,
—(3.2) a thread attempts to recursively gain any ownership of a shared_timed_mutex, or
—(3.3) a thread terminates while possessing any ownership of a shared_timed_mutex.

§ 33.6.4.5.2 1690

© ISO/IEC N4910

33.6.5 Locks [thread.lock]
33.6.5.1 General [thread.lock.general]

1 A lock is an object that holds a reference to a lockable object and may unlock the lockable object during the lock’sdestruction (such as when leaving block scope). An execution agent may use a lock to aid in managing ownership ofa lockable object in an exception safe manner. A lock is said to own a lockable object if it is currently managing theownership of that lockable object for an execution agent. A lock does not manage the lifetime of the lockable object itreferences.
[Note 1: Locks are intended to ease the burden of unlocking the lockable object under both normal and exceptional circumstances.—end note]

2 Some lock constructors take tag types which describe what should be done with the lockable object during the lock’sconstruction.
namespace std {

struct defer_lock_t { }; // do not acquire ownership of the mutex
struct try_to_lock_t { }; // try to acquire ownership of the mutex// without blocking
struct adopt_lock_t { }; // assume the calling thread has already// obtained mutex ownership and manage it
inline constexpr defer_lock_t defer_lock { };
inline constexpr try_to_lock_t try_to_lock { };
inline constexpr adopt_lock_t adopt_lock { };

}

33.6.5.2 Class template lock_guard [thread.lock.guard]
namespace std {

template<class Mutex>
class lock_guard {
public:

using mutex_type = Mutex;

explicit lock_guard(mutex_type& m);
lock_guard(mutex_type& m, adopt_lock_t);
~lock_guard();

lock_guard(const lock_guard&) = delete;
lock_guard& operator=(const lock_guard&) = delete;

private:
mutex_type& pm; // exposition only

};
}

1 An object of type lock_guard controls the ownership of a lockable object within a scope. A lock_guard object maintainsownership of a lockable object throughout the lock_guard object’s lifetime (6.7.3). The behavior of a program isundefined if the lockable object referenced by pm does not exist for the entire lifetime of the lock_guard object. Thesupplied Mutex type shall meet the Cpp17BasicLockable requirements (33.2.5.2).
explicit lock_guard(mutex_type& m);

2 Effects: Initializes pm with m. Calls m.lock().
lock_guard(mutex_type& m, adopt_lock_t);

3 Preconditions: The calling thread holds a non-shared lock on m.
4 Effects: Initializes pm with m.
5 Throws: Nothing.
~lock_guard();

6 Effects: Equivalent to: pm.unlock()

§ 33.6.5.2 1691

© ISO/IEC N4910

33.6.5.3 Class template scoped_lock [thread.lock.scoped]
namespace std {

template<class... MutexTypes>
class scoped_lock {
public:
using mutex_type = see below; // Only if sizeof...(MutexTypes) == 1 is true
explicit scoped_lock(MutexTypes&... m);
explicit scoped_lock(adopt_lock_t, MutexTypes&... m);
~scoped_lock();

scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;

private:
tuple<MutexTypes&...> pm; // exposition only

};
}

1 An object of type scoped_lock controls the ownership of lockable objects within a scope. A scoped_lock objectmaintains ownership of lockable objects throughout the scoped_lock object’s lifetime (6.7.3). The behavior of aprogram is undefined if the lockable objects referenced by pm do not exist for the entire lifetime of the scoped_lockobject.
—(1.1) If sizeof...(MutexTypes) is one, let Mutex denote the sole type constituting the pack MutexTypes. Mutex shallmeet the Cpp17BasicLockable requirements (33.2.5.2). The member typedef-name mutex_type denotes thesame type as Mutex.
—(1.2) Otherwise, all types in the template parameter pack MutexTypes shall meet the Cpp17Lockable requirements(33.2.5.3) and there is no member mutex_type.

explicit scoped_lock(MutexTypes&... m);

2 Effects: Initializes pmwith tie(m...). Then if sizeof...(MutexTypes) is 0, no effects. Otherwise if sizeof...(MutexTypes)is 1, then m.lock(). Otherwise, lock(m...).
explicit scoped_lock(adopt_lock_t, MutexTypes&... m);

3 Preconditions: The calling thread holds a non-shared lock on each element of m.
4 Effects: Initializes pm with tie(m...).
5 Throws: Nothing.
~scoped_lock();

6 Effects: For all i in [0, sizeof...(MutexTypes)), get<i>(pm).unlock().
33.6.5.4 Class template unique_lock [thread.lock.unique]
33.6.5.4.1 General [thread.lock.unique.general]
namespace std {

template<class Mutex>
class unique_lock {
public:
using mutex_type = Mutex;

// 33.6.5.4.2, construct/copy/destroy
unique_lock() noexcept;
explicit unique_lock(mutex_type& m);
unique_lock(mutex_type& m, defer_lock_t) noexcept;
unique_lock(mutex_type& m, try_to_lock_t);
unique_lock(mutex_type& m, adopt_lock_t);
template<class Clock, class Duration>

unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);
~unique_lock();

§ 33.6.5.4.1 1692

© ISO/IEC N4910

unique_lock(const unique_lock&) = delete;
unique_lock& operator=(const unique_lock&) = delete;

unique_lock(unique_lock&& u) noexcept;
unique_lock& operator=(unique_lock&& u);

// 33.6.5.4.3, locking
void lock();
bool try_lock();

template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

void unlock();

// 33.6.5.4.4, modifiers
void swap(unique_lock& u) noexcept;
mutex_type* release() noexcept;

// 33.6.5.4.5, observers
bool owns_lock() const noexcept;
explicit operator bool () const noexcept;
mutex_type* mutex() const noexcept;

private:
mutex_type* pm; // exposition only
bool owns; // exposition only

};
}

1 An object of type unique_lock controls the ownership of a lockable object within a scope. Ownership of the lockableobject may be acquired at construction or after construction, and may be transferred, after acquisition, to another
unique_lock object. Objects of type unique_lock are not copyable but are movable. The behavior of a program isundefined if the contained pointer pm is not null and the lockable object pointed to by pm does not exist for the entireremaining lifetime (6.7.3) of the unique_lock object. The supplied Mutex type shall meet the Cpp17BasicLockablerequirements (33.2.5.2).

2 [Note 1: unique_lock<Mutex> meets the Cpp17BasicLockable requirements. If Mutex meets the Cpp17Lockable requirements(33.2.5.3), unique_lock<Mutex> also meets the Cpp17Lockable requirements; if Mutexmeets the Cpp17TimedLockable requirements(33.2.5.4), unique_lock<Mutex> also meets the Cpp17TimedLockable requirements. —end note]
33.6.5.4.2 Constructors, destructor, and assignment [thread.lock.unique.cons]

unique_lock() noexcept;

1 Postconditions: pm == 0 and owns == false.
explicit unique_lock(mutex_type& m);

2 Effects: Calls m.lock().
3 Postconditions: pm == addressof(m) and owns == true.

unique_lock(mutex_type& m, defer_lock_t) noexcept;

4 Postconditions: pm == addressof(m) and owns == false.
unique_lock(mutex_type& m, try_to_lock_t);

5 Preconditions: The supplied Mutex type meets the Cpp17Lockable requirements (33.2.5.3).
6 Effects: Calls m.try_lock().
7 Postconditions: pm == addressof(m) and owns == res, where res is the value returned by the call to m.try_-

lock().

§ 33.6.5.4.2 1693

© ISO/IEC N4910

unique_lock(mutex_type& m, adopt_lock_t);

8 Preconditions: The calling thread holds a non-shared lock on m.
9 Postconditions: pm == addressof(m) and owns == true.
10 Throws: Nothing.

template<class Clock, class Duration>
unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);

11 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
12 Effects: Calls m.try_lock_until(abs_time).
13 Postconditions: pm == addressof(m) and owns == res, where res is the value returned by the call to m.try_-

lock_until(abs_time).
template<class Rep, class Period>

unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);

14 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
15 Effects: Calls m.try_lock_for(rel_time).
16 Postconditions: pm == addressof(m) and owns == res, where res is the value returned by the call to m.try_-

lock_for(rel_time).
unique_lock(unique_lock&& u) noexcept;

17 Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this construction),
u.pm == 0 and u.owns == false.

unique_lock& operator=(unique_lock&& u);

18 Effects: If owns calls pm->unlock().
19 Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this construction),

u.pm == 0 and u.owns == false.
20 [Note 1: With a recursive mutex it is possible for both *this and u to own the same mutex before the assignment. In this case,

*this will own the mutex after the assignment and u will not. —end note]
21 Throws: Nothing.

~unique_lock();
22 Effects: If owns calls pm->unlock().
33.6.5.4.3 Locking [thread.lock.unique.locking]

void lock();

1 Effects: As if by pm->lock().
2 Postconditions: owns == true.
3 Throws: Any exception thrown by pm->lock(). system_error when an exception is required (33.2.2).
4 Error conditions:

—(4.1) operation_not_permitted— if pm is nullptr.
—(4.2) resource_deadlock_would_occur— if on entry owns is true.

bool try_lock();

5 Preconditions: The supplied Mutex meets the Cpp17Lockable requirements (33.2.5.3).
6 Effects: As if by pm->try_lock().
7 Postconditions: owns == res, where res is the value returned by the call to try_lock().
8 Returns: The value returned by the call to try_lock().
9 Throws: Any exception thrown by pm->try_lock(). system_error when an exception is required (33.2.2).
10 Error conditions:
§ 33.6.5.4.3 1694

© ISO/IEC N4910

—(10.1) operation_not_permitted— if pm is nullptr.
—(10.2) resource_deadlock_would_occur— if on entry owns is true.

template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

11 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
12 Effects: As if by pm->try_lock_until(abs_time).
13 Postconditions: owns == res, where res is the value returned by the call to try_lock_until(abs_time).
14 Returns: The value returned by the call to try_lock_until(abs_time).
15 Throws: Any exception thrown by pm->try_lock_until(). system_errorwhen an exception is required (33.2.2).
16 Error conditions:

—(16.1) operation_not_permitted— if pm is nullptr.
—(16.2) resource_deadlock_would_occur— if on entry owns is true.

template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

17 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
18 Effects: As if by pm->try_lock_for(rel_time).
19 Postconditions: owns == res, where res is the value returned by the call to try_lock_for(rel_time).
20 Returns: The value returned by the call to try_lock_for(rel_time).
21 Throws: Any exception thrown by pm->try_lock_for(). system_error when an exception is required (33.2.2).
22 Error conditions:

—(22.1) operation_not_permitted— if pm is nullptr.
—(22.2) resource_deadlock_would_occur— if on entry owns is true.

void unlock();

23 Effects: As if by pm->unlock().
24 Postconditions: owns == false.
25 Throws: system_error when an exception is required (33.2.2).
26 Error conditions:

—(26.1) operation_not_permitted— if on entry owns is false.
33.6.5.4.4 Modifiers [thread.lock.unique.mod]

void swap(unique_lock& u) noexcept;

1 Effects: Swaps the data members of *this and u.
mutex_type* release() noexcept;

2 Postconditions: pm == 0 and owns == false.
3 Returns: The previous value of pm.

template<class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept;

4 Effects: As if by x.swap(y).
33.6.5.4.5 Observers [thread.lock.unique.obs]

bool owns_lock() const noexcept;

1 Returns: owns.
explicit operator bool() const noexcept;

2 Returns: owns.
§ 33.6.5.4.5 1695

© ISO/IEC N4910

mutex_type *mutex() const noexcept;

3 Returns: pm.
33.6.5.5 Class template shared_lock [thread.lock.shared]
33.6.5.5.1 General [thread.lock.shared.general]
namespace std {

template<class Mutex>
class shared_lock {
public:
using mutex_type = Mutex;

// 33.6.5.5.2, construct/copy/destroy
shared_lock() noexcept;
explicit shared_lock(mutex_type& m); // blocking
shared_lock(mutex_type& m, defer_lock_t) noexcept;
shared_lock(mutex_type& m, try_to_lock_t);
shared_lock(mutex_type& m, adopt_lock_t);
template<class Clock, class Duration>

shared_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

shared_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);
~shared_lock();

shared_lock(const shared_lock&) = delete;
shared_lock& operator=(const shared_lock&) = delete;

shared_lock(shared_lock&& u) noexcept;
shared_lock& operator=(shared_lock&& u) noexcept;

// 33.6.5.5.3, locking
void lock(); // blocking
bool try_lock();
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

// 33.6.5.5.4, modifiers
void swap(shared_lock& u) noexcept;
mutex_type* release() noexcept;

// 33.6.5.5.5, observers
bool owns_lock() const noexcept;
explicit operator bool () const noexcept;
mutex_type* mutex() const noexcept;

private:
mutex_type* pm; // exposition only
bool owns; // exposition only

};
}

1 An object of type shared_lock controls the shared ownership of a lockable object within a scope. Shared ownership ofthe lockable object may be acquired at construction or after construction, and may be transferred, after acquisition, toanother shared_lock object. Objects of type shared_lock are not copyable but are movable. The behavior of a programis undefined if the contained pointer pm is not null and the lockable object pointed to by pm does not exist for the entireremaining lifetime (6.7.3) of the shared_lock object. The supplied Mutex type shall meet the Cpp17SharedLockablerequirements (33.2.5.5).
2 [Note 1: shared_lock<Mutex> meets the Cpp17Lockable requirements (33.2.5.3). If Mutex meets the Cpp17SharedTimedLockablerequirements (33.2.5.6), shared_lock<Mutex> also meets the Cpp17TimedLockable requirements (33.2.5.4). —end note]

§ 33.6.5.5.1 1696

© ISO/IEC N4910

33.6.5.5.2 Constructors, destructor, and assignment [thread.lock.shared.cons]

shared_lock() noexcept;

1 Postconditions: pm == nullptr and owns == false.
explicit shared_lock(mutex_type& m);

2 Effects: Calls m.lock_shared().
3 Postconditions: pm == addressof(m) and owns == true.

shared_lock(mutex_type& m, defer_lock_t) noexcept;

4 Postconditions: pm == addressof(m) and owns == false.
shared_lock(mutex_type& m, try_to_lock_t);

5 Effects: Calls m.try_lock_shared().
6 Postconditions: pm == addressof(m) and owns == res where res is the value returned by the call to m.try_-

lock_shared().
shared_lock(mutex_type& m, adopt_lock_t);

7 Preconditions: The calling thread holds a shared lock on m.
8 Postconditions: pm == addressof(m) and owns == true.

template<class Clock, class Duration>
shared_lock(mutex_type& m,

const chrono::time_point<Clock, Duration>& abs_time);

9 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
10 Effects: Calls m.try_lock_shared_until(abs_time).
11 Postconditions: pm == addressof(m) and owns == res where res is the value returned by the call to m.try_-

lock_shared_until(abs_time).
template<class Rep, class Period>

shared_lock(mutex_type& m,
const chrono::duration<Rep, Period>& rel_time);

12 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
13 Effects: Calls m.try_lock_shared_for(rel_time).
14 Postconditions: pm == addressof(m) and owns == res where res is the value returned by the call to m.try_-

lock_shared_for(rel_time).
~shared_lock();

15 Effects: If owns calls pm->unlock_shared().
shared_lock(shared_lock&& sl) noexcept;

16 Postconditions: pm == sl_p.pm and owns == sl_p.owns (where sl_p is the state of sl just prior to this construc-tion), sl.pm == nullptr and sl.owns == false.
shared_lock& operator=(shared_lock&& sl) noexcept;

17 Effects: If owns calls pm->unlock_shared().
18 Postconditions: pm == sl_p.pm and owns == sl_p.owns (where sl_p is the state of sl just prior to this assign-ment), sl.pm == nullptr and sl.owns == false.
33.6.5.5.3 Locking [thread.lock.shared.locking]

void lock();

1 Effects: As if by pm->lock_shared().
2 Postconditions: owns == true.
3 Throws: Any exception thrown by pm->lock_shared(). system_error when an exception is required (33.2.2).
§ 33.6.5.5.3 1697

© ISO/IEC N4910

4 Error conditions:
—(4.1) operation_not_permitted— if pm is nullptr.
—(4.2) resource_deadlock_would_occur— if on entry owns is true.

bool try_lock();

5 Effects: As if by pm->try_lock_shared().
6 Postconditions: owns == res, where res is the value returned by the call to pm->try_lock_shared().
7 Returns: The value returned by the call to pm->try_lock_shared().
8 Throws: Any exception thrown by pm->try_lock_shared(). system_error when an exception is required(33.2.2).
9 Error conditions:

—(9.1) operation_not_permitted— if pm is nullptr.
—(9.2) resource_deadlock_would_occur— if on entry owns is true.

template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

10 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
11 Effects: As if by pm->try_lock_shared_until(abs_time).
12 Postconditions: owns == res, where res is the value returned by the call to pm->try_lock_shared_until(abs_-

time).
13 Returns: The value returned by the call to pm->try_lock_shared_until(abs_time).
14 Throws: Any exception thrown by pm->try_lock_shared_until(abs_time). system_error when an exceptionis required (33.2.2).
15 Error conditions:

—(15.1) operation_not_permitted— if pm is nullptr.
—(15.2) resource_deadlock_would_occur— if on entry owns is true.

template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

16 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
17 Effects: As if by pm->try_lock_shared_for(rel_time).
18 Postconditions: owns == res, where res is the value returned by the call to pm->try_lock_shared_for(rel_-

time).
19 Returns: The value returned by the call to pm->try_lock_shared_for(rel_time).
20 Throws: Any exception thrown by pm->try_lock_shared_for(rel_time). system_error when an exception isrequired (33.2.2).
21 Error conditions:

—(21.1) operation_not_permitted— if pm is nullptr.
—(21.2) resource_deadlock_would_occur— if on entry owns is true.

void unlock();

22 Effects: As if by pm->unlock_shared().
23 Postconditions: owns == false.
24 Throws: system_error when an exception is required (33.2.2).
25 Error conditions:

—(25.1) operation_not_permitted— if on entry owns is false.

§ 33.6.5.5.3 1698

© ISO/IEC N4910

33.6.5.5.4 Modifiers [thread.lock.shared.mod]

void swap(shared_lock& sl) noexcept;

1 Effects: Swaps the data members of *this and sl.
mutex_type* release() noexcept;

2 Postconditions: pm == nullptr and owns == false.
3 Returns: The previous value of pm.

template<class Mutex>
void swap(shared_lock<Mutex>& x, shared_lock<Mutex>& y) noexcept;

4 Effects: As if by x.swap(y).
33.6.5.5.5 Observers [thread.lock.shared.obs]

bool owns_lock() const noexcept;

1 Returns: owns.
explicit operator bool() const noexcept;

2 Returns: owns.
mutex_type* mutex() const noexcept;

3 Returns: pm.
33.6.6 Generic locking algorithms [thread.lock.algorithm]

template<class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);

1 Preconditions: Each template parameter type meets the Cpp17Lockable requirements.
[Note 1: The unique_lock class template meets these requirements when suitably instantiated. —end note]

2 Effects: Calls try_lock() for each argument in order beginning with the first until all arguments have beenprocessed or a call to try_lock() fails, either by returning false or by throwing an exception. If a call to
try_lock() fails, unlock() is called for all prior arguments with no further calls to try_lock().

3 Returns: -1 if all calls to try_lock() returned true, otherwise a zero-based index value that indicates theargument for which try_lock() returned false.
template<class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

4 Preconditions: Each template parameter type meets the Cpp17Lockable requirements.
[Note 2: The unique_lock class template meets these requirements when suitably instantiated. —end note]

5 Effects: All arguments are locked via a sequence of calls to lock(), try_lock(), or unlock() on each argument.The sequence of calls does not result in deadlock, but is otherwise unspecified.
[Note 3: A deadlock avoidance algorithm such as try-and-back-off can be used, but the specific algorithm is not specified toavoid over-constraining implementations. —end note]
If a call to lock() or try_lock() throws an exception, unlock() is called for any argument that had been lockedby a call to lock() or try_lock().

33.6.7 Call once [thread.once]
33.6.7.1 Struct once_flag [thread.once.onceflag]
namespace std {

struct once_flag {
constexpr once_flag() noexcept;

once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;

};
}

§ 33.6.7.1 1699

© ISO/IEC N4910

1 The class once_flag is an opaque data structure that call_once uses to initialize data without causing a data race ordeadlock.
constexpr once_flag() noexcept;

2 Synchronization: The construction of a once_flag object is not synchronized.
3 Postconditions: The object’s internal state is set to indicate to an invocation of call_once with the object as itsinitial argument that no function has been called.
33.6.7.2 Function call_once [thread.once.callonce]

template<class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args);

1 Mandates: is_invocable_v<Callable, Args...> is true.
2 Effects: An execution of call_once that does not call its func is a passive execution. An execution of call_oncethat calls its func is an active execution. An active execution calls INVOKE(std::forward<Callable>(func),

std::forward<Args>(args)...). If such a call to func throws an exception the execution is exceptional,otherwise it is returning. An exceptional execution propagates the exception to the caller of call_once. Amongall executions of call_once for any given once_flag: at most one is a returning execution; if there is a returningexecution, it is the last active execution; and there are passive executions only if there is a returning execution.
[Note 1: Passive executions allow other threads to reliably observe the results produced by the earlier returning execution.—end note]

3 Synchronization: For any given once_flag: all active executions occur in a total order; completion of an activeexecution synchronizes with (6.9.2) the start of the next one in this total order; and the returning executionsynchronizes with the return from all passive executions.
4 Throws: system_error when an exception is required (33.2.2), or any exception thrown by func.
5 [Example 1:

// global flag, regular function
void init();
std::once_flag flag;

void f() {
std::call_once(flag, init);

}

// function static flag, function object
struct initializer {
void operator()();

};

void g() {
static std::once_flag flag2;
std::call_once(flag2, initializer());

}

// object flag, member function
class information {
std::once_flag verified;
void verifier();

public:
void verify() { std::call_once(verified, &information::verifier, *this); }

};

—end example]
33.7 Condition variables [thread.condition]
33.7.1 General [thread.condition.general]

1 Condition variables provide synchronization primitives used to block a thread until notified by some other thread thatsome condition is met or until a system time is reached. Class condition_variable provides a condition variable

§ 33.7.1 1700

© ISO/IEC N4910

that can only wait on an object of type unique_lock<mutex>, allowing the implementation to be more efficient. Class
condition_variable_any provides a general condition variable that can wait on objects of user-supplied lock types.

2 Condition variables permit concurrent invocation of the wait, wait_for, wait_until, notify_one and notify_allmember functions.
3 The executions of notify_one and notify_all are atomic. The executions of wait, wait_for, and wait_until areperformed in three atomic parts:

1. the release of the mutex and entry into the waiting state;
2. the unblocking of the wait; and
3. the reacquisition of the lock.

4 The implementation behaves as if all executions of notify_one, notify_all, and each part of the wait, wait_for, and
wait_until executions are executed in a single unspecified total order consistent with the “happens before” order.

5 Condition variable construction and destruction need not be synchronized.
33.7.2 Header <condition_variable> synopsis [condition.variable.syn]
namespace std {// 33.7.4, class condition_variable

class condition_variable;// 33.7.5, class condition_variable_any
class condition_variable_any;

// 33.7.3, non-member functions
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

enum class cv_status { no_timeout, timeout };
}

33.7.3 Non-member functions [thread.condition.nonmember]

void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

1 Preconditions: lk is locked by the calling thread and either
—(1.1) no other thread is waiting on cond, or
—(1.2) lk.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting (via

wait, wait_for, or wait_until) threads.
2 Effects: Transfers ownership of the lock associated with lk into internal storage and schedules cond to be notifiedwhen the current thread exits, after all objects of thread storage duration associated with the current thread havebeen destroyed. This notification is equivalent to:

lk.unlock();
cond.notify_all();

3 Synchronization: The implied lk.unlock() call is sequenced after the destruction of all objects with threadstorage duration associated with the current thread.
4 [Note 1: The supplied lock is held until the thread exits, which might cause deadlock due to lock ordering issues. —end note]
5 [Note 2: It is the user’s responsibility to ensure that waiting threads do not erroneously assume that the thread has finished ifthey experience spurious wakeups. This typically requires that the condition being waited for is satisfied while holding thelock on lk, and that this lock is not released and reacquired prior to calling notify_all_at_thread_exit. —end note]
33.7.4 Class condition_variable [thread.condition.condvar]
namespace std {

class condition_variable {
public:

condition_variable();
~condition_variable();

condition_variable(const condition_variable&) = delete;
condition_variable& operator=(const condition_variable&) = delete;

§ 33.7.4 1701

© ISO/IEC N4910

void notify_one() noexcept;
void notify_all() noexcept;
void wait(unique_lock<mutex>& lock);
template<class Predicate>

void wait(unique_lock<mutex>& lock, Predicate pred);
template<class Clock, class Duration>

cv_status wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time);

template<class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

template<class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);
template<class Rep, class Period, class Predicate>

bool wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class condition_variable is a standard-layout class (11.2).
condition_variable();

2 Throws: system_error when an exception is required (33.2.2).
3 Error conditions:

—(3.1) resource_unavailable_try_again— if some non-memory resource limitation prevents initialization.
~condition_variable();

4 Preconditions: There is no thread blocked on *this.
[Note 1: That is, all threads have been notified; they can subsequently block on the lock specified in the wait. This relaxesthe usual rules, which would have required all wait calls to happen before destruction. Only the notification to unblock thewait needs to happen before destruction. Undefined behavior ensues if a thread waits on *this once the destructor has beenstarted, especially when the waiting threads are calling the wait functions in a loop or using the overloads of wait, wait_for,or wait_until that take a predicate. —end note]

void notify_one() noexcept;

5 Effects: If any threads are blocked waiting for *this, unblocks one of those threads.
void notify_all() noexcept;

6 Effects: Unblocks all threads that are blocked waiting for *this.
void wait(unique_lock<mutex>& lock);

7 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(7.1) no other thread is waiting on this condition_variable object or
—(7.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting(via wait, wait_for, or wait_until) threads.

8 Effects:
—(8.1) Atomically calls lock.unlock() and blocks on *this.
—(8.2) When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
—(8.3) The function will unblock when signaled by a call to notify_one() or a call to notify_all(), or spuriously.

9 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
10 Throws: Nothing.
§ 33.7.4 1702

© ISO/IEC N4910

11 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).
[Note 2: This can happen if the re-locking of the mutex throws an exception. —end note]

template<class Predicate>
void wait(unique_lock<mutex>& lock, Predicate pred);

12 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(12.1) no other thread is waiting on this condition_variable object or
—(12.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting(via wait, wait_for, or wait_until) threads.

13 Effects: Equivalent to:
while (!pred())
wait(lock);

14 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
15 Throws: Any exception thrown by pred.
16 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 3: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Clock, class Duration>

cv_status wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time);

17 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(17.1) no other thread is waiting on this condition_variable object or
—(17.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting(via wait, wait_for, or wait_until) threads.

18 Effects:
—(18.1) Atomically calls lock.unlock() and blocks on *this.
—(18.2) When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
—(18.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(), expiration ofthe absolute timeout (33.2.4) specified by abs_time, or spuriously.
—(18.4) If the function exits via an exception, lock.lock() is called prior to exiting the function.

19 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
20 Returns: cv_status::timeout if the absolute timeout (33.2.4) specified by abs_time expired, otherwise cv_-

status::no_timeout.
21 Throws: Timeout-related exceptions (33.2.4).
22 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 4: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Rep, class Period>

cv_status wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time);

23 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(23.1) no other thread is waiting on this condition_variable object or
—(23.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting(via wait, wait_for, or wait_until) threads.

24 Effects: Equivalent to:
return wait_until(lock, chrono::steady_clock::now() + rel_time);

25 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
26 Returns: cv_status::timeout if the relative timeout (33.2.4) specified by rel_time expired, otherwise cv_-

status::no_timeout.
§ 33.7.4 1703

© ISO/IEC N4910

27 Throws: Timeout-related exceptions (33.2.4).
28 Remarks: If the function fails to meet the postcondition, terminate is invoked (14.6.2).

[Note 5: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Clock, class Duration, class Predicate>

bool wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

29 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(29.1) no other thread is waiting on this condition_variable object or
—(29.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting(via wait, wait_for, or wait_until) threads.

30 Effects: Equivalent to:
while (!pred())
if (wait_until(lock, abs_time) == cv_status::timeout)

return pred();
return true;

31 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
32 [Note 6: The returned value indicates whether the predicate evaluated to true regardless of whether the timeout was triggered.—end note]
33 Throws: Timeout-related exceptions (33.2.4) or any exception thrown by pred.
34 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 7: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Rep, class Period, class Predicate>

bool wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

35 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(35.1) no other thread is waiting on this condition_variable object or
—(35.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently waiting(via wait, wait_for, or wait_until) threads.

36 Effects: Equivalent to:
return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));

37 [Note 8: There is no blocking if pred() is initially true, even if the timeout has already expired. —end note]
38 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
39 [Note 9: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered.—end note]
40 Throws: Timeout-related exceptions (33.2.4) or any exception thrown by pred.
41 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 10: This can happen if the re-locking of the mutex throws an exception. —end note]
33.7.5 Class condition_variable_any [thread.condition.condvarany]
33.7.5.1 General [thread.condition.condvarany.general]

1 In this subclause 33.7.5, template arguments for template parameters named Lock shall meet the Cpp17BasicLockablerequirements (33.2.5.2).
[Note 1: All of the standard mutex types meet this requirement. If a type other than one of the standard mutex types or a unique_lockwrapper for a standard mutex type is used with condition_variable_any, any necessary synchronization is assumed to be in placewith respect to the predicate associated with the condition_variable_any instance. —end note]

§ 33.7.5.1 1704

© ISO/IEC N4910

namespace std {
class condition_variable_any {
public:
condition_variable_any();
~condition_variable_any();

condition_variable_any(const condition_variable_any&) = delete;
condition_variable_any& operator=(const condition_variable_any&) = delete;

void notify_one() noexcept;
void notify_all() noexcept;

// 33.7.5.2, noninterruptible waits
template<class Lock>

void wait(Lock& lock);
template<class Lock, class Predicate>

void wait(Lock& lock, Predicate pred);

template<class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

template<class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time,

Predicate pred);
template<class Lock, class Rep, class Period>

cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);
template<class Lock, class Rep, class Period, class Predicate>

bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);

// 33.7.5.3, interruptible waits
template<class Lock, class Predicate>

bool wait(Lock& lock, stop_token stoken, Predicate pred);
template<class Lock, class Clock, class Duration, class Predicate>

bool wait_until(Lock& lock, stop_token stoken,
const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, stop_token stoken,

const chrono::duration<Rep, Period>& rel_time, Predicate pred);
};

}

condition_variable_any();

2 Throws: bad_alloc or system_error when an exception is required (33.2.2).
3 Error conditions:

—(3.1) resource_unavailable_try_again— if some non-memory resource limitation prevents initialization.
—(3.2) operation_not_permitted— if the thread does not have the privilege to perform the operation.

~condition_variable_any();
4 Preconditions: There is no thread blocked on *this.

[Note 2: That is, all threads have been notified; they can subsequently block on the lock specified in the wait. This relaxesthe usual rules, which would have required all wait calls to happen before destruction. Only the notification to unblock thewait needs to happen before destruction. Undefined behavior ensues if a thread waits on *this once the destructor has beenstarted, especially when the waiting threads are calling the wait functions in a loop or using the overloads of wait, wait_for,or wait_until that take a predicate. —end note]
void notify_one() noexcept;

5 Effects: If any threads are blocked waiting for *this, unblocks one of those threads.
void notify_all() noexcept;

6 Effects: Unblocks all threads that are blocked waiting for *this.

§ 33.7.5.1 1705

© ISO/IEC N4910

33.7.5.2 Noninterruptible waits [thread.condvarany.wait]

template<class Lock>
void wait(Lock& lock);

1 Effects:
—(1.1) Atomically calls lock.unlock() and blocks on *this.
—(1.2) When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
—(1.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(), or spuriously.

2 Postconditions: lock is locked by the calling thread.
3 Throws: Nothing.
4 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 1: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Lock, class Predicate>

void wait(Lock& lock, Predicate pred);

5 Effects: Equivalent to:
while (!pred())
wait(lock);

template<class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

6 Effects:
—(6.1) Atomically calls lock.unlock() and blocks on *this.
—(6.2) When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
—(6.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(), expiration ofthe absolute timeout (33.2.4) specified by abs_time, or spuriously.
—(6.4) If the function exits via an exception, lock.lock() is called prior to exiting the function.

7 Postconditions: lock is locked by the calling thread.
8 Returns: cv_status::timeout if the absolute timeout (33.2.4) specified by abs_time expired, otherwise cv_-

status::no_timeout.
9 Throws: Timeout-related exceptions (33.2.4).
10 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 2: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Lock, class Rep, class Period>

cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);

11 Effects: Equivalent to:
return wait_until(lock, chrono::steady_clock::now() + rel_time);

12 Postconditions: lock is locked by the calling thread.
13 Returns: cv_status::timeout if the relative timeout (33.2.4) specified by rel_time expired, otherwise cv_-

status::no_timeout.
14 Throws: Timeout-related exceptions (33.2.4).
15 Remarks: If the function fails to meet the postcondition, terminate is invoked (14.6.2).

[Note 3: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Lock, class Clock, class Duration, class Predicate>

bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

16 Effects: Equivalent to:
while (!pred())
if (wait_until(lock, abs_time) == cv_status::timeout)

§ 33.7.5.2 1706

© ISO/IEC N4910

return pred();
return true;

17 [Note 4: There is no blocking if pred() is initially true, or if the timeout has already expired. —end note]
18 [Note 5: The returned value indicates whether the predicate evaluates to true regardless of whether the timeout was triggered.—end note]

template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);

19 Effects: Equivalent to:
return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));

33.7.5.3 Interruptible waits [thread.condvarany.intwait]
1 The following wait functions will be notified when there is a stop request on the passed stop_token. In that case thefunctions return immediately, returning false if the predicate evaluates to false.

template<class Lock, class Predicate>
bool wait(Lock& lock, stop_token stoken, Predicate pred);

2 Effects: Registers for the duration of this call *this to get notified on a stop request on stoken during this calland then equivalent to:
while (!stoken.stop_requested()) {
if (pred())

return true;
wait(lock);

}
return pred();

3 [Note 1: The returned value indicates whether the predicate evaluated to true regardless of whether there was a stop request.—end note]
4 Postconditions: lock is locked by the calling thread.
5 Throws: Any exception thrown by pred.
6 Remarks: If the function fails to meet the postcondition, terminate is called (14.6.2).

[Note 2: This can happen if the re-locking of the mutex throws an exception. —end note]
template<class Lock, class Clock, class Duration, class Predicate>

bool wait_until(Lock& lock, stop_token stoken,
const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

7 Effects: Registers for the duration of this call *this to get notified on a stop request on stoken during this calland then equivalent to:
while (!stoken.stop_requested()) {
if (pred())

return true;
if (wait_until(lock, abs_time) == cv_status::timeout)

return pred();
}
return pred();

8 [Note 3: There is no blocking if pred() is initially true, stoken.stop_requested() was already true or the timeout hasalready expired. —end note]
9 [Note 4: The returned value indicates whether the predicate evaluated to true regardless of whether the timeout was triggeredor a stop request was made. —end note]
10 Postconditions: lock is locked by the calling thread.
11 Throws: Timeout-related exceptions (33.2.4), or any exception thrown by pred.
12 Remarks: If the function fails to meet the postcondition, terminate is called (14.6.2).

[Note 5: This can happen if the re-locking of the mutex throws an exception. —end note]

§ 33.7.5.3 1707

© ISO/IEC N4910

template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, stop_token stoken,

const chrono::duration<Rep, Period>& rel_time, Predicate pred);

13 Effects: Equivalent to:
return wait_until(lock, std::move(stoken), chrono::steady_clock::now() + rel_time,

std::move(pred));

33.8 Semaphore [thread.sema]
33.8.1 General [thread.sema.general]

1 Semaphores are lightweight synchronization primitives used to constrain concurrent access to a shared resource. Theyare widely used to implement other synchronization primitives and, whenever both are applicable, can be more efficientthan condition variables.
2 A counting semaphore is a semaphore object that models a non-negative resource count. A binary semaphore is asemaphore object that has only two states. A binary semaphore should be more efficient than the default implementationof a counting semaphore with a unit resource count.
33.8.2 Header <semaphore> synopsis [semaphore.syn]
namespace std {// 33.8.3, class template counting_semaphore

template<ptrdiff_t least_max_value = implementation-defined>
class counting_semaphore;

using binary_semaphore = counting_semaphore<1>;
}

33.8.3 Class template counting_semaphore [thread.sema.cnt]
namespace std {

template<ptrdiff_t least_max_value = implementation-defined>
class counting_semaphore {
public:

static constexpr ptrdiff_t max() noexcept;

constexpr explicit counting_semaphore(ptrdiff_t desired);
~counting_semaphore();

counting_semaphore(const counting_semaphore&) = delete;
counting_semaphore& operator=(const counting_semaphore&) = delete;

void release(ptrdiff_t update = 1);
void acquire();
bool try_acquire() noexcept;
template<class Rep, class Period>
bool try_acquire_for(const chrono::duration<Rep, Period>& rel_time);

template<class Clock, class Duration>
bool try_acquire_until(const chrono::time_point<Clock, Duration>& abs_time);

private:
ptrdiff_t counter; // exposition only

};
}

1 Class template counting_semaphore maintains an internal counter that is initialized when the semaphore is created.The counter is decremented when a thread acquires the semaphore, and is incremented when a thread releases thesemaphore. If a thread tries to acquire the semaphore when the counter is zero, the thread will block until another threadincrements the counter by releasing the semaphore.
2 least_max_value shall be non-negative; otherwise the program is ill-formed.
3 Concurrent invocations of the member functions of counting_semaphore, other than its destructor, do not introducedata races.

§ 33.8.3 1708

© ISO/IEC N4910

static constexpr ptrdiff_t max() noexcept;

4 Returns: The maximum value of counter. This value is greater than or equal to least_max_value.
constexpr explicit counting_semaphore(ptrdiff_t desired);

5 Preconditions: desired >= 0 is true, and desired <= max() is true.
6 Effects: Initializes counter with desired.
7 Throws: Nothing.

void release(ptrdiff_t update = 1);

8 Preconditions: update >= 0 is true, and update <= max() - counter is true.
9 Effects: Atomically execute counter += update. Then, unblocks any threads that are waiting for counter to begreater than zero.
10 Synchronization: Strongly happens before invocations of try_acquire that observe the result of the effects.
11 Throws: system_error when an exception is required (33.2.2).
12 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

bool try_acquire() noexcept;

13 Effects: Attempts to atomically decrement counter if it is positive, without blocking. If counter is not decre-mented, there is no effect and try_acquire immediately returns. An implementation may fail to decrement
counter even if it is positive.
[Note 1: This spurious failure is normally uncommon, but allows interesting implementations based on a simple compare andexchange (33.5). —end note]
An implementation should ensure that try_acquire does not consistently return false in the absence of contend-ing semaphore operations.

14 Returns: true if counter was decremented, otherwise false.
void acquire();

15 Effects: Repeatedly performs the following steps, in order:
—(15.1) Evaluates try_acquire. If the result is true, returns.
—(15.2) Blocks on *this until counter is greater than zero.

16 Throws: system_error when an exception is required (33.2.2).
17 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

template<class Rep, class Period>
bool try_acquire_for(const chrono::duration<Rep, Period>& rel_time);

template<class Clock, class Duration>
bool try_acquire_until(const chrono::time_point<Clock, Duration>& abs_time);

18 Effects: Repeatedly performs the following steps, in order:
—(18.1) Evaluates try_acquire(). If the result is true, returns true.
—(18.2) Blocks on *this until counter is greater than zero or until the timeout expires. If it is unblocked by thetimeout expiring, returns false.
The timeout expires (33.2.4) when the current time is after abs_time (for try_acquire_until) or when at least
rel_time has passed from the start of the function (for try_acquire_for).

19 Throws: Timeout-related exceptions (33.2.4), or system_error when a non-timeout-related exception is required(33.2.2).
20 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
33.9 Coordination types [thread.coord]
33.9.1 General [thread.coord.general]

1 Subclause 33.9 describes various concepts related to thread coordination, and defines the coordination types latch and
barrier. These types facilitate concurrent computation performed by a number of threads.
§ 33.9.1 1709

© ISO/IEC N4910

33.9.2 Latches [thread.latch]
33.9.2.1 General [thread.latch.general]

1 A latch is a thread coordination mechanism that allows any number of threads to block until an expected number ofthreads arrive at the latch (via the count_down function). The expected count is set when the latch is created. Anindividual latch is a single-use object; once the expected count has been reached, the latch cannot be reused.
33.9.2.2 Header <latch> synopsis [latch.syn]
namespace std {

class latch;
}

33.9.2.3 Class latch [thread.latch.class]
namespace std {

class latch {
public:
static constexpr ptrdiff_t max() noexcept;

constexpr explicit latch(ptrdiff_t expected);
~latch();

latch(const latch&) = delete;
latch& operator=(const latch&) = delete;

void count_down(ptrdiff_t update = 1);
bool try_wait() const noexcept;
void wait() const;
void arrive_and_wait(ptrdiff_t update = 1);

private:
ptrdiff_t counter; // exposition only

};
}

1 A latch maintains an internal counter that is initialized when the latch is created. Threads can block on the latch object,waiting for counter to be decremented to zero.
2 Concurrent invocations of the member functions of latch, other than its destructor, do not introduce data races.

static constexpr ptrdiff_t max() noexcept;

3 Returns: The maximum value of counter that the implementation supports.
constexpr explicit latch(ptrdiff_t expected);

4 Preconditions: expected >= 0 is true and expected <= max() is true.
5 Effects: Initializes counter with expected.
6 Throws: Nothing.

void count_down(ptrdiff_t update = 1);

7 Preconditions: update >= 0 is true, and update <= counter is true.
8 Effects: Atomically decrements counter by update. If counter is equal to zero, unblocks all threads blocked on

*this.
9 Synchronization: Strongly happens before the returns from all calls that are unblocked.
10 Throws: system_error when an exception is required (33.2.2).
11 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

bool try_wait() const noexcept;

12 Returns: With very low probability false. Otherwise counter == 0.

§ 33.9.2.3 1710

© ISO/IEC N4910

void wait() const;

13 Effects: If counter equals zero, returns immediately. Otherwise, blocks on *this until a call to count_down thatdecrements counter to zero.
14 Throws: system_error when an exception is required (33.2.2).
15 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

void arrive_and_wait(ptrdiff_t update = 1);

16 Effects: Equivalent to:
count_down(update);
wait();

33.9.3 Barriers [thread.barrier]
33.9.3.1 General [thread.barrier.general]

1 A barrier is a thread coordination mechanism whose lifetime consists of a sequence of barrier phases, where each phaseallows at most an expected number of threads to block until the expected number of threads arrive at the barrier.
[Note 1: A barrier is useful for managing repeated tasks that are handled by multiple threads. —end note]
33.9.3.2 Header <barrier> synopsis [barrier.syn]
namespace std {

template<class CompletionFunction = see below>
class barrier;

}

33.9.3.3 Class template barrier [thread.barrier.class]
namespace std {

template<class CompletionFunction = see below>
class barrier {
public:
using arrival_token = see below;

static constexpr ptrdiff_t max() noexcept;

constexpr explicit barrier(ptrdiff_t expected,
CompletionFunction f = CompletionFunction());

~barrier();

barrier(const barrier&) = delete;
barrier& operator=(const barrier&) = delete;

[[nodiscard]] arrival_token arrive(ptrdiff_t update = 1);
void wait(arrival_token&& arrival) const;

void arrive_and_wait();
void arrive_and_drop();

private:
CompletionFunction completion; // exposition only

};
}

1 Each barrier phase consists of the following steps:
—(1.1) The expected count is decremented by each call to arrive or arrive_and_drop.
—(1.2) When the expected count reaches zero, the phase completion step is run. For the specialization with the defaultvalue of the CompletionFunction template parameter, the completion step is run as part of the call to arrive or

arrive_and_drop that caused the expected count to reach zero. For other specializations, the completion step isrun on one of the threads that arrived at the barrier during the phase.
—(1.3) When the completion step finishes, the expected count is reset to what was specified by the expected argumentto the constructor, possibly adjusted by calls to arrive_and_drop, and the next phase starts.

§ 33.9.3.3 1711

© ISO/IEC N4910

2 Each phase defines a phase synchronization point. Threads that arrive at the barrier during the phase can block on thephase synchronization point by calling wait, and will remain blocked until the phase completion step is run.
3 The phase completion step that is executed at the end of each phase has the following effects:

—(3.1) Invokes the completion function, equivalent to completion().
—(3.2) Unblocks all threads that are blocked on the phase synchronization point.

The end of the completion step strongly happens before the returns from all calls that were unblocked by the completionstep. For specializations that do not have the default value of the CompletionFunction template parameter, the behavioris undefined if any of the barrier object’s member functions other than wait are called while the completion step is inprogress.
4 Concurrent invocations of the member functions of barrier, other than its destructor, do not introduce data races. Themember functions arrive and arrive_and_drop execute atomically.
5 CompletionFunction shall meet the Cpp17MoveConstructible (Table 30) and Cpp17Destructible (Table 34) require-ments. is_nothrow_invocable_v<CompletionFunction&> shall be true.
6 The default value of the CompletionFunction template parameter is an unspecified type, such that, in addition tosatisfying the requirements of CompletionFunction, it meets the Cpp17DefaultConstructible requirements (Table 29)and completion() has no effects.
7 barrier::arrival_token is an unspecified type, such that it meets theCpp17MoveConstructible (Table 30),Cpp17MoveAssignable(Table 32), and Cpp17Destructible (Table 34) requirements.

static constexpr ptrdiff_t max() noexcept;

8 Returns: The maximum expected count that the implementation supports.
constexpr explicit barrier(ptrdiff_t expected,

CompletionFunction f = CompletionFunction());

9 Preconditions: expected >= 0 is true and expected <= max() is true.
10 Effects: Sets both the initial expected count for each barrier phase and the current expected count for the firstphase to expected. Initializes completion with std::move(f). Starts the first phase.

[Note 1: If expected is 0 this object can only be destroyed. —end note]
11 Throws: Any exception thrown by CompletionFunction’s move constructor.

[[nodiscard]] arrival_token arrive(ptrdiff_t update = 1);

12 Preconditions: update > 0 is true, and update is less than or equal to the expected count for the current barrierphase.
13 Effects: Constructs an object of type arrival_token that is associated with the phase synchronization point forthe current phase. Then, decrements the expected count by update.
14 Synchronization: The call to arrive strongly happens before the start of the phase completion step for the currentphase.
15 Returns: The constructed arrival_token object.
16 Throws: system_error when an exception is required (33.2.2).
17 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
18 [Note 2: This call can cause the completion step for the current phase to start. —end note]

void wait(arrival_token&& arrival) const;

19 Preconditions: arrival is associated with the phase synchronization point for the current phase or the immediatelypreceding phase of the same barrier object.
20 Effects: Blocks at the synchronization point associated with std::move(arrival) until the phase completionstep of the synchronization point’s phase is run.

[Note 3: If arrival is associated with the synchronization point for a previous phase, the call returns immediately. —endnote]
21 Throws: system_error when an exception is required (33.2.2).
22 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
§ 33.9.3.3 1712

© ISO/IEC N4910

void arrive_and_wait();

23 Effects: Equivalent to: wait(arrive()).
void arrive_and_drop();

24 Preconditions: The expected count for the current barrier phase is greater than zero.
25 Effects: Decrements the initial expected count for all subsequent phases by one. Then decrements the expectedcount for the current phase by one.
26 Synchronization: The call to arrive_and_drop strongly happens before the start of the phase completion step forthe current phase.
27 Throws: system_error when an exception is required (33.2.2).
28 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
29 [Note 4: This call can cause the completion step for the current phase to start. —end note]
33.10 Futures [futures]
33.10.1 Overview [futures.overview]

1 33.10 describes components that a C++ program can use to retrieve in one thread the result (value or exception) from afunction that has run in the same thread or another thread.
[Note 1: These components are not restricted to multi-threaded programs but can be useful in single-threaded programs as well.—end note]
33.10.2 Header <future> synopsis [future.syn]
namespace std {

enum class future_errc {
broken_promise = implementation-defined,
future_already_retrieved = implementation-defined,
promise_already_satisfied = implementation-defined,
no_state = implementation-defined

};

enum class launch : unspecified {
async = unspecified,
deferred = unspecified,
implementation-defined

};

enum class future_status {
ready,
timeout,
deferred

};

// 33.10.3, error handling
template<> struct is_error_code_enum<future_errc> : public true_type { };
error_code make_error_code(future_errc e) noexcept;
error_condition make_error_condition(future_errc e) noexcept;

const error_category& future_category() noexcept;

// 33.10.4, class future_error
class future_error;

// 33.10.6, class template promise
template<class R> class promise;
template<class R> class promise<R&>;
template<> class promise<void>;

template<class R>
void swap(promise<R>& x, promise<R>& y) noexcept;

§ 33.10.2 1713

© ISO/IEC N4910

template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>;

// 33.10.7, class template future
template<class R> class future;
template<class R> class future<R&>;
template<> class future<void>;

// 33.10.8, class template shared_future
template<class R> class shared_future;
template<class R> class shared_future<R&>;
template<> class shared_future<void>;

// 33.10.10, class template packaged_task
template<class> class packaged_task; // not defined
template<class R, class... ArgTypes>
class packaged_task<R(ArgTypes...)>;

template<class R, class... ArgTypes>
void swap(packaged_task<R(ArgTypes...)>&, packaged_task<R(ArgTypes...)>&) noexcept;

// 33.10.9, function template async
template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>

async(F&& f, Args&&... args);
template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>

async(launch policy, F&& f, Args&&... args);
}

1 The enum type launch is a bitmask type (16.3.3.3.4) with elements launch::async and launch::deferred.
[Note 1: Implementations can provide bitmasks to specify restrictions on task interaction by functions launched by async() applicableto a corresponding subset of available launch policies. Implementations can extend the behavior of the first overload of async() byadding their extensions to the launch policy under the “as if” rule. —end note]

2 The enum values of future_errc are distinct and not zero.
33.10.3 Error handling [futures.errors]

const error_category& future_category() noexcept;

1 Returns: A reference to an object of a type derived from class error_category.
2 The object’s default_error_condition and equivalent virtual functions shall behave as specified for the class

error_category. The object’s name virtual function returns a pointer to the string "future".
error_code make_error_code(future_errc e) noexcept;

3 Returns: error_code(static_cast<int>(e), future_category()).
error_condition make_error_condition(future_errc e) noexcept;

4 Returns: error_condition(static_cast<int>(e), future_category()).
33.10.4 Class future_error [futures.future.error]
namespace std {

class future_error : public logic_error {
public:
explicit future_error(future_errc e);

const error_code& code() const noexcept;
const char* what() const noexcept;

private:
error_code ec_; // exposition only

};
}

§ 33.10.4 1714

© ISO/IEC N4910

explicit future_error(future_errc e);

1 Effects: Initializes ec_ with make_error_code(e).
const error_code& code() const noexcept;

2 Returns: ec_.
const char* what() const noexcept;

3 Returns: An ntbs incorporating code().message().
33.10.5 Shared state [futures.state]

1 Many of the classes introduced in subclause 33.10 use some state to communicate results. This shared state consistsof some state information and some (possibly not yet evaluated) result, which can be a (possibly void) value or anexception.
[Note 1: Futures, promises, and tasks defined in this Clause reference such shared state. —end note]

2 [Note 2: The result can be any kind of object including a function to compute that result, as used by async when policy is
launch::deferred. —end note]

3 An asynchronous return object is an object that reads results from a shared state. A waiting function of an asynchronousreturn object is one that potentially blocks to wait for the shared state to be made ready. If a waiting function canreturn before the state is made ready because of a timeout (33.2.5), then it is a timed waiting function, otherwise it is anon-timed waiting function.
4 An asynchronous provider is an object that provides a result to a shared state. The result of a shared state is set byrespective functions on the asynchronous provider.
[Note 3: Such as promises or tasks. —end note]
The means of setting the result of a shared state is specified in the description of those classes and functions that createsuch a state object.

5 When an asynchronous return object or an asynchronous provider is said to release its shared state, it means:
—(5.1) if the return object or provider holds the last reference to its shared state, the shared state is destroyed; and
—(5.2) the return object or provider gives up its reference to its shared state; and
—(5.3) these actions will not block for the shared state to become ready, except that it may block if all of the followingare true: the shared state was created by a call to std::async, the shared state is not yet ready, and this was thelast reference to the shared state.

6 When an asynchronous provider is said to make its shared state ready, it means:
—(6.1) first, the provider marks its shared state as ready; and
—(6.2) second, the provider unblocks any execution agents waiting for its shared state to become ready.

7 When an asynchronous provider is said to abandon its shared state, it means:
—(7.1) first, if that state is not ready, the provider

—(7.1.1) stores an exception object of type future_error with an error condition of broken_promise within itsshared state; and then
—(7.1.2) makes its shared state ready;

—(7.2) second, the provider releases its shared state.
8 A shared state is ready only if it holds a value or an exception ready for retrieval. Waiting for a shared state to becomeready may invoke code to compute the result on the waiting thread if so specified in the description of the class orfunction that creates the state object.
9 Calls to functions that successfully set the stored result of a shared state synchronize with (6.9.2) calls to functionssuccessfully detecting the ready state resulting from that setting. The storage of the result (whether normal or exceptional)into the shared state synchronizes with (6.9.2) the successful return from a call to a waiting function on the shared state.
10 Some functions (e.g., promise::set_value_at_thread_exit) delay making the shared state ready until the callingthread exits. The destruction of each of that thread’s objects with thread storage duration (6.7.5.3) is sequenced beforemaking that shared state ready.
11 Access to the result of the same shared state may conflict (6.9.2).
§ 33.10.5 1715

© ISO/IEC N4910

[Note 4: This explicitly specifies that the result of the shared state is visible in the objects that reference this state in the sense ofdata race avoidance (16.4.6.10). For example, concurrent accesses through references returned by shared_future::get() (33.10.8)must either use read-only operations or provide additional synchronization. —end note]
33.10.6 Class template promise [futures.promise]
namespace std {

template<class R>
class promise {
public:
promise();
template<class Allocator>

promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs) noexcept;
promise(const promise&) = delete;
~promise();

// assignment
promise& operator=(promise&& rhs) noexcept;
promise& operator=(const promise&) = delete;
void swap(promise& other) noexcept;

// retrieving the result
future<R> get_future();

// setting the result
void set_value(see below);
void set_exception(exception_ptr p);

// setting the result with deferred notification
void set_value_at_thread_exit(see below);
void set_exception_at_thread_exit(exception_ptr p);

};

template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>;

}

1 For the primary template, R shall be an object type that meets the Cpp17Destructible requirements.
2 The implementation provides the template promise and two specializations, promise<R&> and promise<void>. Thesediffer only in the argument type of the member functions set_value and set_value_at_thread_exit, as set out intheir descriptions, below.
3 The set_value, set_exception, set_value_at_thread_exit, and set_exception_at_thread_exit member func-tions behave as though they acquire a single mutex associated with the promise object while updating the promiseobject.

template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>
: true_type { };

4 Preconditions: Alloc meets the Cpp17Allocator requirements (16.4.4.6.1).
promise();
template<class Allocator>

promise(allocator_arg_t, const Allocator& a);

5 Effects: Creates a shared state. The second constructor uses the allocator a to allocate memory for the sharedstate.
promise(promise&& rhs) noexcept;

6 Effects: Transfers ownership of the shared state of rhs (if any) to the newly-constructed object.
7 Postconditions: rhs has no shared state.

§ 33.10.6 1716

© ISO/IEC N4910

~promise();
8 Effects: Abandons any shared state (33.10.5).

promise& operator=(promise&& rhs) noexcept;

9 Effects: Abandons any shared state (33.10.5) and then as if promise(std::move(rhs)).swap(*this).
10 Returns: *this.

void swap(promise& other) noexcept;

11 Effects: Exchanges the shared state of *this and other.
12 Postconditions: *this has the shared state (if any) that other had prior to the call to swap. other has the sharedstate (if any) that *this had prior to the call to swap.

future<R> get_future();

13 Synchronization: Calls to this function do not introduce data races (6.9.2) with calls to set_value, set_exception,
set_value_at_thread_exit, or set_exception_at_thread_exit.
[Note 1: Such calls need not synchronize with each other. —end note]

14 Returns: A future<R> object with the same shared state as *this.
15 Throws: future_error if *this has no shared state or if get_future has already been called on a promise withthe same shared state as *this.
16 Error conditions:

—(16.1) future_already_retrieved if get_future has already been called on a promise with the same sharedstate as *this.
—(16.2) no_state if *this has no shared state.

void promise::set_value(const R& r);
void promise::set_value(R&& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();

17 Effects: Atomically stores the value r in the shared state and makes that state ready (33.10.5).
18 Throws:

—(18.1) future_error if its shared state already has a stored value or exception, or
—(18.2) for the first version, any exception thrown by the constructor selected to copy an object of R, or
—(18.3) for the second version, any exception thrown by the constructor selected to move an object of R.

19 Error conditions:
—(19.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(19.2) no_state if *this has no shared state.

void set_exception(exception_ptr p);

20 Preconditions: p is not null.
21 Effects: Atomically stores the exception pointer p in the shared state and makes that state ready (33.10.5).
22 Throws: future_error if its shared state already has a stored value or exception.
23 Error conditions:

—(23.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(23.2) no_state if *this has no shared state.

void promise::set_value_at_thread_exit(const R& r);
void promise::set_value_at_thread_exit(R&& r);
void promise<R&>::set_value_at_thread_exit(R& r);

§ 33.10.6 1717

© ISO/IEC N4910

void promise<void>::set_value_at_thread_exit();

24 Effects: Stores the value r in the shared state without making that state ready immediately. Schedules that stateto be made ready when the current thread exits, after all objects of thread storage duration associated with thecurrent thread have been destroyed.
25 Throws:

—(25.1) future_error if its shared state already has a stored value or exception, or
—(25.2) for the first version, any exception thrown by the constructor selected to copy an object of R, or
—(25.3) for the second version, any exception thrown by the constructor selected to move an object of R.

26 Error conditions:
—(26.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(26.2) no_state if *this has no shared state.

void set_exception_at_thread_exit(exception_ptr p);

27 Preconditions: p is not null.
28 Effects: Stores the exception pointer p in the shared state without making that state ready immediately. Schedulesthat state to be made ready when the current thread exits, after all objects of thread storage duration associatedwith the current thread have been destroyed.
29 Throws: future_error if an error condition occurs.
30 Error conditions:

—(30.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(30.2) no_state if *this has no shared state.

template<class R>
void swap(promise<R>& x, promise<R>& y) noexcept;

31 Effects: As if by x.swap(y).
33.10.7 Class template future [futures.unique.future]

1 The class template future defines a type for asynchronous return objects which do not share their shared state withother asynchronous return objects. A default-constructed future object has no shared state. A future object withshared state can be created by functions on asynchronous providers (33.10.5) or by the move constructor and shares itsshared state with the original asynchronous provider. The result (value or exception) of a future object can be set bycalling a respective function on an object that shares the same shared state.
2 [Note 1: Member functions of future do not synchronize with themselves or with member functions of shared_future. —endnote]
3 The effect of calling any member function other than the destructor, the move-assignment operator, share, or valid ona future object for which valid() == false is undefined.
[Note 2: It is valid to move from a future object for which valid() == false. —end note]
Recommended practice: Implementations should detect this case and throw an object of type future_error with anerror condition of future_errc::no_state.
namespace std {

template<class R>
class future {
public:
future() noexcept;
future(future&&) noexcept;
future(const future&) = delete;
~future();
future& operator=(const future&) = delete;
future& operator=(future&&) noexcept;
shared_future<R> share() noexcept;

// retrieving the value
see below get();

§ 33.10.7 1718

© ISO/IEC N4910

// functions to check state
bool valid() const noexcept;

void wait() const;
template<class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template<class Clock, class Duration>

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

4 For the primary template, R shall be an object type that meets the Cpp17Destructible requirements.
5 The implementation provides the template future and two specializations, future<R&> and future<void>. Thesediffer only in the return type and return value of the member function get, as set out in its description, below.

future() noexcept;

6 Effects: The object does not refer to a shared state.
7 Postconditions: valid() == false.

future(future&& rhs) noexcept;

8 Effects: Move constructs a future object that refers to the shared state that was originally referred to by rhs (ifany).
9 Postconditions:

—(9.1) valid() returns the same value as rhs.valid() prior to the constructor invocation.
—(9.2) rhs.valid() == false.

~future();
10 Effects:

—(10.1) Releases any shared state (33.10.5);
—(10.2) destroys *this.

future& operator=(future&& rhs) noexcept;

11 Effects:
—(11.1) Releases any shared state (33.10.5).
—(11.2) move assigns the contents of rhs to *this.

12 Postconditions:
—(12.1) valid() returns the same value as rhs.valid() prior to the assignment.
—(12.2) rhs.valid() == false.

shared_future<R> share() noexcept;

13 Postconditions: valid() == false.
14 Returns: shared_future<R>(std::move(*this)).

R future::get();
R& future<R&>::get();
void future<void>::get();

15 [Note 3: As described above, the template and its two required specializations differ only in the return type and return valueof the member function get. —end note]
16 Effects:

—(16.1) wait()s until the shared state is ready, then retrieves the value stored in the shared state;
—(16.2) releases any shared state (33.10.5).

17 Postconditions: valid() == false.
18 Returns:
§ 33.10.7 1719

© ISO/IEC N4910

—(18.1) future::get() returns the value v stored in the object’s shared state as std::move(v).
—(18.2) future<R&>::get() returns the reference stored as value in the object’s shared state.
—(18.3) future<void>::get() returns nothing.

19 Throws: The stored exception, if an exception was stored in the shared state.
bool valid() const noexcept;

20 Returns: true only if *this refers to a shared state.
void wait() const;

21 Effects: Blocks until the shared state is ready.
template<class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

22 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the shared state isready or until the relative timeout (33.2.4) specified by rel_time has expired.
23 Returns:

—(23.1) future_status::deferred if the shared state contains a deferred function.
—(23.2) future_status::ready if the shared state is ready.
—(23.3) future_status::timeout if the function is returning because the relative timeout (33.2.4) specified by

rel_time has expired.
24 Throws: timeout-related exceptions (33.2.4).

template<class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

25 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the shared state isready or until the absolute timeout (33.2.4) specified by abs_time has expired.
26 Returns:

—(26.1) future_status::deferred if the shared state contains a deferred function.
—(26.2) future_status::ready if the shared state is ready.
—(26.3) future_status::timeout if the function is returning because the absolute timeout (33.2.4) specified by

abs_time has expired.
27 Throws: timeout-related exceptions (33.2.4).
33.10.8 Class template shared_future [futures.shared.future]

1 The class template shared_future defines a type for asynchronous return objects which may share their shared state withother asynchronous return objects. A default-constructed shared_future object has no shared state. A shared_futureobject with shared state can be created by conversion from a future object and shares its shared state with the originalasynchronous provider (33.10.5) of the shared state. The result (value or exception) of a shared_future object can beset by calling a respective function on an object that shares the same shared state.
2 [Note 1: Member functions of shared_future do not synchronize with themselves, but they synchronize with the shared state.—end note]
3 The effect of calling any member function other than the destructor, the move-assignment operator, the copy-assignmentoperator, or valid() on a shared_future object for which valid() == false is undefined.
[Note 2: It is valid to copy or move from a shared_future object for which valid() is false. —end note]
Recommended practice: Implementations should detect this case and throw an object of type future_error with anerror condition of future_errc::no_state.
namespace std {

template<class R>
class shared_future {
public:
shared_future() noexcept;
shared_future(const shared_future& rhs) noexcept;

§ 33.10.8 1720

© ISO/IEC N4910

shared_future(future<R>&&) noexcept;
shared_future(shared_future&& rhs) noexcept;
~shared_future();
shared_future& operator=(const shared_future& rhs) noexcept;
shared_future& operator=(shared_future&& rhs) noexcept;

// retrieving the value
see below get() const;

// functions to check state
bool valid() const noexcept;

void wait() const;
template<class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template<class Clock, class Duration>

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

4 For the primary template, R shall be an object type that meets the Cpp17Destructible requirements.
5 The implementation provides the template shared_future and two specializations, shared_future<R&> and shared_-

future<void>. These differ only in the return type and return value of the member function get, as set out in itsdescription, below.
shared_future() noexcept;

6 Effects: The object does not refer to a shared state.
7 Postconditions: valid() == false.

shared_future(const shared_future& rhs) noexcept;

8 Effects: The object refers to the same shared state as rhs (if any).
9 Postconditions: valid() returns the same value as rhs.valid().

shared_future(future<R>&& rhs) noexcept;
shared_future(shared_future&& rhs) noexcept;

10 Effects: Move constructs a shared_future object that refers to the shared state that was originally referred to by
rhs (if any).

11 Postconditions:
—(11.1) valid() returns the same value as rhs.valid() returned prior to the constructor invocation.
—(11.2) rhs.valid() == false.

~shared_future();
12 Effects:

—(12.1) Releases any shared state (33.10.5);
—(12.2) destroys *this.

shared_future& operator=(shared_future&& rhs) noexcept;

13 Effects:
—(13.1) Releases any shared state (33.10.5);
—(13.2) move assigns the contents of rhs to *this.

14 Postconditions:
—(14.1) valid() returns the same value as rhs.valid() returned prior to the assignment.
—(14.2) rhs.valid() == false.

§ 33.10.8 1721

© ISO/IEC N4910

shared_future& operator=(const shared_future& rhs) noexcept;

15 Effects:
—(15.1) Releases any shared state (33.10.5);
—(15.2) assigns the contents of rhs to *this.

[Note 3: As a result, *this refers to the same shared state as rhs (if any). —end note]
16 Postconditions: valid() == rhs.valid().

const R& shared_future::get() const;
R& shared_future<R&>::get() const;
void shared_future<void>::get() const;

17 [Note 4: As described above, the template and its two required specializations differ only in the return type and return valueof the member function get. —end note]
18 [Note 5: Access to a value object stored in the shared state is unsynchronized, so operations on R might introduce a datarace (6.9.2). —end note]
19 Effects: wait()s until the shared state is ready, then retrieves the value stored in the shared state.
20 Returns:

—(20.1) shared_future::get() returns a const reference to the value stored in the object’s shared state.
[Note 6: Access through that reference after the shared state has been destroyed produces undefined behavior; thiscan be avoided by not storing the reference in any storage with a greater lifetime than the shared_future object thatreturned the reference. —end note]

—(20.2) shared_future<R&>::get() returns the reference stored as value in the object’s shared state.
—(20.3) shared_future<void>::get() returns nothing.

21 Throws: The stored exception, if an exception was stored in the shared state.
bool valid() const noexcept;

22 Returns: true only if *this refers to a shared state.
void wait() const;

23 Effects: Blocks until the shared state is ready.
template<class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

24 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the shared state isready or until the relative timeout (33.2.4) specified by rel_time has expired.
25 Returns:

—(25.1) future_status::deferred if the shared state contains a deferred function.
—(25.2) future_status::ready if the shared state is ready.
—(25.3) future_status::timeout if the function is returning because the relative timeout (33.2.4) specified by

rel_time has expired.
26 Throws: timeout-related exceptions (33.2.4).

template<class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

27 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the shared state isready or until the absolute timeout (33.2.4) specified by abs_time has expired.
28 Returns:

—(28.1) future_status::deferred if the shared state contains a deferred function.
—(28.2) future_status::ready if the shared state is ready.
—(28.3) future_status::timeout if the function is returning because the absolute timeout (33.2.4) specified by

abs_time has expired.

§ 33.10.8 1722

© ISO/IEC N4910

29 Throws: timeout-related exceptions (33.2.4).
33.10.9 Function template async [futures.async]

1 The function template async provides a mechanism to launch a function potentially in a new thread and provides theresult of the function in a future object with which it shares a shared state.
template<class F, class... Args>

[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>
async(F&& f, Args&&... args);

template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>
async(launch policy, F&& f, Args&&... args);

2 Mandates: The following are all true:
—(2.1) is_constructible_v<decay_t<F>, F>,
—(2.2) (is_constructible_v<decay_t<Args>, Args> && ...), and
—(2.3) is_invocable_v<decay_t<F>, decay_t<Args>...>.

3 Effects: The first function behaves the same as a call to the second function with a policy argument of
launch::async | launch::deferred and the same arguments for F and Args. The second function createsa shared state that is associated with the returned future object. The further behavior of the second functiondepends on the policy argument as follows (if more than one of these conditions applies, the implementationmay choose any of the corresponding policies):
—(3.1) If launch::async is set in policy, calls invoke(auto(std::forward<F>(f)), auto(std::forward<Args>(args))...)(22.10.4, 33.4.3.3) as if in a new thread of execution represented by a thread object with the values producedby auto being materialized (7.3.5) in the thread that called async. Any return value is stored as the result inthe shared state. Any exception propagated from the execution of invoke(auto(std::forward<F>(f)),

auto(std::forward<Args>(args))...) is stored as the exceptional result in the shared state. The threadobject is stored in the shared state and affects the behavior of any asynchronous return objects that referencethat state.
—(3.2) If launch::deferred is set in policy, stores auto(std::forward<F>(f)) and auto(std::forward<Args>(args))...in the shared state. These copies of f and args constitute a deferred function. Invocation of the deferred func-tion evaluates invoke(std::move(g), std::move(xyz))where g is the stored value of auto(std::forward<F>(f))and xyz is the stored copy of auto(std::forward<Args>(args)).... Any return value is stored as theresult in the shared state. Any exception propagated from the execution of the deferred function is stored asthe exceptional result in the shared state. The shared state is not made ready until the function has completed.The first call to a non-timed waiting function (33.10.5) on an asynchronous return object referring to thisshared state invokes the deferred function in the thread that called the waiting function. Once evaluation of

invoke(std::move(g), std::move(xyz)) begins, the function is no longer considered deferred.
Recommended practice: If this policy is specified together with other policies, such as when using a policyvalue of launch::async | launch::deferred, implementations should defer invocation or the selectionof the policy when no more concurrency can be effectively exploited.

—(3.3) If no value is set in the launch policy, or a value is set that is neither specified in this document nor by theimplementation, the behavior is undefined.
4 Synchronization: The invocation of async synchronizes with the invocation of f. The completion of the function

f is sequenced before the shared state is made ready.
[Note 1: These apply regardless of the provided policy argument, and even if the corresponding future object is moved toanother thread. However, it is possible for f not to be called at all, in which case its completion never happens. —end note]
If the implementation chooses the launch::async policy,
—(4.1) a call to a waiting function on an asynchronous return object that shares the shared state created by this

async call shall block until the associated thread has completed, as if joined, or else time out (33.4.3.6);
—(4.2) the associated thread completion synchronizes with (6.9.2) the return from the first function that successfullydetects the ready status of the shared state or with the return from the last function that releases the sharedstate, whichever happens first.

§ 33.10.9 1723

© ISO/IEC N4910

5 Returns: An object of type future<invoke_result_t<decay_t<F>, decay_t<Args>...>> that refers to theshared state created by this call to async.
[Note 2: If a future obtained from async is moved outside the local scope, the future’s destructor can block for the sharedstate to become ready. —end note]

6 Throws: system_error if policy == launch::async and the implementation is unable to start a new thread, or
std::bad_alloc if memory for the internal data structures cannot be allocated.

7 Error conditions:
—(7.1) resource_unavailable_try_again— if policy == launch::async and the system is unable to start anew thread.

8 [Example 1:
int work1(int value);
int work2(int value);
int work(int value) {

auto handle = std::async([=]{ return work2(value); });
int tmp = work1(value);
return tmp + handle.get(); // #1

}

[Note 3: Line #1 might not result in concurrency because the async call uses the default policy, which might use launch::deferred,in which case the lambda might not be invoked until the get() call; in that case, work1 and work2 are called on the same thread andthere is no concurrency. —end note]
—end example]
33.10.10 Class template packaged_task [futures.task]
33.10.10.1 General [futures.task.general]

1 The class template packaged_task defines a type for wrapping a function or callable object so that the return value ofthe function or callable object is stored in a future when it is invoked.
2 When the packaged_task object is invoked, its stored task is invoked and the result (whether normal or exceptional)stored in the shared state. Any futures that share the shared state will then be able to access the stored result.

namespace std {
template<class> class packaged_task; // not defined
template<class R, class... ArgTypes>
class packaged_task<R(ArgTypes...)> {
public:// construction and destruction
packaged_task() noexcept;
template<class F>

explicit packaged_task(F&& f);
~packaged_task();

// no copy
packaged_task(const packaged_task&) = delete;
packaged_task& operator=(const packaged_task&) = delete;

// move support
packaged_task(packaged_task&& rhs) noexcept;
packaged_task& operator=(packaged_task&& rhs) noexcept;
void swap(packaged_task& other) noexcept;

bool valid() const noexcept;

// result retrieval
future<R> get_future();

// execution
void operator()(ArgTypes...);
void make_ready_at_thread_exit(ArgTypes...);

§ 33.10.10.1 1724

© ISO/IEC N4910

void reset();
};

template<class R, class... ArgTypes>
packaged_task(R (*)(ArgTypes...)) -> packaged_task<R(ArgTypes...)>;

template<class F> packaged_task(F) -> packaged_task<see below>;
}

33.10.10.2 Member functions [futures.task.members]

packaged_task() noexcept;

1 Effects: The object has no shared state and no stored task.
template<class F>

packaged_task(F&& f);

2 Constraints: remove_cvref_t<F> is not the same type as packaged_task<R(ArgTypes...)>.
3 Mandates: is_invocable_r_v<R, F&, ArgTypes...> is true.
4 Preconditions: Invoking a copy of f behaves the same as invoking f.
5 Effects: Constructs a new packaged_task object with a shared state and initializes the object’s stored task with

std::forward<F>(f).
6 Throws: Any exceptions thrown by the copy or move constructor of f, or bad_alloc if memory for the internaldata structures cannot be allocated.

template<class F> packaged_task(F) -> packaged_task<see below>;

7 Constraints: &F::operator() is well-formed when treated as an unevaluated operand (7.2.3) and decltype(
&F::operator()) is of the form R(G::*)(A...) cv &opt noexceptopt for a class type G.

8 Remarks: The deduced type is packaged_task<R(A...)>.
packaged_task(packaged_task&& rhs) noexcept;

9 Effects: Transfers ownership of rhs’s shared state to *this, leaving rhs with no shared state. Moves the storedtask from rhs to *this.
10 Postconditions: rhs has no shared state.

packaged_task& operator=(packaged_task&& rhs) noexcept;

11 Effects:
—(11.1) Releases any shared state (33.10.5);
—(11.2) calls packaged_task(std::move(rhs)).swap(*this).

~packaged_task();
12 Effects: Abandons any shared state (33.10.5).

void swap(packaged_task& other) noexcept;

13 Effects: Exchanges the shared states and stored tasks of *this and other.
14 Postconditions: *this has the same shared state and stored task (if any) as other prior to the call to swap. otherhas the same shared state and stored task (if any) as *this prior to the call to swap.

bool valid() const noexcept;

15 Returns: true only if *this has a shared state.
future<R> get_future();

16 Synchronization: Calls to this function do not introduce data races (6.9.2) with calls to operator() or make_-
ready_at_thread_exit.
[Note 1: Such calls need not synchronize with each other. —end note]

17 Returns: A future object that shares the same shared state as *this.
§ 33.10.10.2 1725

© ISO/IEC N4910

18 Throws: A future_error object if an error occurs.
19 Error conditions:

—(19.1) future_already_retrieved if get_future has already been called on a packaged_task object with thesame shared state as *this.
—(19.2) no_state if *this has no shared state.

void operator()(ArgTypes... args);

20 Effects: As if by INVOKE<R>(f, t1, t2, . . . , tN) (22.10.4), where f is the stored task of *this and t1, t2,
. . . , tN are the values in args.... If the task returns normally, the return value is stored as the asynchronousresult in the shared state of *this, otherwise the exception thrown by the task is stored. The shared state of *thisis made ready, and any threads blocked in a function waiting for the shared state of *this to become ready areunblocked.

21 Throws: A future_error exception object if there is no shared state or the stored task has already been invoked.
22 Error conditions:

—(22.1) promise_already_satisfied if the stored task has already been invoked.
—(22.2) no_state if *this has no shared state.

void make_ready_at_thread_exit(ArgTypes... args);

23 Effects: As if by INVOKE<R>(f, t1, t2, . . . , tN) (22.10.4), where f is the stored task and t1, t2, . . . , tNare the values in args.... If the task returns normally, the return value is stored as the asynchronous result in theshared state of *this, otherwise the exception thrown by the task is stored. In either case, this is done withoutmaking that state ready (33.10.5) immediately. Schedules the shared state to be made ready when the currentthread exits, after all objects of thread storage duration associated with the current thread have been destroyed.
24 Throws: future_error if an error condition occurs.
25 Error conditions:

—(25.1) promise_already_satisfied if the stored task has already been invoked.
—(25.2) no_state if *this has no shared state.

void reset();

26 Effects: As if *this = packaged_task(std::move(f)), where f is the task stored in *this.
[Note 2: This constructs a new shared state for *this. The old state is abandoned (33.10.5). —end note]

27 Throws:
—(27.1) bad_alloc if memory for the new shared state cannot be allocated.
—(27.2) any exception thrown by the move constructor of the task stored in the shared state.
—(27.3) future_error with an error condition of no_state if *this has no shared state.

33.10.10.3 Globals [futures.task.nonmembers]

template<class R, class... ArgTypes>
void swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y) noexcept;

1 Effects: As if by x.swap(y).

§ 33.10.10.3 1726

© ISO/IEC N4910

Annex A (informative)
Grammar summary [gram]
A.1 General [gram.general]

1 This summary of C++ grammar is intended to be an aid to comprehension. It is not an exact statement of the language.In particular, the grammar described here accepts a superset of valid C++ constructs. Disambiguation rules (8.9, 9.2,6.5.2) are applied to distinguish expressions from declarations. Further, access control, ambiguity, and type rules areused to weed out syntactically valid but meaningless constructs.
A.2 Keywords [gram.key]

1 New context-dependent keywords are introduced into a program by typedef (9.2.4), namespace (9.8.2), class (Clause11), enumeration (9.7.1), and template (Clause 13) declarations.
typedef-name:

identifier
simple-template-id

namespace-name:
identifier
namespace-alias

namespace-alias:
identifier

class-name:
identifier
simple-template-id

enum-name:
identifier

template-name:
identifier

A.3 Lexical conventions [gram.lex]
hex-quad :

hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name :
\u hex-quad
\U hex-quad hex-quad

preprocessing-token :
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punceach non-whitespace character that cannot be one of the above

token :
identifier
keyword
literal
operator-or-punctuator

§ A.3 1727

© ISO/IEC N4910

header-name :
< h-char-sequence >
" q-char-sequence "

h-char-sequence :
h-char
h-char-sequence h-char

h-char :any member of the translation character set except new-line and u+003e greater-than sign
q-char-sequence :

q-char
q-char-sequence q-char

q-char :any member of the translation character set except new-line and u+0022 quotation mark
pp-number :

digit
. digit
pp-number identifier-continue
pp-number ’ digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

identifier :
identifier-start
identifier identifier-continue

identifier-start :
nondigitan element of the translation character set of class XID_Start

identifier-continue :
digit
nondigitan element of the translation character set of class XID_Continue

nondigit : one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit : one of
0 1 2 3 4 5 6 7 8 9

keyword :any identifier listed in Table 5
import-keyword
module-keyword
export-keyword

preprocessing-op-or-punc :
preprocessing-operator
operator-or-punctuator

preprocessing-operator : one of
%: %:%:

§ A.3 1728

© ISO/IEC N4910

operator-or-punctuator : one of
{ } [] ()
<: :> <% %> ; : ...
? :: . .* -> ->* ~
! + - * / % ^ & |
= += -= *= /= %= ^= &= |=
== != < > <= >= <=> && ||
<< >> <<= >>= ++ -- ,
and or xor not bitand bitor compl
and_eq or_eq xor_eq not_eq

literal :
integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

integer-literal :
binary-literal integer-suffixopt
octal-literal integer-suffixopt
decimal-literal integer-suffixopt
hexadecimal-literal integer-suffixopt

binary-literal :
0b binary-digit
0B binary-digit
binary-literal ’opt binary-digit

octal-literal :
0
octal-literal ’opt octal-digit

decimal-literal :
nonzero-digit
decimal-literal ’opt digit

hexadecimal-literal :
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit : one of
0 1

octal-digit : one of
0 1 2 3 4 5 6 7

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

hexadecimal-prefix : one of
0x 0X

hexadecimal-digit-sequence :
hexadecimal-digit
hexadecimal-digit-sequence ’opt hexadecimal-digit

hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix :
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffixopt
unsigned-suffix size-suffixopt
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
size-suffix unsigned-suffixopt

§ A.3 1729

© ISO/IEC N4910

unsigned-suffix : one of
u U

long-suffix : one of
l L

long-long-suffix : one of
ll LL

size-suffix : one of
z Z

character-literal :
encoding-prefixopt ’ c-char-sequence ’

encoding-prefix : one of
u8 u U L

c-char-sequence :
c-char
c-char-sequence c-char

c-char :
basic-c-char
escape-sequence
universal-character-name

basic-c-char :any member of the translation character set except the u+0027 apostrophe,u+005c reverse solidus, or new-line character
escape-sequence :

simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence :
\ simple-escape-sequence-char

simple-escape-sequence-char : one of
’ " ? \ a b f n r t v

numeric-escape-sequence :
octal-escape-sequence
hexadecimal-escape-sequence

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

conditional-escape-sequence :
\ conditional-escape-sequence-char

conditional-escape-sequence-char :any member of the basic character set that is not an octal-digit, a simple-escape-sequence-char, or the characters u, U,or x
floating-point-literal :

decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal :
fractional-constant exponent-partopt floating-point-suffixopt
digit-sequence exponent-part floating-point-suffixopt

hexadecimal-floating-point-literal :
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-point-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-suffixopt

§ A.3 1730

© ISO/IEC N4910

fractional-constant :
digit-sequenceopt . digit-sequence
digit-sequence .

hexadecimal-fractional-constant :
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

exponent-part :
e signopt digit-sequence
E signopt digit-sequence

binary-exponent-part :
p signopt digit-sequence
P signopt digit-sequence

sign : one of
+ -

digit-sequence :
digit
digit-sequence ’opt digit

floating-point-suffix : one of
f l F L

string-literal :
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence :
s-char
s-char-sequence s-char

s-char :
basic-s-char
escape-sequence
universal-character-name

basic-s-char :any member of the translation character set except the u+0022 quotation mark,u+005c reverse solidus, or new-line character
raw-string :

" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence :
r-char
r-char-sequence r-char

r-char :any member of the translation character set, except a u+0029 right parenthesis followed bythe initial d-char-sequence (which may be empty) followed by a u+0022 quotation mark
d-char-sequence :

d-char
d-char-sequence d-char

d-char :any member of the basic character set except:u+0020 space, u+0028 left parenthesis, u+0029 right parenthesis, u+005c reverse solidus,u+0009 character tabulation, u+000b line tabulation, u+000c form feed, and new-line
boolean-literal :

false
true

pointer-literal :
nullptr

§ A.3 1731

© ISO/IEC N4910

user-defined-literal :
user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal :
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal :
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal :
string-literal ud-suffix

user-defined-character-literal :
character-literal ud-suffix

ud-suffix :
identifier

A.4 Basics [gram.basic]
translation-unit :

declaration-seqopt
global-module-fragmentopt module-declaration declaration-seqopt private-module-fragmentopt

A.5 Expressions [gram.expr]
primary-expression :

literal
this
(expression)
id-expression
lambda-expression
fold-expression
requires-expression

id-expression :
unqualified-id
qualified-id

unqualified-id :
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ type-name
~ decltype-specifier
template-id

qualified-id :
nested-name-specifier templateopt unqualified-id

nested-name-specifier :
::
type-name ::
namespace-name ::
decltype-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

§ A.5 1732

© ISO/IEC N4910

lambda-expression :
lambda-introducer attribute-specifier-seqopt lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt attribute-specifier-seqopt

lambda-declarator compound-statement

lambda-introducer :
[lambda-captureopt]

lambda-declarator :
lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt trailing-return-typeopt
noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt
trailing-return-typeopt
(parameter-declaration-clause) lambda-specifier-seqopt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-typeopt requires-clauseopt

lambda-specifier :
consteval
constexpr
mutable

lambda-specifier-seq :
lambda-specifier
lambda-specifier lambda-specifier-seq

lambda-capture :
capture-default
capture-list
capture-default , capture-list

capture-default :
&
=

capture-list :
capture
capture-list , capture

capture :
simple-capture
init-capture

simple-capture :
identifier ...opt
& identifier ...opt
this
* this

init-capture :
...opt identifier initializer
& ...opt identifier initializer

fold-expression :
(cast-expression fold-operator ...)
(... fold-operator cast-expression)
(cast-expression fold-operator ... fold-operator cast-expression)

fold-operator : one of
+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>= =
== != < > <= >= && || , .* ->*

requires-expression :
requires requirement-parameter-listopt requirement-body

requirement-parameter-list :
(parameter-declaration-clause)

requirement-body :
{ requirement-seq }

requirement-seq :
requirement
requirement requirement-seq

§ A.5 1733

© ISO/IEC N4910

requirement :
simple-requirement
type-requirement
compound-requirement
nested-requirement

simple-requirement :
expression ;

type-requirement :
typename nested-name-specifieropt type-name ;

compound-requirement :
{ expression } noexceptopt return-type-requirementopt ;

return-type-requirement :
-> type-constraint

nested-requirement :
requires constraint-expression ;

postfix-expression :
primary-expression
postfix-expression [expression-listopt]
postfix-expression (expression-listopt)
simple-type-specifier (expression-listopt)
typename-specifier (expression-listopt)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list :
initializer-list

unary-expression :
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

unary-operator : one of
* & + - ! ~

await-expression :
co_await cast-expression

noexcept-expression :
noexcept (expression)

new-expression :
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt (type-id) new-initializeropt

§ A.5 1734

© ISO/IEC N4910

new-placement :
(expression-list)

new-type-id :
type-specifier-seq new-declaratoropt

new-declarator :
ptr-operator new-declaratoropt
noptr-new-declarator

noptr-new-declarator :
[expressionopt] attribute-specifier-seqopt
noptr-new-declarator [constant-expression] attribute-specifier-seqopt

new-initializer :
(expression-listopt)
braced-init-list

delete-expression :
::opt delete cast-expression
::opt delete [] cast-expression

cast-expression :
unary-expression
(type-id) cast-expression

pm-expression :
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

multiplicative-expression :
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

additive-expression :
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression :
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

compare-expression :
shift-expression
compare-expression <=> shift-expression

relational-expression :
compare-expression
relational-expression < compare-expression
relational-expression > compare-expression
relational-expression <= compare-expression
relational-expression >= compare-expression

equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression :
equality-expression
and-expression & equality-expression

exclusive-or-expression :
and-expression
exclusive-or-expression ^ and-expression

§ A.5 1735

© ISO/IEC N4910

inclusive-or-expression :
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

logical-and-expression :
inclusive-or-expression
logical-and-expression && inclusive-or-expression

logical-or-expression :
logical-and-expression
logical-or-expression || logical-and-expression

conditional-expression :
logical-or-expression
logical-or-expression ? expression : assignment-expression

yield-expression :
co_yield assignment-expression
co_yield braced-init-list

throw-expression :
throw assignment-expressionopt

assignment-expression :
conditional-expression
yield-expression
throw-expression
logical-or-expression assignment-operator initializer-clause

assignment-operator : one of
= *= /= %= += -= >>= <<= &= ^= |=

expression :
assignment-expression
expression , assignment-expression

constant-expression :
conditional-expression

A.6 Statements [gram.stmt]
statement :

labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block

init-statement :
expression-statement
simple-declaration
alias-declaration

condition :
expression
attribute-specifier-seqopt decl-specifier-seq declarator brace-or-equal-initializer

labeled-statement :
attribute-specifier-seqopt identifier : statement
attribute-specifier-seqopt case constant-expression : statement
attribute-specifier-seqopt default : statement

expression-statement :
expressionopt ;

compound-statement :
{ statement-seqopt }

§ A.6 1736

© ISO/IEC N4910

statement-seq :
statement
statement-seq statement

selection-statement :
if constexpropt (init-statementopt condition) statement
if constexpropt (init-statementopt condition) statement else statement
if !opt consteval compound-statement
if !opt consteval compound-statement else statement
switch (init-statementopt condition) statement

iteration-statement :
while (condition) statement
do statement while (expression) ;
for (init-statement conditionopt ; expressionopt) statement
for (init-statementopt for-range-declaration : for-range-initializer) statement

for-range-declaration :
attribute-specifier-seqopt decl-specifier-seq declarator
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list]

for-range-initializer :
expr-or-braced-init-list

jump-statement :
break ;
continue ;
return expr-or-braced-init-listopt ;
coroutine-return-statement
goto identifier ;

coroutine-return-statement :
co_return expr-or-braced-init-listopt ;

declaration-statement :
block-declaration

A.7 Declarations [gram.dcl]
declaration-seq :

declaration
declaration-seq declaration

declaration :
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
deduction-guide
explicit-instantiation
explicit-specialization
export-declaration
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
module-import-declaration

block-declaration :
simple-declaration
asm-declaration
namespace-alias-definition
using-declaration
using-enum-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

§ A.7 1737

© ISO/IEC N4910

nodeclspec-function-declaration :
attribute-specifier-seqopt declarator ;

alias-declaration :
using identifier attribute-specifier-seqopt = defining-type-id ;

simple-declaration :
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list] initializer ;

static_assert-declaration :
static_assert (constant-expression) ;
static_assert (constant-expression , string-literal) ;

empty-declaration :
;

attribute-declaration :
attribute-specifier-seq ;

decl-specifier :
storage-class-specifier
defining-type-specifier
function-specifier
friend
typedef
constexpr
consteval
constinit
inline

decl-specifier-seq :
decl-specifier attribute-specifier-seqopt
decl-specifier decl-specifier-seq

storage-class-specifier :
static
thread_local
extern
mutable

function-specifier :
virtual
explicit-specifier

explicit-specifier :
explicit (constant-expression)
explicit

typedef-name :
identifier
simple-template-id

type-specifier :
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

type-specifier-seq :
type-specifier attribute-specifier-seqopt
type-specifier type-specifier-seq

defining-type-specifier :
type-specifier
class-specifier
enum-specifier

defining-type-specifier-seq :
defining-type-specifier attribute-specifier-seqopt
defining-type-specifier defining-type-specifier-seq

§ A.7 1738

© ISO/IEC N4910

simple-type-specifier :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier
placeholder-type-specifier
nested-name-specifieropt template-name
char
char8_t
char16_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name :
class-name
enum-name
typedef-name

elaborated-type-specifier :
class-key attribute-specifier-seqopt nested-name-specifieropt identifier
class-key simple-template-id
class-key nested-name-specifier templateopt simple-template-id
elaborated-enum-specifier

elaborated-enum-specifier :
enum nested-name-specifieropt identifier

decltype-specifier :
decltype (expression)

placeholder-type-specifier :
type-constraintopt auto
type-constraintopt decltype (auto)

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator initializeropt
declarator requires-clause

declarator :
ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator :
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator :
declarator-id attribute-specifier-seqopt
noptr-declarator parameters-and-qualifiers
noptr-declarator [constant-expressionopt] attribute-specifier-seqopt
(ptr-declarator)

parameters-and-qualifiers :
(parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-type :
-> type-id

§ A.7 1739

© ISO/IEC N4910

ptr-operator :
* attribute-specifier-seqopt cv-qualifier-seqopt
& attribute-specifier-seqopt
&& attribute-specifier-seqopt
nested-name-specifier * attribute-specifier-seqopt cv-qualifier-seqopt

cv-qualifier-seq :
cv-qualifier cv-qualifier-seqopt

cv-qualifier :
const
volatile

ref-qualifier :
&
&&

declarator-id :
...opt id-expression

type-id :
type-specifier-seq abstract-declaratoropt

defining-type-id :
defining-type-specifier-seq abstract-declaratoropt

abstract-declarator :
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
abstract-pack-declarator

ptr-abstract-declarator :
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator :
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [constant-expressionopt] attribute-specifier-seqopt
(ptr-abstract-declarator)

abstract-pack-declarator :
noptr-abstract-pack-declarator
ptr-operator abstract-pack-declarator

noptr-abstract-pack-declarator :
noptr-abstract-pack-declarator parameters-and-qualifiers
noptr-abstract-pack-declarator [constant-expressionopt] attribute-specifier-seqopt
...

parameter-declaration-clause :
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list :
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration :
attribute-specifier-seqopt thisopt decl-specifier-seq declarator
attribute-specifier-seqopt thisopt decl-specifier-seq declarator = initializer-clause
attribute-specifier-seqopt thisopt decl-specifier-seq abstract-declaratoropt
attribute-specifier-seqopt thisopt decl-specifier-seq abstract-declaratoropt = initializer-clause

initializer :
brace-or-equal-initializer
(expression-list)

brace-or-equal-initializer :
= initializer-clause
braced-init-list

initializer-clause :
assignment-expression
braced-init-list

§ A.7 1740

© ISO/IEC N4910

braced-init-list :
{ initializer-list ,opt }
{ designated-initializer-list ,opt }
{ }

initializer-list :
initializer-clause ...opt
initializer-list , initializer-clause ...opt

designated-initializer-list :
designated-initializer-clause
designated-initializer-list , designated-initializer-clause

designated-initializer-clause :
designator brace-or-equal-initializer

designator :
. identifier

expr-or-braced-init-list :
expression
braced-init-list

function-definition :
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause function-body

function-body :
ctor-initializeropt compound-statement
function-try-block
= default ;
= delete ;

enum-name :
identifier

enum-specifier :
enum-head { enumerator-listopt }
enum-head { enumerator-list , }

enum-head :
enum-key attribute-specifier-seqopt enum-head-nameopt enum-baseopt

enum-head-name :
nested-name-specifieropt identifier

opaque-enum-declaration :
enum-key attribute-specifier-seqopt enum-head-name enum-baseopt ;

enum-key :
enum
enum class
enum struct

enum-base :
: type-specifier-seq

enumerator-list :
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition :
enumerator
enumerator = constant-expression

enumerator :
identifier attribute-specifier-seqopt

using-enum-declaration :
using elaborated-enum-specifier ;

namespace-name :
identifier
namespace-alias

§ A.7 1741

© ISO/IEC N4910

namespace-definition :
named-namespace-definition
unnamed-namespace-definition
nested-namespace-definition

named-namespace-definition :
inlineopt namespace attribute-specifier-seqopt identifier { namespace-body }

unnamed-namespace-definition :
inlineopt namespace attribute-specifier-seqopt { namespace-body }

nested-namespace-definition :
namespace enclosing-namespace-specifier :: inlineopt identifier { namespace-body }

enclosing-namespace-specifier :
identifier
enclosing-namespace-specifier :: inlineopt identifier

namespace-body :
declaration-seqopt

namespace-alias :
identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier :
nested-name-specifieropt namespace-name

using-directive :
attribute-specifier-seqopt using namespace nested-name-specifieropt namespace-name ;

using-declaration :
using using-declarator-list ;

using-declarator-list :
using-declarator ...opt
using-declarator-list , using-declarator ...opt

using-declarator :
typenameopt nested-name-specifier unqualified-id

asm-declaration :
attribute-specifier-seqopt asm (string-literal) ;

linkage-specification :
extern string-literal { declaration-seqopt }
extern string-literal declaration

attribute-specifier-seq :
attribute-specifier-seqopt attribute-specifier

attribute-specifier :
[[attribute-using-prefixopt attribute-list]]
alignment-specifier

alignment-specifier :
alignas (type-id ...opt)
alignas (constant-expression ...opt)

attribute-using-prefix :
using attribute-namespace :

attribute-list :
attributeopt
attribute-list , attributeopt
attribute ...
attribute-list , attribute ...

attribute :
attribute-token attribute-argument-clauseopt

attribute-token :
identifier
attribute-scoped-token

§ A.7 1742

© ISO/IEC N4910

attribute-scoped-token :
attribute-namespace :: identifier

attribute-namespace :
identifier

attribute-argument-clause :
(balanced-token-seqopt)

balanced-token-seq :
balanced-token
balanced-token-seq balanced-token

balanced-token :
(balanced-token-seqopt)
[balanced-token-seqopt]
{ balanced-token-seqopt }any token other than a parenthesis, a bracket, or a brace

A.8 Modules [gram.module]
module-declaration :

export-keywordopt module-keyword module-name module-partitionopt attribute-specifier-seqopt ;

module-name :
module-name-qualifieropt identifier

module-partition :
: module-name-qualifieropt identifier

module-name-qualifier :
identifier .
module-name-qualifier identifier .

export-declaration :
export declaration
export { declaration-seqopt }
export-keyword module-import-declaration

module-import-declaration :
import-keyword module-name attribute-specifier-seqopt ;
import-keyword module-partition attribute-specifier-seqopt ;
import-keyword header-name attribute-specifier-seqopt ;

global-module-fragment :
module-keyword ; declaration-seqopt

private-module-fragment :
module-keyword : private ; declaration-seqopt

A.9 Classes [gram.class]
class-name :

identifier
simple-template-id

class-specifier :
class-head { member-specificationopt }

class-head :
class-key attribute-specifier-seqopt class-head-name class-virt-specifieropt base-clauseopt
class-key attribute-specifier-seqopt base-clauseopt

class-head-name :
nested-name-specifieropt class-name

class-virt-specifier :
final

class-key :
class
struct
union

§ A.9 1743

© ISO/IEC N4910

member-specification :
member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration :
attribute-specifier-seqopt decl-specifier-seqopt member-declarator-listopt ;
function-definition
using-declaration
using-enum-declaration
static_assert-declaration
template-declaration
explicit-specialization
deduction-guide
alias-declaration
opaque-enum-declaration
empty-declaration

member-declarator-list :
member-declarator
member-declarator-list , member-declarator

member-declarator :
declarator virt-specifier-seqopt pure-specifieropt
declarator requires-clause
declarator brace-or-equal-initializeropt
identifieropt attribute-specifier-seqopt : constant-expression brace-or-equal-initializeropt

virt-specifier-seq :
virt-specifier
virt-specifier-seq virt-specifier

virt-specifier :
override
final

pure-specifier :
= 0

conversion-function-id :
operator conversion-type-id

conversion-type-id :
type-specifier-seq conversion-declaratoropt

conversion-declarator :
ptr-operator conversion-declaratoropt

base-clause :
: base-specifier-list

base-specifier-list :
base-specifier ...opt
base-specifier-list , base-specifier ...opt

base-specifier :
attribute-specifier-seqopt class-or-decltype
attribute-specifier-seqopt virtual access-specifieropt class-or-decltype
attribute-specifier-seqopt access-specifier virtualopt class-or-decltype

class-or-decltype :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier

access-specifier :
private
protected
public

ctor-initializer :
: mem-initializer-list

§ A.9 1744

© ISO/IEC N4910

mem-initializer-list :
mem-initializer ...opt
mem-initializer-list , mem-initializer ...opt

mem-initializer :
mem-initializer-id (expression-listopt)
mem-initializer-id braced-init-list

mem-initializer-id :
class-or-decltype
identifier

A.10 Overloading [gram.over]
operator-function-id :

operator operator

operator : one of
new delete new[] delete[] co_await () [] -> ->*
~ ! + - * / % ^ &
| = += -= *= /= %= ^= &=
|= == != < > <= >= <=> &&
|| << >> <<= >>= ++ -- ,

literal-operator-id :
operator string-literal identifier
operator user-defined-string-literal

A.11 Templates [gram.temp]
template-declaration :

template-head declaration
template-head concept-definition

template-head :
template < template-parameter-list > requires-clauseopt

template-parameter-list :
template-parameter
template-parameter-list , template-parameter

requires-clause :
requires constraint-logical-or-expression

constraint-logical-or-expression :
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression :
primary-expression
constraint-logical-and-expression && primary-expression

template-parameter :
type-parameter
parameter-declaration

type-parameter :
type-parameter-key ...opt identifieropt
type-parameter-key identifieropt = type-id
type-constraint ...opt identifieropt
type-constraint identifieropt = type-id
template-head type-parameter-key ...opt identifieropt
template-head type-parameter-key identifieropt = id-expression

type-parameter-key :
class
typename

type-constraint :
nested-name-specifieropt concept-name
nested-name-specifieropt concept-name < template-argument-listopt >

§ A.11 1745

© ISO/IEC N4910

simple-template-id :
template-name < template-argument-listopt >

template-id :
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name :
identifier

template-argument-list :
template-argument ...opt
template-argument-list , template-argument ...opt

template-argument :
constant-expression
type-id
id-expression

constraint-expression :
logical-or-expression

deduction-guide :
explicit-specifieropt template-name (parameter-declaration-clause) -> simple-template-id ;

concept-definition :
concept concept-name = constraint-expression ;

concept-name :
identifier

typename-specifier :
typename nested-name-specifier identifier
typename nested-name-specifier templateopt simple-template-id

explicit-instantiation :
externopt template declaration

explicit-specialization :
template < > declaration

A.12 Exception handling [gram.except]
try-block :

try compound-statement handler-seq

function-try-block :
try ctor-initializeropt compound-statement handler-seq

handler-seq :
handler handler-seqopt

handler :
catch (exception-declaration) compound-statement

exception-declaration :
attribute-specifier-seqopt type-specifier-seq declarator
attribute-specifier-seqopt type-specifier-seq abstract-declaratoropt
...

noexcept-specifier :
noexcept (constant-expression)
noexcept

A.13 Preprocessing directives [gram.cpp]
preprocessing-file :

groupopt
module-file

module-file :
pp-global-module-fragmentopt pp-module groupopt pp-private-module-fragmentopt

§ A.13 1746

© ISO/IEC N4910

pp-global-module-fragment :
module ; new-line groupopt

pp-private-module-fragment :
module : private ; new-line groupopt

group :
group-part
group group-part

group-part :
control-line
if-section
text-line
conditionally-supported-directive

control-line :
include pp-tokens new-line
pp-import
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

if-section :
if-group elif-groupsopt else-groupopt endif-line

if-group :
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups :
elif-group
elif-groups elif-group

elif-group :
elif constant-expression new-line groupopt
elifdef constant-expression new-line groupopt
elifndef constant-expression new-line groupopt

else-group :
else new-line groupopt

endif-line :
endif new-line

text-line :
pp-tokensopt new-line

conditionally-supported-directive :
pp-tokens new-line

lparen :a (character not immediately preceded by whitespace
identifier-list :

identifier
identifier-list , identifier

replacement-list :
pp-tokensopt

pp-tokens :
preprocessing-token
pp-tokens preprocessing-token

new-line :the new-line character
§ A.13 1747

© ISO/IEC N4910

defined-macro-expression :
defined identifier
defined (identifier)

h-preprocessing-token :any preprocessing-token other than >
h-pp-tokens :

h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens :
string-literal
< h-pp-tokens >

has-include-expression :
__has_include (header-name)
__has_include (header-name-tokens)

has-attribute-expression :
__has_cpp_attribute (pp-tokens)

pp-module :
exportopt module pp-tokensopt ; new-line

pp-import :
exportopt import header-name pp-tokensopt ; new-line
exportopt import header-name-tokens pp-tokensopt ; new-line
exportopt import pp-tokens ; new-line

va-opt-replacement :
__VA_OPT__ (pp-tokensopt)

§ A.13 1748

© ISO/IEC N4910

Annex B (normative)
Implementation quantities [implimits]

1 Because computers are finite, C++ implementations are inevitably limited in the size of the programs they can successfullyprocess. Every implementation shall document those limitations where known. This documentation may cite fixedlimits where they exist, say how to compute variable limits as a function of available resources, or say that fixed limitsdo not exist or are unknown.
2 The limits may constrain quantities that include those described below or others. The bracketed number following eachquantity is recommended as the minimum for that quantity. However, these quantities are only guidelines and do notdetermine compliance.

