
Document Number: D2597R0
Date: 2022-05-28
Reply to: Daniel Ruoso

Bloomberg LP
druoso@bloomberg.net

C++ Modules Ecosystem Technical Report,
Version 1

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

© ISO/IEC D2597R0

Contents
1 Introduction 1

1.1 Scope . 1
1.2 Normative references . 1
1.3 Structure of this document . 1

2 Source Files 2
2.1 Translation Unit Types . 2
2.2 Filename Extensions . 3

3 Build Process 4
3.1 Steps of the Build . 4
3.2 Coherency Requirements . 4
3.3 Header Units . 4
3.4 Relationship with the Standard Library . 4
3.5 Trivial Cases . 4

4 Language Semantics 5
4.1 Propagation of Attributes . 5
4.2 Command-line compilation definitions . 5

5 Distribution 6
5.1 Source Distribution . 6

Index 7

Contents ii

© ISO/IEC D2597R0

1 Introduction [introduction]
1.1 Scope [introduction.scope]

1 This aim of this technical report is to describe a model and best practices for how the C++ software
development ecosystem should adopt modules.

1.2 Normative references [introduction.references]
1 The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

—(1.1) ISO/IEC 14882:2020, Programming languages — C++
2 ISO/IEC 14882:2020 is hereafter called the C++ Standard.

1.3 Structure of this document [introduction.structure]
1 Clause 2 discusses how tooling relates for the different types of C++ source files, the terminology used by

tools when referring to those and how they relate to each other.
2 Clause 3 discusses requirements for tooling related to the build process of code declaring and/or consuming

C++ modules.
3 Clause 4 discusses the interpretation of specific features described in the C++ Standard in relationship to

modules.
4 Clause 5 discusses interoperability for the distribution of C++ libraries with modules across different compilers,

build systems and package managers.

§ 1.3 1

© ISO/IEC D2597R0

2 Source Files [source]
1 For tooling purposes, there are two main categories of source files: the primary source file, and included files.

The primary source file of a translation unit is the one used to start the first phase of the translation. The
included files contribute to translation unit by methods of “Source file inclusion”.

2 With the exception of header units, the translation unit type can be defined unambiguously by the contents
of the primary source file because of preprocessing restrictions established by the C++ Standard. Header
units require additional information at the tooling level.

2.1 Translation Unit Types [source.types]
2.1.1 [source.types.importable]
importable units
Translation units that must be translated before other translation units (usually via the encoding of a binary
module interface file), such that the usage of “import” statements can be correctly interpreted.

2.1.2 [source.types.interface]
module interface units
Importable units that contribute to the “external interface” of a named module with declaration and definitions
within the purview of a named module.

2.1.3 [source.types.primary-interface]
primary module interface unit
Module interface unit without a partition, it can be unambiguosly identified by the presence of the export-
keyword and the absense of a module-partition. There can be only one primary unit for each module.

2.1.4 [source.types.interface-partition]
module interface partition unit
Module interface unit with a module-partiton. It can be unambiguously identified by the presence of both
export-keyword and the presence of module-partition. There can only be one unit for a given partition name.

2.1.5 [source.types.internal-partition]
internal module partition unit
Importable translation units with declarations and definitions in the purview of a given named module, but
that do not contribute to its “external interface”. It can be unambiguously identified by the absense of the
export-keyword and the presence of module-partition. An internal partition may or may not be reachable by
the module interface units. An internal partition that is not reachable by the interface units is not required
to be made available to translation units outside the module.

2.1.6 [source.types.header-unit]
header unit
Header units are the independent translation of what would otherwise be available via source inclusion. They
are not identifiable directly by the contents of the primary source file. Additional information is needed at
the tooling level to identify them. Implementations are not required to accept any header or header file that
could be included to be also importable.

2.1.7 [source.types.implementation]
module implementation unit
Module implementation units contain definitions in the module purview that were omitted on the interface
units and internal partitions units. It can be unambiguously identified by the absense of the export-keyword
and the absence of module-partition. It may also contain other declarations in the module purview, but those
are not reachable from the module interface or internal partitions.

2.1.8 [source.types.non-module]
non-module unit
Translation units without a module-declaration that are not header units.

§ 2.1.8 2

© ISO/IEC D2597R0

2.2 Filename Extensions [source.file-extensions]
1 TODO: modules-ecosystem-tr#20

§ 2.2 3

https://github.com/cplusplus/modules-ecosystem-tr/issues/20

© ISO/IEC D2597R0

3 Build Process [build]
3.1 Steps of the Build [build.steps]

1 When building C++ code that produces or consumes modules, the build process needs to be broken down in
different steps. The steps described here represent the semantic organization, not the interface presented to
the C++ developer, the organization in steps does not preclude parts of those steps to be executed in parallel.

3.1.1 Identify External Importable Units [build.steps.external-importable]
1 As the C++ standard library itself will offer a modular interface as well as importable headers, it will be

very rarely the case that a build system will be able to consider only modules declared inside the same build
context.

