
Edgar H. SiEley
Panel Editor

ALGLIB-a library of procedures that perform analytic differentiation and
other simple symbolic manipulations -has certain advantages over existing
and more comprehensive packages. It can be implemented in a high-level
language of the user’s choice using a pseudocode available from the authors,
and it is easily interfaced with the user’s programs.

ALGlA3, A SIMPLE SW6Ol.=MAUlPUl.ATlON
PACKAGE

J. M. SHEARER and M. A. WOLFE

In numerical mathematics there are many instances
where it is necessary to differentiate a function
fi R” + R’ one or more times (see, e.g., [13]). If a pack-
age that performs analytical differentiation is not avail-
able, the user must either carry out the differentiation
by hand, a tedious and error-prone process, or compute
a numerical approximation to the derivatives. In many
instances both alternatives are unacceptable.

Several packages for performing symbolic compu-
tation are currently available, MACSYMA [Z] and
REDUCE [6] being among the best known. However,
these packages are to a large degree “isolated” in the
sense that they do not readily interface with programs
written in a language of the user’s choice. An applica-
tion in which a FORTRAN program has been interfaced
with REDUCE 2 is described by Watanabe in [17].

This paper describes a library of procedures (ALGLIB)
that perform analytic differentiation and other simple
symbolic manipulations. The library of procedures may
be implemented in many high-level languages. Ideas on
how the procedures might be embedded in a compiler
to create a new hybrid language are described, and
several applications of ALGLIB are presented along
with the results obtained using S-algol [4] and Triplex
S-algol [l, lo] implementations.

COMPUTABLE FACTORABLE FUNCTIONS
The ALGLIB package manipulates the set of computa-
ble factorable functions-a subset of the set of factora-

ble functions described by Sisser [IQ]-using the fol-
lowing definition.

Definition
Let X be a given set, the elements of which may be
represented by a computer, and on which the binary
operations + : X X X + X, - : X X X += X, * : X X X -+
X, and / : X X X -+ X are defined. A function f: X” ---) X
is a computable factorable function if and only if it can
be represented as the last in a finite sequence of func-
tions 1 fi) that are such that, if x = (x1, . . . , x,) E X”,
then

f,(X)=Xj (j=l,...,n); 0.1

and, if j > n, then t;(x) has one of the forms

/k(X) + fdx) (k 1 < j 1, (;!)

fk(x) - fr(x) 6, 1 -= j I, (3)

fk(x) * f/(x) (k, 1 < j), (‘i)

fkWfl(4 (k, 1 < j 1, (5)

or

T[h(x)] (k < i 1, (61

where T[.] E F = (-(.),sqrt(.),exp(.),ln(.),cos(.),sin(.),
tan-*(.),(-)“, where m is an integer]. 0

The set F may be extended to include any other
function from X to X that may be evaluated in a partic-

Q 1985 ACM OOOl-078Z/S5/0800-0620 750 ular computing environment provided that its deriva-

820 Communications of the ACM August 1985 Volume 28 Number II

http://crossmark.crossref.org/dialog/?doi=10.1145%2F4021.4023&domain=pdf&date_stamp=1985-08-01

Computing Practices

tive is itself a computable factorable function. This defi-
nition is illustrated by khe following example.

Example
The function f: R3 + R’ defined by

f(x1, x2, x3) = cos(x* + x2 * x3)

is a computable factorable function since we may write

fl(X) = Xl,

fdx) = x2,

f3(x) = x3,

f4(x) = x2 * x3 = p(x) * f3(x),

fs(x) = Xl + x2 * x3 = fib) + f4(x),

fb(X) = cos(x, + x2 * x3) = cos(f5(x)).

Clearly f is equal to the last in a finite sequence of
functions that satisfies the conditions of the defini-
tion. q

Owing to the nature of the differentiation operator,
the partial derivative of a computable factorable func-
tion with respect to any of the variables is itself a com-
putable factorable function. Much work has been done
on computer-generated analytic derivatives of factora-
ble functions; see, for example, the work by Rall [12,
131, Sisser [14-161, Pugh[ll], and McCormick [8].