—(2.1) Nesting levels of compound statements (8.4), iteration control structures (8.6), and selection control structures (8.5)[256].
—(2.2) Nesting levels of conditional inclusion (15.2) [256].
—(2.3) Pointer (9.3.4.2), array (9.3.4.5), and function (9.3.4.6) declarators (in any combination) modifying a class,arithmetic, or incomplete type in a declaration [256].
—(2.4) Nesting levels of parenthesized expressions (7.5.3) within a full-expression [256].
—(2.5) Number of characters in an internal identifier (5.10) or macro name (15.6) [1 024].
—(2.6) Number of characters in an external identifier (5.10, 6.6) [1 024].
—(2.7) External identifiers (6.6) in one translation unit [65 536].
—(2.8) Identifiers with block scope declared in one block (6.4.3) [1 024].
—(2.9) Structured bindings (9.6) introduced in one declaration [256].
—(2.10) Macro identifiers (15.6) simultaneously defined in one translation unit [65 536].
—(2.11) Parameters in one function definition (9.5.1) [256].
—(2.12) Arguments in one function call (7.6.1.3) [256].
—(2.13) Parameters in one macro definition (15.6) [256].
—(2.14) Arguments in one macro invocation (15.6) [256].
—(2.15) Characters in one logical source line (5.2) [65 536].
—(2.16) Characters in a string-literal (5.13.5) (after concatenation (5.2)) [65 536].
—(2.17) Size of an object (6.7.2) [262 144].
—(2.18) Nesting levels for #include files (15.3) [256].
—(2.19) Case labels for a switch statement (8.5.3) (excluding those for any nested switch statements) [16 384].
—(2.20) Non-static data members (including inherited ones) in a single class (11.4) [16 384].
—(2.21) Lambda-captures in one lambda-expression (7.5.5.3) [256].
—(2.22) Enumeration constants in a single enumeration (9.7.1) [4 096].
—(2.23) Levels of nested class definitions (11.4.12) in a single member-specification [256].
—(2.24) Functions registered by atexit() (17.5) [32].
—(2.25) Functions registered by at_quick_exit() (17.5) [32].
—(2.26) Direct and indirect base classes (11.7) [16 384].
—(2.27) Direct base classes for a single class (11.7) [1 024].
—(2.28) Class members declared in a single member-specification (including member functions) (11.4) [4 096].
—(2.29) Final overriding virtual functions in a class, accessible or not (11.7.3) [16 384].
—(2.30) Direct and indirect virtual bases of a class (11.7.2) [1 024].

Implementation quantities 1749

© ISO/IEC N4910

—(2.31) Static data members of a class (11.4.9.3) [1 024].
—(2.32) Friend declarations in a class (11.8.4) [4 096].
—(2.33) Access control declarations in a class (11.8.2) [4 096].
—(2.34) Member initializers in a constructor definition (11.9.3) [6 144].
—(2.35) initializer-clauses in one braced-init-list (9.4) [16 384].
—(2.36) Scope qualifications of one identifier (7.5.4.3) [256].
—(2.37) Nested linkage-specifications (9.11) [1 024].
—(2.38) Recursive constexpr function invocations (9.2.6) [512].
—(2.39) Full-expressions evaluated within a core constant expression (7.7) [1 048 576].
—(2.40) Template parameters in a template declaration (13.2) [1 024].
—(2.41) Recursively nested template instantiations (13.9.2), including substitution during template argument deduction(13.10.3) [1 024].
—(2.42) Handlers per try block (14.4) [256].
—(2.43) Number of placeholders (22.10.15.5) [10].

Implementation quantities 1750

© ISO/IEC N4910

Annex C (informative)
Compatibility [diff]
C.1 C++ and ISO C++ 2020 [diff.cpp20]
C.1.1 General [diff.cpp20.general]

1 Subclause C.1 lists the differences between C++ and ISO C++ 2020 (ISO/IEC 14882:2020, Programming Languages —C++), by the chapters of this document.
C.1.2 Clause 5: lexical conventions [diff.cpp20.lex]

1 Affected subclause: 5.10
Change: Previously valid identifiers containing characters not present in UAX #44 properties XID_Start or XID_-Continue, or not in Normalization Form C, are now rejected.
Rationale: Prevent confusing characters in identifiers. Requiring normalization of names ensures consistent linkerbehavior.
Effect on original feature: Some identifiers are no longer well-formed.

2 Affected subclause: 5.13.5
Change: Concatenated string-literals can no longer have conflicting encoding-prefixes.
Rationale: Removal of unimplemented conditionally-supported feature.
Effect on original feature: Concatenation of string-literals with different encoding-prefixes is now ill-formed.
[Example 1:
auto c = L"a" U"b"; // was conditionally-supported; now ill-formed
—end example]
C.1.3 Clause 7: expressions [diff.cpp20.expr]

1 Affected subclause: 7.6.1.2
Change: Change the meaning of comma in subscript expressions.
Rationale: Enable repurposing a deprecated syntax to support multidimensional indexing.
Effect on original feature: Valid C++ 2020 code that uses a comma expression within a subscript expression may failto compile. For example:
arr[1, 2] // was equivalent to arr[(1, 2)],// now equivalent to arr.operator[](1, 2) or ill-formed
C.1.4 Clause 16: library introduction [diff.cpp20.library]

1 Affected subclause: 16.4.2.3
Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <expected> (22.8.2), <stdatomic.h> (33.5.12),
<spanstream> (31.9.2), and <stacktrace> (19.6.2). Valid C++ 2020 code that #includes headers with these names maybe invalid in this revision of C++.
C.1.5 Clause 22: general utilities library [diff.cpp20.utilities]

1 Affected subclause: 22.14
Change: Signature changes: format, format_to, vformat_to, format_to_n, formatted_size. Removal of format_-
args_t.
Rationale: Improve safety via compile-time format string checks, avoid unnecessary template instantiations.
Effect on original feature: Valid C++ 2020 code that contained errors in format strings or relied on previous formatstring signatures or format_args_t may become ill-formed. For example:
auto s = std::format("{:d}", "I am not a number"); // ill-formed,// previously threw format_error

§ C.1.5 1751

© ISO/IEC N4910

2 Affected subclause: 22.14
Change: Signature changes: format, format_to, format_to_n, formatted_size.
Rationale: Enable formatting of views that do not support iteration when const-qualified and that are not copyable.
Effect on original feature: Valid C++ 2020 code that passes bit fields to formatting functions may become ill-formed.For example:
struct tiny {

int bit: 1;
};

auto t = tiny();
std::format("{}", t.bit); // ill-formed, previously returned "0"
C.1.6 Clause 24: containers library [diff.cpp20.containers]

1 Affected subclauses: 24.2.7 and 24.2.8
Change: Heterogeneous extract and erase overloads for associative containers.
Rationale: Improve efficiency of erasing elements from associative containers.
Effect on original feature: Valid C++ 2020 code may fail to compile in this revision of C++. For example:
struct B {

auto operator<=>(const B&) const = default;
};

struct D : private B {
void f(std::set<B, std::less<>>& s) {

s.erase(*this); // ill formed; previously well-formed
}

};

C.2 C++ and ISO C++ 2017 [diff.cpp17]
C.2.1 General [diff.cpp17.general]

1 Subclause C.2 lists the differences between C++ and ISO C++ 2017 (ISO/IEC 14882:2017, Programming Languages —C++), by the chapters of this document.
C.2.2 Clause 5: lexical conventions [diff.cpp17.lex]

1 Affected subclauses: 5.4, 10.1, 10.3, 15.1, 15.4, and 15.5
Change: New identifiers with special meaning.
Rationale: Required for new features.
Effect on original feature: Logical lines beginning with module or import may be interpreted differently in thisrevision of C++.
[Example 1:
class module {};
module m1; // was variable declaration; now module-declaration
module *m2; // variable declaration
class import {};
import j1; // was variable declaration; now module-import-declaration
::import j2; // variable declaration
—end example]

2 Affected subclause: 5.8
Change: header-name tokens are formed in more contexts.
Rationale: Required for new features.
Effect on original feature: When the identifier import is followed by a < character, a header-name token may beformed.
[Example 2:
template<typename> class import {};
import<int> f(); // ill-formed; previously well-formed
::import<int> g(); // OK

§ C.2.2 1752

© ISO/IEC N4910

—end example]
3 Affected subclause: 5.11
Change: New keywords.
Rationale: Required for new features.
—(3.1) The char8_t keyword is added to differentiate the types of ordinary and UTF-8 literals (5.13.5).
—(3.2) The concept keyword is added to enable the definition of concepts (13.7.9).
—(3.3) The consteval keyword is added to declare immediate functions (9.2.6).
—(3.4) The constinit keyword is added to prevent unintended dynamic initialization (9.2.7).
—(3.5) The co_await, co_yield, and co_return keywords are added to enable the definition of coroutines (9.5.4).
—(3.6) The requires keyword is added to introduce constraints through a requires-clause (13.1) or a requires-expression(7.5.7).

Effect on original feature: Valid C++ 2017 code using char8_t, concept, consteval, constinit, co_await, co_yield,
co_return, or requires as an identifier is not valid in this revision of C++.

4 Affected subclause: 5.12
Change: New operator <=>.
Rationale: Necessary for new functionality.
Effect on original feature: Valid C++ 2017 code that contains a <= token immediately followed by a > token may beill-formed or have different semantics in this revision of C++:
namespace N {

struct X {};
bool operator<=(X, X);
template<bool(X, X)> struct Y {};
Y<operator<=> y; // ill-formed; previously well-formed

}

5 Affected subclause: 5.13
Change: Type of UTF-8 string and character literals.
Rationale: Required for new features. The changed types enable function overloading, template specialization, andtype deduction to distinguish ordinary and UTF-8 string and character literals.
Effect on original feature: Valid C++ 2017 code that depends on UTF-8 string literals having type “array of const
char” and UTF-8 character literals having type “char” is not valid in this revision of C++.
const auto *u8s = u8"text"; // u8s previously deduced as const char*; now deduced as const char8_t*
const char *ps = u8s; // ill-formed; previously well-formed
auto u8c = u8'c'; // u8c previously deduced as char; now deduced as char8_t
char *pc = &u8c; // ill-formed; previously well-formed
std::string s = u8"text"; // ill-formed; previously well-formed
void f(const char *s);
f(u8"text"); // ill-formed; previously well-formed
template<typename> struct ct;
template<> struct ct<char> {

using type = char;
};
ct<decltype(u8'c')>::type x; // ill-formed; previously well-formed.
C.2.3 Clause 6: basics [diff.cpp17.basic]

1 Affected subclause: 6.7.3
Change: A pseudo-destructor call ends the lifetime of the object to which it is applied.
Rationale: Increase consistency of the language model.
Effect on original feature: Valid ISO C++ 2017 code may be ill-formed or have undefined behavior in this revision ofC++.
[Example 1:

§ C.2.3 1753

© ISO/IEC N4910

int f() {
int a = 123;
using T = int;
a.~T();
return a; // undefined behavior; previously returned 123

}

—end example]
2 Affected subclause: 6.9.2.2
Change: Except for the initial release operation, a release sequence consists solely of atomic read-modify-writeoperations.
Rationale: Removal of rarely used and confusing feature.
Effect on original feature: If a memory_order_release atomic store is followed by a memory_order_relaxed storeto the same variable by the same thread, then reading the latter value with a memory_order_acquire load no longerprovides any “happens before” guarantees, even in the absence of intervening stores by another thread.
C.2.4 Clause 7: expressions [diff.cpp17.expr]

1 Affected subclause: 7.5.5.3
Change: Implicit lambda capture may capture additional entities.
Rationale: Rule simplification, necessary to resolve interactions with constexpr if.
Effect on original feature: Lambdas with a capture-default may capture local entities that were not captured in C++2017 if those entities are only referenced in contexts that do not result in an odr-use.
C.2.5 Clause 9: declarations [diff.cpp17.dcl.dcl]

1 Affected subclause: 9.2.4
Change: Unnamed classes with a typedef name for linkage purposes can contain only C-compatible constructs.
Rationale: Necessary for implementability.
Effect on original feature: Valid C++ 2017 code may be ill-formed in this revision of C++.
typedef struct {

void f() {} // ill-formed; previously well-formed
} S;

2 Affected subclause: 9.3.4.7
Change: A function cannot have different default arguments in different translation units.
Rationale: Required for modules support.
Effect on original feature: Valid C++ 2017 code may be ill-formed in this revision of C++, with no diagnostic required.
// Translation unit 1
int f(int a = 42);
int g() { return f(); }

// Translation unit 2
int f(int a = 76) { return a; } // ill-formed, no diagnostic required; previously well-formed
int g();
int main() { return g(); } // used to return 42

3 Affected subclause: 9.4.2
Change: A class that has user-declared constructors is never an aggregate.
Rationale: Remove potentially error-prone aggregate initialization which may apply notwithstanding the declaredconstructors of a class.
Effect on original feature: Valid C++ 2017 code that aggregate-initializes a type with a user-declared constructor maybe ill-formed or have different semantics in this revision of C++.
struct A { // not an aggregate; previously an aggregate

A() = delete;
};

struct B { // not an aggregate; previously an aggregate
B() = default;
int i = 0;

};

§ C.2.5 1754

© ISO/IEC N4910

struct C { // not an aggregate; previously an aggregate
C(C&&) = default;
int a, b;

};

A a{}; // ill-formed; previously well-formed
B b = {1}; // ill-formed; previously well-formed
auto* c = new C{2, 3}; // ill-formed; previously well-formed
struct Y;

struct X {
operator Y();

};

struct Y { // not an aggregate; previously an aggregate
Y(const Y&) = default;
X x;

};

Y y{X{}}; // copy constructor call; previously aggregate-initialization
4 Affected subclause: 9.4.5
Change: Boolean conversion from a pointer or pointer-to-member type is now a narrowing conversion.
Rationale: Catches bugs.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:
bool y[] = { "bc" }; // ill-formed; previously well-formed
C.2.6 Clause 11: classes [diff.cpp17.class]

1 Affected subclauses: 11.4.5 and 11.4.8.3
Change: The class name can no longer be used parenthesized immediately after an explicit decl-specifier in aconstructor declaration. The conversion-function-id can no longer be used parenthesized immediately after an explicit
decl-specifier in a conversion function declaration.
Rationale: Necessary for new functionality.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:
struct S {

explicit (S)(const S&); // ill-formed; previously well-formed
explicit (operator int)(); // ill-formed; previously well-formed
explicit(true) (S)(int); // OK

};

2 Affected subclauses: 11.4.5 and 11.4.7
Change: A simple-template-id is no longer valid as the declarator-id of a constructor or destructor.
Rationale: Remove potentially error-prone option for redundancy.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:
template<class T>
struct A {

A<T>(); // error: simple-template-id not allowed for constructor
A(int); // OK, injected-class-name used
~A<T>(); // error: simple-template-id not allowed for destructor

};

3 Affected subclause: 11.9.6
Change: A function returning an implicitly movable entity may invoke a constructor taking an rvalue reference to atype different from that of the returned expression. Function and catch-clause parameters can be thrown using moveconstructors.
Rationale: Side effect of making it easier to write more efficient code that takes advantage of moves.
Effect on original feature: Valid C++ 2017 code may fail to compile or have different semantics in this revision of C++.For example:
struct base {

base();
base(base const &);

§ C.2.6 1755

© ISO/IEC N4910

private:
base(base &&);

};

struct derived : base {};

base f(base b) {
throw b; // error: base(base &&) is private
derived d;
return d; // error: base(base &&) is private

}

struct S {
S(const char *s) : m(s) { }
S(const S&) = default;
S(S&& other) : m(other.m) { other.m = nullptr; }
const char * m;

};

S consume(S&& s) { return s; }

void g() {
S s("text");
consume(static_cast<S&&>(s));
char c = *s.m; // undefined behavior; previously ok

}

C.2.7 Clause 12: overloading [diff.cpp17.over]
1 Affected subclause: 12.2.2.3
Change: Equality and inequality expressions can now find reversed and rewritten candidates.
Rationale: Improve consistency of equality with three-way comparison and make it easier to write the full complementof equality operations.
Effect on original feature: Equality and inequality expressions between two objects of different types, where one isconvertible to the other, could invoke a different operator. Equality and inequality expressions between two objects ofthe same type could become ambiguous.
struct A {

operator int() const;
};

bool operator==(A, int); // #1// #2 is built-in candidate: bool operator==(int, int);// #3 is built-in candidate: bool operator!=(int, int);

int check(A x, A y) {
return (x == y) + // ill-formed; previously well-formed
(10 == x) + // calls #1, previously selected #2
(10 != x); // calls #1, previously selected #3

}

C.2.8 Clause 13: templates [diff.cpp17.temp]
1 Affected subclause: 13.3
Change: An unqualified-id that is followed by a < and for which name lookup finds nothing or finds a function will betreated as a template-name in order to potentially cause argument dependent lookup to be performed.
Rationale: It was problematic to call a function template with an explicit template argument list via argument dependentlookup because of the need to have a template with the same name visible via normal lookup.
Effect on original feature: Previously valid code that uses a function name as the left operand of a < operator wouldbecome ill-formed.
struct A {};
bool operator<(void (*fp)(), A);
void f() {}

§ C.2.8 1756

© ISO/IEC N4910

int main() {
A a;
f < a; // ill-formed; previously well-formed
(f) < a; // still well formed

}

C.2.9 Clause 14: exception handling [diff.cpp17.except]
1 Affected subclause: 14.5
Change: Remove throw() exception specification.
Rationale: Removal of obsolete feature that has been replaced by noexcept.
Effect on original feature: A valid C++ 2017 function declaration, member function declaration, function pointerdeclaration, or function reference declaration that uses throw() for its exception specification will be rejected asill-formed in this revision of C++. It should simply be replaced with noexcept for no change of meaning since C++ 2017.
[Note 1: There is no way to write a function declaration that is non-throwing in this revision of C++ and is also non-throwing in C++2003 except by using the preprocessor to generate a different token sequence in each case. —end note]
C.2.10 Clause 16: library introduction [diff.cpp17.library]

1 Affected subclause: 16.4.2.3
Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <barrier> (33.9.3.2), <bit> (22.15.2), <charconv>(22.13.1), <compare> (17.11.1), <concepts> (18.3), <coroutine> (17.12.2), <format> (22.14.1), <latch> (33.9.2.2),
<numbers> (28.8.1), <ranges> (26.2), <semaphore> (33.8.2), <source_location> (17.8.1), (24.7.2), <stop_-
token> (33.3.2), <syncstream> (31.11.1), and <version> (17.3.1). Valid C++ 2017 code that #includes headers withthese names may be invalid in this revision of C++.

2 Affected subclause: 16.4.2.3
Change: Remove vacuous C++ header files.
Rationale: The empty headers implied a false requirement to achieve C compatibility with the C++ headers.
Effect on original feature: A valid C++ 2017 program that #includes any of the following headers may fail to compile:
<ccomplex>, <ciso646>, <cstdalign>, <cstdbool>, and <ctgmath>. To retain the same behavior:
—(2.1) a #include of <ccomplex> can be replaced by a #include of <complex> (28.4.2),
—(2.2) a #include of <ctgmath> can be replaced by a #include of <cmath> (28.7.1) and a #include of <complex>, and
—(2.3) a #include of <ciso646>, <cstdalign>, or <cstdbool> can simply be removed.

C.2.11 Clause 24: containers library [diff.cpp17.containers]
1 Affected subclauses: 24.3.9 and 24.3.10
Change: Return types of remove, remove_if, and unique changed from void to container::size_type.
Rationale: Improve efficiency and convenience of finding number of removed elements.
Effect on original feature: Code that depends on the return types might have different semantics in this revision ofC++. Translation units compiled against this version of C++ may be incompatible with translation units compiled againstC++ 2017, either failing to link or having undefined behavior.
C.2.12 Clause 25: iterators library [diff.cpp17.iterators]

1 Affected subclause: 25.3.2.3
Change: The specialization of iterator_traits for void* and for function pointer types no longer contains any nestedtypedefs.
Rationale: Corrects an issue misidentifying pointer types that are not incrementable as iterator types.
Effect on original feature: A valid C++ 2017 program that relies on the presence of the typedefs may fail to compile,or have different behavior.
C.2.13 Clause 27: algorithms library [diff.cpp17.alg.reqs]

1 Affected subclause: 27.2
Change: The number and order of deducible template parameters for algorithm declarations is now unspecified, insteadof being as-declared.
Rationale: Increase implementor freedom and allow some function templates to be implemented as function objectswith templated call operators.

§ C.2.13 1757

© ISO/IEC N4910

Effect on original feature: A valid C++ 2017 program that passes explicit template arguments to algorithms notexplicitly specified to allow such in this version of C++ may fail to compile or have undefined behavior.
C.2.14 Clause 31: input/output library [diff.cpp17.input.output]

1 Affected subclause: 31.7.4.3.3
Change: Character array extraction only takes array types.
Rationale: Increase safety via preventing buffer overflow at compile time.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++:
auto p = new char[100];
char q[100];
std::cin >> std::setw(20) >> p; // ill-formed; previously well-formed
std::cin >> std::setw(20) >> q; // OK

2 Affected subclause: 31.7.5.3.4
Change: Overload resolution for ostream inserters used with UTF-8 literals.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2017 code that passes UTF-8 literals to basic_ostream<char, ...>::operator<<or basic_ostream<wchar_t, ...>::operator<< is now ill-formed.
std::cout << u8"text"; // previously called operator<<(const char*) and printed a string;// now ill-formed
std::cout << u8'X'; // previously called operator<<(char) and printed a character;// now ill-formed

3 Affected subclause: 31.7.5.3.4
Change: Overload resolution for ostream inserters used with wchar_t, char16_t, or char32_t types.
Rationale: Removal of surprising behavior.
Effect on original feature: Valid C++ 2017 code that passes wchar_t, char16_t, or char32_t characters or stringsto basic_ostream<char, ...>::operator<< or that passes char16_t or char32_t characters or strings to basic_-
ostream<wchar_t, ...>::operator<< is now ill-formed.
std::cout << u"text"; // previously formatted the string as a pointer value;// now ill-formed
std::cout << u'X'; // previously formatted the character as an integer value;// now ill-formed

4 Affected subclause: 31.12.6
Change: Return type of filesystem path format observer member functions.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2017 code that depends on the u8string() and generic_u8string() memberfunctions of std::filesystem::path returning std::string is not valid in this revision of C++.
std::filesystem::path p;
std::string s1 = p.u8string(); // ill-formed; previously well-formed
std::string s2 = p.generic_u8string(); // ill-formed; previously well-formed
C.2.15 Annex D: compatibility features [diff.cpp17.depr]

1 Change: Remove uncaught_exception.
Rationale: The function did not have a clear specification when multiple exceptions were active, and has beensuperseded by uncaught_exceptions.
Effect on original feature: A valid C++ 2017 program that calls std::uncaught_exception may fail to compile. Itcan be revised to use std::uncaught_exceptions instead, for clear and portable semantics.

2 Change: Remove support for adaptable function API.
Rationale: The deprecated support relied on a limited convention that could not be extended to support the generalcase or new language features. It has been superseded by direct language support with decltype, and by the std::bindand std::not_fn function templates.
Effect on original feature: A valid C++ 2017 program that relies on the presence of result_type, argument_type,
first_argument_type, or second_argument_type in a standard library class may fail to compile. A valid C++ 2017program that calls not1 or not2, or uses the class templates unary_negate or binary_negate, may fail to compile.

3 Change: Remove redundant members from std::allocator.
Rationale: std::allocator was overspecified, encouraging direct usage in user containers rather than relying on
std::allocator_traits, leading to poor containers.
§ C.2.15 1758

© ISO/IEC N4910

Effect on original feature: A valid C++ 2017 program that directly makes use of the pointer, const_pointer,
reference, const_reference, rebind, address, construct, destroy, or max_size members of std::allocator,or that directly calls allocate with an additional hint argument, may fail to compile.

4 Change: Remove raw_storage_iterator.
Rationale: The iterator encouraged use of algorithms that might throw exceptions, but did not return the number ofelements successfully constructed that might need to be destroyed in order to avoid leaks.
Effect on original feature: A valid C++ 2017 program that uses this iterator class may fail to compile.

5 Change: Remove temporary buffers API.
Rationale: The temporary buffer facility was intended to provide an efficient optimization for small memory requests,but there is little evidence this was achieved in practice, while requiring the user to provide their own exception-safewrappers to guard use of the facility in many cases.
Effect on original feature: A valid C++ 2017 program that calls get_temporary_buffer or return_temporary_buffermay fail to compile.

6 Change: Remove shared_ptr::unique.
Rationale: The result of a call to this member function is not reliable in the presence of multiple threads and weakpointers. The member function use_count is similarly unreliable, but has a clearer contract in such cases, and remainsavailable for well defined use in single-threaded cases.
Effect on original feature: A valid C++ 2017 program that calls unique on a shared_ptr object may fail to compile.

7 Affected subclause: D.15
Change: Remove deprecated type traits.
Rationale: The traits had unreliable or awkward interfaces. The is_literal_type trait provided no way to detectwhich subset of constructors and member functions of a type were declared constexpr. The result_of trait had asurprising syntax that could not report the result of a regular function type. It has been superseded by the invoke_resulttrait.
Effect on original feature: A valid C++ 2017 program that relies on the is_literal_type or result_of type traits, onthe is_literal_type_v variable template, or on the result_of_t alias template may fail to compile.
C.3 C++ and ISO C++ 2014 [diff.cpp14]
C.3.1 General [diff.cpp14.general]

1 Subclause C.3 lists the differences between C++ and ISO C++ 2014 (ISO/IEC 14882:2014, Programming Languages —C++), in addition to those listed above, by the chapters of this document.
C.3.2 Clause 5: lexical conventions [diff.cpp14.lex]

1 Affected subclause: 5.2
Change: Removal of trigraph support as a required feature.
Rationale: Prevents accidental uses of trigraphs in non-raw string literals and comments.
Effect on original feature: Valid C++ 2014 code that uses trigraphs may not be valid or may have different semantics inthis revision of C++. Implementations may choose to translate trigraphs as specified in C++ 2014 if they appear outside ofa raw string literal, as part of the implementation-defined mapping from physical source file characters to the translationcharacter set.

2 Affected subclause: 5.9
Change: pp-number can contain p sign and P sign.
Rationale: Necessary to enable hexadecimal-floating-point-literals.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this revision ofC++. Specifically, character sequences like 0p+0 and 0e1_p+0 are three separate tokens each in C++ 2014, but one singletoken in this revision of C++. For example:
#define F(a) b ## a
int b0p = F(0p+0); // ill-formed; equivalent to “int b0p = b0p + 0;” in C++ 2014
C.3.3 Clause 7: expressions [diff.cpp14.expr]

1 Affected subclauses: 7.6.1.6 and 7.6.2.3
Change: Remove increment operator with bool operand.
Rationale: Obsolete feature with occasionally surprising semantics.
Effect on original feature: A valid C++ 2014 expression utilizing the increment operator on a bool lvalue is ill-formedin this revision of C++. Note that this might occur when the lvalue has a type given by a template parameter.

§ C.3.3 1759

© ISO/IEC N4910

2 Affected subclauses: 7.6.2.8 and 7.6.2.9
Change: Dynamic allocation mechanism for over-aligned types.
Rationale: Simplify use of over-aligned types.
Effect on original feature: In C++ 2014 code that uses a new-expression to allocate an object with an over-alignedclass type, where that class has no allocation functions of its own, ::operator new(std::size_t) is used to allocatethe memory. In this revision of C++, ::operator new(std::size_t, std::align_val_t) is used instead.
C.3.4 Clause 9: declarations [diff.cpp14.dcl.dcl]

1 Affected subclause: 9.2.2
Change: Removal of register storage-class-specifier .
Rationale: Enable repurposing of deprecated keyword in future revisions of C++.
Effect on original feature: A valid C++ 2014 declaration utilizing the register storage-class-specifier is ill-formed inthis revision of C++. The specifier can simply be removed to retain the original meaning.

2 Affected subclause: 9.2.9.6
Change: auto deduction from braced-init-list.
Rationale: More intuitive deduction behavior.
Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this revision of C++.For example:
auto x1{1}; // was std::initializer_list<int>, now int
auto x2{1, 2}; // was std::initializer_list<int>, now ill-formed

3 Affected subclause: 9.3.4.6
Change: Make exception specifications be part of the type system.
Rationale: Improve type-safety.
Effect on original feature: Valid C++ 2014 code may fail to compile or change meaning in this revision of C++. Forexample:
void g1() noexcept;
void g2();
template<class T> int f(T *, T *);
int x = f(g1, g2); // ill-formed; previously well-formed

4 Affected subclause: 9.4.2
Change: Definition of an aggregate is extended to apply to user-defined types with base classes.
Rationale: To increase convenience of aggregate initialization.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this revision of C++;initialization from an empty initializer list will perform aggregate initialization instead of invoking a default constructorfor the affected types. For example:
struct derived;
struct base {

friend struct derived;
private:

base();
};
struct derived : base {};

derived d1{}; // error; the code was well-formed in C++ 2014
derived d2; // still OK
C.3.5 Clause 11: classes [diff.cpp14.class]

1 Affected subclause: 11.9.4
Change: Inheriting a constructor no longer injects a constructor into the derived class.
Rationale: Better interaction with other language features.
Effect on original feature: Valid C++ 2014 code that uses inheriting constructors may not be valid or may have differentsemantics. A using-declaration that names a constructor now makes the corresponding base class constructors visibleto initializations of the derived class rather than declaring additional derived class constructors.
struct A {

template<typename T> A(T, typename T::type = 0);
A(int);

};

§ C.3.5 1760

© ISO/IEC N4910

struct B : A {
using A::A;
B(int);

};
B b(42L); // now calls B(int), used to call B<long>(long),// which called A(int) due to substitution failure// in A<long>(long).
C.3.6 Clause 13: templates [diff.cpp14.temp]

1 Affected subclause: 13.10.3.6
Change: Allowance to deduce from the type of a non-type template argument.
Rationale: In combination with the ability to declare non-type template arguments with placeholder types, allowspartial specializations to decompose from the type deduced for the non-type template argument.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this revision of C++.For example:
template <int N> struct A;
template <typename T, T N> int foo(A<N> *) = delete;
void foo(void *);
void bar(A<0> *p) {

foo(p); // ill-formed; previously well-formed
}

C.3.7 Clause 14: exception handling [diff.cpp14.except]
1 Affected subclause: 14.5
Change: Remove dynamic exception specifications.
Rationale: Dynamic exception specifications were a deprecated feature that was complex and brittle in use. Theyinteracted badly with the type system, which became a more significant issue in this revision of C++where (non-dynamic)exception specifications are part of the function type.
Effect on original feature: A valid C++ 2014 function declaration, member function declaration, function pointerdeclaration, or function reference declaration, if it has a potentially throwing dynamic exception specification, is rejectedas ill-formed in this revision of C++. Violating a non-throwing dynamic exception specification calls terminate ratherthan unexpected, and it is unspecified whether stack unwinding is performed prior to such a call.
C.3.8 Clause 16: library introduction [diff.cpp14.library]

1 Affected subclause: 16.4.2.3
Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <any> (22.7.2), <charconv> (22.13.1), <execution>(22.12.2), <filesystem> (31.12.4), <memory_resource> (20.4.1), <optional> (22.5.2),
<string_view> (23.3.2), and <variant> (22.6.2). Valid C++ 2014 code that #includes headers with these names maybe invalid in this revision of C++.

2 Affected subclause: 16.4.5.2.3
Change: New reserved namespaces.
Rationale: Reserve namespaces for future revisions of the standard library that might otherwise be incompatible withexisting programs.
Effect on original feature: The global namespaces std followed by an arbitrary sequence of digits (5.10) are reservedfor future standardization. Valid C++ 2014 code that uses such a top-level namespace, e.g., std2, may be invalid in thisrevision of C++.
C.3.9 Clause 22: general utilities library [diff.cpp14.utilities]

1 Affected subclause: 22.10.17
Change: Constructors taking allocators removed.
Rationale: No implementation consensus.
Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this revision of C++.Specifically, constructing a std::function with an allocator is ill-formed and uses-allocator construction will not passan allocator to std::function constructors in this revision of C++.

2 Affected subclause: 20.3.2.2
Change: Different constraint on conversions from unique_ptr.
§ C.3.9 1761

© ISO/IEC N4910

Rationale: Adding array support to shared_ptr, via the syntax shared_ptr<T[]> and shared_ptr<T[N]>.
Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this revision of C++.For example:
#include <memory>
std::unique_ptr<int[]> arr(new int[1]);
std::shared_ptr<int> ptr(std::move(arr)); // error: int(*)[] is not compatible with int*
C.3.10 Clause 23: strings library [diff.cpp14.string]

1 Affected subclause: 23.4.3
Change: Non-const .data() member added.
Rationale: The lack of a non-const .data() differed from the similar member of std::vector. This change regularizesbehavior.
Effect on original feature: Overloaded functions which have differing code paths for char* and const char* argu-ments will execute differently when called with a non-const string’s .data() member in this revision of C++.
int f(char *) = delete;
int f(const char *);
string s;
int x = f(s.data()); // ill-formed; previously well-formed
C.3.11 Clause 24: containers library [diff.cpp14.containers]

1 Affected subclause: 24.2.7
Change: Requirements change:
Rationale: Increase portability, clarification of associative container requirements.
Effect on original feature: Valid C++ 2014 code that attempts to use associative containers having a comparison objectwith non-const function call operator may fail to compile in this revision of C++:
#include <set>

struct compare
{

bool operator()(int a, int b)
{
return a < b;

}
};

int main() {
const std::set<int, compare> s;
s.find(0);

}

C.3.12 Annex D: compatibility features [diff.cpp14.depr]
1 Change: The class templates auto_ptr, unary_function, and binary_function, the function templates random_-

shuffle, and the function templates (and their return types) ptr_fun, mem_fun, mem_fun_ref, bind1st, and bind2ndare not defined.
Rationale: Superseded by new features.
Effect on original feature: Valid C++ 2014 code that uses these class templates and function templates may fail tocompile in this revision of C++.

2 Change: Remove old iostreams members [depr.ios.members].
Rationale: Redundant feature for compatibility with pre-standard code has served its time.
Effect on original feature: A valid C++ 2014 program using these identifiers may be ill-formed in this revision of C++.
C.4 C++ and ISO C++ 2011 [diff.cpp11]
C.4.1 General [diff.cpp11.general]

1 Subclause C.4 lists the differences between C++ and ISO C++ 2011 (ISO/IEC 14882:2011, Programming Languages —C++), in addition to those listed above, by the chapters of this document.

§ C.4.1 1762

© ISO/IEC N4910

C.4.2 Clause 5: lexical conventions [diff.cpp11.lex]
1 Affected subclause: 5.9
Change: pp-number can contain one or more single quotes.
Rationale: Necessary to enable single quotes as digit separators.
Effect on original feature: Valid C++ 2011 code may fail to compile or may change meaning in this revision of C++.For example, the following code is valid both in C++ 2011 and in this revision of C++, but the macro invocation producesdifferent outcomes because the single quotes delimit a character-literal in C++ 2011, whereas they are digit separatorsin this revision of C++:
#define M(x, ...) __VA_ARGS__
int x[2] = { M(1'2,3'4, 5) };// int x[2] = { 5 }; — C++ 2011// int x[2] = { 3’4, 5 };— this revision of C++
C.4.3 Clause 6: basics [diff.cpp11.basic]

1 Affected subclause: 6.7.5.5.3
Change: New usual (non-placement) deallocator.
Rationale: Required for sized deallocation.
Effect on original feature: Valid C++ 2011 code can declare a global placement allocation function and deallocationfunction as follows:
void* operator new(std::size_t, std::size_t);
void operator delete(void*, std::size_t) noexcept;

In this revision of C++, however, the declaration of operator delete might match a predefined usual (non-placement)
operator delete (6.7.5.5). If so, the program is ill-formed, as it was for class member allocation functions anddeallocation functions (7.6.2.8).
C.4.4 Clause 7: expressions [diff.cpp11.expr]

1 Affected subclause: 7.6.16
Change: A conditional expression with a throw expression as its second or third operand keeps the type and valuecategory of the other operand.
Rationale: Formerly mandated conversions (lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer(7.3.4) standard conversions), especially the creation of the temporary due to lvalue-to-rvalue conversion, wereconsidered gratuitous and surprising.
Effect on original feature: Valid C++ 2011 code that relies on the conversions may behave differently in this revisionof C++:
struct S {

int x = 1;
void mf() { x = 2; }

};
int f(bool cond) {

S s;
(cond ? s : throw 0).mf();
return s.x;

}

In C++ 2011, f(true) returns 1. In this revision of C++, it returns 2.
sizeof(true ? "" : throw 0)

In C++ 2011, the expression yields sizeof(const char*). In this revision of C++, it yields sizeof(const char[1]).
C.4.5 Clause 9: declarations [diff.cpp11.dcl.dcl]

1 Affected subclause: 9.2.6
Change: constexpr non-static member functions are not implicitly const member functions.
Rationale: Necessary to allow constexpr member functions to mutate the object.
Effect on original feature: Valid C++ 2011 code may fail to compile in this revision of C++. For example, the followingcode is valid in C++ 2011 but invalid in this revision of C++ because it declares the same member function twice withdifferent return types:
struct S {

constexpr const int &f();

§ C.4.5 1763

© ISO/IEC N4910

int &f();
};

2 Affected subclause: 9.4.2
Change: Classes with default member initializers can be aggregates.
Rationale: Necessary to allow default member initializers to be used by aggregate initialization.
Effect on original feature: Valid C++ 2011 code may fail to compile or may change meaning in this revision of C++.For example:
struct S { // Aggregate in C++ 2014 onwards.

int m = 1;
};
struct X {

operator int();
operator S();

};
X a{};
S b{a}; // uses copy constructor in C++ 2011,// performs aggregate initialization in this revision of C++
C.4.6 Clause 16: library introduction [diff.cpp11.library]

1 Affected subclause: 16.4.2.3
Change: New header.
Rationale: New functionality.
Effect on original feature: The C++ header <shared_mutex> (33.6.3) is new. Valid C++ 2011 code that #includes aheader with that name may be invalid in this revision of C++.
C.4.7 Clause 31: input/output library [diff.cpp11.input.output]

1 Affected subclause: 31.13
Change: gets is not defined.
Rationale: Use of gets is considered dangerous.
Effect on original feature: Valid C++ 2011 code that uses the gets function may fail to compile in this revision of C++.
C.5 C++ and ISO C++ 2003 [diff.cpp03]
C.5.1 General [diff.cpp03.general]

1 Subclause C.5 lists the differences between C++ and ISO C++ 2003 (ISO/IEC 14882:2003, Programming Languages —C++), in addition to those listed above, by the chapters of this document.
C.5.2 Clause 5: lexical conventions [diff.cpp03.lex]

1 Affected subclause: 5.4
Change: New kinds of string-literals.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this revision of C++.Specifically, macros named R, u8, u8R, u, uR, U, UR, or LR will not be expanded when adjacent to a string-literal but willbe interpreted as part of the string-literal . For example:
#define u8 "abc"
const char* s = u8"def"; // Previously "abcdef", now "def"

2 Affected subclause: 5.4
Change: User-defined literal string support.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this revision of C++.For example:
#define _x "there"
"hello"_x // #1
Previously, #1 would have consisted of two separate preprocessing tokens and the macro _x would have been expanded.In this revision of C++, #1 consists of a single preprocessing token, so the macro is not expanded.

3 Affected subclause: 5.11
Change: New keywords.
§ C.5.2 1764

© ISO/IEC N4910

Rationale: Required for new features.
Effect on original feature: Added to Table 5, the following identifiers are new keywords: alignas, alignof, char16_t,
char32_t, constexpr, decltype, noexcept, nullptr, static_assert, and thread_local. Valid C++ 2003 code usingthese identifiers is invalid in this revision of C++.

4 Affected subclause: 5.13.2
Change: Type of integer literals.
Rationale: C99 compatibility.
Effect on original feature: Certain integer literals larger than can be represented by long could change from anunsigned integer type to signed long long.
C.5.3 Clause 7: expressions [diff.cpp03.expr]

1 Affected subclause: 7.3.12
Change: Only literals are integer null pointer constants.
Rationale: Removing surprising interactions with templates and constant expressions.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this revision of C++.For example:
void f(void *); // #1
void f(...); // #2
template<int N> void g() {

f(0*N); // calls #2; used to call #1
}

2 Affected subclause: 7.6.5
Change: Specify rounding for results of integer / and %.
Rationale: Increase portability, C99 compatibility.
Effect on original feature: Valid C++ 2003 code that uses integer division rounds the result toward 0 or toward negativeinfinity, whereas this revision of C++ always rounds the result toward 0.

3 Affected subclause: 7.6.14
Change: && is valid in a type-name.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this revision of C++.For example:
bool b1 = new int && false; // previously false, now ill-formed
struct S { operator int(); };
bool b2 = &S::operator int && false; // previously false, now ill-formed
C.5.4 Clause 9: declarations [diff.cpp03.dcl.dcl]

1 Affected subclause: 9.2
Change: Remove auto as a storage class specifier.
Rationale: New feature.
Effect on original feature: Valid C++ 2003 code that uses the keyword auto as a storage class specifier may be invalidin this revision of C++. In this revision of C++, auto indicates that the type of a variable is to be deduced from itsinitializer expression.

2 Affected subclause: 9.4.5
Change: Narrowing restrictions in aggregate initializers.
Rationale: Catches bugs.
Effect on original feature: Valid C++ 2003 code may fail to compile in this revision of C++. For example, the followingcode is valid in C++ 2003 but invalid in this revision of C++ because double to int is a narrowing conversion:
int x[] = { 2.0 };

C.5.5 Clause 11: classes [diff.cpp03.class]
1 Affected subclauses: 11.4.5.2, 11.4.7, 11.4.5.3, and 11.4.6
Change: Implicitly-declared special member functions are defined as deleted when the implicit definition would havebeen ill-formed.
Rationale: Improves template argument deduction failure.
Effect on original feature: A valid C++ 2003 program that uses one of these special member functions in a contextwhere the definition is not required (e.g., in an expression that is not potentially evaluated) becomes ill-formed.
§ C.5.5 1765

© ISO/IEC N4910

2 Affected subclause: 11.4.7
Change: User-declared destructors have an implicit exception specification.
Rationale: Clarification of destructor requirements.
Effect on original feature: Valid C++ 2003 code may execute differently in this revision of C++. In particular, destructorsthat throw exceptions will call std::terminate (without calling std::unexpected) if their exception specification isnon-throwing.
C.5.6 Clause 13: templates [diff.cpp03.temp]

1 Affected subclause: 13.2
Change: Repurpose export for modules (Clause 10, 15.4, 15.5).
Rationale: No implementation consensus for the C++ 2003 meaning of export.
Effect on original feature: A valid C++ 2003 program containing export is ill-formed in this revision of C++.

2 Affected subclause: 13.4
Change: Remove whitespace requirement for nested closing template right angle brackets.
Rationale: Considered a persistent but minor annoyance. Template aliases representing non-class types would exacer-bate whitespace issues.
Effect on original feature: Change to semantics of well-defined expression. A valid C++ 2003 expression containinga right angle bracket (“>”) followed immediately by another right angle bracket may now be treated as closing twotemplates. For example, the following code is valid in C++ 2003 because “>>” is a right-shift operator, but invalid in thisrevision of C++ because “>>” closes two templates.
template <class T> struct X { };
template <int N> struct Y { };
X< Y< 1 >> 2 > > x;

3 Affected subclause: 13.8.4.2
Change: Allow dependent calls of functions with internal linkage.
Rationale: Overly constrained, simplify overload resolution rules.
Effect on original feature: A valid C++ 2003 program could get a different result than in this revision of C++.
C.5.7 Clause 16: library introduction [diff.cpp03.library]

1 Affected: Clause 16 – Clause 33
Change: New reserved identifiers.
Rationale: Required by new features.
Effect on original feature: Valid C++ 2003 code that uses any identifiers added to the C++ standard library by laterrevisions of C++may fail to compile or produce different results in this revision of C++. A comprehensive list of identifiersused by the C++ standard library can be found in the Index of Library Names in this document.

2 Affected subclause: 16.4.2.3
Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <array> (24.3.2), <atomic> (33.5.2), <chrono> (29.2),
<codecvt> (D.22.2), <condition_variable> (33.7.2), <forward_list> (24.3.4), <future> (33.10.2), <initializer_-
list> (17.10.2), <mutex> (33.6.2), <random> (28.5.2), <ratio> (21.4.2), <regex> (32.3), <scoped_allocator> (20.5.1),
<system_error> (19.5.2), <thread> (33.4.2), <tuple> (22.4.2), <typeindex> (22.11.1), <type_traits> (21.3.3),
<unordered_map> (24.5.2), and <unordered_set> (24.5.3). In addition the following C compatibility headers arenew: <cfenv> (28.3.1), <cinttypes> (31.13.2), <cstdint> (17.4.2), and <cuchar> (23.5.5). Valid C++ 2003 code that
#includes headers with these names may be invalid in this revision of C++.

3 Affected subclause: 16.4.4.3
Effect on original feature: Function swap moved to a different header
Rationale: Remove dependency on <algorithm> (27.4) for swap.
Effect on original feature: Valid C++ 2003 code that has been compiled expecting swap to be in <algorithm> (27.4)may have to instead include <utility> (22.2.1).

4 Affected subclause: 16.4.5.2.2
Change: New reserved namespace.
Rationale: New functionality.
Effect on original feature: The global namespace posix is now reserved for standardization. Valid C++ 2003 code thatuses a top-level namespace posix may be invalid in this revision of C++.

§ C.5.7 1766

© ISO/IEC N4910

5 Affected subclause: 16.4.6.3
Change: Additional restrictions on macro names.
Rationale: Avoid hard to diagnose or non-portable constructs.
Effect on original feature: Names of attribute identifiers may not be used as macro names. Valid C++ 2003 code thatdefines override, final, carries_dependency, or noreturn as macros is invalid in this revision of C++.
C.5.8 Clause 17: language support library [diff.cpp03.language.support]

1 Affected subclause: 17.6.3.2
Change: operator new may throw exceptions other than std::bad_alloc.
Rationale: Consistent application of noexcept.
Effect on original feature: Valid C++ 2003 code that assumes that global operator new only throws std::bad_allocmay execute differently in this revision of C++. Valid C++ 2003 code that replaces the global replaceable operator newis ill-formed in this revision of C++, because the exception specification of throw(std::bad_alloc) was removed.
C.5.9 Clause 19: diagnostics library [diff.cpp03.diagnostics]

1 Affected subclause: 19.4
Change: Thread-local error numbers.
Rationale: Support for new thread facilities.
Effect on original feature: Valid but implementation-specific C++ 2003 code that relies on errno being the same acrossthreads may change behavior in this revision of C++.
C.5.10 Clause 22: general utilities library [diff.cpp03.utilities]

1 Affected subclauses: 22.10.6, 22.10.7, 22.10.8, 22.10.10, and 22.10.11
Change: Standard function object types no longer derived from std::unary_function or std::binary_function.
Rationale: Superseded by new feature; unary_function and binary_function are no longer defined.
Effect on original feature: Valid C++ 2003 code that depends on function object types being derived from unary_-
function or binary_function may fail to compile in this revision of C++.
C.5.11 Clause 23: strings library [diff.cpp03.strings]

1 Affected subclause: 23.4
Change: basic_string requirements no longer allow reference-counted strings.
Rationale: Invalidation is subtly different with reference-counted strings. This change regularizes behavior.
Effect on original feature: Valid C++ 2003 code may execute differently in this revision of C++.

2 Affected subclause: 23.4.3.2
Change: Loosen basic_string invalidation rules.
Rationale: Allow small-string optimization.
Effect on original feature: Valid C++ 2003 code may execute differently in this revision of C++. Some const memberfunctions, such as data and c_str, no longer invalidate iterators.
C.5.12 Clause 24: containers library [diff.cpp03.containers]

1 Affected subclause: 24.2
Change: Complexity of size() member functions now constant.
Rationale: Lack of specification of complexity of size() resulted in divergent implementations with inconsistentperformance characteristics.
Effect on original feature: Some container implementations that conform to C++ 2003 may not conform to the specified
size() requirements in this revision of C++. Adjusting containers such as std::list to the stricter requirements mayrequire incompatible changes.

2 Affected subclause: 24.2
Change: Requirements change: relaxation.
Rationale: Clarification.
Effect on original feature: Valid C++ 2003 code that attempts to meet the specified container requirements may nowbe over-specified. Code that attempted to be portable across containers may need to be adjusted as follows:
—(2.1) not all containers provide size(); use empty() instead of size() == 0;
—(2.2) not all containers are empty after construction (array);
—(2.3) not all containers have constant complexity for swap() (array).

§ C.5.12 1767

© ISO/IEC N4910

3 Affected subclause: 24.2
Change: Requirements change: default constructible.
Rationale: Clarification of container requirements.
Effect on original feature: Valid C++ 2003 code that attempts to explicitly instantiate a container using a user-definedtype with no default constructor may fail to compile.

4 Affected subclauses: 24.2.4 and 24.2.7
Change: Signature changes: from void return types.
Rationale: Old signature threw away useful information that may be expensive to recalculate.
Effect on original feature: The following member functions have changed:
—(4.1) erase(iter) for set, multiset, map, multimap
—(4.2) erase(begin, end) for set, multiset, map, multimap
—(4.3) insert(pos, num, val) for vector, deque, list, forward_list
—(4.4) insert(pos, beg, end) for vector, deque, list, forward_list

Valid C++ 2003 code that relies on these functions returning void (e.g., code that creates a pointer to member functionthat points to one of these functions) will fail to compile with this revision of C++.
5 Affected subclauses: 24.2.4 and 24.2.7
Change: Signature changes: from iterator to const_iterator parameters.
Rationale: Overspecification.
Effect on original feature: The signatures of the following member functions changed from taking an iterator totaking a const_iterator:
—(5.1) insert(iter, val) for vector, deque, list, set, multiset, map, multimap
—(5.2) insert(pos, beg, end) for vector, deque, list, forward_list
—(5.3) erase(begin, end) for set, multiset, map, multimap
—(5.4) all forms of list::splice
—(5.5) all forms of list::merge

Valid C++ 2003 code that uses these functions may fail to compile with this revision of C++.
6 Affected subclauses: 24.2.4 and 24.2.7
Change: Signature changes: resize.
Rationale: Performance, compatibility with move semantics.
Effect on original feature: For vector, deque, and list the fill value passed to resize is now passed by referenceinstead of by value, and an additional overload of resize has been added. Valid C++ 2003 code that uses this functionmay fail to compile with this revision of C++.
C.5.13 Clause 27: algorithms library [diff.cpp03.algorithms]

1 Affected subclause: 27.1
Change: Result state of inputs after application of some algorithms.
Rationale: Required by new feature.
Effect on original feature: A valid C++ 2003 program may detect that an object with a valid but unspecified state hasa different valid but unspecified state with this revision of C++. For example, std::remove and std::remove_if mayleave the tail of the input sequence with a different set of values than previously.
C.5.14 Clause 28: numerics library [diff.cpp03.numerics]

1 Affected subclause: 28.4
Change: Specified representation of complex numbers.
Rationale: Compatibility with C99.
Effect on original feature: Valid C++ 2003 code that uses implementation-specific knowledge about the binaryrepresentation of the required template specializations of std::complex may not be compatible with this revision ofC++.
C.5.15 Clause 30: localization library [diff.cpp03.locale]

1 Affected subclause: 30.4.3.2.3
Change: The num_get facet recognizes hexadecimal floating point values.

§ C.5.15 1768

© ISO/IEC N4910

Rationale: Required by new feature.
Effect on original feature: Valid C++ 2003 code may have different behavior in this revision of C++.
C.5.16 Clause 31: input/output library [diff.cpp03.input.output]

1 Affected subclauses: 31.7.4.2.4, 31.7.5.2.4, and 31.5.4.4
Change: Specify use of explicit in existing boolean conversion functions.
Rationale: Clarify intentions, avoid workarounds.
Effect on original feature: Valid C++ 2003 code that relies on implicit boolean conversions will fail to compile withthis revision of C++. Such conversions occur in the following conditions:
—(1.1) passing a value to a function that takes an argument of type bool;
—(1.2) using operator== to compare to false or true;
—(1.3) returning a value from a function with a return type of bool;
—(1.4) initializing members of type bool via aggregate initialization;
—(1.5) initializing a const bool& which would bind to a temporary object.

2 Affected subclause: 31.5.2.2.1
Change: Change base class of std::ios_base::failure.
Rationale: More detailed error messages.
Effect on original feature: std::ios_base::failure is no longer derived directly from std::exception, but isnow derived from std::system_error, which in turn is derived from std::runtime_error. Valid C++ 2003 codethat assumes that std::ios_base::failure is derived directly from std::exception may execute differently in thisrevision of C++.

3 Affected subclause: 31.5.2
Change: Flag types in std::ios_base are now bitmasks with values defined as constexpr static members.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code that relies on std::ios_base flag types being represented as
std::bitset or as an integer type may fail to compile with this revision of C++. For example:
#include <iostream>

int main() {
int flag = std::ios_base::hex;
std::cout.setf(flag); // error: setf does not take argument of type int

}

C.6 C++ and ISO C [diff.iso]
C.6.1 General [diff.iso.general]

1 Subclause C.6 lists the differences between C++ and ISO C, in addition to those listed above, by the chapters of thisdocument.
C.6.2 Clause 5: lexical conventions [diff.lex]

1 Affected subclause: 5.11
Change: New KeywordsNew keywords are added to C++; see 5.11.
Rationale: These keywords were added in order to implement the new semantics of C++.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used any of thesekeywords as identifiers are not valid C++ programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a largecollection of related programs takes more work.
How widely used: Common.

2 Affected subclause: 5.13.3
Change: Type of character-literal is changed from int to char.
Rationale: This is needed for improved overloaded function argument type matching. For example:
int function(int i);
int function(char c);

§ C.6.2 1769

© ISO/IEC N4910

function('x');

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend on
sizeof('x') == sizeof(int)

will not work the same as C++ programs.
Difficulty of converting: Simple.
How widely used: Programs which depend upon sizeof(’x’) are probably rare.

3 Affected subclause: 5.13.5
Change: Concatenated string-literals can no longer have conflicting encoding-prefixes.
Rationale: Removal of non-portable feature.
Effect on original feature: Concatenation of string-literals with different encoding-prefixes is now ill-formed.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

4 Affected subclause: 5.13.5
Change: String literals made const.The type of a string-literal is changed from “array of char” to “array of const char”. The type of a UTF-8 stringliteral is changed from “array of char” to “array of const char8_t”. The type of a UTF-16 string literal is changedfrom “array of some-integer-type” to “array of const char16_t”. The type of a UTF-32 string literal is changed from“array of some-integer-type” to “array of const char32_t”. The type of a wide string literal is changed from “array of
wchar_t” to “array of const wchar_t”.
Rationale: This avoids calling an inappropriate overloaded function, which might expect to be able to modify itsargument.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Syntactic transformation. The fix is to add a cast:
char* p = "abc"; // valid in C, invalid in C++
void f(char*) {

char* p = (char*)"abc"; // OK, cast added
f(p);
f((char*)"def"); // OK, cast added

}

Howwidely used: Programs that have a legitimate reason to treat string literal objects as potentially modifiable memoryare probably rare.
C.6.3 Clause 6: basics [diff.basic]

1 Affected subclause: 6.2
Change: C++ does not have “tentative definitions” as in C.E.g., at file scope,
int i;
int i;

is valid in C, invalid in C++. This makes it impossible to define mutually referential file-local objects with static storageduration, if initializers are restricted to the syntactic forms of C. For example,
struct X { int i; struct X* next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for fundamental types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C++, the initializer for one of a set of mutually-referentialfile-local objects with static storage duration must invoke a function call to achieve the initialization.
How widely used: Seldom.

2 Affected subclause: 6.4
Change: A struct is a scope in C++, not in C. For example,

§ C.6.3 1770

© ISO/IEC N4910

struct X {
struct Y { int a; } b;

};
struct Y c;

is valid in C but not in C++, which would require X::Y c;.
Rationale: Class scope is crucial to C++, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: C programs use struct extremely frequently, but the change is only noticeable when struct,enumeration, or enumerator names are referred to outside the struct. The latter is probably rare.

3 Affected subclause: 6.6 [also 9.2.9]
Change: A name of file scope that is explicitly declared const, and not explicitly declared extern, has internal linkage,while in C it would have external linkage.
Rationale: Because const objects may be used as values during translation in C++, this feature urges programmers toprovide an explicit initializer for each const object. This feature allows the user to put const objects in source files thatare included in more than one translation unit.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

4 Affected subclause: 6.9.3.1
Change: The main function cannot be called recursively and cannot have its address taken.
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Trivial: create an intermediary function such as mymain(argc, argv).
How widely used: Seldom.

5 Affected subclause: 6.8
Change: C allows “compatible types” in several places, C++ does not.For example, otherwise-identical struct types with different tag names are “compatible” in C but are distinctly differenttypes in C++.
Rationale: Stricter type checking is essential for C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The “typesafe linkage” mechanism will find many, but not all, ofsuch problems. Those problems not found by typesafe linkage will continue to function properly, according to the“layout compatibility rules” of this document.
How widely used: Common.
C.6.4 Clause 7: expressions [diff.expr]

1 Affected subclause: 7.3.12
Change: Converting void* to a pointer-to-object type requires casting.
char a[10];
void* b=a;
void foo() {

char* c=b;
}

ISO C accepts this usage of pointer to void being assigned to a pointer to object type. C++ does not.
Rationale: C++ tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Can be automated. Violations will be diagnosed by the C++ translator. The fix is to add a cast.For example:
char* c = (char*) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when assigningpointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not used.
2 Affected subclause: 7.6.1.3
Change: Implicit declaration of functions is not allowed.
Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was labeled as
§ C.6.4 1771

© ISO/IEC N4910

“obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations are fairlywidespread commercially.
How widely used: Common.

3 Affected subclauses: 7.6.1.6 and 7.6.2.3
Change: Decrement operator is not allowed with bool operand.
Rationale: Feature with surprising semantics.
Effect on original feature: A valid ISO C expression utilizing the decrement operator on a bool lvalue (for instance,via the C typedef in <stdbool.h> (17.14.5)) is ill-formed in C++.

4 Affected subclauses: 7.6.2.5 and 7.6.3
Change: In C++, types can only be defined in declarations, not in expressions.In C, a sizeof expression or cast expression may define a new type. For example,
p = (void*)(struct x {int i;} *)0;

defines a new type, struct x.
Rationale: This prohibition helps to clarify the location of definitions in the source code.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

5 Affected subclauses: 7.6.16, 7.6.19, and 7.6.20
Change: The result of a conditional expression, an assignment expression, or a comma expression may be an lvalue.
Rationale: C++ is an object-oriented language, placing relatively more emphasis on lvalues. For example, functioncalls may yield lvalues.
Effect on original feature: Change to semantics of well-defined feature. Some C expressions that implicitly rely onlvalue-to-rvalue conversions will yield different results. For example,
char arr[100];
sizeof(0, arr)

yields 100 in C++ and sizeof(char*) in C.
Difficulty of converting: Programs must add explicit casts to the appropriate rvalue.
How widely used: Rare.
C.6.5 Clause 8: statements [diff.stat]

1 Affected subclauses: 8.5.3 and 8.7.6
Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across entire block notentered).
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon leaving theblock. Allowing jump past initializers would require complicated runtime determination of allocation. Furthermore, anyuse of the uninitialized object could be a disaster. With this simple compile-time rule, C++ assures that if an initializedvariable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

2 Affected subclause: 8.7.4
Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a value withoutactually returning a value.
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of class objects.If some flow paths execute a return without specifying any value, the implementation must embody many morecomplications. Besides, promising to return a value of a given type, and then not returning such a value, has alwaysbeen recognized to be a questionable practice, tolerated only because very-old C had no distinction between functionswith void and int return types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code, such as zero.
How widely used: Seldom. For several years, many existing C implementations have produced warnings in this case.
C.6.6 Clause 9: declarations [diff.dcl]

1 Affected subclause: 9.2.2
Change: In C++, the static or extern specifiers can only be applied to names of objects or functions.
§ C.6.6 1772

© ISO/IEC N4910

Using these specifiers with type declarations is illegal in C++. In C, these specifiers are ignored when used on typedeclarations.
Example:
static struct S { // valid C, invalid in C++

int i;
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C++, class members can bedeclared with the static storage class specifier. Allowing storage class specifiers on type declarations could render thecode confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

2 Affected subclause: 9.2.2
Change: In C++, register is not a storage class specifier.
Rationale: The storage class specifier had no effect in C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common.

3 Affected subclause: 9.2.4
Change: A C++ typedef-name must be different from any class type name declared in the same scope (except if thetypedef is a synonym of the class name with the same name). In C, a typedef-name and a struct tag name declared inthe same scope can have the same name (because they have different name spaces).
Example:
typedef struct name1 { /* ... */ } name1; // valid C and C++
struct name { /* ... */ };
typedef int name; // valid C, invalid C++
Rationale: For ease of use, C++ doesn’t require that a type name be prefixed with the keywords class, struct or unionwhen used in object declarations or type casts.
Example:
class name { /* ... */ };
name i; // i has type class name

Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used: Seldom.

4 Affected subclause: 9.2.9 [see also 6.6]
Change: Const objects must be initialized in C++ but can be left uninitialized in C.
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

5 Affected subclause: 9.2.9
Change: Banning implicit int.
In C++ a decl-specifier-seq must contain a type-specifier , unless it is followed by a declarator for a constructor, adestructor, or a conversion function. In the following example, the left-hand column presents valid C; the right-handcolumn presents equivalent C++:
void f(const parm); void f(const int parm);
const n = 3; const int n = 3;
main() int main()

/* ... */ /* ... */

Rationale: In C++, implicit int creates several opportunities for ambiguity between expressions involving function-likecasts and declarations. Explicit declaration is increasingly considered to be proper style. Liaison with WG14 (C)indicated support for (at least) deprecating implicit int in the next revision of C.
Effect on original feature: Deletion of semantically well-defined feature.

§ C.6.6 1773

© ISO/IEC N4910

Difficulty of converting: Syntactic transformation. Can be automated.
How widely used: Common.

6 Affected subclause: 9.2.9.6
Change: The keyword auto cannot be used as a storage class specifier.
void f() {

auto int x; // valid C, invalid C++
}

Rationale: Allowing the use of auto to deduce the type of a variable from its initializer results in undesired interpretationsof auto as a storage class specifier in certain contexts.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Rare.

7 Affected subclause: 9.3.4.6
Change: In C++, a function declared with an empty parameter list takes no arguments. In C, an empty parameter listmeans that the number and type of the function arguments are unknown.
Example:
int f(); // means int f(void) in C++// int f(unknown) in C
Rationale: This is to avoid erroneous function calls (i.e., function calls with the wrong number or type of arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as “obsolescent” inC.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declaration stylemust be completed to become full prototype declarations. A program may need to be updated further if different callsto the same (non-prototype) function have different numbers of arguments or if the type of corresponding argumentsdiffered.
How widely used: Common.

8 Affected subclause: 9.3.4.6 [see 7.6.2.5]
Change: In C++, types may not be defined in return or parameter types. In C, these type definitions are allowed.
Example:
void f(struct S { int a; } arg) {} // valid C, invalid C++
enum E { A, B, C } f() {} // valid C, invalid C++
Rationale: When comparing types in different translation units, C++ relies on name equivalence when C relies onstructural equivalence. Regarding parameter types: since the type defined in a parameter list would be in the scope ofthe function, the only legal calls in C++ would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in headerfiles.
How widely used: Seldom. This style of type definition is seen as poor coding style.

9 Affected subclause: 9.5
Change: In C++, the syntax for function definition excludes the “old-style” C function. In C, “old-style” syntax isallowed, but deprecated as “obsolescent”.
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common in old programs, but already known to be obsolescent.

10 Affected subclause: 9.4.2
Change: In C++, designated initialization support is restricted compared to the corresponding functionality in C. InC++, designators for non-static data members must be specified in declaration order, designators for array elementsand nested designators are not supported, and designated and non-designated initializers cannot be mixed in the sameinitializer list.
Example:
struct A { int x, y; };
struct B { struct A a; };
struct A a = {.y = 1, .x = 2}; // valid C, invalid C++
§ C.6.6 1774

© ISO/IEC N4910

int arr[3] = {[1] = 5}; // valid C, invalid C++
struct B b = {.a.x = 0}; // valid C, invalid C++
struct A c = {.x = 1, 2}; // valid C, invalid C++
Rationale: In C++, members are destroyed in reverse construction order and the elements of an initializer list areevaluated in lexical order, so field initializers must be specified in order. Array designators conflict with lambda-
expression syntax. Nested designators are seldom used.
Effect on original feature: Deletion of feature that is incompatible with C++.
Difficulty of converting: Syntactic transformation.
How widely used: Out-of-order initializers are common. The other features are seldom used.

11 Affected subclause: 9.4.3
Change: In C++, when initializing an array of character with a string, the number of characters in the string (includingthe terminating ’\0’) must not exceed the number of elements in the array. In C, an array can be initialized with a stringeven if the array is not large enough to contain the string-terminating ’\0’.
Example:
char array[4] = "abcd"; // valid C, invalid C++
Rationale: When these non-terminated arrays are manipulated by standard string functions, there is potential for majorcatastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to contain thestring terminating ’\0’.
How widely used: Seldom. This style of array initialization is seen as poor coding style.

12 Affected subclause: 9.7.1
Change: C++ objects of enumeration type can only be assigned values of the same enumeration type. In C, objects ofenumeration type can be assigned values of any integral type.
Example:
enum color { red, blue, green };
enum color c = 1; // valid C, invalid C++
Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be automaticallycorrected by applying an explicit cast.)
How widely used: Common.

13 Affected subclause: 9.7.1
Change: In C++, the type of an enumerator is its enumeration. In C, the type of an enumerator is int.
Example:
enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C++/* and sizeof(int) is not necessarily equal to sizeof(e) */
Rationale: In C++, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom. The only time this affects existing C code is when the size of an enumerator is taken.Taking the size of an enumerator is not a common C coding practice.
C.6.7 Clause 11: classes [diff.class]

1 Affected subclause: 11.3 [see also 9.2.4]
Change: In C++, a class declaration introduces the class name into the scope where it is declared and hides any object,function or other declaration of that name in an enclosing scope. In C, an inner scope declaration of a struct tag namenever hides the name of an object or function in an outer scope.
Example:
int x[99];
void f() {

struct x { int a; };

§ C.6.7 1775

© ISO/IEC N4910

sizeof(x); /* size of the array in C *//* size of the struct in C++ */
}

Rationale: This is one of the few incompatibilities between C and C++ that can be attributed to the new C++ name spacedefinition where a name can be declared as a type and as a non-type in a single scope causing the non-type name to hidethe type name and requiring that the keywords class, struct, union or enum be used to refer to the type name. Thisnew name space definition provides important notational conveniences to C++ programmers and helps making the useof the user-defined types as similar as possible to the use of fundamental types. The advantages of the new name spacedefinition were judged to outweigh by far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at global scope, the
:: C++ operator can be used. If the hidden name is at block scope, either the type or the struct tag has to be renamed.
How widely used: Seldom.

2 Affected subclause: 11.4.5.3
Change: Copying volatile objects.
The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a copy of avolatile lvalue. For example, the following is valid in ISO C:
struct X { int i; };
volatile struct X x1 = {0};
struct X x2 = x1; // invalid C++
struct X x3;
x3 = x1; // also invalid C++
Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X& would greatlycomplicate the generation of efficient code for class objects. Discussion of providing two alternative signatures forthese implicitly-defined operations raised unanswered concerns about creating ambiguities and complicating the rulesthat specify the formation of these operators according to the bases and members.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a user-declaredconstructor or assignment must be provided. If non-volatile semantics are required, an explicit const_cast can beused.
How widely used: Seldom.

3 Affected subclause: 11.4.10
Change: Bit-fields of type plain int are signed.
Rationale: Leaving the choice of signedness to implementations could lead to inconsistent definitions of templatespecializations. For consistency, the implementation freedom was eliminated for non-dependent types, too.
Effect on original feature: The choice is implementation-defined in C, but not so in C++.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

4 Affected subclause: 11.4.12
Change: In C++, the name of a nested class is local to its enclosing class. In C the name of the nested class belongs tothe same scope as the name of the outermost enclosing class.
Example:
struct X {

struct Y { /* ... */ } y;
};
struct Y yy; // valid C, invalid C++
Rationale: C++ classes have member functions which require that classes establish scopes. The C rule would leaveclasses as an incomplete scope mechanism which would prevent C++ programmers from maintaining locality within aclass. A coherent set of scope rules for C++ based on the C rule would be very complicated and C++ programmers wouldbe unable to predict reliably the meanings of nontrivial examples involving nested or local functions.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of the enclosingstruct, the struct tag can be declared in the scope of the enclosing struct, before the enclosing struct is defined. Example:
struct Y; // struct Y and struct X are at the same scope

§ C.6.7 1776

© ISO/IEC N4910

struct X {
struct Y { /* ... */ } y;

};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of the enclosingstruct can be exported to the scope of the enclosing struct. Note: this is a consequence of the difference in scope rules,which is documented in 6.4.
How widely used: Seldom.

5 Affected subclause: 6.5.2
Change: In C++, a typedef-name may not be redeclared in a class definition after being used in that definition.
Example:
typedef int I;
struct S {

I i;
int I; // valid C, invalid C++

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can createconfusion for C++ programmers as to what the meaning of I really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be renamed.
How widely used: Seldom.
C.6.8 Clause 15: preprocessing directives [diff.cpp]

1 Affected subclause: 15.11
Change: Whether __STDC__ is defined and if so, what its value is, are implementation-defined.
Rationale: C++ is not identical to ISO C. Mandating that __STDC__ be defined would require that translators make anincorrect claim.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Programs and headers that reference __STDC__ are quite common.
C.7 C standard library [diff.library]
C.7.1 General [diff.library.general]

1 Subclause C.7 summarizes the explicit changes in headers, definitions, declarations, or behavior between the C standardlibrary in the C standard and the parts of the C++ standard library that were included from the C standard library.
C.7.2 Modifications to headers [diff.mods.to.headers]

1 For compatibility with the C standard library, the C++ standard library provides the C headers enumerated in 17.14.
2 There are no C++ headers for the C standard library’s headers <stdnoreturn.h> and <threads.h>, nor are these headersfrom the C standard library headers themselves part of C++.
3 The C headers <complex.h> and <tgmath.h> do not contain any of the content from the C standard library and insteadmerely include other headers from the C++ standard library.
C.7.3 Modifications to definitions [diff.mods.to.definitions]
C.7.3.1 Types char16_t and char32_t [diff.char16]

1 The types char16_t and char32_t are distinct types rather than typedefs to existing integral types. The tokens char16_tand char32_t are keywords in C++ (5.11). They do not appear as macro or type names defined in <cuchar> (23.5.5).
C.7.3.2 Type wchar_t [diff.wchar.t]

1 The type wchar_t is a distinct type rather than a typedef to an existing integral type. The token wchar_t is a keyword inC++ (5.11). It does not appear as a macro or type name defined in any of <cstddef> (17.2.1), <cstdlib> (17.2.2), or
<cwchar> (23.5.4).
C.7.3.3 Header <assert.h> [diff.header.assert.h]

1 The token static_assert is a keyword in C++. It does not appear as a macro name defined in <cassert> (19.3.2).

§ C.7.3.3 1777

© ISO/IEC N4910

C.7.3.4 Header <iso646.h> [diff.header.iso646.h]
1 The tokens and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, and xor_eq are keywords in C++ (5.11),and are not introduced as macros by <iso646.h> (17.14.3).
C.7.3.5 Header <stdalign.h> [diff.header.stdalign.h]

1 The token alignas is a keyword in C++ (5.11), and is not introduced as a macro by <stdalign.h> (17.14.4).
C.7.3.6 Header <stdbool.h> [diff.header.stdbool.h]

1 The tokens bool, true, and false are keywords in C++ (5.11), and are not introduced as macros by <stdbool.h>(17.14.5).
C.7.3.7 Macro NULL [diff.null]

1 The macro NULL, defined in any of <clocale> (30.5.1), <cstddef> (17.2.1), <cstdio> (31.13.1), <cstdlib> (17.2.2),
<cstring> (23.5.3), <ctime> (29.14), or <cwchar> (23.5.4), is an implementation-defined null pointer constant inC++ (17.2).
C.7.4 Modifications to declarations [diff.mods.to.declarations]

1 Header <cstring> (23.5.3): The following functions have different declarations:
—(1.1) strchr

—(1.2) strpbrk

—(1.3) strrchr

—(1.4) strstr

—(1.5) memchr

Subclause 23.5.3 describes the changes.
2 Header <cwchar> (23.5.4): The following functions have different declarations:

—(2.1) wcschr

—(2.2) wcspbrk

—(2.3) wcsrchr

—(2.4) wcsstr

—(2.5) wmemchr

Subclause 23.5.4 describes the changes.
3 Header <cstddef> (17.2.1) declares the names nullptr_t, byte, and to_integer, and the operators and operatortemplates in (17.2.5), in addition to the names declared in <stddef.h> (17.14) in the C standard library.
C.7.5 Modifications to behavior [diff.mods.to.behavior]
C.7.5.1 General [diff.mods.to.behavior.general]

1 Header <cstdlib> (17.2.2): The following functions have different behavior:
—(1.1) atexit

—(1.2) exit

—(1.3) abort

Subclause 17.5 describes the changes.
2 Header <csetjmp> (17.13.3): The following functions have different behavior:

—(2.1) longjmp

Subclause 17.13.3 describes the changes.
C.7.5.2 Macro offsetof(type, member-designator) [diff.offsetof]

1 The macro offsetof, defined in <cstddef> (17.2.1), accepts a restricted set of type arguments in C++. Subclause 17.2.4describes the change.

§ C.7.5.2 1778

© ISO/IEC N4910

C.7.5.3 Memory allocation functions [diff.malloc]
1 The functions aligned_alloc, calloc, malloc, and realloc are restricted in C++. Subclause 20.2.11 describes thechanges.

§ C.7.5.3 1779

© ISO/IEC N4910

Annex D (normative)
Compatibility features [depr]
D.1 General [depr.general]

1 This Annex describes features of the C++ Standard that are specified for compatibility with existing implementations.
2 These are deprecated features, where deprecated is defined as: Normative for the current revision of C++, but havingbeen identified as a candidate for removal from future revisions. An implementation may declare library names andentities described in this Clause with the deprecated attribute (9.12.4).
D.2 Arithmetic conversion on enumerations [depr.arith.conv.enum]

1 The ability to apply the usual arithmetic conversions (7.4) on operands where one is of enumeration type and the otheris of a different enumeration type or a floating-point type is deprecated.
[Note 1: Three-way comparisons (7.6.8) between such operands are ill-formed. —end note]
[Example 1:
enum E1 { e };
enum E2 { f };
bool b = e <= 3.7; // deprecated
int k = f - e; // deprecated
auto cmp = e <=> f; // error
— end example]
D.3 Implicit capture of *this by reference [depr.capture.this]

1 For compatibility with prior revisions of C++, a lambda-expression with capture-default = (7.5.5.3) may implicitlycapture *this by reference.
[Example 1:
struct X {

int x;
void foo(int n) {
auto f = [=]() { x = n; }; // deprecated: x means this->x, not a copy thereof
auto g = [=, this]() { x = n; }; // recommended replacement

}
};

—end example]
D.4 Array comparisons [depr.array.comp]

1 Equality and relational comparisons (7.6.10, 7.6.9) between two operands of array type are deprecated.
[Note 1: Three-way comparisons (7.6.8) between such operands are ill-formed. —end note]
[Example 1:
int arr1[5];
int arr2[5];
bool same = arr1 == arr2; // deprecated, same as &arr1[0] == &arr2[0],// does not compare array contents
auto cmp = arr1 <=> arr2; // error
— end example]
D.5 Deprecated volatile types [depr.volatile.type]

1 Postfix ++ and -- expressions (7.6.1.6) and prefix ++ and -- expressions (7.6.2.3) of volatile-qualified arithmetic andpointer types are deprecated.
[Example 1:
volatile int velociraptor;

§ D.5 1780

© ISO/IEC N4910

++velociraptor; // deprecated
—end example]

2 Certain assignments where the left operand is a volatile-qualified non-class type are deprecated; see 7.6.19.
[Example 2:
int neck, tail;
volatile int brachiosaur;
brachiosaur = neck; // OK
tail = brachiosaur; // OK
tail = brachiosaur = neck; // deprecated
brachiosaur += neck; // deprecated
brachiosaur = brachiosaur + neck; // OK
—end example]

3 A function type (9.3.4.6) with a parameter with volatile-qualified type or with a volatile-qualified return type isdeprecated.
[Example 3:
volatile struct amber jurassic(); // deprecated
void trex(volatile short left_arm, volatile short right_arm); // deprecated
void fly(volatile struct pterosaur* pteranodon); // OK
—end example]

4 A structured binding (9.6) of a volatile-qualified type is deprecated.
[Example 4:
struct linhenykus { short forelimb; };
void park(linhenykus alvarezsauroid) {

volatile auto [what_is_this] = alvarezsauroid; // deprecated// ...
}

—end example]
D.6 Redeclaration of static constexpr data members [depr.static.constexpr]

1 For compatibility with prior revisions of C++, a constexpr static data member may be redundantly redeclared outsidethe class with no initializer. This usage is deprecated.
[Example 1:
struct A {

static constexpr int n = 5; // definition (declaration in C++ 2014)
};

constexpr int A::n; // redundant declaration (definition in C++ 2014)
— end example]
D.7 Non-local use of TU-local entities [depr.local]

1 A declaration of a non-TU-local entity that is an exposure (6.6) is deprecated.
[Note 1: Such a declaration in an importable module unit is ill-formed. —end note]
[Example 1:
namespace {

struct A {
void f() {}

};
}
A h(); // deprecated: not internal linkage
inline void g() {A().f();} // deprecated: inline and not internal linkage
—end example]

§ D.7 1781

© ISO/IEC N4910

D.8 Implicit declaration of copy functions [depr.impldec]
1 The implicit definition of a copy constructor (11.4.5.3) as defaulted is deprecated if the class has a user-declared copyassignment operator or a user-declared destructor (11.4.7). The implicit definition of a copy assignment operator (11.4.6)as defaulted is deprecated if the class has a user-declared copy constructor or a user-declared destructor. It is possiblethat future versions of C++ will specify that these implicit definitions are deleted (9.5.3).
D.9 template keyword before qualified names [depr.template.template]

1 The use of the keyword template before the qualified name of a class or alias template without a template argument listis deprecated.
D.10 Requires paragraph [depr.res.on.required]

1 In addition to the elements specified in 16.3.2.4, descriptions of function semantics may also contain a Requires: elementto denote the preconditions for calling a function.
2 Violation of any preconditions specified in a function’s Requires: element results in undefined behavior unless thefunction’s Throws: element specifies throwing an exception when the precondition is violated.
D.11 Relational operators [depr.relops]

1 The header <utility> (22.2.1) has the following additions:
namespace std::rel_ops {

template<class T> bool operator!=(const T&, const T&);
template<class T> bool operator> (const T&, const T&);
template<class T> bool operator<=(const T&, const T&);
template<class T> bool operator>=(const T&, const T&);

}

2 To avoid redundant definitions of operator!= out of operator== and operators >, <=, and >= out of operator<, thelibrary provides the following:
template<class T> bool operator!=(const T& x, const T& y);

3 Requires: Type T is Cpp17EqualityComparable (Table 27).
4 Returns: !(x == y).

template<class T> bool operator>(const T& x, const T& y);

5 Requires: Type T is Cpp17LessThanComparable (Table 28).
6 Returns: y < x.

template<class T> bool operator<=(const T& x, const T& y);

7 Requires: Type T is Cpp17LessThanComparable (Table 28).
8 Returns: !(y < x).

template<class T> bool operator>=(const T& x, const T& y);

9 Requires: Type T is Cpp17LessThanComparable (Table 28).
10 Returns: !(x < y).
D.12 char* streams [depr.str.strstreams]
D.12.1 Header <strstream> synopsis [depr.strstream.syn]

1 The header <strstream> defines types that associate stream buffers with character array objects and assist reading andwriting such objects.
namespace std {

class strstreambuf;
class istrstream;
class ostrstream;
class strstream;

}

§ D.12.1 1782

© ISO/IEC N4910

D.12.2 Class strstreambuf [depr.strstreambuf]
D.12.2.1 General [depr.strstreambuf.general]
namespace std {

class strstreambuf : public basic_streambuf<char> {
public:
strstreambuf() : strstreambuf(0) {}
explicit strstreambuf(streamsize alsize_arg);
strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = nullptr);
strstreambuf(const char* gnext_arg, streamsize n);

strstreambuf(signed char* gnext_arg, streamsize n,
signed char* pbeg_arg = nullptr);

strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char* pbeg_arg = nullptr);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

virtual ~strstreambuf();

void freeze(bool freezefl = true);
char* str();
int pcount();

protected:
int_type overflow (int_type c = EOF) override;
int_type pbackfail(int_type c = EOF) override;
int_type underflow() override;
pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out) override;
pos_type seekpos(pos_type sp,

ios_base::openmode which = ios_base::in | ios_base::out) override;
streambuf* setbuf(char* s, streamsize n) override;

private:
using strstate = T1; // exposition only
static const strstate allocated; // exposition only
static const strstate constant; // exposition only
static const strstate dynamic; // exposition only
static const strstate frozen; // exposition only
strstate strmode; // exposition only
streamsize alsize; // exposition only
void* (*palloc)(size_t); // exposition only
void (*pfree)(void*); // exposition only

};
}

1 The class strstreambuf associates the input sequence, and possibly the output sequence, with an object of somecharacter array type, whose elements store arbitrary values. The array object has several attributes.
2 [Note 1: For the sake of exposition, these are represented as elements of a bitmask type (indicated here as T1) called strstate. Theelements are:

—(2.1) allocated, set when a dynamic array object has been allocated, and hence will be freed by the destructor for the strstreambufobject;
—(2.2) constant, set when the array object has const elements, so the output sequence cannot be written;
—(2.3) dynamic, set when the array object is allocated (or reallocated) as necessary to hold a character sequence that can change inlength;
—(2.4) frozen, set when the program has requested that the array object not be altered, reallocated, or freed.

—end note]
3 [Note 2: For the sake of exposition, the maintained data is presented here as:

—(3.1) strstate strmode, the attributes of the array object associated with the strstreambuf object;

§ D.12.2.1 1783

© ISO/IEC N4910

—(3.2) int alsize, the suggested minimum size for a dynamic array object;
—(3.3) void* (*palloc)(size_t), points to the function to call to allocate a dynamic array object;
—(3.4) void (*pfree)(void*), points to the function to call to free a dynamic array object.

—end note]
4 Each object of class strstreambuf has a seekable area, delimited by the pointers seeklow and seekhigh. If gnext is anull pointer, the seekable area is undefined. Otherwise, seeklow equals gbeg and seekhigh is either pend, if pend is nota null pointer, or gend.
D.12.2.2 strstreambuf constructors [depr.strstreambuf.cons]

explicit strstreambuf(streamsize alsize_arg);

1 Effects: Initializes the base class with streambuf(). The postconditions of this function are indicated in Table 143.
Table 143: strstreambuf(streamsize) effects [tab:depr.strstreambuf.cons.sz]

Element Value
strmode dynamic
alsize alsize_arg
palloc a null pointer
pfree a null pointer

strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));

2 Effects: Initializes the base class with streambuf(). The postconditions of this function are indicated in Table 144.
Table 144: strstreambuf(void* (*)(size_t), void (*)(void*)) effects [tab:depr.strstreambuf.cons.alloc]

Element Value
strmode dynamic
alsize an unspecified value
palloc palloc_arg
pfree pfree_arg

strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = nullptr);
strstreambuf(signed char* gnext_arg, streamsize n,

signed char* pbeg_arg = nullptr);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char* pbeg_arg = nullptr);

3 Effects: Initializes the base class with streambuf(). The postconditions of this function are indicated in Table 145.
Table 145: strstreambuf(charT*, streamsize, charT*) effects [tab:depr.strstreambuf.cons.ptr]

Element Value
strmode 0
alsize an unspecified value
palloc a null pointer
pfree a null pointer

4 gnext_arg shall point to the first element of an array object whose number of elements N is determined as follows:
—(4.1) If n > 0, N is n.
—(4.2) If n == 0, N is std::strlen(gnext_arg).
—(4.3) If n < 0, N is INT_MAX.314

314) The function signature strlen(const char*) is declared in <cstring> (23.5.3). The macro INT_MAX is defined in <climits> (17.3.6).
§ D.12.2.2 1784

© ISO/IEC N4910

5 If pbeg_arg is a null pointer, the function executes:
setg(gnext_arg, gnext_arg, gnext_arg + N);

6 Otherwise, the function executes:
setg(gnext_arg, gnext_arg, pbeg_arg);
setp(pbeg_arg, pbeg_arg + N);

strstreambuf(const char* gnext_arg, streamsize n);
strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

7 Effects: Behaves the same as strstreambuf((char*)gnext_arg,n), except that the constructor also sets constantin strmode.
virtual ~strstreambuf();

8 Effects: Destroys an object of class strstreambuf. The function frees the dynamically allocated array objectonly if (strmode & allocated) != 0 and (strmode & frozen) == 0. (D.12.2.4 describes how a dynamicallyallocated array object is freed.)
D.12.2.3 Member functions [depr.strstreambuf.members]

void freeze(bool freezefl = true);

1 Effects: If strmode & dynamic is nonzero, alters the freeze status of the dynamic array object as follows:
—(1.1) If freezefl is true, the function sets frozen in strmode.
—(1.2) Otherwise, it clears frozen in strmode.

char* str();

2 Effects: Calls freeze(), then returns the beginning pointer for the input sequence, gbeg.
3 Remarks: The return value can be a null pointer.

int pcount() const;

4 Effects: If the next pointer for the output sequence, pnext, is a null pointer, returns zero. Otherwise, returns thecurrent effective length of the array object as the next pointer minus the beginning pointer for the output sequence,
pnext - pbeg.

D.12.2.4 strstreambuf overridden virtual functions [depr.strstreambuf.virtuals]

int_type overflow(int_type c = EOF) override;

1 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:
—(1.1) If c != EOF and if either the output sequence has a write position available or the function makes a writeposition available (as described below), assigns c to *pnext++.
Returns (unsigned char)c.

—(1.2) If c == EOF, there is no character to append.
Returns a value other than EOF.

2 Returns EOF to indicate failure.
3 Remarks: The function can alter the number of write positions available as a result of any call.
4 To make a write position available, the function reallocates (or initially allocates) an array object with a sufficientnumber of elements n to hold the current array object (if any), plus at least one additional write position. Howmany additional write positions are made available is otherwise unspecified.If palloc is not a null pointer, thefunction calls (*palloc)(n) to allocate the new dynamic array object. Otherwise, it evaluates the expression new

charT[n]. In either case, if the allocation fails, the function returns EOF. Otherwise, it sets allocated in strmode.
5 To free a previously existing dynamic array object whose first element address is p: If pfree is not a null pointer,the function calls (*pfree)(p). Otherwise, it evaluates the expression delete[]p.
6 If (strmode & dynamic) == 0, or if (strmode & frozen) != 0, the function cannot extend the array (reallocateit with greater length) to make a write position available.

§ D.12.2.4 1785

© ISO/IEC N4910

7 Recommended practice: An implementation should consider alsize in making the decision how many additionalwrite positions to make available.
int_type pbackfail(int_type c = EOF) override;

8 Puts back the character designated by c to the input sequence, if possible, in one of three ways:
—(8.1) If c != EOF, if the input sequence has a putback position available, and if (char)c == gnext[-1], assigns

gnext - 1 to gnext.
Returns c.

—(8.2) If c != EOF, if the input sequence has a putback position available, and if strmode & constant is zero,assigns c to *--gnext.
Returns c.

—(8.3) If c == EOF and if the input sequence has a putback position available, assigns gnext - 1 to gnext.
Returns a value other than EOF.

9 Returns EOF to indicate failure.
10 Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is chosen. Thefunction can alter the number of putback positions available as a result of any call.

int_type underflow() override;

11 Effects: Reads a character from the input sequence, if possible, without moving the stream position past it, asfollows:
—(11.1) If the input sequence has a read position available, the function signals success by returning (unsigned

char)*gnext.
—(11.2) Otherwise, if the current write next pointer pnext is not a null pointer and is greater than the current readend pointer gend, makes a read position available by assigning to gend a value greater than gnext and nogreater than pnext.
Returns (unsigned char)*gnext.

12 Returns EOF to indicate failure.
13 Remarks: The function can alter the number of read positions available as a result of any call.

pos_type seekoff(off_type off, seekdir way, openmode which = in | out) override;

14 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table 146.
Table 146: seekoff positioning [tab:depr.strstreambuf.seekoff.pos]
Conditions Result

(which & ios::in) != 0 positions the input sequence
(which & ios::out) != 0 positions the output sequence
(which & (ios::in | ios::out)) ==
(ios::in | ios::out) and either
way == ios::beg or way == ios::end

positions both the input and the output sequences

Otherwise the positioning operation fails.
15 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Otherwise, thefunction determines newoff as indicated in Table 147.
16 If (newoff + off) < (seeklow - xbeg) or (seekhigh - xbeg) < (newoff + off), the positioning operationfails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.
17 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that stores theresultant stream position, if possible. If the positioning operation fails, or if the constructed object cannot representthe resultant stream position, the return value is pos_type(off_type(-1)).

§ D.12.2.4 1786

© ISO/IEC N4910

Table 147: newoff values [tab:depr.strstreambuf.seekoff.newoff]
Condition newoff Value

way == ios::beg 0
way == ios::cur the next pointer minus the beginningpointer (xnext - xbeg).
way == ios::end seekhigh minus the beginningpointer (seekhigh - xbeg).

pos_type seekpos(pos_type sp, ios_base::openmode which = ios_base::in | ios_base::out) override;

18 Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to the streamposition stored in sp (as described below).
—(18.1) If (which & ios::in) != 0, positions the input sequence.
—(18.2) If (which & ios::out) != 0, positions the output sequence.
—(18.3) If the function positions neither sequence, the positioning operation fails.

19 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Otherwise, thefunction determines newoff from sp.offset():
—(19.1) If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh -

seeklow), the positioning operation fails
—(19.2) Otherwise, the function adds newoff to the beginning pointer xbeg and stores the result in the next pointer

xnext.
20 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that stores theresultant stream position, if possible. If the positioning operation fails, or if the constructed object cannot representthe resultant stream position, the return value is pos_type(off_type(-1)).

streambuf<char>* setbuf(char* s, streamsize n) override;

21 Effects: Behavior is implementation-defined, except that setbuf(0, 0) has no effect.
D.12.3 Class istrstream [depr.istrstream]
D.12.3.1 General [depr.istrstream.general]
namespace std {

class istrstream : public basic_istream<char> {
public:
explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);
virtual ~istrstream();

strstreambuf* rdbuf() const;
char* str();

private:
strstreambuf sb; // exposition only

};
}

1 The class istrstream supports the reading of objects of class strstreambuf. It supplies a strstreambuf object tocontrol the associated array object. For the sake of exposition, the maintained data is presented here as:
—(1.1) sb, the strstreambuf object.

D.12.3.2 istrstream constructors [depr.istrstream.cons]

explicit istrstream(const char* s);
explicit istrstream(char* s);

1 Effects: Initializes the base class with istream(&sb) and sb with strstreambuf(s, 0). s shall designate thefirst element of an ntbs.
§ D.12.3.2 1787

© ISO/IEC N4910

istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);

2 Effects: Initializes the base class with istream(&sb) and sb with strstreambuf(s, n). s shall designate thefirst element of an array whose length is n elements, and n shall be greater than zero.
D.12.3.3 Member functions [depr.istrstream.members]

strstreambuf* rdbuf() const;

1 Returns: const_cast<strstreambuf*>(&sb).
char* str();

2 Returns: rdbuf()->str().
D.12.4 Class ostrstream [depr.ostrstream]
D.12.4.1 General [depr.ostrstream.general]
namespace std {

class ostrstream : public basic_ostream<char> {
public:
ostrstream();
ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);
virtual ~ostrstream();

strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
char* str();
int pcount() const;

private:
strstreambuf sb; // exposition only

};
}

1 The class ostrstream supports the writing of objects of class strstreambuf. It supplies a strstreambuf object tocontrol the associated array object. For the sake of exposition, the maintained data is presented here as:
—(1.1) sb, the strstreambuf object.

D.12.4.2 ostrstream constructors [depr.ostrstream.cons]

ostrstream();

1 Effects: Initializes the base class with ostream(&sb) and sb with strstreambuf().
ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);

2 Effects: Initializes the base class with ostream(&sb), and sb with one of two constructors:
—(2.1) If (mode & app) == 0, then s shall designate the first element of an array of n elements.
The constructor is strstreambuf(s, n, s).

—(2.2) If (mode & app) != 0, then s shall designate the first element of an array of n elements that contains an ntbswhose first element is designated by s. The constructor is strstreambuf(s, n, s + std::strlen(s)).315
D.12.4.3 Member functions [depr.ostrstream.members]

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)&sb.
void freeze(bool freezefl = true);

2 Effects: Calls rdbuf()->freeze(freezefl).
char* str();

3 Returns: rdbuf()->str().
315) The function signature strlen(const char*) is declared in <cstring> (23.5.3).
§ D.12.4.3 1788

© ISO/IEC N4910

int pcount() const;

4 Returns: rdbuf()->pcount().
D.12.5 Class strstream [depr.strstream]
D.12.5.1 General [depr.strstream.general]
namespace std {

class strstream
: public basic_iostream<char> {

public:// types
using char_type = char;
using int_type = char_traits<char>::int_type;
using pos_type = char_traits<char>::pos_type;
using off_type = char_traits<char>::off_type;

// constructors/destructor
strstream();
strstream(char* s, int n,

ios_base::openmode mode = ios_base::in|ios_base::out);
virtual ~strstream();

// members
strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
int pcount() const;
char* str();

private:
strstreambuf sb; // exposition only

};
}

1 The class strstream supports reading and writing from objects of class strstreambuf. It supplies a strstreambufobject to control the associated array object. For the sake of exposition, the maintained data is presented here as:
—(1.1) sb, the strstreambuf object.

D.12.5.2 strstream constructors [depr.strstream.cons]

strstream();

1 Effects: Initializes the base class with iostream(&sb).
strstream(char* s, int n,

ios_base::openmode mode = ios_base::in|ios_base::out);

2 Effects: Initializes the base class with iostream(&sb), and sb with one of the two constructors:
—(2.1) If (mode & app) == 0, then s shall designate the first element of an array of n elements. The constructor is

strstreambuf(s,n,s).
—(2.2) If (mode & app) != 0, then s shall designate the first element of an array of n elements that contains anntbs whose first element is designated by s. The constructor is strstreambuf(s,n,s + std::strlen(s)).

D.12.5.3 strstream destructor [depr.strstream.dest]

virtual ~strstream();
1 Effects: Destroys an object of class strstream.
D.12.5.4 strstream operations [depr.strstream.oper]

strstreambuf* rdbuf() const;

1 Returns: const_cast<strstreambuf*>(&sb).
void freeze(bool freezefl = true);

2 Effects: Calls rdbuf()->freeze(freezefl).
§ D.12.5.4 1789

© ISO/IEC N4910

char* str();

3 Returns: rdbuf()->str().
int pcount() const;

4 Returns: rdbuf()->pcount().
D.13 The default allocator [depr.default.allocator]

1 The following member is defined in addition to those specified in 20.2.9:
namespace std {

template<class T> class allocator {
public:
using is_always_equal = true_type;

};
}

D.14 Deprecated polymorphic_allocator member function [depr.mem.poly.allocator.mem]
1 The following member is declared in addition to those members specified in 20.4.3.3:

namespace std::pmr {
template<class Tp = byte>
class polymorphic_allocator {
public:
template <class T>

void destroy(T* p);
};

}

template<class T>
void destroy(T* p);

2 Effects: As if by p->~T().
D.15 Deprecated type traits [depr.meta.types]

1 The header <type_traits> (21.3.3) has the following addition:
namespace std {

template<class T> struct is_pod;
template<class T> inline constexpr bool is_pod_v = is_pod<T>::value;
template<size_t Len, size_t Align = default-alignment> // see below
struct aligned_storage;

template<size_t Len, size_t Align = default-alignment> // see below
using aligned_storage_t = typename aligned_storage<Len, Align>::type;

template<size_t Len, class... Types>
struct aligned_union;

template<size_t Len, class... Types>
using aligned_union_t = typename aligned_union<Len, Types...>::type;

}

2 The behavior of a program that adds specializations for any of the templates defined in this subclause is undefined,unless explicitly permitted by the specification of the corresponding template.
template<class T> struct is_pod;

3 Requires: remove_all_extents_t<T> shall be a complete type or cv void.
4 is_pod<T> is a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of true_type if T is a POD type, and

false_type otherwise. A POD class is a class that is both a trivial class and a standard-layout class, and has nonon-static data members of type non-POD class (or array thereof). A POD type is a scalar type, a POD class, anarray of such a type, or a cv-qualified version of one of these types.
5 [Note 1: It is unspecified whether a closure type (7.5.5.2) is a POD type. —end note]

§ D.15 1790

© ISO/IEC N4910

template<size_t Len, size_t Align = default-alignment>
struct aligned_storage;

6 The value of default-alignment is the most stringent alignment requirement for any object type whose size isno greater than Len (6.8).
7 Mandates: Len is not zero. Align is equal to alignof(T) for some type T or to default-alignment.
8 The member typedef type is a trivial standard-layout type suitable for use as uninitialized storage for any objectwhose size is at most Len and whose alignment is a divisor of Align.
9 [Note 2: Uses of aligned_storage<Len, Align>::type can be replaced by an array std::byte[Len] declaredwith alignas(Align).—end note]
10 [Note 3: A typical implementation would define aligned_storage as:

template<size_t Len, size_t Alignment>
struct aligned_storage {
typedef struct {

alignas(Alignment) unsigned char __data[Len];
} type;

};

—end note]
template<size_t Len, class... Types>

struct aligned_union;

11 Mandates: At least one type is provided. Each type in the template parameter pack Types is a complete objecttype.
12 The member typedef type is a trivial standard-layout type suitable for use as uninitialized storage for any objectwhose type is listed in Types; its size shall be at least Len. The static member alignment_value is an integralconstant of type size_t whose value is the strictest alignment of all types listed in Types.
D.16 Tuple [depr.tuple]

1 The header <tuple> (22.4.2) has the following additions:
namespace std {

template<class T> class tuple_size<volatile T>;
template<class T> class tuple_size<const volatile T>;

template<size_t I, class T> class tuple_element<I, volatile T>;
template<size_t I, class T> class tuple_element<I, const volatile T>;

}

template<class T> class tuple_size<volatile T>;
template<class T> class tuple_size<const volatile T>;

2 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-formed whentreated as an unevaluated operand (7.2.3), then specializations of each of the two templatesmeet theCpp17TransformationTraitrequirements with a base characteristic of integral_constant<size_t, TS::value>. Otherwise, they have nomember value.
3 Access checking is performed as if in a context unrelated to TS and T. Only the validity of the immediate contextof the expression is considered.
4 In addition to being available via inclusion of the <tuple> (22.4.2) header, the two templates are available whenany of the headers <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are included.

template<size_t I, class T> class tuple_element<I, volatile T>;
template<size_t I, class T> class tuple_element<I, const volatile T>;

5 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then specializations of each of the twotemplates meet the Cpp17TransformationTrait requirements with a member typedef type that names the followingtype:
—(5.1) for the first specialization, add_volatile_t<TE>, and
—(5.2) for the second specialization, add_cv_t<TE>.

