diff --git a/R/EGO.nsteps.R b/R/EGO.nsteps.R index 6279554..d6cf569 100755 --- a/R/EGO.nsteps.R +++ b/R/EGO.nsteps.R @@ -214,7 +214,7 @@ EGO.nsteps <-function(model, fun, nsteps, lower, upper, parinit=NULL, control=NU if (is.null(kmcontrol$optim.method)) kmcontrol$optim.method <- model@optim.method if (is.null(kmcontrol$parinit)) kmcontrol$parinit <- model@parinit if (is.null(kmcontrol$control)) kmcontrol$control <- model@control - + if (is.null(kmcontrol$nugget)) kmcontrol$control <- NULL for (i in 1:nsteps) { oEGO<-max_EI(model=model, lower=lower, upper=upper, parinit=parinit, control=control) @@ -228,12 +228,12 @@ EGO.nsteps <-function(model, fun, nsteps, lower, upper, parinit=NULL, control=NU if (model@param.estim) { model <- km(formula=model@trend.formula, design=model@X, response=model@y, covtype=model@covariance@name, lower=model@lower, upper=model@upper, - nugget=NULL, penalty=kmcontrol$penalty, optim.method=kmcontrol$optim.method, + nugget=kmcontrol@nugget, penalty=kmcontrol$penalty, optim.method=kmcontrol$optim.method, parinit=kmcontrol$parinit, control=kmcontrol$control, gr=model@gr, iso=is(model@covariance,"covIso")) } else { coef.cov <- covparam2vect(model@covariance) model <- km(formula=model@trend.formula, design=model@X, response=model@y, - covtype=model@covariance@name, coef.trend=model@trend.coef, coef.cov=coef.cov, coef.var=model@covariance@sd2, nugget=NULL, iso=is(model@covariance,"covIso")) + covtype=model@covariance@name, coef.trend=model@trend.coef, coef.cov=coef.cov, coef.var=model@covariance@sd2, nugget=kmcontrol@nugget, iso=is(model@covariance,"covIso")) } }