Hopping onto the Deep Learning bandwagon

Youssef Kashef Machine Intelligence I 08. December 2016

Outline

- What is Deep Learning?
- Neural Networks make a comeback
- Popular Network Architectures
	- Auto-encoders
	- Restricted Boltzmann machines
	- Convolutional Neural Networks
- Benefits and Challenges
- Hands-on Deep Learning
- Deep Learning at NII

What is Deep Learning?

The typical Machine Learning pipeline:

What is Deep Learning?

Learning a hierarchical representation of the data, directly from the data

character, word, clause, sentence, ...

audio, band, phoneme, word, phrase, ...

What is Deep Learning?

Learning a hierarchical representation of the data, directly from the data

Good-old fashioned perceptron

Good-old fashioned perceptron Good-old MLP

W₂

7

MLP with many many layers \rightarrow Deep Neural Net

MLP with many many layers \rightarrow Deep Neural Net

But when training it the usual way, not any better than 2-layer MLP

- Some weights get stuck
- Some weights are unstable
- gradients in one layer are very different from the next

The Vanishing Gradient Problem

[Nielsen15]

MLP with many many layers \rightarrow Deep Neural Net

- Vanishing/exploding of gradients
- Random initializations limiting
- Overfitting

MLP with many many layers \rightarrow Deep Neural Net

- Vanishing/exploding of gradients
- Random initializations limiting
- Overfitting

$$
\overbrace{\left(\begin{array}{c}\begin{array}{c}w_1\\ \partial G\end{array}\right)}^{w_1}=\sigma'(z_1)\,w_2\sigma'(z_2)\,w_3\sigma'(z_3)\,w_4\sigma'(z_4)\,\frac{\partial C}{\partial a_4}\end{array}}^{w_4}\overbrace{\left(\begin{array}{c}b_4\\ \partial G\end{array}\right)}^{w_2}C
$$

MLP with many many layers \rightarrow Deep Neural Net

- Vanishing/exploding of gradients
- Random initializations limiting
- Overfitting

MLP with many many layers \rightarrow Deep Neural Net

- Vanishing/exploding of gradients
- Random initializations limiting
- **Overfitting**

MLP with many many layers \rightarrow Deep Neural Net

But:

- Vanishing/exploding of gradients
- Random initializations limiting
- **Overfitting**

non-saturating activation function (e.g. ReLU)

unsupervised pre-training (more in just a few)

data, **LOTS** of data, but not completely solved

Good-old MLP

 $h_{W,b}(x) \approx x$

17

How to avoid learning the identity function?

- **● Undercomplete AEs**
- **● Regularization**
- **● Denoising**

Autoencoders → Denoising Autoencoders

Reconstruct variables from corrupted input

30%

Autoencoders → Stacked Denoising Autoencoders

 $h_{W,b}(x) \approx x$

Popular Architectures: Restricted Boltzmann Machines (RBM)

RBM → Deep Belief Nets

Popular Architectures: Convolutional Neural Networks

2D Convolution Correlation

Convolved Feature

Popular Architectures: Convolutional Neural Networks

The convolutional stage:

Popular Architectures: Convolutional Neural Networks

The convolutional stage:

Convolutional Neural Networks

[LeCun et al.]

Payoffs

- **Implicit Feature Learning**
- Same data, same model, different tasks

Visual Style Recognition Visual Style Recognition

Payoffs

Challenges

- **Implicit Feature Learning**
- Same data different tasks
- Computationally intensive
- Prone to overfitting
- adversarial images

Challenges

Solutions

?

- Computationally intensive
- Prone to overfitting
- adverserials images

Payoffs

- **Implicit Feature Learning**
- Same data, same model, different tasks

Challenges

Solutions

- Computationally intensive
- Prone to overfitting
- adverserials images

GPU accelerated computation

data augmentation, Convolution, Dropout

Payoffs

- **Implicit Feature Learning**
- Same data, same model, different tasks

Challenges

- Computationally intensive
- Prone to overfitting
- adverserials images

GPU accelerated computation

Solutions

data augmentation, Convolution, **Dropout**

(a) Standard Neural Net

(b) After applying dropout.

Hands-on Deep Learning

Directed Acyclic Graph

base 1r: 0.01 momentum: 0.9 weight_decay: 0.0005 max iter: 10000 snapshot_prefix: "lenet_snapshot"

Deep Learning at NI: Multi-Objective Deep Learning

Deep Learning at NI: Multi-Objective Deep Learning

Training specialized networks from random initializations.