§ D.16 1791

© ISO/IEC N4910

6 In addition to being available via inclusion of the <tuple> (22.4.2) header, the two templates are available whenany of the headers <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are included.
D.17 Variant [depr.variant]

1 The header <variant> (22.6.2) has the following additions:
namespace std {

template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;

template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

}

template<class T> class variant_size<volatile T>;
template<class T> class variant_size<const volatile T>;

2 Let VS denote variant_size<T> of the cv-unqualified type T. Then specializations of each of the two tem-plates meet the Cpp17UnaryTypeTrait requirements with a base characteristic of integral_constant<size_t,
VS::value>.

template<size_t I, class T> class variant_alternative<I, volatile T>;
template<size_t I, class T> class variant_alternative<I, const volatile T>;

3 Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then specializations of each of thetwo templates meet the Cpp17TransformationTrait requirements with a member typedef type that names thefollowing type:
—(3.1) for the first specialization, add_volatile_t<VA::type>, and
—(3.2) for the second specialization, add_cv_t<VA::type>.

D.18 Deprecated iterator class template [depr.iterator]
1 The header <iterator> (25.2) has the following addition:

namespace std {
template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>
struct iterator {
using iterator_category = Category;
using value_type = T;
using difference_type = Distance;
using pointer = Pointer;
using reference = Reference;

};
}

2 The iterator template may be used as a base class to ease the definition of required types for new iterators.
3 [Note 1: If the new iterator type is a class template, then these aliases will not be visible from within the iterator class’s templatedefinition, but only to callers of that class. —end note]
4 [Example 1: If a C++ program wants to define a bidirectional iterator for some data structure containing double and such that it workson a large memory model of the implementation, it can do so with:

class MyIterator :
public iterator<bidirectional_iterator_tag, double, long, T*, T&> {// code implementing ++, etc.

};

—end example]
D.19 Deprecated move_iterator access [depr.move.iter.elem]

1 The following member is declared in addition to those members specified in 25.5.3.6:

§ D.19 1792

© ISO/IEC N4910

namespace std {
template<class Iterator>
class move_iterator {
public:
constexpr pointer operator->() const;

};
}

constexpr pointer operator->() const;

2 Returns: current.
D.20 Deprecated shared_ptr atomic access [depr.util.smartptr.shared.atomic]

1 The header <memory> (20.2.2) has the following additions:
namespace std {

template<class T>
bool atomic_is_lock_free(const shared_ptr<T>* p);

template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);

template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template<class T>
bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template<class T>
bool atomic_compare_exchange_weak_explicit(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template<class T>
bool atomic_compare_exchange_strong_explicit(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

}

2 Concurrent access to a shared_ptr object from multiple threads does not introduce a data race if the access is doneexclusively via the functions in this subclause and the instance is passed as their first argument.
3 The meaning of the arguments of type memory_order is explained in 33.5.4.

template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p);

4 Requires: p shall not be null.
5 Returns: true if atomic access to *p is lock-free, false otherwise.
6 Throws: Nothing.

template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p);

7 Requires: p shall not be null.
8 Returns: atomic_load_explicit(p, memory_order::seq_cst).
9 Throws: Nothing.

§ D.20 1793

© ISO/IEC N4910

template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

10 Requires: p shall not be null.
11 Requires: mo shall not be memory_order::release or memory_order::acq_rel.
12 Returns: *p.
13 Throws: Nothing.

template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

14 Requires: p shall not be null.
15 Effects: As if by atomic_store_explicit(p, r, memory_order::seq_cst).
16 Throws: Nothing.

template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

17 Requires: p shall not be null.
18 Requires: mo shall not be memory_order::acquire or memory_order::acq_rel.
19 Effects: As if by p->swap(r).
20 Throws: Nothing.

template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

21 Requires: p shall not be null.
22 Returns: atomic_exchange_explicit(p, r, memory_order::seq_cst).
23 Throws: Nothing.

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

24 Requires: p shall not be null.
25 Effects: As if by p->swap(r).
26 Returns: The previous value of *p.
27 Throws: Nothing.

template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

28 Requires: p shall not be null and v shall not be null.
29 Returns:

atomic_compare_exchange_weak_explicit(p, v, w, memory_order::seq_cst, memory_order::seq_cst)

30 Throws: Nothing.
template<class T>

bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

31 Returns:
atomic_compare_exchange_strong_explicit(p, v, w, memory_order::seq_cst,

memory_order::seq_cst)

template<class T>
bool atomic_compare_exchange_weak_explicit(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template<class T>
bool atomic_compare_exchange_strong_explicit(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

32 Requires: p shall not be null and v shall not be null. The failure argument shall not be memory_order::releasenor memory_order::acq_rel.

§ D.20 1794

© ISO/IEC N4910

33 Effects: If *p is equivalent to *v, assigns w to *p and has synchronization semantics corresponding to the value of
success, otherwise assigns *p to *v and has synchronization semantics corresponding to the value of failure.

34 Returns: true if *p was equivalent to *v, false otherwise.
35 Throws: Nothing.
36 Remarks: Two shared_ptr objects are equivalent if they store the same pointer value and share ownership. Theweak form may fail spuriously. See 33.5.8.2.
D.21 Deprecated basic_string capacity [depr.string.capacity]

1 The following member is declared in addition to those members specified in 23.4.3.5:
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_string {
public:

void reserve();
};

}

void reserve();

2 Effects: After this call, capacity() has an unspecified value greater than or equal to size().
[Note 1: This is a non-binding shrink to fit request. —end note]

D.22 Deprecated standard code conversion facets [depr.locale.stdcvt]
D.22.1 General [depr.locale.stdcvt.general]

1 The header <codecvt> provides code conversion facets for various character encodings.
D.22.2 Header <codecvt> synopsis [depr.codecvt.syn]
namespace std {

enum codecvt_mode {
consume_header = 4,
generate_header = 2,
little_endian = 1

};

template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0>
class codecvt_utf8 : public codecvt<Elem, char, mbstate_t> {
public:
explicit codecvt_utf8(size_t refs = 0);
~codecvt_utf8();

};

template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0>
class codecvt_utf16 : public codecvt<Elem, char, mbstate_t> {
public:
explicit codecvt_utf16(size_t refs = 0);
~codecvt_utf16();

};

template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0>
class codecvt_utf8_utf16 : public codecvt<Elem, char, mbstate_t> {
public:
explicit codecvt_utf8_utf16(size_t refs = 0);
~codecvt_utf8_utf16();

};
}

D.22.3 Requirements [depr.locale.stdcvt.req]
1 For each of the three code conversion facets codecvt_utf8, codecvt_utf16, and codecvt_utf8_utf16:

—(1.1) Elem is the wide-character type, such as wchar_t, char16_t, or char32_t.
§ D.22.3 1795

© ISO/IEC N4910

—(1.2) Maxcode is the largest wide-character code that the facet will read or write without reporting a conversion error.
—(1.3) If (Mode & consume_header), the facet shall consume an initial header sequence, if present, when reading amultibyte sequence to determine the endianness of the subsequent multibyte sequence to be read.
—(1.4) If (Mode & generate_header), the facet shall generate an initial header sequence when writing a multibytesequence to advertise the endianness of the subsequent multibyte sequence to be written.
—(1.5) If (Mode & little_endian), the facet shall generate a multibyte sequence in little-endian order, as opposed tothe default big-endian order.

2 For the facet codecvt_utf8:
—(2.1) The facet shall convert between UTF-8 multibyte sequences and UCS-2 or UTF-32 (depending on the size of

Elem) within the program.
—(2.2) Endianness shall not affect how multibyte sequences are read or written.
—(2.3) The multibyte sequences may be written as either a text or a binary file.

3 For the facet codecvt_utf16:
—(3.1) The facet shall convert between UTF-16 multibyte sequences and UCS-2 or UTF-32 (depending on the size of

Elem) within the program.
—(3.2) Multibyte sequences shall be read or written according to the Mode flag, as set out above.
—(3.3) The multibyte sequences may be written only as a binary file. Attempting to write to a text file produces undefinedbehavior.

4 For the facet codecvt_utf8_utf16:
—(4.1) The facet shall convert between UTF-8 multibyte sequences and UTF-16 (one or two 16-bit codes) within theprogram.
—(4.2) Endianness shall not affect how multibyte sequences are read or written.
—(4.3) The multibyte sequences may be written as either a text or a binary file.

5 The encoding forms UTF-8, UTF-16, and UTF-32 are specified in ISO/IEC 10646. The encoding form UCS-2 isspecified in ISO/IEC 10646:2003.316
D.23 Deprecated convenience conversion interfaces [depr.conversions]
D.23.1 General [depr.conversions.general]

1 The header <locale> (30.2) has the following additions:
namespace std {

template<class Codecvt, class Elem = wchar_t,
class WideAlloc = allocator<Elem>,
class ByteAlloc = allocator<char>>

class wstring_convert;

template<class Codecvt, class Elem = wchar_t,
class Tr = char_traits<Elem>>

class wbuffer_convert;
}

D.23.2 Class template wstring_convert [depr.conversions.string]
1 Class template wstring_convert performs conversions between a wide string and a byte string. It lets you specifya code conversion facet (like class template codecvt) to perform the conversions, without affecting any streams orlocales.
[Example 1: If you want to use the code conversion facet codecvt_utf8 to output to cout a UTF-8 multibyte sequence correspondingto a wide string, but you don’t want to alter the locale for cout, you can write something like:
wstring_convert<std::codecvt_utf8<wchar_t>> myconv;
std::string mbstring = myconv.to_bytes(L"Hello\n");
std::cout << mbstring;

316) Cancelled and replaced by ISO/IEC 10646:2017.
§ D.23.2 1796

© ISO/IEC N4910

—end example]
namespace std {

template<class Codecvt, class Elem = wchar_t,
class WideAlloc = allocator<Elem>,
class ByteAlloc = allocator<char>>

class wstring_convert {
public:

using byte_string = basic_string<char, char_traits<char>, ByteAlloc>;
using wide_string = basic_string<Elem, char_traits<Elem>, WideAlloc>;
using state_type = typename Codecvt::state_type;
using int_type = typename wide_string::traits_type::int_type;

wstring_convert() : wstring_convert(new Codecvt) {}
explicit wstring_convert(Codecvt* pcvt);
wstring_convert(Codecvt* pcvt, state_type state);
explicit wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());
~wstring_convert();

wstring_convert(const wstring_convert&) = delete;
wstring_convert& operator=(const wstring_convert&) = delete;

wide_string from_bytes(char byte);
wide_string from_bytes(const char* ptr);
wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char* first, const char* last);

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem* wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem* first, const Elem* last);

size_t converted() const noexcept;
state_type state() const;

private:
byte_string byte_err_string; // exposition only
wide_string wide_err_string; // exposition only
Codecvt* cvtptr; // exposition only
state_type cvtstate; // exposition only
size_t cvtcount; // exposition only

};
}

2 The class template describes an object that controls conversions betweenwide string objects of class basic_string<Elem,
char_traits<Elem>, WideAlloc> and byte string objects of class basic_string<char, char_traits<char>, ByteAlloc>.The class template defines the types wide_string and byte_string as synonyms for these two types. Conversionbetween a sequence of Elem values (stored in a wide_string object) and multibyte sequences (stored in a byte_stringobject) is performed by an object of class Codecvt, which meets the requirements of the standard code-conversion facet
codecvt<Elem, char, mbstate_t>.

3 An object of this class template stores:
—(3.1) byte_err_string— a byte string to display on errors
—(3.2) wide_err_string— a wide string to display on errors
—(3.3) cvtptr — a pointer to the allocated conversion object (which is freed when the wstring_convert object isdestroyed)
—(3.4) cvtstate— a conversion state object
—(3.5) cvtcount— a conversion count

using byte_string = basic_string<char, char_traits<char>, ByteAlloc>;

4 The type shall be a synonym for basic_string<char, char_traits<char>, ByteAlloc>.
§ D.23.2 1797

© ISO/IEC N4910

size_t converted() const noexcept;

5 Returns: cvtcount.
wide_string from_bytes(char byte);
wide_string from_bytes(const char* ptr);
wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char* first, const char* last);

6 Effects: The first member function shall convert the single-element sequence byte to a wide string. The secondmember function shall convert the null-terminated sequence beginning at ptr to a wide string. The third memberfunction shall convert the sequence stored in str to a wide string. The fourth member function shall convert thesequence defined by the range [first, last) to a wide string.
7 In all cases:

—(7.1) If the cvtstate object was not constructed with an explicit value, it shall be set to its default value (theinitial conversion state) before the conversion begins. Otherwise it shall be left unchanged.
—(7.2) The number of input elements successfully converted shall be stored in cvtcount.

8 Returns: If no conversion error occurs, the member function shall return the converted wide string. Otherwise,if the object was constructed with a wide-error string, the member function shall return the wide-error string.Otherwise, the member function throws an object of class range_error.
using int_type = typename wide_string::traits_type::int_type;

9 The type shall be a synonym for wide_string::traits_type::int_type.
state_type state() const;

10 Returns: cvtstate.
using state_type = typename Codecvt::state_type;

11 The type shall be a synonym for Codecvt::state_type.
byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem* wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem* first, const Elem* last);

12 Effects: The first member function shall convert the single-element sequence wchar to a byte string. The secondmember function shall convert the null-terminated sequence beginning at wptr to a byte string. The third memberfunction shall convert the sequence stored in wstr to a byte string. The fourth member function shall convert thesequence defined by the range [first, last) to a byte string.
13 In all cases:

—(13.1) If the cvtstate object was not constructed with an explicit value, it shall be set to its default value (theinitial conversion state) before the conversion begins. Otherwise it shall be left unchanged.
—(13.2) The number of input elements successfully converted shall be stored in cvtcount.

14 Returns: If no conversion error occurs, the member function shall return the converted byte string. Otherwise,if the object was constructed with a byte-error string, the member function shall return the byte-error string.Otherwise, the member function shall throw an object of class range_error.
using wide_string = basic_string<Elem, char_traits<Elem>, WideAlloc>;

15 The type shall be a synonym for basic_string<Elem, char_traits<Elem>, WideAlloc>.
explicit wstring_convert(Codecvt* pcvt);
wstring_convert(Codecvt* pcvt, state_type state);
explicit wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());

16 Requires: For the first and second constructors, pcvt != nullptr.
17 Effects: The first constructor shall store pcvt in cvtptr and default values in cvtstate, byte_err_string, and

wide_err_string. The second constructor shall store pcvt in cvtptr, state in cvtstate, and default values in
byte_err_string and wide_err_string; moreover the stored state shall be retained between calls to from_bytes

§ D.23.2 1798

© ISO/IEC N4910

and to_bytes. The third constructor shall store new Codecvt in cvtptr, state_type() in cvtstate, byte_errin byte_err_string, and wide_err in wide_err_string.
~wstring_convert();

18 Effects: The destructor shall delete cvtptr.
D.23.3 Class template wbuffer_convert [depr.conversions.buffer]

1 Class template wbuffer_convert looks like a wide stream buffer, but performs all its I/O through an underlying bytestream buffer that you specify when you construct it. Like class template wstring_convert, it lets you specify a codeconversion facet to perform the conversions, without affecting any streams or locales.
namespace std {

template<class Codecvt, class Elem = wchar_t, class Tr = char_traits<Elem>>
class wbuffer_convert : public basic_streambuf<Elem, Tr> {
public:

using state_type = typename Codecvt::state_type;

wbuffer_convert() : wbuffer_convert(nullptr) {}
explicit wbuffer_convert(streambuf* bytebuf,

Codecvt* pcvt = new Codecvt,
state_type state = state_type());

~wbuffer_convert();

wbuffer_convert(const wbuffer_convert&) = delete;
wbuffer_convert& operator=(const wbuffer_convert&) = delete;

streambuf* rdbuf() const;
streambuf* rdbuf(streambuf* bytebuf);

state_type state() const;

private:
streambuf* bufptr; // exposition only
Codecvt* cvtptr; // exposition only
state_type cvtstate; // exposition only

};
}

2 The class template describes a stream buffer that controls the transmission of elements of type Elem, whose charactertraits are described by the class Tr, to and from a byte stream buffer of type streambuf. Conversion between a sequenceof Elem values and multibyte sequences is performed by an object of class Codecvt, which shall meet the requirementsof the standard code-conversion facet codecvt<Elem, char, mbstate_t>.
3 An object of this class template stores:

—(3.1) bufptr— a pointer to its underlying byte stream buffer
—(3.2) cvtptr — a pointer to the allocated conversion object (which is freed when the wbuffer_convert object isdestroyed)
—(3.3) cvtstate— a conversion state object

state_type state() const;

4 Returns: cvtstate.
streambuf* rdbuf() const;

5 Returns: bufptr.
streambuf* rdbuf(streambuf* bytebuf);

6 Effects: Stores bytebuf in bufptr.
7 Returns: The previous value of bufptr.

§ D.23.3 1799

© ISO/IEC N4910

using state_type = typename Codecvt::state_type;

8 The type shall be a synonym for Codecvt::state_type.
explicit wbuffer_convert(

streambuf* bytebuf,
Codecvt* pcvt = new Codecvt,
state_type state = state_type());

9 Requires: pcvt != nullptr.
10 Effects: The constructor constructs a stream buffer object, initializes bufptr to bytebuf, initializes cvtptr to

pcvt, and initializes cvtstate to state.
~wbuffer_convert();

11 Effects: The destructor shall delete cvtptr.
D.24 Deprecated locale category facets [depr.locale.category]

1 The ctype locale category includes the following facets as if they were specified in table Table 100 of 30.3.1.2.1.
codecvt<char16_t, char, mbstate_t>
codecvt<char32_t, char, mbstate_t>

2 The ctype locale category includes the following facets as if they were specified in table Table 101 of 30.3.1.2.1.
codecvt_byname<char16_t, char, mbstate_t>
codecvt_byname<char32_t, char, mbstate_t>

3 The following class template specializations are required in addition to those specified in 30.4.2.5. The special-ization codecvt<char16_t, char, mbstate_t> converts between the UTF-16 and UTF-8 encoding forms, and thespecialization codecvt<char32_t, char, mbstate_t> converts between the UTF-32 and UTF-8 encoding forms.
D.25 Deprecated filesystem path factory functions [depr.fs.path.factory]

template<class Source>
path u8path(const Source& source);

template<class InputIterator>
path u8path(InputIterator first, InputIterator last);

1 Requires: The source and [first, last) sequences areUTF-8 encoded. The value type of Source and InputIteratoris char or char8_t. Source meets the requirements specified in 31.12.6.4.
2 Returns:

—(2.1) If value_type is char and the current native narrow encoding (31.12.6.3.2) is UTF-8, return path(source)or path(first, last); otherwise,
—(2.2) if value_type is wchar_t and the native wide encoding is UTF-16, or if value_type is char16_t or

char32_t, convert source or [first, last) to a temporary, tmp, of type string_type and return path(tmp);otherwise,
—(2.3) convert source or [first, last) to a temporary, tmp, of type u32string and return path(tmp).

3 Remarks: Argument format conversion (31.12.6.3.1) applies to the arguments for these functions. How Unicodeencoding conversions are performed is unspecified.
4 [Example 1: A string is to be read from a database that is encoded in UTF-8, and used to create a directory using the nativeencoding for filenames:

namespace fs = std::filesystem;
std::string utf8_string = read_utf8_data();
fs::create_directory(fs::u8path(utf8_string));

For POSIX-based operating systems with the native narrow encoding set to UTF-8, no encoding or type conversion occurs.
For POSIX-based operating systems with the native narrow encoding not set to UTF-8, a conversion to UTF-32 occurs,followed by a conversion to the current native narrow encoding. Some Unicode characters may have no native character setrepresentation.
For Windows-based operating systems a conversion from UTF-8 to UTF-16 occurs. —end example]

§ D.25 1800

© ISO/IEC N4910

[Note 1: The example above is representative of a historical use of filesystem::u8path. To indicate a UTF-8 encoding,passing a std::u8string to path’s constructor is preferred as it is consistent with path’s handling of other encodings. —endnote]
D.26 Deprecated atomic operations [depr.atomics]
D.26.1 General [depr.atomics.general]

1 The header <atomic> (33.5.2) has the following additions.
namespace std {

template<class T>
void atomic_init(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
void atomic_init(atomic<T>*, typename atomic<T>::value_type) noexcept;

#define ATOMIC_VAR_INIT(value) see below

#define ATOMIC_FLAG_INIT see below
}

D.26.2 Volatile access [depr.atomics.volatile]
1 If an atomic specialization has one of the following overloads, then that overload participates in overload resolutioneven if atomic<T>::is_always_lock_free is false:

void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator=(T desired) volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
operator T() const volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator op=(T operand) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;

D.26.3 Non-member functions [depr.atomics.nonmembers]

template<class T>
void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

template<class T>
void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

1 Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);

D.26.4 Operations on atomic types [depr.atomics.types.operations]

#define ATOMIC_VAR_INIT(value) see below

1 The macro expands to a token sequence suitable for constant initialization of an atomic variable of static storageduration of a type that is initialization-compatible with value.
[Note 1: This operation possibly needs to initialize locks. —end note]
Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data race.
[Example 1:
atomic<int> v = ATOMIC_VAR_INIT(5);

—end example]

§ D.26.4 1801

© ISO/IEC N4910

D.26.5 Flag type and operations [depr.atomics.flag]

#define ATOMIC_FLAG_INIT see below

1 Remarks: The macro ATOMIC_FLAG_INIT is defined in such a way that it can be used to initialize an object of type
atomic_flag to the clear state. The macro can be used in the form:
atomic_flag guard = ATOMIC_FLAG_INIT;

It is unspecified whether the macro can be used in other initialization contexts. For a complete static-durationobject, that initialization shall be static.

§ D.26.5 1802

© ISO/IEC N4910

Annex E (informative)
Conformance with UAX #31 [uaxid]
E.1 General [uaxid.general]

1 This Annex describes the choices made in application of UAX #31 (“Unicode Identifier and Pattern Syntax”) to C++ interms of the requirements from UAX #31 and how they do or do not apply to C++. In terms of UAX #31, C++ conforms bymeeting the requirements R1 “Default Identifiers” and R4 “Equivalent Normalized Identifiers”. The other requirements,also listed below, are either alternatives not taken or do not apply to C++.
E.2 R1 Default identifiers [uaxid.def]
E.2.1 General [uaxid.def.general]

1 UAX #31 specifies a default syntax for identifiers based on properties from the Unicode Character Database, UAX #44.The general syntax is
<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

where <Start> has the XID_Start property, <Continue> has the XID_Continue property, and <Medial> is a list ofcharacters permitted between continue characters. For C++ we add the character u+005f low line, or _, to the set ofpermitted <Start> characters, the <Medial> set is empty, and the <Continue> characters are unmodified. In the grammarused in UAX #31, this is
<Identifier> := <Start> <Continue>*
<Start> := XID_Start + u+005f
<Continue> := <Start> + XID_Continue

2 This is described in the C++ grammar in 5.10, where identifier is formed from identifier-start or identifier followed by
identifier-continue.
E.2.2 R1a Restricted format characters [uaxid.def.rfmt]

1 If an implementation of UAX #31 wishes to allow format characters such as ZEROWIDTH JOINER or ZEROWIDTHNON-JOINER it must define a profile allowing them, or describe precisely which combinations are permitted.
2 C++ does not allow format characters in identifiers, so this does not apply.
E.2.3 R1b Stable identifiers [uaxid.def.stable]

1 An implementation of UAX #31 may choose to guarantee that identifiers are stable across versions of the UnicodeStandard. Once a string qualifies as an identifier it does so in all future versions.
2 C++ does not make this guarantee, except to the extent that UAX #31 guarantees the stability of the XID_Start andXID_Continue properties.
E.3 R2 Immutable identifiers [uaxid.immutable]

1 An implementation may choose to guarantee that the set of identifiers will never change by fixing the set of code pointsallowed in identifiers forever.
2 C++ does not choose to make this guarantee. As scripts are added to Unicode, additional characters in those scripts maybecome available for use in identifiers.
E.4 R3 Pattern_White_Space and Pattern_Syntax characters [uaxid.pattern]

1 UAX #31 describes how languages that use or interpret patterns of characters, such as regular expressions or numberformats, may describe that syntax with Unicode properties.
2 C++ does not do this as part of the language, deferring to library components for such usage of patterns. This requirementdoes not apply to C++.

§ E.4 1803

© ISO/IEC N4910

E.5 R4 Equivalent normalized identifiers [uaxid.eqn]
1 UAX #31 requires that implementations describe how identifiers are compared and considered equivalent.
2 C++ requires that identifiers be in Normalization Form C and therefore identifiers that compare the same under NFC areequivalent. This is described in 5.10.
E.6 R5 Equivalent case-insensitive identifiers [uaxid.eqci]

1 C++ considers case to be significant in identifier comparison, and does not do any case folding. This requirement doesnot apply to C++.
E.7 R6 Filtered normalized identifiers [uaxid.filter]

1 If any characters are excluded from normalization, UAX #31 requires a precise specification of those exclusions.
2 C++ does not make any such exclusions.
E.8 R7 Filtered case-insensitive identifiers [uaxid.filterci]

1 C++ identifiers are case sensitive, and therefore this requirement does not apply.
E.9 R8 Hashtag identifiers [uaxid.hashtag]

1 There are no hashtags in C++, so this requirement does not apply.

§ E.9 1804

© ISO/IEC N4910

Bibliography
— ISO 4217:2015, Codes for the representation of currencies
— ISO/IEC 10967-1:2012, Information technology — Language independent arithmetic — Part 1: Integer andfloating point arithmetic
— ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-Point arithmetic
— The Unicode Consortium. Unicode Standard Annex, UAX #29, Unicode Text Segmentation [online]. Editedby Mark Davis. Revision 35; issued for Unicode 12.0.0. 2019-02-15 [viewed 2020-02-23]. Available from:

http://www.unicode.org/reports/tr29/tr29-35.html

— The Unicode Consortium. Unicode Standard Annex, UAX #31, Unicode Identifier and Pattern Syntax [online].Edited by Mark Davis. Revision 33; issued for Unicode 13.0.0. 2020-02-13 [viewed 2021-06-08]. Availablefrom: https://www.unicode.org/reports/tr31/tr31-33.html
— IANA Time Zone Database. Available from: https://www.iana.org/time-zones
— Bjarne Stroustrup, The C++ Programming Language, second edition, Chapter R. Addison-Wesley PublishingCompany, ISBN 0-201-53992-6, copyright ©1991 AT&T
— Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Appendix A. Prentice-Hall, 1978,ISBN 0-13-110163-3, copyright ©1978 AT&T
— P.J. Plauger, The Draft Standard C++ Library. Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J. Plauger)

The arithmetic specification described in ISO/IEC 10967-1:2012 is called LIA-1 in this document.

Bibliography 1805

http://www.unicode.org/reports/tr29/tr29-35.html
https://www.unicode.org/reports/tr31/tr31-33.html
https://www.iana.org/time-zones

© ISO/IEC N4910

Cross references
Each clause and subclause label is listed below along with the corresponding clause or subclause number and pagenumber, in alphabetical order by label.
accumulate (27.10.3) 1231adjacent.difference (27.10.12) 1238adjustfield.manip (31.5.5.2) 1482alg.adjacent.find (27.6.8) 1177alg.all.of (27.6.1) 1171alg.any.of (27.6.2) 1172alg.binary.search (27.8.4) 1206alg.binary.search.general (27.8.4.1) 1206alg.c.library (27.12) 1245alg.clamp (27.8.10) 1224alg.copy (27.7.1) 1184alg.count (27.6.9) 1178alg.ends.with (27.6.15) 1184alg.equal (27.6.11) 1179alg.fill (27.7.6) 1192alg.find (27.6.5) 1174alg.find.end (27.6.6) 1175alg.find.first.of (27.6.7) 1176alg.foreach (27.6.4) 1173alg.generate (27.7.7) 1192alg.heap.operations (27.8.8) 1218alg.heap.operations.general (27.8.8.1) 1218alg.is.permutation (27.6.12) 1181alg.lex.comparison (27.8.11) 1224alg.merge (27.8.6) 1211alg.min.max (27.8.9) 1221alg.modifying.operations (27.7) 1184alg.move (27.7.2) 1186alg.none.of (27.6.3) 1172alg.nonmodifying (27.6) 1171alg.nth.element (27.8.3) 1205alg.partitions (27.8.5) 1208alg.permutation.generators (27.8.13) 1226alg.random.sample (27.7.12) 1198alg.random.shuffle (27.7.13) 1199alg.remove (27.7.8) 1193alg.replace (27.7.5) 1190alg.req (25.3.7) 973alg.req.general (25.3.7.1) 973alg.req.ind.cmp (25.3.7.5) 975alg.req.ind.copy (25.3.7.3) 974alg.req.ind.move (25.3.7.2) 974alg.req.ind.swap (25.3.7.4) 975alg.req.mergeable (25.3.7.7) 975alg.req.permutable (25.3.7.6) 975alg.req.sortable (25.3.7.8) 975alg.reverse (27.7.10) 1196alg.rotate (27.7.11) 1197alg.search (27.6.13) 1182alg.set.operations (27.8.7) 1213

alg.set.operations.general (27.8.7.1) 1213alg.shift (27.7.14) 1199alg.sort (27.8.2) 1201alg.sorting (27.8) 1200alg.sorting.general (27.8.1) 1200alg.starts.with (27.6.14) 1183alg.swap (27.7.3) 1187alg.three.way (27.8.12) 1225alg.transform (27.7.4) 1188alg.unique (27.7.9) 1194algorithm.stable (16.4.6.8) 479algorithm.syn (27.4) 1133algorithms (Clause 27) 1128algorithms.general (27.1) 1128algorithms.parallel (27.3) 1130algorithms.parallel.defns (27.3.1) 1130algorithms.parallel.exceptions (27.3.4) 1132algorithms.parallel.exec (27.3.3) 1131algorithms.parallel.overloads (27.3.5) 1132algorithms.parallel.user (27.3.2) 1131algorithms.requirements (27.2) 1128algorithms.results (27.5) 1169alloc.errors (17.6.4) 504allocator.adaptor (20.5) 615allocator.adaptor.cnstr (20.5.3) 617allocator.adaptor.members (20.5.4) 618allocator.adaptor.syn (20.5.1) 615allocator.adaptor.types (20.5.2) 617allocator.globals (20.2.9.3) 580allocator.members (20.2.9.2) 579allocator.requirements (16.4.4.6) 467allocator.requirements.completeness (16.4.4.6.2) 473allocator.requirements.general (16.4.4.6.1) 467allocator.tag (20.2.6) 574allocator.traits (20.2.8) 576allocator.traits.general (20.2.8.1) 576allocator.traits.members (20.2.8.3) 578allocator.traits.other (20.2.8.4) 578allocator.traits.types (20.2.8.2) 577allocator.uses (20.2.7) 574allocator.uses.construction (20.2.7.2) 574allocator.uses.trait (20.2.7.1) 574alt.headers (16.4.5.4) 476any (22.7) 694any.assign (22.7.4.3) 697any.bad.any.cast (22.7.3) 695any.class (22.7.4) 695any.class.general (22.7.4.1) 695any.cons (22.7.4.2) 696any.general (22.7.1) 694

Cross references 1806

© ISO/IEC N4910

any.modifiers (22.7.4.4) 697any.nonmembers (22.7.5) 698any.observers (22.7.4.5) 698any.synop (22.7.2) 695arithmetic.operations (22.10.7) 727arithmetic.operations.divides (22.10.7.5) 728arithmetic.operations.general (22.10.7.1) 727arithmetic.operations.minus (22.10.7.3) 727arithmetic.operations.modulus (22.10.7.6) 728arithmetic.operations.multiplies (22.10.7.4) 727arithmetic.operations.negate (22.10.7.7) 728arithmetic.operations.plus (22.10.7.2) 727array (24.3.7) 861array.cons (24.3.7.2) 862array.creation (24.3.7.6) 863array.members (24.3.7.3) 862array.overview (24.3.7.1) 861array.special (24.3.7.4) 862array.syn (24.3.2) 858array.tuple (24.3.7.7) 863array.zero (24.3.7.5) 862assertions (19.3) 547assertions.assert (19.3.3) 547assertions.general (19.3.1) 547associative (24.4) 887associative.general (24.4.1) 887associative.map.syn (24.4.2) 887associative.reqmts (24.2.7) 838associative.reqmts.except (24.2.7.2) 846associative.reqmts.general (24.2.7.1) 838associative.set.syn (24.4.3) 888atomics (33.5) 1650atomics.alias (33.5.3) 1654atomics.fences (33.5.11) 1680atomics.flag (33.5.10) 1678atomics.general (33.5.1) 1650atomics.lockfree (33.5.5) 1656atomics.nonmembers (33.5.9) 1678atomics.order (33.5.4) 1654atomics.ref.float (33.5.7.4) 1661atomics.ref.generic (33.5.7) 1657atomics.ref.generic.general (33.5.7.1) 1657atomics.ref.int (33.5.7.3) 1660atomics.ref.memop (33.5.7.6) 1663atomics.ref.ops (33.5.7.2) 1658atomics.ref.pointer (33.5.7.5) 1662atomics.syn (33.5.2) 1650atomics.types.float (33.5.8.4) 1670atomics.types.generic (33.5.8) 1663atomics.types.generic.general (33.5.8.1) 1663atomics.types.int (33.5.8.3) 1668atomics.types.memop (33.5.8.6) 1673atomics.types.operations (33.5.8.2) 1664atomics.types.pointer (33.5.8.5) 1671atomics.wait (33.5.6) 1656
back.insert.iter.ops (25.5.2.2.1) 984back.insert.iterator (25.5.2.2) 983back.inserter (25.5.2.2.2) 984

bad.alloc (17.6.4.1) 504bad.cast (17.7.4) 507bad.exception (17.9.4) 511bad.typeid (17.7.5) 507barrier.syn (33.9.3.2) 1711basefield.manip (31.5.5.3) 1483basic (Clause 6) 30basic.align (6.7.6) 68basic.compound (6.8.3) 75basic.def (6.2) 31basic.def.odr (6.3) 32basic.exec (6.9) 77basic.fundamental (6.8.2) 73basic.indet (6.7.4) 64basic.ios.cons (31.5.4.2) 1478basic.ios.members (31.5.4.3) 1479basic.life (6.7.3) 61basic.link (6.6) 54basic.lookup (6.5) 42basic.lookup.argdep (6.5.4) 47basic.lookup.elab (6.5.6) 54basic.lookup.general (6.5.1) 42basic.lookup.qual (6.5.5) 49basic.lookup.qual.general (6.5.5.1) 49basic.lookup.udir (6.5.7) 54basic.lookup.unqual (6.5.3) 45basic.lval (7.2.1) 89basic.memobj (6.7) 58basic.namespace (9.8) 222basic.namespace.general (9.8.1) 222basic.pre (6.1) 30basic.scope (6.4) 37basic.scope.block (6.4.3) 40basic.scope.class (6.4.6) 41basic.scope.enum (6.4.7) 41basic.scope.namespace (6.4.5) 41basic.scope.param (6.4.4) 41basic.scope.pdecl (6.4.2) 39basic.scope.scope (6.4.1) 37basic.scope.temp (6.4.8) 42basic.start (6.9.3) 85basic.start.dynamic (6.9.3.3) 86basic.start.main (6.9.3.1) 85basic.start.static (6.9.3.2) 85basic.start.term (6.9.3.4) 87basic.stc (6.7.5) 65basic.stc.auto (6.7.5.4) 65basic.stc.dynamic (6.7.5.5) 66basic.stc.dynamic.allocation (6.7.5.5.2) 66basic.stc.dynamic.deallocation (6.7.5.5.3) 67basic.stc.dynamic.general (6.7.5.5.1) 66basic.stc.general (6.7.5.1) 65basic.stc.inherit (6.7.5.6) 67basic.stc.static (6.7.5.2) 65basic.stc.thread (6.7.5.3) 65basic.string (23.4.3) 793basic.string.general (23.4.3.1) 793basic.string.hash (23.4.6) 817basic.string.literals (23.4.7) 817
Cross references 1807

© ISO/IEC N4910

basic.type.qualifier (6.8.4) 76basic.types (6.8) 71basic.types.general (6.8.1) 71bidirectional.iterators (25.3.5.6) 971binary.search (27.8.4.5) 1208bit (22.15) 771bit.byteswap (22.15.4) 773bit.cast (22.15.3) 772bit.count (22.15.7) 774bit.endian (22.15.8) 774bit.general (22.15.1) 771bit.pow.two (22.15.5) 773bit.rotate (22.15.6) 773bit.syn (22.15.2) 771bitmask.types (16.3.3.3.4) 458bitset (22.9) 715bitset.cons (22.9.2.2) 717bitset.hash (22.9.3) 720bitset.members (22.9.2.3) 718bitset.operators (22.9.4) 720bitset.syn (22.9.1) 715bitwise.operations (22.10.11) 734bitwise.operations.and (22.10.11.2) 734bitwise.operations.general (22.10.11.1) 734bitwise.operations.not (22.10.11.5) 735bitwise.operations.or (22.10.11.3) 734bitwise.operations.xor (22.10.11.4) 735byte.strings (16.3.3.3.5.2) 459
c.files (31.13) 1597c.locales (30.5) 1462c.malloc (20.2.11) 580c.math (28.7) 1316c.math.abs (28.7.2) 1325c.math.fpclass (28.7.5) 1326c.math.hypot3 (28.7.3) 1326c.math.lerp (28.7.4) 1326c.math.rand (28.5.10) 1297c.mb.wcs (23.5.6) 821c.strings (23.5) 817cassert.syn (19.3.2) 547category.collate (30.4.5) 1449category.ctype (30.4.2) 1432category.ctype.general (30.4.2.1) 1432category.messages (30.4.8) 1461category.messages.general (30.4.8.1) 1461category.monetary (30.4.7) 1456category.monetary.general (30.4.7.1) 1456category.numeric (30.4.3) 1440category.numeric.general (30.4.3.1) 1440category.time (30.4.6) 1451category.time.general (30.4.6.1) 1451cctype.syn (23.5.1) 817cerrno.syn (19.4.2) 547cfenv (28.3) 1247cfenv.syn (28.3.1) 1247cfenv.thread (28.3.2) 1248cfloat.syn (17.3.7) 496char.traits (23.2) 775

char.traits.general (23.2.1) 775char.traits.require (23.2.2) 775char.traits.specializations (23.2.4) 777char.traits.specializations.char (23.2.4.2) 777char.traits.specializations.char16.t (23.2.4.4) 778char.traits.specializations.char32.t (23.2.4.5) 779char.traits.specializations.char8.t (23.2.4.3) 778char.traits.specializations.general (23.2.4.1) 777char.traits.specializations.wchar.t (23.2.4.6) 779char.traits.typedefs (23.2.3) 777character.seq (16.3.3.3.5) 459character.seq.general (16.3.3.3.5.1) 459charconv (22.13) 751charconv.from.chars (22.13.3) 753charconv.syn (22.13.1) 751charconv.to.chars (22.13.2) 752cinttypes.syn (31.13.2) 1599class (Clause 11) 252class.abstract (11.7.4) 287class.access (11.8) 288class.access.base (11.8.3) 291class.access.general (11.8.1) 288class.access.nest (11.8.8) 297class.access.spec (11.8.2) 290class.access.virt (11.8.6) 297class.base.init (11.9.3) 299class.bit (11.4.10) 274class.cdtor (11.9.5) 304class.compare (11.10) 309class.compare.default (11.10.1) 309class.compare.secondary (11.10.4) 311class.conv (11.4.8) 270class.conv.ctor (11.4.8.2) 271class.conv.fct (11.4.8.3) 271class.conv.general (11.4.8.1) 270class.copy.assign (11.4.6) 265class.copy.ctor (11.4.5.3) 263class.copy.elision (11.9.6) 307class.ctor (11.4.5) 261class.ctor.general (11.4.5.1) 261class.default.ctor (11.4.5.2) 262class.derived (11.7) 280class.derived.general (11.7.1) 280class.dtor (11.4.7) 268class.eq (11.10.2) 310class.expl.init (11.9.2) 298class.free (11.4.11) 275class.friend (11.8.4) 293class.gslice (28.6.6) 1311class.gslice.overview (28.6.6.1) 1311class.inhctor.init (11.9.4) 303class.init (11.9) 298class.init.general (11.9.1) 298class.local (11.6) 280class.mem (11.4) 256class.mem.general (11.4.1) 256class.member.lookup (6.5.2) 43class.mfct (11.4.2) 259class.mfct.non.static (11.4.3) 260
Cross references 1808

© ISO/IEC N4910

class.mi (11.7.2) 282class.name (11.3) 254class.nest (11.4.12) 277class.paths (11.8.7) 297class.pre (11.1) 252class.prop (11.2) 253class.protected (11.8.5) 296class.qual (6.5.5.2) 51class.slice (28.6.4) 1310class.slice.overview (28.6.4.1) 1310class.spaceship (11.10.3) 310class.static (11.4.9) 273class.static.data (11.4.9.3) 274class.static.general (11.4.9.1) 273class.static.mfct (11.4.9.2) 274class.temporary (6.7.7) 68class.union (11.5) 277class.union.anon (11.5.2) 279class.union.general (11.5.1) 277class.virtual (11.7.3) 283classification (30.3.3.1) 1431climits.syn (17.3.6) 496clocale.data.races (30.5.2) 1462clocale.syn (30.5.1) 1462cmath.syn (28.7.1) 1316cmp (17.11) 514cmp.alg (17.11.6) 521cmp.categories (17.11.2) 515cmp.categories.pre (17.11.2.1) 515cmp.common (17.11.3) 519cmp.concept (17.11.4) 519cmp.partialord (17.11.2.2) 516cmp.result (17.11.5) 521cmp.strongord (17.11.2.4) 518cmp.weakord (17.11.2.3) 517cmplx.over (28.4.10) 1255common.iter.access (25.5.4.4) 993common.iter.cmp (25.5.4.6) 994common.iter.const (25.5.4.3) 992common.iter.cust (25.5.4.7) 995common.iter.nav (25.5.4.5) 993common.iter.types (25.5.4.2) 992common.iterator (25.5.4.1) 991compare.syn (17.11.1) 514comparisons (22.10.8) 729comparisons.equal.to (22.10.8.2) 729comparisons.general (22.10.8.1) 729comparisons.greater (22.10.8.4) 730comparisons.greater.equal (22.10.8.6) 730comparisons.less (22.10.8.5) 730comparisons.less.equal (22.10.8.7) 731comparisons.not.equal.to (22.10.8.3) 729comparisons.three.way (22.10.8.8) 731complex (28.4.3) 1250complex.h.syn (17.14.2) 529complex.literals (28.4.11) 1256complex.member.ops (28.4.6) 1252complex.members (28.4.5) 1252complex.numbers (28.4) 1248

complex.numbers.general (28.4.1) 1248complex.ops (28.4.7) 1253complex.special (28.4.4) 1250complex.syn (28.4.2) 1248complex.transcendentals (28.4.9) 1254complex.value.ops (28.4.8) 1254compliance (16.4.2.4) 462concept.assignable (18.4.8) 536concept.booleantestable (18.5.2) 539concept.common (18.4.6) 535concept.commonref (18.4.5) 535concept.constructible (18.4.11) 538concept.convertible (18.4.4) 535concept.copyconstructible (18.4.14) 539concept.default.init (18.4.12) 538concept.derived (18.4.3) 534concept.destructible (18.4.10) 538concept.equalitycomparable (18.5.3) 540concept.equiv (18.7.6) 542concept.invocable (18.7.2) 542concept.moveconstructible (18.4.13) 539concept.predicate (18.7.4) 542concept.regularinvocable (18.7.3) 542concept.relation (18.7.5) 542concept.same (18.4.2) 534concept.strictweakorder (18.7.7) 543concept.swappable (18.4.9) 537concept.totallyordered (18.5.4) 541concepts (Clause 18) 531concepts.arithmetic (18.4.7) 536concepts.callable (18.7) 542concepts.callable.general (18.7.1) 542concepts.compare (18.5) 539concepts.compare.general (18.5.1) 539concepts.equality (18.2) 531concepts.general (18.1) 531concepts.lang (18.4) 534concepts.lang.general (18.4.1) 534concepts.object (18.6) 541concepts.syn (18.3) 532condition.variable.syn (33.7.2) 1701conforming (16.4.6) 478conforming.overview (16.4.6.1) 478cons.slice (28.6.4.2) 1310constexpr.functions (16.4.6.7) 479constraints (16.4.5) 473constraints.overview (16.4.5.1) 473container.adaptors (24.6) 930container.adaptors.general (24.6.1) 930container.alloc.reqmts (24.2.2.5) 828container.gen.reqmts (24.2.2) 823container.insert.return (24.2.6) 838container.node (24.2.5) 836container.node.cons (24.2.5.2) 837container.node.dtor (24.2.5.3) 837container.node.modifiers (24.2.5.5) 838container.node.observers (24.2.5.4) 837container.node.overview (24.2.5.1) 836container.opt.reqmts (24.2.2.4) 827
Cross references 1809

© ISO/IEC N4910

container.reqmts (24.2.2.2) 823container.requirements (24.2) 823container.requirements.dataraces (24.2.3) 830container.requirements.general (24.2.2.1) 823container.requirements.pre (24.2.1) 823container.rev.reqmts (24.2.2.3) 827containers (Clause 24) 823containers.general (24.1) 823contents (16.4.2.2) 460conv (7.3) 92conv.array (7.3.3) 94conv.bool (7.3.15) 97conv.double (7.3.10) 96conv.fctptr (7.3.14) 97conv.fpint (7.3.11) 96conv.fpprom (7.3.8) 95conv.func (7.3.4) 94conv.general (7.3.1) 92conv.integral (7.3.9) 95conv.lval (7.3.2) 93conv.mem (7.3.13) 96conv.prom (7.3.7) 95conv.ptr (7.3.12) 96conv.qual (7.3.6) 94conv.rank (6.8.5) 77conv.rval (7.3.5) 94conventions (16.3.3) 457conventions.general (16.3.3.1) 457conversions.character (30.3.3.2) 1431coroutine.handle (17.12.4) 523coroutine.handle.compare (17.12.4.8) 525coroutine.handle.con (17.12.4.2) 524coroutine.handle.conv (17.12.4.3) 525coroutine.handle.export.import (17.12.4.4) 525coroutine.handle.general (17.12.4.1) 523coroutine.handle.hash (17.12.4.9) 526coroutine.handle.noop (17.12.5.2) 526coroutine.handle.noop.address (17.12.5.2.5) 527coroutine.handle.noop.conv (17.12.5.2.1) 526coroutine.handle.noop.observers (17.12.5.2.2) 526coroutine.handle.noop.promise (17.12.5.2.4) 527coroutine.handle.noop.resumption (17.12.5.2.3) 526coroutine.handle.observers (17.12.4.5) 525coroutine.handle.promise (17.12.4.7) 525coroutine.handle.resumption (17.12.4.6) 525coroutine.noop (17.12.5) 526coroutine.noop.coroutine (17.12.5.3) 527coroutine.promise.noop (17.12.5.1) 526coroutine.syn (17.12.2) 522coroutine.traits (17.12.3) 523coroutine.traits.general (17.12.3.1) 523coroutine.traits.primary (17.12.3.2) 523coroutine.trivial.awaitables (17.12.6) 527counted.iter.access (25.5.6.3) 997counted.iter.cmp (25.5.6.6) 999counted.iter.const (25.5.6.2) 997counted.iter.cust (25.5.6.7) 999counted.iter.elem (25.5.6.4) 997counted.iter.nav (25.5.6.5) 997

counted.iterator (25.5.6.1) 995cpp (Clause 15) 437cpp.concat (15.6.4) 447cpp.cond (15.2) 439cpp.error (15.8) 449cpp.import (15.5) 442cpp.include (15.3) 441cpp.line (15.7) 449cpp.module (15.4) 442cpp.null (15.10) 450cpp.pragma (15.9) 449cpp.pragma.op (15.12) 452cpp.pre (15.1) 437cpp.predefined (15.11) 450cpp.replace (15.6) 444cpp.replace.general (15.6.1) 444cpp.rescan (15.6.5) 448cpp.scope (15.6.6) 449cpp.stringize (15.6.3) 447cpp.subst (15.6.2) 445csetjmp.syn (17.13.3) 528csignal.syn (17.13.4) 528cstdarg.syn (17.13.2) 527cstddef.syn (17.2.1) 482cstdint (17.4) 497cstdint.general (17.4.1) 497cstdint.syn (17.4.2) 497cstdio.syn (31.13.1) 1597cstdlib.syn (17.2.2) 483cstring.syn (23.5.3) 818ctime.syn (29.14) 1422cuchar.syn (23.5.5) 820customization.point.object (16.3.3.3.6) 459cwchar.syn (23.5.4) 819cwctype.syn (23.5.2) 818
dcl.align (9.12.2) 235dcl.ambig.res (9.3.3) 182dcl.array (9.3.4.5) 187dcl.asm (9.10) 231dcl.attr (9.12) 233dcl.attr.depend (9.12.3) 236dcl.attr.deprecated (9.12.4) 237dcl.attr.fallthrough (9.12.5) 237dcl.attr.grammar (9.12.1) 233dcl.attr.likelihood (9.12.6) 238dcl.attr.nodiscard (9.12.8) 239dcl.attr.noreturn (9.12.9) 239dcl.attr.nouniqueaddr (9.12.10) 240dcl.attr.unused (9.12.7) 238dcl.constexpr (9.2.6) 167dcl.constinit (9.2.7) 169dcl.dcl (Clause 9) 161dcl.decl (9.3) 179dcl.decl.general (9.3.1) 179dcl.enum (9.7.1) 219dcl.fct (9.3.4.6) 189dcl.fct.def (9.5) 212dcl.fct.def.coroutine (9.5.4) 215

Cross references 1810

© ISO/IEC N4910

dcl.fct.def.default (9.5.2) 213dcl.fct.def.delete (9.5.3) 214dcl.fct.def.general (9.5.1) 212dcl.fct.default (9.3.4.7) 193dcl.fct.spec (9.2.3) 165dcl.friend (9.2.5) 167dcl.init (9.4) 196dcl.init.aggr (9.4.2) 200dcl.init.general (9.4.1) 196dcl.init.list (9.4.5) 207dcl.init.ref (9.4.4) 205dcl.init.string (9.4.3) 204dcl.inline (9.2.8) 169dcl.link (9.11) 231dcl.meaning (9.3.4) 183dcl.meaning.general (9.3.4.1) 183dcl.mptr (9.3.4.4) 187dcl.name (9.3.2) 181dcl.pre (9.1) 161dcl.ptr (9.3.4.2) 185dcl.ref (9.3.4.3) 185dcl.spec (9.2) 163dcl.spec.auto (9.2.9.6) 175dcl.spec.auto.general (9.2.9.6.1) 175dcl.spec.general (9.2.1) 163dcl.stc (9.2.2) 163dcl.struct.bind (9.6) 218dcl.type (9.2.9) 170dcl.type.auto.deduct (9.2.9.6.2) 178dcl.type.class.deduct (9.2.9.7) 179dcl.type.cv (9.2.9.2) 171dcl.type.decltype (9.2.9.5) 174dcl.type.elab (9.2.9.4) 172dcl.type.general (9.2.9.1) 170dcl.type.simple (9.2.9.3) 172dcl.typedef (9.2.4) 165declval (22.2.6) 651default.allocator (20.2.9) 579default.allocator.general (20.2.9.1) 579default.sentinel (25.5.5) 995defns.access (3.1) 3defns.arbitrary.stream (3.2) 3defns.argument (3.3) 3defns.argument.macro (3.4) 3defns.argument.templ (3.6) 3defns.argument.throw (3.5) 3defns.block (3.7) 3defns.block.stmt (3.8) 3defns.character (3.9) 3defns.character.container (3.10) 3defns.component (3.12) 4defns.cond.supp (3.13) 4defns.const.subexpr (3.14) 4defns.deadlock (3.15) 4defns.default.behavior.impl (3.16) 4defns.diagnostic (3.17) 4defns.direct.non.list.init (3.18) 4defns.dynamic.type (3.19) 4defns.dynamic.type.prvalue (3.20) 4

defns.expression.equivalent (3.21) 4defns.handler (3.24) 5defns.ill.formed (3.25) 5defns.impl.defined (3.26) 5defns.impl.limits (3.28) 5defns.iostream.templates (3.29) 5defns.locale.specific (3.30) 5defns.modifier (3.32) 5defns.move.assign (3.33) 5defns.move.constr (3.34) 5defns.multibyte (3.35) 6defns.nonconst.libcall (3.36) 6defns.ntcts (3.37) 6defns.observer (3.38) 6defns.order.ptr (3.27) 5defns.parameter (3.39) 6defns.parameter.macro (3.40) 6defns.parameter.templ (3.41) 6defns.prog.def.spec (3.43) 6defns.prog.def.type (3.44) 6defns.projection (3.45) 6defns.referenceable (3.46) 7defns.regex.collating.element (3.11) 4defns.regex.finite.state.machine (3.22) 4defns.regex.format.specifier (3.23) 5defns.regex.matched (3.31) 5defns.regex.primary.equivalence.class (3.42) 6defns.regex.regular.expression (3.47) 7defns.regex.subexpression (3.62) 8defns.replacement (3.48) 7defns.repositional.stream (3.49) 7defns.required.behavior (3.50) 7defns.reserved.function (3.51) 7defns.signature (3.52) 7defns.signature.friend (3.53) 7defns.signature.member (3.57) 8defns.signature.member.spec (3.59) 8defns.signature.member.templ (3.58) 8defns.signature.spec (3.56) 8defns.signature.templ (3.54) 7defns.signature.templ.friend (3.55) 7defns.stable (3.60) 8defns.static.type (3.61) 8defns.traits (3.63) 8defns.unblock (3.64) 8defns.undefined (3.65) 8defns.unspecified (3.66) 8defns.valid (3.67) 9defns.well.formed (3.68) 9denorm.style (17.3.4.2) 490depr (Annex D) 1780depr.arith.conv.enum (D.2) 1780depr.array.comp (D.4) 1780depr.atomics (D.26) 1801depr.atomics.flag (D.26.5) 1802depr.atomics.general (D.26.1) 1801depr.atomics.nonmembers (D.26.3) 1801depr.atomics.types.operations (D.26.4) 1801depr.atomics.volatile (D.26.2) 1801
Cross references 1811

© ISO/IEC N4910

depr.capture.this (D.3) 1780depr.codecvt.syn (D.22.2) 1795depr.conversions (D.23) 1796depr.conversions.buffer (D.23.3) 1799depr.conversions.general (D.23.1) 1796depr.conversions.string (D.23.2) 1796depr.default.allocator (D.13) 1790depr.fs.path.factory (D.25) 1800depr.general (D.1) 1780depr.impldec (D.8) 1782depr.istrstream (D.12.3) 1787depr.istrstream.cons (D.12.3.2) 1787depr.istrstream.general (D.12.3.1) 1787depr.istrstream.members (D.12.3.3) 1788depr.iterator (D.18) 1792depr.local (D.7) 1781depr.locale.category (D.24) 1800depr.locale.stdcvt (D.22) 1795depr.locale.stdcvt.general (D.22.1) 1795depr.locale.stdcvt.req (D.22.3) 1795depr.mem.poly.allocator.mem (D.14) 1790depr.meta.types (D.15) 1790depr.move.iter.elem (D.19) 1792depr.ostrstream (D.12.4) 1788depr.ostrstream.cons (D.12.4.2) 1788depr.ostrstream.general (D.12.4.1) 1788depr.ostrstream.members (D.12.4.3) 1788depr.relops (D.11) 1782depr.res.on.required (D.10) 1782depr.static.constexpr (D.6) 1781depr.str.strstreams (D.12) 1782depr.string.capacity (D.21) 1795depr.strstream (D.12.5) 1789depr.strstream.cons (D.12.5.2) 1789depr.strstream.dest (D.12.5.3) 1789depr.strstream.general (D.12.5.1) 1789depr.strstream.oper (D.12.5.4) 1789depr.strstream.syn (D.12.1) 1782depr.strstreambuf (D.12.2) 1783depr.strstreambuf.cons (D.12.2.2) 1784depr.strstreambuf.general (D.12.2.1) 1783depr.strstreambuf.members (D.12.2.3) 1785depr.strstreambuf.virtuals (D.12.2.4) 1785depr.template.template (D.9) 1782depr.tuple (D.16) 1791depr.util.smartptr.shared.atomic (D.20) 1793depr.variant (D.17) 1792depr.volatile.type (D.5) 1780deque (24.3.8) 863deque.capacity (24.3.8.3) 866deque.cons (24.3.8.2) 865deque.erasure (24.3.8.5) 867deque.modifiers (24.3.8.4) 866deque.overview (24.3.8.1) 863deque.syn (24.3.3) 859derivation (16.4.6.12) 480derived.classes (16.4.5.5) 476description (16.3) 454description.general (16.3.1) 454

diagnostics (Clause 19) 544diagnostics.general (19.1) 544diff (Annex C) 1751diff.basic (C.6.3) 1770diff.char16 (C.7.3.1) 1777diff.class (C.6.7) 1775diff.cpp (C.6.8) 1777diff.cpp03 (C.5) 1764diff.cpp03.algorithms (C.5.13) 1768diff.cpp03.class (C.5.5) 1765diff.cpp03.containers (C.5.12) 1767diff.cpp03.dcl.dcl (C.5.4) 1765diff.cpp03.diagnostics (C.5.9) 1767diff.cpp03.expr (C.5.3) 1765diff.cpp03.general (C.5.1) 1764diff.cpp03.input.output (C.5.16) 1769diff.cpp03.language.support (C.5.8) 1767diff.cpp03.lex (C.5.2) 1764diff.cpp03.library (C.5.7) 1766diff.cpp03.locale (C.5.15) 1768diff.cpp03.numerics (C.5.14) 1768diff.cpp03.strings (C.5.11) 1767diff.cpp03.temp (C.5.6) 1766diff.cpp03.utilities (C.5.10) 1767diff.cpp11 (C.4) 1762diff.cpp11.basic (C.4.3) 1763diff.cpp11.dcl.dcl (C.4.5) 1763diff.cpp11.expr (C.4.4) 1763diff.cpp11.general (C.4.1) 1762diff.cpp11.input.output (C.4.7) 1764diff.cpp11.lex (C.4.2) 1763diff.cpp11.library (C.4.6) 1764diff.cpp14 (C.3) 1759diff.cpp14.class (C.3.5) 1760diff.cpp14.containers (C.3.11) 1762diff.cpp14.dcl.dcl (C.3.4) 1760diff.cpp14.depr (C.3.12) 1762diff.cpp14.except (C.3.7) 1761diff.cpp14.expr (C.3.3) 1759diff.cpp14.general (C.3.1) 1759diff.cpp14.lex (C.3.2) 1759diff.cpp14.library (C.3.8) 1761diff.cpp14.string (C.3.10) 1762diff.cpp14.temp (C.3.6) 1761diff.cpp14.utilities (C.3.9) 1761diff.cpp17 (C.2) 1752diff.cpp17.alg.reqs (C.2.13) 1757diff.cpp17.basic (C.2.3) 1753diff.cpp17.class (C.2.6) 1755diff.cpp17.containers (C.2.11) 1757diff.cpp17.dcl.dcl (C.2.5) 1754diff.cpp17.depr (C.2.15) 1758diff.cpp17.except (C.2.9) 1757diff.cpp17.expr (C.2.4) 1754diff.cpp17.general (C.2.1) 1752diff.cpp17.input.output (C.2.14) 1758diff.cpp17.iterators (C.2.12) 1757diff.cpp17.lex (C.2.2) 1752diff.cpp17.library (C.2.10) 1757
Cross references 1812

© ISO/IEC N4910

diff.cpp17.over (C.2.7) 1756diff.cpp17.temp (C.2.8) 1756diff.cpp20 (C.1) 1751diff.cpp20.containers (C.1.6) 1752diff.cpp20.expr (C.1.3) 1751diff.cpp20.general (C.1.1) 1751diff.cpp20.lex (C.1.2) 1751diff.cpp20.library (C.1.4) 1751diff.cpp20.utilities (C.1.5) 1751diff.dcl (C.6.6) 1772diff.expr (C.6.4) 1771diff.header.assert.h (C.7.3.3) 1777diff.header.iso646.h (C.7.3.4) 1778diff.header.stdalign.h (C.7.3.5) 1778diff.header.stdbool.h (C.7.3.6) 1778diff.iso (C.6) 1769diff.iso.general (C.6.1) 1769diff.lex (C.6.2) 1769diff.library (C.7) 1777diff.library.general (C.7.1) 1777diff.malloc (C.7.5.3) 1779diff.mods.to.behavior (C.7.5) 1778diff.mods.to.behavior.general (C.7.5.1) 1778diff.mods.to.declarations (C.7.4) 1778diff.mods.to.definitions (C.7.3) 1777diff.mods.to.headers (C.7.2) 1777diff.null (C.7.3.7) 1778diff.offsetof (C.7.5.2) 1778diff.stat (C.6.5) 1772diff.wchar.t (C.7.3.2) 1777domain.error (19.2.4) 545
enum (9.7) 219enum.udecl (9.7.2) 221enumerated.types (16.3.3.3.3) 458equal.range (27.8.4.4) 1207errno (19.4) 547errno.general (19.4.1) 547error.reporting (31.5.6) 1483except (Clause 14) 428except.ctor (14.3) 430except.handle (14.4) 431except.nested (17.9.8) 513except.pre (14.1) 428except.spec (14.5) 432except.special (14.6) 435except.special.general (14.6.1) 435except.terminate (14.6.2) 435except.throw (14.2) 429except.uncaught (14.6.3) 435exception (17.9.3) 510exception.syn (17.9.2) 510exception.terminate (17.9.5) 511exclusive.scan (27.10.8) 1234execpol (22.12) 749execpol.general (22.12.1) 749execpol.objects (22.12.8) 751execpol.par (22.12.5) 750execpol.parunseq (22.12.6) 750

execpol.seq (22.12.4) 750execpol.type (22.12.3) 750execpol.unseq (22.12.7) 751execution.syn (22.12.2) 749expected (22.8) 699expected.bad (22.8.4) 701expected.bad.void (22.8.5) 702expected.expected (22.8.6) 702expected.general (22.8.1) 699expected.object.assign (22.8.6.4) 706expected.object.ctor (22.8.6.2) 704expected.object.dtor (22.8.6.3) 706expected.object.eq (22.8.6.7) 711expected.object.general (22.8.6.1) 702expected.object.obs (22.8.6.6) 710expected.object.swap (22.8.6.5) 709expected.syn (22.8.2) 699expected.un.ctor (22.8.3.2.2) 701expected.un.eq (22.8.3.2.5) 701expected.un.general (22.8.3.1) 700expected.un.object (22.8.3.2) 700expected.un.object.general (22.8.3.2.1) 700expected.un.obs (22.8.3.2.3) 701expected.un.swap (22.8.3.2.4) 701expected.unexpected (22.8.3) 700expected.void (22.8.7) 711expected.void.assign (22.8.7.4) 713expected.void.ctor (22.8.7.2) 712expected.void.dtor (22.8.7.3) 713expected.void.eq (22.8.7.7) 715expected.void.general (22.8.7.1) 711expected.void.obs (22.8.7.6) 715expected.void.swap (22.8.7.5) 714expos.only.func (16.3.3.2) 457expos.only.types (16.3.3.3.2) 457expr (Clause 7) 89expr.add (7.6.6) 137expr.alignof (7.6.2.6) 129expr.arith.conv (7.4) 97expr.ass (7.6.19) 144expr.await (7.6.2.4) 127expr.bit.and (7.6.11) 141expr.call (7.6.1.3) 116expr.cast (7.6.3) 135expr.comma (7.6.20) 145expr.compound (7.6) 115expr.cond (7.6.16) 142expr.const (7.7) 145expr.const.cast (7.6.1.11) 124expr.context (7.2.3) 92expr.delete (7.6.2.9) 133expr.dynamic.cast (7.6.1.7) 119expr.eq (7.6.10) 140expr.log.and (7.6.14) 141expr.log.or (7.6.15) 142expr.mptr.oper (7.6.4) 136expr.mul (7.6.5) 137expr.new (7.6.2.8) 129expr.or (7.6.13) 141
Cross references 1813

© ISO/IEC N4910

expr.post (7.6.1) 115expr.post.general (7.6.1.1) 115expr.post.incr (7.6.1.6) 119expr.pre (7.1) 89expr.pre.incr (7.6.2.3) 126expr.prim (7.5) 97expr.prim.fold (7.5.6) 112expr.prim.id (7.5.4) 99expr.prim.id.dtor (7.5.4.4) 102expr.prim.id.general (7.5.4.1) 99expr.prim.id.qual (7.5.4.3) 101expr.prim.id.unqual (7.5.4.2) 100expr.prim.lambda (7.5.5) 102expr.prim.lambda.capture (7.5.5.3) 107expr.prim.lambda.closure (7.5.5.2) 103expr.prim.lambda.general (7.5.5.1) 102expr.prim.literal (7.5.1) 98expr.prim.paren (7.5.3) 99expr.prim.req (7.5.7) 112expr.prim.req.compound (7.5.7.4) 114expr.prim.req.general (7.5.7.1) 112expr.prim.req.nested (7.5.7.5) 115expr.prim.req.simple (7.5.7.2) 113expr.prim.req.type (7.5.7.3) 114expr.prim.this (7.5.2) 98expr.prop (7.2) 89expr.ref (7.6.1.5) 118expr.reinterpret.cast (7.6.1.10) 123expr.rel (7.6.9) 139expr.shift (7.6.7) 138expr.sizeof (7.6.2.5) 128expr.spaceship (7.6.8) 138expr.static.cast (7.6.1.9) 121expr.sub (7.6.1.2) 116expr.throw (7.6.18) 144expr.type (7.2.2) 91expr.type.conv (7.6.1.4) 118expr.typeid (7.6.1.8) 121expr.unary (7.6.2) 125expr.unary.general (7.6.2.1) 125expr.unary.noexcept (7.6.2.7) 129expr.unary.op (7.6.2.2) 125expr.xor (7.6.12) 141expr.yield (7.6.17) 143ext.manip (31.7.7) 1512extern.names (16.4.5.3.4) 476extern.types (16.4.5.3.5) 476
facet.ctype.char.dtor (30.4.2.4.2) 1435facet.ctype.char.members (30.4.2.4.3) 1435facet.ctype.char.statics (30.4.2.4.4) 1436facet.ctype.char.virtuals (30.4.2.4.5) 1436facet.ctype.special (30.4.2.4) 1435facet.ctype.special.general (30.4.2.4.1) 1435facet.num.get.members (30.4.3.2.2) 1441facet.num.get.virtuals (30.4.3.2.3) 1442facet.num.put.members (30.4.3.3.2) 1445facet.num.put.virtuals (30.4.3.3.3) 1445facet.numpunct (30.4.4) 1447

facet.numpunct.members (30.4.4.1.2) 1448facet.numpunct.virtuals (30.4.4.1.3) 1449file.streams (31.10) 1536filebuf (31.10.2) 1537filebuf.assign (31.10.2.3) 1539filebuf.cons (31.10.2.2) 1538filebuf.general (31.10.2.1) 1537filebuf.members (31.10.2.4) 1539filebuf.virtuals (31.10.2.5) 1540filesystems (31.12) 1553floatfield.manip (31.5.5.4) 1483fmtflags.manip (31.5.5.1) 1481fmtflags.state (31.5.2.3) 1474format (22.14) 754format.arg (22.14.7.1) 768format.arg.store (22.14.7.2) 770format.args (22.14.7.3) 771format.arguments (22.14.7) 768format.context (22.14.6.4) 766format.err.report (22.14.3) 760format.error (22.14.8) 771format.fmt.string (22.14.4) 760format.formatter (22.14.6) 763format.formatter.spec (22.14.6.2) 764format.functions (22.14.5) 761format.parse.ctx (22.14.6.3) 765format.string (22.14.2) 755format.string.general (22.14.2.1) 755format.string.std (22.14.2.2) 756format.syn (22.14.1) 754formatter.requirements (22.14.6.1) 763forward (22.2.4) 650forward.iterators (25.3.5.5) 970forward.list (24.3.9) 867forward.list.access (24.3.9.4) 870forward.list.cons (24.3.9.2) 870forward.list.erasure (24.3.9.7) 874forward.list.iter (24.3.9.3) 870forward.list.modifiers (24.3.9.5) 870forward.list.ops (24.3.9.6) 872forward.list.overview (24.3.9.1) 867forward.list.syn (24.3.4) 859fp.style (17.3.4) 489fpos (31.5.3) 1476fpos.members (31.5.3.1) 1477fpos.operations (31.5.3.2) 1477front.insert.iter.ops (25.5.2.3.1) 985front.insert.iterator (25.5.2.3) 984front.inserter (25.5.2.3.2) 985fs.class.directory.entry (31.12.10) 1577fs.class.directory.entry.general (31.12.10.1) 1577fs.class.directory.iterator (31.12.11) 1581fs.class.directory.iterator.general (31.12.11.1) 1581fs.class.file.status (31.12.9) 1576fs.class.file.status.general (31.12.9.1) 1576fs.class.filesystem.error (31.12.7) 1573fs.class.filesystem.error.general (31.12.7.1) 1573fs.class.path (31.12.6) 1558fs.class.path.general (31.12.6.1) 1558
Cross references 1814

© ISO/IEC N4910

fs.class.rec.dir.itr (31.12.12) 1583fs.class.rec.dir.itr.general (31.12.12.1) 1583fs.conform.9945 (31.12.2.2) 1553fs.conform.os (31.12.2.3) 1554fs.conformance (31.12.2) 1553fs.conformance.general (31.12.2.1) 1553fs.dir.entry.cons (31.12.10.2) 1579fs.dir.entry.io (31.12.10.5) 1581fs.dir.entry.mods (31.12.10.3) 1579fs.dir.entry.obs (31.12.10.4) 1579fs.dir.itr.members (31.12.11.2) 1582fs.dir.itr.nonmembers (31.12.11.3) 1582fs.enum (31.12.8) 1574fs.enum.copy.opts (31.12.8.3) 1574fs.enum.dir.opts (31.12.8.6) 1576fs.enum.file.type (31.12.8.2) 1574fs.enum.path.format (31.12.8.1) 1574fs.enum.perm.opts (31.12.8.5) 1574fs.enum.perms (31.12.8.4) 1574fs.err.report (31.12.5) 1557fs.file.status.cons (31.12.9.2) 1577fs.file.status.mods (31.12.9.4) 1577fs.file.status.obs (31.12.9.3) 1577fs.filesystem.error.members (31.12.7.2) 1573fs.filesystem.syn (31.12.4) 1554fs.general (31.12.1) 1553fs.op.absolute (31.12.13.2) 1586fs.op.canonical (31.12.13.3) 1586fs.op.copy (31.12.13.4) 1586fs.op.copy.file (31.12.13.5) 1588fs.op.copy.symlink (31.12.13.6) 1589fs.op.create.dir.symlk (31.12.13.9) 1589fs.op.create.directories (31.12.13.7) 1589fs.op.create.directory (31.12.13.8) 1589fs.op.create.hard.lk (31.12.13.10) 1589fs.op.create.symlink (31.12.13.11) 1590fs.op.current.path (31.12.13.12) 1590fs.op.equivalent (31.12.13.13) 1590fs.op.exists (31.12.13.14) 1591fs.op.file.size (31.12.13.15) 1591fs.op.funcs (31.12.13) 1585fs.op.funcs.general (31.12.13.1) 1585fs.op.hard.lk.ct (31.12.13.16) 1591fs.op.is.block.file (31.12.13.17) 1591fs.op.is.char.file (31.12.13.18) 1591fs.op.is.directory (31.12.13.19) 1592fs.op.is.empty (31.12.13.20) 1592fs.op.is.fifo (31.12.13.21) 1592fs.op.is.other (31.12.13.22) 1592fs.op.is.regular.file (31.12.13.23) 1592fs.op.is.socket (31.12.13.24) 1593fs.op.is.symlink (31.12.13.25) 1593fs.op.last.write.time (31.12.13.26) 1593fs.op.permissions (31.12.13.27) 1593fs.op.proximate (31.12.13.28) 1594fs.op.read.symlink (31.12.13.29) 1594fs.op.relative (31.12.13.30) 1594fs.op.remove (31.12.13.31) 1594fs.op.remove.all (31.12.13.32) 1595

fs.op.rename (31.12.13.33) 1595fs.op.resize.file (31.12.13.34) 1595fs.op.space (31.12.13.35) 1595fs.op.status (31.12.13.36) 1595fs.op.status.known (31.12.13.37) 1597fs.op.symlink.status (31.12.13.38) 1597fs.op.temp.dir.path (31.12.13.39) 1597fs.op.weakly.canonical (31.12.13.40) 1597fs.path.append (31.12.6.5.3) 1565fs.path.assign (31.12.6.5.2) 1565fs.path.compare (31.12.6.5.8) 1568fs.path.concat (31.12.6.5.4) 1566fs.path.construct (31.12.6.5.1) 1564fs.path.cvt (31.12.6.3) 1562fs.path.decompose (31.12.6.5.9) 1568fs.path.fmt.cvt (31.12.6.3.1) 1562fs.path.gen (31.12.6.5.11) 1570fs.path.generic (31.12.6.2) 1561fs.path.generic.obs (31.12.6.5.7) 1568fs.path.hash (31.12.6.9) 1572fs.path.io (31.12.6.7) 1572fs.path.itr (31.12.6.6) 1571fs.path.member (31.12.6.5) 1564fs.path.modifiers (31.12.6.5.5) 1566fs.path.native.obs (31.12.6.5.6) 1567fs.path.nonmember (31.12.6.8) 1572fs.path.query (31.12.6.5.10) 1570fs.path.req (31.12.6.4) 1563fs.path.type.cvt (31.12.6.3.2) 1563fs.race.behavior (31.12.2.4) 1554fs.rec.dir.itr.members (31.12.12.2) 1584fs.rec.dir.itr.nonmembers (31.12.12.3) 1585fs.req (31.12.3) 1554fstream (31.10.5) 1546fstream.cons (31.10.5.2) 1547fstream.general (31.10.5.1) 1546fstream.members (31.10.5.4) 1548fstream.swap (31.10.5.3) 1547fstream.syn (31.10.1) 1536func.bind (22.10.15) 736func.bind.bind (22.10.15.4) 737func.bind.general (22.10.15.1) 736func.bind.isbind (22.10.15.2) 736func.bind.isplace (22.10.15.3) 737func.bind.partial (22.10.14) 736func.bind.place (22.10.15.5) 738func.def (22.10.3) 724func.identity (22.10.12) 735func.invoke (22.10.5) 725func.memfn (22.10.16) 738func.not.fn (22.10.13) 736func.require (22.10.4) 724func.search (22.10.18) 745func.search.bm (22.10.18.3) 746func.search.bmh (22.10.18.4) 746func.search.default (22.10.18.2) 745func.search.general (22.10.18.1) 745func.wrap (22.10.17) 738func.wrap.badcall (22.10.17.2) 738
Cross references 1815

© ISO/IEC N4910

func.wrap.func (22.10.17.3) 739func.wrap.func.alg (22.10.17.3.8) 741func.wrap.func.cap (22.10.17.3.4) 741func.wrap.func.con (22.10.17.3.2) 739func.wrap.func.general (22.10.17.3.1) 739func.wrap.func.inv (22.10.17.3.5) 741func.wrap.func.mod (22.10.17.3.3) 741func.wrap.func.nullptr (22.10.17.3.7) 741func.wrap.func.targ (22.10.17.3.6) 741func.wrap.general (22.10.17.1) 738func.wrap.move (22.10.17.4) 742func.wrap.move.class (22.10.17.4.2) 742func.wrap.move.ctor (22.10.17.4.3) 743func.wrap.move.general (22.10.17.4.1) 742func.wrap.move.inv (22.10.17.4.4) 744func.wrap.move.util (22.10.17.4.5) 744function.objects (22.10) 721function.objects.general (22.10.1) 721functional.syn (22.10.2) 721functions.within.classes (16.3.3.4) 460future.syn (33.10.2) 1713futures (33.10) 1713futures.async (33.10.9) 1723futures.errors (33.10.3) 1714futures.future.error (33.10.4) 1714futures.overview (33.10.1) 1713futures.promise (33.10.6) 1716futures.shared.future (33.10.8) 1720futures.state (33.10.5) 1715futures.task (33.10.10) 1724futures.task.general (33.10.10.1) 1724futures.task.members (33.10.10.2) 1725futures.task.nonmembers (33.10.10.3) 1726futures.unique.future (33.10.7) 1718
get.new.handler (17.6.4.5) 505get.terminate (17.9.5.3) 511global.functions (16.4.6.4) 479gram (Annex A) 1727gram.basic (A.4) 1732gram.class (A.9) 1743gram.cpp (A.13) 1746gram.dcl (A.7) 1737gram.except (A.12) 1746gram.expr (A.5) 1732gram.general (A.1) 1727gram.key (A.2) 1727gram.lex (A.3) 1727gram.module (A.8) 1743gram.over (A.10) 1745gram.stmt (A.6) 1736gram.temp (A.11) 1745gslice.access (28.6.6.3) 1313gslice.array.assign (28.6.7.2) 1313gslice.array.comp.assign (28.6.7.3) 1314gslice.array.fill (28.6.7.4) 1314gslice.cons (28.6.6.2) 1313
handler.functions (16.4.5.7) 477

hardware.interference (17.6.6) 506hash.requirements (16.4.4.5) 467headers (16.4.2.3) 461hidden.friends (16.4.6.6) 479
ifstream (31.10.3) 1542ifstream.cons (31.10.3.2) 1543ifstream.general (31.10.3.1) 1542ifstream.members (31.10.3.4) 1544ifstream.swap (31.10.3.3) 1544implimits (Annex B) 1749includes (27.8.7.2) 1213inclusive.scan (27.10.9) 1235incrementable.traits (25.3.2.1) 956indirect.array.assign (28.6.9.2) 1315indirect.array.comp.assign (28.6.9.3) 1316indirect.array.fill (28.6.9.4) 1316indirectcallable (25.3.6) 972indirectcallable.general (25.3.6.1) 972indirectcallable.indirectinvocable (25.3.6.2) 972initializer.list.syn (17.10.2) 514inner.product (27.10.5) 1232inout.ptr (20.3.4.4) 607inout.ptr.t (20.3.4.3) 605input.iterators (25.3.5.3) 968input.output (Clause 31) 1464input.output.general (31.1) 1464input.streams (31.7.4) 1493input.streams.general (31.7.4.1) 1493insert.iter.ops (25.5.2.4.1) 986insert.iterator (25.5.2.4) 985insert.iterators (25.5.2) 983insert.iterators.general (25.5.2.1) 983inserter (25.5.2.4.2) 986intro (Clause 4) 10intro.abstract (4.1.2) 10intro.compliance (4.1) 10intro.compliance.general (4.1.1) 10intro.defs (Clause 3) 3intro.execution (6.9.1) 77intro.memory (6.7.1) 58intro.multithread (6.9.2) 80intro.multithread.general (6.9.2.1) 80intro.object (6.7.2) 59intro.progress (6.9.2.3) 83intro.races (6.9.2.2) 80intro.refs (Clause 2) 2intro.scope (Clause 1) 1intro.structure (4.2) 11intseq (21.2) 620intseq.general (21.2.1) 620intseq.intseq (21.2.2) 620intseq.make (21.2.3) 620invalid.argument (19.2.5) 545iomanip.syn (31.7.3) 1492ios (31.5.4) 1477ios.base (31.5.2) 1470ios.base.callback (31.5.2.7) 1476ios.base.cons (31.5.2.8) 1476

Cross references 1816

© ISO/IEC N4910

ios.base.general (31.5.2.1) 1470ios.base.locales (31.5.2.4) 1475ios.base.storage (31.5.2.6) 1475ios.failure (31.5.2.2.1) 1472ios.fmtflags (31.5.2.2.2) 1472ios.init (31.5.2.2.6) 1474ios.iostate (31.5.2.2.3) 1473ios.members.static (31.5.2.5) 1475ios.openmode (31.5.2.2.4) 1473ios.overview (31.5.4.1) 1477ios.seekdir (31.5.2.2.5) 1473ios.syn (31.5.1) 1469ios.types (31.5.2.2) 1472iosfwd.syn (31.3.1) 1465iostate.flags (31.5.4.4) 1481iostream.assign (31.7.4.7.4) 1503iostream.cons (31.7.4.7.2) 1502iostream.dest (31.7.4.7.3) 1503iostream.format (31.7) 1492iostream.forward (31.3) 1465iostream.forward.overview (31.3.2) 1467iostream.limits.imbue (31.2.1) 1464iostream.objects (31.4) 1467iostream.objects.overview (31.4.2) 1467iostream.syn (31.4.1) 1467iostreamclass (31.7.4.7) 1502iostreamclass.general (31.7.4.7.1) 1502iostreams.base (31.5) 1469iostreams.limits.pos (31.2.3) 1464iostreams.requirements (31.2) 1464iostreams.threadsafety (31.2.4) 1465is.heap (27.8.8.6) 1220is.sorted (27.8.2.5) 1204iso646.h.syn (17.14.3) 530ispanstream (31.9.4) 1532ispanstream.ctor (31.9.4.2) 1533ispanstream.general (31.9.4.1) 1532ispanstream.members (31.9.4.4) 1533ispanstream.swap (31.9.4.3) 1533istream (31.7.4.2) 1493istream.assign (31.7.4.2.3) 1495istream.cons (31.7.4.2.2) 1495istream.extractors (31.7.4.3.3) 1497istream.formatted (31.7.4.3) 1496istream.formatted.arithmetic (31.7.4.3.2) 1496istream.formatted.reqmts (31.7.4.3.1) 1496istream.general (31.7.4.2.1) 1493istream.iterator (25.6.2) 1000istream.iterator.cons (25.6.2.2) 1001istream.iterator.general (25.6.2.1) 1000istream.iterator.ops (25.6.2.3) 1001istream.manip (31.7.4.5) 1501istream.rvalue (31.7.4.6) 1502istream.sentry (31.7.4.2.4) 1495istream.syn (31.7.1) 1492istream.unformatted (31.7.4.4) 1498istreambuf.iterator (25.6.4) 1003istreambuf.iterator.cons (25.6.4.3) 1004istreambuf.iterator.general (25.6.4.1) 1003

istreambuf.iterator.ops (25.6.4.4) 1004istreambuf.iterator.proxy (25.6.4.2) 1003istringstream (31.8.3) 1521istringstream.cons (31.8.3.2) 1523istringstream.general (31.8.3.1) 1521istringstream.members (31.8.3.4) 1523istringstream.swap (31.8.3.3) 1523iterator.assoc.types (25.3.2) 956iterator.concept.bidir (25.3.4.12) 966iterator.concept.contiguous (25.3.4.14) 967iterator.concept.forward (25.3.4.11) 966iterator.concept.inc (25.3.4.5) 964iterator.concept.input (25.3.4.9) 965iterator.concept.iterator (25.3.4.6) 964iterator.concept.output (25.3.4.10) 966iterator.concept.random.access (25.3.4.13) 967iterator.concept.readable (25.3.4.2) 962iterator.concept.sentinel (25.3.4.7) 965iterator.concept.sizedsentinel (25.3.4.8) 965iterator.concept.winc (25.3.4.4) 962iterator.concept.writable (25.3.4.3) 962iterator.concepts (25.3.4) 961iterator.concepts.general (25.3.4.1) 961iterator.cpp17 (25.3.5) 968iterator.cpp17.general (25.3.5.1) 968iterator.cust (25.3.3) 960iterator.cust.move (25.3.3.1) 960iterator.cust.swap (25.3.3.2) 961iterator.iterators (25.3.5.2) 968iterator.operations (25.4.3) 976iterator.primitives (25.4) 975iterator.primitives.general (25.4.1) 975iterator.range (25.7) 1005iterator.requirements (25.3) 955iterator.requirements.general (25.3.1) 955iterator.synopsis (25.2) 948iterator.traits (25.3.2.3) 958iterators (Clause 25) 948iterators.common (25.5.4) 991iterators.counted (25.5.6) 995iterators.general (25.1) 948
latch.syn (33.9.2.2) 1710length.error (19.2.6) 545lex (Clause 5) 13lex.bool (5.13.6) 27lex.ccon (5.13.3) 22lex.charset (5.3) 14lex.comment (5.7) 17lex.digraph (5.5) 17lex.ext (5.13.8) 28lex.fcon (5.13.4) 24lex.header (5.8) 18lex.icon (5.13.2) 20lex.key (5.11) 19lex.literal (5.13) 20lex.literal.kinds (5.13.1) 20lex.name (5.10) 18lex.nullptr (5.13.7) 27

Cross references 1817

© ISO/IEC N4910

lex.operators (5.12) 19lex.phases (5.2) 13lex.ppnumber (5.9) 18lex.pptoken (5.4) 16lex.separate (5.1) 13lex.string (5.13.5) 25lex.token (5.6) 17lib.types.movedfrom (16.4.6.15) 481library (Clause 16) 453library.c (16.2) 454library.general (16.1) 453limits.syn (17.3.3) 489list (24.3.10) 874list.capacity (24.3.10.3) 877list.cons (24.3.10.2) 876list.erasure (24.3.10.6) 880list.modifiers (24.3.10.4) 877list.ops (24.3.10.5) 878list.overview (24.3.10.1) 874list.syn (24.3.5) 860locale (30.3.1) 1425locale.categories (30.4) 1431locale.categories.general (30.4.1) 1431locale.category (30.3.1.2.1) 1427locale.codecvt (30.4.2.5) 1437locale.codecvt.byname (30.4.2.6) 1440locale.codecvt.general (30.4.2.5.1) 1437locale.codecvt.members (30.4.2.5.2) 1438locale.codecvt.virtuals (30.4.2.5.3) 1438locale.collate (30.4.5.1) 1449locale.collate.byname (30.4.5.2) 1450locale.collate.general (30.4.5.1.1) 1449locale.collate.members (30.4.5.1.2) 1450locale.collate.virtuals (30.4.5.1.3) 1450locale.cons (30.3.1.3) 1429locale.convenience (30.3.3) 1431locale.ctype (30.4.2.2) 1432locale.ctype.byname (30.4.2.3) 1434locale.ctype.general (30.4.2.2.1) 1432locale.ctype.members (30.4.2.2.2) 1433locale.ctype.virtuals (30.4.2.2.3) 1433locale.facet (30.3.1.2.2) 1428locale.general (30.3.1.1) 1425locale.global.templates (30.3.2) 1431locale.id (30.3.1.2.3) 1429locale.members (30.3.1.4) 1430locale.messages (30.4.8.2) 1461locale.messages.byname (30.4.8.3) 1462locale.messages.general (30.4.8.2.1) 1461locale.messages.members (30.4.8.2.2) 1461locale.messages.virtuals (30.4.8.2.3) 1462locale.money.get (30.4.7.2) 1456locale.money.get.members (30.4.7.2.1) 1456locale.money.get.virtuals (30.4.7.2.2) 1456locale.money.put (30.4.7.3) 1457locale.money.put.members (30.4.7.3.1) 1458locale.money.put.virtuals (30.4.7.3.2) 1458locale.moneypunct (30.4.7.4) 1458locale.moneypunct.byname (30.4.7.5) 1461

locale.moneypunct.general (30.4.7.4.1) 1458locale.moneypunct.members (30.4.7.4.2) 1460locale.moneypunct.virtuals (30.4.7.4.3) 1460locale.nm.put (30.4.3.3) 1444locale.nm.put.general (30.4.3.3.1) 1444locale.num.get (30.4.3.2) 1440locale.num.get.general (30.4.3.2.1) 1440locale.numpunct (30.4.4.1) 1447locale.numpunct.byname (30.4.4.2) 1449locale.numpunct.general (30.4.4.1.1) 1447locale.operators (30.3.1.5) 1430locale.statics (30.3.1.6) 1430locale.syn (30.2) 1424locale.time.get (30.4.6.2) 1451locale.time.get.byname (30.4.6.3) 1454locale.time.get.general (30.4.6.2.1) 1451locale.time.get.members (30.4.6.2.2) 1452locale.time.get.virtuals (30.4.6.2.3) 1453locale.time.put (30.4.6.4) 1454locale.time.put.byname (30.4.6.5) 1455locale.time.put.members (30.4.6.4.1) 1455locale.time.put.virtuals (30.4.6.4.2) 1455locale.types (30.3.1.2) 1427locales (30.3) 1425localization (Clause 30) 1424localization.general (30.1) 1424logic.error (19.2.3) 544logical.operations (22.10.10) 733logical.operations.and (22.10.10.2) 733logical.operations.general (22.10.10.1) 733logical.operations.not (22.10.10.4) 734logical.operations.or (22.10.10.3) 733lower.bound (27.8.4.2) 1206
macro.names (16.4.5.3.3) 476make.heap (27.8.8.4) 1219map (24.4.4) 889map.access (24.4.4.3) 893map.cons (24.4.4.2) 893map.erasure (24.4.4.5) 894map.modifiers (24.4.4.4) 893map.overview (24.4.4.1) 889mask.array.assign (28.6.8.2) 1314mask.array.comp.assign (28.6.8.3) 1315mask.array.fill (28.6.8.4) 1315math.constants (28.8.2) 1332mem (Clause 20) 564mem.general (20.1) 564mem.poly.allocator.class (20.4.3) 608mem.poly.allocator.class.general (20.4.3.1) 608mem.poly.allocator.ctor (20.4.3.2) 609mem.poly.allocator.eq (20.4.3.4) 611mem.poly.allocator.mem (20.4.3.3) 609mem.res (20.4) 607mem.res.class (20.4.2) 607mem.res.class.general (20.4.2.1) 607mem.res.eq (20.4.2.4) 608mem.res.global (20.4.4) 611mem.res.monotonic.buffer (20.4.6) 614

Cross references 1818

© ISO/IEC N4910

mem.res.monotonic.buffer.ctor (20.4.6.2) 614mem.res.monotonic.buffer.general (20.4.6.1) 614mem.res.monotonic.buffer.mem (20.4.6.3) 615mem.res.pool (20.4.5) 611mem.res.pool.ctor (20.4.5.3) 613mem.res.pool.mem (20.4.5.4) 613mem.res.pool.options (20.4.5.2) 613mem.res.pool.overview (20.4.5.1) 611mem.res.private (20.4.2.3) 608mem.res.public (20.4.2.2) 608mem.res.syn (20.4.1) 607member.functions (16.4.6.5) 479memory (20.2) 564memory.general (20.2.1) 564memory.syn (20.2.2) 564meta (Clause 21) 620meta.const.eval (21.3.11) 644meta.general (21.1) 620meta.help (21.3.4) 628meta.logical (21.3.9) 642meta.member (21.3.10) 643meta.rel (21.3.7) 636meta.rqmts (21.3.2) 621meta.trans (21.3.8) 637meta.trans.arr (21.3.8.5) 639meta.trans.cv (21.3.8.2) 638meta.trans.general (21.3.8.1) 637meta.trans.other (21.3.8.7) 639meta.trans.ptr (21.3.8.6) 639meta.trans.ref (21.3.8.3) 638meta.trans.sign (21.3.8.4) 638meta.type.synop (21.3.3) 621meta.unary (21.3.5) 628meta.unary.cat (21.3.5.2) 628meta.unary.comp (21.3.5.3) 629meta.unary.general (21.3.5.1) 628meta.unary.prop (21.3.5.4) 629meta.unary.prop.query (21.3.6) 635mismatch (27.6.10) 1178module (Clause 10) 241module.context (10.6) 249module.global.frag (10.4) 246module.import (10.3) 245module.interface (10.2) 242module.private.frag (10.5) 248module.reach (10.7) 250module.unit (10.1) 241move.iter.cons (25.5.3.4) 987move.iter.elem (25.5.3.6) 988move.iter.nav (25.5.3.7) 988move.iter.nonmember (25.5.3.9) 989move.iter.op.comp (25.5.3.8) 989move.iter.op.conv (25.5.3.5) 988move.iter.requirements (25.5.3.3) 987move.iterator (25.5.3.2) 986move.iterators (25.5.3) 986move.iterators.general (25.5.3.1) 986move.sent.ops (25.5.3.11) 990move.sentinel (25.5.3.10) 990

multibyte.strings (16.3.3.3.5.3) 459multimap (24.4.5) 895multimap.cons (24.4.5.2) 898multimap.erasure (24.4.5.4) 899multimap.modifiers (24.4.5.3) 898multimap.overview (24.4.5.1) 895multiset (24.4.7) 902multiset.cons (24.4.7.2) 905multiset.erasure (24.4.7.3) 906multiset.overview (24.4.7.1) 902mutex.syn (33.6.2) 1683
namespace.alias (9.8.3) 224namespace.constraints (16.4.5.2) 473namespace.def (9.8.2) 222namespace.def.general (9.8.2.1) 222namespace.future (16.4.5.2.3) 474namespace.posix (16.4.5.2.2) 474namespace.qual (6.5.5.3) 51namespace.std (16.4.5.2.1) 473namespace.udecl (9.9) 226namespace.udir (9.8.4) 224namespace.unnamed (9.8.2.2) 223narrow.stream.objects (31.4.3) 1468new.badlength (17.6.4.2) 505new.delete (17.6.3) 501new.delete.array (17.6.3.3) 502new.delete.dataraces (17.6.3.5) 504new.delete.general (17.6.3.1) 501new.delete.placement (17.6.3.4) 504new.delete.single (17.6.3.2) 501new.handler (17.6.4.3) 505new.syn (17.6.2) 500nullablepointer.requirements (16.4.4.4) 467numarray (28.6) 1298numbers (28.8) 1331numbers.syn (28.8.1) 1331numeric.iota (27.10.13) 1239numeric.limits (17.3.5) 490numeric.limits.general (17.3.5.1) 490numeric.limits.members (17.3.5.2) 491numeric.ops (27.10) 1230numeric.ops.gcd (27.10.14) 1239numeric.ops.general (27.10.1) 1230numeric.ops.lcm (27.10.15) 1239numeric.ops.midpoint (27.10.16) 1239numeric.ops.overview (27.9) 1227numeric.requirements (28.2) 1247numeric.special (17.3.5.3) 494numerics (Clause 28) 1247numerics.defns (27.10.2) 1230numerics.general (28.1) 1247
objects.within.classes (16.3.3.5) 460ofstream (31.10.4) 1544ofstream.cons (31.10.4.2) 1545ofstream.general (31.10.4.1) 1544ofstream.members (31.10.4.4) 1546ofstream.swap (31.10.4.3) 1545

Cross references 1819

© ISO/IEC N4910

optional (22.5) 670optional.assign (22.5.3.4) 675optional.bad.access (22.5.5) 681optional.comp.with.t (22.5.8) 682optional.ctor (22.5.3.2) 673optional.dtor (22.5.3.3) 675optional.general (22.5.1) 670optional.hash (22.5.10) 683optional.mod (22.5.3.8) 680optional.monadic (22.5.3.7) 679optional.nullops (22.5.7) 682optional.nullopt (22.5.4) 680optional.observe (22.5.3.6) 678optional.optional (22.5.3) 671optional.optional.general (22.5.3.1) 671optional.relops (22.5.6) 681optional.specalg (22.5.9) 683optional.swap (22.5.3.5) 678optional.syn (22.5.2) 670organization (16.4.2) 460organization.general (16.4.2.1) 460ospanstream (31.9.5) 1534ospanstream.ctor (31.9.5.2) 1534ospanstream.general (31.9.5.1) 1534ospanstream.members (31.9.5.4) 1535ospanstream.swap (31.9.5.3) 1534ostream (31.7.5.2) 1503ostream.assign (31.7.5.2.3) 1505ostream.cons (31.7.5.2.2) 1505ostream.formatted (31.7.5.3) 1506ostream.formatted.reqmts (31.7.5.3.1) 1506ostream.general (31.7.5.2.1) 1503ostream.inserters (31.7.5.3.3) 1508ostream.inserters.arithmetic (31.7.5.3.2) 1507ostream.inserters.character (31.7.5.3.4) 1508ostream.iterator (25.6.3) 1002ostream.iterator.cons.des (25.6.3.2) 1002ostream.iterator.general (25.6.3.1) 1002ostream.iterator.ops (25.6.3.3) 1002ostream.manip (31.7.5.5) 1510ostream.rvalue (31.7.5.6) 1511ostream.seeks (31.7.5.2.5) 1506ostream.sentry (31.7.5.2.4) 1506ostream.syn (31.7.2) 1492ostream.unformatted (31.7.5.4) 1509ostreambuf.iter.cons (25.6.5.2) 1005ostreambuf.iter.ops (25.6.5.3) 1005ostreambuf.iterator (25.6.5) 1004ostreambuf.iterator.general (25.6.5.1) 1004ostringstream (31.8.4) 1524ostringstream.cons (31.8.4.2) 1525ostringstream.general (31.8.4.1) 1524ostringstream.members (31.8.4.4) 1526ostringstream.swap (31.8.4.3) 1526out.of.range (19.2.7) 545out.ptr (20.3.4.2) 605out.ptr.t (20.3.4.1) 603output.iterators (25.3.5.4) 970output.streams (31.7.5) 1503

output.streams.general (31.7.5.1) 1503over (Clause 12) 312over.ass (12.4.3.2) 338over.best.ics (12.2.4.2) 327over.best.ics.general (12.2.4.2.1) 327over.binary (12.4.3) 338over.binary.general (12.4.3.1) 338over.built (12.5) 340over.call (12.4.4) 339over.call.func (12.2.2.2.2) 314over.call.object (12.2.2.2.3) 315over.ics.ellipsis (12.2.4.2.4) 329over.ics.list (12.2.4.2.6) 330over.ics.rank (12.2.4.3) 333over.ics.ref (12.2.4.2.5) 330over.ics.scs (12.2.4.2.2) 329over.ics.user (12.2.4.2.3) 329over.inc (12.4.7) 340over.literal (12.6) 342over.match (12.2) 312over.match.best (12.2.4) 324over.match.best.general (12.2.4.1) 324over.match.call (12.2.2.2) 314over.match.call.general (12.2.2.2.1) 314over.match.class.deduct (12.2.2.9) 320over.match.conv (12.2.2.6) 319over.match.copy (12.2.2.5) 319over.match.ctor (12.2.2.4) 319over.match.funcs (12.2.2) 313over.match.funcs.general (12.2.2.1) 313over.match.general (12.2.1) 312over.match.list (12.2.2.8) 320over.match.oper (12.2.2.3) 316over.match.ref (12.2.2.7) 319over.match.viable (12.2.3) 324over.oper (12.4) 337over.oper.general (12.4.1) 337over.over (12.3) 336over.pre (12.1) 312over.ref (12.4.6) 339over.sub (12.4.5) 339over.unary (12.4.2) 338overflow.error (19.2.10) 546
pair.astuple (22.3.4) 657pair.piecewise (22.3.5) 658pairs (22.3) 653pairs.general (22.3.1) 653pairs.pair (22.3.2) 653pairs.spec (22.3.3) 657partial.sort (27.8.2.3) 1202partial.sort.copy (27.8.2.4) 1203partial.sum (27.10.7) 1234pointer.conversion (20.2.4) 573pointer.traits (20.2.3) 572pointer.traits.functions (20.2.3.3) 573pointer.traits.general (20.2.3.1) 572pointer.traits.optmem (20.2.3.4) 573pointer.traits.types (20.2.3.2) 572