DATA STRUCTURES
Given an expression that defines a computable factora-
ble function, ALGLIB generates the sequence of func-
tions (h] that make up its factorable form and then
stores this sequence efficiently. The function, once
stored in this way, may then be differentiated, evalu-
ated, output as a string, or composed or combined with
other functions that are similarly stored. This section
describes the data structures used to store the finite
sequence {f,(x)]. Any term in the sequence is one of
the following:

(11 a constant;

(4 a variable (i.e., of the form (1));

(3) a binary term (i.e., of one of the forms (2)-(5));

(4) a unary term (i.e., of the form (6)).

To store a constant or a variable, we need only store
the name of the constant or the variable and its current
value. Storing unary and binary terms is slightly more
complicated. A unary term contains an argument and
an operator, where the argument is another’term in the
sequence. We could therefore store a unary term in a
data structure consisting of a string and a pointer; the
string represents the unary operator, and the pointer
points to the argument. Similarly, a binary term could
be stored in a structure composed of the operator, in a
string, and pointers to each of the subterms. This gives
rise to a binary tree (or more correctly, an acyclic

graph) where each node represents a term in the se-
quence { f, 1 and each leaf node is a constant or a vari-
able. The head of the tree represents the last term in
the sequence { f,]. The function of the Example is rep-
resented by the tree structure shown in Figure I.

To avoid storing several representations of the same
object, which may occur as a result of generating sev-
eral trees that contain the same term, we require a
simple and efficient method for checking a new node
against those that have already been created.

One approach is to link the constants together in one
ordered linked list, the unary !erms together in a sec-
ond list, and the binary nodes in a third. Thus, when a
new node representing a constant is about to be cre-
ated, the constant is checked against the constants in
the linked list. If a duplicate is found, the new node is
not created, and a pointer to the old representation is
used; otherwise the new node is created and is added to
the linked list so as to preserve the ordering. A similar
process is used for unary and binary terms. Although it
is clear that approaches using a more efficient search
procedure would be desirable, the alternatives tend to
complicate the other processes of the package and will
not be dealt with here. In order to maintain the linked
lists, a linking field must be introduced into the data
structures for constants, unary terms, and binary terms.
An index field would also be included in these data
structures; as would a data structure for variables to
facilitate the ordering of the lists. Since structures to
represent all the variables are created when the vari-
ables are defined, we should never require a new node
to represent a variable.

To keep the linked lists and the variables accessible,
we create an information block that is associated with
each set of variables. This information block contains a
vector of pointers to each of the variables, a pointer to
the list of constants, a pointer to the list of unary terms,
and a pointer to the list of binary terms. We introduce a

FIGURE 1. Tree Structure Representation
of the Function of the Example

August 7985 Volume 28 Number 8 Communications of the ACM 821

Computii~g Practices

pointer into each structure definition that will be used
to point to the information block corresponding to the
variables on which the term corresponding to the struc-
ture is definecl.

The preceding structures are adequate, but the pack-
age should be able to store the value of a term so that it
may be reused automatically if the value of this term at
the same point is required later. This involves introduc-
ing into the structure definitions for unary and binary
terms a field to store the value of a term, and a flag to
mark whether this value is up-to-date or not.

Similarly, if we create a tree structure to represent
the derivative of a term with respect to one of the
variables, it is then desirable to keep a pointer to this

type

tree to avoid its being recomputed later. This involves
introducing a vector of pointers into the structures for
unary and binary terms. Each component of the vector
points to the partial derivative of the term with respect
to one of the variables. A nil pointer denotes that the
derivative of this term with respect to this variable has
not been computed.