Re-purposing networks is possible and successful.

How do we learn a general purpose representation?

Regularization in the objective space.

Semantic Segmentation

Foreground-Background subtraction (Binary)

Stuff and **Things** (M-way)

scene parsing (M-way)

2 large *M* large *M* and the set close of *M* and *M* large *M*

no. of classes *M*

End-to-end learning: Fully Conv. Networks for Semantic Segmentation (CVPR 2015)

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

[Long et al.]

NIPS 1992

Training Fully Conv. Networks for Semantic Segmentation

Finetuning vs. random initialization

loss := multinomial logistic softmax loss (without normalization)

Finetuning vs. random initialization

Train loss without normalization **Test** loss without normalization

Fixing Feature Layers

 \bigodot

 \mathbf{r}

 $7x7$

 \mathbf{r}

Fixing Feature Layers

Preventing earlier weights from updating during optimization

FRACEL-Context-59 on Train set 350K 300K 250K input feat. conv1 1 Train loss 200K parameters increasing no. of parameters ω conv1 2 conv2 1 150K conv2 2 100K conv3 1 conv3 2 50K conv3 3 $\overline{\sigma}$ $0K_{K}$ conv4 1 **50K** $\overline{100K}$ ρ. iterations conv4 2 $- -$ FCN-32s on PASCAL-Context-59 on Test set 380K conv4 3 increasing conv5 1 360K conv5_2 н. 340K conv5_3 320K fc6 శ్ Test loss fc7 \mathbf{a} 300K 280K Ξ 260K 240K $220K$ 50K 100K

iterations

49

 \mathbf{A}

 \mathbf{w}

 $7x7$

Fixing Feature Layers

Preventing earlier weights from updating during optimization

FRACEL-Context-59 on Train set 350K 300K 250K input feat. conv1 1 Train loss 200K parameters increasing no. of parameters ω conv1 2 conv2 1 150K conv2 2 100K conv3 1 conv3 2 50K conv3 3 $\overline{\sigma}$ $0K_{K}$ conv4 1 $50K$ $\overline{100K}$ ρ. iterations conv4 2 $- -$ FCN-32s on PASCAL-Context-59 on Test set 380K conv4 3 increasing conv5 1 360K conv5_2 н. 340K conv5_3 conv3 1 320K fc6 శ్ Test loss fc7 \mathbf{a} 300K $conv4₂$ 280K Ξ conv5 1 260K 240K $220K$ 50K 100K iterations

iterations

 \mathbf{A}

 \mathbf{w}

 $7x7$

Joint sound identification and localisation

51

www.kahoot.it

Further Reading

Books

Goodfellow, I., Bengio Y. and Courville A. (2016). [Deep Learning](http://www.deeplearningbook.org/). Book in preparation for MIT Press.

Nielsen, M.A (2015). [Neural Networks and Deep Learning.](http://neuralnetworksanddeeplearning.com/index.html) Determination Press.

Review papers

J. Schmidhuber. (2015). [Deep Learning in Neural Networks: An Overview.](http://people.idsia.ch/~juergen/deep-learning-overview.html) Neural Networks.

Tutorials and code examples

[Deep Learning Tutorials.](http://deeplearning.net/tutorial/) Theano.

A bit of everything

<http://deeplearning.net/>

References

Couprie, C., Farabet, C., Najman, L., & LeCun, Y. (2013). Indoor Semantic Segmentation using depth information. Iclr, 1–8. Retrieved from http://arxiv.org/pdf/1301.3572.pdf

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–45.

Gatys, L. a, Ecker, A. S., & Bethge, M. (2015). A Neural Algorithm of Artistic Style. arXiv, 3-7. Retrieved from <http://arxiv.org/abs/1508.06576>

Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., & Winnemoeller, H. (2013). Recognizing Image Style, 1–20. Retrieved from http://arxiv.org/abs/1311.3715

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. CVPR. Retrieved from http://arxiv.org/abs/1411.4038v1.

Malik, J. (2013). The Three R's of Computer Vision. UC Berkeley.

Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., Fidler, S., Yuille, A. (2014). The role of context for object detection and semantic segmentation in the wild. *Cvpr*, 891–898. doi:10.1109/CVPR.2014.119

Nielsen, M.A (2015). [Neural Networks and Deep Learning.](http://neuralnetworksanddeeplearning.com/index.html) Determination Press.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus. (2014). Intriguing properties of neural networks

Van Essen, D. C., & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13(1), 1–10.