Cross references 1820

© ISO/IEC N4910

pop.heap (27.8.8.3) 1218predef.iterators (25.5) 979priority.queue (24.6.5) 935priqueue.cons (24.6.5.2) 936priqueue.cons.alloc (24.6.5.3) 937priqueue.members (24.6.5.4) 938priqueue.overview (24.6.5.1) 935priqueue.special (24.6.5.5) 939projected (25.3.6.3) 973propagation (17.9.7) 512protection.within.classes (16.4.6.11) 480ptr.align (20.2.5) 573ptr.launder (17.6.5) 505push.heap (27.8.8.2) 1218
queue (24.6.4) 932queue.cons (24.6.4.2) 933queue.cons.alloc (24.6.4.3) 933queue.defn (24.6.4.1) 932queue.mod (24.6.4.4) 934queue.ops (24.6.4.5) 934queue.special (24.6.4.6) 934queue.syn (24.6.2) 931quoted.manip (31.7.8) 1514
rand (28.5) 1256rand.adapt (28.5.5) 1269rand.adapt.disc (28.5.5.2) 1270rand.adapt.general (28.5.5.1) 1269rand.adapt.ibits (28.5.5.3) 1271rand.adapt.shuf (28.5.5.4) 1272rand.device (28.5.7) 1274rand.dist (28.5.9) 1277rand.dist.bern (28.5.9.3) 1279rand.dist.bern.bernoulli (28.5.9.3.1) 1279rand.dist.bern.bin (28.5.9.3.2) 1280rand.dist.bern.geo (28.5.9.3.3) 1281rand.dist.bern.negbin (28.5.9.3.4) 1282rand.dist.general (28.5.9.1) 1277rand.dist.norm (28.5.9.5) 1287rand.dist.norm.cauchy (28.5.9.5.4) 1290rand.dist.norm.chisq (28.5.9.5.3) 1289rand.dist.norm.f (28.5.9.5.5) 1291rand.dist.norm.lognormal (28.5.9.5.2) 1288rand.dist.norm.normal (28.5.9.5.1) 1287rand.dist.norm.t (28.5.9.5.6) 1292rand.dist.pois (28.5.9.4) 1283rand.dist.pois.exp (28.5.9.4.2) 1283rand.dist.pois.extreme (28.5.9.4.5) 1286rand.dist.pois.gamma (28.5.9.4.3) 1284rand.dist.pois.poisson (28.5.9.4.1) 1283rand.dist.pois.weibull (28.5.9.4.4) 1285rand.dist.samp (28.5.9.6) 1293rand.dist.samp.discrete (28.5.9.6.1) 1293rand.dist.samp.pconst (28.5.9.6.2) 1294rand.dist.samp.plinear (28.5.9.6.3) 1296rand.dist.uni (28.5.9.2) 1277rand.dist.uni.int (28.5.9.2.1) 1277rand.dist.uni.real (28.5.9.2.2) 1278

rand.eng (28.5.4) 1265rand.eng.general (28.5.4.1) 1265rand.eng.lcong (28.5.4.2) 1266rand.eng.mers (28.5.4.3) 1267rand.eng.sub (28.5.4.4) 1268rand.general (28.5.1) 1256rand.predef (28.5.6) 1273rand.req (28.5.3) 1259rand.req.adapt (28.5.3.5) 1262rand.req.dist (28.5.3.6) 1263rand.req.eng (28.5.3.4) 1261rand.req.genl (28.5.3.1) 1259rand.req.seedseq (28.5.3.2) 1259rand.req.urng (28.5.3.3) 1260rand.synopsis (28.5.2) 1257rand.util (28.5.8) 1275rand.util.canonical (28.5.8.2) 1276rand.util.seedseq (28.5.8.1) 1275random.access.iterators (25.3.5.7) 971range.access (26.3) 1015range.access.begin (26.3.2) 1015range.access.cbegin (26.3.4) 1016range.access.cend (26.3.5) 1016range.access.crbegin (26.3.8) 1017range.access.crend (26.3.9) 1017range.access.end (26.3.3) 1015range.access.general (26.3.1) 1015range.access.rbegin (26.3.6) 1016range.access.rend (26.3.7) 1017range.adaptor.object (26.7.2) 1040range.adaptors (26.7) 1039range.adaptors.general (26.7.1) 1039range.adjacent (26.7.22) 1100range.adjacent.iterator (26.7.22.3) 1101range.adjacent.overview (26.7.22.1) 1100range.adjacent.sentinel (26.7.22.4) 1104range.adjacent.transform (26.7.23) 1105range.adjacent.transform.iterator (26.7.23.3) 1107range.adjacent.transform.overview (26.7.23.1) 1105range.adjacent.transform.sentinel (26.7.23.4) 1109range.adjacent.transform.view (26.7.23.2) 1106range.adjacent.view (26.7.22.2) 1100range.all (26.7.5) 1042range.all.general (26.7.5.1) 1042range.chunk (26.7.24) 1110range.chunk.by (26.7.26) 1124range.chunk.by.iter (26.7.26.3) 1126range.chunk.by.overview (26.7.26.1) 1124range.chunk.by.view (26.7.26.2) 1125range.chunk.fwd.iter (26.7.24.7) 1116range.chunk.inner.iter (26.7.24.5) 1113range.chunk.outer.iter (26.7.24.3) 1112range.chunk.outer.value (26.7.24.4) 1113range.chunk.overview (26.7.24.1) 1110range.chunk.view.fwd (26.7.24.6) 1115range.chunk.view.input (26.7.24.2) 1111range.cmp (22.10.9) 731range.common (26.7.17) 1079range.common.overview (26.7.17.1) 1079
Cross references 1821

© ISO/IEC N4910

range.common.view (26.7.17.2) 1080range.copy.wrap (26.7.3) 1040range.counted (26.7.16) 1079range.dangling (26.5.5) 1027range.drop (26.7.10) 1057range.drop.overview (26.7.10.1) 1057range.drop.view (26.7.10.2) 1057range.drop.while (26.7.11) 1058range.drop.while.overview (26.7.11.1) 1058range.drop.while.view (26.7.11.2) 1059range.elements (26.7.19) 1082range.elements.iterator (26.7.19.3) 1084range.elements.overview (26.7.19.1) 1082range.elements.sentinel (26.7.19.4) 1087range.elements.view (26.7.19.2) 1083range.empty (26.6.2) 1030range.empty.overview (26.6.2.1) 1030range.empty.view (26.6.2.2) 1030range.error (19.2.9) 546range.factories (26.6) 1030range.factories.general (26.6.1) 1030range.filter (26.7.6) 1043range.filter.iterator (26.7.6.3) 1044range.filter.overview (26.7.6.1) 1043range.filter.sentinel (26.7.6.4) 1046range.filter.view (26.7.6.2) 1044range.iota (26.6.4) 1031range.iota.iterator (26.6.4.3) 1034range.iota.overview (26.6.4.1) 1031range.iota.sentinel (26.6.4.4) 1037range.iota.view (26.6.4.2) 1032range.istream (26.6.5) 1038range.istream.iterator (26.6.5.3) 1039range.istream.overview (26.6.5.1) 1038range.istream.view (26.6.5.2) 1038range.iter.op.advance (25.4.4.2) 977range.iter.op.distance (25.4.4.3) 978range.iter.op.next (25.4.4.4) 978range.iter.op.prev (25.4.4.5) 979range.iter.ops (25.4.4) 977range.iter.ops.general (25.4.4.1) 977range.join (26.7.12) 1059range.join.iterator (26.7.12.3) 1061range.join.overview (26.7.12.1) 1059range.join.sentinel (26.7.12.4) 1064range.join.view (26.7.12.2) 1060range.join.with (26.7.13) 1064range.join.with.iterator (26.7.13.3) 1066range.join.with.overview (26.7.13.1) 1064range.join.with.sentinel (26.7.13.4) 1070range.join.with.view (26.7.13.2) 1065range.lazy.split (26.7.14) 1070range.lazy.split.inner (26.7.14.5) 1074range.lazy.split.outer (26.7.14.3) 1072range.lazy.split.outer.value (26.7.14.4) 1074range.lazy.split.overview (26.7.14.1) 1070range.lazy.split.view (26.7.14.2) 1071range.nonprop.cache (26.7.4) 1041range.owning.view (26.7.5.3) 1043

range.prim.cdata (26.3.14) 1019range.prim.data (26.3.13) 1018range.prim.empty (26.3.12) 1018range.prim.size (26.3.10) 1018range.prim.ssize (26.3.11) 1018range.range (26.4.2) 1019range.ref.view (26.7.5.2) 1042range.refinements (26.4.5) 1021range.req (26.4) 1019range.req.general (26.4.1) 1019range.reverse (26.7.18) 1081range.reverse.overview (26.7.18.1) 1081range.reverse.view (26.7.18.2) 1081range.single (26.6.3) 1030range.single.overview (26.6.3.1) 1030range.single.view (26.6.3.2) 1030range.sized (26.4.3) 1020range.slide (26.7.25) 1119range.slide.iterator (26.7.25.3) 1121range.slide.overview (26.7.25.1) 1119range.slide.sentinel (26.7.25.4) 1124range.slide.view (26.7.25.2) 1119range.split (26.7.15) 1076range.split.iterator (26.7.15.3) 1078range.split.overview (26.7.15.1) 1076range.split.sentinel (26.7.15.4) 1079range.split.view (26.7.15.2) 1076range.subrange (26.5.4) 1024range.subrange.access (26.5.4.3) 1026range.subrange.ctor (26.5.4.2) 1026range.subrange.general (26.5.4.1) 1024range.take (26.7.8) 1052range.take.overview (26.7.8.1) 1052range.take.sentinel (26.7.8.3) 1054range.take.view (26.7.8.2) 1053range.take.while (26.7.9) 1055range.take.while.overview (26.7.9.1) 1055range.take.while.sentinel (26.7.9.3) 1056range.take.while.view (26.7.9.2) 1055range.transform (26.7.7) 1047range.transform.iterator (26.7.7.3) 1048range.transform.overview (26.7.7.1) 1047range.transform.sentinel (26.7.7.4) 1051range.transform.view (26.7.7.2) 1047range.utility (26.5) 1022range.utility.conv (26.5.6) 1028range.utility.conv.adaptors (26.5.6.3) 1029range.utility.conv.general (26.5.6.1) 1028range.utility.conv.to (26.5.6.2) 1028range.utility.general (26.5.1) 1022range.utility.helpers (26.5.2) 1022range.view (26.4.4) 1020range.zip (26.7.20) 1088range.zip.iterator (26.7.20.3) 1090range.zip.overview (26.7.20.1) 1088range.zip.sentinel (26.7.20.4) 1094range.zip.transform (26.7.21) 1095range.zip.transform.iterator (26.7.21.3) 1096range.zip.transform.overview (26.7.21.1) 1095
Cross references 1822

© ISO/IEC N4910

range.zip.transform.sentinel (26.7.21.4) 1099range.zip.transform.view (26.7.21.2) 1095range.zip.view (26.7.20.2) 1088ranges (Clause 26) 1008ranges.general (26.1) 1008ranges.syn (26.2) 1008ratio (21.4) 644ratio.arithmetic (21.4.4) 645ratio.comparison (21.4.5) 646ratio.general (21.4.1) 644ratio.ratio (21.4.3) 645ratio.si (21.4.6) 646ratio.syn (21.4.2) 644re (Clause 32) 1601re.alg (32.10) 1623re.alg.match (32.10.2) 1623re.alg.replace (32.10.4) 1626re.alg.search (32.10.3) 1624re.badexp (32.5) 1609re.const (32.4) 1607re.const.general (32.4.1) 1607re.err (32.4.4) 1609re.except (32.10.1) 1623re.general (32.1) 1601re.grammar (32.12) 1632re.iter (32.11) 1627re.matchflag (32.4.3) 1607re.regex (32.7) 1612re.regex.assign (32.7.3) 1615re.regex.construct (32.7.2) 1614re.regex.general (32.7.1) 1612re.regex.locale (32.7.5) 1616re.regex.nonmemb (32.7.7) 1616re.regex.operations (32.7.4) 1616re.regex.swap (32.7.6) 1616re.regiter (32.11.1) 1627re.regiter.cnstr (32.11.1.2) 1628re.regiter.comp (32.11.1.3) 1628re.regiter.deref (32.11.1.4) 1628re.regiter.general (32.11.1.1) 1627re.regiter.incr (32.11.1.5) 1628re.req (32.2) 1601re.results (32.9) 1618re.results.acc (32.9.5) 1621re.results.all (32.9.7) 1622re.results.const (32.9.2) 1620re.results.form (32.9.6) 1621re.results.general (32.9.1) 1618re.results.nonmember (32.9.9) 1622re.results.size (32.9.4) 1620re.results.state (32.9.3) 1620re.results.swap (32.9.8) 1622re.submatch (32.8) 1616re.submatch.general (32.8.1) 1616re.submatch.members (32.8.2) 1617re.submatch.op (32.8.3) 1617re.syn (32.3) 1603re.synopt (32.4.2) 1607re.tokiter (32.11.2) 1629

re.tokiter.cnstr (32.11.2.2) 1631re.tokiter.comp (32.11.2.3) 1631re.tokiter.deref (32.11.2.4) 1631re.tokiter.general (32.11.2.1) 1629re.tokiter.incr (32.11.2.5) 1632re.traits (32.6) 1610readable.traits (25.3.2.2) 957reduce (27.10.4) 1231reentrancy (16.4.6.9) 480refwrap (22.10.6) 725refwrap.access (22.10.6.4) 726refwrap.assign (22.10.6.3) 726refwrap.const (22.10.6.2) 726refwrap.general (22.10.6.1) 725refwrap.helpers (22.10.6.6) 726refwrap.invoke (22.10.6.5) 726replacement.functions (16.4.5.6) 476requirements (16.4) 460requirements.general (16.4.1) 460res.on.arguments (16.4.5.9) 478res.on.data.races (16.4.6.10) 480res.on.exception.handling (16.4.6.13) 480res.on.functions (16.4.5.8) 477res.on.headers (16.4.6.2) 478res.on.macro.definitions (16.4.6.3) 479res.on.objects (16.4.5.10) 478res.on.requirements (16.4.5.11) 478reserved.names (16.4.5.3) 474reserved.names.general (16.4.5.3.1) 474reverse.iter.cmp (25.5.1.8) 981reverse.iter.cons (25.5.1.4) 980reverse.iter.conv (25.5.1.5) 980reverse.iter.elem (25.5.1.6) 981reverse.iter.nav (25.5.1.7) 981reverse.iter.nonmember (25.5.1.9) 982reverse.iter.requirements (25.5.1.3) 980reverse.iterator (25.5.1.2) 979reverse.iterators (25.5.1) 979reverse.iterators.general (25.5.1.1) 979round.style (17.3.4.1) 489runtime.error (19.2.8) 546
scoped.adaptor.operators (20.5.5) 619semaphore.syn (33.8.2) 1708sequence.reqmts (24.2.4) 830sequences (24.3) 858sequences.general (24.3.1) 858set (24.4.6) 899set.cons (24.4.6.2) 902set.difference (27.8.7.5) 1215set.erasure (24.4.6.3) 902set.intersection (27.8.7.4) 1215set.new.handler (17.6.4.4) 505set.overview (24.4.6.1) 899set.symmetric.difference (27.8.7.6) 1216set.terminate (17.9.5.2) 511set.union (27.8.7.3) 1214sf.cmath (28.7.6) 1326sf.cmath.assoc.laguerre (28.7.6.2) 1326

Cross references 1823

© ISO/IEC N4910

sf.cmath.assoc.legendre (28.7.6.3) 1327sf.cmath.beta (28.7.6.4) 1327sf.cmath.comp.ellint.1 (28.7.6.5) 1327sf.cmath.comp.ellint.2 (28.7.6.6) 1327sf.cmath.comp.ellint.3 (28.7.6.7) 1327sf.cmath.cyl.bessel.i (28.7.6.8) 1328sf.cmath.cyl.bessel.j (28.7.6.9) 1328sf.cmath.cyl.bessel.k (28.7.6.10) 1328sf.cmath.cyl.neumann (28.7.6.11) 1328sf.cmath.ellint.1 (28.7.6.12) 1329sf.cmath.ellint.2 (28.7.6.13) 1329sf.cmath.ellint.3 (28.7.6.14) 1329sf.cmath.expint (28.7.6.15) 1329sf.cmath.general (28.7.6.1) 1326sf.cmath.hermite (28.7.6.16) 1330sf.cmath.laguerre (28.7.6.17) 1330sf.cmath.legendre (28.7.6.18) 1330sf.cmath.riemann.zeta (28.7.6.19) 1330sf.cmath.sph.bessel (28.7.6.20) 1331sf.cmath.sph.legendre (28.7.6.21) 1331sf.cmath.sph.neumann (28.7.6.22) 1331shared.mutex.syn (33.6.3) 1683slice.access (28.6.4.3) 1310slice.arr.assign (28.6.5.2) 1311slice.arr.comp.assign (28.6.5.3) 1311slice.arr.fill (28.6.5.4) 1311slice.ops (28.6.4.4) 1310smartptr (20.3) 580smartptr.adapt (20.3.4) 603sort (27.8.2.1) 1201sort.heap (27.8.8.5) 1219source.location.syn (17.8.1) 508span.cons (24.7.3.2) 943span.deduct (24.7.3.3) 945span.elem (24.7.3.6) 946span.iterators (24.7.3.7) 947span.objectrep (24.7.3.8) 947span.obs (24.7.3.5) 946span.overview (24.7.3.1) 942span.streams (31.9) 1529span.streams.overview (31.9.1) 1529span.sub (24.7.3.4) 945span.syn (24.7.2) 942spanbuf (31.9.3) 1530spanbuf.assign (31.9.3.3) 1531spanbuf.ctor (31.9.3.2) 1530spanbuf.general (31.9.3.1) 1530spanbuf.members (31.9.3.4) 1531spanbuf.virtuals (31.9.3.5) 1531spanstream (31.9.6) 1535spanstream.ctor (31.9.6.2) 1535spanstream.general (31.9.6.1) 1535spanstream.members (31.9.6.4) 1536spanstream.swap (31.9.6.3) 1536spanstream.syn (31.9.2) 1529special (11.4.4) 261special.mem.concepts (27.11.2) 1240specialized.addressof (20.2.10) 580specialized.algorithms (27.11) 1240

specialized.algorithms.general (27.11.1) 1240specialized.construct (27.11.8) 1244specialized.destroy (27.11.9) 1245sstream.syn (31.8.1) 1515stable.sort (27.8.2.2) 1202stack (24.6.6) 939stack.cons (24.6.6.3) 940stack.cons.alloc (24.6.6.4) 940stack.defn (24.6.6.2) 939stack.general (24.6.6.1) 939stack.mod (24.6.6.5) 941stack.ops (24.6.6.6) 941stack.special (24.6.6.7) 941stack.syn (24.6.3) 931stacktrace (19.6) 557stacktrace.basic (19.6.4) 559stacktrace.basic.cmp (19.6.4.4) 562stacktrace.basic.ctor (19.6.4.2) 560stacktrace.basic.hash (19.6.4.7) 563stacktrace.basic.mod (19.6.4.5) 562stacktrace.basic.nonmem (19.6.4.6) 562stacktrace.basic.obs (19.6.4.3) 561stacktrace.basic.overview (19.6.4.1) 559stacktrace.entry (19.6.3) 558stacktrace.entry.cmp (19.6.3.5) 559stacktrace.entry.ctor (19.6.3.2) 558stacktrace.entry.obs (19.6.3.3) 558stacktrace.entry.overview (19.6.3.1) 558stacktrace.entry.query (19.6.3.4) 559stacktrace.general (19.6.1) 557stacktrace.syn (19.6.2) 557std.exceptions (19.2) 544std.exceptions.general (19.2.1) 544std.ios.manip (31.5.5) 1481std.iterator.tags (25.4.2) 976std.manip (31.7.6) 1511stdalign.h.syn (17.14.4) 530stdatomic.h.syn (33.5.12) 1681stdbool.h.syn (17.14.5) 530stdexcept.syn (19.2.2) 544stmt.ambig (8.9) 159stmt.block (8.4) 152stmt.break (8.7.2) 157stmt.cont (8.7.3) 157stmt.dcl (8.8) 158stmt.do (8.6.3) 155stmt.expr (8.3) 152stmt.for (8.6.4) 155stmt.goto (8.7.6) 158stmt.if (8.5.2) 152stmt.iter (8.6) 154stmt.iter.general (8.6.1) 154stmt.jump (8.7) 157stmt.jump.general (8.7.1) 157stmt.label (8.2) 151stmt.pre (8.1) 151stmt.ranged (8.6.5) 156stmt.return (8.7.4) 157stmt.return.coroutine (8.7.5) 158
Cross references 1824

© ISO/IEC N4910

stmt.select (8.5) 152stmt.select.general (8.5.1) 152stmt.stmt (Clause 8) 151stmt.switch (8.5.3) 154stmt.while (8.6.2) 155stopcallback (33.3.5) 1642stopcallback.cons (33.3.5.2) 1642stopcallback.general (33.3.5.1) 1642stopsource (33.3.4) 1640stopsource.cons (33.3.4.2) 1641stopsource.general (33.3.4.1) 1640stopsource.mem (33.3.4.3) 1641stopsource.nonmembers (33.3.4.4) 1642stoptoken (33.3.3) 1639stoptoken.cons (33.3.3.2) 1639stoptoken.general (33.3.3.1) 1639stoptoken.mem (33.3.3.3) 1640stoptoken.nonmembers (33.3.3.4) 1640stream.buffers (31.6) 1484stream.iterators (25.6) 1000stream.iterators.general (25.6.1) 1000stream.types (31.2.2) 1464streambuf (31.6.3) 1485streambuf.assign (31.6.3.4.1) 1488streambuf.buffer (31.6.3.3.2) 1487streambuf.cons (31.6.3.2) 1486streambuf.general (31.6.3.1) 1485streambuf.get.area (31.6.3.4.2) 1488streambuf.locales (31.6.3.3.1) 1487streambuf.members (31.6.3.3) 1487streambuf.protected (31.6.3.4) 1488streambuf.pub.get (31.6.3.3.3) 1487streambuf.pub.pback (31.6.3.3.4) 1488streambuf.pub.put (31.6.3.3.5) 1488streambuf.put.area (31.6.3.4.3) 1489streambuf.reqts (31.6.2) 1484streambuf.syn (31.6.1) 1484streambuf.virt.buffer (31.6.3.5.2) 1489streambuf.virt.get (31.6.3.5.3) 1490streambuf.virt.locales (31.6.3.5.1) 1489streambuf.virt.pback (31.6.3.5.4) 1491streambuf.virt.put (31.6.3.5.5) 1491streambuf.virtuals (31.6.3.5) 1489string.access (23.4.3.6) 802string.accessors (23.4.3.8.1) 809string.append (23.4.3.7.2) 803string.assign (23.4.3.7.3) 804string.capacity (23.4.3.5) 801string.classes (23.4) 790string.classes.general (23.4.1) 790string.cmp (23.4.4.2) 813string.compare (23.4.3.8.4) 811string.cons (23.4.3.3) 799string.contains (23.4.3.8.7) 812string.conversions (23.4.5) 815string.copy (23.4.3.7.7) 809string.ends.with (23.4.3.8.6) 812string.erase (23.4.3.7.5) 807string.erasure (23.4.4.5) 815

string.find (23.4.3.8.2) 810string.insert (23.4.3.7.4) 805string.io (23.4.4.4) 814string.iterators (23.4.3.4) 801string.modifiers (23.4.3.7) 803string.nonmembers (23.4.4) 812string.op.append (23.4.3.7.1) 803string.op.plus (23.4.4.1) 812string.ops (23.4.3.8) 809string.replace (23.4.3.7.6) 807string.require (23.4.3.2) 798string.special (23.4.4.3) 814string.starts.with (23.4.3.8.5) 812string.streams (31.8) 1515string.substr (23.4.3.8.3) 811string.swap (23.4.3.7.8) 809string.syn (23.4.2) 790string.view (23.3) 780string.view.access (23.3.3.5) 784string.view.capacity (23.3.3.4) 784string.view.comparison (23.3.5) 788string.view.cons (23.3.3.2) 783string.view.deduct (23.3.4) 788string.view.find (23.3.3.8) 787string.view.general (23.3.1) 780string.view.hash (23.3.7) 789string.view.io (23.3.6) 789string.view.iterators (23.3.3.3) 784string.view.literals (23.3.8) 789string.view.modifiers (23.3.3.6) 785string.view.ops (23.3.3.7) 785string.view.synop (23.3.2) 780string.view.template (23.3.3) 781string.view.template.general (23.3.3.1) 781stringbuf (31.8.2) 1516stringbuf.assign (31.8.2.3) 1518stringbuf.cons (31.8.2.2) 1517stringbuf.general (31.8.2.1) 1516stringbuf.members (31.8.2.4) 1519stringbuf.virtuals (31.8.2.5) 1520strings (Clause 23) 775strings.general (23.1) 775stringstream (31.8.5) 1526stringstream.cons (31.8.5.2) 1528stringstream.general (31.8.5.1) 1526stringstream.members (31.8.5.4) 1528stringstream.swap (31.8.5.3) 1528structure (16.3.2) 454structure.elements (16.3.2.1) 454structure.requirements (16.3.2.3) 455structure.see.also (16.3.2.5) 457structure.specifications (16.3.2.4) 455structure.summary (16.3.2.2) 454support (Clause 17) 482support.c.headers (17.14) 529support.c.headers.general (17.14.1) 529support.c.headers.other (17.14.7) 530support.coroutine (17.12) 522support.coroutine.general (17.12.1) 522
Cross references 1825

© ISO/IEC N4910

support.dynamic (17.6) 500support.dynamic.general (17.6.1) 500support.exception (17.9) 510support.exception.general (17.9.1) 510support.general (17.1) 482support.initlist (17.10) 513support.initlist.access (17.10.4) 514support.initlist.cons (17.10.3) 514support.initlist.general (17.10.1) 513support.initlist.range (17.10.5) 514support.limits (17.3) 486support.limits.general (17.3.1) 486support.rtti (17.7) 506support.rtti.general (17.7.1) 506support.runtime (17.13) 527support.runtime.general (17.13.1) 527support.signal (17.13.5) 528support.srcloc (17.8) 508support.srcloc.class (17.8.2) 508support.srcloc.class.general (17.8.2.1) 508support.srcloc.cons (17.8.2.2) 508support.srcloc.obs (17.8.2.3) 509support.start.term (17.5) 498support.types (17.2) 482support.types.byteops (17.2.5) 485support.types.layout (17.2.4) 484support.types.nullptr (17.2.3) 484swappable.requirements (16.4.4.3) 466syncstream (31.11) 1548syncstream.osyncstream (31.11.3) 1551syncstream.osyncstream.cons (31.11.3.2) 1552syncstream.osyncstream.members (31.11.3.3) 1552syncstream.osyncstream.overview (31.11.3.1) 1551syncstream.syn (31.11.1) 1548syncstream.syncbuf (31.11.2) 1549syncstream.syncbuf.assign (31.11.2.3) 1550syncstream.syncbuf.cons (31.11.2.2) 1549syncstream.syncbuf.members (31.11.2.4) 1550syncstream.syncbuf.overview (31.11.2.1) 1549syncstream.syncbuf.special (31.11.2.6) 1551syncstream.syncbuf.virtuals (31.11.2.5) 1551syntax (4.3) 11syserr (19.5) 549syserr.compare (19.5.6) 555syserr.errcat (19.5.3) 551syserr.errcat.derived (19.5.3.4) 552syserr.errcat.nonvirtuals (19.5.3.3) 552syserr.errcat.objects (19.5.3.5) 552syserr.errcat.overview (19.5.3.1) 551syserr.errcat.virtuals (19.5.3.2) 551syserr.errcode (19.5.4) 553syserr.errcode.constructors (19.5.4.2) 553syserr.errcode.modifiers (19.5.4.3) 553syserr.errcode.nonmembers (19.5.4.5) 554syserr.errcode.observers (19.5.4.4) 554syserr.errcode.overview (19.5.4.1) 553syserr.errcondition (19.5.5) 554syserr.errcondition.constructors (19.5.5.2) 555syserr.errcondition.modifiers (19.5.5.3) 555

syserr.errcondition.nonmembers (19.5.5.5) 555syserr.errcondition.observers (19.5.5.4) 555syserr.errcondition.overview (19.5.5.1) 554syserr.general (19.5.1) 549syserr.hash (19.5.7) 556syserr.syserr (19.5.8) 556syserr.syserr.members (19.5.8.2) 556syserr.syserr.overview (19.5.8.1) 556system.error.syn (19.5.2) 549
temp (Clause 13) 344temp.alias (13.7.8) 382temp.arg (13.4) 352temp.arg.explicit (13.10.2) 409temp.arg.general (13.4.1) 352temp.arg.nontype (13.4.3) 354temp.arg.template (13.4.4) 355temp.arg.type (13.4.2) 353temp.class (13.7.2) 363temp.class.general (13.7.2.1) 363temp.concept (13.7.9) 383temp.constr (13.5) 357temp.constr.atomic (13.5.2.3) 358temp.constr.constr (13.5.2) 357temp.constr.constr.general (13.5.2.1) 357temp.constr.decl (13.5.3) 359temp.constr.general (13.5.1) 357temp.constr.normal (13.5.4) 361temp.constr.op (13.5.2.2) 357temp.constr.order (13.5.5) 361temp.decls (13.7) 363temp.decls.general (13.7.1) 363temp.deduct (13.10.3) 411temp.deduct.call (13.10.3.2) 415temp.deduct.conv (13.10.3.4) 418temp.deduct.decl (13.10.3.7) 426temp.deduct.funcaddr (13.10.3.3) 418temp.deduct.general (13.10.3.1) 411temp.deduct.guide (13.7.2.3) 365temp.deduct.partial (13.10.3.5) 419temp.deduct.type (13.10.3.6) 420temp.dep (13.8.3) 388temp.dep.candidate (13.8.4.2) 394temp.dep.constexpr (13.8.3.4) 393temp.dep.expr (13.8.3.3) 392temp.dep.general (13.8.3.1) 388temp.dep.res (13.8.4) 394temp.dep.temp (13.8.3.5) 394temp.dep.type (13.8.3.2) 389temp.expl.spec (13.9.4) 404temp.explicit (13.9.3) 402temp.fct (13.7.7) 377temp.fct.general (13.7.7.1) 377temp.fct.spec (13.10) 409temp.fct.spec.general (13.10.1) 409temp.friend (13.7.5) 370temp.func.order (13.7.7.3) 379temp.inst (13.9.2) 398temp.local (13.8.2) 387

Cross references 1826

© ISO/IEC N4910

temp.mem (13.7.3) 366temp.mem.class (13.7.2.4) 365temp.mem.enum (13.7.2.6) 366temp.mem.func (13.7.2.2) 364temp.names (13.3) 349temp.over (13.10.4) 426temp.over.link (13.7.7.2) 377temp.param (13.2) 345temp.point (13.8.4.1) 394temp.pre (13.1) 344temp.res (13.8) 383temp.res.general (13.8.1) 383temp.spec (13.9) 397temp.spec.general (13.9.1) 397temp.spec.partial (13.7.6) 372temp.spec.partial.general (13.7.6.1) 372temp.spec.partial.match (13.7.6.2) 374temp.spec.partial.member (13.7.6.4) 376temp.spec.partial.order (13.7.6.3) 375temp.static (13.7.2.5) 366temp.type (13.6) 362temp.variadic (13.7.4) 368template.bitset (22.9.2) 716template.bitset.general (22.9.2.1) 716template.gslice.array (28.6.7) 1313template.gslice.array.overview (28.6.7.1) 1313template.indirect.array (28.6.9) 1315template.indirect.array.overview (28.6.9.1) 1315template.mask.array (28.6.8) 1314template.mask.array.overview (28.6.8.1) 1314template.slice.array (28.6.5) 1310template.slice.array.overview (28.6.5.1) 1310template.valarray (28.6.2) 1301template.valarray.overview (28.6.2.1) 1301terminate (17.9.5.4) 511terminate.handler (17.9.5.1) 511tgmath.h.syn (17.14.6) 530thread (Clause 33) 1635thread.barrier (33.9.3) 1711thread.barrier.class (33.9.3.3) 1711thread.barrier.general (33.9.3.1) 1711thread.condition (33.7) 1700thread.condition.condvar (33.7.4) 1701thread.condition.condvarany (33.7.5) 1704thread.condition.condvarany.general (33.7.5.1) 1704thread.condition.general (33.7.1) 1700thread.condition.nonmember (33.7.3) 1701thread.condvarany.intwait (33.7.5.3) 1707thread.condvarany.wait (33.7.5.2) 1706thread.coord (33.9) 1709thread.coord.general (33.9.1) 1709thread.general (33.1) 1635thread.jthread.class (33.4.4) 1647thread.jthread.class.general (33.4.4.1) 1647thread.jthread.cons (33.4.4.2) 1647thread.jthread.mem (33.4.4.3) 1648thread.jthread.special (33.4.4.5) 1649thread.jthread.static (33.4.4.6) 1649thread.jthread.stop (33.4.4.4) 1649

thread.latch (33.9.2) 1710thread.latch.class (33.9.2.3) 1710thread.latch.general (33.9.2.1) 1710thread.lock (33.6.5) 1691thread.lock.algorithm (33.6.6) 1699thread.lock.general (33.6.5.1) 1691thread.lock.guard (33.6.5.2) 1691thread.lock.scoped (33.6.5.3) 1692thread.lock.shared (33.6.5.5) 1696thread.lock.shared.cons (33.6.5.5.2) 1697thread.lock.shared.general (33.6.5.5.1) 1696thread.lock.shared.locking (33.6.5.5.3) 1697thread.lock.shared.mod (33.6.5.5.4) 1699thread.lock.shared.obs (33.6.5.5.5) 1699thread.lock.unique (33.6.5.4) 1692thread.lock.unique.cons (33.6.5.4.2) 1693thread.lock.unique.general (33.6.5.4.1) 1692thread.lock.unique.locking (33.6.5.4.3) 1694thread.lock.unique.mod (33.6.5.4.4) 1695thread.lock.unique.obs (33.6.5.4.5) 1695thread.mutex (33.6) 1683thread.mutex.class (33.6.4.2.2) 1685thread.mutex.general (33.6.1) 1683thread.mutex.recursive (33.6.4.2.3) 1685thread.mutex.requirements (33.6.4) 1683thread.mutex.requirements.general (33.6.4.1) 1683thread.mutex.requirements.mutex (33.6.4.2) 1684thread.mutex.requirements.mutex.general (33.6.4.2.1)1684thread.once (33.6.7) 1699thread.once.callonce (33.6.7.2) 1700thread.once.onceflag (33.6.7.1) 1699thread.req (33.2) 1635thread.req.exception (33.2.2) 1635thread.req.lockable (33.2.5) 1636thread.req.lockable.basic (33.2.5.2) 1637thread.req.lockable.general (33.2.5.1) 1636thread.req.lockable.req (33.2.5.3) 1637thread.req.lockable.shared (33.2.5.5) 1637thread.req.lockable.shared.timed (33.2.5.6) 1638thread.req.lockable.timed (33.2.5.4) 1637thread.req.native (33.2.3) 1635thread.req.paramname (33.2.1) 1635thread.req.timing (33.2.4) 1635thread.sema (33.8) 1708thread.sema.cnt (33.8.3) 1708thread.sema.general (33.8.1) 1708thread.sharedmutex.class (33.6.4.4.2) 1689thread.sharedmutex.requirements (33.6.4.4) 1688thread.sharedmutex.requirements.general (33.6.4.4.1)1688thread.sharedtimedmutex.class (33.6.4.5.2) 1690thread.sharedtimedmutex.requirements (33.6.4.5)1689thread.sharedtimedmutex.requirements.general(33.6.4.5.1) 1689thread.stoptoken (33.3) 1638thread.stoptoken.intro (33.3.1) 1638thread.stoptoken.syn (33.3.2) 1638
Cross references 1827

© ISO/IEC N4910

thread.syn (33.4.2) 1643thread.thread.algorithm (33.4.3.8) 1647thread.thread.assign (33.4.3.5) 1646thread.thread.class (33.4.3) 1643thread.thread.class.general (33.4.3.1) 1643thread.thread.constr (33.4.3.3) 1645thread.thread.destr (33.4.3.4) 1645thread.thread.id (33.4.3.2) 1644thread.thread.member (33.4.3.6) 1646thread.thread.static (33.4.3.7) 1646thread.thread.this (33.4.5) 1649thread.threads (33.4) 1643thread.threads.general (33.4.1) 1643thread.timedmutex.class (33.6.4.3.2) 1686thread.timedmutex.recursive (33.6.4.3.3) 1687thread.timedmutex.requirements (33.6.4.3) 1686thread.timedmutex.requirements.general (33.6.4.3.1)1686time (Clause 29) 1333time.12 (29.10) 1401time.cal (29.8) 1370time.cal.day (29.8.3) 1370time.cal.day.members (29.8.3.2) 1370time.cal.day.nonmembers (29.8.3.3) 1371time.cal.day.overview (29.8.3.1) 1370time.cal.general (29.8.1) 1370time.cal.last (29.8.2) 1370time.cal.md (29.8.9) 1380time.cal.md.members (29.8.9.2) 1381time.cal.md.nonmembers (29.8.9.3) 1381time.cal.md.overview (29.8.9.1) 1380time.cal.mdlast (29.8.10) 1381time.cal.month (29.8.4) 1372time.cal.month.members (29.8.4.2) 1372time.cal.month.nonmembers (29.8.4.3) 1373time.cal.month.overview (29.8.4.1) 1372time.cal.mwd (29.8.11) 1382time.cal.mwd.members (29.8.11.2) 1382time.cal.mwd.nonmembers (29.8.11.3) 1383time.cal.mwd.overview (29.8.11.1) 1382time.cal.mwdlast (29.8.12) 1383time.cal.mwdlast.members (29.8.12.2) 1383time.cal.mwdlast.nonmembers (29.8.12.3) 1384time.cal.mwdlast.overview (29.8.12.1) 1383time.cal.operators (29.8.18) 1396time.cal.wd (29.8.6) 1376time.cal.wd.members (29.8.6.2) 1377time.cal.wd.nonmembers (29.8.6.3) 1378time.cal.wd.overview (29.8.6.1) 1376time.cal.wdidx (29.8.7) 1378time.cal.wdidx.members (29.8.7.2) 1379time.cal.wdidx.nonmembers (29.8.7.3) 1379time.cal.wdidx.overview (29.8.7.1) 1378time.cal.wdlast (29.8.8) 1379time.cal.wdlast.members (29.8.8.2) 1380time.cal.wdlast.nonmembers (29.8.8.3) 1380time.cal.wdlast.overview (29.8.8.1) 1379time.cal.year (29.8.5) 1374time.cal.year.members (29.8.5.2) 1374

time.cal.year.nonmembers (29.8.5.3) 1375time.cal.year.overview (29.8.5.1) 1374time.cal.ym (29.8.13) 1384time.cal.ym.members (29.8.13.2) 1384time.cal.ym.nonmembers (29.8.13.3) 1385time.cal.ym.overview (29.8.13.1) 1384time.cal.ymd (29.8.14) 1386time.cal.ymd.members (29.8.14.2) 1387time.cal.ymd.nonmembers (29.8.14.3) 1388time.cal.ymd.overview (29.8.14.1) 1386time.cal.ymdlast (29.8.15) 1389time.cal.ymdlast.members (29.8.15.2) 1389time.cal.ymdlast.nonmembers (29.8.15.3) 1390time.cal.ymdlast.overview (29.8.15.1) 1389time.cal.ymwd (29.8.16) 1391time.cal.ymwd.members (29.8.16.2) 1392time.cal.ymwd.nonmembers (29.8.16.3) 1393time.cal.ymwd.overview (29.8.16.1) 1391time.cal.ymwdlast (29.8.17) 1394time.cal.ymwdlast.members (29.8.17.2) 1394time.cal.ymwdlast.nonmembers (29.8.17.3) 1395time.cal.ymwdlast.overview (29.8.17.1) 1394time.clock (29.7) 1359time.clock.cast (29.7.10) 1367time.clock.cast.fn (29.7.10.6) 1369time.clock.cast.id (29.7.10.2) 1367time.clock.cast.sys (29.7.10.4) 1368time.clock.cast.sys.utc (29.7.10.3) 1368time.clock.cast.utc (29.7.10.5) 1369time.clock.conv (29.7.10.1) 1367time.clock.file (29.7.6) 1365time.clock.file.members (29.7.6.2) 1365time.clock.file.nonmembers (29.7.6.3) 1366time.clock.file.overview (29.7.6.1) 1365time.clock.general (29.7.1) 1359time.clock.gps (29.7.5) 1364time.clock.gps.members (29.7.5.2) 1364time.clock.gps.nonmembers (29.7.5.3) 1365time.clock.gps.overview (29.7.5.1) 1364time.clock.hires (29.7.8) 1366time.clock.local (29.7.9) 1366time.clock.req (29.3) 1347time.clock.steady (29.7.7) 1366time.clock.system (29.7.2) 1359time.clock.system.members (29.7.2.2) 1359time.clock.system.nonmembers (29.7.2.3) 1360time.clock.system.overview (29.7.2.1) 1359time.clock.tai (29.7.4) 1362time.clock.tai.members (29.7.4.2) 1363time.clock.tai.nonmembers (29.7.4.3) 1363time.clock.tai.overview (29.7.4.1) 1362time.clock.utc (29.7.3) 1360time.clock.utc.members (29.7.3.2) 1361time.clock.utc.nonmembers (29.7.3.3) 1361time.clock.utc.overview (29.7.3.1) 1360time.duration (29.5) 1349time.duration.alg (29.5.10) 1355time.duration.arithmetic (29.5.4) 1351time.duration.cast (29.5.8) 1353
Cross references 1828

© ISO/IEC N4910

time.duration.comparisons (29.5.7) 1353time.duration.cons (29.5.2) 1350time.duration.general (29.5.1) 1349time.duration.io (29.5.11) 1355time.duration.literals (29.5.9) 1354time.duration.nonmember (29.5.6) 1352time.duration.observer (29.5.3) 1351time.duration.special (29.5.5) 1351time.format (29.12) 1415time.general (29.1) 1333time.hms (29.9) 1399time.hms.members (29.9.2) 1400time.hms.nonmembers (29.9.3) 1401time.hms.overview (29.9.1) 1399time.parse (29.13) 1418time.point (29.6) 1356time.point.arithmetic (29.6.4) 1357time.point.cast (29.6.8) 1358time.point.comparisons (29.6.7) 1358time.point.cons (29.6.2) 1356time.point.general (29.6.1) 1356time.point.nonmember (29.6.6) 1357time.point.observer (29.6.3) 1357time.point.special (29.6.5) 1357time.syn (29.2) 1333time.traits (29.4) 1348time.traits.duration.values (29.4.2) 1348time.traits.is.clock (29.4.4) 1349time.traits.is.fp (29.4.1) 1348time.traits.specializations (29.4.3) 1348time.zone (29.11) 1402time.zone.db (29.11.2) 1402time.zone.db.access (29.11.2.3) 1403time.zone.db.list (29.11.2.2) 1402time.zone.db.remote (29.11.2.4) 1404time.zone.db.tzdb (29.11.2.1) 1402time.zone.exception (29.11.3) 1404time.zone.exception.ambig (29.11.3.2) 1405time.zone.exception.nonexist (29.11.3.1) 1404time.zone.general (29.11.1) 1402time.zone.info (29.11.4) 1405time.zone.info.local (29.11.4.2) 1406time.zone.info.sys (29.11.4.1) 1405time.zone.leap (29.11.8) 1412time.zone.leap.members (29.11.8.2) 1413time.zone.leap.nonmembers (29.11.8.3) 1413time.zone.leap.overview (29.11.8.1) 1412time.zone.link (29.11.9) 1414time.zone.link.members (29.11.9.2) 1414time.zone.link.nonmembers (29.11.9.3) 1414time.zone.link.overview (29.11.9.1) 1414time.zone.members (29.11.5.2) 1407time.zone.nonmembers (29.11.5.3) 1408time.zone.overview (29.11.5.1) 1407time.zone.timezone (29.11.5) 1407time.zone.zonedtime (29.11.7) 1408time.zone.zonedtime.ctor (29.11.7.2) 1410time.zone.zonedtime.members (29.11.7.3) 1411time.zone.zonedtime.nonmembers (29.11.7.4) 1412

time.zone.zonedtime.overview (29.11.7.1) 1408time.zone.zonedtraits (29.11.6) 1408transform.exclusive.scan (27.10.10) 1236transform.inclusive.scan (27.10.11) 1237transform.reduce (27.10.6) 1232tuple (22.4) 658tuple.apply (22.4.5) 667tuple.assign (22.4.3.2) 664tuple.cnstr (22.4.3.1) 662tuple.creation (22.4.4) 666tuple.elem (22.4.7) 669tuple.general (22.4.1) 658tuple.helper (22.4.6) 668tuple.rel (22.4.8) 669tuple.special (22.4.10) 670tuple.swap (22.4.3.3) 666tuple.syn (22.4.2) 658tuple.traits (22.4.9) 670tuple.tuple (22.4.3) 660type.descriptions (16.3.3.3) 457type.descriptions.general (16.3.3.3.1) 457type.index (22.11) 748type.index.hash (22.11.4) 749type.index.members (22.11.3) 748type.index.overview (22.11.2) 748type.index.synopsis (22.11.1) 748type.info (17.7.3) 506type.traits (21.3) 620type.traits.general (21.3.1) 620typeinfo.syn (17.7.2) 506
uaxid (Annex E) 1803uaxid.def (E.2) 1803uaxid.def.general (E.2.1) 1803uaxid.def.rfmt (E.2.2) 1803uaxid.def.stable (E.2.3) 1803uaxid.eqci (E.6) 1804uaxid.eqn (E.5) 1804uaxid.filter (E.7) 1804uaxid.filterci (E.8) 1804uaxid.general (E.1) 1803uaxid.hashtag (E.9) 1804uaxid.immutable (E.3) 1803uaxid.pattern (E.4) 1803uncaught.exceptions (17.9.6) 512underflow.error (19.2.11) 547uninitialized.construct.default (27.11.3) 1241uninitialized.construct.value (27.11.4) 1241uninitialized.copy (27.11.5) 1242uninitialized.fill (27.11.7) 1244uninitialized.move (27.11.6) 1243unique.ptr (20.3.1) 580unique.ptr.create (20.3.1.5) 587unique.ptr.dltr (20.3.1.2) 581unique.ptr.dltr.dflt (20.3.1.2.2) 581unique.ptr.dltr.dflt1 (20.3.1.2.3) 581unique.ptr.dltr.general (20.3.1.2.1) 581unique.ptr.general (20.3.1.1) 580unique.ptr.io (20.3.1.7) 589

Cross references 1829

© ISO/IEC N4910

unique.ptr.runtime (20.3.1.4) 585unique.ptr.runtime.asgn (20.3.1.4.3) 587unique.ptr.runtime.ctor (20.3.1.4.2) 586unique.ptr.runtime.general (20.3.1.4.1) 585unique.ptr.runtime.modifiers (20.3.1.4.5) 587unique.ptr.runtime.observers (20.3.1.4.4) 587unique.ptr.single (20.3.1.3) 581unique.ptr.single.asgn (20.3.1.3.4) 584unique.ptr.single.ctor (20.3.1.3.2) 582unique.ptr.single.dtor (20.3.1.3.3) 584unique.ptr.single.general (20.3.1.3.1) 581unique.ptr.single.modifiers (20.3.1.3.6) 585unique.ptr.single.observers (20.3.1.3.5) 584unique.ptr.special (20.3.1.6) 588unord (24.5) 906unord.general (24.5.1) 906unord.hash (22.10.19) 747unord.map (24.5.4) 908unord.map.cnstr (24.5.4.2) 913unord.map.elem (24.5.4.3) 913unord.map.erasure (24.5.4.5) 915unord.map.modifiers (24.5.4.4) 914unord.map.overview (24.5.4.1) 908unord.map.syn (24.5.2) 906unord.multimap (24.5.5) 915unord.multimap.cnstr (24.5.5.2) 919unord.multimap.erasure (24.5.5.4) 920unord.multimap.modifiers (24.5.5.3) 920unord.multimap.overview (24.5.5.1) 915unord.multiset (24.5.7) 925unord.multiset.cnstr (24.5.7.2) 929unord.multiset.erasure (24.5.7.3) 930unord.multiset.overview (24.5.7.1) 925unord.req (24.2.8) 847unord.req.except (24.2.8.2) 858unord.req.general (24.2.8.1) 847unord.set (24.5.6) 920unord.set.cnstr (24.5.6.2) 924unord.set.erasure (24.5.6.3) 925unord.set.overview (24.5.6.1) 920unord.set.syn (24.5.3) 907unreachable.sentinel (25.5.7) 999upper.bound (27.8.4.3) 1207using (16.4.3) 462using.headers (16.4.3.2) 464using.linkage (16.4.3.3) 464using.overview (16.4.3.1) 462usrlit.suffix (16.4.5.3.6) 476util.sharedptr (20.3.2) 589util.smartptr.atomic (33.5.8.7) 1673util.smartptr.atomic.general (33.5.8.7.1) 1673util.smartptr.atomic.shared (33.5.8.7.2) 1674util.smartptr.atomic.weak (33.5.8.7.3) 1676util.smartptr.enab (20.3.2.5) 602util.smartptr.getdeleter (20.3.2.2.11) 599util.smartptr.hash (20.3.3) 603util.smartptr.ownerless (20.3.2.4) 601util.smartptr.shared (20.3.2.2) 589util.smartptr.shared.assign (20.3.2.2.4) 593

util.smartptr.shared.cast (20.3.2.2.10) 598util.smartptr.shared.cmp (20.3.2.2.8) 597util.smartptr.shared.const (20.3.2.2.2) 591util.smartptr.shared.create (20.3.2.2.7) 594util.smartptr.shared.dest (20.3.2.2.3) 593util.smartptr.shared.general (20.3.2.2.1) 589util.smartptr.shared.io (20.3.2.2.12) 599util.smartptr.shared.mod (20.3.2.2.5) 593util.smartptr.shared.obs (20.3.2.2.6) 593util.smartptr.shared.spec (20.3.2.2.9) 598util.smartptr.weak (20.3.2.3) 599util.smartptr.weak.assign (20.3.2.3.4) 600util.smartptr.weak.bad (20.3.2.1) 589util.smartptr.weak.const (20.3.2.3.2) 600util.smartptr.weak.dest (20.3.2.3.3) 600util.smartptr.weak.general (20.3.2.3.1) 599util.smartptr.weak.mod (20.3.2.3.5) 601util.smartptr.weak.obs (20.3.2.3.6) 601util.smartptr.weak.spec (20.3.2.3.7) 601utilities (Clause 22) 647utilities.general (22.1) 647utility (22.2) 647utility.arg.requirements (16.4.4.2) 464utility.as.const (22.2.5) 651utility.exchange (22.2.3) 650utility.intcmp (22.2.7) 652utility.requirements (16.4.4) 464utility.requirements.general (16.4.4.1) 464utility.swap (22.2.2) 650utility.syn (22.2.1) 647utility.underlying (22.2.8) 653utility.unreachable (22.2.9) 653
valarray.access (28.6.2.4) 1303valarray.assign (28.6.2.3) 1303valarray.binary (28.6.3.1) 1307valarray.cassign (28.6.2.7) 1306valarray.comparison (28.6.3.2) 1308valarray.cons (28.6.2.2) 1302valarray.members (28.6.2.8) 1306valarray.nonmembers (28.6.3) 1307valarray.range (28.6.10) 1316valarray.special (28.6.3.4) 1310valarray.sub (28.6.2.5) 1304valarray.syn (28.6.1) 1298valarray.transcend (28.6.3.3) 1309valarray.unary (28.6.2.6) 1305value.error.codes (16.4.6.14) 481variant (22.6) 683variant.assign (22.6.3.4) 688variant.bad.access (22.6.11) 694variant.ctor (22.6.3.2) 686variant.dtor (22.6.3.3) 688variant.general (22.6.1) 683variant.get (22.6.5) 691variant.hash (22.6.12) 694variant.helper (22.6.4) 691variant.mod (22.6.3.5) 689variant.monostate (22.6.8) 694

Cross references 1830

© ISO/IEC N4910

variant.monostate.relops (22.6.9) 694variant.relops (22.6.6) 692variant.specalg (22.6.10) 694variant.status (22.6.3.6) 690variant.swap (22.6.3.7) 691variant.syn (22.6.2) 683variant.variant (22.6.3) 685variant.variant.general (22.6.3.1) 685variant.visit (22.6.7) 693vector (24.3.11) 880vector.bool (24.3.12) 885vector.capacity (24.3.11.3) 883vector.cons (24.3.11.2) 882vector.data (24.3.11.4) 884vector.erasure (24.3.11.6) 884vector.modifiers (24.3.11.5) 884vector.overview (24.3.11.1) 880vector.syn (24.3.6) 860version.syn (17.3.2) 486view.interface (26.5.3) 1022view.interface.general (26.5.3.1) 1022view.interface.members (26.5.3.2) 1023views (24.7) 941views.general (24.7.1) 941views.span (24.7.3) 942
wide.stream.objects (31.4.4) 1468
zombie.names (16.4.5.3.2) 474

Cross references 1831

© ISO/IEC N4910

Cross references from ISO C++ 2020
All clause and subclause labels from ISO C++ 2020 (ISO/IEC 14882:2020, Programming Languages — C++) are presentin this document, with the exceptions described below.
basic.funscope see stmt.labelbasic.lookup.classref see basic.lookup.qualbasic.scope.declarative see basic.scope.scopebasic.scope.hiding see basic.lookupbasic.stc.dynamic.safety removed
class.mfct.non-static see class.mfct.non.staticclass.mfct.non-static.general see class.mfct.non.staticclass.nested.type see diff.basicclass.this see expr.prim.this
defns.direct-non-list-init see defns.direct.non.list.initdefns.expression-equivalent seedefns.expression.equivalentdepr.c.headers see support.c.headersdepr.c.headers.general see support.c.headers.generaldepr.c.headers.other see support.c.headers.otherdepr.comma.subscript removeddepr.complex.h.syn see complex.h.syndepr.iso646.h.syn see iso646.h.syndepr.stdalign.h.syn see stdalign.h.syndepr.stdbool.h.syn see stdbool.h.syndepr.tgmath.h.syn see tgmath.h.syn
forwardlist see forward.listforwardlist.access see forward.list.accessforwardlist.cons see forward.list.consforwardlist.iter see forward.list.iterforwardlist.modifiers see forward.list.modifiersforwardlist.ops see forward.list.opsforwardlist.overview see forward.list.overviewfs.req.general see fs.reqfs.req.namespace removedfstream.assign see fstream.swapfunc.bind.front see func.bind.partial
ifstream.assign see ifstream.swapistringstream.assign see istringstream.swap
namespace.memdef see namespace.def
ofstream.assign see ofstream.swapostringstream.assign see ostringstream.swapover.dcl see basic.linkover.load see basic.scope.scope
range.semi.wrap see range.copy.wraprange.split.inner see range.lazy.split.innerrange.split.outer see range.lazy.split.outerrange.split.outer.value see range.lazy.split.outer.valuere.def see intro.refs

res.on.pointer.storage removed
stringstream.assign see stringstream.swap
temp.class.order see temp.spec.partial.ordertemp.class.spec see temp.spec.partialtemp.class.spec.general see temp.spec.partial.generaltemp.class.spec.match see temp.spec.partial.matchtemp.class.spec.mfunc see temp.spec.partial.membertemp.inject see temp.friendtemp.nondep see temp.res
util.dynamic.safety removed

Cross references from ISO C++ 2020 1832

© ISO/IEC N4910

Index
Symbols
!, see operator, logical negation
!=, see operator, inequality
(), see operator, function call, see declarator, function
*, see operator, indirection, see operator, multiplication,see declarator, pointer
+, see operator, unary plus, see operator, addition
++, see operator, increment
,, see operator, comma
-, see operator, unary minus, see operator, subtraction
--, see operator, decrement
->, see operator, class member access
->*, see operator, pointer to member
., see operator, class member access
.*, see operator, pointer to member
..., see ellipsis
/, see operator, division
: bit-field declaration, 274label specifier, 151
::, see operator, scope resolution
::*, see declarator, pointer-to-member
<, see operator, less thantemplate and, 348, 350
<<, see operator, left shift
<=, see operator, less than or equal to
<=>, see operator, three-way comparison
=, see assignment operator
==, see operator, equality
>, see operator, greater than
>=, see operator, greater than or equal to
>>, see operator, right shift
?:, see operator, conditional expression
[], see operator, subscripting, see declarator, array
operator, 444, 447
operator, 447
#define, 444
#elif, 440
#elifdef, 440
#elifndef, 440
#else, 441
#endif, 441
#error, see preprocessing directive, error
#if, 440, 479
#ifdef, 440
#ifndef, 440
#include, 441, 464
#line, see preprocessing directive, line control
#pragma, see preprocessing directive, pragma
#undef, 449, 476
%, see operator, remainder
&, see operator, address-of, see operator, bitwise AND,see declarator, reference

&&, see operator, logical AND
^, see operator, bitwise exclusive OR
\, see backslash character
{} block statement, 152class declaration, 252class definition, 252

enum declaration, 219initializer list, 200
_, see character, underscore
__cplusplus, 450
__cpp_aggregate_bases, 450
__cpp_aggregate_nsdmi, 450
__cpp_aggregate_paren_init, 450
__cpp_alias_templates, 450
__cpp_aligned_new, 450
__cpp_attributes, 450
__cpp_binary_literals, 450
__cpp_capture_star_this, 451
__cpp_char8_t, 451
__cpp_concepts, 451
__cpp_conditional_explicit, 451
__cpp_consteval, 451
__cpp_constexpr, 451
__cpp_constexpr_dynamic_alloc, 451
__cpp_constexpr_in_decltype, 451
__cpp_constinit, 451
__cpp_decltype, 451
__cpp_decltype_auto, 451
__cpp_deduction_guides, 451
__cpp_delegating_constructors, 451
__cpp_designated_initializers, 451
__cpp_enumerator_attributes, 451
__cpp_explicit_this_parameter, 451
__cpp_fold_expressions, 451
__cpp_generic_lambdas, 451
__cpp_guaranteed_copy_elision, 451
__cpp_hex_float, 451
__cpp_if_consteval, 451
__cpp_if_constexpr, 451
__cpp_impl_coroutine, 451
__cpp_impl_destroying_delete, 451
__cpp_impl_three_way_comparison, 451
__cpp_inheriting_constructors, 451
__cpp_init_captures, 451
__cpp_initializer_lists, 451
__cpp_inline_variables, 451
__cpp_lambdas, 451
__cpp_modules, 451
__cpp_multidimensional_subscript, 451
__cpp_namespace_attributes, 451
__cpp_noexcept_function_type, 451
__cpp_nontype_template_args, 451

Index 1833

© ISO/IEC N4910

__cpp_nontype_template_parameter_auto, 451
__cpp_nsdmi, 451
__cpp_range_based_for, 451
__cpp_raw_strings, 451
__cpp_ref_qualifiers, 451
__cpp_return_type_deduction, 451
__cpp_rvalue_references, 451
__cpp_size_t_suffix, 451
__cpp_sized_deallocation, 451
__cpp_static_assert, 451
__cpp_structured_bindings, 451
__cpp_template_template_args, 451
__cpp_threadsafe_static_init, 451
__cpp_unicode_characters, 451
__cpp_unicode_literals, 451
__cpp_user_defined_literals, 451
__cpp_using_enum, 451
__cpp_variable_templates, 451
__cpp_variadic_templates, 451
__cpp_variadic_using, 452
__DATE__, 450
__FILE__, 450
__func__, 212
__has_cpp_attribute, 439
__has_include, 439
__LINE__, 450
__STDC__, 452
__STDC_HOSTED__, 450
__STDC_ISO_10646__, 452
__STDC_MB_MIGHT_NEQ_WC__, 452
__STDC_VERSION__, 452
__STDCPP_DEFAULT_NEW_ALIGNMENT__, 450
__STDCPP_THREADS__, 452
__TIME__, 450
__VA_ARGS__, 444, 445
__VA_OPT__, 444–446
|, see operator, bitwise inclusive OR
||, see operator, logical OR
~, see operator, ones’ complement, see destructor
Numbers
0, see also zero, nullnull character, see character, nullstring terminator, 27
A
abbreviatedtemplate function, see template, function,abbreviated
abort, 88, 157absolute path, see path, absoluteabstract class, see class, abstract
abstract-declarator , 181, 1740
abstract-pack-declarator , 181, 1740access, 3access control, 288–298anonymous union, 279base class, 291

base class member, 281class member, 118default, 288default argument, 289friend function, 293member function and, 261member name, 288multiple access, 297nested class, 297
private, 288
protected, 288, 296
public, 288using-declaration and, 230virtual function, 297access specifier, 290, 291

access-specifier , 281, 1744accessible, 291active, see variable, activeunion member, 278active macro directive, see macro, activeaddition operator, see operator, addition
additive-expression, 137, 1735address, 75, 140addressable function, see function, addressableaggregate, 200elements, 200aggregate deduction candidate, see candidate,aggregate deductionaggregate initialization, 200algorithmstable, 8, 479alias namespace, 224alias template, see template, alias
alias-declaration, 161, 1738
alignas, 235keyword, 20, 233, 1742, 1778alignment, 68extended, 68fundamental, 68new-extended, 68stricter, 68stronger, 68weaker, 68alignment requirementimplementation-defined, 68
alignment-specifier , 233, 1742
alignof, 129keyword, 20, 35, 68, 125, 129, 393, 1734allocated type, see type, allocatedallocationalignment storage, 132implementation-defined bit-field, 275allocation function, 66class-specific, 275allocator-aware container, see container,allocator-awarealternate formformat string, 758

Index 1834

© ISO/IEC N4910

alternative token, see token, alternativeambiguitybase class member, 43class conversion, 44declaration type, 163declaration versus cast, 182declaration versus expression, 159function declaration, 198member access, 43overloaded function, 312parentheses and, 130ambiguous, 42ambiguous conversion sequence, see conversionsequence, ambiguousAmendment 1, 476
and keyword, 17, 20, 1729, 1778
and-expression, 141, 1735
and_eqkeyword, 17, 20, 1729, 1778anonymous union, 279member, see member, anonymous unionvariable, see variable, anonymous unionappearance-ordered, 86appertain, 234
argc, 85argument, 3, 478, 479, 546access checking and default, 289binding of default, 194evaluation of default, 194, 195example of default, 193, 194function call expression, 3function-like macro, 3overloaded operator and default, 338reference, 117scope of default, 195template, 352template instantiation, 3throw expression, 3type checking of default, 194argument and name hidingdefault, 195argument and virtual functiondefault, 196argument forwarding call wrapper, 724argument listempty, 189variable, 190argument passing, 117reference and, 205argument substitution, see macro, argumentsubstitutionargument typeunknown, 190argument-dependent lookup, see lookup,argument-dependent
argv, 85arithmeticpointer, 137

unsigned, 73arraybound, 188
const, 76
delete, 134element, 188handler of type, 431
new, 131parameter of type, 190
sizeof, 128template parameter of type, 347

arrayas aggregate, 861contiguous storage, 861creation, 863initialization, 861, 862tuple interface to, 863zero sized, 862array sizedefault, 188array type, 188arrow operator, see operator, class member accessas-if rule, 10
asm implementation-defined, 231keyword, 20, 231, 1742
asm-declaration, 231, 1742assembler, 231assignmentand lvalue, 144conversion by, 144copy, see assignment operator, copymove, 5, see assignment operator, movereference, 205assignment operatorcopy, 261, 265–268hidden, 267implicitly declared, 266implicitly defined, 267non-trivial, 267trivial, 267virtual bases and, 267move, 261, 265–268hidden, 267implicitly declared, 266implicitly defined, 267non-trivial, 267trivial, 267overloaded, 338
assignment-expression, 144, 1736
assignment-operator , 144, 1736associated, 1638associated constraints, 360associative container, see container, associativeassociative containersexception safety, 846requirements, 846unordered, see unordered associative containersasynchronous provider, 1715

Index 1835

© ISO/IEC N4910

asynchronous return object, 1715at least as constrained, 362at least as specialized as, see more specialized
atexit, 87atomicnotifying operation, 1656operation, 80–84smart pointers, 1673–1678waiting operation, 1656eligible to be unblocked, 1657atomic constraint, see constraint, atomicidentical, 358attacheddeclaration, 242entity, 56attribute, 233–236alignment, 235carries dependency, 236deprecated, 237fallthrough, 237likely, 238maybe unused, 238no unique address, 240nodiscard, 239noreturn, 239syntax and semantics, 233unlikely, 238
attribute, 234, 1742
attribute-argument-clause, 234, 1743
attribute-declaration, 161, 1738
attribute-list, 234, 1742
attribute-namespace, 234, 1743
attribute-scoped-token, 234, 1743
attribute-specifier , 233, 1742
attribute-specifier-seq, 233, 1742
attribute-token, 234, 1742
attribute-using-prefix , 233, 1742
autokeyword, 20, 103, 108, 139, 151, 156, 162,175–178, 180, 189, 192, 193, 309, 311, 403,1739, 1760, 1765, 1774automatic storage duration, see storage duration,automatic
await-expression, 127, 1734
B
backslash character, 24
bad_alloc, 132
bad_cast, 120
bad_typeid, 121
balanced-token, 234, 1743
balanced-token-seq, 234, 1743barrierphase synchronization point, 1712barrier phase, 1711base characteristic, 621base class, 280–282dependent, 390

direct, 281indirect, 281non-virtual, 282
private, 291
protected, 291
public, 291virtual, 282base class subobject, 59base prefix, 760base-2 representation, 74

base-clause, 280, 1744
base-specifier , 280, 1744
base-specifier-list, 280, 1744basic character set, see character set, basicbasic literal character set, see character set, basic literal
basic-c-char , 22, 1730
basic-s-char , 25, 1731BasicFormatter, 763behaviorconditionally-supported, 4, 10default, 4, 456implementation-defined, 5, 10locale-specific, 5observable, 10, 11on receipt of signal, 80required, 7, 456undefined, 8, 10, 11, 1003unspecified, 8, 11Bernoulli distributions, 1279–1282Bessel functions

Iν , 1328
Jν , 1328
Kν , 1328
Nν , 1328
jn, 1331
nn, 1331beta functions B, 1327better conversion, see conversion, betterbetter conversion sequence, see conversion sequence,betterbinary fold, 112binary left fold, 112binary operatorinterpretation of, 338overloaded, 338binary operator function, see operator function, binarybinary right fold, 112

binary-digit, 21, 1729
binary-exponent-part, 24, 1731
binary-literal , 21, 1729bind directly, 207bindingreference, 205bit-field, 274address of, 275alignment of, 275implementation-defined alignment of, 275implementation-defined sign of, 1776type of, 274

Index 1836

© ISO/IEC N4910

unnamed, 275zero width of, 275
bitandkeyword, 17, 20, 1729, 1778bitmaskelement, 458empty, 458valueclear, 459is set, 459set, 459
bitorkeyword, 17, 20, 1729, 1778block (execution), 3, 1637, 1646, 1648, 1650,1684–1688, 1702, 1706, 1708, 1709, 1711,1712, 1720, 1722with forward progress guarantee delegation, 84block (statement), 3, see statement, compoundinitialization in, 158structure, 158block scope, see scope, blockblock variable, 40
block-declaration, 161, 1737bodyfunction, 212BondJames Bond, 109
boolkeyword, 20, 74, 93, 95–97, 103, 119, 126–129,138–142, 149, 152, 162, 165, 172, 433, 1739,1772, 1778Boolean literal, 27boolean literal, see literal, booleanBoolean type, 74
boolean-literal , 27, 1731bound argument entity, 724bound arguments, 738bound, of array, 188
brace-or-equal-initializer , 196, 1740
braced-init-list, 197, 1741brainsnames that want to eat your, 474
breakkeyword, 20, 154, 157, 428, 1737buckets, 847built-in candidate, 317built-in operators, see operators, built-inbyte, 58, 128
C
C linkage to, 231standard, 1standard library, 2
c-char , 22, 1730
c-char-sequence, 22, 1730C++ library headersimportable, 462

call dependent, 389nodiscard, 239operator function, 337call pattern, 725call signature, 724call wrapper, 724forwarding, 724perfect forwarding, 725simple, 724type, 724callable object, see object, callablecallable type, see type, callable, 739candidate, 312aggregate deduction, 320usable, 312captureimplicit, 108
capture, 107, 1733
capture-default, 107, 1733
capture-list, 107, 1733captured, 109by copy, 110by reference, 111carries a dependency, 81
casekeyword, 20, 152–154, 158, 1736cast base class, 123const, 124, 135derived class, 123dynamic, 119, 507construction and, 306destruction and, 306integer to pointer, 123lvalue, 121, 123pointer to integer, 123pointer-to-function, 124pointer-to-member, 123, 124reference, 121, 124reinterpret, 123, 135integer to pointer, 123lvalue, 123pointer to integer, 123pointer-to-function, 124pointer-to-member, 124reference, 124static, 121, 135lvalue, 121reference, 121undefined pointer-to-function, 124
cast-expression, 135, 1735casting, 118casting away constness, 125
catch, 428keyword, 20, 428, 528, 1746category tag, 976cats interfering with canines, 506

Index 1837

© ISO/IEC N4910

<ccomplex>absence thereof, 476, 1757
charimplementation-defined sign of, 74keyword, 20, 23, 26, 59, 62, 71–74, 76, 77, 85, 91,132, 172, 429, 1427, 1739char-like object, 775char-like type, 775
char16_t, see type, char16_tkeyword, 3, 20, 23, 26, 74, 77, 95, 97, 128, 172,173, 198, 204, 453, 652, 765, 820, 1554,1563, 1660, 1668, 1739, 1758, 1765, 1777,1795, 1800
char32_t, see type, char32_tkeyword, 3, 20, 23, 26, 74, 77, 95, 97, 128, 172,173, 198, 204, 453, 652, 765, 820, 1554,1563, 1660, 1668, 1739, 1758, 1765, 1777,1795, 1800
char8_t, see type, char8_tkeyword, 3, 20, 23, 26, 74, 77, 95, 97, 172, 173,198, 204, 453, 652, 765, 822, 1554, 1563,1660, 1668, 1739, 1753, 1800character, 3decimal-point, 459multibyte, 6null, 16

signed, 74source file, 13terminating null, 459underscore, 19in identifier, 19character literal, see literal, charactercharacter sequence, 459character set, 14–16basic, 14basic literal, 14, 58basic source, 13execution, 459translation, 14character string, 26character string literal, 447character type, see type, character
character-literal , 22, 1730checkingpoint of error, 386syntax, 386chunks, 611
<ciso646>absence thereof, 476, 1757class, 75, 252–311abstract, 287base, 476, 480cast to incomplete, 136constructor and abstract, 288current, 98definition, 32derived, 480implicit-lifetime, 254linkage of, 55

linkage specification, 232local, see local class, 280member function, see member function, classnested, 277polymorphic, 283scope of enumerator, 221standard-layout, 73, 253trivial, 73, 253trivially copyable, 73, 253union-like, 279unnamed, 166variant member of, 279
classkeyword, 20, 72, 174, 219, 252, 254, 256, 288,290, 291, 345, 346, 400, 1265, 1741, 1743,1745, 1773, 1776class member access operator function, see operatorfunction, class member accessclass nameelaborated, 173, 255point of declaration, 255

typedef, 166, 256class objectmember, 258
sizeof, 128class object copy, see constructor, copyclass object initialization, see constructorclass scope, see scope, class

class-head , 252, 1743
class-head-name, 252, 1743
class-key , 252, 1743
class-name, 252, 1743
class-or-decltype, 281, 1744
class-specifier , 252, 1743
class-virt-specifier , 252, 1743closure object, 102closure type, 103
co_await, 127keyword, 20, 127, 143, 217, 337, 1753
co_return, 158keyword, 20, 158, 216, 308, 1753
co_yield, 143keyword, 20, 1753code unit, 14coherenceread-read, 82read-write, 82write-read, 82write-write, 82coherence-ordered before, 1655collating element, 4comma operator, see operator, commacomment, 16–17

/* */, 17
//, 17common comparison type, 311common initial sequence, 259

compare-expression, 138, 1735comparison
Index 1838

© ISO/IEC N4910

pointer, 140pointer to function, 140undefined pointer, 138comparison category types, 515comparison operator function, see operator function,comparisoncompatible with
shared_ptr, 591compilationseparate, 13compiler control line, see preprocessing directive

complkeyword, 17, 20, 1729, 1778complete object, 59complete object of, 60complete-class context, 257completely defined, 257component, 4component name, 100, 101, 172, 173, 187, 227, 281,346, 349, 384composite pointer type, 91compound statement, see statement, compound
compound-requirement, 114, 1734
compound-statement, 152, 1736concatenationmacro argument, see ## operatorstring, 26concept, 383model, 478type, 383
conceptkeyword, 20, 383, 1746
concept-definition, 383, 1746concept-id, 351
concept-name, 383, 1746concurrent forward progress guarantees, 84
condition, 151, 1736
conditionsrules for, 151
conditional-escape-sequence, 23, 1730
conditional-escape-sequence-char , 23, 1730conditional-expressionthrow-expression in, 142
conditional-expression, 142, 1736conditionally-supported behavior, see behavior,conditionally-supported
conditionally-supported-directive, 437, 1747conflict, 80conformance requirements, 10–11class templates, 10classes, 10general, 10library, 10method of description, 10conjunction, 357consistencylinkage, 164linkage specification, 233type declaration, 56

const, 76cast away, 125constructor and, 262destructor and, 268keyword, 6, 20, 26, 76, 77, 91, 92, 94, 95, 100,104, 117, 119, 121, 134, 137, 163, 165, 170,171, 181, 185, 186, 190, 206, 262, 264, 267,268, 274, 275, 313, 324, 330, 411, 429, 459,464, 467, 506, 511, 536, 539, 827–830, 839,962, 1129, 1261, 1263, 1265, 1312, 1563,1740, 1763, 1767, 1771, 1776, 1783linkage of, 55const object, see object, constundefined change to, 171const volatile object, see object, const volatileconst-default-constructible, 197const-qualified, 76const-volatile-qualified, 76
const_cast, see cast, constkeyword, 20, 70, 115–117, 124, 125, 135, 136,350, 385, 392, 393, 827, 962, 1734, 1776constant, 20, 98enumeration, 219null pointer, 96constant destruction, see destruction, constantconstant expression, 145, see expression, constantpermitted result of, 149constant initialization, 85constant iterator, 955constant subexpression, 4
constant-expression, 145, 1736constant-initialized, 145
constevalkeyword, 20, 85, 102–104, 152–154, 163, 167,169, 184, 213, 259, 261, 268, 287, 310, 372,402, 1733, 1737, 1738, 1753consteval if statement, see statement, consteval if
constexprkeyword, 20, 31, 85, 102–105, 148, 151–153, 156,163, 167, 169, 184, 197, 213, 259, 261, 263,265, 267, 268, 274, 310, 343, 372, 386, 402,479, 491, 686, 725, 772, 788, 990, 1001,1003, 1256, 1733, 1737, 1738, 1759, 1763,1765, 1781constexpr function, 167constexpr if, 152constexpr iterators, 956constexpr-compatibledefaulted comparison operator, 309defaulted special member function, 261
constinitkeyword, 20, 163, 169, 184, 1738, 1753constituent expression, 77constraint, 357associated, see associated constraintsatomic, 358immediately-declared, 346normalization, 361satisfaction

Index 1839

© ISO/IEC N4910

atomic, 359conjunction, 357disjunction, 357subsumption, 361
constraint-expression, 360, 1746
constraint-logical-and-expression, 344, 1745
constraint-logical-or-expression, 344, 1745construction, 304–307dynamic cast and, 306member access, 304move, 6pointer to member or base, 305

typeid operator, 306virtual function call, 306constructor, 261address of, 262array of class objects and, 298converting, 271copy, 69, 261, 263–265, 460elision, 307implicitly declared, 264implicitly defined, 265nontrivial, 265trivial, 265default, 261, 262non-trivial, 263trivial, 262exception handling, see exception handling,constructors and destructorsexplicit call, 262implicitly defined, 263implicitly invoked, 263inheritance of, 262inherited, 227move, 261, 263–265elision, 307implicitly declared, 264implicitly defined, 265non-trivial, 265trivial, 265non-trivial, 262
union, 278constructor, conversion by, see conversion,user-definedcontained value
any, 696
optional, 673
variant, 686container, 823allocator-aware, 828associative, 839contiguous, 827reversible, 827sequence, 831unordered associative, 848contains a value
optional, 673contextnon-deduced, 421

type-only, 385contextually converted constant expression of type
bool, see conversion, contextualcontextually converted to bool, see conversion,contextual to boolcontextually implicitly converted, 93contiguous container, see container, contiguous

continueand handler, 428and try block, 428keyword, 20, 156, 157, 428, 1737control line, see preprocessing directive
control-line, 437, 1747conventions, 457lexical, 13–29conversionargument, 189array-to-pointer, 94better, 333

bool, 95boolean, 97class, 270contextual, 93contextual to bool, 93contextual to constant expression of type bool,149deduced return type of user-defined, 273derived-to-base, 328floating to integral, 96floating-point, 96function pointer, 97function-to-pointer, 94implementation-defined pointer integer, 123, 124implicit, 92, 93, 270implicit user-defined, 270inheritance of user-defined, 273integer rank, 77integral, 95integral to floating, 96lvalue-to-rvalue, 93, 1772narrowing, 211null member pointer, 96null pointer, 96overload resolution and, 324overload resolution and pointer, 337pointer, 96pointer-to-member, 96
void*, 97qualification, 94–95return type, 157standard, 92–97temporary materialization, 94to signed, 96to unsigned, 96type of, 272user-defined, 270, 271usual arithmetic, 97virtual user-defined, 273conversion explicit type, see casting

Index 1840

© ISO/IEC N4910

conversion function, see conversion, user-defined, seefunction, conversionconversion rank, 329conversion sequenceambiguous, 328better, 333implicit, 327indistinguishable, 333standard, 92user-defined, 329worse, 333
conversion-declarator , 271, 1744
conversion-function-id , 271, 1744
conversion-type-id , 271, 1744converted constant expression, see expression,converted constantconverting constructor, see constructor, convertingcopyclass object, see constructor, copy, see assignmentoperator, copycopy deduction candidate, 320copy elision, see constructor, copy, elisioncopy-initialization, 198copy-list-initialization, 207core constant expression, see expression, core constantcoroutine, 215promise type, 215resumer, 216coroutine return, see co_returncoroutine state, 216
coroutine-return-statement, 158, 1737correspond, 37corresponding object parameter, see object parameter,correspondingcounted range, see range, countedCpp17Allocator, 467Cpp17BidirectionalIterator, 971Cpp17BinaryTypeTrait, 621Cpp17Clock, 1347Cpp17CopyAssignable, 465Cpp17CopyConstructible, 465Cpp17CopyInsertable into X, 828Cpp17DefaultConstructible, 465Cpp17DefaultInsertable into X, 828Cpp17Destructible, 465Cpp17EmplaceConstructible into X from args, 828Cpp17EqualityComparable, 464Cpp17Erasable from X, 828Cpp17ForwardIterator, 971Cpp17Hash, 467Cpp17InputIterator, 968, 969Cpp17Iterator, 968Cpp17LessThanComparable, 464Cpp17MoveAssignable, 465Cpp17MoveConstructible, 465Cpp17MoveInsertable into X, 828Cpp17NullablePointer, 467Cpp17OutputIterator, 970Cpp17RandomAccessIterator, 971, 972

Cpp17TransformationTrait, 621Cpp17UnaryTypeTrait, 621
<cstdalign>absence thereof, 476, 1757
<cstdbool>absence thereof, 476, 1757
<ctgmath>absence thereof, 476, 1757
ctor-initializer , 299, 1744current class, see class, currentcurrent instantiation, 389dependent member of the, 391member of the, 390currently handled exception, see exception handling,currently handled exceptioncustomization point, 474cv-qualification signature, 94cv-qualifier, 76top-level, 77
cv-qualifier , 181, 1740
cv-qualifier-seq, 181, 1740cv-unqualified, 76
D
d-char , 26, 1731
d-char-sequence, 25, 1731DAGmultiple inheritance, 283non-virtual base class, 283virtual base class, 283data member, see member, 257non-static, 257static, 257data race, 83deadlock, 4deallocation function, 66class-specific, 275usual, 67decayarray, see conversion, array-to-pointerfunction, see conversion, function-to-pointer
decimal-floating-point-literal , 24, 1730
decimal-literal , 21, 1729decl-reachable, 246
decl-specifier , 163, 1738
decl-specifier-seq, 163, 1738declaration, 30, 31, 161–236array, 188

asm, 231bit-field, 274class name, 31constant pointer, 185default argument, 193–196definition versus, 31disqualifying, 540ellipsis in function, 117, 190exported, 243
extern, 31

Index 1841

© ISO/IEC N4910

extern reference, 205forward, 164forward class, 255function, 31, 162, 189local class, 280locus, see locusmember, 256multiple, 56name, 31nominable, 39object, 162opaque enum, 31overloaded name and friend, 294parameter, 31, 189parentheses in, 182, 185point of, see locuspointer, 185potentially conflict, 38precede, 42reference, 186
static member, 31storage class, 163structured binding, see structured bindingdeclarationtype, 183typedef, 162
typedef, 31
typedef as type, 165

declaration, 161, 1737declaration hiding, see name hiding
declaration-seq, 161, 1737
declaration-statement, 158, 1737declarative, 101declarator, 31, 162, 179–212array, 187function, 189–193meaning of, 183–196multidimensional array, 188pointer, 185pointer-to-member, 187reference, 185
declarator , 180, 1739
declarator-id , 181, 1740declared specialization, see specialization, declared
decltypekeyword, 20, 75, 114, 174, 175, 178, 413, 1739,1758, 1765
decltype-specifier , 174, 1739decrement operatoroverloaded, see overloading, decrement operatordecrement operator function, see operator function,decrementdeducible template, see template, deducibledeductionclass template argument, 365class template arguments, 118, 172, 179, 320placeholder type, 178
deduction-guide, 365, 1746
default

keyword, 20, 152–154, 212, 1736, 1741default access control, see access control, defaultdefault argumentoverload resolution and, 324default argument instantiation, 401default constructor, see constructor, defaultdefault member initializer, 258default memory resource pointer, 611default-initialization, 197default-inserted, 828defaulted, 214deferred function, see function, deferreddefinable item, see item, definabledefine, 31
defined, 439
defined-macro-expression, 439, 1748
defining-type-id , 181, 1740
defining-type-specifier , 170, 1738
defining-type-specifier-seq, 170, 1738definition, 31alternate, 476class, 252, 256class name as type, 254constructor, 212coroutine, 215declaration as, 162deleted, 214function, 212–215deleted, 214explicitly-defaulted, 213local class, 280member function, 259namespace, 222nested class, 277program semantics affected by, 400pure virtual function, 287scope of class, 255static member, 274virtual function, 286definition domain, 34definitions, 3–9deletearray, 133single-object, 133
delete, 66, 133destructor and, 134, 269keyword, 20, 66, 67, 131, 133, 134, 212, 269, 337,393, 502, 529, 581, 1735, 1741

operatorreplaceable, 477overloading and, 67single-object, 134type of, 275undefined, 134
delete-expression, 133, 1735deleted definition, see definition, deleteddeleted function, see function, deleteddeleter, 580denormalized value, see number, subnormal

Index 1842

© ISO/IEC N4910

dependency-ordered before, 81dependent base class, see base class, dependentdependent call, see call, dependentdependent member of the current instantiation, seecurrent instantiation, dependent member ofthedependent name, see name, dependentdereferenceable iterator, see iterator, dereferenceabledereferencing, see indirectionderivation, see inheritancederived class, 280–288most, see most derived classderived objectmost, see most derived object
designated-initializer-clause, 197, 1741
designated-initializer-list, 197, 1741
designator , 197, 1741destringization, 452destroying operator delete, see operator delete,destroyingdestruction, 304–307constant, 148dynamic cast and, 306member access, 304pointer to member or base, 305

typeid operator, 306virtual function call, 306destructor, 268, 460address of, 268default, 268exception handling, see exception handling,constructors and destructorsexplicit call, 269implicit call, 269implicitly defined, 269non-trivial, 268program termination and, 269prospective, 268pure virtual, 269selected, 268
union, 278virtual, 269diagnosable rules, 10diagnostic message, see message, diagnosticdifference type, 955

digit, 19, 1728
digit-sequence, 25, 1731digraph, see token, alternative, 17direct base class, see base class, directdirect member, see member, directdirect-initialization, 198direct-list-initialization, 207direct-non-list-initialization, 4directed acyclic graph, see DAGdirective, preprocessing, see preprocessing directivedirective-introducing token, see token,directive-introducingdirectory, 1553
directory-separator , 1561

discardeddeclaration, 247discarded statement, 152discarded-value expression, 92disjunction, 357disqualifying declaration, see declaration, disqualifyingdisqualifying parameter, see parameter, disqualifyingdistribution, see random number distribution
do keyword, 20, 154, 155, 1737dogsobliviousness to interference, 506domain error, 1326dominancevirtual base class, 44dot filename, 1561dot operator, see operator, class member accessdot-dotfilename, 1561
doublekeyword, 20, 25, 68, 74, 95, 97, 172, 1739dynamic binding, see function, virtualdynamic initialization, see initialization, dynamicdynamic type, see type, dynamic
dynamic_cast, see cast, dynamickeyword, 20, 35, 62, 63, 70, 115, 116, 119, 121,135, 147, 302, 303, 306, 350, 385, 392, 429,434, 507, 513, 529, 1734
E
E (complete elliptic integrals), 1327
E (incomplete elliptic integrals), 1329ECMA-262, 2ECMAScript, 1608, 1632
Ei (exponential integrals), 1329elaborated type specifier, see class name, elaborated
elaborated-enum-specifier , 173, 1739
elaborated-type-specifier , 172, 1739element access functions, 1130element type, 188
elif-group, 437, 1747
elif-groups , 437, 1747eligible special member function, see special memberfunction, eligibleeligible to be unblocked, 1657elisioncopy, see constructor, copy, elisioncopy constructor, see constructor, copy, elisionmove constructor, see constructor, move, elisionellipsisconversion sequence, 117, 329overload resolution and, 324elliptic integralscomplete Π, 1327complete E, 1327complete K, 1327incomplete Π, 1329

Index 1843

© ISO/IEC N4910

incomplete E, 1329incomplete F, 1329
elsekeyword, 20, 152–154, 1737
else-group, 437, 1747
empty-declaration, 161, 1738enclosing scope, see scope, enclosingenclosing statement, 151
enclosing-namespace-specifier , 222, 1742encoded character type, 1554encodingliteral, 14ordinary literal, 14wide literal, 14
encoding-prefix , 22, 1730end-of-file, 721
endif-line, 437, 1747engine, see random number engineengine adaptor, see random number engine adaptorentity, 30associated, 48belong, 37implicitly movable, 308local, 30templated, 345
enum, 75keyword, 20, 54, 173, 174, 219, 221, 1714, 1739,1741, 1776type of, 219, 220underlying type, see type, underlyingenum name

typedef, 166
enum-base, 219, 1741
enum-head , 219, 1741
enum-head-name, 219, 1741
enum-key , 219, 1741
enum-name, 219, 1741
enum-specifier , 219, 1741enumerated element, 458enumerated type, see type, enumeratedenumeration, 219linkage of, 55scoped, 219unscoped, 219using declaration, 221enumeration scope, see scope, enumerationenumeration typeconversion to, 122

static_castconversion to, 122enumeratordefinition, 32scoped, 219unscoped, 219value of, 219
enumerator , 219, 1741
enumerator-definition, 219, 1741
enumerator-list, 219, 1741environment

program, 85epoch, 1347equality operator function, see operator function,equality
equality-expression, 140, 1735equivalencetemplate type, 362type, 165, 254equivalentexpressions, 377

template-heads, 378
template-parameters, 378equivalent-key group, 847equivalently-valued, 472escape character, see backslash characterescape sequenceformat string, 755

escape-sequence, 23, 1730Eulerian integral of the first kind, see beta functions Bevaluation, 79order of argument, 117signal-safe, 529unspecified order of, 79, 86unspecified order of argument, 117unspecified order of function call, 117exceptionarithmetic, 89undefined arithmetic, 89exception handling, 428–436constructors and destructors, 430currently handled exception, 432exception object, 430constructor, 430destructor, 430function try block, 428
goto, 428handler, 428, 429, 431–432, 480active, 432array in, 431incomplete type in, 431match, 431–432pointer to function in, 431rvalue reference in, 431memory, 430nearest handler, 429rethrow, 144, 430rethrowing, 430
switch, 428
terminate called, 144, 430, 433throwing, 144, 429try block, 428exception object, see exception handling, exceptionobjectexception specification, 432–435noexceptconstant expression and, 433non-throwing, 432potentially-throwing, 432virtual function and, 433

Index 1844

© ISO/IEC N4910

exception-declaration, 428, 1746
exclusive-or-expression, 141, 1735execution agent, 1636execution character set, see character set, executionexecution policy, 749execution step, 83execution wide-character set, see wide-character set,execution
exit, 85, 87, 157
explicitkeyword, 20, 165, 654, 655, 662, 663, 674, 945,1259, 1738, 1755, 1769explicit object member function, see member function,explicit objectexplicit object parameter, see parameter, explicit objectexplicit type conversion, see casting
explicit-instantiation, 402, 1746explicit-object-parameter-declaration, 190
explicit-specialization, 404, 1746
explicit-specifier , 165, 1738explicitly captured, 108explicitly initialized elementsaggregate, 200
exponent-part, 24, 1731exponential integrals Ei, 1329
exportkeyword, 20, 242, 438, 442, 1743, 1748, 1766
export-declaration, 242, 1743exposure, 57
expr-or-braced-init-list, 197, 1741expression, 89–150additive operators, 137

alignof, 129assignment and compound assignment, 144await, 127bitwise AND, 141bitwise exclusive OR, 141bitwise inclusive OR, 141cast, 118, 135–136class member access, 118comma, 145conditional operator, 142const cast, 124constant, 145, 149converted constant, 149core constant, 146decrement, 119, 126
delete, 133destructor call, 102domain, 531dynamic cast, 119equality operators, 140equality-preserving, 531equivalent, see equivalent, expressionsfold, 112function call, 116functionally equivalent, see functionallyequivalent, expressionsincrement, 119, 126

integral constant, 148lambda, 102–112left-shift-operator, 138logical AND, 141logical OR, 142multiplicative operators, 137
new, 129
noexcept, 129order of evaluation of, 89parenthesized, 99pointer-to-member, 136pointer-to-member constant, 126postfix, 115–125potentially constant evaluated, 150potentially evaluated, 33primary, 97–115pseudo-destructor call, 102reference, 91reinterpret cast, 123relational operators, 139requires, 112–115right-shift-operator, 138rvalue reference, 90
sizeof, 128spaceship, 138static cast, 121subscript, 116three-way comparison, 138
throw, 144type identification, 121type-dependent, 389unary, 125–129unary operator, 125value-dependent, 389yield, 143

expression, 145, 1736expression-equivalent, 4
expression-list, 116, 1734
expression-statement, 152, 1736extend, see namespace, extendextended alignment, see alignment, extendedextended integer type, see type, extended integerextended signed integer type, see type, extended signedintegerextended unsigned integer type, see type, extendedunsigned integer
extern, 163keyword, 20, 31, 40, 55, 65, 162–164, 184, 186,205, 231, 233, 258, 402, 1738, 1742, 1746,1771, 1772linkage of, 164
extern "C", 464, 476
extern "C++", 464, 476
extern template, see instantiation, explicitexternal linkage, see linkage, external

Index 1845

© ISO/IEC N4910

F
F (incomplete elliptic integrals), 1329facet, 1428
fallback-separator , 1561
falsekeyword, 20, 74, 95–97, 113, 114, 126, 127,139–142, 1778file, 1553file attributes, 1578cached, 1578file system, 1553file system race, 1554file, source, see source filefilename, 1561
filename, 1561
final, 19keyword, 19, 252, 256, 284, 1743, 1744final overrider, 283final suspend point, 216finite state machine, 5
floatkeyword, 20, 25, 74, 95, 97, 172, 1739floating-point literal, see literal, floating-pointfloating-point promotion, 95floating-point type, see type, floating-pointimplementation-defined, 74
floating-point-literal , 24, 1730
floating-point-suffix , 25, 1731fold binary, 112unary, 112
fold-expression, 112, 1733
fold-operator , 112, 1733
for keyword, 20, 40, 151, 154–156, 1737
for-range-declaration, 155, 1737
for-range-initializer , 155, 1737format specificationformat string, 756format specifier, 5format string, 755Formatter, 763formatting locale, see locale, formatting
forward, 650forward progress guaranteesconcurrent, 84delegation of, 84parallel, 84weakly parallel, 84forwarding reference, 417
fractional-constant, 24, 1731free store, see also delete, see also new, 275freestanding implementation, see implementation,freestandingfriend

virtual and, 286access specifier and, 294class access and, 293

inheritance and, 294local class and, 295template and, 370
friendkeyword, 20, 163, 167, 174, 184, 261, 268, 293,294, 310, 1738friend functionaccess and, 293inline, 294linkage of, 294member function and, 293nested class, 277full-expression, 78function, see also friend function, see also inlinefunction, see also member function, see alsovirtual functionaddressable, 474allocation, 66, 130conversion, 271, 272deallocation, 67deferred, 1723definition, 32deleted, 214global, 476, 479handler, 5handler of type, 431immediate, 167inline, 169linkage specification overloaded, 233modifier, 5named by expression or conversion, 33needed for constant evaluation, 150non-template, 192observer, 6operator, 337template, 337overload resolution and, 313overloaded, see overloadingparameter of type, 190pointer to member, 137program semantics affected by the existence of afunction definition, 400replacement, 7reserved, 7template parameter of type, 347viable, 312virtual, 283–287override, 283pure, 287, 288virtual function call, 116virtual member, 476waiting, 1715function argument, see argumentfunction call, 117recursive, 118undefined, 124function call operatoroverloaded, 339

Index 1846

© ISO/IEC N4910

function call operator function, see operator function,function callfunction object, 721binders, 736–738
mem_fn, 738
reference_wrapper, 725type, 721wrapper, 738–744function parameter, see parameterfunction parameter pack, 368function parameter scope, see scope, functionparameterfunction pointer type, 75function return, see returnfunction return type, see return typefunction try block, see exception handling, function tryblock

function-body , 212, 1741
function-definition, 212, 1741function-like macro, see macro, function-likefunction-local predefined variable, see variable,function-local predefined
function-specifier , 165, 1738
function-try-block , 428, 1746functionally equivalentexpressions, 378

template-heads, 378functionscandidate, 394fundamental alignment, see alignment, fundamentalfundamental type, 75destructor and, 270fundamental type conversion, see conversion,user-definedfutureshared state, 1715
G
generated destructor, see destructor, defaultgeneric lambda, 103generic parameter type placeholder, 175global module, see module, globalglobal module fragment, 246global namespace, see namespace, globalglobal scope, see scope, global
global-module-fragment, 246, 1743glvalue, 89
gotoand handler, 428and try block, 428initialization and, 158keyword, 20, 147, 155, 157, 158, 428, 1737grammar, 1727regular expression, 1632
group, 437, 1747
group-part, 437, 1747

H
Hn (Hermite polynomials), 1330
h-char , 18, 1728
h-char-sequence, 18, 1728
h-pp-tokens , 439, 1748
h-preprocessing-token, 439, 1748handler, see exception handling, handler
handler , 428, 1746
handler-seq, 428, 1746happens after, 81happens before, 81hard link, 1553
has-attribute-expression, 439, 1748
has-include-expression, 439, 1748
hashinstantiation restrictions, 747hash code, 847hash function, 847hash tables, see unordered associative containersheader, 461C, 476, 479, 530C library, 464C++ library, 461importable, 245name, 18header unit, 245preprocessing, 442
header-name, 18, 1728
header-name-tokens , 439, 1748headersC library, 529heap with respect to comp and proj, 1218Hermite polynomials Hn, 1330
hex-quad , 14, 1727
hexadecimal-digit, 21, 1729
hexadecimal-digit-sequence, 21, 1729
hexadecimal-escape-sequence, 23, 1730
hexadecimal-floating-point-literal , 24, 1730
hexadecimal-fractional-constant, 24, 1731
hexadecimal-literal , 21, 1729
hexadecimal-prefix , 21, 1729high-order bit, 58hosted implementation, see implementation, hosted
I
Iν (Bessell functions), 1328id-expression, 99
id-expression, 99, 1732identicalatomic constraints, see atomic constraint, identicalidentifier, 18–19, 100, 162
identifier , 18, 1728
identifier-continue, 18, 1728
identifier-list, 438, 1747
identifier-start, 18, 1728
if keyword, 20, 93, 152–155, 1256, 1737
if-group, 437, 1747

Index 1847

© ISO/IEC N4910

if-section, 437, 1747ill-formed program, see program, ill-formedimmediate function, see function, immediateimmediate function context, 150immediate invocation, 150immediate scope, see scope, immediateimmediate subexpression, 78implementationfreestanding, 10, 80, 85, 450, 462, 1654, 1656hosted, 10, 450, 462implementation limits, see limits, implementationimplementation-defined behavior, see behavior,implementation-definedimplementation-dependent, 404, 486, 1496, 1506implementation-generated, 32implicit conversion, see conversion, implicitimplicit conversion sequence, see conversion sequence,implicitimplicit object member function, see member function,implicit objectimplicit object parameter, 313implicit-lifetime class, see class, implicit-lifetimeimplicit-lifetime type, see type, implicit-lifetimeimplicitly movable entity, see entity, implicitlymovableimplicitly-declared default constructor, see constructor,default, 262implied object argument, 313implicit conversion sequences, 313non-static member function and, 313import, 245
import, 19, 464keyword, 17, 19, 438, 442, 1748importable C++ library headers, see C++ library headers,importableimportable header, see header, importableinclusionconditional, see preprocessing directive,conditional inclusionsource file, see preprocessing directive,source-file inclusion
inclusive-or-expression, 141, 1736incomplete, 137incomplete type, see type, incompleteincompletely-defined object type, see object type,incompletely-definedincrement operatoroverloaded, see overloading, increment operatorincrement operator function, see operator function,incrementincrementable, 964indeterminate value, see value, indeterminate, 64indeterminately sequenced, 79indirect base class, see base class, indirectindirection, 125inheritance, 280

using-declaration and, 227
init-capture, 107, 1733
init-capture pack, 111, 368

init-declarator , 180, 1739
init-declarator-list, 179, 1739
init-statement, 151, 1736initial suspend point, 216initialization, 85, 196–212aggregate, 200array, 200array of class objects, 204, 298automatic, 158base class, 299by inherited constructor, 303character array, 204, 205class object, see also constructor, 200, 298–304

const, 171, 200const member, 300constant, 85constructor and, 298copy, 198default, 197default constructor and, 298definition and, 162direct, 198dynamic, 85dynamic block-scope, 158dynamic non-block, 86explicit, 298jump past, 158list-initialization, 207–212local static, 158local thread_local, 158member, 299member function call during, 302member object, 299order of, 86, 282order of base class, 301order of member, 301order of virtual base class, 301overloaded assignment and, 298parameter, 116reference, 186, 205reference member, 300static, 85static and thread, 85static member, 274
union, 204vacuous, 61virtual base class, 265zero-initialization, 85, 197initializerbase class, 212member, 212pack expansion, 303scope of member, 302temporary and declarator, 69

initializer , 196, 1740
initializer-clause, 196, 1740
initializer-list, 197, 1741initializer-list constructor, 208initializing declaration, 200

Index 1848

© ISO/IEC N4910

injected-class-name, 252inline, 479
inlinekeyword, 20, 85, 163, 169, 170, 184, 222, 223,259, 261, 268, 343, 372, 402, 477, 1738,1742linkage of, 55inline function, see function, inline, 169inline namespace, see namespace, inlineinline namespace set, 223inline variable, see variable, inlineinstantiationexplicit, 402point of, 394template implicit, 398instantiation context, 249instantiation units, 14
int keyword, 20, 23, 73–75, 77, 85, 91, 92, 94, 95,131, 172, 1739, 1772, 1775, 1776integer literal, see literal, integerinteger type, 74integer-class type, see type, integer-classinteger-like, 963
integer-literal , 20, 1729
integer-suffix , 21, 1729integral constant expression, see expression, integralconstantintegral promotion, 95integral type, 74implementation-defined sizeof, 73inter-thread happens before, 81interface dependency, 246internal linkage, see linkage, internalinvalid iterator, see iterator, invalidinvalid pointer value, see value, invalid pointerinvocationmacro, 445invocation sequence, 557item definable, 32
iteration-statement, 154, 157, 1737iterator, 955constexpr, 956dereferenceable, 955invalid, 956past-the-end, 955
J
jn (spherical Bessel functions), 1331
Jν (Bessell functions), 1328Jessie, 271
jump-statement, 157, 1737
K
K (complete elliptic integrals), 1327
Kν (Bessell functions), 1328key parameter, see parameter, key

keyword, 19, 1727
keyword , 19, 1728
L
Ln (Laguerre polynomials), 1330
Lmn (associated Laguerre polynomials), 1326label, 158

case, 152, 154
default, 152, 154scope of, 152

labeled-statement, 152, 1736Laguerre polynomials
Ln, 1330
Lmn , 1326

lambda-capture, 107, 1733
lambda-declarator , 102, 1733
lambda-expression, 102, 1733
lambda-introducer , 102, 172, 1733
lambda-specifier , 102, 1733
lambda-specifier-seq, 102, 1733language linkage, 231lattice, see DAG, see subobjectlayoutbit-field, 275class object, 258, 282layout-compatibleclass, 259enumeration, 220layout-compatible type, see type, layout-compatibleleft shiftundefined, 138left shift operator, see operator, left shiftleft-pad, 767Legendre functions Ym` , 1331Legendre polynomials

P`, 1330
Pm` , 1327letter, 459lexical conventions, see conventions, lexicalLIA-1, 1805libraryC standard, 454, 459, 461, 464, 529, 1777C++ standard, 453, 476, 478, 480library callnon-constant, 6library clauses, 11lifetime, 61limitsimplementation, 5line number, 449line splicing, 13link, 1553linkage, 30, 31, 54–57
const and, 55external, 55, 464, 476implementation-defined object, 233
inline and, 55internal, 55

Index 1849

© ISO/IEC N4910

module, 55no, 55, 56
static and, 55linkage specification, see specification, linkage

linkage-specification, 231, 1742list-initialization, 207literal, 20–29, 98base of integer, 21boolean, 27
char16_t, 23
char32_t, 23
char8_t, 23character, 22, 23non-encodable, 23ordinary, 23UTF-16, 23UTF-32, 23UTF-8, 23wide, 23complex, 1256constant, 20
float, 25floating-point, 24, 25integer, 20, 22
long, 21, 22
long double, 25multicharacter, 23narrow-character, 26operator, 343raw, 343template, 343template numeric, 343template string, 343pointer, 27string, 25, 26

char16_t, 26
char32_t, 26narrow, 26ordinary, 26raw, 16, 26undefined change to, 27UTF-16, 26UTF-32, 26UTF-8, 26wide, 26suffix identifier, 343type of character, 23type of floating-point, 25type of integer, 22

unsigned, 21, 22user-defined, 28
literal , 20, 1729literal encoding, see encoding, literalliteral type, see type, literal
literal-operator-id , 343, 1745living deadname of, 474local class, see class, localfriend, 295

member function in, 259local entity, see entity, locallocal scope, see scope, blocklocal variabledestruction of, 157locale, 1601, 1603, 1608formatting, 1415locale-specific, 459locale-specific behavior, see behavior, locale-specificlocale-specific formformat string, 759lock non-shared, 1636shared, 1636lock-free execution, 83locus, 39–40
logical-and-expression, 141, 1736
logical-or-expression, 142, 1736
longkeyword, 20, 25, 68, 73, 74, 77, 95, 97, 172, 1739

typedef and, 163
long-long-suffix , 21, 1730
long-suffix , 21, 1730lookupambiguous, 42argument-dependent, 47class member, 51elaborated type specifier, 54member name, 43name, 30, 42–54namespace aliases and, 54qualified name, 49–54type-only, 43unqualified name, 45using-directives and, 54lookup context, 50lookup set, 43low-order bit, 58lowercase, 459
lparen, 438, 1747lvalue, 90, 1772lvalue reference, 186Lvalue-Callable, 739
M
macroactive, 443argument substitution, 445definition, 443function-like, 444, 445arguments, 445import, 442–444masking, 479name, 444object-like, 444point of definition, 443point of import, 443point of undefinition, 443

