Skip to content
An RFC 6902 (JSON Patch) and reverse, plus RFC 7386 (JSON Merge Patch), implementation in Java using Jackson (2.2.x)
Java Shell
Branch: master
Clone or download
#15 Compare This branch is 42 commits ahead, 6 commits behind java-json-tools:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

We are maintaining this fork until fge returns

As fge hasn't been around on his fork, we are accepting pull requests here and publishing to If a point comes when fge returns we will try to get any patchset accepted here merged back into his branch.

Read me first

This project, as of version 1.4, is licensed under both LGPLv3 and ASL 2.0. See file LICENSE for more details. Versions 1.3 and lower are licensed under LGPLv3 only.

What this is

This is an implementation of RFC 6902 (JSON Patch) and RFC 7386 (JSON Merge Patch) written in Java, which uses Jackson (2.2.x) at its core.

Its features are:

  • {de,}serialization of JSON Patch and JSON Merge Patch instances with Jackson;
  • full support for RFC 6902 operations, including test;
  • JSON "diff" (RFC 6902 only) with operation factorization.


The current version is 1.16. See file for details.

Using it in your project

With Gradle:

dependencies {
    compile(group: "com.github.fge", name: "json-patch", version: "yourVersionHere");

With Maven:


JSON "diff" factorization

When computing the difference between two JSON texts (in the form of JsonNode instances), the diff will factorize value removals and additions as moves and copies.

For instance, given this node to patch:

{ "a": "b" }

in order to obtain:

{ "c": "b" }

the implementation will return the following patch:

[ { "op": "move", "from": "/a", "path": "/c" } ]

It is able to do even more than that. See the test files in the project.

Note about the test operation and numeric value equivalence

RFC 6902 mandates that when testing for numeric values, however deeply nested in the tested value, a test is successful if the numeric values are mathematically equal. That is, JSON texts:




must be considered equal.

This implementation obeys the RFC; for this, it uses the numeric equivalence of jackson-coreutils.

Sample usage

JSON Patch

You have to choices to build a JsonPatch instance: use Jackson deserialization, or initialize one directly from a JsonNode. Examples:

// Using Jackson
final ObjectMapper mapper = new ObjectMapper();
final InputStream in = ...;
final JsonPatch patch = mapper.readValue(in, JsonPatch.class);
// From a JsonNode
final JsonPatch patch = JsonPatch.fromJson(node);

You can then apply the patch to your data:

// orig is also a JsonNode
final JsonNode patched = patch.apply(orig);

JSON diff

The main class is JsonDiff. It returns the patch as a JsonPatch or as a JsonNode. Sample usage:

final JsonPatch patch = JsonDiff.asJsonPatch(source, target);
final JsonNode patchNode = JsonDiff.asJson(source, target);

Important note: the API offers no guarantee at all about patch "reuse"; that is, the generated patch is only guaranteed to safely transform the given source to the given target. Do not expect it to give the result you expect on another source/target pair!

JSON Merge Patch

As for JsonPatch, you may use either Jackson or "direct" initialization:

// With Jackson
final JsonMergePatch patch = mapper.readValue(in, JsonMergePatch.class);
// With a JsonNode
final JsonMergePatch patch = JsonMergePatch.fromJson(node);

Applying a patch also uses an .apply() method:

// orig is also a JsonNode
final JsonNode patched = patch.apply(orig);
You can’t perform that action at this time.