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What is Deep Learning?
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feature 
extraction

feature 
selection

The typical Machine Learning pipeline:

raw data decision



What is Deep Learning?
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Learning a hierarchical representation of the 
data, directly from the data

raw data decision
deep 

learning 
model

pixel, motif, part, object, scene, ...

character, word, clause, sentence, ...

audio, band, phoneme, word, phrase, ...
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Learning a hierarchical representation of the 
data, directly from the data

decisionpixels



Deep Learning using Neural Nets
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Good-old fashioned perceptron
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Good-old fashioned perceptron Good-old MLP



Deep Learning using Neural Nets
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MLP with many many layers → Deep Neural Net
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MLP with many many layers → Deep Neural Net

But when training it the usual way,
not any better than 2-layer MLP

● Some weights get stuck
● Some weights are unstable
● gradients in one layer are very different 

from the next



Deep Learning using Neural Nets
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The Vanishing Gradient Problem

[Nielsen15]



Deep Learning using Neural Nets
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MLP with many many layers → Deep Neural Net

But:
● Vanishing/exploding of gradients

● Random initializations limiting

● Overfitting
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Deep Learning using Neural Nets
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MLP with many many layers → Deep Neural Net

But:
● Vanishing/exploding of gradients

● Random initializations limiting

● Overfitting

non-saturating activation function (e.g. ReLU)

unsupervised pre-training (more in just a few)

data, LOTS of data, but not completely solved



Popular Architectures: Autoencoders
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Good-old MLP



Popular Architectures: Autoencoders
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Popular Architectures: Autoencoders
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learn representations, NOT identity How?



Popular Architectures: Autoencoders
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How to avoid learning the identity function?

● Undercomplete AEs
● Regularization
● Denoising



Autoencoders → Denoising Autoencoders
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Reconstruct variables from corrupted input



Autoencoders → Stacked Denoising 
Autoencoders
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Popular Architectures:
Restricted Boltzmann Machines (RBM)
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RBM → Deep Belief Nets
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Popular Architectures:
Convolutional Neural Networks
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2D Convolution Correlation



Popular Architectures:
Convolutional Neural Networks
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The convolutional stage:

Filters Pooling Non- 
linearity



Popular Architectures:
Convolutional Neural Networks
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Filters Pooling Non- 
linearity

input to next stage

The convolutional stage:

Spatio-
temporal representation 
of an audio signal
(e.g. STFT, ratemaps, …) 



Convolutional Neural Networks
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[LeCun et al.]



Payoffs and Challenges
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Payoffs

● Implicit Feature Learning
● Same data, same model, 

different tasks
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Visual Style Recognition Re-paint in style

[Gatys15]
[Karayev14]



Payoffs and Challenges
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Payoffs

● Implicit Feature Learning
● Same data different tasks

Challenges

● Computationally intensive
● Prone to overfitting
● adversarial images

[Szegedy et al.]



Challenges

● Computationally intensive
● Prone to overfitting
● adverserials images

Payoffs and Challenges
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Solutions

?
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Solutions

GPU accelerated computation

data augmentation, Convolution, 
Dropout 

Payoffs

● Implicit Feature Learning
● Same data, same model, 

different tasks
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Solutions

GPU accelerated computation

data augmentation, Convolution, 
Dropout 

Payoffs

● Implicit Feature Learning
● Same data, same model, 

different tasks



Hands-on Deep Learning
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Open Source frameworks



Hands-on Deep Learning using Caffe
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Data Model Solver

shuffle, augment, format
Directed Acyclic Graph

Learning Algorithm
(e.g. Gradient Descent)



Hands-on Deep Learning using Caffe
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Model

Directed Acyclic Graph



Hands-on Deep Learning using Caffe
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Model

Directed Acyclic Graph



Hands-on Deep Learning using Caffe
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Model

Directed Acyclic Graph



Hands-on Deep Learning using Caffe
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Solver



Hands-on Deep Learning using Caffe

40

Solver

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498

I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

I0901 13:35:22.780138 20072 solver.cpp:302]     Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)

I0901 13:35:22.780146 20072 solver.cpp:302]     Test net output #1: l2_error = 2.02321



Deep Learning at NI:
Multi-Objective Deep Learning

41[Malik]



Deep Learning at NI:
Multi-Objective Deep Learning
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Training specialized networks from random 
initializations.

Re-purposing networks is possible and 
successful.

How do we learn a general purpose 
representation?

Regularization in the objective space.



Semantic Segmentation
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Dense scene labeling/

scene parsing (M-way)

no. of classes M

Foreground-Background

subtraction (Binary)

2 large M

Stuff and Things (M-way)

[Mottaghi]



End-to-end learning: Fully Conv. Networks
for Semantic Segmentation (CVPR 2015)
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NIPS 1992

[Long et al.]

[Matan et al.]

CVPR 2015



Training Fully Conv. Networks
for Semantic Segmentation

45[Simonyan]

model name: FCN-32s (16 layers)



Finetuning vs. random initialization
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loss := multinomial logistic softmax loss (without normalization)



Finetuning vs. random initialization
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Train loss without normalization Test loss without normalization
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Preventing earlier weights from updating during optimization
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Preventing earlier weights from updating during optimization
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Fixing Feature Layers
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Preventing earlier weights from updating during optimization

in
cr

ea
si

ng
 n

o.
 o

f p
ar

am
et

er
s

high bias

high variance



Joint sound identification and localisation
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a b c d



www.kahoot.it
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http://www.kahoot.it


Further Reading
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Books

Goodfellow, I., Bengio Y. and Courville A. (2016). Deep Learning. Book in preparation for MIT Press.

Nielsen, M.A (2015). Neural Networks and Deep Learning. Determination Press.

Review papers

J. Schmidhuber. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks.

Tutorials and code examples

Deep Learning Tutorials. Theano.

A bit of everything

http://deeplearning.net/

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/index.html
http://people.idsia.ch/~juergen/deep-learning-overview.html
http://deeplearning.net/tutorial/
http://deeplearning.net/tutorial/
http://deeplearning.net/
http://deeplearning.net/
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