Index 1850

© ISO/IEC N4910

pragma operator, 452predefined, 450replacement, 444–449replacement list, 444rescanning and replacement, 448scope of definition, 449
main function, 85implementation-defined linkage of, 85implementation-defined parameters to, 85parameters to, 85return from, 85, 87make progressthread, 84
make-unsigned-like-t, 1015manifestly constant-evaluated, 150matched, 5mathematical special functions, 1326–1331
mem-initializer , 299, 1745
mem-initializer-id , 299, 1745
mem-initializer-list, 299, 1745memberanonymous union, 279class static, 65default initializer, 258direct, 256namespace, 222non-static, 257static, 257, 273template and static, 366member access operatoroverloaded, 339member candidate, 317member datastatic, 274member function, 257call undefined, 260class, 259const, 260const volatile, 260constexpr-compatible, 261constructor and, 262destructor and, 269explicit object, 191friend, 294implicit object, 191inline, 259local class, 280nested class, 297non-static, 257, 260overload resolution and, 313static, 257, 274

union, 278volatile, 260member of the current instantiation, see currentinstantiation, member of themember pointer to, see pointer to membermember subobject, 59
member-declaration, 256, 1744
member-declarator , 256, 1744

member-declarator-list, 256, 1744
member-specification, 256, 1744memory location, 59memory management, see delete, see newmemory model, 58–59messagediagnostic, 4, 10modelconcept, 478modifiable, 91modification order, 80module, 242exported, 245global, 242named, 241reserved name of, 241
module, 19keyword, 17, 19, 437, 438, 442, 1747, 1748module implementation unit, 241module interface unit, 241module partition, 241module unit, 241module unit purview, see purview, module unit
module-declaration, 241, 1743
module-file, 437, 1746
module-import-declaration, 245, 1743
module-name, 241, 1743
module-name-qualifier , 241, 1743
module-partition, 241, 1743more constrained, 362more cv-qualified, 76more specialized, 375, 420class template, 375function template, 420most derived class, 60most derived object, 60bit-field, 60zero size subobject, 60moveclass object, see constructor, move, seeassignment operator, move
move, 651multi-pass guarantee, 966, 970multibyte character, see character, multibytemulticharacter literal, see literal, multicharactermultiple inheritance, 280, 282

virtual and, 286multiple threads, see threads, multiple
multiplicative-expression, 137, 1735
mutable, 163keyword, 20, 100, 102–104, 111, 119, 126, 136,137, 163, 165, 171, 184, 274, 1733, 1738mutable iterator, 955mutex types, 1684
N
nn (spherical Neumann functions), 1331
Nν (Neumann functions), 1328

Index 1851

© ISO/IEC N4910

name, 19, 30, 57, 99address of cv-qualified, 126bound, 37dependent, 388elaborated
enum, 173length of, 19macro, see macro, namepredefined macro, see macro, predefinedqualified, 49, 50reserved, 474same, 30terminal, 100unqualified, 45, 46zombie, 474name class, see class namename hiding, 39, 101, 158using-declaration and, 229named module, see module, named

named-namespace-definition, 222, 1742namespace, 461alias, 224definition, 222extend, 222global, 19, 222inline, 223unnamed, 223
namespacekeyword, 20, 222–224, 1742namespace scope, see scope, namespace
namespace-alias , 224, 1742
namespace-alias-definition, 224, 1742
namespace-body , 222, 1742
namespace-definition, 222, 1742
namespace-name, 222, 1741namespaces, 222–226NaN, 1326narrow character type, see type, narrow characternarrowing conversion, see conversion, narrowingnative encoding, 1563native pathname format, 1558
NDEBUG, 464necessarily reachable, see reachable, necessarilyneededexception specification, 434needed for constant evaluation, 150nested class, see class, nestedlocal class, 280nested within, 60
nested-name-specifier , 101, 1732
nested-namespace-definition, 222, 1742
nested-requirement, 115, 1734Neumann functions

Nν , 1328
nn, 1331

new, 66, 129, 130array of class objects and, 132constructor and, 132default constructor and, 132

exception and, 133initialization and, 132keyword, 20, 61, 66, 67, 129–132, 134, 149, 181,337, 392, 434, 502, 529, 589, 1734
operatorreplaceable, 476, 477scoping and, 131storage allocation, 129type of, 275unspecified constructor and, 133unspecified order of evaluation, 133

new-declarator , 129, 1735
new-expression, 129, 1734placement, 132new-extended alignment, see alignment, new-extended
new-initializer , 129, 1735
new-line, 438, 1747
new-placement, 129, 1735
new-type-id , 129, 1735
new_handler, 67no linkage, 55node handle, 836
nodeclspec-function-declaration, 161, 1738nodiscard call, see call, nodiscardnodiscard type, see type, nodiscard
noexcept, 129keyword, 20, 75, 78, 91, 92, 97, 105, 114, 129,189, 393, 419, 433, 434, 481, 603, 683, 694,748, 788, 1035, 1734, 1746, 1757, 1765,1767
noexcept-expression, 129, 1734
noexcept-specifier , 433, 1746nominable, 39non-initialization odr-use, see odr-use,non-initializationnon-member candidate, 317non-object parameter, see parameter, non-objectnon-object-parameter-type-list, 191non-shared lock, see lock, non-sharednon-static data member, see data member, non-staticnon-static member, see member, non-staticnon-static member function, see member function,non-staticnon-template function, see function, non-templatenon-throwing exception specification, 432non-virtual base class, see base class, non-virtual
nondigit, 19, 1728
nonzero-digit, 21, 1729
noptr-abstract-declarator , 181, 1740
noptr-abstract-pack-declarator , 181, 1740
noptr-declarator , 181, 1739
noptr-new-declarator , 129, 1735normal distributions, 1287–1293normal formconstraint, 361path, 1562normalizationconstraint, see constraint, normalizationpath, see path, normalization

Index 1852

© ISO/IEC N4910

normative references, see references, normative
not keyword, 17, 20, 1729, 1778
not_eqkeyword, 17, 20, 1729, 1778notationsyntax, 11–12ntbs, 459, 1787, 1788empty, 459length, 459static, 459value, 459NTCTS, 6ntmbs, 459static, 459null character, see character, nullnull member pointer conversion, see conversion, nullmember pointernull pointer conversion, see conversion, null pointernull pointer value, see value, null pointernull statement, 152null wide character, see wide-character, null
nullptrkeyword, 20, 28, 216, 484, 501, 599, 614, 692,699, 837, 1002, 1004, 1480, 1491, 1694,1695, 1698, 1765numberpreprocessing, 18subnormal, 490, 491, 493numeric type, see type, numeric
numeric-escape-sequence, 23, 1730
numeric_limits, 489
O
object, see also object model, 30, 59byte copying and, 71–72callable, 724complete, 59const, 76const volatile, 76definition, 32destructor and placement of, 270destructor static, 87exception, see exception handling, exceptionobjectimplicit creation, 61linkage specification, 233local static, 65nested within, 60nonzero size, 60providing storage for, 59reified, 1015suitable created, 61unnamed, 262volatile, 76zero size, 60object class, see class objectobject expression, 118, 136

object lifetime, 61–64object model, 59–61object parameter, see parameter, objectcorresponding, 37object pointer type, 75object temporary, see temporaryobject type, 73incompletely-defined, 72object-like macro, see macro, object-likeobservable behavior, see behavior, observable
octal-digit, 21, 1729
octal-escape-sequence, 23, 1730
octal-literal , 21, 1729odr-usable, 34odr-use, 33non-initialization, 86one-definition rule, 32–37
opaque-enum-declaration, 219, 1741operating system dependent, 1554operator, 19–20, 338

*=, 144
+=, 126, 144
-=, 144
/=, 144
<<=, 144
>>=, 144
%=, 144
&=, 144
^=, 144
|=, 144addition, 137additive, 137address-of, 125assignment, 144, 460bitwise, 141bitwise AND, 141bitwise exclusive OR, 141bitwise inclusive OR, 141cast, 125, 181class member access, 118comma, 145comparisonconstexpr-compatible, 309implicitly defined, 309secondary, 311conditional expression, 142copy assignment, see assignment operator, copydecrement, 119, 125, 127division, 137equality, 140defaulted, 310deleted, 309function call, 116, 337greater than, 139greater than or equal to, 139implementation, 337increment, 119, 125, 126indirection, 125inequality, 140

Index 1853

© ISO/IEC N4910

defaulted, 311left shift, 138less than, 139less than or equal to, 139logical AND, 141logical negation, 125, 126logical OR, 142move assignment, see assignment operator, movemultiplication, 137multiplicative, 137ones’ complement, 125, 126overloaded, 89, 337pointer to member, 136pragma, see macro, pragma operatorprecedence of, 89relational, 139defaulted, 311remainder, 137right shift, 138scope resolution, 50, 101, 131, 259, 281, 287side effects and comma, 145side effects and logical AND, 142side effects and logical OR, 142
sizeof, 125, 128spaceship, 138subscripting, 116, 337subtraction, 137three-way comparison, 138defaulted, 310deleted, 309unary, 125unary minus, 125, 126unary plus, 125, 126

operator , 337, 1745
operatorkeyword, 20, 61, 66, 67, 71, 126, 127, 131, 134,271, 313, 315–319, 324, 327, 328, 334,337–340, 343, 389, 391, 1744, 1745operator deletedestroying, 67
operator delete, see also delete, 131, 134operator function, see function, operatorbinary, 338class member access, 339comparison, 338decrement, 340equality, 338function call, 339increment, 340prefix unary, 338relational, 338simple assignment, 338subscripting, 339three-way comparison, 338
operator new, see also new, 131operator overloading, see overloading, operatoroperator usescope resolution, 274
operator-function-id , 337, 1745

operator-or-punctuator , 20, 1729operatorsbuilt-in, 89optimization of temporary, see temporary, eliminationofoptional object, 670
or keyword, 17, 20, 1729, 1778
or_eqkeyword, 17, 20, 1729, 1778order of evaluation in expression, see expression, orderof evaluation oforder of executionbase class constructor, 263base class destructor, 269constructor and array, 298constructor and static data members, 298destructor, 269destructor and array, 269member constructor, 263member destructor, 269orderingfunction template partial, see template, function,partial orderingordinary character type, see type, ordinary characterordinary literal encoding, see encoding, ordinary literalover-aligned type, see type, over-alignedoverflow, 89undefined, 89overload resolution, 312overload set, 42overloaded function, see overloadingaddress of, 126, 336overloaded operator, see overloading, operatorinheritance of, 338overloading, 191, 255, 312–342, 377address of overloaded function, 336argument lists, 313–324assignment operator, 338binary operator, 338built-in operators and, 340candidate functions, 313–324decrement operator, 340example of, 312function call operator, 339increment operator, 340member access operator, 339operator, 337–340resolution, 312–336best viable function, 324–338better viable function, 324contexts, 312function call syntax, 314–316function template, 426implicit conversions and, 327–336initialization, 319, 320operators, 316template, 379viable functions, 324–338

Index 1854

© ISO/IEC N4910

subscripting operator, 339unary operator, 338user-defined literal, 342using directive and, 226using-declaration and, 230overloadsfloating-point, 1256override, see function, virtual, override
override, 19keyword, 19, 256, 284, 1744overriderfinal, 283own, 580
P
P` (Legendre polynomials), 1330
Pm` (associated Legendre polynomials), 1327pack, 368unexpanded, 369pack expansion, 368pattern, 368padding bits, 72
pairtuple interface to, 653parallel algorithm, 1130parallel forward progress guarantees, 84parameter, 6catch clause, 6disqualifying, 539explicit object, 191function, 6function-like macro, 6key, 540macro, 445non-object, 191object, 191reference, 186scope of, 41template, 6, 31

void, 190parameter declaration, 31parameter listvariable, 117, 190parameter mapping, 358
parameter-declaration, 189, 1740
parameter-declaration-clause, 189, 1740
parameter-declaration-list, 189, 1740parameter-type-list, 190parameterized type, see template
parameters-and-qualifiers , 181, 1739parent directory, 1553parent scope, see scope, parentpast-the-end iterator, see iterator, past-the-endpath, 1558absolute, 1558normalization, 1562relative, 1558path equality, 1572

pathname, 1558
pathname, 1561pathname resolution, 1558pattern, see pack expansion, patternperfect forwarding call wrapper, see call wrapper,perfect forwardingperiod, 459permissible types, see types, permissiblephase completion step, 1712phase synchronization point, see barrier, phasesynchronization pointphases of translation, see translation, phases
Π (complete elliptic integrals), 1327
Π (incomplete elliptic integrals), 1329piecewise construction, 655placeholder type deduction, 178
placeholder-type-specifier , 175, 1739placement new-expression, see new-expression,placementplain lock-free atomic operation, 528
pm-expression, 136, 1735POD, 1790point, 75point ofmacro definition, see macro, point of definitionmacro import, see macro, point of importmacro undefinition, see macro, point ofundefinitionpointer, see also void*composite pointer type, 91strict total order, 5zero, see value, null pointerpointer literal, see literal, pointerpointer past the end of, 75pointer to, 75pointer to member, 75, 136, 187pointer-interconvertible, 76
pointer-literal , 27, 1731Poisson distributions, 1283–1287polymorphic class, see class, polymorphicpool resource classes, 611pools, 611population, 1199POSIX, 2extended regular expressions, 1608regular expressions, 1608postfix ++ and --overloading, 340postfix ++, 119postfix --, 119
postfix-expression, 115, 1734potential results, 33potentially concurrent, 82potentially conflict, 38potentially constant evaluated, 150potentially evaluated, 33potentially-constant, 145potentially-overlapping subobject, 60potentially-throwing

Index 1855

© ISO/IEC N4910

exception specification, 432expression, 433
pp-global-module-fragment, 437, 1747
pp-import, 442, 1748
pp-module, 442, 1748
pp-number , 18, 1728
pp-private-module-fragment, 437, 1747
pp-tokens , 438, 1747precede, see declaration, precedeprecedence of operator, see operator, precedence of
preferred-separator , 1561prefix

L, 26
R, 26prefix ++ and --overloading, 340prefix ++, 126prefix --, 126prefix unary operator function, see operator function,prefix unarypreprocessing, 439preprocessing directive, 437–452conditional inclusion, 439error, 449header inclusion, 441import, 442line control, 449macro replacement, see macro, replacementmodule, 442null, 450pragma, 449source-file inclusion, 441

preprocessing-file, 437, 1746
preprocessing-op-or-punc , 19, 1728
preprocessing-operator , 19, 1728
preprocessing-token, 16, 1727primary equivalence class, 6primary module interface unit, 241primary template, see template, primary
primary-expression, 98, 1732
private, see access control, privatekeyword, 20, 248, 281, 288, 291, 437, 1743, 1744,1747
private-module-fragment, 248, 1743program, 54ill-formed, 5startup, 85–87termination, 87–88well-formed, 9, 11program execution, 10–11, 77–88abstract machine, 10as-if rule, see as-if ruleprogram semanticsaffected by the existence of a variable or functiondefinition, 400projection, 7promise object, 216promise type, see coroutine, promise typepromoted integral type, 340

promotionbool to int, 95default argument promotion, 118floating-point, 95integral, 95prospective destructor, see destructor, prospective
protected, see access control, protectedkeyword, 20, 281, 291, 1744protection, see access control, 480prototype parameterconcept, 383provides storage, 59prvalue, 90pseudo-destructor, 102
ptr-abstract-declarator , 181, 1740
ptr-declarator , 180, 1739
ptr-operator , 181, 1740
ptrdiff_t, 138implementation-defined type of, 138
public, see access control, publickeyword, 20, 281, 291, 1744punctuator, 19–20
pure-specifier , 256, 1744purviewglobal module, 242module unit, 242named module, 242
Q
q-char , 18, 1728
q-char-sequence, 18, 1728qualificationexplicit, 49qualification-combined type, see type,qualification-combinedqualification-decomposition, 94qualified name, see name, qualified
qualified-id , 101, 1732
qualified-namespace-specifier , 224, 1742
R
r-char , 25, 1731
r-char-sequence, 25, 1731random number distributionrequirements, 1263–1265random number distributionsBernoulli, 1279–1282normal, 1287–1293Poisson, 1283–1287sampling, 1293–1297uniform, 1277–1279random number enginerequirements, 1261–1262with predefined parameters, 1273–1274random number engine adaptorwith predefined parameters, 1273–1274random number generation, 1256–1298distributions, 1277–1297

Index 1856

© ISO/IEC N4910

engines, 1265–1273predefined engines and adaptors, 1273–1274requirements, 1259–1265synopsis, 1257–1259utilities, 1275–1277random number generator, see uniform random bitgeneratorrange, 956counted, 956, 1079valid, 956valid, 956raw string literal, 26
raw-string , 25, 1731reachabledeclaration, 250necessarilytranslation unit, 250translation unit, 250reachable from, 956declaration, 250ready, 1618, 1715
ref-qualifier , 181, 1740reference, 75assignment to, 144call by, 117forwarding, 416lvalue, 75null, 186rvalue, 75

sizeof, 128reference collapsing, 186reference lifetime, 61reference-compatible, 205reference-related, 205referencesnormative, 2
registerkeyword, 19, 20, 1760, 1773
register storage class, 1760regular expression, 1601–1634grammar, 1632matched, 5requirements, 1601regular expression traits, 1632requirements, 1601, 1610

transform_primary, 1602, 1634reified object, see object, reified
reinterpret_cast, see cast, reinterpretkeyword, 20, 70, 76, 115, 116, 123, 124, 135, 136,147, 350, 385, 392, 393, 1734relational operator function, see operator function,relational
relational-expression, 139, 1735relative path, see path, relative
relative-path, 1561release sequence, 81remainder operator, see operator, remainderremote time zone database, 1404replacement

macro, see macro, replacementreplacement fieldformat string, 755
replacement-list, 438, 1747representationobject, 72value, 72represents the address, 75requirementcompound, 114nested, 115simple, 113type, 114
requirement, 113, 1734
requirement-body , 112, 1733
requirement-parameter-list, 112, 1733
requirement-seq, 112, 1733requirements, 455container, 823, 847, 861, 862, 1618not required for unordered associatedcontainers, 847iterator, 955numeric type, 1247random number distribution, 1263–1265random number engine, 1261–1262regular expression traits, 1601, 1610seed sequence, 1259–1260sequence, 1618uniform random bit generator, 1260unordered associative container, 847
requireskeyword, 20, 112–115, 344, 1733, 1734, 1745
requires-clause, 344, 1745trailing, 180
requires-expression, 112, 1733rescanning and replacement, see macro, rescanningand replacementreserved identifier, 19reset, 580resolution, see overloading, resolutionrestriction, 478–480, 1782address of bit-field, 275anonymous union, 279bit-field, 275constructor, 262destructor, 268

extern, 164local class, 280operator overloading, 337overloading, 337pointer to bit-field, 275reference, 186
static, 164static member local class, 280
union, 278resultglvalue, 90prvalue, 90result object, 90

Index 1857

© ISO/IEC N4910

rethrow, see exception handling, rethrow
return, 157and handler, 428and try block, 428constructor and, 157keyword, 20, 75, 85, 93, 103, 117, 157, 428, 430,432, 1737reference and, 205
return statement, see returnreturn type, 191covariant, 285
return-type-requirement, 114, 1734reversible container, see container, reversiblerewritten candidate, 317right shift operator, see operator, right shift
root-directory , 1561
root-name, 1561rounding, 96rvalue, 90lvalue conversion to, see conversion,lvalue-to-rvalue, 1772rvalue reference, 186
S
s-char , 25, 1731
s-char-sequence, 25, 1731sample, 1199sampling distributions, 1293–1297satisfy, see constraint, satisfactionscalar type, see type, scalarscope, 1, 30, 37–42, 161anonymous union at namespace, 279block, 40class, 41declarations and, see locusdestructor and exit from, 157enclosing, 37enumeration, 41function parameter, 41function prototype, see scope, function parameterglobal, 37

handler , 40immediate, 37inhabit, 37intervene, 37
iteration-statement, 155macro definition, see macro, scope of definitionname lookup and, see lookup, namenamespace, 41parent, 37search, 43single, 42
selection-statement, 152target, 37template parameter, 42scope resolution operator, see operator, scoperesolutionscoped enumeration, see enumeration, scoped

search, 43single, 42secondary comparison operator, 311seed sequence, 1259requirements, 1259–1260selected destructor, see destructor, selected
selection-statement, 152, 1737semanticsclass member, 118sentinel, 956separate compilation, see compilation, separateseparate translation, see compilation, separatesequence container, see container, sequencesequenced after, 79sequenced before, 79sequencing operator, see operator, commashared lock, see lock, shared, 1688shared mutex types, 1688shared state, see future, shared stateshared timed mutex type, 1689shift operatorleft, see operator, left shiftright, see operator, right shift
shift-expression, 138, 1735
shortkeyword, 20, 73, 74, 77, 172, 1739

typedef and, 163side effects, 10, 69, 79–83, 152, 301, 307, 445, 480visible, 82
sign, 24, 1731signal, 80signal-safe

_Exit, 498
abort, 499evaluation, see evaluation, signal-safe
forward, 650
initializer_list functions, 513
memcpy, 819
memmove, 819
move, 650
move_if_noexcept, 650
numeric_limits members, 491
quick_exit, 500
signal, 529type traits, 620signature, 7, 8

signedkeyword, 20, 73, 74, 77, 172, 1739
typedef and, 163signed integer representationones’ complement, 126two’s complement, 73, 220, 645, 1661, 1669signed integer type, see type, signed integersigned-integer-class type, see type, signed-integer-classsigned-integer-like, 963significand, 25similar types, 94simple assignment operator function, see operatorfunction, simple assignment

Index 1858

© ISO/IEC N4910

simple call wrapper, 725
simple-capture, 107, 1733
simple-declaration, 161, 1738
simple-escape-sequence, 23, 1730
simple-escape-sequence-char , 23, 1730
simple-requirement, 113, 1734
simple-template-id , 349, 1746
simple-type-specifier , 172, 1739simply happens before, 81single search, see search, single
size-suffix , 21, 1730
size_t, 129
sizeofkeyword, 20, 35, 72, 75, 125, 128, 129, 393, 1734,1772smart pointers, 589–603source file, 13, 464, 476source file character, see character, source filespecial member function, see constructor, seeassignment operator, see destructoreligible, 261specialization, 397class template partial, 372declared, 398program-defined, 6template, 397template explicit, 404specificationlinkage, 231–233

extern, 231implementation-defined, 231nesting, 231template argument, 409specificationsC standard library exception, 481C++, 481specifier, 163–179
consteval, 167
constexpr, 167constructor, 168function, 167
constinit, 169cv-qualifier, 171declaration, 163
explicit, 165
friend, 167, 480function, 165
inline, 169storage class, 163type, see type specifier
typedef, 165
virtual, 165specifier access, see access specifierspherical harmonics Ym` , 1331stable algorithm, 8, 479stack unwinding, 430stacktrace, 557stacktrace entry, 557standard

structure of, 11standard integer type, see type, standard integerstandard signed integer type, see type, standard signedintegerstandard unsigned integer type, see type, standardunsigned integerstandard-layout class, see class, standard-layoutstandard-layout struct, see struct, standard-layoutstandard-layout type, see type, standard-layoutstandard-layout union, see union, standard-layoutstart program, 86startupprogram, 464, 477state, 696state entity, 724statement, 151–160
continue in for, 156
break, 157compound, 152consteval if, 153
continue, 157declaration, 158declaration in switch, 154declaration in while, 155
do, 154, 155empty, 152expression, 152fallthrough, 237
for, 154, 155
goto, 152, 157, 158
if, 152iteration, 154–156jump, 157labeled, 151null, 152range based for, 156selection, 152–154
switch, 152, 154, 157
while, 154, 155

statement, 151, 1736
statement-seq, 152, 1737
static, 163destruction of local, 159keyword, 20, 55, 65, 85, 162–164, 170, 184, 190,257, 258, 274–276, 279, 491, 1665, 1738,1772, 1773linkage of, 55, 164static data member, see data member, staticstatic initialization, see initialization, staticstatic member, see member, staticstatic member function, see member function, staticstatic storage duration, 65static type, see type, static
static_assert, 162
static_assertkeyword, 20, 161, 547, 1738, 1765, 1777not macro, 547
static_assert-declaration, 161, 1738

Index 1859

© ISO/IEC N4910

static_cast, see cast, statickeyword, 20, 35, 62, 70, 90, 115, 116, 121, 122,124, 135, 136, 198, 350, 385, 392, 393, 472,1353, 1734
STATICALLY-WIDEN, 1333
<stdnoreturn.h>absence thereof, 461, 1777stop request, 1638stop state, 1638storage class, 30storage duration, 65–67automatic, 65class member, 67dynamic, 65–66, 130local object, 65static, 65thread, 65storage management, see delete, see new
storage-class-specifier , 163, 1738streamarbitrary-positional, 3repositional, 7stringdistinct, 27null terminator, 793null-terminated byte, see ntbsnull-terminated character type, 6null-terminated multibyte, see ntmbstype of, 26width, 758string literal, see literal, string
string-literal , 25, 1731stringize, see # operatorstringizing argument, 447strongly happens before, 82structstandard-layout, 254
structkeyword, 20, 174, 219, 252, 254, 255, 288, 290,291, 632, 640, 658, 1741, 1743, 1770, 1771,1773, 1776structural type, see type, structuralstructure tag, see class namestructured binding, 218structured binding declaration, 162, 218sub-expressionregular expression, 8subexpression, 78subnormal number, see number, subnormalsubobject, see also object model, 59subscript expression, see expression, subscriptsubscripting operatoroverloaded, 339subscripting operator function, see operator function,subscriptingsubsequence ruleoverloading, 333substatement, 151substitutability, 516

subsume, see constraint, subsumptionsubtractionimplementation-defined pointer, 138subtraction operator, see operator, subtractionsuffix
F, 25
f, 25
L, 22, 25
l, 22, 25
U, 22
u, 22suitable created object, see object, suitable createdsummarycompatibility with ISO C, 1769compatibility with ISO C++ 2003, 1764compatibility with ISO C++ 2011, 1762compatibility with ISO C++ 2014, 1759compatibility with ISO C++ 2017, 1752compatibility with ISO C++ 2020, 1751syntax, 1727surrogate call function, 316swappable, 466swappable with, 466

switchand handler, 428and try block, 428keyword, 20, 93, 151–154, 157, 158, 237, 428,1737, 1749symbolic link, 1553synchronize with, 81synonym, 224type name as, 165syntaxclass member, 118synthesized three-way comparison, see three-waycomparison, synthesized
T
target object, 724target scope, see scope, targettemplate, 344–427alias, 382class, 363deducible, 172deducible arguments of, 321function, 409abbreviated, 192key parameter of, 540partial ordering, 379member function, 364primary, 363static data member, 344variable, 344
template, 344keyword, 20, 33, 46, 101, 118, 172, 174, 281, 321,339, 340, 344, 346, 349, 350, 363, 397, 402,404–406, 408, 669, 1727, 1732, 1739,1744–1746, 1782

Index 1860

© ISO/IEC N4910

template instantiation, 397template namelinkage of, 345template parameter, 31template parameter object, 347template parameter pack, 368template parameter scope, see scope, templateparameter
template-argument, 349, 1746default, 348template-argument-equivalent, 362
template-argument-list, 349, 1746
template-declaration, 344, 1745
template-head , 344, 1745
template-id , 349, 1746valid, 350
template-name, 349, 1746
template-parameter , 345, 1745
template-parameter-list, 344, 1745templated, 345temporary, 68constructor for, 69destruction of, 69destructor for, 69elimination of, 68, 307implementation-defined generation of, 68order of destruction of, 69terminal name, see name, terminal
terminate, 435called, 144, 430, 433, 435terminationprogram, 85, 88terminologypointer, 75
text-line, 437, 1747
this, 98keyword, 20, 30, 33, 34, 45, 62, 98, 99, 106–110,116, 117, 146, 147, 189, 190, 195, 212, 260,274, 296, 302, 305, 315, 392, 480, 608, 615,741, 1489, 1521, 1540, 1612, 1665, 1666,1669, 1671, 1673, 1675, 1677, 1679, 1680,1732, 1733, 1740thread, 80thread of execution, 80thread storage duration, see storage duration, thread
thread_local, 163keyword, 20, 65, 162–164, 184, 258, 274, 402,405, 1738, 1765threadsmultiple, 80–84
<threads.h>absence thereof, 461, 1777three-way comparisonsynthesized, 310three-way comparison operator function, see operatorfunction, three-way comparison
throw, 144keyword, 3, 20, 144, 393, 1736
throw-expression, 144, 1736

throwing, see exception handling, throwingtimed mutex types, 1686
to-unsigned-like, 1015token, 17alternative, 17directive-introducing, 438preprocessing, 16–17
token, 17, 1727trailing requires-clause, see requires-clause, trailing
trailing-return-type, 181, 1739traits, 8
transform_primaryregular expression traits, 1602, 1634translationphases, 13–14separate, see compilation, separatetranslation character set, see character set, translationtranslation unit, 13, 55name and, 31
translation-unit, 54, 1732transparently replaceable, 63trigraph sequence, 1759trivial class, see class, trivialtrivial type, see type, trivialtrivially copyable class, see class, trivially copyabletrivially copyable type, see type, trivially copyable
truekeyword, 20, 74, 95–97, 113, 126, 127, 129,139–142, 145, 433, 434, 1778truncation, 96
try, 428keyword, 20, 428, 429, 1746try block, see exception handling, try block
try-block , 428, 1746TU-localentity, 57value or object, 57
tupleand pair, 653type, 30, 71–76allocated, 129arithmetic, 74promoted, 340array, 75bitmask, 458Boolean, 74callable, 724

char, 74
char16_t, 23, 26, 74, 77
char32_t, 23, 26, 74, 77
char8_t, 23, 74character, 74character container, 4class and, 252compound, 75
const, 170destination, 198
double, 74dynamic, 4

Index 1861

© ISO/IEC N4910

enumerated, 75, 458example of incomplete, 72extended integer, 74extended signed integer, 73extended unsigned integer, 73
float, 74floating-point, 74function, 75, 189, 190fundamental, 75implementation-defined sizeof, 73implicit-lifetime, 73incomplete, 32, 34, 39, 72, 93, 116, 118, 119, 126,128, 129, 134, 281incompletely-defined object, 72
int, 73integer-class, 963integral, 74promoted, 340layout-compatible, 73literal, 73
long, 73
long double, 74
long long, 73narrow character, 74nodiscard, 239numeric, 1247ordinary character, 74over-aligned, 68pointer, 75polymorphic, 283program-defined, 6qualification-combined, 94referenceable, 7scalar, 73
short, 73
signed char, 73, 74signed integer, 73signed-integer-class, 963similar, see similar typesstandard integer, 74standard signed integer, 73standard unsigned integer, 73standard-layout, 73static, 8structural, 347trivial, 73trivially copyable, 71, 73underlying, 74

char16_t, 74, 95
char32_t, 74, 95
char8_t, 74enumeration, 95, 220fixed, 220
wchar_t, 74, 95

unsigned, 73
unsigned char, 73, 74
unsigned int, 73unsigned integer, 73
unsigned long, 73

unsigned long long, 73
unsigned short, 73unsigned-integer-class, 963
void, 74
volatile, 170
wchar_t, 23, 26, 74, 77type checkingargument, 117type concept, see concept, typetype conversion, explicit, see castingtype generator, see templatetype name, 181type pun, 124type specifier
auto, 175
bool, 172
char, 172
char16_t, 172
char32_t, 172
char8_t, 172
const, 171
decltype, 174
decltype(auto), 175
double, 172elaborated, 54, 172
enum, 172
float, 172
int, 172
long, 172
short, 172
signed, 172simple, 172
unsigned, 172
void, 172
volatile, 171, 172
wchar_t, 172

type-constraint, 346, 1745
type-id , 181, 1740
type-name, 172, 1739type-onlycontext, see context, type-onlylookup, see lookup, type-only
type-parameter , 345, 1745
type-parameter-key , 345, 1745
type-requirement, 114, 1734
type-specifier , 170, 1738
type-specifier-seq, 170, 1738
type_info, 121typedeffunction, 191
typedefkeyword, 20, 31, 72, 162, 163, 165, 166, 243,1265, 1274, 1348, 1561, 1738typedef name for linkage purposes, 166
typedef-name, 165, 1738
typeid, 121construction and, 306destruction and, 306

Index 1862

© ISO/IEC N4910

keyword, 20, 35, 63, 75, 108, 115, 121, 147, 393,429, 434, 1734
typename, 172keyword, 20, 114, 172, 226, 227, 321, 345, 346,350, 384, 385, 391, 1734, 1742, 1745, 1746
typename-specifier , 384, 1746typesimplementation-defined, 457permissible, 313
U
U keyword, 91UCS-2, 1796
ud-suffix , 28, 1732unary fold, 112unary left fold, 112unary operatorinterpretation of, 338overloaded, 338unary right fold, 112
unary-expression, 125, 1734
unary-operator , 125, 1734unblock, 8undefined, 7, 474, 476, 478, 1308, 1312, 1316, 1477undefined behavior, see behavior, undefinedunderlying type, see type, underlyingunevaluated operand, 92Unicode required set, 452uniform distributions, 1277–1279uniform random bit generatorrequirements, 1260union, 277standard-layout, 254
union, 75, 277anonymous, 279global anonymous, 279keyword, 20, 174, 252, 254, 277, 279, 288, 1743,1773, 1776union-like class, see class, union-likeunique pointer, 580unit translation, 464, 476
universal-character-name, 14, 1727Unix time, 1359unnamed bit-field, 275
unnamed-namespace-definition, 222, 1742unordered associative container, see container,unordered associativeunordered associative containers, 847complexity, 847equality function, 847equivalent keys, 847, 915, 925exception safety, 858hash function, 847iterator invalidation, 857iterators, 857lack of comparison functions, 847

requirements, 847, 857, 858unique keys, 847, 908, 920
unordered_mapelement access, 913unique keys, 908
unordered_multimapequivalent keys, 915
unordered_multisetequivalent keys, 925
unordered_setunique keys, 920unqualified name, see name, unqualified
unqualified-id , 100, 1732unscoped enumeration, see enumeration, unscopedunsequenced, 79
unsignedkeyword, 20, 59, 62, 71–74, 77, 91, 95, 132, 172,1739

typedef and, 163unsigned integer type, see type, unsigned integerunsigned-integer-class type, see type,unsigned-integer-classunsigned-integer-like, 963
unsigned-suffix , 21, 1730unspecified, 501, 502, 507, 1203, 1520, 1784–1786unspecified behavior, see behavior, unspecifiedunwindingstack, 430uppercase, 19, 459upstream allocator, 611usablebinary operator expression, 309usable candidate, see candidate, usableusable in constant expressions, 145, 146user-defined conversion sequence, see conversionsequence, user-defineduser-defined literal, see literal, user-definedoverloaded, 342
user-defined-character-literal , 28, 1732
user-defined-floating-point-literal , 28, 1732
user-defined-integer-literal , 28, 1732
user-defined-literal , 28, 1732
user-defined-string-literal , 28, 1732user-provided, 214uses-allocator construction, 574
usingkeyword, 20, 161, 223, 224, 226, 233, 1738, 1742using-declaration, 226–231
using-declaration, 226, 1742
using-declarator , 226, 1742
using-declarator-list, 226, 1742using-directive, 224–226
using-directive, 224, 1742
using-enum-declaration, 221, 1741usual arithmetic conversions, see conversion, usualarithmeticusual deallocation function, 67UTF-16, 16, 204, 1438, 1563, 1770, 1796, 1800UTF-32, 16, 204, 1438, 1563, 1770, 1796, 1800

Index 1863

© ISO/IEC N4910

UTF-8, 16, 58, 204, 778, 821, 1438, 1563, 1753, 1758,1770, 1796, 1800
V
va-opt-replacement, 445, 1748vacuous initialization, see initialization, vacuousvalid but unspecified state, 9valid range, see range, validvalue, 72call by, 117denormalized, see number, subnormalindeterminate, 64invalid pointer, 75null member pointer, 96null pointer, 75, 96undefined unrepresentable integral, 96value category, 90value computation, 69, 78–80, 82, 83, 119, 133, 144value type, 955value-initialization, 198variable, 30active, 158anonymous union, 279function-local predefined, 212indeterminate uninitialized, 197inline, 170needed for constant evaluation, 150program semantics affected by the existence of avariable definition, 400variable arguments, 445variable templatedefinition of, 344variant member, 279vectorization-unsafe, 1130
virt-specifier , 256, 1744
virt-specifier-seq, 256, 1744
virtualkeyword, 20, 116, 165, 177, 184, 190, 268, 269,274, 280, 282, 283, 286, 310, 367, 480,1738, 1744virtual base class, see base class, virtual, see base class,virtualvirtual function, see function, virtual, see function,virtualvirtual function call, 287constructor and, 306destructor and, 306undefined pure, 288visible side effects, see side effects, visible
voidkeyword, 20, 35, 62, 66, 67, 69, 72, 73, 75–77,90–92, 96, 97, 116, 118–120, 122–124, 126,127, 133, 134, 142, 144, 147, 157, 158, 172,173, 176, 178, 186–188, 190, 191, 212, 239,272, 274, 335, 347, 355, 385, 412, 414, 415,421, 430, 431, 456, 519, 537, 573, 594, 628,630–634, 636, 637, 639, 640, 724, 824, 825,830, 833–835, 842, 844, 852, 854, 856, 857,

958–960, 968, 992, 1260, 1261, 1264, 1476,1684, 1685, 1688, 1739, 1757, 1768, 1771,1772, 1790
void*type, 76
void&, 186
volatile, 76constructor and, 262destructor and, 268implementation-defined, 172keyword, 20, 76, 77, 79, 83, 119, 181, 1740, 1776volatile object, see object, volatilevolatile-qualified, 76
W
waiting function, see function, waiting
wchar_t, see type, wchar_tkeyword, 3, 20, 23, 26, 74, 77, 95, 97, 128, 172,173, 198, 204, 452, 453, 483, 484, 652, 764,765, 769, 820, 1333, 1427, 1449, 1464, 1467,1537, 1554, 1561, 1563, 1564, 1601, 1603,1660, 1668, 1739, 1758, 1770, 1777, 1795,1800weakly parallel forward progress guarantees, 84well-formed program, see program, well-formed
whilekeyword, 20, 151, 152, 154–156, 1737whitespace, 16, 17wide literal encoding, see encoding, wide literalwide-character, 23null, 16wide-character setexecution, 459width, 73, 274, 758of integer-class type, 963worse conversion sequence, see conversion sequence,worse
X
xor keyword, 17, 20, 1729, 1778
xor_eqkeyword, 17, 20, 1729, 1778xvalue, 90
Y
Ym` (spherical associated Legendre functions), 1331
yield-expression, 143, 1736
Z
zero division by undefined, 89remainder undefined, 89undefined division by, 137zero-initialization, 197zeta functions ζ, 1330

Index 1864

© ISO/IEC N4910

Index of grammar productions
The first bold page number for each entry is the page in the general text where the grammar production is defined. Thesecond bold page number is the corresponding page in the Grammar summary (Annex A). Other page numbers refer topages where the grammar production is mentioned in the general text.
abstract-declarator , 180, 181, 181, 190, 193, 194,

1740
abstract-pack-declarator , 181, 1740
access-specifier , 281, 281, 290, 291, 1744
additive-expression, 137, 1735
alias-declaration, 31, 39, 161, 166, 191, 243, 247, 257,344, 363, 382, 1738
alignment-specifier , 233, 234, 235, 369, 1742
and-expression, 141, 1735
asm-declaration, 147, 161, 231, 231, 1742
assignment-expression, 116, 144, 162, 178, 194, 201,204, 218, 274, 298, 319, 1736
assignment-operator , 144, 1736
attribute, 234, 234, 369, 1742
attribute-argument-clause, 234, 234–240, 1743
attribute-declaration, 31, 161, 162, 1738
attribute-list, 234, 234, 369, 1742
attribute-namespace, 234, 234, 235, 1743
attribute-scoped-token, 234, 234, 235, 1743
attribute-specifier , 233, 234, 235, 1742
attribute-specifier-seq, 41, 102, 104, 130, 151, 152,155, 162, 163, 166, 170, 173, 174, 183–189,212, 219, 220, 223, 224, 231, 233, 234, 238,241, 245, 252, 258, 261, 268, 272, 274, 281,402, 428, 1742
attribute-token, 19, 234, 234, 236–240, 440, 476,

1742
attribute-using-prefix , 233, 234, 1742
await-expression, 79, 127, 127, 147, 215, 216, 527,

1734

balanced-token, 234, 1743
balanced-token-seq, 234, 234, 235, 1743
base-clause, 253, 280, 398, 1744
base-specifier , 43, 51, 280, 281, 289, 293, 369, 1744
base-specifier-list, 267, 280, 281, 289, 301, 303, 310,369, 370, 1744
basic-c-char , 22, 23, 1730
basic-s-char , 25, 27, 1731
binary-digit, 21, 21, 1729
binary-exponent-part, 24, 25, 1731
binary-literal , 21, 21, 1729
block-declaration, 30, 161, 1737
boolean-literal , 27, 1731
brace-or-equal-initializer , 77, 178, 196, 197, 198, 201,257, 258, 262, 274, 392, 1740
braced-init-list, 69, 77, 118, 130, 145, 150, 158, 178,

197, 198, 202, 207, 208, 210, 298, 300, 302,320, 321, 389, 393, 1741, 1750, 1760

c-char , 22, 23, 1730
c-char-sequence, 13, 14, 22, 23, 24, 1730
capture, 107, 369, 1733
capture-default, 34, 107, 107, 108, 110, 1733, 1754,1780
capture-list, 107, 369, 1733
cast-expression, 112, 127, 134, 135, 135, 136, 150,276, 338, 369, 370, 393, 1735
character-literal , 14, 22, 23, 24, 440, 444, 447, 1434,

1730, 1763, 1769
class-head , 39, 235, 252, 252, 1743
class-head-name, 41, 101, 252, 252, 253, 1743
class-key , 54, 162, 174, 252, 252–254, 277, 291, 364,

1743
class-name, 11, 42, 162, 166, 173, 174, 252, 252, 255,256, 268, 1743
class-or-decltype, 50, 253, 281, 281, 299, 385, 1744
class-specifier , 30, 39, 41, 43, 57, 162, 171, 252, 252,257, 258, 261, 1743
class-virt-specifier , 252, 253, 630, 1743
compare-expression, 138, 1735
compound-requirement, 114, 114, 115, 1734
compound-statement, 40, 41, 78, 85, 100, 106, 107,110, 111, 127, 150, 151, 152, 153, 155, 158,263, 300, 301, 307, 308, 401, 429, 431, 432,

1736
concept-definition, 31, 40, 383, 383, 1746
concept-name, 40, 57, 246, 346, 351, 383, 383, 1746
condition, 30, 151, 151, 153, 154, 156, 198, 428, 1736
conditional-escape-sequence, 23, 24, 27, 1730
conditional-escape-sequence-char , 23, 1730
conditional-expression, 4, 142, 142, 1736
conditionally-supported-directive, 437, 438, 445, 1747
constant-expression, 3, 78, 130, 145, 145, 150, 154,162, 165, 187, 219, 220, 235, 257, 274, 314,433, 456, 1736
constraint-expression, 40, 99, 115, 180, 345, 346, 351,358, 360, 360, 361, 378, 383, 386, 456, 1746
constraint-logical-and-expression, 344, 1745
constraint-logical-or-expression, 180, 344, 345, 1745
control-line, 437, 442, 1747
conversion-declarator , 271, 1744
conversion-function-id , 30, 43, 46, 100, 176, 271, 272,313, 349, 389, 391, 392, 418, 1744, 1755
conversion-type-id , 46, 271, 272, 316, 339, 385, 389,391, 418, 1744
coroutine-return-statement, 158, 215, 1737
ctor-initializer , 211, 212, 263, 299, 299, 300, 302, 308,429, 1744

Index of grammar productions 1865

© ISO/IEC N4910

cv-qualifier , 76, 135, 144, 162, 163, 171, 181, 185,187, 190, 218, 258, 260, 261, 341, 347, 431,459, 1740
cv-qualifier-seq, 98, 121, 137, 171, 181, 185, 187–191,212, 272, 316, 667, 1740
d-char , 16, 26, 1731
d-char-sequence, 25, 25, 26, 1731, 1731
decimal-floating-point-literal , 24, 25, 1730
decimal-literal , 21, 21, 22, 1729
decl-specifier , 151, 156, 162, 163, 163, 165, 172, 175,176, 179, 180, 261, 268, 272, 385, 1738,1755
decl-specifier-seq, 76, 151, 156, 162, 163, 163–165,170, 171, 175, 176, 179, 180, 184, 185, 212,218, 219, 258, 261, 268, 272, 294, 385,

1738, 1773
declaration, 30, 31, 159, 161, 166, 170, 183, 222, 242,245, 247, 256, 293, 344, 345, 382, 402, 403,

1737
declaration-seq, 11, 31, 161, 242, 245–247, 249, 394,

1737
declaration-statement, 127, 158, 158, 1737
declarator , 30, 31, 41, 46, 76, 98, 151, 159, 162, 165,176, 179, 180, 180, 183, 184, 194, 212, 257,261, 268, 272, 385, 402, 1739
declarator-id , 41, 46, 51, 100, 101, 108, 162, 181,182–189, 192, 193, 218, 236, 242, 257, 268,272, 310, 337, 343, 345, 349, 385, 416, 419,423, 426, 1740, 1755
decltype-specifier , 49, 68, 90, 100, 101, 105, 126, 173,

174, 175, 186, 247, 269, 363, 421, 1739
deduction-guide, 31, 41, 161, 256, 320, 321, 326, 344,

365, 365, 1746
defined-macro-expression, 439, 439, 440, 1748
defining-type-id , 56, 166, 172, 181, 321, 382, 385,

1740
defining-type-specifier , 57, 162, 163, 165, 170, 170,171, 272, 1738
defining-type-specifier-seq, 166, 170, 170, 1738
delete-expression, 33, 62, 66, 131, 133, 133–135, 147,269, 276, 502, 503, 1735
designated-initializer-clause, 197, 201, 207, 1741
designated-initializer-list, 197, 200, 201, 207, 208,320, 330, 1741
designator , 197, 200, 208, 1741
digit, 19, 21, 25, 241, 442, 474, 1728, 1761
digit-sequence, 25, 25, 1731
directory-separator , 1561, 1561, 1562, 1566, 1568,1570, 1571
elaborated-enum-specifier , 173, 221, 1739
elaborated-type-specifier , 30–32, 37, 39, 50, 51, 54,162, 166, 172, 173, 174, 235, 242, 252, 255,256, 371, 385, 387, 402, 1739
elif-group, 437, 1747
elif-groups , 437, 1747
else-group, 437, 1747
empty-declaration, 31, 161, 162, 256, 1738

enclosing-namespace-specifier , 222, 223, 1742
encoding-prefix , 13, 14, 22, 23, 24, 26, 27, 343, 1730,1751, 1770
endif-line, 437, 1747
enum-base, 219, 219, 220, 1741
enum-head , 219, 219, 1741
enum-head-name, 41, 101, 219, 219, 220, 1741
enum-key , 219, 219, 1741
enum-name, 162, 174, 219, 219, 1741
enum-specifier , 30, 39, 41, 162, 171, 219, 219–221,257, 258, 1741
enumerator , 162, 219, 219, 220, 1741
enumerator-definition, 30, 39, 219, 219, 220, 1741
enumerator-list, 41, 219, 219, 220, 398, 1741
equality-expression, 140, 1735
escape-sequence, 23, 1730
exception-declaration, 30, 35, 235, 307, 428, 428,430–432, 1746
exclusive-or-expression, 141, 1735
explicit-instantiation, 162, 164, 183, 402, 403, 1746
explicit-specialization, 162, 173, 183, 404, 1746
explicit-specifier , 165, 165, 184, 261, 314, 321, 413,

1738
exponent-part, 24, 25, 1731
export-declaration, 222, 242, 242, 243, 245, 345, 1743
export-keyword , 16, 17, 19, 241, 242, 442, 443, 1728
expr-or-braced-init-list, 157, 158, 197, 1741
expression, 70, 92, 113, 114, 117, 121, 129, 130, 145,151, 156, 158, 178, 307, 308, 358, 361, 363,392, 393, 421, 456, 637, 1736
expression-list, 71, 77, 116, 116–118, 132, 178,198–200, 298, 300, 302, 315, 319, 320, 370,389, 1734
expression-statement, 152, 159, 1736
fallback-separator , 1561
filename, 1558, 1561, 1561, 1569–1571
floating-point-literal , 17, 18, 24, 25, 1354, 1730
floating-point-suffix , 25, 25, 1731
fold-expression, 112, 369, 370, 393, 1733
fold-operator , 112, 112, 370, 1733
for-range-declaration, 30, 40, 155, 155, 156, 1737
for-range-initializer , 40, 155, 156, 207, 1737
fractional-constant, 24, 25, 1731
function-body , 31, 40, 57, 106, 127, 158, 168, 212,212–215, 309, 431, 1741
function-definition, 31, 41, 98, 161, 162, 165, 212,212, 310, 385, 1741
function-specifier , 165, 165, 1738
function-try-block , 40, 117, 308, 428, 428, 429, 431,432, 529, 1746
global-module-fragment, 242, 246, 246, 464, 1743
group, 437, 439, 443, 1747
group-part, 437, 1747
h-char , 18, 1728
h-char-sequence, 13, 18, 18, 1728
h-pp-tokens , 439, 1748

Index of grammar productions 1866

© ISO/IEC N4910

h-preprocessing-token, 439, 1748
handler , 37, 40, 127, 151, 307, 428, 429, 431, 432,

1746
handler-seq, 428, 429, 1746
has-attribute-expression, 439, 439, 440, 1748
has-include-expression, 16, 439, 439, 440, 1748
header-name, 13, 16, 18, 18, 245, 438, 442, 443, 1728,1752
header-name-tokens , 439, 443, 1748
hex-quad , 14, 1727
hexadecimal-digit, 14, 21, 21, 25, 1729
hexadecimal-digit-sequence, 21, 25, 1729
hexadecimal-escape-sequence, 23, 1730
hexadecimal-floating-point-literal , 24, 25, 1730, 1759
hexadecimal-fractional-constant, 24, 25, 1731
hexadecimal-literal , 21, 21, 1729
hexadecimal-prefix , 21, 1729
id-expression, 3, 33, 50, 57, 92, 99, 99–102, 108, 110,111, 116, 118, 146, 147, 174, 183, 195, 218,246, 260, 261, 268, 272, 308, 314, 315, 336,347, 355, 357, 361, 369, 370, 392, 393, 508,531, 1732
identifier , 18, 19, 30, 39, 40, 49, 54, 100, 101, 107,108, 110, 152, 162, 165, 166, 173, 174, 183,200, 208, 218, 219, 222–224, 234, 241, 252,253, 255, 256, 275, 343, 346, 349, 365, 369,382–384, 389, 392, 438, 440, 443, 1728,1803
identifier-continue, 18, 1728, 1803
identifier-list, 12, 40, 162, 218, 438, 444, 1747
identifier-start, 18, 1728, 1803
if-group, 437, 1747
if-section, 437, 1747
import-keyword , 16, 17, 19, 443, 1728
inclusive-or-expression, 141, 1736
init-capture, 30, 78, 100, 107, 107, 108, 110, 111, 368,370, 1733
init-declarator , 30, 41, 78, 156, 158, 162, 163, 176,

180, 180, 402, 1739
init-declarator-list, 162, 163, 171, 176, 179, 179, 345,402, 1739
init-statement, 127, 151, 151–156, 1736
initializer , 31, 57, 77, 78, 107, 110, 111, 127, 162, 176,186, 196, 197, 198, 218, 219, 274, 298, 319,368, 402, 1740
initializer-clause, 77, 116, 132, 178, 193, 194, 196,200–204, 207, 210, 274, 369, 1740, 1750
initializer-list, 197, 200, 202–204, 207, 209, 210, 298,320, 369, 1741
integer-literal , 17, 18, 20, 21, 22, 28, 439, 1354, 1729
integer-suffix , 21, 22, 1729
iteration-statement, 151, 154, 155, 157, 1737
jump-statement, 157, 1737
keyword , 19, 1728
labeled-statement, 151, 152, 152, 1736

lambda-capture, 104, 105, 107, 107, 1733
lambda-declarator , 41, 102, 103, 104, 108, 190, 194,385, 1733
lambda-expression, 34–36, 40, 41, 57, 78, 98, 100,

102, 102–111, 133, 146, 151, 166, 175, 247,308, 345, 378, 382, 392, 413, 1733, 1749,1775, 1780
lambda-introducer , 102, 108, 133, 1733
lambda-specifier , 102, 103, 1733
lambda-specifier-seq, 102, 103, 1733
linkage-specification, 31, 57, 85, 161, 164, 231,231–233, 242, 244, 1742, 1750
literal , 20, 28, 98, 1729
literal-operator-id , 28, 30, 100, 343, 343, 362, 1745
logical-and-expression, 141, 1736
logical-or-expression, 142, 1736
long-long-suffix , 21, 1730
long-suffix , 21, 1730
lparen, 438, 1747
mem-initializer , 78, 202, 207, 299, 299–303, 306, 369,

1745
mem-initializer-id , 299, 299, 300, 369, 1745
mem-initializer-list, 299, 299, 300, 369, 1745
member-declaration, 30, 174, 212, 219, 227, 228, 230,

256, 256–258, 261, 268, 272, 279, 385, 1744
member-declarator , 30, 41, 98, 180, 190, 256, 257,258, 274, 393, 1744
member-declarator-list, 163, 171, 179, 256, 258, 1744
member-specification, 41, 256, 256, 257, 261, 268,272, 274, 279, 289, 294, 310, 398, 1744,1749
module-declaration, 42, 241, 241, 242, 245, 246, 1743
module-file, 437, 443, 1746
module-import-declaration, 42, 231, 242, 243, 245,245, 246, 1743
module-keyword , 16, 17, 19, 442, 1728
module-name, 241, 241, 245, 1743
module-name-qualifier , 241, 1743
module-partition, 241, 241, 242, 245, 1743
multiplicative-expression, 137, 1735
named-namespace-definition, 222, 222, 223, 1742
namespace-alias , 224, 224, 1742
namespace-alias-definition, 54, 224, 224, 247, 1742
namespace-body , 41, 222, 222, 223, 1742
namespace-definition, 40, 41, 161, 222, 222, 223,242–244, 246, 1742
namespace-name, 42, 50, 54, 101, 222, 222–224, 246,474, 1741
nested-name-specifier , 46, 49–51, 54, 57, 101, 101,172–174, 187, 219, 220, 227, 228, 242, 252,268, 281, 292, 296, 346, 349, 350, 371, 384,385, 414, 421, 1732
nested-namespace-definition, 222, 223, 1742
nested-requirement, 114, 115, 115, 1734
new-declarator , 129, 130, 1735

Index of grammar productions 1867

© ISO/IEC N4910

new-expression, 33, 35, 59, 65, 66, 79, 129, 129–134,147, 176, 179, 207, 214, 269, 270, 279, 429,431, 433, 501–504, 1240, 1734, 1760
new-initializer , 71, 129, 129, 130, 133, 198, 1735
new-line, 438, 443, 1747
new-placement, 129, 132, 133, 1735
new-type-id , 76, 129, 129–131, 176, 179, 385, 392,

1735
nodeclspec-function-declaration, 41, 161, 161, 162,

1738
noexcept-expression, 129, 129, 1734
noexcept-specifier , 104, 216, 257, 268, 277, 310, 363,387, 394, 399, 401, 413, 432, 433, 433–435,

1746
nondigit, 19, 442, 1728
nonzero-digit, 21, 1729
noptr-abstract-declarator , 181, 1740
noptr-abstract-pack-declarator , 181, 1740
noptr-declarator , 41, 181, 1739
noptr-new-declarator , 129, 130, 131, 1735
numeric-escape-sequence, 23, 23, 24, 27, 1730
octal-digit, 21, 21, 1729
octal-escape-sequence, 23, 1730
octal-literal , 21, 21, 1729
opaque-enum-declaration, 31, 39, 219, 219, 220, 257,

1741
operator , 337, 1745
operator-function-id , 30, 100, 337, 337, 362, 1745
operator-or-punctuator , 20, 20, 1729
parameter-declaration, 30, 31, 41, 165, 175, 176, 179,

189, 189, 190, 192–194, 215, 346, 349, 368,385, 423, 1740
parameter-declaration-clause, 37, 41, 100, 103, 104,108, 113, 182, 189, 189, 190, 192–194, 215,308, 310, 343, 365, 1740
parameter-declaration-list, 189, 190, 416, 421, 1740
parameters-and-qualifiers , 181, 1739
pathname, 1561
placeholder-type-specifier , 172, 173, 175, 175, 178,179, 192, 1739
pm-expression, 136, 136, 1735
pointer-literal , 27, 1731
postfix-expression, 47, 102, 115, 116–118, 147, 260,314, 315, 339, 389, 433, 508, 721, 977, 1128,

1734
pp-global-module-fragment, 437, 439, 1747
pp-import, 439, 442, 442, 443, 1748
pp-module, 442, 442, 1748
pp-number , 18, 439, 440, 1728, 1759, 1763
pp-private-module-fragment, 437, 1747
pp-tokens , 438, 439, 440, 443, 446, 452, 1747
preferred-separator , 1561, 1561, 1562, 1565, 1566,1568
preprocessing-file, 437, 1746
preprocessing-op-or-punc , 19, 1728
preprocessing-operator , 19, 1728
preprocessing-token, 16, 17, 19, 439, 1727, 1748

primary-expression, 98, 99, 315, 1732
private-module-fragment, 34, 42, 57, 176, 242, 245,

248, 248–250, 394, 1743
ptr-abstract-declarator , 181, 1740
ptr-declarator , 180, 261, 268, 272, 1739
ptr-operator , 46, 181, 187, 1740
pure-specifier , 256, 257, 258, 269, 287, 1744
q-char , 18, 1728
q-char-sequence, 13, 18, 18, 1728
qualified-id , 11, 46, 50, 101, 101, 116, 118, 126, 162,183, 218, 242, 261, 270, 272, 273, 287, 292,346, 385, 393, 414, 421, 461, 523, 564, 572,574, 577, 578, 582, 641, 642, 784, 789, 830,839, 846, 847, 857, 959–961, 987, 992,1349, 1563, 1732
qualified-namespace-specifier , 50, 224, 224, 1742
r-char , 16, 25, 26, 27, 1731
r-char-sequence, 13, 14, 25, 1731
raw-string , 25, 26, 1731
ref-qualifier , 7, 8, 37, 121, 137, 181, 185, 187,189–191, 213, 218, 260, 261, 272, 285, 309,313, 333, 341, 379, 1740
relational-expression, 139, 1735
relative-path, 1561, 1562, 1571
replacement-list, 438, 444, 1747
requirement, 113, 113, 114, 1734
requirement-body , 41, 112, 113, 1733
requirement-parameter-list, 41, 112, 113, 385, 1733
requirement-seq, 112, 1733
requires-clause, 7, 8, 38, 99, 102, 103, 105, 113, 180,191, 232, 283, 285, 310, 344, 345, 357, 359,360, 363, 372, 378, 399, 402, 993, 1034,1043, 1745, 1753
requires-expression, 112, 112–114, 531, 1733, 1753
return-type-requirement, 114, 114, 1734
root-directory , 1558, 1561, 1562, 1569, 1571
root-name, 1558, 1561, 1561, 1562, 1565, 1568, 1570,1571
s-char , 25, 26, 27, 1731
s-char-sequence, 13, 14, 25, 1731
selection-statement, 151, 152, 152, 1737
shift-expression, 138, 1735
sign, 24, 25, 1731, 1759
simple-capture, 34, 107, 107, 108, 111, 1733
simple-declaration, 127, 161, 161, 162, 179, 385, 402,

1738
simple-escape-sequence, 23, 23, 24, 27, 1730
simple-escape-sequence-char , 23, 1730
simple-requirement, 113, 113–115, 1734
simple-template-id , 35, 39, 101, 118, 165, 166,172–174, 242, 247, 252, 256, 281, 320, 321,345, 349, 349, 351, 353, 365, 371, 374, 375,384, 386, 392, 397, 402, 407, 417, 425,

1746, 1755
simple-type-specifier , 118, 159, 172, 172–174, 176,179, 182, 384, 392, 393, 1739

Index of grammar productions 1868

© ISO/IEC N4910

size-suffix , 21, 1730
statement, 37, 151, 151–153, 156, 159, 428, 1736
statement-seq, 151, 152, 1737
static_assert-declaration, 31, 161, 162, 256, 279, 456,

1738
storage-class-specifier , 163, 163, 164, 218, 258, 294,402, 405, 1738, 1760
string-literal , 13, 14, 25, 26, 27, 29, 98, 130, 162, 198,205, 208, 231, 237, 239, 321, 331, 343, 355,438, 442, 444, 447, 449, 452, 459, 785, 1533,

1731, 1749, 1751, 1764, 1770
template-argument, 29, 48, 191, 289, 346, 348, 349,350–358, 362, 365, 369, 371, 382, 387, 394,397, 403, 407, 409–411, 415, 417, 425–427,

1746
template-argument-list, 145, 349, 349, 350, 353, 363,369, 370, 373, 375, 387, 392, 1746
template-declaration, 31, 37, 42, 161, 162, 166, 173,183, 256, 293, 344, 344, 345, 382, 388, 1745
template-head , 7, 8, 31, 38, 42, 56, 101, 193, 344, 352,356, 357, 363, 366, 372, 378, 389, 1745
template-id , 35, 48, 49, 100, 162, 183, 218, 228, 242,

349, 349–353, 358, 362, 363, 368, 375, 377,382, 389, 392, 397, 407, 411, 1746
template-name, 47, 57, 166, 172, 173, 246, 247, 256,320, 321, 346, 349, 349, 351, 362, 365, 369,371, 382, 387, 1746, 1756
template-parameter , 31, 40, 42, 166, 174, 176, 179,192–194, 336, 343, 345, 345–349, 351–358,362, 378, 381–383, 385, 387–389, 392, 394,408, 410, 415, 417, 421, 425–427, 1745
template-parameter-list, 6, 42, 103, 192, 193, 343,

344, 344–346, 348, 349, 352, 358, 360, 375,378, 381, 388, 408, 1745
text-line, 437, 438, 439, 1747
throw-expression, 142, 144, 144, 147, 307, 308, 429,431, 434, 435, 1736
token, 17, 234, 242, 1727, 1743
trailing-return-type, 98, 103, 105, 175, 176, 181, 189,192, 385, 1739
translation-unit, 54, 245, 247, 394, 1732
try-block , 151, 307, 308, 428, 428, 429, 529, 1746
type-constraint, 105, 114, 172, 175, 178, 179, 192,

346, 346, 347, 349, 360, 363, 378, 399, 402,
1745

type-id , 3, 76, 77, 94, 116, 121, 128–131, 176, 179,
181, 181, 182, 191, 235, 272, 350, 352, 353,385, 392, 393, 1740

type-name, 50, 51, 54, 100, 101, 126, 159, 163, 172,172–174, 182, 246, 269, 281, 363, 387,
1739, 1765

type-parameter , 30, 174, 191, 192, 345, 346, 349, 369,385, 389, 425, 1745
type-parameter-key , 345, 346, 1745
type-requirement, 114, 114, 1734
type-specifier , 46, 57, 151, 156, 163, 170, 170–172,175, 176, 179, 189, 255, 258, 385, 1738,1773

type-specifier-seq, 129, 170, 170, 171, 176, 179, 219,
1738

typedef-name, 11, 30, 31, 37, 42, 43, 48, 162, 163,
165, 165, 166, 174, 175, 186, 191, 237, 238,289, 346, 363, 369, 385, 498, 519, 521, 628,640, 641, 646, 775, 790, 955, 980, 987, 992,1045, 1050, 1062, 1067, 1075, 1085, 1097,1108, 1260, 1467, 1600, 1601, 1682, 1692,
1738, 1773, 1777

typename-specifier , 50, 118, 171, 384, 384, 385, 456,
1746

ud-suffix , 28, 28, 29, 343, 1732
unary-expression, 125, 270, 338, 393, 1734
unary-operator , 125, 338, 963, 1734
universal-character-name, 13, 14, 14, 19, 23, 27, 447,

1727
unnamed-namespace-definition, 40, 222, 223, 1742
unqualified-id , 47, 50, 100, 100, 101, 126, 162, 183,227, 261, 268, 272, 345, 346, 389, 402,

1732, 1756
unsigned-suffix , 21, 1730
user-defined-character-literal , 28, 29, 1732
user-defined-floating-point-literal , 28, 28, 1732
user-defined-integer-literal , 28, 28, 1732
user-defined-literal , 14, 28, 28, 98, 1732
user-defined-string-literal , 28, 29, 343, 1732
using-declaration, 31, 42, 43, 48, 51, 161, 221, 226,227, 228, 230, 243, 247, 256, 267, 289, 313,368, 373, 386, 462, 530, 1682, 1742, 1760
using-declarator , 30, 37, 39, 42, 50, 51, 196, 226,227–230, 243, 289, 349, 368, 383, 385, 391,

1742
using-declarator-list, 226, 1742
using-directive, 31, 38, 45, 51, 52, 54, 161, 174, 223,

224, 224–226, 1742
using-enum-declaration, 31, 221, 221, 1741
va-opt-replacement, 445, 445, 446, 1748
virt-specifier , 256, 258, 284, 1744
virt-specifier-seq, 212, 256, 258, 1744
yield-expression, 127, 143, 143, 147, 215, 1736

Index of grammar productions 1869

© ISO/IEC N4910

Index of library headers
The bold page number for each entry refers to the page where the synopsis of the header is shown.
<algorithm>, 487, 488, 1133, 1766
<any>, 486, 695, 1761
<array>, 486, 488, 668, 858, 858, 861, 1005, 1766,1791, 1792
<assert.h>, 464, 529, 547, 1777
<atomic>, 462, 486, 487, 1650, 1682, 1766, 1801
<barrier>, 486, 1711, 1757
<bit>, 486, 487, 771, 1757
<bitset>, 715
<cassert>, 464, 547, 1777
<cctype>, 818, 1433
<cerrno>, 476, 547, 551
<cfenv>, 1247, 1248, 1766
<cfloat>, 74, 486, 496, 497
<charconv>, 488, 751, 1757, 1761
<chrono>, 487, 1333, 1766
<cinttypes>, 1599, 1600, 1766
<climits>, 58, 74, 486, 496, 496, 1784
<clocale>, 1462, 1778
<cmath>, 487, 488, 530, 1316, 1325, 1757
<codecvt>, 1766, 1795
<compare>, 139, 488, 514, 1757
<complex>, 487, 529, 530, 1248, 1248, 1757
<complex.h>, 529, 529, 530, 1777
<concepts>, 487, 532, 1757
<condition_variable>, 1701, 1766
<coroutine>, 487, 522, 523, 1757
<csetjmp>, 476, 527, 528, 1778
<csignal>, 527, 528
<cstdarg>, 190, 476, 527, 527, 528
<cstddef>, 129, 138, 483, 486, 1777, 1778
<cstdint>, 74, 497, 497, 1600, 1660, 1668, 1766
<cstdio>, 499, 1467–1469, 1474, 1540, 1597, 1599,1778
<cstdlib>, 87, 88, 462, 483, 484, 487, 498, 499, 502,527, 530, 564, 580, 821, 1245, 1297, 1325,1443, 1777, 1778
<cstring>, 260, 459, 819, 1778, 1784, 1788
<ctime>, 1422, 1422, 1425, 1778
<ctype.h>, 529, 818
<cuchar>, 476, 820, 821, 1766, 1777
<cwchar>, 476, 777, 819, 820, 821, 1777, 1778
<cwctype>, 476, 818
<deque>, 486–488, 858, 859, 1005
<errno.h>, 529, 547
<exception>, 489, 510
<execution>, 487, 749, 751, 1761
<expected>, 487, 699, 1751

<fenv.h>, 529, 1248
<filesystem>, 487, 1554, 1761
<float.h>, 497, 529
<format>, 487, 754, 1757
<forward_list>, 486–488, 858, 859, 1005, 1766
<fstream>, 1536, 1537, 1596
<functional>, 486–489, 721
<future>, 1713, 1766
<initializer_list>, 513, 1766
<inttypes.h>, 529, 1600
<iomanip>, 488, 1492, 1511, 1512
<ios>, 1469
<iosfwd>, 5, 1465, 1467
<iostream>, 1467, 1467, 1468, 1474
<iso646.h>, 462, 529, 530, 530, 1778
<istream>, 487, 1492, 1493
<iterator>, 486–488, 948, 1005, 1015, 1792
<latch>, 487, 1710, 1757
<limits>, 74, 486, 487, 489
<limits.h>, 496, 529
<list>, 486–488, 858, 860, 1005
<locale>, 487, 1424, 1425, 1796
<locale.h>, 529, 1462
<map>, 486–488, 887, 887, 1005
<math.h>, 529, 1325
<memory>, 486–489, 564, 564, 1240, 1673, 1793
<memory_resource>, 488, 607, 1761
<mutex>, 488, 1683, 1766
<new>, 66, 487, 488, 500
<numbers>, 488, 1331, 1757
<numeric>, 487, 488, 1227
<optional>, 488, 670, 1761
<ostream>, 487, 1492, 1503
<queue>, 486, 487, 930, 931
<random>, 1257, 1766
<ranges>, 488, 668, 1008, 1015, 1757, 1791, 1792
<ratio>, 644, 1766
<regex>, 488, 1005, 1603, 1603, 1766
<scoped_allocator>, 486, 615, 1766
<semaphore>, 488, 1708, 1757
<set>, 486–488, 887, 888, 1005
<setjmp.h>, 528, 529
<shared_mutex>, 488, 1683, 1764
<signal.h>, 528, 529
<source_location>, 488, 508, 1757

Index of library headers 1870

© ISO/IEC N4910

, 488, 941, 942, 1005, 1757
<spanstream>, 488, 1529, 1751
<sstream>, 1515, 1515
<stack>, 486, 487, 930, 931
<stacktrace>, 488, 557, 1751
<stdalign.h>, 529, 530, 530, 1778
<stdarg.h>, 528, 529
<stdatomic.h>, 488, 529, 530, 1681, 1682, 1751
<stdbool.h>, 529, 530, 530, 1772, 1778
<stddef.h>, 483, 484, 529, 1778
<stdexcept>, 544
<stdint.h>, 498, 529, 1600
<stdio.h>, 529, 1599
<stdlib.h>, 484, 529, 530
<stop_token>, 487, 1638, 1757
<streambuf>, 1484, 1484
<string>, 486–488, 777, 790, 1005
<string.h>, 529, 819
<string_view>, 487, 488, 780, 1005, 1761
<strstream>, 1782
<syncstream>, 488, 1548, 1548, 1757
<system_error>, 549, 551, 1766
<tgmath.h>, 529, 530, 530, 1777
<thread>, 487, 1643, 1766
<time.h>, 529, 1422
<tuple>, 486–489, 649, 658, 668, 1766, 1791, 1792
<typeindex>, 1766
<type_traits>, 486–489, 621, 1766, 1790
<typeindex>, 748
<typeinfo>, 121, 487, 506
<uchar.h>, 529, 820
<unordered_map>, 486–489, 906, 906, 1005, 1766
<unordered_set>, 486–488, 906, 907, 1005, 1766
<utility>, 466, 486–489, 647, 668, 1766, 1782, 1791,1792
<valarray>, 1298, 1300
<variant>, 489, 683, 1761, 1792
<vector>, 486–488, 858, 860, 1005
<version>, 486, 486, 1757
<wchar.h>, 529, 820
<wctype.h>, 529, 818

Index of library headers 1871

© ISO/IEC N4910

Index of library names
Symbols
get-element

elements_view::iterator, 1085
is-callable-from

move_only_function, 743
_Exit, 483, 498
_IOFBF, 1597
_IOLBF, 1597
_IONBF, 1597
__alignas_is_defined, 530
__bool_true_false_are_defined, 530
__cpp_lib_adaptor_iterator_pair_constructor,486
__cpp_lib_addressof_constexpr, 486
__cpp_lib_allocate_at_least, 486
__cpp_lib_allocator_traits_is_always_equal,486
__cpp_lib_any, 486
__cpp_lib_apply, 486
__cpp_lib_array_constexpr, 486
__cpp_lib_as_const, 486
__cpp_lib_associative_heterogeneous_erasure,486
__cpp_lib_assume_aligned, 486
__cpp_lib_atomic_flag_test, 486
__cpp_lib_atomic_float, 486
__cpp_lib_atomic_is_always_lock_free, 486
__cpp_lib_atomic_lock_free_type_aliases, 486
__cpp_lib_atomic_ref, 486
__cpp_lib_atomic_shared_ptr, 486
__cpp_lib_atomic_value_initialization, 486
__cpp_lib_atomic_wait, 486
__cpp_lib_barrier, 486
__cpp_lib_bind_back, 486
__cpp_lib_bind_front, 486
__cpp_lib_bit_cast, 486
__cpp_lib_bitops, 486
__cpp_lib_bool_constant, 486
__cpp_lib_bounded_array_traits, 486
__cpp_lib_boyer_moore_searcher, 486
__cpp_lib_byte, 486
__cpp_lib_byteswap, 486
__cpp_lib_char8_t, 487
__cpp_lib_chrono, 487
__cpp_lib_chrono_udls, 487
__cpp_lib_clamp, 487
__cpp_lib_complex_udls, 487
__cpp_lib_concepts, 487
__cpp_lib_constexpr_algorithms, 487
__cpp_lib_constexpr_cmath, 487
__cpp_lib_constexpr_complex, 487
__cpp_lib_constexpr_dynamic_alloc, 487
__cpp_lib_constexpr_functional, 487

__cpp_lib_constexpr_iterator, 487
__cpp_lib_constexpr_memory, 487
__cpp_lib_constexpr_numeric, 487
__cpp_lib_constexpr_string, 487
__cpp_lib_constexpr_string_view, 487
__cpp_lib_constexpr_tuple, 487
__cpp_lib_constexpr_typeinfo, 487
__cpp_lib_constexpr_utility, 487
__cpp_lib_constexpr_vector, 487
__cpp_lib_containers_ranges, 487
__cpp_lib_coroutine, 487
__cpp_lib_destroying_delete, 487
__cpp_lib_enable_shared_from_this, 487
__cpp_lib_endian, 487
__cpp_lib_erase_if, 487
__cpp_lib_exchange_function, 487
__cpp_lib_execution, 487
__cpp_lib_expected, 487
__cpp_lib_filesystem, 487
__cpp_lib_format, 487
__cpp_lib_gcd_lcm, 487
__cpp_lib_generic_associative_lookup, 487
__cpp_lib_generic_unordered_lookup, 487
__cpp_lib_hardware_interference_size, 487
__cpp_lib_has_unique_object_representations,487
__cpp_lib_hypot, 487
__cpp_lib_incomplete_container_elements, 487
__cpp_lib_int_pow2, 487
__cpp_lib_integer_comparison_functions, 487
__cpp_lib_integer_sequence, 487
__cpp_lib_integral_constant_callable, 487
__cpp_lib_interpolate, 487
__cpp_lib_invoke, 487
__cpp_lib_invoke_r, 487
__cpp_lib_is_aggregate, 487
__cpp_lib_is_constant_evaluated, 487
__cpp_lib_is_final, 487
__cpp_lib_is_invocable, 487
__cpp_lib_is_layout_compatible, 487
__cpp_lib_is_nothrow_convertible, 487
__cpp_lib_is_null_pointer, 487
__cpp_lib_is_pointer_interconvertible, 487
__cpp_lib_is_scoped_enum, 487
__cpp_lib_is_swappable, 487
__cpp_lib_jthread, 487
__cpp_lib_latch, 487
__cpp_lib_launder, 488
__cpp_lib_list_remove_return_type, 488
__cpp_lib_logical_traits, 488
__cpp_lib_make_from_tuple, 488
__cpp_lib_make_reverse_iterator, 488
__cpp_lib_make_unique, 488

Index of library names 1872

© ISO/IEC N4910

__cpp_lib_map_try_emplace, 488
__cpp_lib_math_constants, 488
__cpp_lib_math_special_functions, 488
__cpp_lib_memory_resource, 488
__cpp_lib_move_only_function, 488
__cpp_lib_node_extract, 488
__cpp_lib_nonmember_container_access, 488
__cpp_lib_not_fn, 488
__cpp_lib_null_iterators, 488
__cpp_lib_optional, 488
__cpp_lib_out_ptr, 488
__cpp_lib_parallel_algorithm, 488
__cpp_lib_polymorphic_allocator, 488
__cpp_lib_quoted_string_io, 488
__cpp_lib_ranges, 488
__cpp_lib_ranges_chunk, 488
__cpp_lib_ranges_chunk_by, 488
__cpp_lib_ranges_iota, 488
__cpp_lib_ranges_join_with, 488
__cpp_lib_ranges_slide, 488
__cpp_lib_ranges_starts_ends_with, 488
__cpp_lib_ranges_to_container, 488
__cpp_lib_ranges_zip, 488
__cpp_lib_raw_memory_algorithms, 488
__cpp_lib_reference_from_temporary, 488
__cpp_lib_remove_cvref, 488
__cpp_lib_result_of_sfinae, 488
__cpp_lib_robust_nonmodifying_seq_ops, 488
__cpp_lib_sample, 488
__cpp_lib_scoped_lock, 488
__cpp_lib_semaphore, 488
__cpp_lib_shared_mutex, 488
__cpp_lib_shared_ptr_arrays, 488
__cpp_lib_shared_ptr_weak_type, 488
__cpp_lib_shared_timed_mutex, 488
__cpp_lib_shift, 488
__cpp_lib_smart_ptr_for_overwrite, 488
__cpp_lib_source_location, 488
__cpp_lib_span, 488
__cpp_lib_spanstream, 488
__cpp_lib_ssize, 488
__cpp_lib_stacktrace, 488
__cpp_lib_starts_ends_with, 488
__cpp_lib_stdatomic_h, 488
__cpp_lib_string_contains, 488
__cpp_lib_string_resize_and_overwrite, 488
__cpp_lib_string_udls, 488
__cpp_lib_string_view, 488
__cpp_lib_syncbuf, 488
__cpp_lib_three_way_comparison, 488
__cpp_lib_to_address, 488
__cpp_lib_to_array, 488
__cpp_lib_to_chars, 488
__cpp_lib_to_underlying, 488
__cpp_lib_transformation_trait_aliases, 489
__cpp_lib_transparent_operators, 489
__cpp_lib_tuple_element_t, 489
__cpp_lib_tuples_by_type, 489
__cpp_lib_type_identity, 489

__cpp_lib_type_trait_variable_templates, 489
__cpp_lib_uncaught_exceptions, 489
__cpp_lib_unordered_map_try_emplace, 489
__cpp_lib_unreachable, 489
__cpp_lib_unwrap_ref, 489
__cpp_lib_variant, 489
__cpp_lib_void_t, 489
Numbers
_1, 738
A
a

cauchy_distribution, 1291
extreme_value_distribution, 1287
uniform_int_distribution, 1278
uniform_real_distribution, 1279
weibull_distribution, 1286

abbrev
sys_info, 1406

abort, 88, 157, 462, 483, 498, 505, 511
abs, 483, 1316, 1325, 1599

complex, 1254
duration, 1355
valarray, 1309

absolute, 1586
accumulate, 1231
acos, 1316

complex, 1254
valarray, 1309

acosf, 1316
acosh, 1316

complex, 1254
acoshf, 1316
acoshl, 1316
acosl, 1316
acq_rel

memory_order, 1654
acquire

counting_semaphore, 1709
memory_order, 1654

add_const, 638
add_const_t, 623
add_cv, 638
add_cv_t, 623
add_lvalue_reference, 638
add_lvalue_reference_t, 623
add_pointer, 639
add_pointer_t, 624
add_rvalue_reference, 638
add_rvalue_reference_t, 623
add_volatile, 638
add_volatile_t, 623
address

coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,527

addressof, 580
Index of library names 1873

© ISO/IEC N4910

adjacent
views, 1100

adjacent_difference, 1238
adjacent_find, 1177
adjacent_transform

views, 1105
adjacent_transform_view, 1105

begin, 1106
end, 1106
size, 1106

adjacent_transform_view::iterator, 1107
adjacent_transform_view::sentinel, 1109
adjacent_view, 1100

begin, 1100
end, 1100
size, 1100

adjacent_view::iterator, 1101
adjacent_view::sentinel, 1104
adopt_lock, 1691
adopt_lock_t, 1691
advance, 976–978

subrange, 1027
advance_to

basic_format_context, 767
basic_format_parse_context, 766

align, 573
align_val_t, 500
aligned_alloc, 483, 580, 1779
aligned_storage, 1791
aligned_storage_t, 1790
aligned_union, 1791
aligned_union_t, 1790
alignment_of, 635
alignment_of_v, 627
all

bitset, 720
views, 1042

all_of, 1171
all_t, 1008
allocate

allocator, 579
allocator_traits, 578
memory_resource, 608
polymorphic_allocator, 609
scoped_allocator_adaptor, 618

allocate_at_least
allocator, 579

allocate_bytes
polymorphic_allocator, 610

allocate_object
polymorphic_allocator, 610

allocate_shared, 594, 596, 597
allocator, 579

allocate, 579
allocate_at_least, 579
deallocate, 579
difference_type, 579
is_always_equal, 1790
operator=, 579

operator==, 580
propagate_on_container_move_assignment,579
size_type, 579
value_type, 579

allocator_arg, 574
allocator_arg_t, 574
allocator_traits, 576

allocate, 578
const_pointer, 577
const_void_pointer, 577
construct, 578
deallocate, 578
destroy, 578
difference_type, 577
is_always_equal, 578
max_size, 578
pointer, 577
propagate_on_container_copy_assignment,578
propagate_on_container_move_assignment,578
propagate_on_container_swap, 578
rebind_alloc, 578
select_on_container_copy_construction,578
size_type, 577
void_pointer, 577

allocator_typeallocator-aware containers, 829
basic_string, 793

alpha
gamma_distribution, 1285

always_noconv
codecvt, 1438

ambiguous
local_info, 1406

ambiguous_local_time, 1405constructor, 1405
and_then

optional, 679
any constructor, 696, 697destructor, 697

emplace, 697, 698
has_value, 698
operator=, 697
reset, 698
swap, 698
type, 698

any (member)
bitset, 720

any_cast, 698, 699
any_of, 1172
append

basic_string, 803, 804
path, 1566

append_range
basic_string, 804

Index of library names 1874

© ISO/IEC N4910

apply, 667
valarray, 1307

arg, 1255
basic_format_context, 767
complex, 1254

argument_typezombie, 475
array, 861, 863

begin, 824, 861
cbegin, 825
cend, 825
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827
crbegin, 827
crend, 827
data, 862
difference_type, 824
empty, 826
end, 825, 861
fill, 862
get, 863
iterator, 824
max_size, 826, 861
operator!=, 825
operator=, 825
operator==, 825
rbegin, 827
reference, 824
rend, 827
reverse_iterator, 827
size, 825, 861, 862
size_type, 824
swap, 825, 862
value_type, 823

arrive
barrier, 1712

arrive_and_drop
barrier, 1713

arrive_and_wait
barrier, 1713
latch, 1711

as_bytes, 947
as_const, 651
as_writable_bytes, 947
asctime, 1422
asin, 1316

complex, 1254
valarray, 1309

asinf, 1316
asinh, 1316

complex, 1255
asinhf, 1316
asinhl, 1316
asinl, 1316
assert, 547
assign

basic_regex, 1615, 1616
basic_string, 804, 805

directory_entry, 1579
error_code, 553
error_condition, 555
path, 1565sequence containers, 833

assign_range
basic_string, 805sequence containers, 833

assignable_from, 536
assoc_laguerre, 1326
assoc_laguerref, 1326
assoc_laguerrel, 1326
assoc_legendre, 1327
assoc_legendref, 1327
assoc_legendrel, 1327
assume_aligned, 573
async, 1723
at

basic_stacktrace, 562
basic_string, 803
basic_string_view, 785
map, 893
unordered_map, 913

at_quick_exit, 462, 483, 499
atan, 1316

complex, 1254
valarray, 1309

atan2, 1316
valarray, 1309

atan2f, 1316
atan2l, 1316
atanf, 1316
atanh, 1316

complex, 1255
atanhf, 1316
atanhl, 1316
atanl, 1316
atexit, 87, 462, 483, 499
atof, 483
atoi, 483
atol, 483
atoll, 483
atomic, 1663, 1664

compare_exchange_strong, 1665
compare_exchange_weak, 1665constructor, 1664
exchange, 1665
is_always_lock_free, 1665
is_lock_free, 1665
load, 1665
notify_all, 1667
notify_one, 1667
operator type, 1665
operator=, 1665
store, 1665
value_type, 1663
wait, 1667

atomic<floating-point>, 1670
compare_exchange_strong, 1665

Index of library names 1875

© ISO/IEC N4910

compare_exchange_weak, 1665constructor, 1664
exchange, 1665
fetch_add, 1671
fetch_sub, 1671
is_always_lock_free, 1665
is_lock_free, 1665
load, 1665
notify_all, 1667
notify_one, 1667
operator floating-point, 1665
operator+=, 1671
operator-=, 1671
operator=, 1665
store, 1665
wait, 1667

atomic<integral>, 1668
compare_exchange_strong, 1665
compare_exchange_weak, 1665constructor, 1664
exchange, 1665
fetch_add, 1669
fetch_and, 1669
fetch_or, 1669
fetch_sub, 1669
fetch_xor, 1669
is_always_lock_free, 1665
is_lock_free, 1665
load, 1665
notify_all, 1667
notify_one, 1667
operator integral, 1665
operator++, 1673
operator+=, 1669
operator--, 1673
operator-=, 1669
operator=, 1665
operator&=, 1669
operator^=, 1669
operator|=, 1669
store, 1665
wait, 1667

atomic<shared_ptr<T>>, 1674
compare_exchange_strong, 1675
compare_exchange_weak, 1675constructor, 1674
exchange, 1675
is_always_lock_free, 1665
is_lock_free, 1665
load, 1675
notify_all, 1676
notify_one, 1676
operator shared_ptr<T>, 1675
operator=, 1675
store, 1675
wait, 1676

atomic<T*>, 1671, 1672
compare_exchange_strong, 1665
compare_exchange_weak, 1665

constructor, 1664
exchange, 1665
fetch_add, 1672
fetch_sub, 1672
is_always_lock_free, 1665
is_lock_free, 1665
load, 1665
notify_all, 1667
notify_one, 1667
operator T*, 1665
operator++, 1673
operator+=, 1669, 1671, 1673
operator--, 1673
operator-=, 1669, 1671, 1673
operator=, 1665
store, 1665
wait, 1667

atomic<weak_ptr<T>>, 1676
compare_exchange_strong, 1678
compare_exchange_weak, 1677constructor, 1677
exchange, 1677
is_always_lock_free, 1665
is_lock_free, 1665
load, 1677
notify_all, 1678
notify_one, 1678
operator weak_ptr<T>, 1677
operator=, 1677
store, 1677
wait, 1678

atomic_bool, 1654, 1681
ATOMIC_BOOL_LOCK_FREE, 1656
atomic_char, 1654, 1681
atomic_char16_t, 1654, 1681
ATOMIC_CHAR16_T_LOCK_FREE, 1656
atomic_char32_t, 1654, 1681
ATOMIC_CHAR32_T_LOCK_FREE, 1656
atomic_char8_t, 1654, 1681
ATOMIC_CHAR8_T_LOCK_FREE, 1656
ATOMIC_CHAR_LOCK_FREE, 1656
atomic_compare_exchange_strong, 1665, 1682

shared_ptr, 1794
atomic_compare_exchange_strong_explicit, 1665,1682

shared_ptr, 1794
atomic_compare_exchange_weak, 1665, 1682

shared_ptr, 1794
atomic_compare_exchange_weak_explicit, 1665,1682

shared_ptr, 1794
atomic_exchange, 1665, 1682

shared_ptr, 1794
atomic_exchange_explicit, 1665, 1682

shared_ptr, 1794
atomic_fetch_add, 1669, 1671, 1672, 1682
atomic_fetch_add_explicit, 1669, 1671, 1672,1682
atomic_fetch_and, 1669, 1682

Index of library names 1876

© ISO/IEC N4910

atomic_fetch_and_explicit, 1669, 1682
atomic_fetch_or, 1669, 1682
atomic_fetch_or_explicit, 1669, 1682
atomic_fetch_sub, 1669, 1671, 1672, 1682
atomic_fetch_sub_explicit, 1669, 1671, 1672,1682
atomic_fetch_xor, 1669
atomic_fetch_xor_explicit, 1669
atomic_flag, 1681

clear, 1679constructor, 1679
test, 1679
test_and_set, 1679
wait, 1679

atomic_flag_clear, 1679, 1682
atomic_flag_clear_explicit, 1679, 1682
ATOMIC_FLAG_INIT, 1802
atomic_flag_test, 1679
atomic_flag_test_and_set, 1679, 1682
atomic_flag_test_and_set_explicit, 1679, 1682
atomic_flag_test_explicit, 1679
atomic_flag_wait, 1679
atomic_flag_wait_explicit, 1679
atomic_init, 1801
atomic_int, 1654, 1681
atomic_int16_t, 1654, 1681
atomic_int32_t, 1654, 1681
atomic_int64_t, 1654, 1681
atomic_int8_t, 1654, 1681
atomic_int_fast16_t, 1654, 1682
atomic_int_fast32_t, 1654, 1682
atomic_int_fast64_t, 1654, 1682
atomic_int_fast8_t, 1654, 1682
atomic_int_least16_t, 1654, 1682
atomic_int_least32_t, 1654, 1682
atomic_int_least64_t, 1654, 1682
atomic_int_least8_t, 1654, 1681
ATOMIC_INT_LOCK_FREE, 1656
atomic_intmax_t, 1654, 1682
atomic_intptr_t, 1654, 1682
atomic_is_lock_free, 1665, 1682

shared_ptr, 1793
atomic_llong, 1654, 1681
ATOMIC_LLONG_LOCK_FREE, 1656
atomic_load, 1665, 1682

shared_ptr, 1793
atomic_load_explicit, 1665, 1682

shared_ptr, 1794
atomic_long, 1654, 1681
ATOMIC_LONG_LOCK_FREE, 1656
ATOMIC_POINTER_LOCK_FREE, 1656
atomic_ptrdiff_t, 1654, 1682
atomic_ref, 1657

compare_exchange_strong, 1659
compare_exchange_weak, 1659constructor, 1658
exchange, 1659
is_always_lock_free, 1658
is_lock_free, 1658

load, 1658
operator type, 1658
operator=, 1658
required_alignment, 1658
store, 1658
value_type, 1657

atomic_ref<floating-point>, 1661
compare_exchange_strong, 1659
compare_exchange_weak, 1659constructor, 1658
exchange, 1659
fetch_add, 1662
fetch_sub, 1662
is_always_lock_free, 1658
is_lock_free, 1658
load, 1658
operator floating-point, 1658
operator+=, 1662
operator-=, 1662
operator=, 1658
required_alignment, 1658
store, 1658

atomic_ref<integral>, 1660
compare_exchange_strong, 1659
compare_exchange_weak, 1659constructor, 1658
exchange, 1659
fetch_add, 1661
fetch_and, 1661
fetch_or, 1661
fetch_sub, 1661
fetch_xor, 1661
is_always_lock_free, 1658
is_lock_free, 1658
load, 1658
operator integral, 1658
operator++, 1663
operator+=, 1661
operator--, 1663
operator-=, 1661
operator=, 1658
operator&=, 1661
operator^=, 1661
operator|=, 1661
required_alignment, 1658
store, 1658

atomic_ref<T*>, 1662
compare_exchange_strong, 1659
compare_exchange_weak, 1659constructor, 1658
exchange, 1659
fetch_add, 1663
fetch_sub, 1663
is_always_lock_free, 1658
is_lock_free, 1658
load, 1658
operator T*, 1658
operator++, 1663
operator+=, 1663

Index of library names 1877

© ISO/IEC N4910

operator--, 1663
operator-=, 1663
operator=, 1658
required_alignment, 1658
store, 1658

atomic_ref<T>
notify_all, 1659
notify_one, 1659
wait, 1659

atomic_schar, 1654, 1681
atomic_short, 1654, 1681
ATOMIC_SHORT_LOCK_FREE, 1656
atomic_signal_fence, 1681, 1682
atomic_signed_lock_free, 1654
atomic_size_t, 1654, 1682
atomic_store, 1665, 1682

shared_ptr, 1794
atomic_store_explicit, 1665, 1682

shared_ptr, 1794
atomic_thread_fence, 1680, 1682
atomic_uchar, 1654, 1681
atomic_uint, 1654, 1681
atomic_uint16_t, 1654, 1681
atomic_uint32_t, 1654, 1681
atomic_uint64_t, 1654, 1681
atomic_uint8_t, 1654, 1681
atomic_uint_fast16_t, 1654, 1682
atomic_uint_fast32_t, 1654, 1682
atomic_uint_fast64_t, 1654, 1682
atomic_uint_fast8_t, 1654, 1682
atomic_uint_least16_t, 1654, 1682
atomic_uint_least32_t, 1654, 1682
atomic_uint_least64_t, 1654, 1682
atomic_uint_least8_t, 1654, 1681
atomic_uintmax_t, 1654, 1682
atomic_uintptr_t, 1654, 1682
atomic_ullong, 1654, 1681
atomic_ulong, 1654, 1681
atomic_unsigned_lock_free, 1654
atomic_ushort, 1654, 1681
ATOMIC_VAR_INIT, 1801
atomic_wchar_t, 1654, 1681
ATOMIC_WCHAR_T_LOCK_FREE, 1656
auto_ptrzombie, 474
auto_ptr_refzombie, 474
await_ready

suspend_always, 527
suspend_never, 527

await_resume
suspend_always, 527
suspend_never, 527

await_suspend
suspend_always, 527
suspend_never, 527

awk
syntax_option_type, 1607, 1608

B
b

cauchy_distribution, 1291
extreme_value_distribution, 1287
uniform_int_distribution, 1278
uniform_real_distribution, 1279
weibull_distribution, 1286

back
basic_string, 803
basic_string_view, 785
span, 946
view_interface, 1024

back_insert_iterator, 983constructor, 984
operator*, 984
operator++, 984
operator=, 984

back_inserter, 984
bad

basic_ios, 1481
bad_alloc, 132, 501, 504, 505constructor, 504

what, 504
bad_any_cast, 695

what, 695
bad_array_new_length, 505constructor, 505

what, 505
bad_cast, 120, 506, 507constructor, 507

what, 507
bad_exception, 511constructor, 511

what, 511
bad_expected_access, 701constructor, 702

error, 702
what, 702

bad_function_call, 738
what, 738

bad_optional_access
what, 681

bad_typeid, 121, 506, 507constructor, 507
what, 507

bad_variant_access, 694
what, 694

bad_weak_ptr, 589
what, 589

barrier
arrive, 1712
arrive_and_drop, 1713
arrive_and_wait, 1713constructor, 1712
max, 1712
wait, 1712

base
common_view, 1080

Index of library names 1878

© ISO/IEC N4910

counted_iterator, 997
drop_view, 1057
drop_while_view, 1059
elements_view, 1083
elements_view::iterator, 1085
elements_view::sentinel, 1088
filter_view, 1044
filter_view::iterator, 1045
filter_view::sentinel, 1047
join_view, 1060
lazy_split_view, 1071
lazy_split_view::inner-iterator, 1075
move_iterator, 988
move_sentinel, 991
reverse_iterator, 980
reverse_view, 1081
take_view, 1053
take_view::sentinel, 1055
take_while_view, 1055
transform_view, 1047
transform_view::iterator, 1050
transform_view::sentinel, 1052

basic
syntax_option_type, 1607, 1608

basic_common_reference, 640
basic_filebuf, 1465, 1537

close, 1540constructor, 1538destructor, 1539
imbue, 1542
is_open, 1539
open, 1539, 1540
operator=, 1539
overflow, 1541
pbackfail, 1540
seekoff, 1541
seekpos, 1542
setbuf, 1541
showmanyc, 1540
swap, 1539
sync, 1542
uflow, 1540
underflow, 1540

basic_filebuf<char>, 1536
basic_filebuf<wchar_t>, 1536
basic_format_arg, 768constructor, 768–769

handle, 769
operator bool, 769

basic_format_arg::handle, 769constructor, 770
format, 770

basic_format_argsconstructor, 771
get, 771

basic_format_context, 766
advance_to, 767
arg, 767
char_type, 766

formatter_type, 766
iterator, 766
locale, 767
out, 767

basic_format_parse_context, 765
advance_to, 766
begin, 766
char_type, 765
check_arg_id, 766
const_iterator, 765constructor, 766
end, 766
iterator, 765
next_arg_id, 766

basic_fstream, 1465, 1546
close, 1548constructor, 1547
is_open, 1548
open, 1548
rdbuf, 1548
swap, 1547, 1548

basic_fstream<char>, 1536
basic_fstream<wchar_t>, 1536
basic_ifstream, 1465, 1542

close, 1544constructor, 1543
is_open, 1544
open, 1544
rdbuf, 1544
swap, 1544

basic_ifstream<char>, 1536
basic_ifstream<wchar_t>, 1536
basic_ios, 1465, 1477

bad, 1481
clear, 1481constructor, 1478, 1479
copyfmt, 1480destructor, 1479
eof, 1481
exceptions, 1481
fail, 1481
fill, 1480
good, 1481
imbue, 1479
init, 1479, 1495
move, 1480
narrow, 1479
operator bool, 1481
operator!, 1481
rdbuf, 1479
rdstate, 1481
set_rdbuf, 1480
setstate, 1481
swap, 1480
tie, 1479
widen, 1479

basic_ios<char>, 1470
basic_ios<wchar_t>, 1470
basic_iostream, 1502

Index of library names 1879

© ISO/IEC N4910

constructor, 1502, 1503destructor, 1503
operator=, 1503
swap, 1503

basic_ispanstream, 1532constructor, 1533
rdbuf, 1533
span, 1533
swap, 1533

basic_istream, 1465, 1493constructor, 1495destructor, 1495
gcount, 1498
get, 1498, 1499
getline, 1499, 1500
ignore, 1500
operator=, 1495
operator>>, 1496–1498, 1502
peek, 1500
putback, 1501
read, 1500
readsome, 1501
seekg, 1501
sentry, 1495
swap, 1495
sync, 1501
tellg, 1501
unget, 1501

basic_istream::sentry, 1495constructor, 1495destructor, 1496
operator bool, 1496

basic_istream<char>, 1492
basic_istream<wchar_t>, 1492
basic_istream_view, 1038constructor, 1038

end, 1038
basic_istream_view::iterator, 1039constructor, 1039

operator*, 1039
operator++, 1039
operator==, 1039

basic_istringstream, 1465, 1521constructor, 1523
rdbuf, 1523
str, 1524
swap, 1523
view, 1524

basic_istringstream<char>, 1515
basic_istringstream<wchar_t>, 1515
basic_ofstream, 1465, 1544

close, 1546constructor, 1545
is_open, 1546
open, 1546
rdbuf, 1546
swap, 1545

basic_ofstream<char>, 1536
basic_ofstream<wchar_t>, 1536

basic_ospanstream, 1534constructor, 1534
rdbuf, 1535
span, 1535
swap, 1534, 1535

basic_ostream, 1465, 1503, 1618constructor, 1505destructor, 1505
flush, 1510
init, 1505
operator<<, 1507–1509, 1511
operator=, 1505
put, 1509
seekp, 1506
sentry, 1506
swap, 1505
tellp, 1506
write, 1510

basic_ostream::sentry, 1506constructor, 1506destructor, 1506
operator bool, 1506

basic_ostream<char>, 1492
basic_ostream<wchar_t>, 1492
basic_ostringstream, 1465, 1524constructor, 1525, 1526

rdbuf, 1526
str, 1526
swap, 1526
view, 1526

basic_ostringstream<char>, 1515
basic_ostringstream<wchar_t>, 1515
basic_osyncstream, 1465, 1551constructor, 1552

set_emit_on_sync, 1552
basic_regex, 1603, 1612, 1613, 1632

assign, 1615, 1616constructor, 1614, 1615
flag_type, 1616
getloc, 1616
imbue, 1616
mark_count, 1616
operator=, 1615
swap, 1616

basic_spanbuf, 1530constructor, 1530, 1531
operator=, 1531
seekoff, 1531
seekpos, 1532
setbuf, 1532
span, 1531
swap, 1531

basic_spanstream, 1535constructor, 1535, 1536
rdbuf, 1536
span, 1536
swap, 1536

basic_stacktrace, 559
at, 562

Index of library names 1880

© ISO/IEC N4910

begin, 561
cbegin, 561
cend, 561
const_iterator, 561constructor, 561
crbegin, 561
crend, 561
current, 560, 561
empty, 561
end, 561
get_allocator, 561
max_size, 562
operator<<, 562
operator<=>, 562
operator=, 561
operator==, 562
operator[], 562
rbegin, 561
rend, 561
size, 561
swap, 562
to_string, 562

basic_streambuf, 1465, 1485constructor, 1486destructor, 1487
eback, 1488
egptr, 1488
epptr, 1489
gbump, 1488
getloc, 1487
gptr, 1488
imbue, 1489
in_avail, 1487
operator=, 1488
overflow, 1491
pbackfail, 1491
pbase, 1489
pbump, 1489
pptr, 1489
pubimbue, 1487
pubseekoff, 1487
pubseekpos, 1487
pubsetbuf, 1487
pubsync, 1487
sbumpc, 1487
seekoff, 1489
seekpos, 1489
setbuf, 1489, 1521
setg, 1488
setp, 1489
sgetc, 1487
sgetn, 1487
showmanyc, 1490, 1540
snextc, 1487
sputbackc, 1488
sputc, 1488
sputn, 1488
sungetc, 1488
swap, 1488

sync, 1489
uflow, 1490
underflow, 1490
xsgetn, 1490
xsputn, 1491

basic_streambuf<char>, 1484
basic_streambuf<wchar_t>, 1484
basic_string, 793, 812, 1515, 1795

allocator_type, 793
append, 803, 804
append_range, 804
assign, 804, 805
assign_range, 805
at, 803
back, 803
begin, 801
c_str, 809
capacity, 802
cbegin, 801
cend, 801
clear, 802
compare, 811, 812
const_iterator, 793
const_pointer, 793
const_reference, 793
const_reverse_iterator, 793constructor, 799, 800
contains, 812
copy, 809
crbegin, 801
crend, 801
data, 809, 810
difference_type, 793
empty, 802
end, 801
ends_with, 812
erase, 807, 815
erase_if, 815
find, 810
find_first_not_of, 810
find_first_of, 810
find_last_not_of, 810
find_last_of, 810
front, 803
get_allocator, 810
getline, 814, 815
insert, 805–807
insert_range, 807
iterator, 793
length, 801
max_size, 801
operator basic_string_view, 810
operator+, 812, 813
operator+=, 803
operator<<, 814
operator=, 800, 801
operator>>, 814
operator[], 802
pointer, 793