2 TODO: modules-ecosystem-tr#5

3.1.2 Identify Importable Headers [build.steps.importable-headers]
1 While external importable units may include header units, it’s also necessary to identify any importable

header internal to the project itself.
2 The C++ standard describes “importable headers” and “non-importable headers”, however those cannot be

differentiated from their content alone, therefore they need to identified at the tooling level.
3 The C++ standard also allows (15.3.7) the implementation to optimize away source file inclusion when a

header is known to be importable.
4 Since an include directive may be replaced by an import directive, a change in the identification of header

units may change the dependency information of any translation unit.
5 TODO: modules-ecosystem-tr#6

3.1.3 Dependency Scanning [build.steps.dependency-scan]
1 Once the list of importable headers is defined, the dependency scanning phase can be performed. The

dependency scanning is invoked by the build system on all translation units (including header units).
2 The dependency scanning of each translation unit is independent of the dependency scanning of any other

translation unit.
3 TODO: modules-ecosystem-tr#7

3.1.4 Generation of the Binary Module Inteface [build.steps.bmi-generation]
1 TODO: modules-ecosystem-tr#8

3.1.5 Compilation [build.steps.compilation]
1 TODO: modules-ecosystem-tr#9

3.1.6 Linking [build.steps.linking]
1 TODO: modules-ecosystem-tr#10

3.2 Coherency Requirements [build.coherency]
1 TODO: modules-ecosystem-tr#11

3.3 Header Units [build.header-units]
1 TODO: modules-ecosystem-tr#12

3.4 Relationship with the Standard Library [build.stdlib]
1 TODO: modules-ecosystem-tr#13

3.5 Trivial Cases [build.trivial]
1 TODO: modules-ecosystem-tr#14

§ 3.5 4

https://github.com/cplusplus/modules-ecosystem-tr/issues/5
https://github.com/cplusplus/modules-ecosystem-tr/issues/6
https://github.com/cplusplus/modules-ecosystem-tr/issues/7
https://github.com/cplusplus/modules-ecosystem-tr/issues/8
https://github.com/cplusplus/modules-ecosystem-tr/issues/9
https://github.com/cplusplus/modules-ecosystem-tr/issues/10
https://github.com/cplusplus/modules-ecosystem-tr/issues/11
https://github.com/cplusplus/modules-ecosystem-tr/issues/12
https://github.com/cplusplus/modules-ecosystem-tr/issues/13
https://github.com/cplusplus/modules-ecosystem-tr/issues/14

© ISO/IEC D2597R0

4 Language Semantics [language]
4.1 Propagation of Attributes [language.attributes]

1 TODO: modules-ecosystem-tr#15

4.2 Command-line compilation definitions [language.command-line-defines]
1 TODO: modules-ecosystem-tr#16

§ 4.2 5

https://github.com/cplusplus/modules-ecosystem-tr/issues/15
https://github.com/cplusplus/modules-ecosystem-tr/issues/16

© ISO/IEC D2597R0

5 Distribution [distribution]
5.1 Source Distribution [distribution.source]

1 TODO: modules-ecosystem-tr#17

5.1.1 Binary Distribution [distribution.binary]
1 TODO: modules-ecosystem-tr#18

5.1.2 Importable-Unit-Only Libraries [distribution.importable-unit-only]
1 TODO: modules-ecosystem-tr#19

§ 5.1.2 6

https://github.com/cplusplus/modules-ecosystem-tr/issues/17
https://github.com/cplusplus/modules-ecosystem-tr/issues/18
https://github.com/cplusplus/modules-ecosystem-tr/issues/19

© ISO/IEC D2597R0

Index
B
build, 4

C
C++ Standard, 1

D
distribution, 6

H
header unit, 2

I
importable units, 2
internal module partition unit, 2

L
language, 5

M
module implementation unit, 2
module interface partition unit, 2
module interface units, 2

N
non-module unit, 2
normative references, see references, normative

P
primary module interface unit, 2

R
references

normative, 1

S
scope, 1
source files, 2–3

T
technical report

structure of, 1

Index 7

	Contents
	1 Introduction
	1.1 Scope
	1.2 Normative references
	1.3 Structure of this document

	2 Source Files
	2.1 Translation Unit Types
	2.2 Filename Extensions

	3 Build Process
	3.1 Steps of the Build
	3.1.1 Identify External Importable Units
	3.1.2 Identify Importable Headers
	3.1.3 Dependency Scanning
	3.1.4 Generation of the Binary Module Inteface
	3.1.5 Compilation
	3.1.6 Linking

	3.2 Coherency Requirements
	3.3 Header Units
	3.4 Relationship with the Standard Library
	3.5 Trivial Cases

	4 Language Semantics
	4.1 Propagation of Attributes
	4.2 Command-line compilation definitions

	5 Distribution
	5.1 Source Distribution
	5.1.1 Binary Distribution
	5.1.2 Importable-Unit-Only Libraries

	Index
	B
	C
	D
	H
	I
	L
	M
	N
	P
	R
	S
	T