The type declarations necessary in a Pascal imple-
mentation of the package for real-valued functions are
given in Figure 2. In the type declarations presented in
Figure 2, it is assumed that no more than 100 variables
will be used and that all variable or constant names
will be 20 characters or less. This, of course, could be
altered to meet specific requirements.

string=array [l..ZOJ of char ;
vecstring=array Il..lOOt of string i
termpointer=Tterm; n
vec~ermpointer=arraj~1..1001 oftermpointer i
mat-termpointersarray [1..100,1..1001 Oftermpointer;
vecreal = array [l..lOOj Of real i

matrealsarray [l.,lOU,l..lOOI of real;

blockpointer= Tinformationblock ;
termclasses=(constant,variable,unary,binary) ;
rootpointer= troot ;
term=

record
index : integer j
value : real i
block : blockpointer i
caseclass : termclassesof

constant :
(constantname : string ;

constantlink : termpointer) ;
variable :

(variablename : string) i
unary :

(unaryarg : termpointer i
unaryop : string i
unarygrad : vectermpointer i
unaryknown : boolean;
unarylink : termpointer) ;

binary :
(binaryleft : termpointer i

binaryright : termpointer;
binaryop :char :
binarygrad :vectermpointer ;
binaryknown : boolean ;
binarylink : termpointer)

end ;

informationblack= I
record

constantterms : termpointer i
unaryterms ,: tern\pointer j

binaryterms : termpointer j

variableterms :vectermpointer ;
end ;

<

FIGURE 2. Type Declarations Necessary in a Pascal Implementation

822 Comniunications oj the ACM August 1985 Volume 28 Number 8

Computing Practices

THE ALGLIB PACKAGE
The procedures that make up the ALGLIB package are
described in this section. The procedure headings and
an example call for each procedure are given for a
pseudo-Pascal implementation involving real-valued
functions. The type declarations given in the preceding
section, and the appropriate type declarations for any
variables, are assumed. It is also assumed that the fac-
torable functions upon which ALGLIB operates map
from R” to R, but that R may be replaced with any
other data type that has the properties of X in the Defi-
nition (p. 820). For example, R may be replaced with
Z(R), the set of real intervals, if the implementation sf
Pascal supports interval arithmetic, as does Matrix Pas-
cal [3].

created, it may be evaluated by the procedure evalu -
ate, which has a heading of the form

procedure evaluate(factorable:
termpointer; point: vecreal) : real;

This procedure takes as input a pointer to the tree and
the point at which the function is to be evaluated. The
value of the function at the given point is returned. For
example, if the vector of reals, point, contains the
point at which the function f defined above is to be
evaluated, then the statement

fofpoint := evaluate(f, point);

could be used.

The procedure def inevariables, which has a
heading of the form

The procedure partial, which has a heading of the
form

procedure definevariables(variablenames:
vecstring) : vectermpointer;

procedure partial(factorable, variable:
termpointer) : termpointer;

takes the vector of strings that are intended to make up
the variable names, creates a structure of type variable
corresponding to each of these names, and returns a
vector of pointers, each of whose components points to
one of these structures. The names are checked for
uniqueness and validity. To define a set of variables
whose names are stored in the vector of strings, names,
the statement

takes a pointer to a function’s tree representation and a
pointer to a variable. It creates a tree representation of
the derivative of the function with respect to the vari-
able and returns a pointer to it. Thus the statement

dfbydxl := partial(f, x[l]);

would create the tree structure representing af/axI and
return a pointer to it.

variables := definevariables(names);
The procedure f unctionopf unction, which has a

heading of the form

is used, where variables has been defined as type procedure functionopfunction(a, b:
vectermpointer. termpointer; op: string) : termpointer;

The procedure stringtofunction, which has a
heading of the form

procedure stringtofunction
(variables : vectermpointer; expression
: string) : termpointer;

takes as input the set of variables on which we wish to
define the function, and a string representation of the
function. The tree representation of the function is cre-
ated, and a pointer to it is returned. Assuming we have
defined a set of variables with names xl, x2, x3, as
described above, and that the variable expression of
type string contains the character string cos (xl + x2
* x3), the statement

creates the tree representation of the two functions, a
and b, combined by the given binary operator. Thus, if
functions f and g had been created as described above,
and the variable operator of type string contained
the operator +, then the statement

h := functionopfunction(f, q, operator);

would create a tree representation of the function h(.)