Index of library names 1881

© ISO/IEC N4910

pop_back, 807
push_back, 804
rbegin, 801
reference, 793
rend, 801
replace, 807–809
replace_with_range, 809
reserve, 802, 1795
resize, 801
resize_and_overwrite, 801
reverse_iterator, 793
rfind, 810
shrink_to_fit, 802
size, 801
size_type, 793
starts_with, 812
substr, 811
swap, 809, 814
traits_type, 793
value_type, 793

basic_string_view, 781
at, 785
back, 785
begin, 784
cbegin, 784
cend, 784
compare, 786
const_iterator, 781, 784
const_pointer, 781
const_reference, 781
const_reverse_iterator, 781constructor, 783
contains, 786
copy, 785
crbegin, 784
crend, 784
data, 785
difference_type, 781
empty, 784
end, 784
ends_with, 786
find, 787
find_first_not_of, 788
find_first_of, 787
find_last_not_of, 788
find_last_of, 787
front, 785
iterator, 781
length, 784
max_size, 784
operator<<, 789
operator<=>, 789
operator==, 789
operator[], 784
pointer, 781
rbegin, 784
reference, 781
remove_prefix, 785
remove_suffix, 785

rend, 784
reverse_iterator, 781
rfind, 787
size, 784
size_type, 781
starts_with, 786
substr, 785
swap, 785
traits_type, 781
value_type, 781

basic_stringbuf, 1465, 1516constructor, 1517, 1518
get_allocator, 1519
operator=, 1518
overflow, 1520
pbackfail, 1520
seekoff, 1521
seekpos, 1521
str, 1519, 1520
swap, 1518
underflow, 1520
view, 1519

basic_stringbuf<char>, 1515
basic_stringbuf<wchar_t>, 1515
basic_stringstream, 1465, 1526constructor, 1528

rdbuf, 1528
str, 1529
swap, 1528
view, 1529

basic_stringstream<char>, 1515
basic_stringstream<wchar_t>, 1515
basic_syncbuf, 1465, 1549constructor, 1549destructor, 1550

emit, 1550
get_allocator, 1550
get_wrapped, 1550
operator=, 1550
set_emit_on_sync, 1550
swap, 1550, 1551
sync, 1551

before
type_info, 507

before_begin
forward_list, 870

begin, 514, 1015
adjacent_transform_view, 1106
adjacent_view, 1100
array, 861
basic_format_parse_context, 766
basic_stacktrace, 561
basic_string, 801
basic_string_view, 784
chunk_view, 1111, 1115
common_view, 1080containers, 824
directory_iterator, 1582
drop_view, 1058

Index of library names 1882

© ISO/IEC N4910

drop_while_view, 1059
elements_view, 1083
filter_view, 1044
initializer_list, 514
iota_view, 1034
join_view, 1060
lazy_split_view, 1071
lazy_split_view::outer-iterator::value_-

type,1074
match_results, 1621
path, 1571
recursive_directory_iterator, 1585
reverse_view, 1082
single_view, 1031
slide_view, 1119
span, 947
subrange, 1026
sys_info, 1406
take_view, 1053
take_while_view, 1055
transform_view, 1048
tzdb_list, 1403unordered associative containers, 856
valarray, 1316
zip_transform_view, 1095
zip_view, 1088

begin(C&), 1005
begin(initializer_list<E>), 514
begin(T (&)[N]), 1006
bernoulli_distribution, 1279constructor, 1280

p, 1280
result_type, 1279

beta, 1327
gamma_distribution, 1285

betaf, 1327
betal, 1327
bidirectional_iterator, 966
bidirectional_iterator_tag, 976
bidirectional_range, 1021
big

endian, 774
binary_functionzombie, 474
binary_negatezombie, 474
binary_search, 1208
bind, 737–738
bind1stzombie, 474
bind2ndzombie, 474
bind_back, 736
bind_front, 736
binder1stzombie, 474
binder2ndzombie, 475

binomial_distribution, 1280constructor, 1280
p, 1281
result_type, 1280
t, 1281

bit_and, 734
operator(), 734

bit_and<>, 734
operator(), 734

bit_cast, 772
bit_ceil, 773
bit_floor, 773
bit_not

operator(), 735
bit_not<>, 735

operator(), 735
bit_or, 734

operator(), 734
bit_or<>, 734

operator(), 735
bit_width, 773
bit_xor, 735

operator(), 735
bit_xor<>, 735

operator(), 735
bitset, 715, 716

all, 720
any, 720constructor, 717, 718
count, 719
flip, 719
none, 720
operator<<, 720, 721
operator<<=, 718
operator==, 720
operator>>, 720, 721
operator>>=, 718
operator[], 720
operator&, 720
operator&=, 718
operator^, 720
operator^=, 718
operator~, 719
operator|, 720
operator|=, 718
reset, 719
set, 718, 719
size, 720
test, 720
to_string, 719
to_ullong, 719
to_ulong, 719

bool_constant, 628
boolalpha, 1481
borrowed_range, 1020
boyer_moore_horspool_searcher, 746constructor, 747

operator(), 747
boyer_moore_searcher, 746

Index of library names 1883

© ISO/IEC N4910

constructor, 746
operator(), 746

bsearch, 483, 1245
btowc, 819
bucketunordered associative containers, 855
bucket_countunordered associative containers, 855
bucket_sizeunordered associative containers, 856
BUFSIZ, 1597
byte, 482

operator<<, 485
operator<<=, 485
operator>>, 485
operator>>=, 485
operator&, 485
operator&=, 485
operator^, 486
operator^=, 486
operator~, 486
operator|, 485
operator|=, 485
to_integer, 486

byte_string
wstring_convert, 1797

byteswap, 773
C
c16rtomb, 820
c32rtomb, 820
c8rtomb, 820, 821
c_encoding

weekday, 1377
c_str

basic_string, 809
path, 1567

cacos
complex, 1254

cacosh
complex, 1254

call_once, 1700
calloc, 483, 580, 1779
canonical, 1586
capacity

basic_string, 802
vector, 883

casin
complex, 1254

casinh
complex, 1255

catan
complex, 1254

catanh
complex, 1255

category
error_code, 554
error_condition, 555

locale, 1427
cauchy_distribution, 1290

a, 1291
b, 1291constructor, 1291
result_type, 1290

cbefore_begin
forward_list, 870

cbegin, 1016
basic_stacktrace, 561
basic_string, 801
basic_string_view, 784containers, 825
tzdb_list, 1403unordered associative containers, 856

cbegin(const C&), 1006
cbrt, 1316
cbrtf, 1316
cbrtl, 1316
cdata, 1019
ceil, 1316

duration, 1354
time_point, 1358

ceilf, 1316
ceill, 1316
cend, 1016

basic_stacktrace, 561
basic_string, 801
basic_string_view, 784containers, 825
tzdb_list, 1403unordered associative containers, 856

cend(const C&), 1006
cerr, 1468
CHAR_BIT, 496
char_class_type

regex_traits, 1610
CHAR_MAX, 496
CHAR_MIN, 496
char_traits, 776–779

char_type, 777
int_type, 777
state_type, 777

char_type
basic_format_context, 766
basic_format_parse_context, 765
char_traits, 777

chars_format, 751
fixed, 751
general, 751
hex, 751
scientific, 751

check_arg_id
basic_format_parse_context, 766

chi_squared_distribution, 1289constructor, 1290
n, 1290
result_type, 1289

choose, 1333
Index of library names 1884

© ISO/IEC N4910

earliest, 1333
latest, 1333

chrono, 1333
chunk

views, 1110
chunk_by

views, 1124
chunk_by_view

pred, 1125
chunk_view

begin, 1111, 1115
end, 1111, 1115
size, 1111, 1115

chunk_view::inner-iterator, 1113
chunk_view::iterator, 1116
chunk_view::outer-iterator, 1112
chunk_view::outer-iterator::value_type, 1113
chunk_view::sentinel, 1124
cin, 1468
clamp, 1224
classic

locale, 1430
classic_table

ctype<char>, 1436
clear

atomic_flag, 1679
basic_ios, 1481
basic_string, 802
error_code, 554
error_condition, 555
forward_list, 872ordered associative containers, 844
path, 1566sequence containers, 833unordered associative containers, 854

clearerr, 1597
clock, 1422
clock_cast, 1369
clock_t, 1422
clock_time_conversion, 1367

operator(), 1367–1369
CLOCKS_PER_SEC, 1422
clog, 1468
close

basic_filebuf, 1540
basic_fstream, 1548
basic_ifstream, 1544
basic_ofstream, 1546
messages, 1462

cmp_equal, 652
cmp_greater, 652
cmp_greater_equal, 652
cmp_less, 652
cmp_less_equal, 652
cmp_not_equal, 652
code

future_error, 1715
system_error, 557

codecvt, 1437

always_noconv, 1438
do_always_noconv, 1440
do_encoding, 1440
do_in, 1438
do_length, 1440
do_max_length, 1440
do_out, 1438
do_unshift, 1439
encoding, 1438
in, 1438
length, 1438
max_length, 1438
out, 1438
unshift, 1438

codecvt_byname, 1440
codecvt_mode, 1795
codecvt_utf16, 1795, 1796
codecvt_utf8, 1795, 1796
codecvt_utf8_utf16, 1795, 1796
collate, 1449

compare, 1450
do_compare, 1450
do_hash, 1450
do_transform, 1450
hash, 1450
syntax_option_type, 1607, 1608, 1633
transform, 1450

collate_byname, 1450
combine

locale, 1430
common

views, 1079
common_comparison_category, 519
common_comparison_category_t, 514
common_iterator, 991constructor, 992, 993

iter_move, 995
iter_swap, 995
operator*, 993
operator++, 993, 994
operator-, 994
operator->, 993
operator=, 993
operator==, 994

common_range, 1022
common_reference, 640
common_reference_t, 624
common_reference_with, 535
common_type, 640, 1348, 1352
common_type_t, 624
common_view, 1080

base, 1080
begin, 1080constructor, 1081
end, 1080
size, 1080

common_with, 535
comp

map::value_compare, 889
Index of library names 1885

© ISO/IEC N4910

multimap::value_compare, 895
comp_ellint_1, 1327
comp_ellint_1f, 1327
comp_ellint_1l, 1327
comp_ellint_2, 1327
comp_ellint_2f, 1327
comp_ellint_2l, 1327
comp_ellint_3, 1327
comp_ellint_3f, 1327
comp_ellint_3l, 1327
compare

basic_string, 811, 812
basic_string_view, 786
collate, 1450
path, 1568
sub_match, 1617

compare_exchange_strong
atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1675
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1678
atomic_ref, 1659
atomic_ref<floating-point>, 1659
atomic_ref<integral>, 1659
atomic_ref<T*>, 1659

compare_exchange_weak
atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1675
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1677
atomic_ref, 1659
atomic_ref<floating-point>, 1659
atomic_ref<integral>, 1659
atomic_ref<T*>, 1659

compare_partial_order_fallback, 522
compare_strong_order_fallback, 522
compare_three_way, 731
compare_weak_order_fallback, 522
complex, 1250

abs, 1254
acos, 1254
acosh, 1254
arg, 1254
asin, 1254
asinh, 1255
atan, 1254
atanh, 1255
cacos, 1254
cacosh, 1254
casin, 1254
casinh, 1255
catan, 1254
catanh, 1255
conj, 1254constructor, 1252

cos, 1255
cosh, 1255
exp, 1255
imag, 1252, 1254
log, 1255
log10, 1255
norm, 1254
operator""i, 1256
operator""if, 1256
operator""il, 1256
operator*, 1253
operator*=, 1252, 1253
operator+, 1253
operator+=, 1252
operator-, 1253
operator-=, 1252
operator/, 1253
operator/=, 1252, 1253
operator<<, 1253
operator==, 1253
operator>>, 1253
polar, 1254
pow, 1255
proj, 1254
real, 1252, 1254
sin, 1255
sinh, 1255
sqrt, 1255
tan, 1255
tanh, 1255
value_type, 1250

concat
path, 1566

condition_variable, 1701constructor, 1702destructor, 1702
notify_all, 1702
notify_one, 1702
wait, 1702, 1703
wait_for, 1703, 1704
wait_until, 1703, 1704

condition_variable_any, 1704constructor, 1705destructor, 1705
notify_all, 1705
notify_one, 1705
wait, 1706
wait_for, 1706, 1707
wait_until, 1706

conditional_t, 624
conj, 1255

complex, 1254
conjunction, 642
conjunction_v, 627
const_iterator

basic_format_parse_context, 765
basic_stacktrace, 561
basic_string, 793
basic_string_view, 781, 784

Index of library names 1886

© ISO/IEC N4910

containers, 824
const_local_iteratorunordered associative containers, 849
const_mem_fun1_ref_tzombie, 475
const_mem_fun1_tzombie, 475
const_mem_fun_ref_tzombie, 475
const_mem_fun_tzombie, 475
const_pointer

allocator_traits, 577
basic_string, 793
basic_string_view, 781
scoped_allocator_adaptor, 616

const_pointer_cast
shared_ptr, 598

const_reference
basic_string, 793
basic_string_view, 781containers, 824

const_reverse_iterator
basic_string, 793
basic_string_view, 781reversible containers, 827

const_void_pointer
allocator_traits, 577
scoped_allocator_adaptor, 616

construct
allocator_traits, 578
polymorphic_allocator, 610
scoped_allocator_adaptor, 618

construct_at, 1244
constructible_from, 538
consume

memory_order, 1654
contains

basic_string, 812
basic_string_view, 786ordered associative containers, 845unordered associative containers, 855

contiguous_iterator, 967
contiguous_iterator_tag, 976
contiguous_range, 1021
converted

wstring_convert, 1798
convertible_to, 535
copy, 1184, 1185

basic_string, 809
basic_string_view, 785
path, 1586

copy_backward, 1186
copy_constructible, 539
copy_file, 1588
copy_if, 1185
copy_n, 1185
copy_options, 1574
copy_symlink, 1589

copyable, 542
copyfmt

basic_ios, 1480
copysign, 1316
copysignf, 1316
copysignl, 1316
coroutine_handle, 523

address, 525constructor, 524
destroy, 525
done, 525
from_address, 525
from_promise, 524
hash, 526
operator bool, 525
operator coroutine_handle<>, 525
operator!=, 525
operator(), 525
operator<=>, 526
operator=, 524
operator==, 525
promise, 525
resume, 525

coroutine_handle<noop_coroutine_promise>, 526
address, 527
destroy, 526
done, 526
operator bool, 526
operator coroutine_handle<>, 526
operator(), 526
promise, 527
resume, 526

cos, 1316
complex, 1255
valarray, 1309

cosf, 1316
cosh, 1316

complex, 1255
valarray, 1309

coshf, 1316
coshl, 1316
cosl, 1316
count, 1178

bitset, 719
counted_iterator, 997
duration, 1351ordered associative containers, 845unordered associative containers, 855

count_down
latch, 1710

count_if, 1178
counted

views, 1079
counted_iterator, 995

base, 997constructor, 997
count, 997
iter_move, 999
iter_swap, 999

Index of library names 1887

© ISO/IEC N4910

operator*, 997
operator+, 998
operator++, 997, 998
operator+=, 998
operator-, 998, 999
operator--, 998
operator-=, 999
operator->, 997
operator<=>, 999
operator=, 997
operator==, 999
operator[], 997

counting_semaphore
acquire, 1709constructor, 1709
max, 1708
release, 1709
try_acquire, 1709
try_acquire_for, 1709
try_acquire_until, 1709

countl_one, 774
countl_zero, 774
countr_one, 774
countr_zero, 774
cout, 1468
crbegin, 1017

basic_stacktrace, 561
basic_string, 801
basic_string_view, 784reversible containers, 827

crbegin(const C& c), 1006
create_directories, 1589
create_directory, 1589
create_directory_symlink, 1589
create_hard_link, 1589
create_symlink, 1590
cref

reference_wrapper, 727
crend, 1017

basic_stacktrace, 561
basic_string, 801
basic_string_view, 784reversible containers, 827

crend(const C& c), 1006
cshift

valarray, 1307
ctime, 1422
ctype, 1432

do_is, 1433
do_narrow, 1434
do_scan_not, 1433
do_tolower, 1434
do_toupper, 1434
do_widen, 1434
is, 1433
narrow, 1433
scan_is, 1433
scan_not, 1433
tolower, 1433

toupper, 1433
widen, 1433

ctype<char>, 1435
classic_table, 1436constructor, 1435
ctype<char>, 1435destructor, 1435
do_narrow, 1436
do_tolower, 1436
do_toupper, 1436
do_widen, 1436
is, 1436
narrow, 1436
scan_is, 1436
scan_not, 1436
table, 1436
tolower, 1436
toupper, 1436
widen, 1436

ctype_base, 1432
do_scan_is, 1433

ctype_byname, 1434
curr_symbol

moneypunct, 1460
current

basic_stacktrace, 560, 561
current_exception, 512
current_path, 1590
current_zone, 1403

tzdb, 1402
cv_status, 1701
cyl_bessel_i, 1328
cyl_bessel_if, 1328
cyl_bessel_il, 1328
cyl_bessel_j, 1328
cyl_bessel_jf, 1328
cyl_bessel_jl, 1328
cyl_bessel_k, 1328
cyl_bessel_kf, 1328
cyl_bessel_kl, 1328
cyl_neumann, 1328
cyl_neumannf, 1328
cyl_neumannl, 1328
D
dangling, 1027
data, 1018

array, 862
basic_string, 809, 810
basic_string_view, 785
single_view, 1031
span, 947
vector, 884

data(C& c), 1007
data(initializer_list<E>), 1007
data(T (&array)[N]), 1007
date

leap_second, 1413
Index of library names 1888

© ISO/IEC N4910

date_order
time_get, 1452

day, 1370constructor, 1370
from_stream, 1372
month_day, 1381
ok, 1371
operator unsigned, 1371
operator""d, 1372
operator+, 1371
operator++, 1370, 1371
operator+=, 1371
operator-, 1371
operator--, 1371
operator-=, 1371
operator<<, 1371
operator<=>, 1371
operator==, 1371
year_month_day, 1387
year_month_day_last, 1390

days, 1333
DBL_DECIMAL_DIG, 496
DBL_DIG, 496
DBL_EPSILON, 496
DBL_HAS_SUBNORM, 496
DBL_MANT_DIG, 496
DBL_MAX, 496
DBL_MAX_10_EXP, 496
DBL_MAX_EXP, 496
DBL_MIN, 496
DBL_MIN_10_EXP, 496
DBL_MIN_EXP, 496
DBL_TRUE_MIN, 496
deallocate

allocator, 579
allocator_traits, 578
memory_resource, 608
polymorphic_allocator, 609
scoped_allocator_adaptor, 618

deallocate_bytes
polymorphic_allocator, 610

deallocate_object
polymorphic_allocator, 610

dec, 1483, 1508
decay, 640
decay-copy, 457
decay_t, 624
DECIMAL_DIG, 496
decimal_point

moneypunct, 1460
numpunct, 1448

declare_no_pointerszombie, 475
declare_reachablezombie, 475
declval, 651
default_deleteconstructor, 581

operator(), 581

default_error_condition
error_category, 551, 552
error_code, 554

default_initializable, 538
default_random_engine, 1274
default_searcher, 745constructor, 745

operator(), 745
default_sentinel, 953
default_sentinel_t, 995
default_zone

zoned_traits<const time_zone*>, 1408
defaultfloat, 1483
defer_lock, 1691
defer_lock_t, 1691
delete

operator, 477, 501–504, 580
denorm_absent, 490
denorm_indeterminate, 490
denorm_min

numeric_limits, 493
denorm_present, 490
densities

piecewise_constant_distribution, 1296
piecewise_linear_distribution, 1297

depth
recursive_directory_iterator, 1585

deque, 863
allocator_type, 829
assign, 833
assign_range, 833
begin, 824
cbegin, 825
cend, 825
clear, 833
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827constructor, 865, 866
crbegin, 827
crend, 827
difference_type, 824
emplace, 831, 866
empty, 826
end, 825
erase, 832, 867
erase_if, 867
get_allocator, 829
insert, 831, 866
insert_range, 832
iterator, 824
max_size, 826
operator!=, 825
operator=, 825, 829
operator==, 825
push_back, 866
push_front, 866
rbegin, 827
reference, 824

Index of library names 1889

© ISO/IEC N4910

rend, 827
resize, 866
reverse_iterator, 827
shrink_to_fit, 866
size, 825
size_type, 824
swap, 825, 830
value_type, 823

derived_from, 534
description

stacktrace_entry, 559
destroy, 1245

allocator_traits, 578
coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,526
polymorphic_allocator, 1790
scoped_allocator_adaptor, 618

destroy_at, 1245
destroy_n, 1245
destroying_delete, 500
destroying_delete_t, 500
destructible, 538
detach

jthread, 1649
thread, 1646

difference_type
allocator, 579
allocator_traits, 577
basic_string, 793
basic_string_view, 781containers, 824
pointer_traits, 572
scoped_allocator_adaptor, 616

difftime, 1422
digits

numeric_limits, 491
digits10

numeric_limits, 491
directory_entry, 1577

assign, 1579constructor, 1579
exists, 1579
file_size, 1580
hard_link_count, 1580
is_block_file, 1579
is_character_file, 1579
is_directory, 1579
is_fifo, 1580
is_other, 1580
is_regular_file, 1580
is_socket, 1580
is_symlink, 1580
last_write_time, 1580
operator const filesystem::path&, 1579
operator<<, 1581
operator<=>, 1581
operator==, 1581
path, 1579

refresh, 1579
replace_filename, 1579
status, 1580
symlink_status, 1580

directory_iterator, 1581
begin, 1582constructor, 1582
end, 1583
increment, 1582
operator++, 1582
operator=, 1582

directory_options, 1576
disable_recursion_pending

recursive_directory_iterator, 1585
disable_sized_range, 1020
disable_sized_sentinel_for, 965
discard_block_engine, 1270constructor, 1271

result_type, 1270
discrete_distribution, 1293constructor, 1294

probabilities, 1294
result_type, 1293

disjunction, 643
disjunction_v, 627
distance, 977, 978
div, 483, 1599
div_t, 483
divides, 728

operator(), 728
divides<>, 728

operator(), 728
do_allocate

memory_resource, 608
monotonic_buffer_resource, 615
synchronized_pool_resource, 613
unsynchronized_pool_resource, 613

do_always_noconv
codecvt, 1440

do_close
message, 1462

do_compare
collate, 1450

do_curr_symbol
moneypunct, 1460

do_date_order
time_get, 1453

do_deallocate
memory_resource, 608
monotonic_buffer_resource, 615
synchronized_pool_resource, 614
unsynchronized_pool_resource, 614

do_decimal_point
moneypunct, 1460
numpunct, 1449

do_encoding
codecvt, 1440

do_falsename
numpunct, 1449

Index of library names 1890

© ISO/IEC N4910

do_frac_digits
moneypunct, 1460

do_get
messages, 1462
money_get, 1456
num_get, 1442, 1444
time_get, 1454

do_get_date
time_get, 1453

do_get_monthname
time_get, 1453

do_get_time
time_get, 1453

do_get_weekday
time_get, 1453

do_get_year
time_get, 1454

do_grouping
moneypunct, 1460
numpunct, 1449

do_hash
collate, 1450

do_in
codecvt, 1438

do_is
ctype, 1433

do_is_equal
memory_resource, 608
monotonic_buffer_resource, 615
synchronized_pool_resource, 614
unsynchronized_pool_resource, 614

do_length
codecvt, 1440

do_max_length
codecvt, 1440

do_narrow, 1436
ctype, 1434
ctype<char>, 1436

do_neg_format
moneypunct, 1460

do_negative_sign
moneypunct, 1460

do_open
messages, 1462

do_out
codecvt, 1438

do_pos_format
moneypunct, 1460

do_positive_sign
moneypunct, 1460

do_put
money_put, 1458
num_put, 1445, 1447
time_put, 1455

do_scan_is
ctype_base, 1433

do_scan_not
ctype, 1433

do_thousands_sep

moneypunct, 1460
numpunct, 1449

do_tolower
ctype, 1434
ctype<char>, 1436

do_toupper
ctype, 1434
ctype<char>, 1436

do_transform
collate, 1450

do_truename
numpunct, 1449

do_unshift
codecvt, 1439

do_widen, 1436
ctype, 1434
ctype<char>, 1436

domain_error, 544, 545constructor, 545
done

coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,526

double_t, 1316
drop

views, 1057
drop_view, 1057

base, 1057
begin, 1058constructor, 1058
end, 1057
size, 1057

drop_while
views, 1058

drop_while_view, 1059
base, 1059
begin, 1059constructor, 1059
end, 1059
pred, 1059

duration, 1349
abs, 1355
ceil, 1354constructor, 1350
count, 1351
duration_cast, 1353
floor, 1354
from_stream, 1356
max, 1352
min, 1352
operator""h, 1354
operator""min, 1354
operator""ms, 1354
operator""ns, 1354
operator""s, 1354
operator""us, 1354
operator*, 1352
operator*=, 1351
operator+, 1351, 1357

Index of library names 1891

© ISO/IEC N4910

operator++, 1351
operator+=, 1351
operator-, 1351, 1358
operator--, 1351
operator-=, 1351
operator/, 1352
operator/=, 1351
operator<, 1353
operator<<, 1355
operator<=, 1353
operator<=>, 1353
operator==, 1353
operator>, 1353
operator>=, 1353
operator%, 1352
operator%=, 1351
round, 1354
zero, 1351

duration_cast, 1353
duration, 1353

duration_values, 1348
max, 1348
min, 1348
zero, 1348

dynamic_extent, 942
dynamic_pointer_cast

shared_ptr, 598
E
E2BIG, 547
EACCES, 547
EADDRINUSE, 547
EADDRNOTAVAIL, 547
EAFNOSUPPORT, 547
EAGAIN, 547
EALREADY, 547
earliest

choose, 1333
eback

basic_streambuf, 1488
EBADF, 547
EBADMSG, 547
EBUSY, 547
ec

from_chars_result, 751
to_chars_result, 751

ECANCELED, 547
ECHILD, 547
ECMAScript

syntax_option_type, 1607, 1608
ECONNABORTED, 547
ECONNREFUSED, 547
ECONNRESET, 547
EDEADLK, 547
EDESTADDRREQ, 547
EDOM, 547
EEXIST, 547
EFAULT, 547

EFBIG, 547
egptr

basic_streambuf, 1488
egrep

syntax_option_type, 1607, 1608
EHOSTUNREACH, 547
EIDRM, 547
EILSEQ, 547
EINPROGRESS, 547
EINTR, 547
EINVAL, 547
EIO, 547
EISCONN, 547
EISDIR, 547
element_type

pointer_traits, 572
elements

views, 1082
elements_view, 1083

base, 1083
begin, 1083constructor, 1084
end, 1083
size, 1083

elements_view::iterator, 1084
get-element, 1085
base, 1085constructor, 1085
operator+, 1087
operator++, 1086
operator+=, 1086
operator-, 1087
operator--, 1086
operator-=, 1086
operator<, 1086
operator<=, 1086
operator<=>, 1087
operator==, 1086
operator>, 1086
operator>=, 1086

elements_view::sentinel, 1087
base, 1088constructor, 1087
operator-, 1088
operator==, 1088

ellint_1, 1329
ellint_1f, 1329
ellint_1l, 1329
ellint_2, 1329
ellint_2f, 1329
ellint_2l, 1329
ellint_3, 1329
ellint_3f, 1329
ellint_3l, 1329
ELOOP, 547
EMFILE, 547
emit

basic_syncbuf, 1550
emit_on_flush, 1510

Index of library names 1892

© ISO/IEC N4910

EMLINK, 547
emplace

any, 697, 698
deque, 866
expected, 708, 709
expected<void>, 714
optional, 677ordered associative containers, 841
priority_queue, 938sequence containers, 831unordered associative containers, 851
variant, 689, 690

emplace_after
forward_list, 871

emplace_front
forward_list, 871

emplace_hintordered associative containers, 841unordered associative containers, 852
empty, 1018

basic_stacktrace, 561
basic_string, 802
basic_string_view, 784containers, 826
match_results, 1621
path, 1570
span, 946
subrange, 1026
views, 1010

empty(C& c), 1007
empty(initializer_list<E>), 1007
empty(T (&array)[N]), 1007
empty_view, 1030
EMSGSIZE, 547
enable_borrowed_range, 1020
enable_if, 640
enable_if_t, 624
enable_shared_from_this, 602constructor, 602

operator=, 602
shared_from_this, 602
weak_from_this, 603

enable_view, 1021
ENAMETOOLONG, 547
encoding

codecvt, 1438
end, 514, 1015

adjacent_transform_view, 1106
adjacent_view, 1100
array, 861
basic_format_parse_context, 766
basic_istream_view, 1038
basic_stacktrace, 561
basic_string, 801
basic_string_view, 784
chunk_view, 1111, 1115
common_view, 1080containers, 825
directory_iterator, 1583

drop_view, 1057
drop_while_view, 1059
elements_view, 1083
filter_view, 1044
initializer_list, 514
iota_view, 1034
join_view, 1060
lazy_split_view, 1071
lazy_split_view::outer-iterator::value_-

type,1074
match_results, 1621
path, 1572
recursive_directory_iterator, 1585
reverse_view, 1082
single_view, 1031
slide_view, 1119
span, 947
subrange, 1026
sys_info, 1406
take_view, 1053
take_while_view, 1055
transform_view, 1048
tzdb_list, 1403unordered associative containers, 856
valarray, 1316
zip_transform_view, 1095
zip_view, 1088

end(C&), 1006
end(initializer_list<E>), 514
end(T (&)[N]), 1006
endian, 774

big, 774
little, 774
native, 774

endl, 1508, 1510
ends, 1510
ends_with, 1184

basic_string, 812
basic_string_view, 786

ENETDOWN, 547
ENETRESET, 547
ENETUNREACH, 547
ENFILE, 547
ENOBUFS, 547
ENODATA, 547
ENODEV, 547
ENOENT, 547
ENOEXEC, 547
ENOLCK, 547
ENOLINK, 547
ENOMEM, 547
ENOMSG, 547
ENOPROTOOPT, 547
ENOSPC, 547
ENOSR, 547
ENOSTR, 547
ENOSYS, 547
ENOTCONN, 547

Index of library names 1893

© ISO/IEC N4910

ENOTDIR, 547
ENOTEMPTY, 547
ENOTRECOVERABLE, 547
ENOTSOCK, 547
ENOTSUP, 547
ENOTTY, 547
entropy

random_device, 1274
ENXIO, 547
EOF, 1597
eof

basic_ios, 1481
EOPNOTSUPP, 547
EOVERFLOW, 547
EOWNERDEAD, 547
EPERM, 547
EPIPE, 547
epptr

basic_streambuf, 1489
EPROTO, 547
EPROTONOSUPPORT, 547
EPROTOTYPE, 547
epsilon

numeric_limits, 492
equal, 1179

istreambuf_iterator, 1004
strong_ordering, 518

equal_range, 1207ordered associative containers, 846unordered associative containers, 855
equal_to, 729, 731

operator(), 729
equal_to<>, 729

operator(), 729
equality_comparable, 540
equality_comparable_with, 541
equivalence_relation, 542
equivalent, 1590

error_category, 552
partial_ordering, 516
strong_ordering, 518
weak_ordering, 517

ERANGE, 547
erase

basic_string, 807, 815
deque, 867
forward_list, 874
list, 878, 880ordered associative containers, 844sequence containers, 832unordered associative containers, 854
vector, 884

erase_after
forward_list, 872
tzdb_list, 1403

erase_if
basic_string, 815
deque, 867
forward_list, 874

list, 880
map, 894
multimap, 899
multiset, 906
set, 902
unordered_map, 915
unordered_multimap, 920
unordered_multiset, 930
unordered_set, 925
vector, 885

erf, 1316
erfc, 1316
erfcf, 1316
erfcl, 1316
erff, 1316
erfl, 1316
EROFS, 547
errc, 549

make_error_code, 554
make_error_condition, 555

errno, 547
error

bad_expected_access, 702
expected, 710
expected<void>, 715

error_category, 549, 551constructor, 551
default_error_condition, 551, 552destructor, 551
equivalent, 552
message, 552
name, 551, 552
operator<=>, 552
operator==, 552

error_code, 549, 553
assign, 553
category, 554
clear, 554constructor, 553
default_error_condition, 554
hash, 556
message, 554
operator bool, 554
operator<<, 554
operator<=>, 556
operator=, 553
operator==, 555, 556
value, 554

error_condition, 549, 554
assign, 555
category, 555
clear, 555constructor, 555
message, 555
operator bool, 555
operator<=>, 556
operator=, 555
operator==, 556
value, 555

Index of library names 1894

© ISO/IEC N4910

error_type, 1609, 1610
expected, 702
expected<void>, 711
regex_constants, 1609, 1610

ESPIPE, 547
ESRCH, 547
ETIME, 547
ETIMEDOUT, 547
ETXTBSY, 547
EWOULDBLOCK, 547
exception, 510constructor, 510destructor, 511

operator=, 510
what, 511

exception_ptr, 512
exceptions

basic_ios, 1481
exchange, 650

atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1675
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1677
atomic_ref, 1659
atomic_ref<floating-point>, 1659
atomic_ref<integral>, 1659
atomic_ref<T*>, 1659

exclusive_scan, 1234
EXDEV, 547
execution

par, 751
par_unseq, 751
seq, 751

execution::parallel_policy, 750
execution::parallel_unsequenced_policy, 750
execution::sequenced_policy, 750
execution::unsequenced_policy, 751
exists, 1591

directory_entry, 1579
exit, 85, 87, 157, 462, 483, 499, 505
EXIT_FAILURE, 483
EXIT_SUCCESS, 483
exp, 1316

complex, 1255
valarray, 1309

exp2, 1316
exp2f, 1316
exp2l, 1316
expected, 699constructor, 704–706destructor, 706

emplace, 708, 709
error, 710
error_type, 702
has_value, 710
operator bool, 710
operator*, 710

operator->, 710
operator=, 707, 708
operator==, 711
rebind, 702
swap, 709, 710
unexpected_type, 702
value, 710, 715
value_or, 710
value_type, 702

expected<void>constructor, 712, 713destructor, 713
emplace, 714
error, 715
error_type, 711
has_value, 715
operator bool, 715
operator*, 715
operator=, 713, 714
operator==, 715
rebind, 711
swap, 714, 715
unexpected_type, 711
value, 715
value_type, 711

expf, 1316
expint, 1329
expintf, 1329
expintl, 1329
expired

weak_ptr, 601
expl, 1316
expm1, 1316
expm1f, 1316
expm1l, 1316
exponential_distribution, 1283constructor, 1284

lambda, 1284
result_type, 1283

extended
syntax_option_type, 1607, 1608

extension
path, 1569

extent, 635
extent_v, 627
extractordered associative containers, 843unordered associative containers, 853
extreme_value_distribution, 1286

a, 1287
b, 1287constructor, 1287
result_type, 1286

F
fabs, 1316
fabsf, 1316
fabsl, 1316

Index of library names 1895

© ISO/IEC N4910

facet
locale, 1428

fail
basic_ios, 1481

failed
ostreambuf_iterator, 1005

failure
ios_base, 1472

false_type, 628
falsename

numpunct, 1449
fclose, 1540, 1597
fdim, 1316
fdimf, 1316
fdiml, 1316
FE_ALL_EXCEPT, 1247
FE_DFL_ENV, 1247
FE_DIVBYZERO, 1247
FE_DOWNWARD, 1247
FE_INEXACT, 1247
FE_INVALID, 1247
FE_OVERFLOW, 1247
FE_TONEAREST, 1247
FE_TOWARDZERO, 1247
FE_UNDERFLOW, 1247
FE_UPWARD, 1247
feclearexcept, 1247
fegetenv, 1247
fegetexceptflag, 1247
fegetround, 1247
feholdexcept, 1247
fenv_t, 1247
feof, 1597
feraiseexcept, 1247
ferror, 1597
fesetenv, 1247
fesetexceptflag, 1247
fesetround, 1247
fetch_add

atomic<floating-point>, 1671
atomic<integral>, 1669
atomic<T*>, 1672
atomic_ref<floating-point>, 1662
atomic_ref<integral>, 1661
atomic_ref<T*>, 1663

fetch_and
atomic<integral>, 1669
atomic_ref<integral>, 1661

fetch_or
atomic<integral>, 1669
atomic_ref<integral>, 1661

fetch_sub
atomic<floating-point>, 1671
atomic<integral>, 1669
atomic<T*>, 1672
atomic_ref<floating-point>, 1662
atomic_ref<integral>, 1661
atomic_ref<T*>, 1663

fetch_xor

atomic<integral>, 1669
atomic_ref<integral>, 1661

fetestexcept, 1247
feupdateenv, 1247
fexcept_t, 1247
fflush, 1597
fgetc, 1597
fgetpos, 1597
fgets, 1597
fgetwc, 819
fgetws, 819
FILE, 1597
file_clock, 1365

now, 1365
file_size, 1591

directory_entry, 1580
file_status, 1576constructor, 1577

permissions, 1577
type, 1577

file_time, 1333
from_stream, 1366
operator<<, 1366

file_type, 1574
filebuf, 1465, 1536
filename

path, 1569
FILENAME_MAX, 1597
filesystem_error, 1573constructor, 1573

path1, 1573
path2, 1573
what, 1573

fill, 1192
array, 862
basic_ios, 1480

fill_n, 1192
filter

views, 1043
filter_view, 1044

base, 1044
begin, 1044constructor, 1044
end, 1044
iterator, 1044
pred, 1044
sentinel, 1046

filter_view::iterator
base, 1045constructor, 1045
iter_move, 1046
iter_swap, 1046
operator*, 1046
operator++, 1046
operator--, 1046
operator->, 1046
operator==, 1046

filter_view::sentinel
base, 1047

Index of library names 1896

© ISO/IEC N4910

constructor, 1047
operator==, 1047

find, 1174
basic_string, 810
basic_string_view, 787ordered associative containers, 845unordered associative containers, 855

find_end, 1175
find_first_not_of

basic_string, 810
basic_string_view, 788

find_first_of, 1176
basic_string, 810
basic_string_view, 787

find_if, 1174
find_if_not, 1174
find_last_not_of

basic_string, 810
basic_string_view, 788

find_last_of
basic_string, 810
basic_string_view, 787

first
local_info, 1406
span, 945, 946

first_argument_typezombie, 475
fisher_distribution

result_type, 1291
fisher_f_distribution, 1291constructor, 1292

m, 1292
n, 1292

fixed, 1483
chars_format, 751

flag_type
basic_regex, 1616

flags
ios_base, 1431, 1474

flip
bitset, 719
vector<bool>, 887

float_denorm_style, 489, 490
numeric_limits, 493

float_round_style, 489
float_t, 1316
floating_point, 536
floor, 1316

duration, 1354
time_point, 1358

floorf, 1316
floorl, 1316
FLT_DECIMAL_DIG, 496
FLT_DIG, 496
FLT_EPSILON, 496
FLT_EVAL_METHOD, 496
FLT_HAS_SUBNORM, 496
FLT_MANT_DIG, 496
FLT_MAX, 496

FLT_MAX_10_EXP, 496
FLT_MAX_EXP, 496
FLT_MIN, 496
FLT_MIN_10_EXP, 496
FLT_MIN_EXP, 496
FLT_RADIX, 496
FLT_ROUNDS, 496
FLT_TRUE_MIN, 496
flush, 1474, 1495, 1506, 1510

basic_ostream, 1510
flush_emit, 1511
fma, 1316
fmaf, 1316
fmal, 1316
fmax, 1316
fmaxf, 1316
fmaxl, 1316
fmin, 1316
fminf, 1316
fminl, 1316
fmod, 1316
fmodf, 1316
fmodl, 1316
fmtflags

ios_base, 1472, 1511
fopen, 1539, 1540, 1597
FOPEN_MAX, 1597
for_each, 1173
for_each_n, 1173, 1174
format, 761, 1415–1418

basic_format_arg::handle, 770
formatter<chrono::zoned_time>, 1418
match_results, 1621, 1622

format_args, 754
format_args_t, 754
format_context, 754, 767
format_default, 1607, 1608
format_error, 771constructor, 771
format_first_only, 1607, 1609, 1626
format_no_copy, 1607, 1609, 1626
format_parse_context, 754
format_sed, 1607, 1608
format_to, 762
format_to_n, 762
format_to_n_result, 754

out, 754
size, 754

formatted_size, 763
formatter, 764specializationsarithmetic types, 765character types, 764

chrono::file_time, 1418
chrono::gps_time, 1418
chrono::local-time-format-t, 1418
chrono::local_time, 1418
chrono::sys_time, 1417
chrono::tai_time, 1417

Index of library names 1897

© ISO/IEC N4910

chrono::utc_time, 1417
chrono::zoned_time, 1418
nullptr_t, 765pointer types, 765string types, 764

formatter<chrono::zoned_time>
format, 1418

formatter_type
basic_format_context, 766

forward, 650
forward_as_tuple, 667

tuple, 667
forward_iterator, 966
forward_iterator_tag, 976
forward_list

allocator_type, 829
assign, 833
assign_range, 833
before_begin, 870
begin, 824
cbefore_begin, 870
cbegin, 825
cend, 825
clear, 833, 872
const_iterator, 824
const_reference, 824constructor, 870
difference_type, 824
emplace, 831
emplace_after, 871
emplace_front, 871
empty, 826
end, 825
erase, 832, 874
erase_after, 872
erase_if, 874
front, 870
get_allocator, 829
insert, 831
insert_after, 871
insert_range, 832
insert_range_after, 871
iterator, 824
max_size, 826
merge, 873
operator!=, 825
operator=, 825, 829
operator==, 825
pop, 871
prepend_range, 871
push_front, 871
reference, 824
remove, 873
remove_if, 873
resize, 872
reverse, 874
size, 825
size_type, 824
sort, 874

splice_after, 872, 873
swap, 825, 830
unique, 873
value_type, 823

forward_range, 1021
FP_FAST_FMA, 1316
FP_FAST_FMAF, 1316
FP_FAST_FMAL, 1316
FP_ILOGB0, 1316
FP_ILOGBNAN, 1316
FP_INFINITE, 1316
FP_NAN, 1316
FP_NORMAL, 1316
FP_SUBNORMAL, 1316
FP_ZERO, 1316
fpclassify, 1316
fpos, 1465, 1470, 1476, 1477

state, 1477
fpos_t, 1597
fprintf, 1597
fputc, 1597
fputs, 1597
fputwc, 819
fputws, 819
frac_digits

moneypunct, 1460
fread, 1597
free, 483, 580
freeze

ostrstream, 1788
strstream, 1789
strstreambuf, 1785

freopen, 1597
frexp, 1316
frexpf, 1316
frexpl, 1316
from_address

coroutine_handle, 525
from_bytes

wstring_convert, 1798
from_chars, 753
from_chars_result, 751

ec, 751
ptr, 751

from_promise
coroutine_handle, 524

from_stream
day, 1372
duration, 1356
file_time, 1366
gps_time, 1365
local_time, 1367
month, 1374
month_day, 1381
sys_time, 1360
tai_time, 1363
utc_time, 1362
weekday, 1378
year, 1376

Index of library names 1898

© ISO/IEC N4910

year_month, 1386
year_month_day, 1389

from_sys
utc_clock, 1361

from_time_t
system_clock, 1359

from_utc
gps_clock, 1364
tai_clock, 1363

front
basic_string, 803
basic_string_view, 785
forward_list, 870
span, 946
tzdb_list, 1403
view_interface, 1023

front_insert_iterator, 984constructor, 985
operator*, 985
operator++, 985
operator=, 985

front_inserter, 985
fscanf, 1597
fseek, 1540, 1597
fsetpos, 1597
fstream, 1465, 1536
ftell, 1597
function, 739constructor, 739, 740destructor, 741invocation, 741

operator bool, 741
operator(), 741
operator=, 740, 741
operator==, 741
result_type, 739
swap, 741
target, 741
target_type, 741

future, 1718constructor, 1719
get, 1719
operator=, 1719
share, 1719
valid, 1720
wait, 1720
wait_for, 1720
wait_until, 1720

future_category, 1714
future_errc, 1713

make_error_code, 1714
make_error_condition, 1714

future_error, 1714
code, 1715constructor, 1715
what, 1715

fwide, 819
fwprintf, 819
fwrite, 1597

fwscanf, 819
G
gamma_distribution, 1284

alpha, 1285
beta, 1285constructor, 1285
result_type, 1284

gbump
basic_streambuf, 1488

gcd, 1239
gcount

basic_istream, 1498
general

chars_format, 751
GENERALIZED_NONCOMMUTATIVE_SUM, 1230
GENERALIZED_SUM, 1231
generate, 1192

seed_seq, 1275
generate_canonical, 1276
generate_n, 1192
generic_category, 551, 552
generic_string

path, 1568
generic_u16string

path, 1568
generic_u32string

path, 1568
generic_u8string

path, 1568
generic_wstring

path, 1568
geometric_distribution, 1281constructor, 1281

p, 1281
result_type, 1281

get
array, 863
basic_format_args, 771
basic_istream, 1498, 1499
future, 1719
messages, 1461
money_get, 1456
num_get, 1441
pair, 657, 658
reference_wrapper, 726
shared_future, 1722
shared_ptr, 593
subrange, 1027
time_get, 1452
tuple, 669
unique_ptr, 584
variant, 691, 692

get_allocatorallocator-aware containers, 829
basic_stacktrace, 561
basic_string, 810
basic_stringbuf, 1519

Index of library names 1899

© ISO/IEC N4910

basic_syncbuf, 1550
match_results, 1622

get_date
time_get, 1452

get_default_resource, 611
get_deleter

shared_ptr, 599
unique_ptr, 584

get_future
packaged_task, 1725
promise, 1717

get_id
jthread, 1649
this_thread, 1650
thread, 1646

get_if, 692
variant, 692

get_info
time_zone, 1407
zoned_time, 1412

get_leap_second_info, 1362
get_local_time

zoned_time, 1412
get_money, 1512
get_monthname

time_get, 1452
get_new_handler, 477, 505
get_pointer_safetyzombie, 475
get_stop_source

jthread, 1649
get_stop_token

jthread, 1649
get_sys_time

zoned_time, 1412
get_temporary_bufferzombie, 475
get_terminate, 477, 511
get_time, 1513

time_get, 1452
get_time_zone

zoned_time, 1412
get_token

stop_source sc, 1641
get_tzdb, 1403
get_tzdb_list, 1403
get_unexpectedzombie, 475
get_weekday

time_get, 1452
get_wrapped

basic_syncbuf, 1550
get_year

time_get, 1452
getc, 1597
getchar, 1597
getenv, 483, 527
getline

basic_istream, 1499, 1500

basic_string, 814, 815
getloc, 1612

basic_regex, 1616
basic_streambuf, 1487
ios_base, 1475

getszombie, 475
getwc, 819
getwchar, 819
global

locale, 1430
gmtime, 1422
good

basic_ios, 1481
gps_clock, 1364

from_utc, 1364
now, 1364
to_utc, 1364

gps_seconds, 1333
gps_time, 1333

from_stream, 1365
operator<<, 1365

gptr
basic_streambuf, 1488

greater, 730, 732
operator(), 730
partial_ordering, 516
strong_ordering, 518
weak_ordering, 517

greater<>, 730
operator(), 730

greater_equal, 730, 732
operator(), 730

greater_equal<>, 730
operator(), 730

grep
syntax_option_type, 1607, 1608

grouping
moneypunct, 1460
numpunct, 1448

gslice, 1311constructor, 1313
size, 1313
start, 1313
stride, 1313

gslice_array, 1313
operator*=, 1314
operator+=, 1314
operator-=, 1314
operator/=, 1314
operator<<=, 1314
operator=, 1313, 1314
operator>>=, 1314
operator%=, 1314
operator&=, 1314
operator^=, 1314
operator|=, 1314
value_type, 1313

Index of library names 1900

© ISO/IEC N4910

H
handle

basic_format_arg, 769
hard_link_count, 1591

directory_entry, 1580
hardware_concurrency

jthread, 1649
thread, 1646

hardware_constructive_interference_size, 506
hardware_destructive_interference_size, 506
has_denorm_loss

numeric_limits, 493
has_extension

path, 1570
has_facet

locale, 1431
has_filename

path, 1570
has_infinity

numeric_limits, 492
has_parent_path

path, 1570
has_quiet_NaN

numeric_limits, 493
has_relative_path

path, 1570
has_root_directory

path, 1570
has_root_name

path, 1570
has_root_path

path, 1570
has_signaling_NaN

numeric_limits, 493
has_single_bit, 773
has_stem

path, 1570
has_unique_object_representations, 634, 635
has_value

any, 698
expected, 710
expected<void>, 715
optional, 679

has_virtual_destructor, 634
has_virtual_destructor_v, 627
hash, 747

collate, 1450
coroutine_handle, 526
error_code, 556
monostate, 694
optional, 683
pmr::string, 817
pmr::u16string, 817
pmr::u32string, 817
pmr::wstring, 817
shared_ptr, 603
string, 817
string_view, 789

thread::id, 1645
type_index, 749
u16string, 817
u16string_view, 789
u32string, 817
u32string_view, 789
u8string_view, 789
unique_ptr, 603
variant, 694
wstring, 817
wstring_view, 789

hash_code, 720
type_index, 749
type_info, 507

hash_functionunordered associative containers, 851
hash_value

path, 1572
hasherunordered associative containers, 848
hermite, 1330
hermitef, 1330
hermitel, 1330
hex, 1483

chars_format, 751
hexfloat, 1483
hh_mm_ss

hours, 1400
is_negative, 1400
minutes, 1401
operator precision, 1401
seconds, 1401
subseconds, 1401
to_duration, 1401

high_resolution_clock, 1366
hms, 1399
holds_alternative, 691

variant, 691
hours, 1333

hh_mm_ss, 1400
HUGE_VAL, 1316
HUGE_VALF, 1316
HUGE_VALL, 1316
hypot, 13163-argument form, 1326
hypotf, 1316
hypotl, 1316
I
icase

syntax_option_type, 1607, 1608
id

locale, 1429
thread, 1644

identity, 735
ifstream, 1465, 1536
ignore, 667

basic_istream, 1500
Index of library names 1901

© ISO/IEC N4910

ilogb, 1316
ilogbf, 1316
ilogbl, 1316
imag, 1255

complex, 1252, 1254
imaxabs, 1599
imaxdiv, 1599
imaxdiv_t, 1599
imbue, 1612

basic_filebuf, 1542
basic_ios, 1479
basic_regex, 1616
basic_streambuf, 1489
ios_base, 1475

in
codecvt, 1438

in_avail
basic_streambuf, 1487

in_place, 649
in_place_index, 649
in_place_index_t, 649
in_place_t, 649
in_place_type, 649
in_place_type_t, 649
in_range, 652
includes, 1213
inclusive_scan, 1235
increment

directory_iterator, 1582
recursive_directory_iterator, 1585

incrementable, 964
incrementable_traits, 956
independent_bits_engine, 1271

result_type, 1271
index

variant, 690
weekday_indexed, 1379
year_month_weekday, 1393

index_sequence, 648
index_sequence_for, 648
indirect_array, 1315

operator*=, 1316
operator+=, 1316
operator-=, 1316
operator/=, 1316
operator<<=, 1316
operator=, 1315, 1316
operator>>=, 1316
operator[], 1315
operator%=, 1316
operator&=, 1316
operator^=, 1316
operator|=, 1316
value_type, 1315

indirect_binary_predicate, 973
indirect_equivalence_relation, 973
indirect_strict_weak_order, 973
indirect_unary_predicate, 973
indirectly_comparable, 975

indirectly_copyable, 974
indirectly_copyable_storable, 974
indirectly_movable, 974
indirectly_movable_storable, 974
indirectly_readable, 962
indirectly_readable_traits, 957
indirectly_regular_unary_invocable, 972
indirectly_swappable, 975
indirectly_unary_invocable, 972
indirectly_writable, 962
INFINITY, 1316
infinity

numeric_limits, 493
Init

ios_base, 1474
init

basic_ios, 1479, 1495
basic_ostream, 1505

initializer_list, 514
begin, 514constructor, 514
end, 514
size, 514

inner_allocator
scoped_allocator_adaptor, 618

inner_allocator_type
scoped_allocator_adaptor, 617

inner_product, 1232
inout_ptr, 607
inout_ptr_t, 605constructor, 605destructor, 606
inplace_merge, 1212
input_iterator, 965
input_iterator_tag, 976
input_or_output_iterator, 964
input_range, 1021
insert

basic_string, 805–807
deque, 866
list, 877
map, 893
multimap, 898ordered associative containers, 842, 843sequence containers, 831unordered associative containers, 852, 853
unordered_map, 914
unordered_multimap, 920
vector, 884

insert_after
forward_list, 871

insert_iterator, 985constructor, 986
operator*, 986
operator++, 986
operator=, 986

insert_or_assign
map, 894
unordered_map, 914

Index of library names 1902

© ISO/IEC N4910

insert_range
basic_string, 807sequence containers, 832unordered associative containers, 852

insert_range_after
forward_list, 871

inserter, 986
int16_t, 497
int32_t, 497
int64_t, 497
int8_t, 497
int_fast16_t, 497
int_fast32_t, 497
int_fast64_t, 497
int_fast8_t, 497
int_least16_t, 497
int_least32_t, 497
int_least64_t, 497
int_least8_t, 497
INT_MAX, 496
INT_MIN, 496
int_type

char_traits, 777
wstring_convert, 1798

integer_sequence, 620
value_type, 620

integral, 536
integral_constant, 628

value_type, 628
internal, 1482
intervals

piecewise_constant_distribution, 1296
piecewise_linear_distribution, 1297

intmax_t, 497
intptr_t, 497
invalid_argument, 544, 545, 717, 718constructor, 545
invocable, 542
INVOKE, 724, 725
invoke, 725
invoke_r, 725
invoke_result_t, 624
io_errc, 1469

make_error_code, 1483
make_error_condition, 1484

io_statezombie, 475
ios, 1465, 1470
ios_base, 1470constructor, 1476destructor, 1476

failure, 1472
flags, 1431, 1474
fmtflags, 1472, 1511
getloc, 1475
imbue, 1475
Init, 1474
iostate, 1473
iword, 1475

openmode, 1473
precision, 1431, 1474
pword, 1476
register_callback, 1476
seekdir, 1473
setf, 1474
sync_with_stdio, 1475
unsetf, 1474
width, 1431, 1474, 1475
xalloc, 1475

ios_base::failure, 1472constructor, 1472
ios_base::Init, 1474constructor, 1474destructor, 1474
iostate

ios_base, 1473
iostream_category, 1484
iota, 1239

views, 1031
iota_view, 1032

begin, 1034constructor, 1033
end, 1034
size, 1034

iota_view::iterator, 1034constructor, 1035
operator*, 1035
operator+, 1037
operator++, 1035
operator+=, 1036
operator-, 1037
operator--, 1035, 1036
operator-=, 1036
operator<, 1036
operator<=, 1036
operator<=>, 1037
operator==, 1036
operator>, 1036
operator>=, 1036
operator[], 1036

iota_view::sentinel, 1037constructor, 1037
operator==, 1037

is
ctype, 1433
ctype<char>, 1436

is_absolute
path, 1570

is_abstract, 630
is_abstract_v, 625
is_aggregate, 630
is_aggregate_v, 625
is_always_equal

allocator, 1790
allocator_traits, 578
scoped_allocator_adaptor, 617

is_always_lock_free
atomic, 1665

Index of library names 1903

© ISO/IEC N4910

atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1665
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1665
atomic_ref, 1658
atomic_ref<floating-point>, 1658
atomic_ref<integral>, 1658
atomic_ref<T*>, 1658

is_am, 1401
is_arithmetic, 629
is_arithmetic_v, 625
is_array, 628
is_array_v, 625
is_assignable, 631
is_assignable_v, 626
is_base_of, 636
is_base_of_v, 627
is_bind_expression, 736
is_bind_expression_v, 722
is_block_file, 1591

directory_entry, 1579
is_bounded

numeric_limits, 494
is_bounded_array, 630
is_bounded_array_v, 626
is_character_file, 1591

directory_entry, 1579
is_class, 629
is_class_v, 625
is_clock, 1349
is_clock_v, 1333
is_compound, 629
is_compound_v, 625
is_const, 630
is_const_v, 625
is_constructible, 630, 635
is_constructible_v, 626
is_convertible, 636, 637
is_convertible_v, 627
is_copy_assignable, 631
is_copy_assignable_v, 626
is_copy_constructible, 631
is_copy_constructible_v, 626
is_corresponding_member, 643
is_default_constructible, 630
is_default_constructible_v, 626
is_destructible, 632
is_destructible_v, 626
is_directory, 1592

directory_entry, 1579
is_emptyclass, 630function, 1592
is_empty_v, 625
is_enum, 629
is_enum_v, 625
is_eq, 514
is_equal

memory_resource, 608
is_error_code_enum, 549
is_error_condition_enum, 549
is_exact

numeric_limits, 492
is_execution_policy, 750
is_execution_policy_v, 750
is_fifo, 1592

directory_entry, 1580
is_final, 630
is_final_v, 625
is_floating_point, 628
is_floating_point_v, 625
is_function, 629
is_function_v, 625
is_fundamental, 629
is_fundamental_v, 625
is_geq, 514
is_gt, 514
is_gteq, 514
is_heap, 1220
is_heap_until, 1220
is_iec559

numeric_limits, 493
is_integer

numeric_limits, 492
is_integral, 628
is_integral_v, 625
is_invocable, 636
is_invocable_r, 637
is_invocable_r_v, 627
is_invocable_v, 627
is_layout_compatible, 636
is_layout_compatible_v, 627
is_leap

year, 1375
is_literal_type, 1790zombie, 475
is_literal_type_vzombie, 475
is_lock_free

atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1665
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1665
atomic_ref, 1658
atomic_ref<floating-point>, 1658
atomic_ref<integral>, 1658
atomic_ref<T*>, 1658

is_lt, 514
is_lteq, 514
is_lvalue_reference, 628
is_lvalue_reference_v, 625
is_member_function_pointer, 629
is_member_function_pointer_v, 625
is_member_object_pointer, 628
is_member_object_pointer_v, 625

Index of library names 1904

© ISO/IEC N4910

is_member_pointer, 629
is_member_pointer_v, 625
is_modulo

numeric_limits, 494
is_move_assignable, 631
is_move_assignable_v, 626
is_move_constructible, 631
is_move_constructible_v, 626
is_negative

hh_mm_ss, 1400
is_neq, 514
is_nothrow_assignable, 633
is_nothrow_assignable_v, 626
is_nothrow_constructible, 633
is_nothrow_convertible, 636
is_nothrow_convertible_v, 627
is_nothrow_copy_assignable, 633
is_nothrow_copy_assignable_v, 627
is_nothrow_copy_constructible, 633
is_nothrow_default_constructible, 633
is_nothrow_destructible, 634
is_nothrow_destructible_v, 627
is_nothrow_invocable, 637
is_nothrow_invocable_r, 637
is_nothrow_invocable_v, 627
is_nothrow_move_assignable, 634
is_nothrow_move_assignable_v, 627
is_nothrow_move_constructible, 633
is_nothrow_swappable, 634
is_nothrow_swappable_v, 627
is_nothrow_swappable_with, 634
is_nothrow_swappable_with_v, 627
is_null_pointer, 628
is_null_pointer_v, 624
is_object, 629
is_object_v, 625
is_open

basic_filebuf, 1539
basic_fstream, 1548
basic_ifstream, 1544
basic_ofstream, 1546

is_other, 1592
directory_entry, 1580

is_partitioned, 1208
is_permutation, 1181
is_placeholder, 737
is_placeholder_v, 723
is_pm, 1401
is_pod, 1790
is_pointer, 628
is_pointer_interconvertible_base_of, 636
is_pointer_interconvertible_with_class, 643
is_pointer_v, 625
is_polymorphic, 630
is_polymorphic_v, 625
is_reference, 629
is_reference_v, 625
is_regular_file, 1592, 1593

directory_entry, 1580

is_relative
path, 1570

is_rvalue_reference, 628
is_rvalue_reference_v, 625
is_same_v, 627
is_scalar, 629
is_scalar_v, 625
is_scoped_enum, 630
is_scoped_enum_v, 626
is_signedclass, 630

numeric_limits, 492
is_signed_v, 625
is_socket, 1593

directory_entry, 1580
is_sorted, 1204, 1205
is_sorted_until, 1205
is_standard_layout, 630
is_standard_layout_v, 625
is_swappable, 632
is_swappable_v, 626
is_swappable_with, 632
is_swappable_with_v, 626
is_symlink, 1593

directory_entry, 1580
is_trivial, 630
is_trivial_v, 625
is_trivially_assignable, 633
is_trivially_assignable_v, 626
is_trivially_constructible, 632
is_trivially_copy_assignable, 633
is_trivially_copy_constructible, 632
is_trivially_copyable, 630
is_trivially_copyable_v, 625
is_trivially_default_constructible, 632
is_trivially_destructible, 633
is_trivially_destructible_v, 626
is_trivially_move_assignable, 633
is_trivially_move_constructible, 633
is_unbounded_array, 630
is_unbounded_array_v, 626
is_union, 629
is_union_v, 625
is_unsigned, 630
is_unsigned_v, 626
is_void, 628
is_void_v, 624
is_volatile, 630
is_volatile_v, 625
isalnum, 817, 1431
isalpha, 817, 1431
isblank, 817, 1431
iscntrl, 817, 1431
isctype

regex_traits, 1611regular expression traits, 1633
isdigit, 817, 1431
isfinite, 1316
isgraph, 817, 1431

Index of library names 1905

© ISO/IEC N4910

isgreater, 1316
isgreaterequal, 1316
isinf, 1316
isless, 1316
islessequal, 1316
islessgreater, 1316
islower, 817, 1431
isnan, 1316
isnormal, 1316
iso_encoding

weekday, 1377
ispanstream, 1529
isprint, 817, 1431
ispunct, 817, 1431
isspace, 817, 1431
istream, 1465, 1492
istream_iterator, 1000constructor, 1001destructor, 1001

operator*, 1001
operator++, 1001
operator->, 1001
operator==, 1001

istreambuf_iterator, 1003, 1465constructor, 1004
equal, 1004
operator*, 1004
operator++, 1004
operator==, 1004
proxy, 1003

istringstream, 1465, 1515
istrstream, 1787constructor, 1787, 1788

rdbuf, 1788
str, 1788

isunordered, 1316
isupper, 817, 1431
iswalnum, 818
iswalpha, 818
iswblank, 818
iswcntrl, 818
iswctype, 818
iswdigit, 818
iswgraph, 818
iswlower, 818
iswprint, 818
iswpunct, 818
iswspace, 818
iswupper, 818
iswxdigit, 818
isxdigit, 817, 1431
iter_difference_t, 957
iter_move, 960

common_iterator, 995
counted_iterator, 999
filter_view::iterator, 1046
move_iterator, 990
reverse_iterator, 983

iter_swap, 961, 1188

common_iterator, 995
counted_iterator, 999
filter_view::iterator, 1046
join_view::iterator, 1064
lazy_split_view::inner-iterator, 1076
move_iterator, 990
reverse_iterator, 983

iter_value_t, 958
iterator, 1792

basic_format_context, 766
basic_format_parse_context, 765
basic_string, 793
basic_string_view, 781containers, 824
filter_view, 1044
path, 1571
span, 947
transform_view::iterator, 1050

iterator_category
iterator_traits, 958

iterator_traits, 958
iterator_category, 958
pointer, 958
reference, 958

iword
ios_base, 1475

J
jmp_buf, 528
join

jthread, 1648
thread, 1646
views, 1059

join_view, 1060
base, 1060
begin, 1060constructor, 1061
end, 1060

join_view::iterator, 1061constructor, 1063
iter_swap, 1064
operator++, 1063
operator--, 1063
operator->, 1063
operator==, 1064

join_view::sentinel, 1064constructor, 1064
operator==, 1064

join_with
views, 1064

joinable
jthread, 1648
thread, 1646

jthread, 1647constructor, 1647, 1648destructor, 1648
detach, 1649
get_id, 1649

Index of library names 1906

© ISO/IEC N4910

get_stop_source, 1649
get_stop_token, 1649
hardware_concurrency, 1649
join, 1648
joinable, 1648
operator=, 1648
request_stop, 1649
swap, 1648, 1649

K
k

negative_binomial_distribution, 1282
key_compordered associative containers, 841
key_compareordered associative containers, 840
key_equnordered associative containers, 851
key_equalunordered associative containers, 849
key_typeordered associative containers, 839unordered associative containers, 848
keys

views, 1013
keys_view, 1013
kill_dependency, 1656
knuth_b, 1274
L
L_tmpnam, 1597
labs, 483
laguerre, 1330
laguerref, 1330
laguerrel, 1330
lambda

exponential_distribution, 1284
largest_required_pool_block

pool_options, 613
last

span, 945, 946
last_spec, 1370
last_write_time, 1593

directory_entry, 1580
latch

arrive_and_wait, 1711constructor, 1710
count_down, 1710
max, 1710
try_wait, 1710
wait, 1711

latest
choose, 1333

launder, 505
lazy_split

views, 1070
lazy_split_view, 1071

base, 1071

begin, 1071constructor, 1072
end, 1071

lazy_split_view::inner-iterator, 1074
base, 1075constructor, 1075
iter_swap, 1076
operator++, 1075
operator==, 1076

lazy_split_view::outer-iterator, 1072constructor, 1073
operator*, 1073
operator++, 1073
operator==, 1074

lazy_split_view::outer-iterator::value_type,1074
begin, 1074constructor, 1074
end, 1074

LC_ALL, 1462
LC_COLLATE, 1462
LC_CTYPE, 1462
LC_MONETARY, 1462
LC_NUMERIC, 1462
LC_TIME, 1462
lcm, 1239
lconv, 1462
LDBL_DECIMAL_DIG, 496
LDBL_DIG, 496
LDBL_EPSILON, 496
LDBL_HAS_SUBNORM, 496
LDBL_MANT_DIG, 496
LDBL_MAX, 496
LDBL_MAX_10_EXP, 496
LDBL_MAX_EXP, 496
LDBL_MIN, 496
LDBL_MIN_10_EXP, 496
LDBL_MIN_EXP, 496
LDBL_TRUE_MIN, 496
ldexp, 1316
ldexpf, 1316
ldexpl, 1316
ldiv, 483
ldiv_t, 483
leap_second, 1412

date, 1413
operator<, 1413
operator<=, 1414
operator<=>, 1413, 1414
operator==, 1413
operator>, 1414
operator>=, 1414
value, 1413

leap_second_info, 1362
left, 1483
legendre, 1330
legendref, 1330
legendrel, 1330
length

Index of library names 1907

© ISO/IEC N4910

basic_string, 801
basic_string_view, 784
codecvt, 1438
match_results, 1621
regex_traits, 1610
sub_match, 1617

length_error, 544, 545constructor, 545
lerp, 1326
less, 730, 732

operator(), 730
partial_ordering, 516
strong_ordering, 518
weak_ordering, 517

less<>, 730
operator(), 730

less_equal, 731, 733
operator(), 731

less_equal<>, 731
operator(), 731

lexically_normal
path, 1570

lexically_proximate
path, 1571

lexically_relative
path, 1570

lexicographical_compare, 1224
lexicographical_compare_three_way, 1225, 1226
lgamma, 1316
lgammaf, 1316
lgammal, 1316
linear_congruential_engine, 1266constructor, 1266, 1267

result_type, 1266
list, 874

allocator_type, 829
assign, 833
assign_range, 833
begin, 824
cbegin, 825
cend, 825
clear, 833
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827constructor, 876, 877
crbegin, 827
crend, 827
difference_type, 824
emplace, 831
empty, 826
end, 825
erase, 832, 878, 880
erase_if, 880
get_allocator, 829
insert, 831, 877
insert_range, 832
iterator, 824
max_size, 826

merge, 879
operator!=, 825
operator=, 825, 829
operator==, 825
rbegin, 827
reference, 824
remove, 879
rend, 827
resize, 877
reverse, 879
reverse_iterator, 827
size, 825
size_type, 824
sort, 879
splice, 878
swap, 825, 830
unique, 879
value_type, 823

little
endian, 774

llabs, 483
lldiv, 483
lldiv_t, 483
LLONG_MAX, 496
LLONG_MIN, 496
llrint, 1316
llrintf, 1316
llrintl, 1316
llround, 1316
llroundf, 1316
llroundl, 1316
load

atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1675
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1677
atomic_ref, 1658
atomic_ref<floating-point>, 1658
atomic_ref<integral>, 1658
atomic_ref<T*>, 1658

load_factorunordered associative containers, 856
local-time-format-t, 1418
local_days, 1333
local_info, 1406

ambiguous, 1406
first, 1406
nonexistent, 1406
operator<<, 1407
result, 1406
second, 1406
unique, 1406

local_iteratorunordered associative containers, 849
local_seconds, 1333
local_t, 1333
local_time, 1333, 1366

Index of library names 1908

© ISO/IEC N4910

from_stream, 1367
operator<<, 1366

local_time_format, 1418
locale, 1612, 1616, 1632

basic_format_context, 767
category, 1427
classic, 1430
combine, 1430constructor, 1429
facet, 1428
global, 1430
has_facet, 1431
id, 1429
name, 1430
operator(), 1430
operator=, 1430
operator==, 1430
use_facet, 1431

localeconv, 1462
localtime, 1422
locate_zone, 1403

tzdb, 1402
zoned_traits<const time_zone*>, 1408

lock, 1699
shared_lock, 1697
unique_lock, 1694
weak_ptr, 601

lock_guard, 1691constructor, 1691destructor, 1691
log, 1316

complex, 1255
valarray, 1309

log10, 1316
complex, 1255
valarray, 1309

log10f, 1316
log10l, 1316
log1p, 1316
log1pf, 1316
log1pl, 1316
log2, 1316
log2f, 1316
log2l, 1316
logb, 1316
logbf, 1316
logbl, 1316
logf, 1316
logic_error, 544constructor, 544, 545
logical_and, 733

operator(), 733
logical_and<>, 733

operator(), 733
logical_not, 734

operator(), 734
logical_not<>, 734

operator(), 734
logical_or, 733

operator(), 733
logical_or<>, 733

operator(), 733
logl, 1316
lognormal_distribution, 1288constructor, 1289

m, 1289
result_type, 1288
s, 1289

LONG_MAX, 496
LONG_MIN, 496
longjmp, 528
lookup_classname

regex_traits, 1611regular expression traits, 1633
lookup_collatename

regex_traits, 1611regular expression traits, 1633
lower_bound, 1206ordered associative containers, 845
lowest

numeric_limits, 491
lrint, 1316
lrintf, 1316
lrintl, 1316
lround, 1316
lroundf, 1316
lroundl, 1316
M
m

fisher_f_distribution, 1292
lognormal_distribution, 1289

make12, 1401
make24, 1401
make_any, 698
make_error_code

errc, 554
future_errc, 1714
io_errc, 1483

make_error_condition
errc, 555
future_errc, 1714
io_errc, 1484

make_exception_ptr, 512
make_format_args, 770
make_from_tuple, 668
make_heap, 1219
make_index_sequence, 648
make_integer_sequence, 620
make_move_iterator, 990
make_obj_using_allocator, 576
make_optional, 683
make_pair, 657
make_preferred

path, 1566
make_ready_at_thread_exit

packaged_task, 1726
Index of library names 1909

© ISO/IEC N4910

make_reverse_iterator, 983
make_shared, 594, 596, 597
make_signed, 638
make_signed_t, 623
make_tuple, 666

tuple, 666
make_unique, 587, 588
make_unsigned, 639
make_unsigned_t, 623
make_wformat_args, 770
malloc, 483, 580, 1779
map, 889

allocator_type, 829
at, 893
begin, 824
cbegin, 825
cend, 825
clear, 844
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827constructor, 840, 841, 893
contains, 845
count, 845
crbegin, 827
crend, 827
difference_type, 824
emplace, 841
emplace_hint, 841
empty, 826
end, 825
equal_range, 846
erase, 844
erase_if, 894
extract, 843
find, 845
get_allocator, 829
insert, 842, 843, 893
insert_or_assign, 894
iterator, 824
key_comp, 841
key_compare, 840
key_type, 839
lower_bound, 845
mapped_type, 840
max_size, 826
merge, 844
node_type, 840
operator!=, 825
operator<, 893
operator=, 825, 829
operator==, 825, 893
rbegin, 827
reference, 824
rend, 827
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830

try_emplace, 894
upper_bound, 845
value_comp, 841
value_compare, 840
value_type, 823, 840

map::value_compare
comp, 889
operator(), 889

mapped_typeordered associative containers, 840unordered associative containers, 848
mark_count

basic_regex, 1616
mask_array, 1314

operator*=, 1315
operator+=, 1315
operator-=, 1315
operator/=, 1315
operator<<=, 1315
operator=, 1314, 1315
operator>>=, 1315
operator[], 1314
operator%=, 1315
operator&=, 1315
operator^=, 1315
operator|=, 1315
value_type, 1314

match_any, 1607, 1608
match_continuous, 1607, 1608, 1628
match_default, 1607
match_flag_type, 1607, 1633

regex_constants, 1607
match_not_bol, 1607, 1608
match_not_bow, 1607, 1608
match_not_eol, 1607, 1608
match_not_eow, 1607, 1608
match_not_null, 1607, 1608, 1628
match_prev_avail, 1607, 1608, 1628
match_results, 1618, 1627, 1629

begin, 1621constructor, 1620
empty, 1621
end, 1621
format, 1621, 1622
get_allocator, 1622
length, 1621
matched, 1618
max_size, 1621
operator=, 1620
operator==, 1622
operator[], 1621
position, 1621
prefix, 1621
ready, 1620
size, 1620
str, 1621
suffix, 1621
swap, 1622

matched

Index of library names 1910

© ISO/IEC N4910

match_results, 1618
MATH_ERREXCEPT, 1316
math_errhandling, 1316
MATH_ERRNO, 1316
max, 1221

barrier, 1712
counting_semaphore, 1708
duration, 1352
duration_values, 1348
latch, 1710
numeric_limits, 491
time_point, 1357
valarray, 1307
year, 1375

max_align_t, 482, 485
max_blocks_per_chunk

pool_options, 613
max_bucket_countunordered associative containers, 855
max_digits10

numeric_limits, 491
max_element, 1223
max_exponent

numeric_limits, 492
max_exponent10

numeric_limits, 492
max_length

codecvt, 1438
max_load_factorunordered associative containers, 856
max_size

allocator_traits, 578
array, 861
basic_stacktrace, 562
basic_string, 801
basic_string_view, 784containers, 826
match_results, 1621
scoped_allocator_adaptor, 618

MB_CUR_MAX, 483
MB_LEN_MAX, 496
mblen, 483, 821
mbrlen, 819, 821
mbrstowcs, 821
mbrtoc16, 820
mbrtoc32, 820
mbrtoc8, 820, 821
mbrtowc, 819, 821
mbsinit, 819, 821
mbsrtowcs, 819
mbstate_t, 819, 820
mbstowcs, 483, 821
mbtowc, 483, 821
mean

normal_distribution, 1288
poisson_distribution, 1283
student_t_distribution, 1293

mem_fn, 738
mem_fun

zombie, 475
mem_fun1_ref_tzombie, 475
mem_fun1_tzombie, 475
mem_fun_refzombie, 475
mem_fun_ref_tzombie, 475
mem_fun_tzombie, 475
memchr, 818
memcmp, 818
memcpy, 818
memmove, 818
memory_order, 1654, 1681

acq_rel, 1654
acquire, 1654
consume, 1654
relaxed, 1654
release, 1654
seq_cst, 1654

memory_order_acq_rel, 1654, 1681
memory_order_acquire, 1654, 1681
memory_order_consume, 1654, 1681
memory_order_relaxed, 1654, 1681
memory_order_release, 1654, 1681
memory_order_seq_cst, 1654, 1681
memory_resource, 607

allocate, 608
deallocate, 608destructor, 608
do_allocate, 608
do_deallocate, 608
do_is_equal, 608
is_equal, 608
operator=, 607
operator==, 608

memset, 818
merge, 1211

forward_list, 873
list, 879ordered associative containers, 844unordered associative containers, 854

mergeable, 975
mersenne_twister_engine, 1267constructor, 1268

result_type, 1267
message

do_close, 1462
error_category, 552
error_code, 554
error_condition, 555

messages, 1461
close, 1462
do_get, 1462
do_open, 1462
get, 1461
open, 1461

Index of library names 1911

© ISO/IEC N4910

messages_byname, 1462
microseconds, 1333
midpoint, 1239
milliseconds, 1333
min, 1221

duration, 1352
duration_values, 1348
numeric_limits, 491
time_point, 1357
valarray, 1307
year, 1375

min_element, 1223
min_exponent

numeric_limits, 492
min_exponent10

numeric_limits, 492
minmax, 1222
minmax_element, 1223
minstd_rand, 1273
minstd_rand0, 1273
minus, 727

operator(), 727
minus<>, 727

operator(), 727
minutes, 1333

hh_mm_ss, 1401
mismatch, 1178
mktime, 1422
modf, 1316
modff, 1316
modfl, 1316
modulus, 728

operator(), 728
modulus<>, 728

operator(), 728
money_get, 1456

do_get, 1456
get, 1456

money_put, 1457
do_put, 1458
put, 1458

moneypunct, 1458
curr_symbol, 1460
decimal_point, 1460
do_curr_symbol, 1460
do_decimal_point, 1460
do_frac_digits, 1460
do_grouping, 1460
do_neg_format, 1460
do_negative_sign, 1460
do_pos_format, 1460
do_positive_sign, 1460
do_thousands_sep, 1460
frac_digits, 1460
grouping, 1460
negative_sign, 1460
positive_sign, 1460
thousands_sep, 1460

moneypunct_byname, 1461

monostate, 694
hash, 694
operator<=>, 694
operator==, 694

monotonic_buffer_resource, 614constructor, 614, 615destructor, 615
do_allocate, 615
do_deallocate, 615
do_is_equal, 615
release, 615
upstream_resource, 615

month, 1372constructor, 1372
from_stream, 1374
month_day, 1381
month_day_last, 1382
month_weekday, 1383
month_weekday_last, 1383
ok, 1373
operator unsigned, 1373
operator+, 1373
operator++, 1372
operator+=, 1373
operator-, 1373
operator--, 1373
operator-=, 1373
operator<<, 1373
operator<=>, 1373
operator==, 1373
year_month, 1384
year_month_day, 1387
year_month_day_last, 1390
year_month_weekday, 1392
year_month_weekday_last, 1395

month_day, 1380constructor, 1381
day, 1381
from_stream, 1381
month, 1381
ok, 1381
operator<<, 1381
operator<=>, 1381
operator==, 1381

month_day_last, 1381constructor, 1382
month, 1382
ok, 1382
operator<<, 1382
operator<=>, 1382
operator==, 1382
year_month_day_last, 1390

month_weekday, 1382constructor, 1382
month, 1383
ok, 1383
operator<<, 1383
operator==, 1383
weekday_indexed, 1383

Index of library names 1912

© ISO/IEC N4910

month_weekday_last, 1383constructor, 1383
month, 1383
ok, 1384
operator<<, 1384
operator==, 1384
weekday_last, 1383

months, 1333
movable, 542
movealgorithm, 1186, 1187

basic_ios, 1480function, 651
move_backward, 1187
move_constructible, 539
move_if_noexcept, 651
move_iterator, 986

base, 988constructor, 987, 988
iter_move, 990
iter_swap, 990
operator*, 988
operator+, 988, 990
operator++, 988
operator+=, 988
operator-, 989
operator--, 988
operator-=, 989
operator->, 1793
operator<, 989
operator<=, 989
operator<=>, 989
operator=, 988
operator==, 989
operator>, 989
operator>=, 989
operator[], 988

move_only_function, 742
is-callable-from, 743constructor, 743, 744destructor, 744
operator bool, 744
operator(), 744
operator=, 744
operator==, 744
swap, 744

move_sentinel, 990
base, 991constructor, 990, 991
operator=, 991

mt19937, 1273
mt19937_64, 1273
multiline

syntax_option_type, 1608
multimap, 895

allocator_type, 829
begin, 824
cbegin, 825
cend, 825

clear, 844
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827constructor, 840, 841, 898
contains, 845
count, 845
crbegin, 827
crend, 827
difference_type, 824
emplace, 841
emplace_hint, 841
empty, 826
end, 825
equal_range, 846
erase, 844
erase_if, 899
extract, 843
find, 845
get_allocator, 829
insert, 842, 843, 898
iterator, 824
key_comp, 841
key_compare, 840
key_type, 839
lower_bound, 845
mapped_type, 840
max_size, 826
merge, 844
node_type, 840
operator!=, 825
operator<, 898
operator=, 825, 829
operator==, 825, 898
rbegin, 827
reference, 824
rend, 827
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
upper_bound, 845
value_comp, 841
value_compare, 840
value_type, 823, 840

multimap::value_compare
comp, 895
operator(), 895

multiplies, 727
operator(), 727

multiplies<>, 728
operator(), 728

multiset, 902
allocator_type, 829
begin, 824
cbegin, 825
cend, 825
clear, 844
const_iterator, 824

Index of library names 1913

© ISO/IEC N4910

const_reference, 824
const_reverse_iterator, 827constructor, 840, 841, 905, 906
contains, 845
count, 845
crbegin, 827
crend, 827
difference_type, 824
emplace, 841
emplace_hint, 841
empty, 826
end, 825
equal_range, 846
erase, 844
erase_if, 906
extract, 843
find, 845
get_allocator, 829
insert, 842, 843
iterator, 824
key_comp, 841
key_compare, 840
key_type, 839
lower_bound, 845
mapped_type, 840
max_size, 826
merge, 844
node_type, 840
operator!=, 825
operator<, 905
operator=, 825, 829
operator==, 825, 905
rbegin, 827
reference, 824
rend, 827
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
upper_bound, 845
value_comp, 841
value_compare, 840
value_type, 823, 840

mutex, 1685
shared_lock, 1699
unique_lock, 1696

N
n

chi_squared_distribution, 1290
fisher_f_distribution, 1292

name
error_category, 551, 552
locale, 1430
time_zone, 1407
time_zone_link, 1414
type_index, 749
type_info, 507

NAN, 1316
nan, 1316
nanf, 1316
nanl, 1316
nanoseconds, 1333
narrow

basic_ios, 1479
ctype, 1433
ctype<char>, 1436

native
endian, 774
path, 1567

native_handle
stacktrace_entry, 558

NDEBUG, 464
nearbyint, 1316
nearbyintf, 1316
nearbyintl, 1316
negate, 728

operator(), 728
negate<>, 728

operator(), 729
negation, 643
negation_v, 627
negative_binomial_distribution, 1282constructor, 1282

k, 1282
p, 1282
result_type, 1282

negative_sign
moneypunct, 1460

nested_exception, 513constructor, 513
nested_ptr, 513
rethrow_if_nested, 513
rethrow_nested, 513
throw_with_nested, 513

nested_ptr
nested_exception, 513

new
operator, 476, 477, 501–504, 580

new_delete_resource, 611
new_handler, 505
new_object

polymorphic_allocator, 610
next, 977–979

subrange, 1026, 1027
next_arg_id

basic_format_parse_context, 766
next_permutation, 1226
nextafter, 1316
nextafterf, 1316
nextafterl, 1316
nexttoward, 1316
nexttowardf, 1316
nexttowardl, 1316
noboolalpha, 1481
node_typeordered associative containers, 840

Index of library names 1914

© ISO/IEC N4910

unordered associative containers, 849
noemit_on_flush, 1510
none

bitset, 720
none_of, 1172
nonexistent

local_info, 1406
nonexistent_local_time, 1404constructor, 1404
noop_coroutine, 527
noop_coroutine_handle, 522
noop_coroutine_promise, 526
norm, 1255

complex, 1254
normal_distribution, 1287constructor, 1288

mean, 1288
result_type, 1287
stddev, 1288

noshowbase, 1482
noshowpoint, 1482
noshowpos, 1482
noskipws, 1482
nostopstate, 1640
nostopstate_t, 1640
nosubs

syntax_option_type, 1607, 1608
not1zombie, 475
not2zombie, 475
not_equal_to, 729, 732

operator(), 729
not_equal_to<>, 729

operator(), 729
not_fn, 736
nothrow, 500
nothrow_t, 500
notify_all

atomic, 1667
atomic<floating-point>, 1667
atomic<integral>, 1667
atomic<shared_ptr<T>>, 1676
atomic<T*>, 1667
atomic<weak_ptr<T>>, 1678
atomic_ref<T>, 1659
condition_variable, 1702
condition_variable_any, 1705

notify_all_at_thread_exit, 1701
notify_one

atomic, 1667
atomic<floating-point>, 1667
atomic<integral>, 1667
atomic<shared_ptr<T>>, 1676
atomic<T*>, 1667
atomic<weak_ptr<T>>, 1678
atomic_ref<T>, 1659
condition_variable, 1702
condition_variable_any, 1705

nounitbuf, 1482
nouppercase, 1482
now

file_clock, 1365
gps_clock, 1364
tai_clock, 1363
utc_clock, 1361

nth_element, 1205
NULL, 482–484, 819, 1422, 1462, 1597
null_memory_resource, 611
nullopt, 680
nullopt_t, 680
nullptr_t, 482, 484
num_get, 1440

do_get, 1442, 1444
get, 1441

num_put, 1444
do_put, 1445, 1447
put, 1445

numeric_limits, 489, 490
denorm_min, 493
digits, 491
digits10, 491
epsilon, 492
float_denorm_style, 493
has_denorm_loss, 493
has_infinity, 492
has_quiet_NaN, 493
has_signaling_NaN, 493
infinity, 493
is_bounded, 494
is_exact, 492
is_iec559, 493
is_integer, 492
is_modulo, 494
is_signed, 492
lowest, 491
max, 491
max_digits10, 491
max_exponent, 492
max_exponent10, 492
min, 491
min_exponent, 492
min_exponent10, 492
quiet_NaN, 493
radix, 492
round_error, 492
round_style, 494
signaling_NaN, 493
tinyness_before, 494
traps, 494

numeric_limits<bool>, 495
numpunct, 1447

decimal_point, 1448
do_decimal_point, 1449
do_falsename, 1449
do_grouping, 1449
do_thousands_sep, 1449
do_truename, 1449

Index of library names 1915

© ISO/IEC N4910

falsename, 1449
grouping, 1448
thousands_sep, 1448
truename, 1449

numpunct_byname, 1449
O
oct, 1483
offset

sys_info, 1406
offsetof, 482, 484, 1778
ofstream, 1465, 1536
ok

day, 1371
month, 1373
month_day, 1381
month_day_last, 1382
month_weekday, 1383
month_weekday_last, 1384
weekday, 1377
weekday_indexed, 1379
weekday_last, 1380
year, 1375
year_month, 1385
year_month_day, 1388
year_month_day_last, 1390
year_month_weekday, 1393
year_month_weekday_last, 1395

once_flag, 1699, 1700
open

basic_filebuf, 1539, 1540
basic_fstream, 1548
basic_ifstream, 1544
basic_ofstream, 1546
messages, 1461

open_modezombie, 475
openmode

ios_base, 1473
operator

delete, 477, 501–504, 580
new, 476, 477, 501–504, 580

operator floating-point
atomic<floating-point>, 1665
atomic_ref<floating-point>, 1658

operator integral
atomic<integral>, 1665
atomic_ref<integral>, 1658

operator PairLike
subrange, 1026

operator type
atomic, 1665
atomic_ref, 1658

operator basic_string
sub_match, 1617

operator basic_string_view
basic_string, 810

operator bool

basic_format_arg, 769
basic_ios, 1481
basic_istream::sentry, 1496
basic_ostream::sentry, 1506
coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,526
error_code, 554
error_condition, 555
expected, 710
expected<void>, 715
function, 741
move_only_function, 744
optional, 679
shared_lock, 1699
shared_ptr, 594
stacktrace_entry, 558
unique_lock, 1695
unique_ptr, 585

operator const filesystem::path&
directory_entry, 1579

operator coroutine_handle<>
coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,526

operator int
year, 1375

operator local_days
year_month_day, 1388
year_month_day_last, 1390
year_month_weekday, 1393
year_month_weekday_last, 1395

operator local_time
zoned_time, 1412

operator partial_ordering
strong_ordering, 518
weak_ordering, 517

operator precision
hh_mm_ss, 1401

operator shared_ptr<T>
atomic<shared_ptr<T>>, 1675

operator string_type
path, 1567

operator sys_days
year_month_day, 1387
year_month_day_last, 1390
year_month_weekday, 1393
year_month_weekday_last, 1395

operator sys_time
zoned_time, 1412

operator T*
atomic<T*>, 1665
atomic_ref<T*>, 1658

operator T&
reference_wrapper, 726

operator unsigned
day, 1371
month, 1373

operator weak_ordering

Index of library names 1916

© ISO/IEC N4910

strong_ordering, 519
operator weak_ptr<T>

atomic<weak_ptr<T>>, 1677
operator!

basic_ios, 1481
valarray, 1305

operator!=, 1782containers, 825
coroutine_handle, 525
optional, 681, 682
queue, 934
reverse_iterator, 982
stack, 941
valarray, 1308
variant, 692

operator""d
day, 1372

operator""h
duration, 1354

operator""i
complex, 1256

operator""if
complex, 1256

operator""il
complex, 1256

operator""min
duration, 1354

operator""ms
duration, 1354

operator""ns
duration, 1354

operator""s
duration, 1354
string, 817
u16string, 817
u32string, 817
u8string, 817
wstring, 817

operator""sv
string_view, 789
u16string_view, 789
u32string_view, 790
u8string_view, 789
wstring_view, 790

operator""us
duration, 1354

operator""y
year, 1376

operator()
bit_and, 734
bit_and<>, 734
bit_not, 735
bit_not<>, 735
bit_or, 734
bit_or<>, 735
bit_xor, 735
bit_xor<>, 735
boyer_moore_horspool_searcher, 747
boyer_moore_searcher, 746

clock_time_conversion, 1367–1369
coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,526
default_delete, 581
default_searcher, 745
divides, 728
divides<>, 728
equal_to, 729
equal_to<>, 729
function, 741
greater, 730
greater<>, 730
greater_equal, 730
greater_equal<>, 730
less, 730
less<>, 730
less_equal, 731
less_equal<>, 731
locale, 1430
logical_and, 733
logical_and<>, 733
logical_not, 734
logical_not<>, 734
logical_or, 733
logical_or<>, 733
map::value_compare, 889
minus, 727
minus<>, 727
modulus, 728
modulus<>, 728
move_only_function, 744
multimap::value_compare, 895
multiplies, 727
multiplies<>, 728
negate, 728
negate<>, 729
not_equal_to, 729
not_equal_to<>, 729
owner_less, 602
packaged_task, 1726
plus, 727
plus<>, 727
random_device, 1275
reference_wrapper, 726

operator*
back_insert_iterator, 984
basic_istream_view::iterator, 1039
common_iterator, 993
complex, 1253
counted_iterator, 997
duration, 1352
expected, 710
expected<void>, 715
filter_view::iterator, 1046
front_insert_iterator, 985
insert_iterator, 986
iota_view::iterator, 1035
istream_iterator, 1001

Index of library names 1917

© ISO/IEC N4910

istreambuf_iterator, 1004
lazy_split_view::outer-iterator, 1073
move_iterator, 988
optional, 678, 679
ostream_iterator, 1002
ostreambuf_iterator, 1005
regex_iterator, 1628
regex_token_iterator, 1631
reverse_iterator, 981
shared_ptr, 594
unique_ptr, 584
valarray, 1307

operator*=
complex, 1252, 1253
duration, 1351
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311
valarray, 1306

operator+
basic_string, 812, 813
complex, 1253
counted_iterator, 998
day, 1371
duration, 1351, 1357
elements_view::iterator, 1087
iota_view::iterator, 1037
month, 1373
move_iterator, 988, 990
reverse_iterator, 981, 983
time_point, 1357
transform_view::iterator, 1051
valarray, 1305, 1307
weekday, 1378
year, 1375
year_month, 1385
year_month_day, 1388
year_month_day_last, 1390, 1391
year_month_weekday, 1393
year_month_weekday_last, 1395, 1396

operator++
atomic<integral>, 1673
atomic<T*>, 1673
atomic_ref<integral>, 1663
atomic_ref<T*>, 1663
back_insert_iterator, 984
basic_istream_view::iterator, 1039
common_iterator, 993, 994
counted_iterator, 997, 998
day, 1370, 1371
directory_iterator, 1582
duration, 1351
elements_view::iterator, 1086
filter_view::iterator, 1046
front_insert_iterator, 985
insert_iterator, 986
iota_view::iterator, 1035
istream_iterator, 1001

istreambuf_iterator, 1004
join_view::iterator, 1063
lazy_split_view::inner-iterator, 1075
lazy_split_view::outer-iterator, 1073
month, 1372
move_iterator, 988
ostream_iterator, 1002
ostreambuf_iterator, 1005
recursive_directory_iterator, 1585
regex_iterator, 1628, 1629
regex_token_iterator, 1632
reverse_iterator, 981
time_point, 1357
transform_view::iterator, 1050
weekday, 1377
year, 1374, 1375

operator+=
atomic<floating-point>, 1671
atomic<integral>, 1669
atomic<T*>, 1669, 1671, 1673
atomic_ref<floating-point>, 1662
atomic_ref<integral>, 1661
atomic_ref<T*>, 1663
basic_string, 803
complex, 1252
counted_iterator, 998
day, 1371
duration, 1351
elements_view::iterator, 1086
gslice_array, 1314
indirect_array, 1316
iota_view::iterator, 1036
mask_array, 1315
month, 1373
move_iterator, 988
path, 1566
reverse_iterator, 981
slice_array, 1311
time_point, 1357
transform_view::iterator, 1051
valarray, 1306
weekday, 1377
year, 1375
year_month, 1384, 1385
year_month_day, 1387
year_month_day_last, 1389, 1390
year_month_weekday, 1392
year_month_weekday_last, 1394

operator-
common_iterator, 994
complex, 1253
counted_iterator, 998, 999
day, 1371
duration, 1351, 1358
elements_view::iterator, 1087
elements_view::sentinel, 1088
iota_view::iterator, 1037
month, 1373
move_iterator, 989

Index of library names 1918

© ISO/IEC N4910

reverse_iterator, 981, 982
time_point, 1358
transform_view::iterator, 1051
transform_view::sentinel, 1052
valarray, 1305, 1307
weekday, 1378
year, 1375, 1376
year_month, 1385, 1386
year_month_day, 1388
year_month_day_last, 1391
year_month_weekday, 1393
year_month_weekday_last, 1395, 1396

operator--
atomic<integral>, 1673
atomic<T*>, 1673
atomic_ref<integral>, 1663
atomic_ref<T*>, 1663
counted_iterator, 998
day, 1371
duration, 1351
elements_view::iterator, 1086
filter_view::iterator, 1046
iota_view::iterator, 1035, 1036
join_view::iterator, 1063
month, 1373
move_iterator, 988
reverse_iterator, 981
time_point, 1357
transform_view::iterator, 1050
weekday, 1377
year, 1375

operator-=
atomic<floating-point>, 1671
atomic<integral>, 1669
atomic<T*>, 1669, 1671, 1673
atomic_ref<floating-point>, 1662
atomic_ref<integral>, 1661
atomic_ref<T*>, 1663
complex, 1252
counted_iterator, 999
day, 1371
duration, 1351
elements_view::iterator, 1086
gslice_array, 1314
indirect_array, 1316
iota_view::iterator, 1036
mask_array, 1315
month, 1373
move_iterator, 989
reverse_iterator, 981
slice_array, 1311
time_point, 1357
transform_view::iterator, 1051
valarray, 1306
weekday, 1377
year, 1375
year_month, 1385
year_month_day, 1387
year_month_day_last, 1390

year_month_weekday, 1392
year_month_weekday_last, 1394, 1395

operator->
common_iterator, 993
counted_iterator, 997
expected, 710
filter_view::iterator, 1046
istream_iterator, 1001
join_view::iterator, 1063
move_iterator, 1793
optional, 678
regex_iterator, 1628
regex_token_iterator, 1631
reverse_iterator, 981
shared_ptr, 594
unique_ptr, 584

operator/calendar types, 1396–1399
complex, 1253
duration, 1352
path, 1572
valarray, 1307

operator/=
complex, 1252, 1253
duration, 1351
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
path, 1565, 1566
slice_array, 1311
valarray, 1306

operator<
duration, 1353
elements_view::iterator, 1086
iota_view::iterator, 1036
leap_second, 1413
map, 893
move_iterator, 989
multimap, 898
multiset, 905
optional, 681, 682
partial_ordering, 516
queue, 934
reverse_iterator, 982
set, 902
stack, 941
strong_ordering, 519
sys_time, 1413
time_point, 1358
transform_view::iterator, 1051
type_index, 749
unique_ptr, 588
valarray, 1308
variant, 692
vector, 882
weak_ordering, 517, 518

operator<<
basic_ostream, 1507–1509, 1511
basic_stacktrace, 562

Index of library names 1919

© ISO/IEC N4910

basic_string, 814
basic_string_view, 789
bitset, 720, 721
byte, 485
complex, 1253
day, 1371
directory_entry, 1581
duration, 1355
error_code, 554
file_time, 1366
gps_time, 1365
local_info, 1407
local_time, 1366
month, 1373
month_day, 1381
month_day_last, 1382
month_weekday, 1383
month_weekday_last, 1384
path, 1572
shared_ptr, 599
stacktrace_entry, 562
sub_match, 1618
sys_days, 1360
sys_info, 1406
sys_time, 1360
tai_time, 1363
thread::id, 1645
unique_ptr, 589
utc_time, 1361
valarray, 1307
weekday, 1378
weekday_indexed, 1379
weekday_last, 1380
year, 1376
year_month, 1386
year_month_day, 1388
year_month_day_last, 1391
year_month_weekday, 1393
year_month_weekday_last, 1396
zoned_time, 1412

operator<<=
bitset, 718
byte, 485
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311
valarray, 1306

operator<=, 1782
duration, 1353
elements_view::iterator, 1086
iota_view::iterator, 1036
leap_second, 1414
move_iterator, 989
optional, 681, 683
partial_ordering, 516
queue, 934
reverse_iterator, 982
stack, 941

strong_ordering, 519
sys_time, 1414
time_point, 1358
transform_view::iterator, 1051
type_index, 749
unique_ptr, 588, 589
valarray, 1308
variant, 693
weak_ordering, 517, 518

operator<=>
basic_stacktrace, 562
basic_string_view, 789
coroutine_handle, 526
counted_iterator, 999
day, 1371
directory_entry, 1581
duration, 1353
elements_view::iterator, 1087
error_category, 552
error_code, 556
error_condition, 556
iota_view::iterator, 1037
leap_second, 1413, 1414
monostate, 694
month, 1373
month_day, 1381
month_day_last, 1382
move_iterator, 989
optional, 682, 683
pair, 657
partial_ordering, 517
path, 1572
queue, 934
reverse_iterator, 982
shared_ptr, 598
stack, 941
strong_ordering, 519
sub_match, 1617, 1618
sys_time, 1414
thread::id, 1645
time_zone, 1408
time_zone_link, 1415
transform_view::iterator, 1051
tuple, 669
type_index, 749
unique_ptr, 588, 589
variant, 693
weak_ordering, 518
year, 1375
year_month, 1385
year_month_day, 1388
year_month_day_last, 1390

operator=
allocator, 579allocator-aware containers, 829
any, 697
atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665

Index of library names 1920

© ISO/IEC N4910

atomic<shared_ptr<T>>, 1675
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1677
atomic_ref, 1658
atomic_ref<floating-point>, 1658
atomic_ref<integral>, 1658
atomic_ref<T*>, 1658
back_insert_iterator, 984
basic_filebuf, 1539
basic_iostream, 1503
basic_istream, 1495
basic_ostream, 1505
basic_regex, 1615
basic_spanbuf, 1531
basic_stacktrace, 561
basic_streambuf, 1488
basic_string, 800, 801
basic_stringbuf, 1518
basic_syncbuf, 1550
common_iterator, 993containers, 825
coroutine_handle, 524
counted_iterator, 997
directory_iterator, 1582
enable_shared_from_this, 602
error_code, 553
error_condition, 555
exception, 510
expected, 707, 708
expected<void>, 713, 714
front_insert_iterator, 985
function, 740, 741
future, 1719
gslice_array, 1313, 1314
indirect_array, 1315, 1316
insert_iterator, 986
jthread, 1648
locale, 1430
mask_array, 1314, 1315
match_results, 1620
memory_resource, 607
move_iterator, 988
move_only_function, 744
move_sentinel, 991
optional, 675–677
ostream_iterator, 1002
ostreambuf_iterator, 1005
packaged_task, 1725
pair, 655, 656
path, 1565
promise, 1717
recursive_directory_iterator, 1584
reference_wrapper, 726
reverse_iterator, 980
shared_future, 1721, 1722
shared_lock, 1697
shared_ptr, 593
slice_array, 1311
span, 945

stop_source, 1641
stop_token, 1639, 1640
thread, 1646
tuple, 664–666
unique_lock, 1694
unique_ptr, 584, 587
valarray, 1303
variant, 688, 689
weak_ptr, 600, 601
zoned_time, 1411, 1412

operator==
allocator, 580
basic_istream_view::iterator, 1039
basic_stacktrace, 562
basic_string_view, 789
bitset, 720
common_iterator, 994
complex, 1253containers, 825
coroutine_handle, 525
counted_iterator, 999
day, 1371
directory_entry, 1581
duration, 1353
elements_view::iterator, 1086
elements_view::sentinel, 1088
error_category, 552
error_code, 555, 556
error_condition, 556
expected, 711
expected<void>, 715
filter_view::iterator, 1046
filter_view::sentinel, 1047
function, 741
iota_view::iterator, 1036
iota_view::sentinel, 1037
istream_iterator, 1001
istreambuf_iterator, 1004
join_view::iterator, 1064
join_view::sentinel, 1064
lazy_split_view::inner-iterator, 1076
lazy_split_view::outer-iterator, 1074
leap_second, 1413
locale, 1430
map, 893
match_results, 1622
memory_resource, 608
monostate, 694
month, 1373
month_day, 1381
month_day_last, 1382
month_weekday, 1383
month_weekday_last, 1384
move_iterator, 989
move_only_function, 744
multimap, 898
multiset, 905
optional, 681, 682
pair, 657

Index of library names 1921

© ISO/IEC N4910

partial_ordering, 516
path, 1572
polymorphic_allocator, 611
queue, 934
regex_iterator, 1628
regex_token_iterator, 1629, 1631
reverse_iterator, 981
scoped_allocator_adaptor, 619
set, 902
shared_ptr, 597
stack, 941
stacktrace_entry, 559
stop_source, 1642
stop_token, 1640
strong_ordering, 519
sub_match, 1617, 1618
sys_time, 1413
take_view::sentinel, 1055
take_while_view::sentinel, 1057
thread::id, 1644
time_point, 1358
time_zone, 1408
time_zone_link, 1414
transform_view::iterator, 1051
transform_view::sentinel, 1052
tuple, 669
type_index, 748
type_info, 507
unexpected, 701
unique_ptr, 588
unreachable_sentinel_t, 1000
valarray, 1308
variant, 692
vector, 882
weak_ordering, 517
weekday, 1378
weekday_indexed, 1379
weekday_last, 1380
year, 1375
year_month, 1385
year_month_day, 1388
year_month_day_last, 1390
year_month_weekday, 1393
year_month_weekday_last, 1395
zoned_time, 1412

operator>, 1782
duration, 1353
elements_view::iterator, 1086
iota_view::iterator, 1036
leap_second, 1414
move_iterator, 989
optional, 681, 682
partial_ordering, 516
queue, 934
reverse_iterator, 982
stack, 941
strong_ordering, 519
sys_time, 1414
time_point, 1358

transform_view::iterator, 1051
type_index, 749
unique_ptr, 588, 589
valarray, 1308
variant, 692
weak_ordering, 517, 518

operator>=, 1782
duration, 1353
elements_view::iterator, 1086
iota_view::iterator, 1036
leap_second, 1414
move_iterator, 989
optional, 682, 683
partial_ordering, 516
queue, 934
reverse_iterator, 982
stack, 941
strong_ordering, 519
sys_time, 1414
time_point, 1358
transform_view::iterator, 1051
type_index, 749
unique_ptr, 588, 589
valarray, 1308
variant, 693
weak_ordering, 517, 518

operator>>
basic_istream, 1496–1498, 1502
basic_string, 814
bitset, 720, 721
byte, 485
complex, 1253
path, 1572
valarray, 1307

operator>>=
bitset, 718
byte, 485
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311
valarray, 1306

operator[]
basic_stacktrace, 562
basic_string, 802
basic_string_view, 784
bitset, 720
counted_iterator, 997
indirect_array, 1315
iota_view::iterator, 1036
map, 893
mask_array, 1314
match_results, 1621
move_iterator, 988
reverse_iterator, 981
shared_ptr, 594
span, 946
unique_ptr, 587
unordered_map, 913

Index of library names 1922

© ISO/IEC N4910

valarray, 1303–1305
weekday, 1378

operator%
duration, 1352
valarray, 1307

operator%=
duration, 1351
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311
valarray, 1306

operator&
bitset, 720
byte, 485
valarray, 1307

operator&=
atomic<integral>, 1669
atomic_ref<integral>, 1661
bitset, 718
byte, 485
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311
valarray, 1306

operator&&
valarray, 1308

operator^
bitset, 720
byte, 486
valarray, 1307

operator^=
atomic<integral>, 1669
atomic_ref<integral>, 1661
bitset, 718
byte, 486
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311
valarray, 1306

operator~
bitset, 719
byte, 486
valarray, 1305

operator|
bitset, 720
byte, 485
valarray, 1307

operator|=
atomic<integral>, 1669
atomic_ref<integral>, 1661
bitset, 718
byte, 485
gslice_array, 1314
indirect_array, 1316
mask_array, 1315
slice_array, 1311

valarray, 1306
operator||

valarray, 1308
optimize

syntax_option_type, 1607, 1608
optional, 671

and_then, 679constructor, 673, 674destructor, 675
emplace, 677
has_value, 679
hash, 683
operator bool, 679
operator!=, 681, 682
operator*, 678, 679
operator->, 678
operator<, 681, 682
operator<=, 681, 683
operator<=>, 682, 683
operator=, 675–677
operator==, 681, 682
operator>, 681, 682
operator>=, 682, 683
or_else, 680
reset, 680
swap, 678, 683
transform, 680
value, 679
value_or, 679
value_type, 671

options
recursive_directory_iterator, 1584
synchronized_pool_resource, 613
unsynchronized_pool_resource, 613

or_else
optional, 680

ospanstream, 1529
ostream, 1465, 1492
ostream_iterator, 1002constructor, 1002

operator*, 1002
operator++, 1002
operator=, 1002

ostreambuf_iterator, 1004, 1465constructor, 1005
failed, 1005
operator*, 1005
operator++, 1005
operator=, 1005

ostringstream, 1465, 1515
ostrstream, 1788constructor, 1788

freeze, 1788
pcount, 1789
rdbuf, 1788
str, 1788

osyncstream, 1465, 1548
out

basic_format_context, 767
Index of library names 1923

© ISO/IEC N4910

codecvt, 1438
format_to_n_result, 754

out_of_range, 544, 545, 717–720constructor, 546
out_ptr, 605
out_ptr_t, 603constructor, 604destructor, 604
outer_allocator

scoped_allocator_adaptor, 618
outer_allocator_type

scoped_allocator_adaptor, 616
output_iterator, 966
output_iterator_tag, 976
output_range, 1021
overflow

basic_filebuf, 1541
basic_streambuf, 1491
basic_stringbuf, 1520
strstreambuf, 1785

overflow_error, 544, 546, 717, 719constructor, 546, 547
owner_before

shared_ptr, 594
weak_ptr, 601

owner_less, 601
operator(), 602

owns_lock
shared_lock, 1699
unique_lock, 1695

P
p

bernoulli_distribution, 1280
binomial_distribution, 1281
geometric_distribution, 1281
negative_binomial_distribution, 1282

packaged_task, 1724constructor, 1725destructor, 1725
get_future, 1725
make_ready_at_thread_exit, 1726
operator(), 1726
operator=, 1725
reset, 1726
swap, 1725, 1726
valid, 1725

pair, 653, 665, 666constructor, 654, 655
get, 657, 658
operator<=>, 657
operator=, 655, 656
operator==, 657
swap, 656, 657

pairwise
views, 1014

pairwise_transform
views, 1014

par, 751
execution, 751

par_unseq, 751
execution, 751

param
seed_seq, 1276

parent_path
path, 1569

parse, 1418–1422
partial_order, 521
partial_ordering, 516

equivalent, 516
greater, 516
less, 516
operator<, 516
operator<=, 516
operator<=>, 517
operator==, 516
operator>, 516
operator>=, 516
unordered, 516

partial_sort, 1202
partial_sort_copy, 1203
partial_sum, 1234
partition, 1209
partition_copy, 1210
partition_point, 1211
path, 1558

append, 1566
assign, 1565
begin, 1571
c_str, 1567
clear, 1566
compare, 1568
concat, 1566constructor, 1564
copy, 1586
directory_entry, 1579
empty, 1570
end, 1572
extension, 1569
filename, 1569
generic_string, 1568
generic_u16string, 1568
generic_u32string, 1568
generic_u8string, 1568
generic_wstring, 1568
has_extension, 1570
has_filename, 1570
has_parent_path, 1570
has_relative_path, 1570
has_root_directory, 1570
has_root_name, 1570
has_root_path, 1570
has_stem, 1570
hash_value, 1572
is_absolute, 1570
is_relative, 1570
iterator, 1571

Index of library names 1924

© ISO/IEC N4910

lexically_normal, 1570
lexically_proximate, 1571
lexically_relative, 1570
make_preferred, 1566
native, 1567
operator string_type, 1567
operator+=, 1566
operator/, 1572
operator/=, 1565, 1566
operator<<, 1572
operator<=>, 1572
operator=, 1565
operator==, 1572
operator>>, 1572
parent_path, 1569
preferred_separator, 1561
relative_path, 1569
remove, 1594
remove_filename, 1567
replace_extension, 1567
replace_filename, 1567
root_directory, 1569
root_name, 1568
root_path, 1569
stem, 1569
string, 1567, 1568
swap, 1567, 1572
u16string, 1568
u32string, 1568
u8string, 1568
value_type, 1561
wstring, 1568

path1
filesystem_error, 1573

path2
filesystem_error, 1573

pbackfail
basic_filebuf, 1540
basic_streambuf, 1491
basic_stringbuf, 1520
strstreambuf, 1786

pbase
basic_streambuf, 1489

pbump
basic_streambuf, 1489

pcount
ostrstream, 1789
strstream, 1790
strstreambuf, 1785

peek
basic_istream, 1500

perm_options, 1574
permissions, 1593

file_status, 1577
perms, 1574
permutable, 975
perror, 1597
piecewise_constant_distribution, 1294constructor, 1295

densities, 1296
intervals, 1296
result_type, 1294

piecewise_construct, 658
piecewise_construct_t, 658
piecewise_linear_distribution, 1296constructor, 1297

densities, 1297
intervals, 1297
result_type, 1296

placeholders, 738
plus, 727

operator(), 727
plus<>, 727

operator(), 727
pmr::string

hash, 817
pmr::u16string

hash, 817
pmr::u32string

hash, 817
pmr::wstring

hash, 817
pointer

allocator_traits, 577
basic_string, 793
basic_string_view, 781
iterator_traits, 958
scoped_allocator_adaptor, 616

pointer_safetyzombie, 475
pointer_to

pointer_traits, 573
pointer_to_binary_functionzombie, 475
pointer_to_unary_functionzombie, 475
pointer_traits, 572

difference_type, 572
element_type, 572
pointer_to, 573
rebind, 572
to_address, 573

poisson_distribution, 1283constructor, 1283
mean, 1283
result_type, 1283

polar
complex, 1254

polymorphic_allocator, 608
allocate, 609
allocate_bytes, 610
allocate_object, 610
construct, 610constructor, 609
deallocate, 609
deallocate_bytes, 610
deallocate_object, 610
destroy, 1790

Index of library names 1925

© ISO/IEC N4910

new_object, 610
operator==, 611
resource, 610
select_on_container_copy_construction,610
value_type, 608

pool_options, 611
largest_required_pool_block, 613
max_blocks_per_chunk, 613

pop
forward_list, 871
priority_queue, 938
recursive_directory_iterator, 1585

pop_back
basic_string, 807

pop_heap, 1218
popcount, 774
position

match_results, 1621
positive_sign

moneypunct, 1460
pow, 1256, 1316

complex, 1255
valarray, 1309

powf, 1316
powl, 1316
pptr

basic_streambuf, 1489
precision

ios_base, 1431, 1474
pred

chunk_by_view, 1125
drop_while_view, 1059
filter_view, 1044
take_while_view, 1056

predicate, 542
preferredzombie, 476
preferred_separator

path, 1561
prefix

match_results, 1621
prepend_range

forward_list, 871
prev, 977, 979

subrange, 1027
prev_permutation, 1226
PRIdFASTN, 1599
PRIdLEASTN, 1599
PRIdMAX, 1599
PRIdN, 1599
PRIdPTR, 1599
PRIiFASTN, 1599
PRIiLEASTN, 1599
PRIiMAX, 1599
PRIiN, 1599
PRIiPTR, 1599
printf, 1597
PRIoFASTN, 1599

PRIoLEASTN, 1599
PRIoMAX, 1599
PRIoN, 1599
PRIoPTR, 1599
priority_queue, 935constructor, 936–938

emplace, 938
pop, 938
push, 938
push_range, 938
swap, 939

PRIuFASTN, 1599
PRIuLEASTN, 1599
PRIuMAX, 1599
PRIuN, 1599
PRIuPTR, 1599
PRIXFASTN, 1599
PRIxFASTN, 1599
PRIXLEASTN, 1599
PRIxLEASTN, 1599
PRIXMAX, 1599
PRIxMAX, 1599
PRIXN, 1599
PRIxN, 1599
PRIXPTR, 1599
PRIxPTR, 1599
probabilities

discrete_distribution, 1294
proj

complex, 1254
projected, 973
promise, 1716constructor, 1716

coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,527destructor, 1717
get_future, 1717
operator=, 1717
set_exception, 1717
set_exception_at_thread_exit, 1718
set_value, 1717
set_value_at_thread_exit, 1717
swap, 1717, 1718
uses_allocator, 1716

propagate_on_container_copy_assignment
allocator_traits, 578
scoped_allocator_adaptor, 617

propagate_on_container_move_assignment
allocator, 579
allocator_traits, 578
scoped_allocator_adaptor, 617

propagate_on_container_swap
allocator_traits, 578
scoped_allocator_adaptor, 617

proximate, 1594
proxy

istreambuf_iterator, 1003
ptr

Index of library names 1926

© ISO/IEC N4910

from_chars_result, 751
to_chars_result, 751

ptr_funzombie, 475
ptrdiff_t, 482
pubimbue

basic_streambuf, 1487
pubseekoff

basic_streambuf, 1487
pubseekpos

basic_streambuf, 1487
pubsetbuf

basic_streambuf, 1487
pubsync

basic_streambuf, 1487
push

priority_queue, 938
push_back

basic_string, 804
deque, 866

push_front
deque, 866
forward_list, 871

push_heap, 1218
push_range

priority_queue, 938
queue, 934
stack, 941

put
basic_ostream, 1509
money_put, 1458
num_put, 1445
time_put, 1455

put_money, 1513
put_time, 1513
putback

basic_istream, 1501
putc, 1597
putchar, 1597
putenv, 527
puts, 1597
putwc, 819
putwchar, 819
pword

ios_base, 1476
Q
qsort, 483, 1245
queue, 932constructor, 933, 934

operator<, 934
operator<=, 934
operator<=>, 934
operator==, 934
operator>, 934
operator>=, 934
push_range, 934
swap, 934

quick_exit, 462, 483, 499
quiet_NaN

numeric_limits, 493
quoted, 1514
R
radix

numeric_limits, 492
raise, 528
rand, 483, 1297discouraged, 1298
RAND_MAX, 483
random_access_iterator, 967
random_access_iterator_tag, 976
random_access_range, 1021
random_device, 1274constructor, 1274

entropy, 1274
operator(), 1275
result_type, 1274

random_shufflezombie, 475
range, 1019
range_error, 544, 546constructor, 546
ranges

to, 1028, 1029
rank, 635
rank_v, 627
ranlux24, 1273
ranlux24_base, 1273
ranlux48, 1274
ranlux48_base, 1273
ratio, 644, 645
ratio_equal, 646
ratio_equal_v, 645
ratio_greater, 646
ratio_greater_equal, 646
ratio_greater_equal_v, 645
ratio_greater_v, 645
ratio_less, 646
ratio_less_equal, 646
ratio_less_equal_v, 645
ratio_less_v, 645
ratio_not_equal, 646
ratio_not_equal_v, 645
raw_storage_iteratorzombie, 475
rbegin, 1016

basic_stacktrace, 561
basic_string, 801
basic_string_view, 784reversible containers, 827
span, 947

rbegin(C&), 1006
rbegin(initializer_list<E>), 1006
rbegin(T (&array)[N]), 1006
rdbuf

Index of library names 1927

© ISO/IEC N4910

basic_fstream, 1548
basic_ifstream, 1544
basic_ios, 1479
basic_ispanstream, 1533
basic_istringstream, 1523
basic_ofstream, 1546
basic_ospanstream, 1535
basic_ostringstream, 1526
basic_spanstream, 1536
basic_stringstream, 1528
istrstream, 1788
ostrstream, 1788
strstream, 1789
wbuffer_convert, 1799

rdstate
basic_ios, 1481

read
basic_istream, 1500

read_symlink, 1594
readsome

basic_istream, 1501
ready

match_results, 1620
real, 1255

complex, 1252, 1254
realloc, 483, 580, 1779
rebind

expected, 702
expected<void>, 711
pointer_traits, 572

rebind_alloc
allocator_traits, 578

recursion_pending
recursive_directory_iterator, 1585

recursive_directory_iterator, 1583
begin, 1585constructor, 1584
depth, 1585
disable_recursion_pending, 1585
end, 1585
increment, 1585
operator++, 1585
operator=, 1584
options, 1584
pop, 1585
recursion_pending, 1585

recursive_mutex, 1685
recursive_timed_mutex, 1687
reduce, 1231
ref

reference_wrapper, 726
ref_view, 1042
reference

basic_string, 793
basic_string_view, 781containers, 824
iterator_traits, 958

reference_constructs_from_temporary, 634
reference_constructs_from_temporary_v, 627

reference_converts_from_temporary, 634
reference_converts_from_temporary_v, 627
reference_wrapper, 725constructor, 726

cref, 727
get, 726
operator T&, 726
operator(), 726
operator=, 726
ref, 726

refresh
directory_entry, 1579

regex, 1603
regex_constants, 1607

error_type, 1609, 1610
match_flag_type, 1607
syntax_option_type, 1607

regex_error, 1609, 1613, 1633constructor, 1610
regex_iterator, 1627constructor, 1628increment, 1628

operator*, 1628
operator++, 1628, 1629
operator->, 1628
operator==, 1628

regex_match, 1623, 1624
regex_replace, 1626, 1627
regex_search, 1624, 1625
regex_token_iterator, 1629constructor, 1631end-of-sequence, 1629

operator*, 1631
operator++, 1632
operator->, 1631
operator==, 1629, 1631

regex_traits, 1610
char_class_type, 1610
isctype, 1611
length, 1610
lookup_classname, 1611
lookup_collatename, 1611
transform, 1610
transform_primary, 1611
translate, 1610
translate_nocase, 1610
value, 1612

register_callback
ios_base, 1476

regular, 542regular expression traits
isctype, 1633
lookup_classname, 1633
lookup_collatename, 1633

regular_invocable, 542
rehashunordered associative containers, 857
reinterpret_pointer_cast

shared_ptr, 599
Index of library names 1928

© ISO/IEC N4910

rel_ops, 1782
relation, 542
relative, 1594
relative_path

path, 1569
relaxed

memory_order, 1654
release

counting_semaphore, 1709
memory_order, 1654
monotonic_buffer_resource, 615
shared_lock, 1699
synchronized_pool_resource, 613
unique_lock, 1695
unique_ptr, 585
unsynchronized_pool_resource, 613

reload_tzdb, 1404
remainder, 1316
remainderf, 1316
remainderl, 1316
remote_version, 1404
remove, 1193, 1597

forward_list, 873
list, 879
path, 1594

remove_all, 1595
remove_all_extents, 639
remove_all_extents_t, 624
remove_const, 638
remove_const_t, 623
remove_copy, 1193
remove_copy_if, 1193
remove_cv, 638
remove_cv_t, 623
remove_cvref, 639
remove_cvref_t, 624
remove_extent, 639
remove_extent_t, 624
remove_filename

path, 1567
remove_if, 1193

forward_list, 873
remove_pointer, 639
remove_pointer_t, 624
remove_prefix

basic_string_view, 785
remove_reference, 638
remove_reference_t, 623
remove_suffix

basic_string_view, 785
remove_volatile, 638
remove_volatile_t, 623
remquo, 1316
remquof, 1316
remquol, 1316
rename, 1595, 1597
rend, 1017

basic_stacktrace, 561
basic_string, 801

basic_string_view, 784reversible containers, 827
span, 947

rend(C&), 1006
rend(initializer_list<E>), 1006
rend(T (&array)[N]), 1006
rep

system_clock, 1359
replace, 1190

basic_string, 807–809
replace_copy, 1190
replace_copy_if, 1190
replace_extension

path, 1567
replace_filename

directory_entry, 1579
path, 1567

replace_if, 1190
replace_with_range

basic_string, 809
request_stop

jthread, 1649
stop_source, 1641

required_alignment
atomic_ref, 1658
atomic_ref<floating-point>, 1658
atomic_ref<integral>, 1658
atomic_ref<T*>, 1658

reserve
basic_string, 802, 1795unordered associative containers, 857
vector, 883

reset
any, 698
bitset, 719
optional, 680
packaged_task, 1726
shared_ptr, 593
unique_ptr, 585, 587
weak_ptr, 601

resetiosflags, 1511
resize

basic_string, 801
deque, 866
forward_list, 872
list, 877
valarray, 1307
vector, 883

resize_and_overwrite
basic_string, 801

resize_file, 1595
resource

polymorphic_allocator, 610
result

local_info, 1406
result_ofzombie, 475
result_of_tzombie, 475

Index of library names 1929

© ISO/IEC N4910

result_type
bernoulli_distribution, 1279
binomial_distribution, 1280
cauchy_distribution, 1290
chi_squared_distribution, 1289
discard_block_engine, 1270
discrete_distribution, 1293
exponential_distribution, 1283
extreme_value_distribution, 1286
fisher_distribution, 1291
function, 739
gamma_distribution, 1284
geometric_distribution, 1281
independent_bits_engine, 1271
linear_congruential_engine, 1266
lognormal_distribution, 1288
mersenne_twister_engine, 1267
negative_binomial_distribution, 1282
normal_distribution, 1287
piecewise_constant_distribution, 1294
piecewise_linear_distribution, 1296
poisson_distribution, 1283
random_device, 1274
seed_seq, 1275
shuffle_order_engine, 1272
student_t_distribution, 1292
subtract_with_carry_engine, 1268
uniform_int_distribution, 1277
uniform_real_distribution, 1278
weibull_distribution, 1285

resume
coroutine_handle, 525
coroutine_handle<noop_coroutine_promise>,526

rethrow_exception, 512
rethrow_if_nested

nested_exception, 513
rethrow_nested

nested_exception, 513
return_temporary_bufferzombie, 475
reverse, 1196

forward_list, 874
list, 879
views, 1081

reverse_copy, 1197
reverse_iterator, 979

base, 980
basic_string, 793
basic_string_view, 781constructor, 980
iter_move, 983
iter_swap, 983
make_reverse_iterator non-member function,983
operator!=, 982
operator*, 981
operator+, 981, 983
operator++, 981

operator+=, 981
operator-, 981, 982
operator--, 981
operator-=, 981
operator->, 981
operator<, 982
operator<=, 982
operator<=>, 982
operator=, 980
operator==, 981
operator>, 982
operator>=, 982
operator[], 981reversible containers, 827

reverse_view, 1081
base, 1081
begin, 1082constructor, 1082
end, 1082
size, 1081

rewind, 1597
rfind

basic_string, 810
basic_string_view, 787

riemann_zeta, 1330
riemann_zetaf, 1330
riemann_zetal, 1330
right, 1483
rint, 1316
rintf, 1316
rintl, 1316
root_directory

path, 1569
root_name

path, 1568
root_path

path, 1569
rotate, 1197
rotate_copy, 1198
rotl, 773
rotr, 773
round, 1316

duration, 1354
time_point, 1359

round_error
numeric_limits, 492

round_indeterminate, 489
round_style

numeric_limits, 494
round_to_nearest, 490
round_toward_infinity, 490
round_toward_neg_infinity, 490
round_toward_zero, 490
roundf, 1316
roundl, 1316
runtime_error, 544, 546constructor, 546

Index of library names 1930

© ISO/IEC N4910

S
s

lognormal_distribution, 1289
same_as, 534
sample, 1198
save

sys_info, 1406
sbumpc

basic_streambuf, 1487
scalbln, 1316
scalblnf, 1316
scalblnl, 1316
scalbn, 1316
scalbnf, 1316
scalbnl, 1316
scan_is

ctype, 1433
ctype<char>, 1436

scan_not
ctype, 1433
ctype<char>, 1436

scanf, 1597
SCHAR_MAX, 496
SCHAR_MIN, 496
scientific, 1483

chars_format, 751
SCNdFASTN, 1599
SCNdLEASTN, 1599
SCNdMAX, 1599
SCNdN, 1599
SCNdPTR, 1599
SCNiFASTN, 1599
SCNiLEASTN, 1599
SCNiMAX, 1599
SCNiN, 1599
SCNiPTR, 1599
SCNoFASTN, 1599
SCNoLEASTN, 1599
SCNoMAX, 1599
SCNoN, 1599
SCNoPTR, 1599
SCNuFASTN, 1599
SCNuLEASTN, 1599
SCNuMAX, 1599
SCNuN, 1599
SCNuPTR, 1599
SCNxFASTN, 1599
SCNxLEASTN, 1599
SCNxMAX, 1599
SCNxN, 1599
SCNxPTR, 1599
scoped_allocator_adaptor, 616

allocate, 618
const_pointer, 616
const_void_pointer, 616
construct, 618constructor, 617, 618
deallocate, 618

destroy, 618
difference_type, 616
inner_allocator, 618
inner_allocator_type, 617
is_always_equal, 617
max_size, 618
operator==, 619
outer_allocator, 618
outer_allocator_type, 616
pointer, 616
propagate_on_container_copy_assignment,617
propagate_on_container_move_assignment,617
propagate_on_container_swap, 617
select_on_container_copy_construction,619
size_type, 616
value_type, 616
void_pointer, 616

scoped_lock, 1692constructor, 1692destructor, 1692
search, 1182, 1183
search_n, 1183
second

local_info, 1406
second_argument_typezombie, 476
seconds, 1333

hh_mm_ss, 1401
seed_seq, 1275constructor, 1275

generate, 1275
param, 1276
result_type, 1275
size, 1276

SEEK_CUR, 1597
seek_dirzombie, 476
SEEK_END, 1597
SEEK_SET, 1597
seekdir

ios_base, 1473
seekg

basic_istream, 1501
seekoff

basic_filebuf, 1541
basic_spanbuf, 1531
basic_streambuf, 1489
basic_stringbuf, 1521
strstreambuf, 1786

seekp
basic_ostream, 1506

seekpos
basic_filebuf, 1542
basic_spanbuf, 1532
basic_streambuf, 1489
basic_stringbuf, 1521

Index of library names 1931

© ISO/IEC N4910

strstreambuf, 1787
select_on_container_copy_construction

allocator_traits, 578
polymorphic_allocator, 610
scoped_allocator_adaptor, 619

semiregular, 542
sentinel

filter_view, 1046
sentinel_for, 965
sentry

basic_istream, 1495
basic_ostream, 1506constructor, 1495destructor, 1496

seq, 751
execution, 751

seq_cst
memory_order, 1654

set, 899
allocator_type, 829
begin, 824
cbegin, 825
cend, 825
clear, 844
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827constructor, 840, 841, 902
contains, 845
count, 845
crbegin, 827
crend, 827
difference_type, 824
emplace, 841
emplace_hint, 841
empty, 826
end, 825
equal_range, 846
erase, 844
erase_if, 902
extract, 843
find, 845
get_allocator, 829
insert, 842, 843
iterator, 824
key_comp, 841
key_compare, 840
key_type, 839
lower_bound, 845
mapped_type, 840
max_size, 826
merge, 844
node_type, 840
operator!=, 825
operator<, 902
operator=, 825, 829
operator==, 825, 902
rbegin, 827
reference, 824

rend, 827
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
upper_bound, 845
value_comp, 841
value_compare, 840
value_type, 823, 840

set (member)
bitset, 718, 719

set_default_resource, 611
set_difference, 1215
set_emit_on_sync

basic_osyncstream, 1552
basic_syncbuf, 1550

set_exception
promise, 1717

set_exception_at_thread_exit
promise, 1718

set_intersection, 1215
set_new_handler, 477, 505
set_rdbuf

basic_ios, 1480
set_symmetric_difference, 1216
set_terminate, 477, 511
set_unexpectedzombie, 475
set_union, 1214
set_value

promise, 1717
set_value_at_thread_exit

promise, 1717
setbase, 1511
setbuf, 1597

basic_filebuf, 1541
basic_spanbuf, 1532
basic_streambuf, 1489, 1521
strstreambuf, 1787

setenv, 527
setf

ios_base, 1474
setfill, 1512
setg

basic_streambuf, 1488
setiosflags, 1511
setjmp, 476, 528
setlocale, 1462
setp

basic_streambuf, 1489
setprecision, 1512
setstate

basic_ios, 1481
setvbuf, 1597
setw, 1512
sgetc

basic_streambuf, 1487
sgetn

basic_streambuf, 1487
Index of library names 1932

© ISO/IEC N4910

share
future, 1719

shared_from_this
enable_shared_from_this, 602

shared_future, 1720constructor, 1721destructor, 1721
get, 1722
operator=, 1721, 1722
valid, 1722
wait, 1722
wait_for, 1722
wait_until, 1722

shared_lock, 1696constructor, 1697destructor, 1697
lock, 1697
mutex, 1699
operator bool, 1699
operator=, 1697
owns_lock, 1699
release, 1699
swap, 1699
try_lock, 1698
try_lock_for, 1698
try_lock_until, 1698
unlock, 1698

shared_mutex, 1689
shared_ptr, 589, 602, 1793

atomic_compare_exchange_strong, 1794
atomic_compare_exchange_strong_explicit,1794
atomic_compare_exchange_weak, 1794
atomic_compare_exchange_weak_explicit,1794
atomic_exchange, 1794
atomic_exchange_explicit, 1794
atomic_is_lock_free, 1793
atomic_load, 1793
atomic_load_explicit, 1794
atomic_store, 1794
atomic_store_explicit, 1794
const_pointer_cast, 598constructor, 591, 592destructor, 593
dynamic_pointer_cast, 598
get, 593
get_deleter, 599
hash, 603
operator bool, 594
operator*, 594
operator->, 594
operator<<, 599
operator<=>, 598
operator=, 593
operator==, 597
operator[], 594
owner_before, 594
reinterpret_pointer_cast, 599

reset, 593
static_pointer_cast, 598
swap, 593, 598
use_count, 594

shared_timed_mutex, 1690
shift

valarray, 1307
shift_left, 1199
shift_right, 1200
showbase, 1482
showmanyc

basic_filebuf, 1540
basic_streambuf, 1490, 1540

showpoint, 1482
showpos, 1482
shrink_to_fit

basic_string, 802
deque, 866
vector, 883

SHRT_MAX, 496
SHRT_MIN, 496
shuffle, 1199
shuffle_order_engine, 1272constructor, 1273

result_type, 1272
sig_atomic_t, 528
SIG_DFL, 528
SIG_ERR, 528
SIG_IGN, 528
SIGABRT, 528
SIGFPE, 528
SIGILL, 528
SIGINT, 528
signal, 528
signaling_NaN

numeric_limits, 493
signbit, 1316
signed_integral, 536
SIGSEGV, 528
SIGTERM, 528
sin, 1316

complex, 1255
valarray, 1309

sinf, 1316
single

views, 1030
single_view, 1030

begin, 1031constructor, 1031
data, 1031
end, 1031
size, 1031

sinh, 1316
complex, 1255
valarray, 1309

sinhf, 1316
sinhl, 1316
sinl, 1316
size, 1018

Index of library names 1933

© ISO/IEC N4910

adjacent_transform_view, 1106
adjacent_view, 1100
array, 861, 862
basic_stacktrace, 561
basic_string, 801
basic_string_view, 784
bitset, 720
chunk_view, 1111, 1115
common_view, 1080containers, 825
drop_view, 1057
elements_view, 1083
format_to_n_result, 754
gslice, 1313
initializer_list, 514
iota_view, 1034
match_results, 1620
reverse_view, 1081
seed_seq, 1276
single_view, 1031
slice, 1310
slide_view, 1119
span, 946
subrange, 1026
take_view, 1053
transform_view, 1047
valarray, 1306
zip_transform_view, 1095
zip_view, 1088

size(C& c), 1006
size(T (&array)[N]), 1006
size_bytes

span, 946
size_t, 129, 482, 483, 818–820, 1422, 1597
size_type

allocator, 579
allocator_traits, 577
basic_string, 793
basic_string_view, 781containers, 824
scoped_allocator_adaptor, 616

sized_range, 1020
sized_sentinel_for, 965
skipws, 1482
sleep_for

this_thread, 1650
sleep_until

this_thread, 1650
slice, 1310constructor, 1310

size, 1310
start, 1310
stride, 1310

slice_array, 1310
operator*=, 1311
operator+=, 1311
operator-=, 1311
operator/=, 1311
operator<<=, 1311

operator=, 1311
operator>>=, 1311
operator%=, 1311
operator&=, 1311
operator^=, 1311
operator|=, 1311
value_type, 1310

slide
views, 1119

slide_view
begin, 1119
end, 1119
size, 1119

slide_view::iterator, 1121
snextc

basic_streambuf, 1487
snprintf, 1597
sort, 1201

forward_list, 874
list, 879

sort_heap, 1219
sortable, 975
source_file

stacktrace_entry, 559
source_line

stacktrace_entry, 559
source_location, 508
space, 1595
span, 942

back, 946
basic_ispanstream, 1533
basic_ospanstream, 1535
basic_spanbuf, 1531
basic_spanstream, 1536
begin, 947constructor, 943–945
data, 947deduction guide, 945
empty, 946
end, 947
first, 945, 946
front, 946
iterator, 947
last, 945, 946
operator=, 945
rbegin, 947
rend, 947
size, 946
size_bytes, 946
subspan, 945, 946

spanbuf, 1529
spanstream, 1529
sph_bessel, 1331
sph_besself, 1331
sph_bessell, 1331
sph_legendre, 1331
sph_legendref, 1331
sph_legendrel, 1331
sph_neumann, 1331

Index of library names 1934

© ISO/IEC N4910

sph_neumannf, 1331
sph_neumannl, 1331
splice

list, 878
splice_after

forward_list, 872, 873
split_viewconstructor, 1077
sprintf, 1597
sputbackc

basic_streambuf, 1488
sputc

basic_streambuf, 1488
sputn

basic_streambuf, 1488
sqrt, 1316

complex, 1255
valarray, 1309

sqrtf, 1316
sqrtl, 1316
srand, 483, 1297
sscanf, 1597
ssize, 1018
ssize(C& c), 1006
ssize(T (&array)[N]), 1006
stable_partition, 1209
stable_sort, 1202
stack, 939constructor, 940, 941

operator<, 941
operator<=, 941
operator<=>, 941
operator==, 941
operator>, 941
operator>=, 941
push_range, 941
swap, 941

stacktrace_entry, 558constructor, 558
description, 559
native_handle, 558
operator bool, 558
operator<<, 562
operator==, 559
source_file, 559
source_line, 559

start
gslice, 1313
slice, 1310

starts_with, 1183
basic_string, 812
basic_string_view, 786

state
fpos, 1477
wbuffer_convert, 1799
wstring_convert, 1798

state_type
char_traits, 777
wbuffer_convert, 1800

wstring_convert, 1798
static_pointer_cast

shared_ptr, 598
status, 1595, 1596

directory_entry, 1580
status_known, 1597
stddev

normal_distribution, 1288
stderr, 1597
stdin, 1597
stdout, 1597
steady_clock, 1366
stem

path, 1569
stod, 816
stof, 816
stoi, 815, 816
stol, 815, 816
stold, 816
stoll, 815, 816
stop_callback, 1642constructor, 1642destructor, 1643
stop_possible

stop_source, 1641
stop_token, 1640

stop_requested
stop_source, 1641
stop_token, 1640

stop_source, 1640constructor, 1641destructor, 1641
operator=, 1641
operator==, 1642
request_stop, 1641
stop_possible, 1641
stop_requested, 1641
swap, 1641, 1642

stop_source sc
get_token, 1641

stop_token, 1639constructor, 1639destructor, 1639
operator=, 1639, 1640
operator==, 1640
stop_possible, 1640
stop_requested, 1640
swap, 1640

store
atomic, 1665
atomic<floating-point>, 1665
atomic<integral>, 1665
atomic<shared_ptr<T>>, 1675
atomic<T*>, 1665
atomic<weak_ptr<T>>, 1677
atomic_ref, 1658
atomic_ref<floating-point>, 1658
atomic_ref<integral>, 1658
atomic_ref<T*>, 1658

Index of library names 1935

© ISO/IEC N4910

stossczombie, 476
stoul, 815, 816
stoull, 815, 816
str

basic_istringstream, 1524
basic_ostringstream, 1526
basic_stringbuf, 1519, 1520
basic_stringstream, 1529
istrstream, 1788
match_results, 1621
ostrstream, 1788
strstream, 1790
strstreambuf, 1785
sub_match, 1617

strcat, 818
strchr, 818
strcmp, 818
strcoll, 818
strcpy, 818
strcspn, 818
streambuf, 1465, 1484
streamoff, 1464, 1477
streampos, 1465
streamsize, 1464
strerror, 818
strftime, 1422, 1455
strictzombie, 476
strict_weak_order, 543
stride

gslice, 1313
slice, 1310

string, 792
hash, 817
operator""s, 817
path, 1567, 1568

string_view
hash, 789
operator""sv, 789

stringbuf, 1465, 1515
stringstream, 1465, 1515
strlen, 818, 1784, 1788
strncat, 818
strncmp, 818
strncpy, 818
strong_order, 521
strong_ordering, 518

equal, 518
equivalent, 518
greater, 518
less, 518
operator partial_ordering, 518
operator weak_ordering, 519
operator<, 519
operator<=, 519
operator<=>, 519
operator==, 519
operator>, 519

operator>=, 519
strpbrk, 818
strrchr, 818
strspn, 818
strstr, 818
strstream, 1789constructor, 1789destructor, 1789

freeze, 1789
pcount, 1790
rdbuf, 1789
str, 1790

strstreambuf, 1783constructor, 1784, 1785destructor, 1785
freeze, 1785
overflow, 1785
pbackfail, 1786
pcount, 1785
seekoff, 1786
seekpos, 1787
setbuf, 1787
str, 1785
underflow, 1786

strtod, 483
strtof, 483
strtoimax, 1599
strtok, 818
strtol, 483
strtold, 483
strtoll, 483
strtoul, 483
strtoull, 483
strtoumax, 1599
strxfrm, 818
student_t_distribution, 1292constructor, 1293

mean, 1293
result_type, 1292

sub_match, 1616
compare, 1617constructor, 1617
length, 1617
operator basic_string, 1617
operator<<, 1618
operator<=>, 1617, 1618
operator==, 1617, 1618
str, 1617

subrange, 1024
advance, 1027
begin, 1026constructor, 1026
empty, 1026
end, 1026
get, 1027
next, 1026, 1027
operator PairLike, 1026
prev, 1027
size, 1026

Index of library names 1936

© ISO/IEC N4910

subseconds
hh_mm_ss, 1401

subspan
span, 945, 946

substr
basic_string, 811
basic_string_view, 785

subtract_with_carry_engine, 1268constructor, 1269
result_type, 1268

suffix
match_results, 1621

sum
valarray, 1306

sungetc
basic_streambuf, 1488

suspend_always, 527
await_ready, 527
await_resume, 527
await_suspend, 527

suspend_never, 527
await_ready, 527
await_resume, 527
await_suspend, 527

swap, 537, 650allocator-aware containers, 830
any, 698
array, 862
basic_filebuf, 1539
basic_fstream, 1547, 1548
basic_ifstream, 1544
basic_ios, 1480
basic_iostream, 1503
basic_ispanstream, 1533
basic_istream, 1495
basic_istringstream, 1523
basic_ofstream, 1545
basic_ospanstream, 1534, 1535
basic_ostream, 1505
basic_ostringstream, 1526
basic_regex, 1616
basic_spanbuf, 1531
basic_spanstream, 1536
basic_stacktrace, 562
basic_streambuf, 1488
basic_string, 809, 814
basic_string_view, 785
basic_stringbuf, 1518
basic_stringstream, 1528
basic_syncbuf, 1550, 1551containers, 825
expected, 709, 710
expected<void>, 714, 715
function, 741
jthread, 1648, 1649
match_results, 1622
move_only_function, 744
optional, 678, 683
packaged_task, 1725, 1726

pair, 656, 657
path, 1567, 1572
priority_queue, 939
promise, 1717, 1718
queue, 934
shared_lock, 1699
shared_ptr, 593, 598
stack, 941
stop_source, 1641, 1642
stop_token, 1640
thread, 1646, 1647
tuple, 666, 670
unexpected, 701
unique_lock, 1695
unique_ptr, 585
valarray, 1306, 1310
variant, 691, 694
vector, 883
vector<bool>, 887
weak_ptr, 601

swap(unique_ptr&, unique_ptr&), 588
swap_ranges, 1187
swappable, 537
swappable_with, 537
swprintf, 819
swscanf, 819
symlink_status, 1597

directory_entry, 1580
sync

basic_filebuf, 1542
basic_istream, 1501
basic_streambuf, 1489
basic_syncbuf, 1551

sync_with_stdio
ios_base, 1475

syncbuf, 1465, 1548
synchronized_pool_resource, 611constructor, 613destructor, 613

do_allocate, 613
do_deallocate, 614
do_is_equal, 614
options, 613
release, 613
upstream_resource, 613

syntax_option_type, 1607
awk, 1607, 1608
basic, 1607, 1608
collate, 1607, 1608, 1633
ECMAScript, 1607, 1608
egrep, 1607, 1608
extended, 1607, 1608
grep, 1607, 1608
icase, 1607, 1608
multiline, 1608
nosubs, 1607, 1608
optimize, 1607, 1608
regex_constants, 1607

sys_days, 1333
Index of library names 1937

© ISO/IEC N4910

operator<<, 1360
sys_info, 1405

abbrev, 1406
begin, 1406
end, 1406
offset, 1406
operator<<, 1406
save, 1406

sys_seconds, 1333
sys_time, 1333

from_stream, 1360
operator<, 1413
operator<<, 1360
operator<=, 1414
operator<=>, 1414
operator==, 1413
operator>, 1414
operator>=, 1414

system, 483, 527
system_category, 551, 552
system_clock, 1359

from_time_t, 1359
rep, 1359
to_time_t, 1359

system_error, 549, 556
code, 557constructor, 556, 557
what, 557

T
t

binomial_distribution, 1281
table

ctype<char>, 1436
tai_clock, 1362

from_utc, 1363
now, 1363
to_utc, 1363

tai_seconds, 1333
tai_time, 1333

from_stream, 1363
operator<<, 1363

take
views, 1052

take_view, 1053
base, 1053
begin, 1053constructor, 1054
end, 1053
size, 1053

take_view::sentinel, 1054
base, 1055constructor, 1055
operator==, 1055

take_while, 1055
views, 1055

take_while_view, 1055
base, 1055

begin, 1055constructor, 1056
end, 1055
pred, 1056

take_while_view::sentinel, 1056constructor, 1057
operator==, 1057

tan, 1316
complex, 1255
valarray, 1309

tanf, 1316
tanh, 1316

complex, 1255
valarray, 1309

tanhf, 1316
tanhl, 1316
tanl, 1316
target

function, 741
time_zone_link, 1414

target_type
function, 741

tellg
basic_istream, 1501

tellp
basic_ostream, 1506

temp_directory_path, 1597
terminate, 499, 511
terminate_handler, 477, 511
test

atomic_flag, 1679
bitset, 720

test_and_set
atomic_flag, 1679

tgamma, 1316
tgammaf, 1316
tgammal, 1316
this_thread

get_id, 1650
sleep_for, 1650
sleep_until, 1650
yield, 1650

thousands_sep
moneypunct, 1460
numpunct, 1448

thread, 1643constructor, 1645destructor, 1645
detach, 1646
get_id, 1646
hardware_concurrency, 1646
id, 1644
join, 1646
joinable, 1646
operator=, 1646
swap, 1646, 1647

thread::id, 1644constructor, 1644
hash, 1645

Index of library names 1938

© ISO/IEC N4910

operator<<, 1645
operator<=>, 1645
operator==, 1644

three_way_comparable, 520
three_way_comparable_with, 520
throw_with_nested

nested_exception, 513
tie, 667

basic_ios, 1479
tuple, 667

time, 1422
time_get, 1451

date_order, 1452
do_date_order, 1453
do_get, 1454
do_get_date, 1453
do_get_monthname, 1453
do_get_time, 1453
do_get_weekday, 1453
do_get_year, 1454
get, 1452
get_date, 1452
get_monthname, 1452
get_time, 1452
get_weekday, 1452
get_year, 1452

time_get_byname, 1454
time_point, 1356

ceil, 1358constructor, 1356, 1357
floor, 1358
max, 1357
min, 1357
operator+, 1357
operator++, 1357
operator+=, 1357
operator-, 1358
operator--, 1357
operator-=, 1357
operator<, 1358
operator<=, 1358
operator==, 1358
operator>, 1358
operator>=, 1358
round, 1359
time_point_cast, 1358
time_since_epoch, 1357

time_point_cast, 1358
time_point, 1358

time_put, 1454
do_put, 1455
put, 1455

time_put_byname, 1455
time_since_epoch

time_point, 1357
time_t, 1422
TIME_UTC, 1422
time_zone, 1407

get_info, 1407

name, 1407
operator<=>, 1408
operator==, 1408
to_local, 1408
to_sys, 1407, 1408

time_zone_link, 1414
name, 1414
operator<=>, 1415
operator==, 1414
target, 1414

timed_mutex, 1686
timespec, 1422
timespec_get, 1422
tinyness_before

numeric_limits, 494
tm, 819, 1422
TMP_MAX, 1597
tmpfile, 1597
tmpnam, 1597
to

ranges, 1028, 1029
to_address, 573

pointer_traits, 573
to_array, 863
to_bytes

wstring_convert, 1798
to_chars, 752
to_chars_result, 751

ec, 751
ptr, 751

to_duration
hh_mm_ss, 1401

to_integer
byte, 486

to_local
time_zone, 1408

to_string, 816
basic_stacktrace, 562
bitset, 719

to_sys
time_zone, 1407, 1408
utc_clock, 1361

to_time_t
system_clock, 1359

to_ullong
bitset, 719

to_ulong
bitset, 719

to_underlying, 653
to_utc

gps_clock, 1364
tai_clock, 1363

to_wstring, 817
tolower, 817, 1431

ctype, 1433
ctype<char>, 1436

totally_ordered, 541
totally_ordered_with, 541
toupper, 817, 1431

Index of library names 1939

© ISO/IEC N4910

ctype, 1433
ctype<char>, 1436

towctrans, 818
towlower, 818
towupper, 818
traits_type

basic_string, 793
basic_string_view, 781

transform, 1188
collate, 1450
optional, 680
regex_traits, 1610
views, 1047

transform_exclusive_scan, 1236
transform_inclusive_scan, 1237
transform_primary

regex_traits, 1611
transform_reduce, 1232, 1233
transform_view, 1047

base, 1047
begin, 1048constructor, 1048
end, 1048
size, 1047

transform_view::iterator, 1048
base, 1050constructor, 1050
iterator, 1050
operator+, 1051
operator++, 1050
operator+=, 1051
operator-, 1051
operator--, 1050
operator-=, 1051
operator<, 1051
operator<=, 1051
operator<=>, 1051
operator==, 1051
operator>, 1051
operator>=, 1051

transform_view::sentinel, 1051
base, 1052constructor, 1052
operator-, 1052
operator==, 1052

translate
regex_traits, 1610

translate_nocase
regex_traits, 1610

traps
numeric_limits, 494

treat_as_floating_point, 1348
treat_as_floating_point_v, 1333
true_type, 628
truename

numpunct, 1449
trunc, 1316
truncf, 1316
truncl, 1316

try_acquire
counting_semaphore, 1709

try_acquire_for
counting_semaphore, 1709

try_acquire_until
counting_semaphore, 1709

try_emplace
map, 894
unordered_map, 914

try_lock, 1699
shared_lock, 1698
unique_lock, 1694

try_lock_for
shared_lock, 1698
unique_lock, 1695

try_lock_until
shared_lock, 1698
unique_lock, 1695

try_to_lock, 1691
try_to_lock_t, 1691
try_wait

latch, 1710
tuple, 658, 660, 863constructor, 662–664

forward_as_tuple, 667
get, 669
make_tuple, 666
operator<=>, 669
operator=, 664–666
operator==, 669
swap, 666, 670
tie, 667

tuple_cat, 667
tuple_element, 657, 668, 863
tuple_element_t, 659
tuple_size, 657, 668, 863in general, 668
tuple_size_v, 660
type

any, 698
file_status, 1577

type_identity, 639
type_identity_t, 624
type_index, 748constructor, 748

hash, 749
hash_code, 749
name, 749
operator<, 749
operator<=, 749
operator<=>, 749
operator==, 748
operator>, 749
operator>=, 749

type_info, 121, 506
before, 507
hash_code, 507
name, 507
operator==, 507

Index of library names 1940

© ISO/IEC N4910

tzdb, 1402
current_zone, 1402
locate_zone, 1402

tzdb_list, 1402
begin, 1403
cbegin, 1403
cend, 1403
end, 1403
erase_after, 1403
front, 1403

U
u16streampos, 1465
u16string, 792

hash, 817
operator""s, 817
path, 1568

u16string_view
hash, 789
operator""sv, 789

u32streampos, 1465
u32string, 792

hash, 817
operator""s, 817
path, 1568

u32string_view
hash, 789
operator""sv, 790

u8path, 1800
u8string, 792

operator""s, 817
path, 1568

u8string_view
hash, 789
operator""sv, 789

UCHAR_MAX, 496
uflow

basic_filebuf, 1540
basic_streambuf, 1490

uint16_t, 497
uint32_t, 497
uint64_t, 497
uint8_t, 497
uint_fast16_t, 497
uint_fast32_t, 497
uint_fast64_t, 497
uint_fast8_t, 497
uint_least16_t, 497
uint_least32_t, 497
uint_least64_t, 497
uint_least8_t, 497
UINT_MAX, 496
uintmax_t, 497
uintptr_t, 497
ULLONG_MAX, 496
ULONG_MAX, 496
unary_functionzombie, 475

unary_negatezombie, 475
uncaught_exceptionzombie, 475
uncaught_exceptions, 435, 512
undeclare_no_pointerszombie, 475
undeclare_reachablezombie, 475
underflow

basic_filebuf, 1540
basic_streambuf, 1490
basic_stringbuf, 1520
strstreambuf, 1786

underflow_error, 544, 547constructor, 547
underlying_type, 640
underlying_type_t, 624
unexpect, 699
unexpect_t, 699
unexpected, 700constructor, 701

operator==, 701
swap, 701
value, 701

unexpected_handlerzombie, 475
unexpected_type

expected, 702
expected<void>, 711

unget
basic_istream, 1501

ungetc, 1597
ungetwc, 819
uniform_int_distribution, 1277

a, 1278
b, 1278constructor, 1278
result_type, 1277

uniform_random_bit_generator, 1260
uniform_real_distribution, 1278

a, 1279
b, 1279constructor, 1279
result_type, 1278

uninitialized_construct_using_allocator, 576
uninitialized_copy, 1242
uninitialized_copy_n, 1242, 1243
uninitialized_default_construct, 1241
uninitialized_default_construct_n, 1241
uninitialized_fill, 1244
uninitialized_fill_n, 1244
uninitialized_move, 1243
uninitialized_move_n, 1243
uninitialized_value_construct, 1241
uninitialized_value_construct_n, 1242
unique, 1194

forward_list, 873
list, 879

Index of library names 1941

© ISO/IEC N4910

local_info, 1406
unique_copy, 1195
unique_lock, 1692constructor, 1693, 1694destructor, 1694

lock, 1694
mutex, 1696
operator bool, 1695
operator=, 1694
owns_lock, 1695
release, 1695
swap, 1695
try_lock, 1694
try_lock_for, 1695
try_lock_until, 1695
unlock, 1695

unique_ptr, 581, 585, 592constructor, 582, 583, 586destructor, 584
get, 584
get_deleter, 584
hash, 603
operator bool, 585
operator*, 584
operator->, 584
operator<, 588
operator<<, 589
operator<=, 588, 589
operator<=>, 588, 589
operator=, 584, 587
operator==, 588
operator>, 588, 589
operator>=, 588, 589
operator[], 587
release, 585
reset, 585, 587
swap, 585

unitbuf, 1482
unlock

shared_lock, 1698
unique_lock, 1695

unordered
partial_ordering, 516

unordered_map, 906, 908
allocator_type, 829
at, 913
begin, 824, 856
bucket, 855
bucket_count, 855
bucket_size, 856
cbegin, 825, 856
cend, 825, 856
clear, 854
const_iterator, 824
const_local_iterator, 849
const_reference, 824
const_reverse_iterator, 827constructor, 849, 913
contains, 855

count, 855
crbegin, 827
crend, 827
difference_type, 824
emplace, 851
emplace_hint, 852
empty, 826
end, 825, 856
equal_range, 855
erase, 854
erase_if, 915
extract, 853
find, 855
get_allocator, 829
hash_function, 851
hasher, 848
insert, 852, 853, 914
insert_or_assign, 914
insert_range, 852
iterator, 824
key_eq, 851
key_equal, 849
key_type, 848
load_factor, 856
local_iterator, 849
mapped_type, 848
max_bucket_count, 855
max_load_factor, 856
max_size, 826
merge, 854
node_type, 849
operator!=, 825
operator=, 825, 829
operator==, 825
operator[], 913
rbegin, 827
reference, 824
rehash, 857
rend, 827
reserve, 857
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
try_emplace, 914
value_type, 823, 848

unordered_multimap, 906, 915
allocator_type, 829
begin, 824, 856
bucket, 855
bucket_count, 855
bucket_size, 856
cbegin, 825, 856
cend, 825, 856
clear, 854
const_iterator, 824
const_local_iterator, 849
const_reference, 824
const_reverse_iterator, 827

Index of library names 1942

© ISO/IEC N4910

constructor, 849, 919, 920
contains, 855
count, 855
crbegin, 827
crend, 827
difference_type, 824
emplace, 851
emplace_hint, 852
empty, 826
end, 825, 856
equal_range, 855
erase, 854
erase_if, 920
extract, 853
find, 855
get_allocator, 829
hash_function, 851
hasher, 848
insert, 852, 853, 920
insert_range, 852
iterator, 824
key_eq, 851
key_equal, 849
key_type, 848
load_factor, 856
local_iterator, 849
mapped_type, 848
max_bucket_count, 855
max_load_factor, 856
max_size, 826
merge, 854
node_type, 849
operator!=, 825
operator=, 825, 829
operator==, 825
rbegin, 827
reference, 824
rehash, 857
rend, 827
reserve, 857
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
value_type, 823, 848

unordered_multiset, 907, 925
allocator_type, 829
begin, 824, 856
bucket, 855
bucket_count, 855
bucket_size, 856
cbegin, 825, 856
cend, 825, 856
clear, 854
const_iterator, 824
const_local_iterator, 849
const_reference, 824
const_reverse_iterator, 827constructor, 849, 929, 930

contains, 855
count, 855
crbegin, 827
crend, 827
difference_type, 824
emplace, 851
emplace_hint, 852
empty, 826
end, 825, 856
equal_range, 855
erase, 854
erase_if, 930
extract, 853
find, 855
get_allocator, 829
hash_function, 851
hasher, 848
insert, 852, 853
insert_range, 852
iterator, 824
key_eq, 851
key_equal, 849
key_type, 848
load_factor, 856
local_iterator, 849
mapped_type, 848
max_bucket_count, 855
max_load_factor, 856
max_size, 826
merge, 854
node_type, 849
operator!=, 825
operator=, 825, 829
operator==, 825
rbegin, 827
reference, 824
rehash, 857
rend, 827
reserve, 857
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
value_type, 823, 848

unordered_set, 907, 920, 921
allocator_type, 829
begin, 824, 856
bucket, 855
bucket_count, 855
bucket_size, 856
cbegin, 825, 856
cend, 825, 856
clear, 854
const_iterator, 824
const_local_iterator, 849
const_reference, 824
const_reverse_iterator, 827constructor, 849, 924, 925
contains, 855

Index of library names 1943

© ISO/IEC N4910

count, 855
crbegin, 827
crend, 827
difference_type, 824
emplace, 851
emplace_hint, 852
empty, 826
end, 825, 856
equal_range, 855
erase, 854
erase_if, 925
extract, 853
find, 855
get_allocator, 829
hash_function, 851
hasher, 848
insert, 852, 853
insert_range, 852
iterator, 824
key_eq, 851
key_equal, 849
key_type, 848
load_factor, 856
local_iterator, 849
mapped_type, 848
max_bucket_count, 855
max_load_factor, 856
max_size, 826
merge, 854
node_type, 849
operator!=, 825
operator=, 825, 829
operator==, 825
rbegin, 827
reference, 824
rehash, 857
rend, 827
reserve, 857
reverse_iterator, 827
size, 825
size_type, 824
swap, 825, 830
value_type, 823, 848

unreachable, 653
unreachable_sentinel, 954
unreachable_sentinel_t, 999

operator==, 1000
unsetf

ios_base, 1474
unshift

codecvt, 1438
unsigned_integral, 536
unsynchronized_pool_resource, 611constructor, 613destructor, 613

do_allocate, 613
do_deallocate, 614
do_is_equal, 614
options, 613

release, 613
upstream_resource, 613

unwrap_ref_decay, 640, 721
unwrap_ref_decay_t, 721
unwrap_reference, 640
upper_bound, 1207ordered associative containers, 845
uppercase, 1482
upstream_resource

monotonic_buffer_resource, 615
synchronized_pool_resource, 613
unsynchronized_pool_resource, 613

use_count
shared_ptr, 594
weak_ptr, 601

use_facet
locale, 1431

uses_allocator, 574
promise, 1716

uses_allocator<tuple>, 670
uses_allocator_construction_args, 574–576
uses_allocator_v, 565
USHRT_MAX, 496
utc_clock, 1360

from_sys, 1361
now, 1361
to_sys, 1361

utc_seconds, 1333
utc_time, 1333

from_stream, 1362
operator<<, 1361

V
va_arg, 527
va_copy, 527
va_end, 476, 527
va_list, 476, 527
va_start, 527, 528
valarray, 1301, 1313

abs, 1309
acos, 1309
apply, 1307
asin, 1309
atan, 1309
atan2, 1309
begin, 1316constructor, 1302, 1303
cos, 1309
cosh, 1309
cshift, 1307destructor, 1303
end, 1316
exp, 1309
log, 1309
log10, 1309
max, 1307
min, 1307
operator!, 1305

Index of library names 1944

© ISO/IEC N4910

operator!=, 1308
operator*, 1307
operator*=, 1306
operator+, 1305, 1307
operator+=, 1306
operator-, 1305, 1307
operator-=, 1306
operator/, 1307
operator/=, 1306
operator<, 1308
operator<<, 1307
operator<<=, 1306
operator<=, 1308
operator=, 1303
operator==, 1308
operator>, 1308
operator>=, 1308
operator>>, 1307
operator>>=, 1306
operator[], 1303–1305
operator%, 1307
operator%=, 1306
operator&, 1307
operator&=, 1306
operator&&, 1308
operator^, 1307
operator^=, 1306
operator~, 1305
operator|, 1307
operator|=, 1306
operator||, 1308
pow, 1309
resize, 1307
shift, 1307
sin, 1309
sinh, 1309
size, 1306
sqrt, 1309
sum, 1306
swap, 1306, 1310
tan, 1309
tanh, 1309

valid
future, 1720
packaged_task, 1725
shared_future, 1722

value
error_code, 554
error_condition, 555
expected, 710, 715
expected<void>, 715
leap_second, 1413
optional, 679
regex_traits, 1612
unexpected, 701

value_compordered associative containers, 841
value_compareordered associative containers, 840

value_or
expected, 710
optional, 679

value_type
allocator, 579
atomic, 1663
atomic_ref, 1657
basic_string, 793
basic_string_view, 781
complex, 1250containers, 823
expected, 702
expected<void>, 711
gslice_array, 1313
indirect_array, 1315
integer_sequence, 620
integral_constant, 628
mask_array, 1314
optional, 671ordered associative containers, 840
path, 1561
polymorphic_allocator, 608
scoped_allocator_adaptor, 616
slice_array, 1310unordered associative containers, 848

valueless_by_exception
variant, 690

values
views, 1013

values_view, 1013
variant, 685constructor, 686–688destructor, 688

emplace, 689, 690
get, 691, 692
get_if, 692
hash, 694
holds_alternative, 691
index, 690
operator!=, 692
operator<, 692
operator<=, 693
operator<=>, 693
operator=, 688, 689
operator==, 692
operator>, 692
operator>=, 693
swap, 691, 694
valueless_by_exception, 690
visit, 693

variant_alternative, 691
variant_alternative_t, 684
variant_size, 691
variant_size_v, 684
vector, 880

allocator_type, 829
assign, 833
assign_range, 833
begin, 824

Index of library names 1945

© ISO/IEC N4910

capacity, 883
cbegin, 825
cend, 825
clear, 833
const_iterator, 824
const_reference, 824
const_reverse_iterator, 827constructor, 882
crbegin, 827
crend, 827
data, 884
difference_type, 824
emplace, 831
empty, 826
end, 825
erase, 832, 884
erase_if, 885
get_allocator, 829
insert, 831, 884
insert_range, 832
iterator, 824
max_size, 826
operator!=, 825
operator<, 882
operator=, 825, 829
operator==, 825, 882
rbegin, 827
reference, 824
rend, 827
reserve, 883
resize, 883
reverse_iterator, 827
shrink_to_fit, 883
size, 825
size_type, 824
swap, 825, 830, 883
value_type, 823

vector<bool>, 885
flip, 887
swap, 887

vformat, 762
vformat_to, 762
vfprintf, 1597
vfscanf, 1597
vfwprintf, 819
vfwscanf, 819
view, 1020

basic_istringstream, 1524
basic_ostringstream, 1526
basic_stringbuf, 1519
basic_stringstream, 1529

view_interface, 1022
back, 1024
front, 1023

viewable_range, 1022
views

adjacent, 1100
adjacent_transform, 1105
all, 1042

chunk, 1110
chunk_by, 1124
common, 1079
counted, 1079
drop, 1057
drop_while, 1058
elements, 1082
empty, 1010
filter, 1043
iota, 1031
join, 1059
join_with, 1064
keys, 1013
lazy_split, 1070
pairwise, 1014
pairwise_transform, 1014
reverse, 1081
single, 1030
slide, 1119
take, 1052
take_while, 1055
transform, 1047
values, 1013
zip, 1088
zip_transform, 1095

visit, 693
variant, 693

visit_format_arg, 770
void_pointer

allocator_traits, 577
scoped_allocator_adaptor, 616

void_t, 624
vprintf, 1597
vscanf, 1597
vsnprintf, 1597
vsprintf, 1597
vsscanf, 1597
vswprintf, 819
vswscanf, 819
vwprintf, 819
vwscanf, 819
W
wait

atomic, 1667
atomic<floating-point>, 1667
atomic<integral>, 1667
atomic<shared_ptr<T>>, 1676
atomic<T*>, 1667
atomic<weak_ptr<T>>, 1678
atomic_flag, 1679
atomic_ref<T>, 1659
barrier, 1712
condition_variable, 1702, 1703
condition_variable_any, 1706
future, 1720
latch, 1711
shared_future, 1722

Index of library names 1946

© ISO/IEC N4910

wait_for
condition_variable, 1703, 1704
condition_variable_any, 1706, 1707
future, 1720
shared_future, 1722

wait_until
condition_variable, 1703, 1704
condition_variable_any, 1706
future, 1720
shared_future, 1722

wbuffer_convert, 1799constructor, 1800destructor, 1800
rdbuf, 1799
state, 1799
state_type, 1800

wcerr, 1468
WCHAR_MAX, 819
WCHAR_MIN, 819
wcin, 1468
wclog, 1469
wcout, 1468
wcrstombs, 821
wcrtomb, 819, 821
wcscat, 819
wcschr, 819
wcscmp, 819
wcscoll, 819
wcscpy, 819
wcscspn, 819
wcsftime, 819
wcslen, 819
wcsncat, 819
wcsncmp, 819
wcsncpy, 819
wcspbrk, 819
wcsrchr, 819
wcsrtombs, 819
wcsspn, 819
wcsstr, 819
wcstod, 819
wcstof, 819
wcstoimax, 1599
wcstok, 819
wcstol, 819
wcstold, 819
wcstoll, 819
wcstombs, 483, 821
wcstoul, 819
wcstoull, 819
wcstoumax, 1599
wcsxfrm, 819
wctob, 819
wctomb, 483, 821
wctrans, 818
wctrans_t, 818
wctype, 818
wctype_t, 818
weak_from_this

enable_shared_from_this, 603
weak_order, 521
weak_ordering, 517

equivalent, 517
greater, 517
less, 517
operator partial_ordering, 517
operator<, 517, 518
operator<=, 517, 518
operator<=>, 518
operator==, 517
operator>, 517, 518
operator>=, 517, 518

weak_ptr, 592, 599, 603constructor, 600destructor, 600
expired, 601
lock, 601
operator=, 600, 601
owner_before, 601
reset, 601
swap, 601
use_count, 601

weakly_canonical, 1597
weakly_incrementable, 963
weekday, 1376

c_encoding, 1377constructor, 1377
from_stream, 1378
iso_encoding, 1377
ok, 1377
operator+, 1378
operator++, 1377
operator+=, 1377
operator-, 1378
operator--, 1377
operator-=, 1377
operator<<, 1378
operator==, 1378
operator[], 1378
weekday_indexed, 1379
weekday_last, 1380
year_month_weekday, 1392
year_month_weekday_last, 1395

weekday_indexed, 1378constructor, 1379
index, 1379
month_weekday, 1383
ok, 1379
operator<<, 1379
operator==, 1379
weekday, 1379
year_month_weekday, 1393

weekday_last, 1379constructor, 1380
month_weekday_last, 1383
ok, 1380
operator<<, 1380
operator==, 1380

Index of library names 1947

© ISO/IEC N4910

weekday, 1380
year_month_weekday_last, 1395

weeks, 1333
weibull_distribution, 1285

a, 1286
b, 1286constructor, 1286
result_type, 1285

WEOF, 818, 819
wfilebuf, 1465, 1536
wformat_args, 754
wformat_context, 754, 767
wformat_parse_context, 754
wfstream, 1465, 1536
what

bad_alloc, 504
bad_any_cast, 695
bad_array_new_length, 505
bad_cast, 507
bad_exception, 511
bad_expected_access, 702
bad_function_call, 738
bad_optional_access, 681
bad_typeid, 507
bad_variant_access, 694
bad_weak_ptr, 589
exception, 511
filesystem_error, 1573
future_error, 1715
system_error, 557

wide_string
wstring_convert, 1798

widen
basic_ios, 1479
ctype, 1433
ctype<char>, 1436

width
ios_base, 1431, 1474, 1475

wifstream, 1465, 1536
wint_t, 818, 819
wios, 1470
wispanstream, 1529
wistream, 1465, 1492
wistringstream, 1465, 1515
wmemchr, 819
wmemcmp, 819
wmemcpy, 819
wmemmove, 819
wmemset, 819
wofstream, 1465, 1536
wospanstream, 1529
wostream, 1465, 1492
wostringstream, 1465, 1515
wosyncstream, 1465, 1548
wprintf, 819
wregex, 1603
write

basic_ostream, 1510
ws, 1497, 1501

wscanf, 819
wspanbuf, 1529
wspanstream, 1529
wstreambuf, 1465, 1484
wstreampos, 1465
wstring, 792

hash, 817
operator""s, 817
path, 1568

wstring_convert, 1797
byte_string, 1797constructor, 1798
converted, 1798destructor, 1799
from_bytes, 1798
int_type, 1798
state, 1798
state_type, 1798
to_bytes, 1798
wide_string, 1798

wstring_view
hash, 789
operator""sv, 790

wstringbuf, 1465, 1515
wstringstream, 1465, 1515
wsyncbuf, 1465, 1548
X
xalloc

ios_base, 1475
xsgetn

basic_streambuf, 1490
xsputn

basic_streambuf, 1491
Y
year, 1374constructor, 1374

from_stream, 1376
is_leap, 1375
max, 1375
min, 1375
ok, 1375
operator int, 1375
operator""y, 1376
operator+, 1375
operator++, 1374, 1375
operator+=, 1375
operator-, 1375, 1376
operator--, 1375
operator-=, 1375
operator<<, 1376
operator<=>, 1375
operator==, 1375
year_month, 1384
year_month_day, 1387
year_month_day_last, 1390
year_month_weekday, 1392

Index of library names 1948

© ISO/IEC N4910

year_month_weekday_last, 1395
year_month, 1384constructor, 1384

from_stream, 1386
month, 1384
ok, 1385
operator+, 1385
operator+=, 1384, 1385
operator-, 1385, 1386
operator-=, 1385
operator<<, 1386
operator<=>, 1385
operator==, 1385
year, 1384

year_month_day, 1386constructor, 1387
day, 1387
from_stream, 1389
month, 1387
ok, 1388
operator local_days, 1388
operator sys_days, 1387
operator+, 1388
operator+=, 1387
operator-, 1388
operator-=, 1387
operator<<, 1388
operator<=>, 1388
operator==, 1388
year, 1387

year_month_day_last, 1389constructor, 1389
day, 1390
month, 1390
month_day_last, 1390
ok, 1390
operator local_days, 1390
operator sys_days, 1390
operator+, 1390, 1391
operator+=, 1389, 1390
operator-, 1391
operator-=, 1390
operator<<, 1391
operator<=>, 1390
operator==, 1390
year, 1390

year_month_weekday, 1391constructor, 1392
index, 1393
month, 1392
ok, 1393
operator local_days, 1393
operator sys_days, 1393
operator+, 1393
operator+=, 1392
operator-, 1393
operator-=, 1392
operator<<, 1393
operator==, 1393

weekday, 1392
weekday_indexed, 1393
year, 1392

year_month_weekday_last, 1394constructor, 1394
month, 1395
ok, 1395
operator local_days, 1395
operator sys_days, 1395
operator+, 1395, 1396
operator+=, 1394
operator-, 1395, 1396
operator-=, 1394, 1395
operator<<, 1396
operator==, 1395
weekday, 1395
weekday_last, 1395
year, 1395

years, 1333
yield

this_thread, 1650
Z
zero

duration, 1351
duration_values, 1348

zip
views, 1088

zip_transform
views, 1095

zip_transform_view, 1095
begin, 1095
end, 1095
size, 1095

zip_transform_view::iterator, 1096
zip_transform_view::sentinel, 1099
zip_view, 1088

begin, 1088
end, 1088
size, 1088

zip_view::iterator, 1090
zip_view::sentinel, 1094
zoned_time, 1408constructor, 1410–1411

get_info, 1412
get_local_time, 1412
get_sys_time, 1412
get_time_zone, 1412
operator local_time, 1412
operator sys_time, 1412
operator<<, 1412
operator=, 1411, 1412
operator==, 1412

zoned_traits, 1408
zoned_traits<const time_zone*>

default_zone, 1408
locate_zone, 1408

Index of library names 1949

© ISO/IEC N4910

Index of library concepts
The bold page number for each entry is the page where the concept is defined. Other page numbers refer to pages wherethe concept is mentioned in the general text.
advanceable, 1032, 1033, 1033–1037
all-bidirectional, 1090, 1090–1092
all-forward, 1090, 1090–1092
all-random-access, 1090, 1090–1093
assignable_from, 533, 536, 536, 537, 542, 833, 965,974, 977, 978, 980, 988, 990, 991, 993, 995,997
bidirectional-common, 1065, 1067, 1069, 1070
bidirectional_iterator, 949, 952, 955, 966, 966,967, 977–980, 987, 996, 998, 1017, 1021,1025, 1027, 1143, 1150, 1157, 1159, 1168,1169, 1186, 1187, 1196, 1197, 1200, 1209,1212, 1226
bidirectional_range, 1013, 1021, 1021, 1023, 1024,1045, 1046, 1049, 1050, 1061–1063, 1065,1067, 1069, 1070, 1081, 1084–1086, 1088,1090, 1097, 1098, 1102, 1103, 1107–1109,1115–1117, 1119, 1121, 1122, 1125–1127,1143, 1150, 1158, 1160, 1168, 1169, 1186,1187, 1196, 1197, 1210, 1213, 1226
boolean-testable, 457, 519, 539, 540, 540, 542
boolean-testable-impl, 539, 539, 540
borrowed_range, 944, 945, 1020, 1020, 1025–1028,1533, 1534
can-reference, 948, 948, 949, 958, 964, 994, 1011,1013, 1047, 1048, 1051, 1095, 1096, 1099,1106, 1107, 1110
common_range, 1012, 1022, 1022–1024, 1029, 1044,1048, 1060–1063, 1065–1067, 1072, 1077,1080–1083, 1088, 1092, 1096, 1101, 1106,1115, 1119, 1120, 1125
common_reference_with, 520, 532, 535, 535–537,541, 962, 972, 1065
common_with, 533, 535, 536, 996, 998, 999, 1065
compares-as, 519, 520
compatible-joinable-ranges, 1012, 1065, 1065,1066, 1070
constructible_from, 533, 538, 538, 539, 567, 568,958, 974, 993, 994, 1022, 1024, 1028, 1029,1031, 1065, 1066, 1071, 1072, 1077,1242–1244, 1642
container-compatible-range, 794–796, 800, 804,805, 807, 809, 828, 830, 839, 848, 864–871,875–878, 880–882, 884–886, 890, 891, 893,896–900, 902–904, 906, 909, 910, 913, 916,917, 920–922, 925–927, 930, 932–941
contiguous_iterator, 783, 784, 788, 827, 944, 945,947, 950, 955, 967, 967, 996, 997, 1019,1021, 1023, 1079, 1316

contiguous_range, 784, 788, 944, 945, 1021, 1021,1042, 1043
convertible-to-non-slicing, 1024, 1024–1026
convertible_to, 113, 383, 532, 535, 535, 539, 760,828, 958, 959, 980, 988, 990, 991, 993, 995,997, 1024–1026, 1028, 1033, 1043, 1049,1050, 1052, 1053, 1055–1057, 1061, 1063,1064, 1067, 1070, 1073, 1079, 1083–1085,1087, 1090, 1091, 1094, 1096, 1098–1101,1103, 1105, 1107, 1108, 1110, 1116, 1117,1121, 1122, 1169–1171, 1533, 1534
copy_constructible, 533, 539, 539, 542, 680, 972,973, 1010, 1011, 1013, 1014, 1020, 1030,1041, 1044, 1047, 1048, 1051, 1053, 1056,1058–1060, 1065, 1071, 1077, 1080, 1081,1083, 1095, 1096, 1099, 1106, 1107, 1109,1111, 1115, 1125, 1144, 1145, 1147, 1173,1174, 1189, 1192
copyable, 542, 542, 953, 958, 974, 991, 1010, 1012,1021, 1025–1027, 1032, 1034, 1037, 1041,1045, 1046, 1061, 1063, 1080, 1165, 1166,1221, 1222
cpp17-bidirectional-iterator, 959, 959
cpp17-forward-iterator, 958, 959
cpp17-input-iterator, 958, 958, 959, 1029
cpp17-iterator, 958, 958, 959
cpp17-random-access-iterator, 959, 959
decrementable, 1032, 1032–1036
default_initializable, 533, 538, 542, 566, 567,991, 995, 1024, 1031, 1032, 1034, 1038,1039, 1041, 1043–1045, 1047, 1049, 1053,1056, 1057, 1059–1061, 1065, 1067, 1071,1077, 1080, 1081, 1083, 1084, 1100, 1111,1115, 1120, 1125, 1241, 1242
dereferenceable, 948, 948, 949, 962, 991, 993, 996,997
derived_from, 532, 534, 534, 966, 967, 980, 987, 992,1021, 1023, 1024, 1038, 1040, 1045, 1050,1062, 1067, 1075, 1085, 1097, 1108
destructible, 455, 533, 538, 538, 569, 1245, 1642
different-from, 1022, 1025, 1026, 1042
equality_comparable, 533, 540, 540–542, 958, 962,964, 966, 1035, 1036, 1045, 1046, 1049,1051, 1062, 1064, 1067, 1070, 1084, 1086,1091, 1092, 1097, 1099
equality_comparable_with, 541, 541, 731, 732, 992,994
equivalence_relation, 534, 542, 542, 973

Index of library concepts 1950

© ISO/IEC N4910

floating_point, 536, 1332
forward_iterator, 949, 955, 966, 966, 975, 988, 992,994, 996, 998, 1018–1021, 1025, 1026,1067, 1069, 1136, 1137, 1139–1141,1149–1151, 1154–1158, 1166, 1167,1175–1177, 1181–1184, 1196, 1198, 1199,1205–1208, 1211, 1223, 1224, 1240
forward_range, 831, 833, 882, 1012–1014, 1021,1021, 1023, 1044–1046, 1049, 1050,1058–1063, 1065–1067, 1070–1080,1084–1086, 1090, 1097, 1098, 1100, 1101,1104, 1106, 1107, 1109, 1115, 1116, 1119,1121, 1124–1126, 1136, 1137, 1140, 1141,1148, 1149, 1151, 1152, 1154–1158, 1166,1167, 1176, 1177, 1181–1184, 1193, 1195,1198, 1200, 1205, 1207–1209, 1211, 1223,1224
has-arrow, 1022, 1045, 1046, 1061, 1063
has-member-element-type, 957, 957
has-member-value-type, 957, 957
has-tuple-element, 1083, 1083, 1084
incrementable, 949, 964, 964, 966, 1032, 1034, 1035
indirect_binary_predicate, 973, 975, 1014, 1125,1126, 1135, 1137, 1145–1148, 1174, 1177,1178, 1190, 1191, 1193, 1194
indirect_equivalence_relation, 973, 1139, 1140,1149, 1150, 1181, 1195, 1196
indirect_strict_weak_order, 973, 975, 1154–1157,1160, 1164–1168, 1204–1208, 1213,1220–1225
indirect_unary_predicate, 973, 990, 1011, 1012,1044, 1046, 1055, 1056, 1059, 1133–1135,1137, 1142, 1145, 1146, 1148, 1149, 1157,1158, 1172, 1175, 1178, 1185, 1190, 1191,1193, 1194, 1209–1211
indirectly-readable-impl, 962
indirectly_comparable, 950, 974, 975, 975, 1012,1071, 1072, 1074, 1076, 1078, 1079, 1136,1138–1141, 1175, 1176, 1179, 1180,1182–1184
indirectly_copyable, 950, 974, 974, 975, 1142,1143, 1146, 1148–1151, 1154, 1158,1184–1186, 1191, 1194, 1196–1198, 1204,1210
indirectly_copyable_storable, 974, 974, 1149,1150, 1165, 1166, 1196, 1221, 1222
indirectly_movable, 950, 974, 974, 990, 1143, 1186,1187
indirectly_movable_storable, 961, 974, 974, 975
indirectly_readable, 949, 950, 957, 958, 961, 962,962, 965, 972–975, 993–995
indirectly_regular_unary_invocable, 950, 972,973
indirectly_swappable, 950, 974, 975, 975, 980, 983,987, 990, 992, 995, 996, 999, 1045, 1046,1062, 1064, 1067, 1075, 1076, 1091, 1093,1102, 1104, 1144, 1188

indirectly_unary_invocable, 972, 1134, 1173, 1174
indirectly_writable, 949, 955, 962, 962, 966, 974,1144, 1145, 1147, 1189, 1190, 1192, 1230,1239
input_iterator, 567, 568, 949, 953–955, 960, 965,965, 966, 975, 987, 990, 992, 995–997, 999,1021, 1022, 1133–1139, 1141–1146,1148–1151, 1154, 1157–1163, 1168,1172–1176, 1178–1180, 1183–1186,1188–1191, 1194, 1196, 1198, 1204,1209–1211, 1213–1217, 1225, 1240, 1242,1243
input_or_output_iterator, 949, 951–955, 964,964–966, 977–979, 991, 995, 1009,1015–1017, 1019, 1024, 1025, 1147, 1192,1230, 1239
input_range, 567, 568, 798, 828, 865, 870, 876, 882,887, 892, 893, 898, 901, 902, 905, 912, 918,919, 924, 929, 933, 936, 940, 1010–1014,

1021, 1021, 1028, 1029, 1038, 1044,1046–1048, 1051, 1055, 1056, 1059–1061,1064–1066, 1070–1072, 1074, 1083, 1084,1087, 1089, 1090, 1094–1096, 1099,1111–1113, 1133–1139, 1141–1146,1148–1151, 1154, 1157–1163, 1165, 1166,1168, 1172–1176, 1178–1180, 1184–1186,1188–1191, 1194, 1196, 1198, 1204, 1209,1210, 1212–1217, 1221, 1222, 1225, 1242,1243
integral, 323, 324, 536, 536, 773, 956, 963
invocable, 459, 534, 542, 542, 680, 950, 972, 1147,1192, 1260, 1642
mergeable, 951, 974, 975, 975, 1159, 1161–1163,1211, 1212, 1214–1217
movable, 542, 542, 963, 974, 1010, 1020, 1022, 1038,1039, 1041, 1043
move_constructible, 533, 537, 539, 539, 542, 680,994
nothrow-forward-iterator, 566–568, 1240
nothrow-forward-range, 566–568, 1240
nothrow-input-iterator, 566, 569, 1240
nothrow-input-range, 566, 569, 1240
nothrow-sentinel-for, 566–569, 1240
output_iterator, 762, 763, 767, 949, 955, 966, 966,1021, 1146, 1147, 1191, 1192
output_range, 1021, 1021, 1147, 1192, 1230, 1239
pair-like, 1024, 1024
pair-like-convertible-from, 1024, 1025, 1026
partially-ordered-with, 519, 519, 520, 541
permutable, 951, 974, 975, 975, 1147–1152, 1157,1158, 1193, 1195–1200, 1209, 1210
predicate, 534, 542, 542, 973
random_access_iterator, 561, 950, 955, 965, 967,967, 977, 980, 987, 996–999, 1019, 1021,

Index of library concepts 1951

© ISO/IEC N4910

1079, 1151–1155, 1163–1165, 1198, 1199,1201–1204, 1206, 1218–1220
random_access_range, 1021, 1021, 1023, 1049–1051,1053, 1054, 1057, 1058, 1080, 1084–1090,1097–1099, 1102–1104, 1107–1109,1116–1119, 1121–1123, 1151–1155,1163–1165, 1199, 1201–1204, 1206,1218–1220
range, 951, 978, 1008–1011, 1019, 1019–1024, 1028,1039, 1040, 1042–1044, 1047, 1048, 1053,1054, 1056, 1058, 1059, 1077, 1080, 1082,1083, 1089, 1095, 1096, 1101, 1106, 1120,1125, 1130
regular, 542, 542, 558, 964
regular_invocable, 534, 542, 542, 972, 1011, 1013,1047, 1048, 1051, 1095, 1096, 1099, 1106,1107, 1109
relation, 534, 542, 542, 543
returnable-element, 1083, 1083, 1084, 1087
same-as-impl, 534, 534
same_as, 115, 519, 532, 534, 534–536, 953, 957–959,962–967, 978, 991, 997, 1009, 1011, 1021,1022, 1027, 1028, 1032–1034, 1149, 1150,1196, 1240, 1260
semiregular, 459, 542, 542, 953, 965, 990, 1010,1032, 1034, 1037
sentinel_for, 567, 568, 949, 951–953, 965, 965, 966,977–979, 987, 989–992, 994, 1009, 1016,1017, 1019, 1024, 1025, 1052, 1055–1057,1064, 1070, 1087, 1088, 1094, 1099, 1100,1105, 1110, 1133–1169, 1172–1220,1223–1226, 1230, 1239, 1240, 1242, 1243
signed_integral, 536, 536, 958, 963
simple-view, 1022, 1053, 1054, 1056, 1058, 1060,1065, 1071, 1072, 1083, 1089, 1101, 1115,1120
sized_range, 784, 831, 833, 882, 944, 945, 978, 1009,1019, 1020, 1020, 1024–1026, 1028, 1029,1042, 1043, 1048, 1053, 1054, 1057, 1058,1071, 1080–1083, 1088–1090, 1096, 1101,1107, 1111, 1112, 1115, 1119, 1120, 1141,1181, 1182, 1184
sized_sentinel_for, 783, 788, 944, 949, 951, 952,

965, 965, 967, 977, 978, 987, 989, 992, 994,1009, 1018, 1023–1026, 1034, 1037, 1038,1050–1052, 1085, 1087, 1088, 1091, 1093,1094, 1097, 1099, 1100, 1102, 1104, 1105,1108–1110, 1112–1114, 1117, 1119, 1122,1124, 1141, 1181, 1182, 1184
slide-caches-first, 1119, 1120–1122, 1124
slide-caches-last, 1119, 1119, 1120
slide-caches-nothing, 1119, 1119, 1120, 1122
sortable, 951, 974, 975, 975, 1152–1155, 1159, 1160,1163, 1164, 1168, 1169, 1201–1204, 1206,1212, 1213, 1218, 1219, 1226
stream-extractable, 1038, 1038, 1039
strict_weak_order, 534, 543, 543, 973
swappable, 533, 537, 537, 538, 542

swappable_with, 537, 537, 538, 961
three_way_comparable, 515, 520, 520, 558, 570, 589,685, 693, 931, 932, 934, 941, 964, 1035,1037, 1049, 1051, 1085, 1087, 1091, 1093,1097, 1099, 1102, 1104, 1108, 1109, 1116,1118, 1121, 1123, 1353
three_way_comparable_with, 457, 520, 520, 569,588, 671, 682, 683, 731, 952, 953, 982, 989,1335, 1344, 1358, 1414
tiny-range, 1012, 1071, 1071–1074, 1076
totally_ordered, 455, 520, 533, 541, 541, 959, 967,1033, 1035–1037
totally_ordered_with, 520, 541, 541, 732, 733,1033
uniform_random_bit_generator, 1151, 1198, 1199,

1260, 1260
unsigned_integral, 536, 536, 963, 1260
uses-nonqualification-pointer-conversion,

1024, 1024
view, 1010–1014, 1019, 1020, 1020–1024, 1028–1030,1039, 1040, 1042–1044, 1046–1048,1051–1061, 1064–1066, 1070–1072, 1074,1076, 1078–1084, 1087–1090, 1094–1096,1099–1101, 1105–1107, 1109–1113, 1115,1116, 1119, 1121, 1124–1126
viewable_range, 1011, 1022, 1022, 1040
weakly-equality-comparable-with, 520, 540, 540,541, 965, 1010, 1032, 1034, 1037
weakly_incrementable, 949, 950, 956, 962, 963, 964,973, 975, 990, 999, 1000, 1010, 1032, 1034,1037, 1142–1145, 1148–1151, 1158, 1159,1161–1163, 1184–1186, 1189, 1194,1196–1198, 1210–1212, 1214–1217, 1230,1239
zip-is-common, 1088, 1089

Index of library concepts 1952

© ISO/IEC N4910

Index of implementation-defined behavior
The entries in this index are rough descriptions; exact specifications are at the indicated page in the general text.
#pragma, 450
additional execution policies supported by parallelalgorithms, 750, 1132additional file_type enumerators for file systemssupporting additional types of file, 1574additional formats for time_get::do_get_date, 1453additional supported forms of preprocessing directive,438algorithms for producing the standard random numberdistributions, 1277alignment, 68alignment additional values, 68alignment of bit-fields within a class object, 275allocation of bit-fields within a class object, 275any use of an invalid pointer other than to performindirection or deallocate, 65argument values to construct ios_base::failure,1481assignability of placeholder objects, 738
behavior of iostream classes when traits::pos_typeis not streampos or when

traits::off_type is not streamoff, 1464behavior of non-standard attributes, 234behavior of strstreambuf::setbuf, 1787bits in a byte, 58
choice of larger or smaller value of

floating-point-literal , 25code unit sequence for conditional-escape-sequence,27code unit sequence for non-representable string-literal ,27column value of source_location::current, 509conversions between pointers and integers, 124converting function pointer to object pointer and viceversa, 124
default configuration of a pool, 613default next_buffer_size for a

monotonic_buffer_resource, 614default number of buckets in unordered_map, 913default number of buckets in unordered_multimap,919, 920default number of buckets in unordered_multiset,929, 930default number of buckets in unordered_set, 925default value for least_max_value template parameterof counting_semaphore, 1708defining main in freestanding environment, 85definition and meaning of __STDC__, 452, 1777

definition and meaning of __STDC_VERSION__, 452definition of NULL, 484, 1778derived type for typeid, 121diagnostic message, 4dynamic initialization of static inline variables before
main, 87dynamic initialization of static variables before main,86, 87dynamic initialization of thread-local variables beforeentry, 87

effect of calling associated Laguerre polynomials with
n >= 128 or m >= 128, 1326effect of calling associated Legendre polynomials with
l >= 128, 1327effect of calling basic_filebuf::setbuf withnonzero arguments, 1541effect of calling basic_filebuf::sync when a getarea exists, 1542effect of calling basic_streambuf::setbuf withnonzero arguments, 1521effect of calling cylindrical Bessel functions of the firstkind with nu >= 128, 1328effect of calling cylindrical Neumann functions with nu
>= 128, 1329effect of calling Hermite polynomials with n >= 128,1330effect of calling ios_base::sync_with_stdio afterany input or output operation on standardstreams, 1475effect of calling irregular modified cylindrical Besselfunctions with nu >= 128, 1328effect of calling Laguerre polynomials with n >= 128,1330effect of calling Legendre polynomials with l >= 128,1330effect of calling regular modified cylindrical Besselfunctions with nu >= 128, 1328effect of calling spherical associated Legendrefunctions with l >= 128, 1331effect of calling spherical Bessel functions with n >=
128, 1331effect of calling spherical Neumann functions with n
>= 128, 1331effect of conditional-escape-sequence on encodingstate, 27effect of filesystem::copy, 1586effect on C locale of calling locale::global, 1430encoding assumption for format width computation,758

error_category for errors originating outside theoperating system, 481
Index of impl.-def. behavior 1953

© ISO/IEC N4910

exception type when random_device constructor fails,1274exception type when random_device::operator()fails, 1275exception type when shared_ptr constructor fails,591, 592exceptions thrown by standard library functions thathave a potentially-throwing exceptionspecification, 481exit status, 499extended signed integer types, 73
file type of the file argument of filesystem::status,1596formatted character sequence generated by

time_put::do_put in C locale, 1455forward progress guarantees for implicit threads ofparallel algorithms (if not defined for
thread), 1131

growth factor for monotonic_buffer_resource, 615
headers for freestanding implementation, 462how random_device::operator() generates values,1275how the set of importable headers is determined, 245
integer-class type, 963interactive device, 11interpretation of the path character sequence withformat path::auto_format, 1574
largest supported value to configure the largestallocation satisfied directly by a pool, 613largest supported value to configure the maximumnumber of blocks to replenish a pool, 613last enumerator of launch, 1713linkage of main, 85linkage of names from C standard library, 464linkage of objects between C++ and other languages,233locale names, 1429lvalue-to-rvalue conversion of an invalid pointer value,94
manner of search for included source file, 441mapping from name to catalog when calling

messages::do_open, 1462mapping header name to header or external source file,18mapping of pointer to integer, 123mapping physical source file characters to translationcharacter set, 13, 1759mapping to message when calling messages::do_get,1462maximum depth of recursive template instantiations,401maximum size of an allocated object, 130, 505meaning of ’, \, /*, or // in a q-char-sequence or an
h-char-sequence, 18

meaning of asm declaration, 231meaning of attribute declaration, 162meaning of dot-dot in root-directory , 1562
nesting limit for #include directives, 442NTCTS in basic_ostream<charT, traits>&

operator<<(nullptr_t), 1508number of placeholders for bind expressions, 723, 738number of threads in a program under a freestandingimplementation, 80
operating system on which implementation depends,1554ordinary and wide literal encodings, 16
parameters to main, 85passing argument of class type through ellipsis, 118physical source file characters, 13presence and meaning of native_handle_type and

native_handle, 1635
rank of extended signed integer type, 77required alignment for atomic_ref type’s operations,1657, 1660–1662required libraries for freestanding implementation, 10resource limits on a message catalog, 1462result of filesystem::file_size, 1591result of inexact floating-point conversion, 96resuming a coroutine on a different execution agent,525return value of bad_alloc::what, 505return value of bad_any_cast::what, 695return value of bad_array_new_length::what, 505return value of bad_cast::what, 507return value of bad_exception::what, 511return value of bad_function_call::what, 738return value of bad_optional_access::what, 681return value of bad_typeid::what, 507return value of bad_variant_access::what, 694return value of bad_weak_ptr::what, 589return value of char_traits<char16_t>::eof, 779return value of char_traits<char32_t>::eof, 779return value of char_traits<char8_t>::eof, 778return value of exception::what, 511return value of source_location::current, 508return value of type_info::name(), 507
search locations for "" header, 442search locations for <> header, 441semantics of an access through a volatile glvalue, 172semantics of linkage specifiers, 231semantics of parallel algorithms invoked withimplementation-defined execution policies,1132semantics of stacktrace_entry::native_handle,558semantics of token parameter and default token valueused by random_device constructors, 1274sequence of places searched for a header, 441

Index of impl.-def. behavior 1954

© ISO/IEC N4910

set of character types that iostreams templates can beinstantiated for, 1427, 1464signedness of char, 172
sizeof applied to fundamental types other than char,

signed char, and unsigned char, 128stack unwinding before invocation of std::terminate,432, 435
stacktrace_entry::native_handle_type, 558startup and termination in freestanding environment,85strict total order over pointer values, 5string resulting from __func__, 213support for always lock-free integral atomic types infreestanding environments, 462support for extended alignments, 68support for module-import-declarations with non-C++language linkage, 231supported multibyte character encoding rules, 777supported root-names in addition to any operatingsystem dependent root-names, 1561, 1562
text of __DATE__ when date of translation is notavailable, 450text of __TIME__ when time of translation is notavailable, 450threads and program points at which deferred dynamicinitialization is performed, 86, 87type aliases atomic_signed_lock_free and

atomic_unsigned_lock_free infreestanding environments, 462type of a directory-like file, 1581, 1583type of array::const_iterator, 861type of array::iterator, 861type of basic_stacktrace::const_iterator, 559type of basic_stacktrace::difference_type, 559type of basic_stacktrace::size_type, 559type of basic_string::const_iterator, 793type of basic_string::iterator, 793type of basic_string_view::const_iterator, 781,784type of default_random_engine, 1274type of deque::const_iterator, 864type of deque::difference_type, 864type of deque::iterator, 864type of deque::size_type, 863type of forward_list::const_iterator, 868type of forward_list::difference_type, 868type of forward_list::iterator, 868type of forward_list::size_type, 868type of list::const_iterator, 874type of list::difference_type, 874type of list::iterator, 874type of list::size_type, 874type of map::const_iterator, 890type of map::difference_type, 890type of map::iterator, 890type of map::size_type, 890type of multimap::const_iterator, 895type of multimap::difference_type, 895

type of multimap::iterator, 895type of multimap::size_type, 895type of multiset::const_iterator, 903type of multiset::difference_type, 903type of multiset::iterator, 903type of multiset::size_type, 903type of ptrdiff_t, 138, 485type of regex_constants::error_type, 1609type of regex_constants::match_flag_type, 1607type of set::const_iterator, 899type of set::difference_type, 899type of set::iterator, 899type of set::size_type, 899type of size_t, 485type of span::iterator, 942, 947type of streamoff, 1464type of syntax_option_type, 1607type of unordered_map::const_iterator, 909type of unordered_map::const_local_iterator, 909type of unordered_map::difference_type, 909type of unordered_map::iterator, 909type of unordered_map::local_iterator, 909type of unordered_map::size_type, 909type of unordered_multimap::const_iterator, 916type of unordered_multimap::const_local_it-
erator,916type of unordered_multimap::difference_type, 915type of unordered_multimap::iterator, 916type of unordered_multimap::local_iterator, 916type of unordered_multimap::size_type, 915type of unordered_multiset::const_iterator, 926type of unordered_multiset::const_local_it-
erator,926type of unordered_multiset::difference_type, 926type of unordered_multiset::iterator, 926type of unordered_multiset::local_iterator, 926type of unordered_multiset::size_type, 926type of unordered_set::const_iterator, 921type of unordered_set::const_local_iterator, 921type of unordered_set::difference_type, 921type of unordered_set::iterator, 921type of unordered_set::local_iterator, 921type of unordered_set::size_type, 921type of vector::const_iterator, 880type of vector::difference_type, 880type of vector::iterator, 880type of vector::size_type, 880type of vector<bool>::const_iterator, 885type of vector<bool>::const_pointer, 885type of vector<bool>::difference_type, 885type of vector<bool>::iterator, 885type of vector<bool>::pointer, 885type of vector<bool>::size_type, 885

underlying type for enumeration, 220underlying type of bool, 74underlying type of char, 74
Index of impl.-def. behavior 1955

© ISO/IEC N4910

underlying type of wchar_t, 74unit suffix when Period::type is micro, 1355
value of bit-field that cannot representassigned value, 144incremented value, 119initializer, 200value of conditional-escape-sequence, 24value of ctype<char>::table_size, 1435value of future_errc::broken_promise, 1713value of future_errc::future_already_retrieved,1713value of future_errc::no_state, 1713value of future_errc::promise_already_satisfied,1713value of has-attribute-expression for non-standardattributes, 440value of non-encodable character literal ormulticharacter literal, 23value of pow(0,0), 1255value of result of inexact integer to floating-pointconversion, 96value representation of floating-point types, 74value representation of pointer types, 76values of a trivially copyable type, 72values of various ATOMIC_..._LOCK_FREE macros,1656
whether <cfenv> functions can be used to managefloating-point status, 1248whether a given atomic type’s operations are alwayslock free, 1663, 1665, 1668, 1670, 1671,1674, 1676whether a given atomic_ref type’s operations arealways lock free, 1657, 1660–1662whether basic_spanbuf’s move source is empty aftera move, 1531whether functions from Annex K of the C standardlibrary are declared when C++ headers areincluded, 462whether locale object is global or per-thread, 1427whether pragma FENV_ACCESS is supported, 1248whether rand may introduce a data race, 1298whether sequence pointers are copied by

basic_filebuf move constructor, 1538whether sequence pointers are copied by
basic_stringbuf move constructor, 1518whether sequence pointers are initialized to nullpointers, 1517whether source file inclusion of importable header isreplaced with import directive, 442whether source of translation units must be available tolocate template definitions, 14whether stack is unwound before invoking the function
std::terminate when a noexceptspecification is violated, 435whether the implementation is hosted or freestanding,462

whether the lifetime of a parameter ends when thecallee returns or at the end of the enclosingfull-expression, 117whether the sources for module units and header unitson which the current translation unit has aninterface dependency are required to beavailable during translation, 13whether the thread that executes main and the threadscreated by std::thread or std::jthreadprovide concurrent forward progressguarantees, 84whether time_get::do_get_year accepts two-digityear numbers, 1454whether values are rounded or truncated to the requiredprecision when converting between time_tvalues and time_point objects, 1359which functions in the C++ standard library may berecursively reentered, 480which non-standard-layout objects containing no dataare considered empty, 60which scalar types have unique object representations,635width of integral type, 74

Index of impl.-def. behavior 1956

	Contents
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General principles
	4.1 Implementation compliance
	4.1.1 General
	4.1.2 Abstract machine

	4.2 Structure of this document
	4.3 Syntax notation

	5 Lexical conventions
	5.1 Separate translation
	5.2 Phases of translation
	5.3 Character sets
	5.4 Preprocessing tokens
	5.5 Alternative tokens
	5.6 Tokens
	5.7 Comments
	5.8 Header names
	5.9 Preprocessing numbers
	5.10 Identifiers
	5.11 Keywords
	5.12 Operators and punctuators
	5.13 Literals
	5.13.1 Kinds of literals
	5.13.2 Integer literals
	5.13.3 Character literals
	5.13.4 Floating-point literals
	5.13.5 String literals
	5.13.6 Boolean literals
	5.13.7 Pointer literals
	5.13.8 User-defined literals

	6 Basics
	6.1 Preamble
	6.2 Declarations and definitions
	6.3 One-definition rule
	6.4 Scope
	6.4.1 General
	6.4.2 Point of declaration
	6.4.3 Block scope
	6.4.4 Function parameter scope
	6.4.5 Namespace scope
	6.4.6 Class scope
	6.4.7 Enumeration scope
	6.4.8 Template parameter scope

	6.5 Name lookup
	6.5.1 General
	6.5.2 Member name lookup
	6.5.3 Unqualified name lookup
	6.5.4 Argument-dependent name lookup
	6.5.5 Qualified name lookup
	6.5.5.1 General
	6.5.5.2 Class members
	6.5.5.3 Namespace members