=f(.) +g(.).
The procedure opf unction, which has a heading of

the form

f := stringtofunction
(variables, expression);

would create the tree representation of the Example
(p. 821) and return a pointer to it.

procedure opfunction(arg: termpointer;
op: string) : termpointer;

creates the tree representation of the function that is
obtained when the given operator acts on the given
function. If the variable operator of type string
contains the character string cos, then the statement

The procedure f unctionf ormat, which has a
heading of the form

procedure functionformat
(factorable: termpointer) : string;

reverses the process of stringtofunction and con-
verts a function, held in its tree representation and
pointed at by factorable, into a string ready for out-
put. Extensive bracketing is used to avoid ambiguity.

9 := opfunction(f, operator) ;

would create the tree representation of the function

gt.1 = cos(f(.)).
The procedure compose, which has a heading of the

form

Once the tree representation of a function has been

procedure compose(a: termpointer; 6:
vectermpointer) : termpointer;

takes as input a pointer to the tree representation of a

August 1985 Volunle 28 Number 8 Communications of the ACM 823

Computing Pracfices

function from R” to R’ and a vector of pointers, each of
whose components points to the tree representation of
one of the components of a function from R” to R”. A
tree representation of the function is obtained when the
first function composed with the second is returned.
For example, the statement

h := compclse(f, g);

would create the tree representation of the function h:
R”+ R’, where h(.) = f(g(.)).

The ALGLLB package also contains procedures that
act on functions from R” to R” and on functions from R”
to M(R”), where M(R”) is the set of real matrices of
order II.

IMPLEMENTAQTION
The ALCLIB package has been written in a pseudocode
whose meaning should be clear to a programmer of
most high-level languages. An annotated listing of the
pseudocode may be obtained from the authors.

The package has been implemented for real-valued
functions in Salgol [4] and for interval-valued func-
tions in Triplex S-algol [l, lo], which is an extension of
S-algol that supports interval arithmetic. Work on a
Pascal implementation for real-valued functions is in
progress. Full liistings of the S-algol and Triplex S-algol
implementations, together with a comprehensive man-
ual describing the package, art! available on request
from the authors.

Instead of implementing the ALGLIB package as a
library of procedures, the procedures could be embed-
ded in a compiler, and a new clata type, representing
the tree form of a function, could be introduced. This
would allow the incorporation of combination, compo-
sition, and evaluation of functions as integral parts of
the language.

APPLICATIONS
The ALGLIB package is currently being used at the
University of St. Andrews in research on the solution of
systems of nonlinear algebraic equations and on uncon-
strained optimization. A standard by which new algo-
rithms may be compared is provided by the packages
for unconstrained optimization and nonlinear algebraic
equations that have been given in pseudocode form by
Dennis and Schnabel [51. These packages have been
implemented in S-algol, and the implementation has
been interfaced with ALGLIB in such a way that the
user, in addition to the options for function, gradient,
and Jacobian and Hessian evaluation provided by
Dennis and Schnabel, may also use ALGLIB. A listing of
the code is obtainable from the authors.

Test Problems
Dennis and Schnabel [5] have given a set of test prob-
lems for use with their packages. The first three of
these are used here to illustrate the S-algol implemen-
tation, with and without the use of ALGLIB.

Execution Times for the Packages of Dennis
and Schnabel with and without ALGLIB
If ALGLIB is used, the data structures corresponding to
the function and to the gradient and Hessian (or to the
Jacobian] must be set up before numerical computation
can begin. Let the CPU time that is required to set up
the required data structures be t, seconds. Let the CPU
time that is required for the subsequent numerical
computation be t, seconds. Let the CPU time that is
required for the computation of a solution using analyt-
ical expressions for the function, and for the Jacobian
(or for the gradient and Hessian), be T seconds.

Nonlinear Algebraic Equations and
Unconstrained Optimization
Table I contains results that are obtained from the
package for solving systems of nonlinear algebraic
equations. The column with heading T corresponds to
Newton’s method with analytical Jacobian.