	6.5.6 Elaborated type specifiers
	6.5.7 Using-directives and namespace aliases

	6.6 Program and linkage
	6.7 Memory and objects
	6.7.1 Memory model
	6.7.2 Object model
	6.7.3 Lifetime
	6.7.4 Indeterminate values
	6.7.5 Storage duration
	6.7.5.1 General
	6.7.5.2 Static storage duration
	6.7.5.3 Thread storage duration
	6.7.5.4 Automatic storage duration
	6.7.5.5 Dynamic storage duration
	6.7.5.5.1 General
	6.7.5.5.2 Allocation functions
	6.7.5.5.3 Deallocation functions

	6.7.5.6 Duration of subobjects

	6.7.6 Alignment
	6.7.7 Temporary objects

	6.8 Types
	6.8.1 General
	6.8.2 Fundamental types
	6.8.3 Compound types
	6.8.4 CV-qualifiers
	6.8.5 Integer conversion rank

	6.9 Program execution
	6.9.1 Sequential execution
	6.9.2 Multi-threaded executions and data races
	6.9.2.1 General
	6.9.2.2 Data races
	6.9.2.3 Forward progress

	6.9.3 Start and termination
	6.9.3.1 main function
	6.9.3.2 Static initialization
	6.9.3.3 Dynamic initialization of non-block variables
	6.9.3.4 Termination

	7 Expressions
	7.1 Preamble
	7.2 Properties of expressions
	7.2.1 Value category
	7.2.2 Type
	7.2.3 Context dependence

	7.3 Standard conversions
	7.3.1 General
	7.3.2 Lvalue-to-rvalue conversion
	7.3.3 Array-to-pointer conversion
	7.3.4 Function-to-pointer conversion
	7.3.5 Temporary materialization conversion
	7.3.6 Qualification conversions
	7.3.7 Integral promotions
	7.3.8 Floating-point promotion
	7.3.9 Integral conversions
	7.3.10 Floating-point conversions
	7.3.11 Floating-integral conversions
	7.3.12 Pointer conversions
	7.3.13 Pointer-to-member conversions
	7.3.14 Function pointer conversions
	7.3.15 Boolean conversions

	7.4 Usual arithmetic conversions
	7.5 Primary expressions
	7.5.1 Literals
	7.5.2 This
	7.5.3 Parentheses
	7.5.4 Names
	7.5.4.1 General
	7.5.4.2 Unqualified names
	7.5.4.3 Qualified names
	7.5.4.4 Destruction

	7.5.5 Lambda expressions
	7.5.5.1 General
	7.5.5.2 Closure types
	7.5.5.3 Captures

	7.5.6 Fold expressions
	7.5.7 Requires expressions
	7.5.7.1 General
	7.5.7.2 Simple requirements
	7.5.7.3 Type requirements
	7.5.7.4 Compound requirements
	7.5.7.5 Nested requirements

	7.6 Compound expressions
	7.6.1 Postfix expressions
	7.6.1.1 General
	7.6.1.2 Subscripting
	7.6.1.3 Function call
	7.6.1.4 Explicit type conversion (functional notation)
	7.6.1.5 Class member access
	7.6.1.6 Increment and decrement
	7.6.1.7 Dynamic cast
	7.6.1.8 Type identification
	7.6.1.9 Static cast
	7.6.1.10 Reinterpret cast
	7.6.1.11 Const cast

	7.6.2 Unary expressions
	7.6.2.1 General
	7.6.2.2 Unary operators
	7.6.2.3 Increment and decrement
	7.6.2.4 Await
	7.6.2.5 Sizeof
	7.6.2.6 Alignof
	7.6.2.7 noexcept operator
	7.6.2.8 New
	7.6.2.9 Delete

	7.6.3 Explicit type conversion (cast notation)
	7.6.4 Pointer-to-member operators
	7.6.5 Multiplicative operators
	7.6.6 Additive operators
	7.6.7 Shift operators
	7.6.8 Three-way comparison operator
	7.6.9 Relational operators
	7.6.10 Equality operators
	7.6.11 Bitwise AND operator
	7.6.12 Bitwise exclusive OR operator
	7.6.13 Bitwise inclusive OR operator
	7.6.14 Logical AND operator
	7.6.15 Logical OR operator
	7.6.16 Conditional operator
	7.6.17 Yielding a value
	7.6.18 Throwing an exception
	7.6.19 Assignment and compound assignment operators
	7.6.20 Comma operator

	7.7 Constant expressions

	8 Statements
	8.1 Preamble
	8.2 Labeled statement
	8.3 Expression statement
	8.4 Compound statement or block
	8.5 Selection statements
	8.5.1 General
	8.5.2 The if statement
	8.5.3 The switch statement

	8.6 Iteration statements
	8.6.1 General
	8.6.2 The while statement
	8.6.3 The do statement
	8.6.4 The for statement
	8.6.5 The range-based for statement

	8.7 Jump statements
	8.7.1 General
	8.7.2 The break statement
	8.7.3 The continue statement
	8.7.4 The return statement
	8.7.5 The co_return statement
	8.7.6 The goto statement

	8.8 Declaration statement
	8.9 Ambiguity resolution

	9 Declarations
	9.1 Preamble
	9.2 Specifiers
	9.2.1 General
	9.2.2 Storage class specifiers
	9.2.3 Function specifiers
	9.2.4 The typedef specifier
	9.2.5 The friend specifier
	9.2.6 The constexpr and consteval specifiers
	9.2.7 The constinit specifier
	9.2.8 The inline specifier
	9.2.9 Type specifiers
	9.2.9.1 General
	9.2.9.2 The cv-qualifiers
	9.2.9.3 Simple type specifiers
	9.2.9.4 Elaborated type specifiers
	9.2.9.5 Decltype specifiers
	9.2.9.6 Placeholder type specifiers
	9.2.9.6.1 General
	9.2.9.6.2 Placeholder type deduction

	9.2.9.7 Deduced class template specialization types

	9.3 Declarators
	9.3.1 General
	9.3.2 Type names
	9.3.3 Ambiguity resolution
	9.3.4 Meaning of declarators
	9.3.4.1 General
	9.3.4.2 Pointers
	9.3.4.3 References
	9.3.4.4 Pointers to members
	9.3.4.5 Arrays
	9.3.4.6 Functions
	9.3.4.7 Default arguments

	9.4 Initializers
	9.4.1 General
	9.4.2 Aggregates
	9.4.3 Character arrays
	9.4.4 References
	9.4.5 List-initialization

	9.5 Function definitions
	9.5.1 In general
	9.5.2 Explicitly-defaulted functions
	9.5.3 Deleted definitions
	9.5.4 Coroutine definitions

	9.6 Structured binding declarations
	9.7 Enumerations
	9.7.1 Enumeration declarations
	9.7.2 The using enum declaration

	9.8 Namespaces
	9.8.1 General
	9.8.2 Namespace definition
	9.8.2.1 General
	9.8.2.2 Unnamed namespaces

	9.8.3 Namespace alias
	9.8.4 Using namespace directive

	9.9 The using declaration
	9.10 The asm declaration
	9.11 Linkage specifications
	9.12 Attributes
	9.12.1 Attribute syntax and semantics
	9.12.2 Alignment specifier
	9.12.3 Carries dependency attribute
	9.12.4 Deprecated attribute
	9.12.5 Fallthrough attribute
	9.12.6 Likelihood attributes
	9.12.7 Maybe unused attribute
	9.12.8 Nodiscard attribute
	9.12.9 Noreturn attribute
	9.12.10 No unique address attribute

	10 Modules
	10.1 Module units and purviews
	10.2 Export declaration
	10.3 Import declaration
	10.4 Global module fragment
	10.5 Private module fragment
	10.6 Instantiation context
	10.7 Reachability

	11 Classes
	11.1 Preamble
	11.2 Properties of classes
	11.3 Class names
	11.4 Class members
	11.4.1 General
	11.4.2 Member functions
	11.4.3 Non-static member functions
	11.4.4 Special member functions
	11.4.5 Constructors
	11.4.5.1 General
	11.4.5.2 Default constructors
	11.4.5.3 Copy/move constructors

	11.4.6 Copy/move assignment operator
	11.4.7 Destructors
	11.4.8 Conversions
	11.4.8.1 General
	11.4.8.2 Conversion by constructor
	11.4.8.3 Conversion functions

	11.4.9 Static members
	11.4.9.1 General
	11.4.9.2 Static member functions
	11.4.9.3 Static data members

	11.4.10 Bit-fields
	11.4.11 Allocation and deallocation functions
	11.4.12 Nested class declarations

	11.5 Unions
	11.5.1 General
	11.5.2 Anonymous unions

	11.6 Local class declarations
	11.7 Derived classes
	11.7.1 General
	11.7.2 Multiple base classes
	11.7.3 Virtual functions
	11.7.4 Abstract classes

	11.8 Member access control
	11.8.1 General
	11.8.2 Access specifiers
	11.8.3 Accessibility of base classes and base class members
	11.8.4 Friends
	11.8.5 Protected member access
	11.8.6 Access to virtual functions
	11.8.7 Multiple access
	11.8.8 Nested classes

	11.9 Initialization
	11.9.1 General
	11.9.2 Explicit initialization
	11.9.3 Initializing bases and members
	11.9.4 Initialization by inherited constructor
	11.9.5 Construction and destruction
	11.9.6 Copy/move elision

	11.10 Comparisons
	11.10.1 Defaulted comparison operator functions
	11.10.2 Equality operator
	11.10.3 Three-way comparison
	11.10.4 Secondary comparison operators

	12 Overloading
	12.1 Preamble
	12.2 Overload resolution
	12.2.1 General
	12.2.2 Candidate functions and argument lists
	12.2.2.1 General
	12.2.2.2 Function call syntax
	12.2.2.2.1 General
	12.2.2.2.2 Call to named function
	12.2.2.2.3 Call to object of class type

	12.2.2.3 Operators in expressions
	12.2.2.4 Initialization by constructor
	12.2.2.5 Copy-initialization of class by user-defined conversion
	12.2.2.6 Initialization by conversion function
	12.2.2.7 Initialization by conversion function for direct reference binding
	12.2.2.8 Initialization by list-initialization
	12.2.2.9 Class template argument deduction

	12.2.3 Viable functions
	12.2.4 Best viable function
	12.2.4.1 General
	12.2.4.2 Implicit conversion sequences
	12.2.4.2.1 General
	12.2.4.2.2 Standard conversion sequences
	12.2.4.2.3 User-defined conversion sequences
	12.2.4.2.4 Ellipsis conversion sequences
	12.2.4.2.5 Reference binding
	12.2.4.2.6 List-initialization sequence

	12.2.4.3 Ranking implicit conversion sequences

	12.3 Address of an overload set
	12.4 Overloaded operators
	12.4.1 General
	12.4.2 Unary operators
	12.4.3 Binary operators
	12.4.3.1 General
	12.4.3.2 Simple assignment

	12.4.4 Function call
	12.4.5 Subscripting
	12.4.6 Class member access
	12.4.7 Increment and decrement

	12.5 Built-in operators
	12.6 User-defined literals

	13 Templates
	13.1 Preamble
	13.2 Template parameters
	13.3 Names of template specializations
	13.4 Template arguments
	13.4.1 General
	13.4.2 Template type arguments
	13.4.3 Template non-type arguments
	13.4.4 Template template arguments

	13.5 Template constraints
	13.5.1 General
	13.5.2 Constraints
	13.5.2.1 General
	13.5.2.2 Logical operations
	13.5.2.3 Atomic constraints

	13.5.3 Constrained declarations
	13.5.4 Constraint normalization
	13.5.5 Partial ordering by constraints

	13.6 Type equivalence
	13.7 Template declarations
	13.7.1 General
	13.7.2 Class templates
	13.7.2.1 General
	13.7.2.2 Member functions of class templates
	13.7.2.3 Deduction guides
	13.7.2.4 Member classes of class templates
	13.7.2.5 Static data members of class templates
	13.7.2.6 Enumeration members of class templates

	13.7.3 Member templates
	13.7.4 Variadic templates
	13.7.5 Friends
	13.7.6 Partial specialization
	13.7.6.1 General
	13.7.6.2 Matching of partial specializations
	13.7.6.3 Partial ordering of partial specializations
	13.7.6.4 Members of class template partial specializations

	13.7.7 Function templates
	13.7.7.1 General
	13.7.7.2 Function template overloading
	13.7.7.3 Partial ordering of function templates

	13.7.8 Alias templates
	13.7.9 Concept definitions

	13.8 Name resolution
	13.8.1 General
	13.8.2 Locally declared names
	13.8.3 Dependent names
	13.8.3.1 General
	13.8.3.2 Dependent types
	13.8.3.3 Type-dependent expressions
	13.8.3.4 Value-dependent expressions
	13.8.3.5 Dependent template arguments

	13.8.4 Dependent name resolution
	13.8.4.1 Point of instantiation
	13.8.4.2 Candidate functions

	13.9 Template instantiation and specialization
	13.9.1 General
	13.9.2 Implicit instantiation
	13.9.3 Explicit instantiation
	13.9.4 Explicit specialization

	13.10 Function template specializations
	13.10.1 General
	13.10.2 Explicit template argument specification
	13.10.3 Template argument deduction
	13.10.3.1 General
	13.10.3.2 Deducing template arguments from a function call
	13.10.3.3 Deducing template arguments taking the address of a function template
	13.10.3.4 Deducing conversion function template arguments
	13.10.3.5 Deducing template arguments during partial ordering
	13.10.3.6 Deducing template arguments from a type
	13.10.3.7 Deducing template arguments from a function declaration

	13.10.4 Overload resolution

	14 Exception handling
	14.1 Preamble
	14.2 Throwing an exception
	14.3 Constructors and destructors
	14.4 Handling an exception
	14.5 Exception specifications
	14.6 Special functions
	14.6.1 General
	14.6.2 The std::terminate function
	14.6.3 The std::uncaught_exceptions function

	15 Preprocessing directives
	15.1 Preamble
	15.2 Conditional inclusion
	15.3 Source file inclusion
	15.4 Module directive
	15.5 Header unit importation
	15.6 Macro replacement
	15.6.1 General
	15.6.2 Argument substitution
	15.6.3 The # operator
	15.6.4 The ## operator
	15.6.5 Rescanning and further replacement
	15.6.6 Scope of macro definitions

	15.7 Line control
	15.8 Error directive
	15.9 Pragma directive
	15.10 Null directive
	15.11 Predefined macro names
	15.12 Pragma operator

	16 Library introduction
	16.1 General
	16.2 The C standard library
	16.3 Method of description
	16.3.1 General
	16.3.2 Structure of each clause
	16.3.2.1 Elements
	16.3.2.2 Summary
	16.3.2.3 Requirements
	16.3.2.4 Detailed specifications
	16.3.2.5 C library

	16.3.3 Other conventions
	16.3.3.1 General
	16.3.3.2 Exposition-only functions
	16.3.3.3 Type descriptions
	16.3.3.3.1 General
	16.3.3.3.2 Exposition-only types
	16.3.3.3.3 Enumerated types
	16.3.3.3.4 Bitmask types
	16.3.3.3.5 Character sequences
	16.3.3.3.5.1 General
	16.3.3.3.5.2 Byte strings
	16.3.3.3.5.3 Multibyte strings

	16.3.3.3.6 Customization Point Object types

	16.3.3.4 Functions within classes
	16.3.3.5 Private members

	16.4 Library-wide requirements
	16.4.1 General
	16.4.2 Library contents and organization
	16.4.2.1 General
	16.4.2.2 Library contents
	16.4.2.3 Headers
	16.4.2.4 Freestanding implementations

	16.4.3 Using the library
	16.4.3.1 Overview
	16.4.3.2 Headers
	16.4.3.3 Linkage

	16.4.4 Requirements on types and expressions
	16.4.4.1 General
	16.4.4.2 Template argument requirements
	16.4.4.3 Swappable requirements
	16.4.4.4 Cpp17NullablePointer requirements
	16.4.4.5 Cpp17Hash requirements
	16.4.4.6 Cpp17Allocator requirements
	16.4.4.6.1 General
	16.4.4.6.2 Allocator completeness requirements

	16.4.5 Constraints on programs
	16.4.5.1 Overview
	16.4.5.2 Namespace use
	16.4.5.2.1 Namespace std
	16.4.5.2.2 Namespace posix
	16.4.5.2.3 Namespaces for future standardization

	16.4.5.3 Reserved names
	16.4.5.3.1 General
	16.4.5.3.2 Zombie names
	16.4.5.3.3 Macro names
	16.4.5.3.4 External linkage
	16.4.5.3.5 Types
	16.4.5.3.6 User-defined literal suffixes

	16.4.5.4 Headers
	16.4.5.5 Derived classes
	16.4.5.6 Replacement functions
	16.4.5.7 Handler functions
	16.4.5.8 Other functions
	16.4.5.9 Function arguments
	16.4.5.10 Library object access
	16.4.5.11 Semantic requirements

	16.4.6 Conforming implementations
	16.4.6.1 Overview
	16.4.6.2 Headers
	16.4.6.3 Restrictions on macro definitions
	16.4.6.4 Non-member functions
	16.4.6.5 Member functions
	16.4.6.6 Friend functions
	16.4.6.7 Constexpr functions and constructors
	16.4.6.8 Requirements for stable algorithms
	16.4.6.9 Reentrancy
	16.4.6.10 Data race avoidance
	16.4.6.11 Protection within classes
	16.4.6.12 Derived classes
	16.4.6.13 Restrictions on exception handling
	16.4.6.14 Value of error codes
	16.4.6.15 Moved-from state of library types

	17 Language support library
	17.1 General
	17.2 Common definitions
	17.2.1 Header <cstddef> synopsis
	17.2.2 Header <cstdlib> synopsis
	17.2.3 Null pointers
	17.2.4 Sizes, alignments, and offsets
	17.2.5 byte type operations

	17.3 Implementation properties
	17.3.1 General
	17.3.2 Header <version> synopsis
	17.3.3 Header <limits> synopsis
	17.3.4 Floating-point type properties
	17.3.4.1 Type float_round_style
	17.3.4.2 Type float_denorm_style

	17.3.5 Class template numeric_limits
	17.3.5.1 General
	17.3.5.2 numeric_limits members
	17.3.5.3 numeric_limits specializations

	17.3.6 Header <climits> synopsis
	17.3.7 Header <cfloat> synopsis

	17.4 Integer types
	17.4.1 General
	17.4.2 Header <cstdint> synopsis

	17.5 Startup and termination
	17.6 Dynamic memory management
	17.6.1 General
	17.6.2 Header <new> synopsis
	17.6.3 Storage allocation and deallocation
	17.6.3.1 General
	17.6.3.2 Single-object forms
	17.6.3.3 Array forms
	17.6.3.4 Non-allocating forms
	17.6.3.5 Data races

	17.6.4 Storage allocation errors
	17.6.4.1 Class bad_alloc
	17.6.4.2 Class bad_array_new_length
	17.6.4.3 Type new_handler
	17.6.4.4 set_new_handler
	17.6.4.5 get_new_handler

	17.6.5 Pointer optimization barrier
	17.6.6 Hardware interference size

	17.7 Type identification
	17.7.1 General
	17.7.2 Header <typeinfo> synopsis
	17.7.3 Class type_info
	17.7.4 Class bad_cast
	17.7.5 Class bad_typeid

	17.8 Source location
	17.8.1 Header <source_location> synopsis
	17.8.2 Class source_location
	17.8.2.1 General
	17.8.2.2 Creation
	17.8.2.3 Observers

	17.9 Exception handling
	17.9.1 General
	17.9.2 Header <exception> synopsis
	17.9.3 Class exception
	17.9.4 Class bad_exception
	17.9.5 Abnormal termination
	17.9.5.1 Type terminate_handler
	17.9.5.2 set_terminate
	17.9.5.3 get_terminate
	17.9.5.4 terminate

	17.9.6 uncaught_exceptions
	17.9.7 Exception propagation
	17.9.8 nested_exception

	17.10 Initializer lists
	17.10.1 General
	17.10.2 Header <initializer_list> synopsis
	17.10.3 Initializer list constructors
	17.10.4 Initializer list access
	17.10.5 Initializer list range access

	17.11 Comparisons
	17.11.1 Header <compare> synopsis
	17.11.2 Comparison category types
	17.11.2.1 Preamble
	17.11.2.2 Class partial_ordering
	17.11.2.3 Class weak_ordering
	17.11.2.4 Class strong_ordering

	17.11.3 Class template common_comparison_category
	17.11.4 Concept three_way_comparable
	17.11.5 Result of three-way comparison
	17.11.6 Comparison algorithms

	17.12 Coroutines
	17.12.1 General
	17.12.2 Header <coroutine> synopsis
	17.12.3 Coroutine traits
	17.12.3.1 General
	17.12.3.2 Class template coroutine_traits

	17.12.4 Class template coroutine_handle
	17.12.4.1 General
	17.12.4.2 Construct/reset
	17.12.4.3 Conversion
	17.12.4.4 Export/import
	17.12.4.5 Observers
	17.12.4.6 Resumption
	17.12.4.7 Promise access
	17.12.4.8 Comparison operators
	17.12.4.9 Hash support

	17.12.5 No-op coroutines
	17.12.5.1 Class noop_coroutine_promise
	17.12.5.2 Class coroutine_handle<noop_coroutine_promise>
	17.12.5.2.1 Conversion
	17.12.5.2.2 Observers
	17.12.5.2.3 Resumption
	17.12.5.2.4 Promise access
	17.12.5.2.5 Address

	17.12.5.3 Function noop_coroutine

	17.12.6 Trivial awaitables

	17.13 Other runtime support
	17.13.1 General
	17.13.2 Header <cstdarg> synopsis
	17.13.3 Header <csetjmp> synopsis
	17.13.4 Header <csignal> synopsis
	17.13.5 Signal handlers

	17.14 C headers
	17.14.1 General
	17.14.2 Header <complex.h> synopsis
	17.14.3 Header <iso646.h> synopsis
	17.14.4 Header <stdalign.h> synopsis
	17.14.5 Header <stdbool.h> synopsis
	17.14.6 Header <tgmath.h> synopsis
	17.14.7 Other C headers

	18 Concepts library
	18.1 General
	18.2 Equality preservation
	18.3 Header <concepts> synopsis
	18.4 Language-related concepts
	18.4.1 General
	18.4.2 Concept same_as
	18.4.3 Concept derived_from
	18.4.4 Concept convertible_to
	18.4.5 Concept common_reference_with
	18.4.6 Concept common_with
	18.4.7 Arithmetic concepts
	18.4.8 Concept assignable_from
	18.4.9 Concept swappable
	18.4.10 Concept destructible
	18.4.11 Concept constructible_from
	18.4.12 Concept default_initializable
	18.4.13 Concept move_constructible
	18.4.14 Concept copy_constructible

	18.5 Comparison concepts
	18.5.1 General
	18.5.2 Boolean testability
	18.5.3 Concept equality_comparable
	18.5.4 Concept totally_ordered

	18.6 Object concepts
	18.7 Callable concepts
	18.7.1 General
	18.7.2 Concept invocable
	18.7.3 Concept regular_invocable
	18.7.4 Concept predicate
	18.7.5 Concept relation
	18.7.6 Concept equivalence_relation
	18.7.7 Concept strict_weak_order

	19 Diagnostics library
	19.1 General
	19.2 Exception classes
	19.2.1 General
	19.2.2 Header <stdexcept> synopsis
	19.2.3 Class logic_error
	19.2.4 Class domain_error
	19.2.5 Class invalid_argument
	19.2.6 Class length_error
	19.2.7 Class out_of_range
	19.2.8 Class runtime_error
	19.2.9 Class range_error
	19.2.10 Class overflow_error
	19.2.11 Class underflow_error

	19.3 Assertions
	19.3.1 General
	19.3.2 Header <cassert> synopsis
	19.3.3 The assert macro

	19.4 Error numbers
	19.4.1 General
	19.4.2 Header <cerrno> synopsis

	19.5 System error support
	19.5.1 General
	19.5.2 Header <system_error> synopsis
	19.5.3 Class error_category
	19.5.3.1 Overview
	19.5.3.2 Virtual members
	19.5.3.3 Non-virtual members
	19.5.3.4 Program-defined classes derived from error_category
	19.5.3.5 Error category objects

	19.5.4 Class error_code
	19.5.4.1 Overview
	19.5.4.2 Constructors
	19.5.4.3 Modifiers
	19.5.4.4 Observers
	19.5.4.5 Non-member functions

	19.5.5 Class error_condition
	19.5.5.1 Overview
	19.5.5.2 Constructors
	19.5.5.3 Modifiers
	19.5.5.4 Observers
	19.5.5.5 Non-member functions

	19.5.6 Comparison operator functions
	19.5.7 System error hash support
	19.5.8 Class system_error
	19.5.8.1 Overview
	19.5.8.2 Members

	19.6 Stacktrace
	19.6.1 General
	19.6.2 Header <stacktrace> synopsis
	19.6.3 Class stacktrace_entry
	19.6.3.1 Overview
	19.6.3.2 Constructors
	19.6.3.3 Observers
	19.6.3.4 Query
	19.6.3.5 Comparison

	19.6.4 Class template basic_stacktrace
	19.6.4.1 Overview
	19.6.4.2 Creation and assignment
	19.6.4.3 Observers
	19.6.4.4 Comparisons
	19.6.4.5 Modifiers
	19.6.4.6 Non-member functions
	19.6.4.7 Hash support

	20 Memory management library
	20.1 General
	20.2 Memory
	20.2.1 In general
	20.2.2 Header <memory> synopsis
	20.2.3 Pointer traits
	20.2.3.1 General
	20.2.3.2 Member types
	20.2.3.3 Member functions
	20.2.3.4 Optional members

	20.2.4 Pointer conversion
	20.2.5 Pointer alignment
	20.2.6 Allocator argument tag
	20.2.7 uses_allocator
	20.2.7.1 uses_allocator trait
	20.2.7.2 Uses-allocator construction

	20.2.8 Allocator traits
	20.2.8.1 General
	20.2.8.2 Member types
	20.2.8.3 Static member functions
	20.2.8.4 Other

	20.2.9 The default allocator
	20.2.9.1 General
	20.2.9.2 Members
	20.2.9.3 Operators

	20.2.10 addressof
	20.2.11 C library memory allocation

	20.3 Smart pointers
	20.3.1 Unique-ownership pointers
	20.3.1.1 General
	20.3.1.2 Default deleters
	20.3.1.2.1 In general
	20.3.1.2.2 default_delete
	20.3.1.2.3 default_delete<T[]>

	20.3.1.3 unique_ptr for single objects
	20.3.1.3.1 General
	20.3.1.3.2 Constructors
	20.3.1.3.3 Destructor
	20.3.1.3.4 Assignment
	20.3.1.3.5 Observers
	20.3.1.3.6 Modifiers

	20.3.1.4 unique_ptr for array objects with a runtime length
	20.3.1.4.1 General
	20.3.1.4.2 Constructors
	20.3.1.4.3 Assignment
	20.3.1.4.4 Observers
	20.3.1.4.5 Modifiers

	20.3.1.5 Creation
	20.3.1.6 Specialized algorithms
	20.3.1.7 I/O

	20.3.2 Shared-ownership pointers
	20.3.2.1 Class bad_weak_ptr
	20.3.2.2 Class template shared_ptr
	20.3.2.2.1 General
	20.3.2.2.2 Constructors
	20.3.2.2.3 Destructor
	20.3.2.2.4 Assignment
	20.3.2.2.5 Modifiers
	20.3.2.2.6 Observers
	20.3.2.2.7 Creation
	20.3.2.2.8 Comparison
	20.3.2.2.9 Specialized algorithms
	20.3.2.2.10 Casts
	20.3.2.2.11 get_deleter
	20.3.2.2.12 I/O

	20.3.2.3 Class template weak_ptr
	20.3.2.3.1 General
	20.3.2.3.2 Constructors
	20.3.2.3.3 Destructor
	20.3.2.3.4 Assignment
	20.3.2.3.5 Modifiers
	20.3.2.3.6 Observers
	20.3.2.3.7 Specialized algorithms

	20.3.2.4 Class template owner_less
	20.3.2.5 Class template enable_shared_from_this

	20.3.3 Smart pointer hash support
	20.3.4 Smart pointer adaptors
	20.3.4.1 Class template out_ptr_t
	20.3.4.2 Function template out_ptr
	20.3.4.3 Class template inout_ptr_t
	20.3.4.4 Function template inout_ptr

	20.4 Memory resources
	20.4.1 Header <memory_resource> synopsis
	20.4.2 Class memory_resource
	20.4.2.1 General
	20.4.2.2 Public member functions
	20.4.2.3 Private virtual member functions
	20.4.2.4 Equality

	20.4.3 Class template polymorphic_allocator
	20.4.3.1 General
	20.4.3.2 Constructors
	20.4.3.3 Member functions
	20.4.3.4 Equality

	20.4.4 Access to program-wide memory_resource objects
	20.4.5 Pool resource classes
	20.4.5.1 Classes synchronized_pool_resource and unsynchronized_pool_resource
	20.4.5.2 pool_options data members
	20.4.5.3 Constructors and destructors
	20.4.5.4 Members

	20.4.6 Class monotonic_buffer_resource
	20.4.6.1 General
	20.4.6.2 Constructors and destructor
	20.4.6.3 Members

	20.5 Class template scoped_allocator_adaptor
	20.5.1 Header <scoped_allocator> synopsis
	20.5.2 Member types
	20.5.3 Constructors
	20.5.4 Members
	20.5.5 Operators

	21 Metaprogramming library
	21.1 General
	21.2 Compile-time integer sequences
	21.2.1 In general
	21.2.2 Class template integer_sequence
	21.2.3 Alias template make_integer_sequence

	21.3 Metaprogramming and type traits
	21.3.1 General
	21.3.2 Requirements
	21.3.3 Header <type_traits> synopsis
	21.3.4 Helper classes
	21.3.5 Unary type traits
	21.3.5.1 General
	21.3.5.2 Primary type categories
	21.3.5.3 Composite type traits
	21.3.5.4 Type properties

	21.3.6 Type property queries
	21.3.7 Relationships between types
	21.3.8 Transformations between types
	21.3.8.1 General
	21.3.8.2 Const-volatile modifications
	21.3.8.3 Reference modifications
	21.3.8.4 Sign modifications
	21.3.8.5 Array modifications
	21.3.8.6 Pointer modifications
	21.3.8.7 Other transformations

	21.3.9 Logical operator traits
	21.3.10 Member relationships
	21.3.11 Constant evaluation context

	21.4 Compile-time rational arithmetic
	21.4.1 In general
	21.4.2 Header <ratio> synopsis
	21.4.3 Class template ratio
	21.4.4 Arithmetic on ratios
	21.4.5 Comparison of ratios
	21.4.6 SI types for ratio

	22 General utilities library
	22.1 General
	22.2 Utility components
	22.2.1 Header <utility> synopsis
	22.2.2 swap
	22.2.3 exchange
	22.2.4 Forward/move helpers
	22.2.5 Function template as_const
	22.2.6 Function template declval
	22.2.7 Integer comparison functions
	22.2.8 Function template to_underlying
	22.2.9 Function unreachable

	22.3 Pairs
	22.3.1 In general
	22.3.2 Class template pair
	22.3.3 Specialized algorithms
	22.3.4 Tuple-like access to pair
	22.3.5 Piecewise construction

	22.4 Tuples
	22.4.1 In general
	22.4.2 Header <tuple> synopsis
	22.4.3 Class template tuple
	22.4.3.1 Construction
	22.4.3.2 Assignment
	22.4.3.3 swap

	22.4.4 Tuple creation functions
	22.4.5 Calling a function with a tuple of arguments
	22.4.6 Tuple helper classes
	22.4.7 Element access
	22.4.8 Relational operators
	22.4.9 Tuple traits
	22.4.10 Tuple specialized algorithms

	22.5 Optional objects
	22.5.1 In general
	22.5.2 Header <optional> synopsis
	22.5.3 Class template optional
	22.5.3.1 General
	22.5.3.2 Constructors
	22.5.3.3 Destructor
	22.5.3.4 Assignment
	22.5.3.5 Swap
	22.5.3.6 Observers
	22.5.3.7 Monadic operations
	22.5.3.8 Modifiers

	22.5.4 No-value state indicator
	22.5.5 Class bad_optional_access
	22.5.6 Relational operators
	22.5.7 Comparison with nullopt
	22.5.8 Comparison with T
	22.5.9 Specialized algorithms
	22.5.10 Hash support

	22.6 Variants
	22.6.1 In general
	22.6.2 Header <variant> synopsis
	22.6.3 Class template variant
	22.6.3.1 General
	22.6.3.2 Constructors
	22.6.3.3 Destructor
	22.6.3.4 Assignment
	22.6.3.5 Modifiers
	22.6.3.6 Value status
	22.6.3.7 Swap

	22.6.4 variant helper classes
	22.6.5 Value access
	22.6.6 Relational operators
	22.6.7 Visitation
	22.6.8 Class monostate
	22.6.9 monostate relational operators
	22.6.10 Specialized algorithms
	22.6.11 Class bad_variant_access
	22.6.12 Hash support

	22.7 Storage for any type
	22.7.1 General
	22.7.2 Header <any> synopsis
	22.7.3 Class bad_any_cast
	22.7.4 Class any
	22.7.4.1 General
	22.7.4.2 Construction and destruction
	22.7.4.3 Assignment
	22.7.4.4 Modifiers
	22.7.4.5 Observers

	22.7.5 Non-member functions

	22.8 Expected objects
	22.8.1 In general
	22.8.2 Header <expected> synopsis
	22.8.3 Unexpected objects
	22.8.3.1 General
	22.8.3.2 Class template unexpected
	22.8.3.2.1 General
	22.8.3.2.2 Constructors
	22.8.3.2.3 Observers
	22.8.3.2.4 Swap
	22.8.3.2.5 Equality operator

	22.8.4 Class template bad_expected_access
	22.8.5 Class template specialization bad_expected_access<void>
	22.8.6 Class template expected
	22.8.6.1 General
	22.8.6.2 Constructors
	22.8.6.3 Destructor
	22.8.6.4 Assignment
	22.8.6.5 Swap
	22.8.6.6 Observers
	22.8.6.7 Equality operators

	22.8.7 Partial specialization of expected for void types
	22.8.7.1 General
	22.8.7.2 Constructors
	22.8.7.3 Destructor
	22.8.7.4 Assignment
	22.8.7.5 Swap
	22.8.7.6 Observers
	22.8.7.7 Equality operators

	22.9 Bitsets
	22.9.1 Header <bitset> synopsis
	22.9.2 Class template bitset
	22.9.2.1 General
	22.9.2.2 Constructors
	22.9.2.3 Members

	22.9.3 bitset hash support
	22.9.4 bitset operators

	22.10 Function objects
	22.10.1 General
	22.10.2 Header <functional> synopsis
	22.10.3 Definitions
	22.10.4 Requirements
	22.10.5 invoke functions
	22.10.6 Class template reference_wrapper
	22.10.6.1 General
	22.10.6.2 Constructors
	22.10.6.3 Assignment
	22.10.6.4 Access
	22.10.6.5 Invocation
	22.10.6.6 Helper functions

	22.10.7 Arithmetic operations
	22.10.7.1 General
	22.10.7.2 Class template plus
	22.10.7.3 Class template minus
	22.10.7.4 Class template multiplies
	22.10.7.5 Class template divides
	22.10.7.6 Class template modulus
	22.10.7.7 Class template negate

	22.10.8 Comparisons
	22.10.8.1 General
	22.10.8.2 Class template equal_to
	22.10.8.3 Class template not_equal_to
	22.10.8.4 Class template greater
	22.10.8.5 Class template less
	22.10.8.6 Class template greater_equal
	22.10.8.7 Class template less_equal
	22.10.8.8 Class compare_three_way

	22.10.9 Concept-constrained comparisons
	22.10.10 Logical operations
	22.10.10.1 General
	22.10.10.2 Class template logical_and
	22.10.10.3 Class template logical_or
	22.10.10.4 Class template logical_not

	22.10.11 Bitwise operations
	22.10.11.1 General
	22.10.11.2 Class template bit_and
	22.10.11.3 Class template bit_or
	22.10.11.4 Class template bit_xor
	22.10.11.5 Class template bit_not

	22.10.12 Class identity
	22.10.13 Function template not_fn
	22.10.14 Function templates bind_front and bind_back
	22.10.15 Function object binders
	22.10.15.1 General
	22.10.15.2 Class template is_bind_expression
	22.10.15.3 Class template is_placeholder
	22.10.15.4 Function template bind
	22.10.15.5 Placeholders

	22.10.16 Function template mem_fn
	22.10.17 Polymorphic function wrappers
	22.10.17.1 General
	22.10.17.2 Class bad_function_call
	22.10.17.3 Class template function
	22.10.17.3.1 General
	22.10.17.3.2 Constructors and destructor
	22.10.17.3.3 Modifiers
	22.10.17.3.4 Capacity
	22.10.17.3.5 Invocation
	22.10.17.3.6 Target access
	22.10.17.3.7 Null pointer comparison operator functions
	22.10.17.3.8 Specialized algorithms

	22.10.17.4 Move only wrapper
	22.10.17.4.1 General
	22.10.17.4.2 Class template move_only_function
	22.10.17.4.3 Constructors, assignment, and destructor
	22.10.17.4.4 Invocation
	22.10.17.4.5 Utility

	22.10.18 Searchers
	22.10.18.1 General
	22.10.18.2 Class template default_searcher
	22.10.18.3 Class template boyer_moore_searcher
	22.10.18.4 Class template boyer_moore_horspool_searcher

	22.10.19 Class template hash

	22.11 Class type_index
	22.11.1 Header <typeindex> synopsis
	22.11.2 type_index overview
	22.11.3 type_index members
	22.11.4 Hash support

	22.12 Execution policies
	22.12.1 In general
	22.12.2 Header <execution> synopsis
	22.12.3 Execution policy type trait
	22.12.4 Sequenced execution policy
	22.12.5 Parallel execution policy
	22.12.6 Parallel and unsequenced execution policy
	22.12.7 Unsequenced execution policy
	22.12.8 Execution policy objects

	22.13 Primitive numeric conversions
	22.13.1 Header <charconv> synopsis
	22.13.2 Primitive numeric output conversion
	22.13.3 Primitive numeric input conversion

	22.14 Formatting
	22.14.1 Header <format> synopsis
	22.14.2 Format string
	22.14.2.1 In general
	22.14.2.2 Standard format specifiers

	22.14.3 Error reporting
	22.14.4 Class template basic-format-string
	22.14.5 Formatting functions
	22.14.6 Formatter
	22.14.6.1 Formatter requirements
	22.14.6.2 Formatter specializations
	22.14.6.3 Class template basic_format_parse_context
	22.14.6.4 Class template basic_format_context

	22.14.7 Arguments
	22.14.7.1 Class template basic_format_arg
	22.14.7.2 Class template format-arg-store
	22.14.7.3 Class template basic_format_args

	22.14.8 Class format_error

	22.15 Bit manipulation
	22.15.1 General
	22.15.2 Header <bit> synopsis
	22.15.3 Function template bit_cast
	22.15.4 byteswap
	22.15.5 Integral powers of 2
	22.15.6 Rotating
	22.15.7 Counting
	22.15.8 Endian

	23 Strings library
	23.1 General
	23.2 Character traits
	23.2.1 General
	23.2.2 Character traits requirements
	23.2.3 Traits typedefs
	23.2.4 char_traits specializations
	23.2.4.1 General
	23.2.4.2 struct char_traits<char>
	23.2.4.3 struct char_traits<char8_t>
	23.2.4.4 struct char_traits<char16_t>
	23.2.4.5 struct char_traits<char32_t>
	23.2.4.6 struct char_traits<wchar_t>

	23.3 String view classes
	23.3.1 General
	23.3.2 Header <string_view> synopsis
	23.3.3 Class template basic_string_view
	23.3.3.1 General
	23.3.3.2 Construction and assignment
	23.3.3.3 Iterator support
	23.3.3.4 Capacity
	23.3.3.5 Element access
	23.3.3.6 Modifiers
	23.3.3.7 String operations
	23.3.3.8 Searching

	23.3.4 Deduction guides
	23.3.5 Non-member comparison functions
	23.3.6 Inserters and extractors
	23.3.7 Hash support
	23.3.8 Suffix for basic_string_view literals

	23.4 String classes
	23.4.1 General
	23.4.2 Header <string> synopsis
	23.4.3 Class template basic_string
	23.4.3.1 General
	23.4.3.2 General requirements
	23.4.3.3 Constructors and assignment operators
	23.4.3.4 Iterator support
	23.4.3.5 Capacity
	23.4.3.6 Element access
	23.4.3.7 Modifiers
	23.4.3.7.1 basic_string::operator+=
	23.4.3.7.2 basic_string::append
	23.4.3.7.3 basic_string::assign
	23.4.3.7.4 basic_string::insert
	23.4.3.7.5 basic_string::erase
	23.4.3.7.6 basic_string::replace
	23.4.3.7.7 basic_string::copy
	23.4.3.7.8 basic_string::swap

	23.4.3.8 String operations
	23.4.3.8.1 Accessors
	23.4.3.8.2 Searching
	23.4.3.8.3 basic_string::substr
	23.4.3.8.4 basic_string::compare
	23.4.3.8.5 basic_string::starts_with
	23.4.3.8.6 basic_string::ends_with
	23.4.3.8.7 basic_string::contains

	23.4.4 Non-member functions
	23.4.4.1 operator+
	23.4.4.2 Non-member comparison operator functions
	23.4.4.3 swap
	23.4.4.4 Inserters and extractors
	23.4.4.5 Erasure

	23.4.5 Numeric conversions
	23.4.6 Hash support
	23.4.7 Suffix for basic_string literals

	23.5 Null-terminated sequence utilities
	23.5.1 Header <cctype> synopsis
	23.5.2 Header <cwctype> synopsis
	23.5.3 Header <cstring> synopsis
	23.5.4 Header <cwchar> synopsis
	23.5.5 Header <cuchar> synopsis
	23.5.6 Multibyte / wide string and character conversion functions

	24 Containers library
	24.1 General
	24.2 Requirements
	24.2.1 Preamble
	24.2.2 General containers
	24.2.2.1 General
	24.2.2.2 Containers
	24.2.2.3 Reversible container requirements
	24.2.2.4 Optional container requirements
	24.2.2.5 Allocator-aware containers

	24.2.3 Container data races
	24.2.4 Sequence containers
	24.2.5 Node handles
	24.2.5.1 Overview
	24.2.5.2 Constructors, copy, and assignment
	24.2.5.3 Destructor
	24.2.5.4 Observers
	24.2.5.5 Modifiers

	24.2.6 Insert return type
	24.2.7 Associative containers
	24.2.7.1 General
	24.2.7.2 Exception safety guarantees

	24.2.8 Unordered associative containers
	24.2.8.1 General
	24.2.8.2 Exception safety guarantees

	24.3 Sequence containers
	24.3.1 In general
	24.3.2 Header <array> synopsis
	24.3.3 Header <deque> synopsis
	24.3.4 Header <forward_list> synopsis
	24.3.5 Header <list> synopsis
	24.3.6 Header <vector> synopsis
	24.3.7 Class template array
	24.3.7.1 Overview
	24.3.7.2 Constructors, copy, and assignment
	24.3.7.3 Member functions
	24.3.7.4 Specialized algorithms
	24.3.7.5 Zero-sized arrays
	24.3.7.6 Array creation functions
	24.3.7.7 Tuple interface

	24.3.8 Class template deque
	24.3.8.1 Overview
	24.3.8.2 Constructors, copy, and assignment
	24.3.8.3 Capacity
	24.3.8.4 Modifiers
	24.3.8.5 Erasure

	24.3.9 Class template forward_list
	24.3.9.1 Overview
	24.3.9.2 Constructors, copy, and assignment
	24.3.9.3 Iterators
	24.3.9.4 Element access
	24.3.9.5 Modifiers
	24.3.9.6 Operations
	24.3.9.7 Erasure

	24.3.10 Class template list
	24.3.10.1 Overview
	24.3.10.2 Constructors, copy, and assignment
	24.3.10.3 Capacity
	24.3.10.4 Modifiers
	24.3.10.5 Operations
	24.3.10.6 Erasure

	24.3.11 Class template vector
	24.3.11.1 Overview
	24.3.11.2 Constructors
	24.3.11.3 Capacity
	24.3.11.4 Data
	24.3.11.5 Modifiers
	24.3.11.6 Erasure

	24.3.12 Class vector<bool>

	24.4 Associative containers
	24.4.1 In general
	24.4.2 Header <map> synopsis
	24.4.3 Header <set> synopsis
	24.4.4 Class template map
	24.4.4.1 Overview
	24.4.4.2 Constructors, copy, and assignment
	24.4.4.3 Element access
	24.4.4.4 Modifiers
	24.4.4.5 Erasure

	24.4.5 Class template multimap
	24.4.5.1 Overview
	24.4.5.2 Constructors
	24.4.5.3 Modifiers
	24.4.5.4 Erasure

	24.4.6 Class template set
	24.4.6.1 Overview
	24.4.6.2 Constructors, copy, and assignment
	24.4.6.3 Erasure

	24.4.7 Class template multiset
	24.4.7.1 Overview
	24.4.7.2 Constructors
	24.4.7.3 Erasure

	24.5 Unordered associative containers
	24.5.1 In general
	24.5.2 Header <unordered_map> synopsis
	24.5.3 Header <unordered_set> synopsis
	24.5.4 Class template unordered_map
	24.5.4.1 Overview
	24.5.4.2 Constructors
	24.5.4.3 Element access
	24.5.4.4 Modifiers
	24.5.4.5 Erasure

	24.5.5 Class template unordered_multimap
	24.5.5.1 Overview
	24.5.5.2 Constructors
	24.5.5.3 Modifiers
	24.5.5.4 Erasure

	24.5.6 Class template unordered_set
	24.5.6.1 Overview
	24.5.6.2 Constructors
	24.5.6.3 Erasure

	24.5.7 Class template unordered_multiset
	24.5.7.1 Overview
	24.5.7.2 Constructors
	24.5.7.3 Erasure

	24.6 Container adaptors
	24.6.1 In general
	24.6.2 Header <queue> synopsis
	24.6.3 Header <stack> synopsis
	24.6.4 Class template queue
	24.6.4.1 Definition
	24.6.4.2 Constructors
	24.6.4.3 Constructors with allocators
	24.6.4.4 Modifiers
	24.6.4.5 Operators
	24.6.4.6 Specialized algorithms

	24.6.5 Class template priority_queue
	24.6.5.1 Overview
	24.6.5.2 Constructors
	24.6.5.3 Constructors with allocators
	24.6.5.4 Members
	24.6.5.5 Specialized algorithms

	24.6.6 Class template stack
	24.6.6.1 General
	24.6.6.2 Definition
	24.6.6.3 Constructors
	24.6.6.4 Constructors with allocators
	24.6.6.5 Modifiers
	24.6.6.6 Operators
	24.6.6.7 Specialized algorithms

	24.7 Views
	24.7.1 General
	24.7.2 Header synopsis
	24.7.3 Class template span
	24.7.3.1 Overview
	24.7.3.2 Constructors, copy, and assignment
	24.7.3.3 Deduction guides
	24.7.3.4 Subviews
	24.7.3.5 Observers
	24.7.3.6 Element access
	24.7.3.7 Iterator support
	24.7.3.8 Views of object representation

	25 Iterators library
	25.1 General
	25.2 Header <iterator> synopsis
	25.3 Iterator requirements
	25.3.1 In general
	25.3.2 Associated types
	25.3.2.1 Incrementable traits
	25.3.2.2 Indirectly readable traits
	25.3.2.3 Iterator traits

	25.3.3 Customization point objects
	25.3.3.1 ranges::iter_move
	25.3.3.2 ranges::iter_swap

	25.3.4 Iterator concepts
	25.3.4.1 General
	25.3.4.2 Concept indirectly_readable
	25.3.4.3 Concept indirectly_writable
	25.3.4.4 Concept weakly_incrementable
	25.3.4.5 Concept incrementable
	25.3.4.6 Concept input_or_output_iterator
	25.3.4.7 Concept sentinel_for
	25.3.4.8 Concept sized_sentinel_for
	25.3.4.9 Concept input_iterator
	25.3.4.10 Concept output_iterator
	25.3.4.11 Concept forward_iterator
	25.3.4.12 Concept bidirectional_iterator
	25.3.4.13 Concept random_access_iterator
	25.3.4.14 Concept contiguous_iterator

	25.3.5 C++17 iterator requirements
	25.3.5.1 General
	25.3.5.2 Cpp17Iterator
	25.3.5.3 Input iterators
	25.3.5.4 Output iterators
	25.3.5.5 Forward iterators
	25.3.5.6 Bidirectional iterators
	25.3.5.7 Random access iterators

	25.3.6 Indirect callable requirements
	25.3.6.1 General
	25.3.6.2 Indirect callables
	25.3.6.3 Class template projected

	25.3.7 Common algorithm requirements
	25.3.7.1 General
	25.3.7.2 Concept indirectly_movable
	25.3.7.3 Concept indirectly_copyable
	25.3.7.4 Concept indirectly_swappable
	25.3.7.5 Concept indirectly_comparable
	25.3.7.6 Concept permutable
	25.3.7.7 Concept mergeable
	25.3.7.8 Concept sortable

	25.4 Iterator primitives
	25.4.1 General
	25.4.2 Standard iterator tags
	25.4.3 Iterator operations
	25.4.4 Range iterator operations
	25.4.4.1 General
	25.4.4.2 ranges::advance
	25.4.4.3 ranges::distance
	25.4.4.4 ranges::next
	25.4.4.5 ranges::prev

	25.5 Iterator adaptors
	25.5.1 Reverse iterators
	25.5.1.1 General
	25.5.1.2 Class template reverse_iterator
	25.5.1.3 Requirements
	25.5.1.4 Construction and assignment
	25.5.1.5 Conversion
	25.5.1.6 Element access
	25.5.1.7 Navigation
	25.5.1.8 Comparisons
	25.5.1.9 Non-member functions

	25.5.2 Insert iterators
	25.5.2.1 General
	25.5.2.2 Class template back_insert_iterator
	25.5.2.2.1 Operations
	25.5.2.2.2 back_inserter

	25.5.2.3 Class template front_insert_iterator
	25.5.2.3.1 Operations
	25.5.2.3.2 front_inserter

	25.5.2.4 Class template insert_iterator
	25.5.2.4.1 Operations
	25.5.2.4.2 inserter

	25.5.3 Move iterators and sentinels
	25.5.3.1 General
	25.5.3.2 Class template move_iterator
	25.5.3.3 Requirements
	25.5.3.4 Construction and assignment
	25.5.3.5 Conversion
	25.5.3.6 Element access
	25.5.3.7 Navigation
	25.5.3.8 Comparisons
	25.5.3.9 Non-member functions
	25.5.3.10 Class template move_sentinel
	25.5.3.11 Operations

	25.5.4 Common iterators
	25.5.4.1 Class template common_iterator
	25.5.4.2 Associated types
	25.5.4.3 Constructors and conversions
	25.5.4.4 Accessors
	25.5.4.5 Navigation
	25.5.4.6 Comparisons
	25.5.4.7 Customizations

	25.5.5 Default sentinel
	25.5.6 Counted iterators
	25.5.6.1 Class template counted_iterator
	25.5.6.2 Constructors and conversions
	25.5.6.3 Accessors
	25.5.6.4 Element access
	25.5.6.5 Navigation
	25.5.6.6 Comparisons
	25.5.6.7 Customizations

	25.5.7 Unreachable sentinel

	25.6 Stream iterators
	25.6.1 General
	25.6.2 Class template istream_iterator
	25.6.2.1 General
	25.6.2.2 Constructors and destructor
	25.6.2.3 Operations

	25.6.3 Class template ostream_iterator
	25.6.3.1 General
	25.6.3.2 Constructors and destructor
	25.6.3.3 Operations

	25.6.4 Class template istreambuf_iterator
	25.6.4.1 General
	25.6.4.2 Class istreambuf_iterator::proxy
	25.6.4.3 Constructors
	25.6.4.4 Operations

	25.6.5 Class template ostreambuf_iterator
	25.6.5.1 General
	25.6.5.2 Constructors
	25.6.5.3 Operations

	25.7 Range access

	26 Ranges library
	26.1 General
	26.2 Header <ranges> synopsis
	26.3 Range access
	26.3.1 General
	26.3.2 ranges::begin
	26.3.3 ranges::end
	26.3.4 ranges::cbegin
	26.3.5 ranges::cend
	26.3.6 ranges::rbegin
	26.3.7 ranges::rend
	26.3.8 ranges::crbegin
	26.3.9 ranges::crend
	26.3.10 ranges::size
	26.3.11 ranges::ssize
	26.3.12 ranges::empty
	26.3.13 ranges::data
	26.3.14 ranges::cdata

	26.4 Range requirements
	26.4.1 General
	26.4.2 Ranges
	26.4.3 Sized ranges
	26.4.4 Views
	26.4.5 Other range refinements

	26.5 Range utilities
	26.5.1 General
	26.5.2 Helper concepts
	26.5.3 View interface
	26.5.3.1 General
	26.5.3.2 Members

	26.5.4 Sub-ranges
	26.5.4.1 General
	26.5.4.2 Constructors and conversions
	26.5.4.3 Accessors

	26.5.5 Dangling iterator handling
	26.5.6 Range conversions
	26.5.6.1 General
	26.5.6.2 ranges::to
	26.5.6.3 ranges::to adaptors

	26.6 Range factories
	26.6.1 General
	26.6.2 Empty view
	26.6.2.1 Overview
	26.6.2.2 Class template empty_view

	26.6.3 Single view
	26.6.3.1 Overview
	26.6.3.2 Class template single_view

	26.6.4 Iota view
	26.6.4.1 Overview
	26.6.4.2 Class template iota_view
	26.6.4.3 Class iota_view::iterator
	26.6.4.4 Class iota_view::sentinel

	26.6.5 Istream view
	26.6.5.1 Overview
	26.6.5.2 Class template basic_istream_view
	26.6.5.3 Class template basic_istream_view::iterator

	26.7 Range adaptors
	26.7.1 General
	26.7.2 Range adaptor objects
	26.7.3 Copyable wrapper
	26.7.4 Non-propagating cache
	26.7.5 All view
	26.7.5.1 General
	26.7.5.2 Class template ref_view
	26.7.5.3 Class template owning_view

	26.7.6 Filter view
	26.7.6.1 Overview
	26.7.6.2 Class template filter_view
	26.7.6.3 Class filter_view::iterator
	26.7.6.4 Class filter_view::sentinel

	26.7.7 Transform view
	26.7.7.1 Overview
	26.7.7.2 Class template transform_view
	26.7.7.3 Class template transform_view::iterator
	26.7.7.4 Class template transform_view::sentinel

	26.7.8 Take view
	26.7.8.1 Overview
	26.7.8.2 Class template take_view
	26.7.8.3 Class template take_view::sentinel

	26.7.9 Take while view
	26.7.9.1 Overview
	26.7.9.2 Class template take_while_view
	26.7.9.3 Class template take_while_view::sentinel

	26.7.10 Drop view
	26.7.10.1 Overview
	26.7.10.2 Class template drop_view

	26.7.11 Drop while view
	26.7.11.1 Overview
	26.7.11.2 Class template drop_while_view

	26.7.12 Join view
	26.7.12.1 Overview
	26.7.12.2 Class template join_view
	26.7.12.3 Class template join_view::iterator
	26.7.12.4 Class template join_view::sentinel

	26.7.13 Join with view
	26.7.13.1 Overview
	26.7.13.2 Class template join_with_view
	26.7.13.3 Class template join_with_view::iterator
	26.7.13.4 Class template join_with_view::sentinel

	26.7.14 Lazy split view
	26.7.14.1 Overview
	26.7.14.2 Class template lazy_split_view
	26.7.14.3 Class template lazy_split_view::outer-iterator
	26.7.14.4 Class lazy_split_view::outer-iterator::value_type
	26.7.14.5 Class template lazy_split_view::inner-iterator

	26.7.15 Split view
	26.7.15.1 Overview
	26.7.15.2 Class template split_view
	26.7.15.3 Class split_view::iterator
	26.7.15.4 Class split_view::sentinel

	26.7.16 Counted view
	26.7.17 Common view
	26.7.17.1 Overview
	26.7.17.2 Class template common_view

	26.7.18 Reverse view
	26.7.18.1 Overview
	26.7.18.2 Class template reverse_view

	26.7.19 Elements view
	26.7.19.1 Overview
	26.7.19.2 Class template elements_view
	26.7.19.3 Class template elements_view::iterator
	26.7.19.4 Class template elements_view::sentinel

	26.7.20 Zip view
	26.7.20.1 Overview
	26.7.20.2 Class template zip_view
	26.7.20.3 Class template zip_view::iterator
	26.7.20.4 Class template zip_view::sentinel

	26.7.21 Zip transform view
	26.7.21.1 Overview
	26.7.21.2 Class template zip_transform_view
	26.7.21.3 Class template zip_transform_view::iterator
	26.7.21.4 Class template zip_transform_view::sentinel

	26.7.22 Adjacent view
	26.7.22.1 Overview
	26.7.22.2 Class template adjacent_view
	26.7.22.3 Class template adjacent_view::iterator
	26.7.22.4 Class template adjacent_view::sentinel

	26.7.23 Adjacent transform view
	26.7.23.1 Overview
	26.7.23.2 Class template adjacent_transform_view
	26.7.23.3 Class template adjacent_transform_view::iterator
	26.7.23.4 Class template adjacent_transform_view::sentinel

	26.7.24 Chunk view
	26.7.24.1 Overview
	26.7.24.2 chunk_view for input ranges
	26.7.24.3 Class chunk_view::outer-iterator
	26.7.24.4 Class chunk_view::outer-iterator::value_type
	26.7.24.5 Class chunk_view::inner-iterator
	26.7.24.6 chunk_view for forward ranges
	26.7.24.7 Class template chunk_view<V>::iterator for forward ranges

	26.7.25 Slide view
	26.7.25.1 Overview
	26.7.25.2 Class template slide_view
	26.7.25.3 Class template slide_view::iterator
	26.7.25.4 Class slide_view::sentinel

	26.7.26 Chunk by view
	26.7.26.1 Overview
	26.7.26.2 Class template chunk_by_view
	26.7.26.3 Class chunk_by_view::iterator

	27 Algorithms library
	27.1 General
	27.2 Algorithms requirements
	27.3 Parallel algorithms
	27.3.1 Preamble
	27.3.2 Requirements on user-provided function objects
	27.3.3 Effect of execution policies on algorithm execution
	27.3.4 Parallel algorithm exceptions
	27.3.5 ExecutionPolicy algorithm overloads

	27.4 Header <algorithm> synopsis
	27.5 Algorithm result types
	27.6 Non-modifying sequence operations
	27.6.1 All of
	27.6.2 Any of
	27.6.3 None of
	27.6.4 For each
	27.6.5 Find
	27.6.6 Find end
	27.6.7 Find first
	27.6.8 Adjacent find
	27.6.9 Count
	27.6.10 Mismatch
	27.6.11 Equal
	27.6.12 Is permutation
	27.6.13 Search
	27.6.14 Starts with
	27.6.15 Ends with

	27.7 Mutating sequence operations
	27.7.1 Copy
	27.7.2 Move
	27.7.3 Swap
	27.7.4 Transform
	27.7.5 Replace
	27.7.6 Fill
	27.7.7 Generate
	27.7.8 Remove
	27.7.9 Unique
	27.7.10 Reverse
	27.7.11 Rotate
	27.7.12 Sample
	27.7.13 Shuffle
	27.7.14 Shift

	27.8 Sorting and related operations
	27.8.1 General
	27.8.2 Sorting
	27.8.2.1 sort
	27.8.2.2 stable_sort
	27.8.2.3 partial_sort
	27.8.2.4 partial_sort_copy
	27.8.2.5 is_sorted

	27.8.3 Nth element
	27.8.4 Binary search
	27.8.4.1 General
	27.8.4.2 lower_bound
	27.8.4.3 upper_bound
	27.8.4.4 equal_range
	27.8.4.5 binary_search

	27.8.5 Partitions
	27.8.6 Merge
	27.8.7 Set operations on sorted structures
	27.8.7.1 General
	27.8.7.2 includes
	27.8.7.3 set_union
	27.8.7.4 set_intersection
	27.8.7.5 set_difference
	27.8.7.6 set_symmetric_difference

	27.8.8 Heap operations
	27.8.8.1 General
	27.8.8.2 push_heap
	27.8.8.3 pop_heap
	27.8.8.4 make_heap
	27.8.8.5 sort_heap
	27.8.8.6 is_heap

	27.8.9 Minimum and maximum
	27.8.10 Bounded value
	27.8.11 Lexicographical comparison
	27.8.12 Three-way comparison algorithms
	27.8.13 Permutation generators

	27.9 Header <numeric> synopsis
	27.10 Generalized numeric operations
	27.10.1 General
	27.10.2 Definitions
	27.10.3 Accumulate
	27.10.4 Reduce
	27.10.5 Inner product
	27.10.6 Transform reduce
	27.10.7 Partial sum
	27.10.8 Exclusive scan
	27.10.9 Inclusive scan
	27.10.10 Transform exclusive scan
	27.10.11 Transform inclusive scan
	27.10.12 Adjacent difference
	27.10.13 Iota
	27.10.14 Greatest common divisor
	27.10.15 Least common multiple
	27.10.16 Midpoint

	27.11 Specialized <memory> algorithms
	27.11.1 General
	27.11.2 Special memory concepts
	27.11.3 uninitialized_default_construct
	27.11.4 uninitialized_value_construct
	27.11.5 uninitialized_copy
	27.11.6 uninitialized_move
	27.11.7 uninitialized_fill
	27.11.8 construct_at
	27.11.9 destroy

	27.12 C library algorithms

	28 Numerics library
	28.1 General
	28.2 Numeric type requirements
	28.3 The floating-point environment
	28.3.1 Header <cfenv> synopsis
	28.3.2 Threads

	28.4 Complex numbers
	28.4.1 General
	28.4.2 Header <complex> synopsis
	28.4.3 Class template complex
	28.4.4 Specializations
	28.4.5 Member functions
	28.4.6 Member operators
	28.4.7 Non-member operations
	28.4.8 Value operations
	28.4.9 Transcendentals
	28.4.10 Additional overloads
	28.4.11 Suffixes for complex number literals

	28.5 Random number generation
	28.5.1 General
	28.5.2 Header <random> synopsis
	28.5.3 Requirements
	28.5.3.1 General requirements
	28.5.3.2 Seed sequence requirements
	28.5.3.3 Uniform random bit generator requirements
	28.5.3.4 Random number engine requirements
	28.5.3.5 Random number engine adaptor requirements
	28.5.3.6 Random number distribution requirements

	28.5.4 Random number engine class templates
	28.5.4.1 General
	28.5.4.2 Class template linear_congruential_engine
	28.5.4.3 Class template mersenne_twister_engine
	28.5.4.4 Class template subtract_with_carry_engine

	28.5.5 Random number engine adaptor class templates
	28.5.5.1 In general
	28.5.5.2 Class template discard_block_engine
	28.5.5.3 Class template independent_bits_engine
	28.5.5.4 Class template shuffle_order_engine

	28.5.6 Engines and engine adaptors with predefined parameters
	28.5.7 Class random_device
	28.5.8 Utilities
	28.5.8.1 Class seed_seq
	28.5.8.2 Function template generate_canonical

	28.5.9 Random number distribution class templates
	28.5.9.1 In general
	28.5.9.2 Uniform distributions
	28.5.9.2.1 Class template uniform_int_distribution
	28.5.9.2.2 Class template uniform_real_distribution

	28.5.9.3 Bernoulli distributions
	28.5.9.3.1 Class bernoulli_distribution
	28.5.9.3.2 Class template binomial_distribution
	28.5.9.3.3 Class template geometric_distribution
	28.5.9.3.4 Class template negative_binomial_distribution

	28.5.9.4 Poisson distributions
	28.5.9.4.1 Class template poisson_distribution
	28.5.9.4.2 Class template exponential_distribution
	28.5.9.4.3 Class template gamma_distribution
	28.5.9.4.4 Class template weibull_distribution
	28.5.9.4.5 Class template extreme_value_distribution

	28.5.9.5 Normal distributions
	28.5.9.5.1 Class template normal_distribution
	28.5.9.5.2 Class template lognormal_distribution
	28.5.9.5.3 Class template chi_squared_distribution
	28.5.9.5.4 Class template cauchy_distribution
	28.5.9.5.5 Class template fisher_f_distribution
	28.5.9.5.6 Class template student_t_distribution

	28.5.9.6 Sampling distributions
	28.5.9.6.1 Class template discrete_distribution
	28.5.9.6.2 Class template piecewise_constant_distribution
	28.5.9.6.3 Class template piecewise_linear_distribution

	28.5.10 Low-quality random number generation

	28.6 Numeric arrays
	28.6.1 Header <valarray> synopsis
	28.6.2 Class template valarray
	28.6.2.1 Overview
	28.6.2.2 Constructors
	28.6.2.3 Assignment
	28.6.2.4 Element access
	28.6.2.5 Subset operations
	28.6.2.6 Unary operators
	28.6.2.7 Compound assignment
	28.6.2.8 Member functions

	28.6.3 valarray non-member operations
	28.6.3.1 Binary operators
	28.6.3.2 Logical operators
	28.6.3.3 Transcendentals
	28.6.3.4 Specialized algorithms

	28.6.4 Class slice
	28.6.4.1 Overview
	28.6.4.2 Constructors
	28.6.4.3 Access functions
	28.6.4.4 Operators

	28.6.5 Class template slice_array
	28.6.5.1 Overview
	28.6.5.2 Assignment
	28.6.5.3 Compound assignment
	28.6.5.4 Fill function

	28.6.6 The gslice class
	28.6.6.1 Overview
	28.6.6.2 Constructors
	28.6.6.3 Access functions

	28.6.7 Class template gslice_array
	28.6.7.1 Overview
	28.6.7.2 Assignment
	28.6.7.3 Compound assignment
	28.6.7.4 Fill function

	28.6.8 Class template mask_array
	28.6.8.1 Overview
	28.6.8.2 Assignment
	28.6.8.3 Compound assignment
	28.6.8.4 Fill function

	28.6.9 Class template indirect_array
	28.6.9.1 Overview
	28.6.9.2 Assignment
	28.6.9.3 Compound assignment
	28.6.9.4 Fill function

	28.6.10 valarray range access

	28.7 Mathematical functions for floating-point types
	28.7.1 Header <cmath> synopsis
	28.7.2 Absolute values
	28.7.3 Three-dimensional hypotenuse
	28.7.4 Linear interpolation
	28.7.5 Classification / comparison functions
	28.7.6 Mathematical special functions
	28.7.6.1 General
	28.7.6.2 Associated Laguerre polynomials
	28.7.6.3 Associated Legendre functions
	28.7.6.4 Beta function
	28.7.6.5 Complete elliptic integral of the first kind
	28.7.6.6 Complete elliptic integral of the second kind
	28.7.6.7 Complete elliptic integral of the third kind
	28.7.6.8 Regular modified cylindrical Bessel functions
	28.7.6.9 Cylindrical Bessel functions of the first kind
	28.7.6.10 Irregular modified cylindrical Bessel functions
	28.7.6.11 Cylindrical Neumann functions
	28.7.6.12 Incomplete elliptic integral of the first kind
	28.7.6.13 Incomplete elliptic integral of the second kind
	28.7.6.14 Incomplete elliptic integral of the third kind
	28.7.6.15 Exponential integral
	28.7.6.16 Hermite polynomials
	28.7.6.17 Laguerre polynomials
	28.7.6.18 Legendre polynomials
	28.7.6.19 Riemann zeta function
	28.7.6.20 Spherical Bessel functions of the first kind
	28.7.6.21 Spherical associated Legendre functions
	28.7.6.22 Spherical Neumann functions

	28.8 Numbers
	28.8.1 Header <numbers> synopsis
	28.8.2 Mathematical constants

	29 Time library
	29.1 General
	29.2 Header <chrono> synopsis
	29.3 Cpp17Clock requirements
	29.4 Time-related traits
	29.4.1 treat_as_floating_point
	29.4.2 duration_values
	29.4.3 Specializations of common_type
	29.4.4 Class template is_clock

	29.5 Class template duration
	29.5.1 General
	29.5.2 Constructors
	29.5.3 Observer
	29.5.4 Arithmetic
	29.5.5 Special values
	29.5.6 Non-member arithmetic
	29.5.7 Comparisons
	29.5.8 Conversions
	29.5.9 Suffixes for duration literals
	29.5.10 Algorithms
	29.5.11 I/O

	29.6 Class template time_point
	29.6.1 General
	29.6.2 Constructors
	29.6.3 Observer
	29.6.4 Arithmetic
	29.6.5 Special values
	29.6.6 Non-member arithmetic
	29.6.7 Comparisons
	29.6.8 Conversions

	29.7 Clocks
	29.7.1 General
	29.7.2 Class system_clock
	29.7.2.1 Overview
	29.7.2.2 Members
	29.7.2.3 Non-member functions

	29.7.3 Class utc_clock
	29.7.3.1 Overview
	29.7.3.2 Member functions
	29.7.3.3 Non-member functions

	29.7.4 Class tai_clock
	29.7.4.1 Overview
	29.7.4.2 Member functions
	29.7.4.3 Non-member functions

	29.7.5 Class gps_clock
	29.7.5.1 Overview
	29.7.5.2 Member functions
	29.7.5.3 Non-member functions

	29.7.6 Type file_clock
	29.7.6.1 Overview
	29.7.6.2 Member functions
	29.7.6.3 Non-member functions

	29.7.7 Class steady_clock
	29.7.8 Class high_resolution_clock
	29.7.9 Local time
	29.7.10 time_point conversions
	29.7.10.1 Class template clock_time_conversion
	29.7.10.2 Identity conversions
	29.7.10.3 Conversions between system_clock and utc_clock
	29.7.10.4 Conversions between system_clock and other clocks
	29.7.10.5 Conversions between utc_clock and other clocks
	29.7.10.6 Function template clock_cast

	29.8 The civil calendar
	29.8.1 In general
	29.8.2 Class last_spec
	29.8.3 Class day
	29.8.3.1 Overview
	29.8.3.2 Member functions
	29.8.3.3 Non-member functions

	29.8.4 Class month
	29.8.4.1 Overview
	29.8.4.2 Member functions
	29.8.4.3 Non-member functions

	29.8.5 Class year
	29.8.5.1 Overview
	29.8.5.2 Member functions
	29.8.5.3 Non-member functions

	29.8.6 Class weekday
	29.8.6.1 Overview
	29.8.6.2 Member functions
	29.8.6.3 Non-member functions

	29.8.7 Class weekday_indexed
	29.8.7.1 Overview
	29.8.7.2 Member functions
	29.8.7.3 Non-member functions

	29.8.8 Class weekday_last
	29.8.8.1 Overview
	29.8.8.2 Member functions
	29.8.8.3 Non-member functions

	29.8.9 Class month_day
	29.8.9.1 Overview
	29.8.9.2 Member functions
	29.8.9.3 Non-member functions

	29.8.10 Class month_day_last
	29.8.11 Class month_weekday
	29.8.11.1 Overview
	29.8.11.2 Member functions
	29.8.11.3 Non-member functions

	29.8.12 Class month_weekday_last
	29.8.12.1 Overview
	29.8.12.2 Member functions
	29.8.12.3 Non-member functions

	29.8.13 Class year_month
	29.8.13.1 Overview
	29.8.13.2 Member functions
	29.8.13.3 Non-member functions

	29.8.14 Class year_month_day
	29.8.14.1 Overview
	29.8.14.2 Member functions
	29.8.14.3 Non-member functions

	29.8.15 Class year_month_day_last
	29.8.15.1 Overview
	29.8.15.2 Member functions
	29.8.15.3 Non-member functions

	29.8.16 Class year_month_weekday
	29.8.16.1 Overview
	29.8.16.2 Member functions
	29.8.16.3 Non-member functions

	29.8.17 Class year_month_weekday_last
	29.8.17.1 Overview
	29.8.17.2 Member functions
	29.8.17.3 Non-member functions

	29.8.18 Conventional syntax operators

	29.9 Class template hh_mm_ss
	29.9.1 Overview
	29.9.2 Members
	29.9.3 Non-members

	29.10 12/24 hours functions
	29.11 Time zones
	29.11.1 In general
	29.11.2 Time zone database
	29.11.2.1 Class tzdb
	29.11.2.2 Class tzdb_list
	29.11.2.3 Time zone database access
	29.11.2.4 Remote time zone database support

	29.11.3 Exception classes
	29.11.3.1 Class nonexistent_local_time
	29.11.3.2 Class ambiguous_local_time

	29.11.4 Information classes
	29.11.4.1 Class sys_info
	29.11.4.2 Class local_info

	29.11.5 Class time_zone
	29.11.5.1 Overview
	29.11.5.2 Member functions
	29.11.5.3 Non-member functions

	29.11.6 Class template zoned_traits
	29.11.7 Class template zoned_time
	29.11.7.1 Overview
	29.11.7.2 Constructors
	29.11.7.3 Member functions
	29.11.7.4 Non-member functions

	29.11.8 Class leap_second
	29.11.8.1 Overview
	29.11.8.2 Member functions
	29.11.8.3 Non-member functions

	29.11.9 Class time_zone_link
	29.11.9.1 Overview
	29.11.9.2 Member functions
	29.11.9.3 Non-member functions

	29.12 Formatting
	29.13 Parsing
	29.14 Header <ctime> synopsis

	30 Localization library
	30.1 General
	30.2 Header <locale> synopsis
	30.3 Locales
	30.3.1 Class locale
	30.3.1.1 General
	30.3.1.2 Types
	30.3.1.2.1 Type locale::category
	30.3.1.2.2 Class locale::facet
	30.3.1.2.3 Class locale::id

	30.3.1.3 Constructors and destructor
	30.3.1.4 Members
	30.3.1.5 Operators
	30.3.1.6 Static members

	30.3.2 locale globals
	30.3.3 Convenience interfaces
	30.3.3.1 Character classification
	30.3.3.2 Character conversions

	30.4 Standard locale categories
	30.4.1 General
	30.4.2 The ctype category
	30.4.2.1 General
	30.4.2.2 Class template ctype
	30.4.2.2.1 General
	30.4.2.2.2 ctype members
	30.4.2.2.3 ctype virtual functions

	30.4.2.3 Class template ctype_byname
	30.4.2.4 ctype<char> specialization
	30.4.2.4.1 General
	30.4.2.4.2 Destructor
	30.4.2.4.3 Members
	30.4.2.4.4 Static members
	30.4.2.4.5 Virtual functions

	30.4.2.5 Class template codecvt
	30.4.2.5.1 General
	30.4.2.5.2 Members
	30.4.2.5.3 Virtual functions

	30.4.2.6 Class template codecvt_byname

	30.4.3 The numeric category
	30.4.3.1 General
	30.4.3.2 Class template num_get
	30.4.3.2.1 General
	30.4.3.2.2 Members
	30.4.3.2.3 Virtual functions

	30.4.3.3 Class template num_put
	30.4.3.3.1 General
	30.4.3.3.2 Members
	30.4.3.3.3 Virtual functions

	30.4.4 The numeric punctuation facet
	30.4.4.1 Class template numpunct
	30.4.4.1.1 General
	30.4.4.1.2 Members
	30.4.4.1.3 Virtual functions

	30.4.4.2 Class template numpunct_byname

	30.4.5 The collate category
	30.4.5.1 Class template collate
	30.4.5.1.1 General
	30.4.5.1.2 Members
	30.4.5.1.3 Virtual functions

	30.4.5.2 Class template collate_byname

	30.4.6 The time category
	30.4.6.1 General
	30.4.6.2 Class template time_get
	30.4.6.2.1 General
	30.4.6.2.2 Members
	30.4.6.2.3 Virtual functions

	30.4.6.3 Class template time_get_byname
	30.4.6.4 Class template time_put
	30.4.6.4.1 Members
	30.4.6.4.2 Virtual functions

	30.4.6.5 Class template time_put_byname

	30.4.7 The monetary category
	30.4.7.1 General
	30.4.7.2 Class template money_get
	30.4.7.2.1 Members
	30.4.7.2.2 Virtual functions

	30.4.7.3 Class template money_put
	30.4.7.3.1 Members
	30.4.7.3.2 Virtual functions

	30.4.7.4 Class template moneypunct
	30.4.7.4.1 General
	30.4.7.4.2 Members
	30.4.7.4.3 Virtual functions

	30.4.7.5 Class template moneypunct_byname

	30.4.8 The message retrieval category
	30.4.8.1 General
	30.4.8.2 Class template messages
	30.4.8.2.1 General
	30.4.8.2.2 Members
	30.4.8.2.3 Virtual functions

	30.4.8.3 Class template messages_byname

	30.5 C library locales
	30.5.1 Header <clocale> synopsis
	30.5.2 Data races

	31 Input/output library
	31.1 General
	31.2 Iostreams requirements
	31.2.1 Imbue limitations
	31.2.2 Types
	31.2.3 Positioning type limitations
	31.2.4 Thread safety

	31.3 Forward declarations
	31.3.1 Header <iosfwd> synopsis
	31.3.2 Overview

	31.4 Standard iostream objects
	31.4.1 Header <iostream> synopsis
	31.4.2 Overview
	31.4.3 Narrow stream objects
	31.4.4 Wide stream objects

	31.5 Iostreams base classes
	31.5.1 Header <ios> synopsis
	31.5.2 Class ios_base
	31.5.2.1 General
	31.5.2.2 Types
	31.5.2.2.1 Class ios_base::failure
	31.5.2.2.2 Type ios_base::fmtflags
	31.5.2.2.3 Type ios_base::iostate
	31.5.2.2.4 Type ios_base::openmode
	31.5.2.2.5 Type ios_base::seekdir
	31.5.2.2.6 Class ios_base::Init

	31.5.2.3 State functions
	31.5.2.4 Functions
	31.5.2.5 Static members
	31.5.2.6 Storage functions
	31.5.2.7 Callbacks
	31.5.2.8 Constructors and destructor

	31.5.3 Class template fpos
	31.5.3.1 Members
	31.5.3.2 Requirements

	31.5.4 Class template basic_ios
	31.5.4.1 Overview
	31.5.4.2 Constructors
	31.5.4.3 Member functions
	31.5.4.4 Flags functions

	31.5.5 ios_base manipulators
	31.5.5.1 fmtflags manipulators
	31.5.5.2 adjustfield manipulators
	31.5.5.3 basefield manipulators
	31.5.5.4 floatfield manipulators

	31.5.6 Error reporting

	31.6 Stream buffers
	31.6.1 Header <streambuf> synopsis
	31.6.2 Stream buffer requirements
	31.6.3 Class template basic_streambuf
	31.6.3.1 General
	31.6.3.2 Constructors
	31.6.3.3 Public member functions
	31.6.3.3.1 Locales
	31.6.3.3.2 Buffer management and positioning
	31.6.3.3.3 Get area
	31.6.3.3.4 Putback
	31.6.3.3.5 Put area

	31.6.3.4 Protected member functions
	31.6.3.4.1 Assignment
	31.6.3.4.2 Get area access
	31.6.3.4.3 Put area access

	31.6.3.5 Virtual functions
	31.6.3.5.1 Locales
	31.6.3.5.2 Buffer management and positioning
	31.6.3.5.3 Get area
	31.6.3.5.4 Putback
	31.6.3.5.5 Put area

	31.7 Formatting and manipulators
	31.7.1 Header <istream> synopsis
	31.7.2 Header <ostream> synopsis
	31.7.3 Header <iomanip> synopsis
	31.7.4 Input streams
	31.7.4.1 General
	31.7.4.2 Class template basic_istream
	31.7.4.2.1 General
	31.7.4.2.2 Constructors
	31.7.4.2.3 Assignment and swap
	31.7.4.2.4 Class basic_istream::sentry

	31.7.4.3 Formatted input functions
	31.7.4.3.1 Common requirements
	31.7.4.3.2 Arithmetic extractors
	31.7.4.3.3 basic_istream::operator>>

	31.7.4.4 Unformatted input functions
	31.7.4.5 Standard basic_istream manipulators
	31.7.4.6 Rvalue stream extraction
	31.7.4.7 Class template basic_iostream
	31.7.4.7.1 General
	31.7.4.7.2 Constructors
	31.7.4.7.3 Destructor
	31.7.4.7.4 Assignment and swap

	31.7.5 Output streams
	31.7.5.1 General
	31.7.5.2 Class template basic_ostream
	31.7.5.2.1 General
	31.7.5.2.2 Constructors
	31.7.5.2.3 Assignment and swap
	31.7.5.2.4 Class basic_ostream::sentry
	31.7.5.2.5 Seek members

	31.7.5.3 Formatted output functions
	31.7.5.3.1 Common requirements
	31.7.5.3.2 Arithmetic inserters
	31.7.5.3.3 basic_ostream::operator<<
	31.7.5.3.4 Character inserter function templates

	31.7.5.4 Unformatted output functions
	31.7.5.5 Standard manipulators
	31.7.5.6 Rvalue stream insertion

	31.7.6 Standard manipulators
	31.7.7 Extended manipulators
	31.7.8 Quoted manipulators

	31.8 String-based streams
	31.8.1 Header <sstream> synopsis
	31.8.2 Class template basic_stringbuf
	31.8.2.1 General
	31.8.2.2 Constructors
	31.8.2.3 Assignment and swap
	31.8.2.4 Member functions
	31.8.2.5 Overridden virtual functions

	31.8.3 Class template basic_istringstream
	31.8.3.1 General
	31.8.3.2 Constructors
	31.8.3.3 Swap
	31.8.3.4 Member functions

	31.8.4 Class template basic_ostringstream
	31.8.4.1 General
	31.8.4.2 Constructors
	31.8.4.3 Swap
	31.8.4.4 Member functions

	31.8.5 Class template basic_stringstream
	31.8.5.1 General
	31.8.5.2 Constructors
	31.8.5.3 Swap
	31.8.5.4 Member functions

	31.9 Span-based streams
	31.9.1 Overview
	31.9.2 Header <spanstream> synopsis
	31.9.3 Class template spanbuf
	31.9.3.1 General
	31.9.3.2 Constructors
	31.9.3.3 Assignment and swap
	31.9.3.4 Member functions
	31.9.3.5 Overridden virtual functions

	31.9.4 Class template basic_ispanstream
	31.9.4.1 General
	31.9.4.2 Constructors
	31.9.4.3 Swap
	31.9.4.4 Member functions

	31.9.5 Class template basic_ospanstream
	31.9.5.1 General
	31.9.5.2 Constructors
	31.9.5.3 Swap
	31.9.5.4 Member functions

	31.9.6 Class template basic_spanstream
	31.9.6.1 General
	31.9.6.2 Constructors
	31.9.6.3 Swap
	31.9.6.4 Member functions

	31.10 File-based streams
	31.10.1 Header <fstream> synopsis
	31.10.2 Class template basic_filebuf
	31.10.2.1 General
	31.10.2.2 Constructors
	31.10.2.3 Assignment and swap
	31.10.2.4 Member functions
	31.10.2.5 Overridden virtual functions

	31.10.3 Class template basic_ifstream
	31.10.3.1 General
	31.10.3.2 Constructors
	31.10.3.3 Swap
	31.10.3.4 Member functions

	31.10.4 Class template basic_ofstream
	31.10.4.1 General
	31.10.4.2 Constructors
	31.10.4.3 Swap
	31.10.4.4 Member functions

	31.10.5 Class template basic_fstream
	31.10.5.1 General
	31.10.5.2 Constructors
	31.10.5.3 Swap
	31.10.5.4 Member functions

	31.11 Synchronized output streams
	31.11.1 Header <syncstream> synopsis
	31.11.2 Class template basic_syncbuf
	31.11.2.1 Overview
	31.11.2.2 Construction and destruction
	31.11.2.3 Assignment and swap
	31.11.2.4 Member functions
	31.11.2.5 Overridden virtual functions
	31.11.2.6 Specialized algorithms

	31.11.3 Class template basic_osyncstream
	31.11.3.1 Overview
	31.11.3.2 Construction and destruction
	31.11.3.3 Member functions

	31.12 File systems
	31.12.1 General
	31.12.2 Conformance
	31.12.2.1 General
	31.12.2.2 POSIX conformance
	31.12.2.3 Operating system dependent behavior conformance
	31.12.2.4 File system race behavior

	31.12.3 Requirements
	31.12.4 Header <filesystem> synopsis
	31.12.5 Error reporting
	31.12.6 Class path
	31.12.6.1 General
	31.12.6.2 Generic pathname format
	31.12.6.3 Conversions
	31.12.6.3.1 Argument format conversions
	31.12.6.3.2 Type and encoding conversions

	31.12.6.4 Requirements
	31.12.6.5 Members
	31.12.6.5.1 Constructors
	31.12.6.5.2 Assignments
	31.12.6.5.3 Appends
	31.12.6.5.4 Concatenation
	31.12.6.5.5 Modifiers
	31.12.6.5.6 Native format observers
	31.12.6.5.7 Generic format observers
	31.12.6.5.8 Compare
	31.12.6.5.9 Decomposition
	31.12.6.5.10 Query
	31.12.6.5.11 Generation

	31.12.6.6 Iterators
	31.12.6.7 Inserter and extractor
	31.12.6.8 Non-member functions
	31.12.6.9 Hash support

	31.12.7 Class filesystem_error
	31.12.7.1 General
	31.12.7.2 Members

	31.12.8 Enumerations
	31.12.8.1 Enum path::format
	31.12.8.2 Enum class file_type
	31.12.8.3 Enum class copy_options
	31.12.8.4 Enum class perms
	31.12.8.5 Enum class perm_options
	31.12.8.6 Enum class directory_options

	31.12.9 Class file_status
	31.12.9.1 General
	31.12.9.2 Constructors
	31.12.9.3 Observers
	31.12.9.4 Modifiers

	31.12.10 Class directory_entry
	31.12.10.1 General
	31.12.10.2 Constructors
	31.12.10.3 Modifiers
	31.12.10.4 Observers
	31.12.10.5 Inserter

	31.12.11 Class directory_iterator
	31.12.11.1 General
	31.12.11.2 Members
	31.12.11.3 Non-member functions

	31.12.12 Class recursive_directory_iterator
	31.12.12.1 General
	31.12.12.2 Members
	31.12.12.3 Non-member functions

	31.12.13 Filesystem operation functions
	31.12.13.1 General
	31.12.13.2 Absolute
	31.12.13.3 Canonical
	31.12.13.4 Copy
	31.12.13.5 Copy file
	31.12.13.6 Copy symlink
	31.12.13.7 Create directories
	31.12.13.8 Create directory
	31.12.13.9 Create directory symlink
	31.12.13.10 Create hard link
	31.12.13.11 Create symlink
	31.12.13.12 Current path
	31.12.13.13 Equivalent
	31.12.13.14 Exists
	31.12.13.15 File size
	31.12.13.16 Hard link count
	31.12.13.17 Is block file
	31.12.13.18 Is character file
	31.12.13.19 Is directory
	31.12.13.20 Is empty
	31.12.13.21 Is fifo
	31.12.13.22 Is other
	31.12.13.23 Is regular file
	31.12.13.24 Is socket
	31.12.13.25 Is symlink
	31.12.13.26 Last write time
	31.12.13.27 Permissions
	31.12.13.28 Proximate
	31.12.13.29 Read symlink
	31.12.13.30 Relative
	31.12.13.31 Remove
	31.12.13.32 Remove all
	31.12.13.33 Rename
	31.12.13.34 Resize file
	31.12.13.35 Space
	31.12.13.36 Status
	31.12.13.37 Status known
	31.12.13.38 Symlink status
	31.12.13.39 Temporary directory path
	31.12.13.40 Weakly canonical

	31.13 C library files
	31.13.1 Header <cstdio> synopsis
	31.13.2 Header <cinttypes> synopsis

	32 Regular expressions library
	32.1 General
	32.2 Requirements
	32.3 Header <regex> synopsis
	32.4 Namespace std::regex_constants
	32.4.1 General
	32.4.2 Bitmask type syntax_option_type
	32.4.3 Bitmask type match_flag_type
	32.4.4 Implementation-defined error_type

	32.5 Class regex_error
	32.6 Class template regex_traits
	32.7 Class template basic_regex
	32.7.1 General
	32.7.2 Constructors
	32.7.3 Assignment
	32.7.4 Constant operations
	32.7.5 Locale
	32.7.6 Swap
	32.7.7 Non-member functions

	32.8 Class template sub_match
	32.8.1 General
	32.8.2 Members
	32.8.3 Non-member operators

	32.9 Class template match_results
	32.9.1 General
	32.9.2 Constructors
	32.9.3 State
	32.9.4 Size
	32.9.5 Element access
	32.9.6 Formatting
	32.9.7 Allocator
	32.9.8 Swap
	32.9.9 Non-member functions

	32.10 Regular expression algorithms
	32.10.1 Exceptions
	32.10.2 regex_match
	32.10.3 regex_search
	32.10.4 regex_replace

	32.11 Regular expression iterators
	32.11.1 Class template regex_iterator
	32.11.1.1 General
	32.11.1.2 Constructors
	32.11.1.3 Comparisons
	32.11.1.4 Indirection
	32.11.1.5 Increment

	32.11.2 Class template regex_token_iterator
	32.11.2.1 General
	32.11.2.2 Constructors
	32.11.2.3 Comparisons
	32.11.2.4 Indirection
	32.11.2.5 Increment

	32.12 Modified ECMAScript regular expression grammar

	33 Concurrency support library
	33.1 General
	33.2 Requirements
	33.2.1 Template parameter names
	33.2.2 Exceptions
	33.2.3 Native handles
	33.2.4 Timing specifications
	33.2.5 Requirements for Cpp17Lockable types
	33.2.5.1 In general
	33.2.5.2 Cpp17BasicLockable requirements
	33.2.5.3 Cpp17Lockable requirements
	33.2.5.4 Cpp17TimedLockable requirements
	33.2.5.5 Cpp17SharedLockable requirements
	33.2.5.6 Cpp17SharedTimedLockable requirements

	33.3 Stop tokens
	33.3.1 Introduction
	33.3.2 Header <stop_token> synopsis
	33.3.3 Class stop_token
	33.3.3.1 General
	33.3.3.2 Constructors, copy, and assignment
	33.3.3.3 Members
	33.3.3.4 Non-member functions

	33.3.4 Class stop_source
	33.3.4.1 General
	33.3.4.2 Constructors, copy, and assignment
	33.3.4.3 Members
	33.3.4.4 Non-member functions

	33.3.5 Class template stop_callback
	33.3.5.1 General
	33.3.5.2 Constructors and destructor

	33.4 Threads
	33.4.1 General
	33.4.2 Header <thread> synopsis
	33.4.3 Class thread
	33.4.3.1 General
	33.4.3.2 Class thread::id
	33.4.3.3 Constructors
	33.4.3.4 Destructor
	33.4.3.5 Assignment
	33.4.3.6 Members
	33.4.3.7 Static members
	33.4.3.8 Specialized algorithms

	33.4.4 Class jthread
	33.4.4.1 General
	33.4.4.2 Constructors, move, and assignment
	33.4.4.3 Members
	33.4.4.4 Stop token handling
	33.4.4.5 Specialized algorithms
	33.4.4.6 Static members

	33.4.5 Namespace this_thread

	33.5 Atomic operations
	33.5.1 General
	33.5.2 Header <atomic> synopsis
	33.5.3 Type aliases
	33.5.4 Order and consistency
	33.5.5 Lock-free property
	33.5.6 Waiting and notifying
	33.5.7 Class template atomic_ref
	33.5.7.1 General
	33.5.7.2 Operations
	33.5.7.3 Specializations for integral types
	33.5.7.4 Specializations for floating-point types
	33.5.7.5 Partial specialization for pointers
	33.5.7.6 Member operators common to integers and pointers to objects

	33.5.8 Class template atomic
	33.5.8.1 General
	33.5.8.2 Operations on atomic types
	33.5.8.3 Specializations for integers
	33.5.8.4 Specializations for floating-point types
	33.5.8.5 Partial specialization for pointers
	33.5.8.6 Member operators common to integers and pointers to objects
	33.5.8.7 Partial specializations for smart pointers
	33.5.8.7.1 General
	33.5.8.7.2 Partial specialization for shared_ptr
	33.5.8.7.3 Partial specialization for weak_ptr

	33.5.9 Non-member functions
	33.5.10 Flag type and operations
	33.5.11 Fences
	33.5.12 C compatibility

	33.6 Mutual exclusion
	33.6.1 General
	33.6.2 Header <mutex> synopsis
	33.6.3 Header <shared_mutex> synopsis
	33.6.4 Mutex requirements
	33.6.4.1 In general
	33.6.4.2 Mutex types
	33.6.4.2.1 General
	33.6.4.2.2 Class mutex
	33.6.4.2.3 Class recursive_mutex

	33.6.4.3 Timed mutex types
	33.6.4.3.1 General
	33.6.4.3.2 Class timed_mutex
	33.6.4.3.3 Class recursive_timed_mutex

	33.6.4.4 Shared mutex types
	33.6.4.4.1 General
	33.6.4.4.2 Class shared_mutex

	33.6.4.5 Shared timed mutex types
	33.6.4.5.1 General
	33.6.4.5.2 Class shared_timed_mutex

	33.6.5 Locks
	33.6.5.1 General
	33.6.5.2 Class template lock_guard
	33.6.5.3 Class template scoped_lock
	33.6.5.4 Class template unique_lock
	33.6.5.4.1 General
	33.6.5.4.2 Constructors, destructor, and assignment
	33.6.5.4.3 Locking
	33.6.5.4.4 Modifiers
	33.6.5.4.5 Observers

	33.6.5.5 Class template shared_lock
	33.6.5.5.1 General
	33.6.5.5.2 Constructors, destructor, and assignment
	33.6.5.5.3 Locking
	33.6.5.5.4 Modifiers
	33.6.5.5.5 Observers

	33.6.6 Generic locking algorithms
	33.6.7 Call once
	33.6.7.1 Struct once_flag
	33.6.7.2 Function call_once

	33.7 Condition variables
	33.7.1 General
	33.7.2 Header <condition_variable> synopsis
	33.7.3 Non-member functions
	33.7.4 Class condition_variable
	33.7.5 Class condition_variable_any
	33.7.5.1 General
	33.7.5.2 Noninterruptible waits
	33.7.5.3 Interruptible waits

	33.8 Semaphore
	33.8.1 General
	33.8.2 Header <semaphore> synopsis
	33.8.3 Class template counting_semaphore

	33.9 Coordination types
	33.9.1 General
	33.9.2 Latches
	33.9.2.1 General
	33.9.2.2 Header <latch> synopsis
	33.9.2.3 Class latch

	33.9.3 Barriers
	33.9.3.1 General
	33.9.3.2 Header <barrier> synopsis
	33.9.3.3 Class template barrier

	33.10 Futures
	33.10.1 Overview
	33.10.2 Header <future> synopsis
	33.10.3 Error handling
	33.10.4 Class future_error
	33.10.5 Shared state
	33.10.6 Class template promise
	33.10.7 Class template future
	33.10.8 Class template shared_future
	33.10.9 Function template async
	33.10.10 Class template packaged_task
	33.10.10.1 General
	33.10.10.2 Member functions
	33.10.10.3 Globals

	A Grammar summary
	A.1 General
	A.2 Keywords
	A.3 Lexical conventions
	A.4 Basics
	A.5 Expressions
	A.6 Statements
	A.7 Declarations
	A.8 Modules
	A.9 Classes
	A.10 Overloading
	A.11 Templates
	A.12 Exception handling
	A.13 Preprocessing directives

	B Implementation quantities
	C Compatibility
	C.1 C++ and ISO C++ 2020
	C.1.1 General
	C.1.2 Clause 5: lexical conventions
	C.1.3 Clause 7: expressions
	C.1.4 Clause 16: library introduction
	C.1.5 Clause 22: general utilities library
	C.1.6 Clause 24: containers library

	C.2 C++ and ISO C++ 2017
	C.2.1 General
	C.2.2 Clause 5: lexical conventions
	C.2.3 Clause 6: basics
	C.2.4 Clause 7: expressions
	C.2.5 Clause 9: declarations
	C.2.6 Clause 11: classes
	C.2.7 Clause 12: overloading
	C.2.8 Clause 13: templates
	C.2.9 Clause 14: exception handling
	C.2.10 Clause 16: library introduction
	C.2.11 Clause 24: containers library
	C.2.12 Clause 25: iterators library
	C.2.13 Clause 27: algorithms library
	C.2.14 Clause 31: input/output library
	C.2.15 Annex D: compatibility features

	C.3 C++ and ISO C++ 2014
	C.3.1 General
	C.3.2 Clause 5: lexical conventions
	C.3.3 Clause 7: expressions
	C.3.4 Clause 9: declarations
	C.3.5 Clause 11: classes
	C.3.6 Clause 13: templates
	C.3.7 Clause 14: exception handling
	C.3.8 Clause 16: library introduction
	C.3.9 Clause 22: general utilities library
	C.3.10 Clause 23: strings library
	C.3.11 Clause 24: containers library
	C.3.12 Annex D: compatibility features

	C.4 C++ and ISO C++ 2011
	C.4.1 General
	C.4.2 Clause 5: lexical conventions
	C.4.3 Clause 6: basics
	C.4.4 Clause 7: expressions
	C.4.5 Clause 9: declarations
	C.4.6 Clause 16: library introduction
	C.4.7 Clause 31: input/output library

	C.5 C++ and ISO C++ 2003
	C.5.1 General
	C.5.2 Clause 5: lexical conventions
	C.5.3 Clause 7: expressions
	C.5.4 Clause 9: declarations
	C.5.5 Clause 11: classes
	C.5.6 Clause 13: templates
	C.5.7 Clause 16: library introduction
	C.5.8 Clause 17: language support library
	C.5.9 Clause 19: diagnostics library
	C.5.10 Clause 22: general utilities library
	C.5.11 Clause 23: strings library
	C.5.12 Clause 24: containers library
	C.5.13 Clause 27: algorithms library
	C.5.14 Clause 28: numerics library
	C.5.15 Clause 30: localization library
	C.5.16 Clause 31: input/output library

	C.6 C++ and ISO C
	C.6.1 General
	C.6.2 Clause 5: lexical conventions
	C.6.3 Clause 6: basics
	C.6.4 Clause 7: expressions
	C.6.5 Clause 8: statements
	C.6.6 Clause 9: declarations
	C.6.7 Clause 11: classes
	C.6.8 Clause 15: preprocessing directives

	C.7 C standard library
	C.7.1 General
	C.7.2 Modifications to headers
	C.7.3 Modifications to definitions
	C.7.3.1 Types char16_t and char32_t
	C.7.3.2 Type wchar_t
	C.7.3.3 Header <assert.h>
	C.7.3.4 Header <iso646.h>
	C.7.3.5 Header <stdalign.h>
	C.7.3.6 Header <stdbool.h>
	C.7.3.7 Macro NULL

	C.7.4 Modifications to declarations
	C.7.5 Modifications to behavior
	C.7.5.1 General
	C.7.5.2 Macro offsetof(type, member-designator)
	C.7.5.3 Memory allocation functions

	D Compatibility features
	D.1 General
	D.2 Arithmetic conversion on enumerations
	D.3 Implicit capture of *this by reference
	D.4 Array comparisons
	D.5 Deprecated volatile types
	D.6 Redeclaration of static constexpr data members
	D.7 Non-local use of TU-local entities
	D.8 Implicit declaration of copy functions
	D.9 template keyword before qualified names
	D.10 Requires paragraph
	D.11 Relational operators
	D.12 char* streams
	D.12.1 Header <strstream> synopsis
	D.12.2 Class strstreambuf
	D.12.2.1 General
	D.12.2.2 strstreambuf constructors
	D.12.2.3 Member functions
	D.12.2.4 strstreambuf overridden virtual functions

	D.12.3 Class istrstream
	D.12.3.1 General
	D.12.3.2 istrstream constructors
	D.12.3.3 Member functions

	D.12.4 Class ostrstream
	D.12.4.1 General
	D.12.4.2 ostrstream constructors
	D.12.4.3 Member functions

	D.12.5 Class strstream
	D.12.5.1 General
	D.12.5.2 strstream constructors
	D.12.5.3 strstream destructor
	D.12.5.4 strstream operations

	D.13 The default allocator
	D.14 Deprecated polymorphic_allocator member function
	D.15 Deprecated type traits
	D.16 Tuple
	D.17 Variant
	D.18 Deprecated iterator class template
	D.19 Deprecated move_iterator access
	D.20 Deprecated shared_ptr atomic access
	D.21 Deprecated basic_string capacity
	D.22 Deprecated standard code conversion facets
	D.22.1 General
	D.22.2 Header <codecvt> synopsis
	D.22.3 Requirements

	D.23 Deprecated convenience conversion interfaces
	D.23.1 General
	D.23.2 Class template wstring_convert
	D.23.3 Class template wbuffer_convert

	D.24 Deprecated locale category facets
	D.25 Deprecated filesystem path factory functions
	D.26 Deprecated atomic operations
	D.26.1 General
	D.26.2 Volatile access
	D.26.3 Non-member functions
	D.26.4 Operations on atomic types
	D.26.5 Flag type and operations

	E Conformance with UAX #31
	E.1 General
	E.2 R1 Default identifiers
	E.2.1 General
	E.2.2 R1a Restricted format characters
	E.2.3 R1b Stable identifiers

	E.3 R2 Immutable identifiers
	E.4 R3 Pattern_White_Space and Pattern_Syntax characters
	E.5 R4 Equivalent normalized identifiers
	E.6 R5 Equivalent case-insensitive identifiers
	E.7 R6 Filtered normalized identifiers
	E.8 R7 Filtered case-insensitive identifiers
	E.9 R8 Hashtag identifiers

	Bibliography
	Cross references
	Cross references from ISO C++ 2020
	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index of grammar productions
	Index of library headers
	Index of library names
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index of library concepts
	Index of implementation-defined behavior