Table II contains results that are obtained from the
package for unconstrained optimization. The column
with the heading T corresponds to the use of Newton’s
method with analytical gradient and Hessian.

In Tables 1 and II, the total CPU time required to
solve a given problem is the sum oft, and f, if ALGLIB
is used; this sum should be compared with the CPU
time T, which is required if analytical expressions for
partial derivatives are required. As may be expected,
more CPU time is required if ALGLIB is used. One
should, however, take into account the considerable,
sometimes prohibitive, time required to calculate ana-

TABLE I. Solution of Nonlinear Algebraic Equations

Exam* n j f# 2 t 7

1 2 0.93 0.45 0.22
2 4 4.26 6.29 3.66
3 4 15.93 4.72 1.18

Description of Examples 1,2, and 3: Corresponding to each test prob-
!emisasetofmapp4ngsf,:R”-+R’(i=l....,n).Atestproblemfor
the unconstrained optimization package of Dennis and Schnabel con-
sists of minimizing f: R” -+ R’ defined by

f(x) = i lMx)12,
J-1

and a test probfem for the package for solving systems of nonlinear
algebraic equations consists of solving F(x) = 0, where F: R” -+ R” is
defined by

F,(x) = f(x) (i=l,...,n).

For each test problem, an initial estimate of the solution is provided.
Explicit formulas for the f,, together with the initial estimates of the
solutions, are given in 15, Appendix B].

TABLE II. Unconstrained Optimization

Example *

1 2
2 4
3 4

.‘&’ : lc T

2.03 5.40 2.13
11.85 7.15 4.87
77.36 22.72 2.91

Gee legend for Table I.

824 Communications oj the ACM August 1985 Volume 28 Number 8

Computing Practices

lytical expressions for partial derivatives and to correct
the algebraic mistakes, which nearly always arise.

Sisser’s Minimization Algorithm
Sisser [14] has described how the Hessian of a twice
differentiable factorable function f: R” + R’ may be
expressed in the form

H(X) = D(X) + i$l [ui(X)ci(X)Vi(X)T + ~i(X)ci(X)ui(X)T] (7)

where m and the functions Ci: R” + R’, Ui: R” + R”, and
Ui: R” + R” (i = 1, . . , m) depend on the function being
considered: he has used eq. (7) in a modification of
Newton’s method for minimizing factorable functions

[161.
ALGLIB has been used to generate the tree represen-

tations of the functions ci, Ui, and Vi (i = 1, . . , m) and
the integer m for several factorable functions, thereby
making possible an S-algol implementation of
Sisser’s minimization algorithm.

Interval Arithmetic
Moore and Jones [9] and Jones [i’] have described a
search procedure for bounding isolate zeros of a func-
tion fi R” --, R” using interval analysis, where the solu-
tions lie in a given initial box. The Triplex S-algol im-
plementation of ALGLIB has been interfaced with a
Moore and Jones search procedure in such a way that
either ALGLIB or analytic expressions for the function
and Jacobian can be used.

The function fi R” + R” defined by

f(x) = Ax + Td(x) + c,

where A E M(R”) is tridiagonal with diagonal elements
equal to 2 and the leading off-diagonal elements equal
to -1, T E M(R”) is tridiagonal with diagonal elements
equal to fi and leading off-diagonal elements equal to
A. d: R” + R” is continuous diagonal and isotone with

1
d;(x) = (n + l)2 exp(&) (i = 1 3 . (n),

and c E R” is given by

I
h(l/ln + 1)2) (i = 1)

Ci=. 0

I
(i = 2, . . , n - 1)

hu/bJ + 117 (i = n).

has a unique zero. The search procedure of Moore and
Jones has been used in a Triplex S-algol implementation
to search for the unique zero off in an n-cube centered
at the origin of radius 10 with n = 3, both with and
without ALGLIB. ALGLIB requires 11.24 seconds to set
up its internal representations of the function and its
F-derivative: and 20 bisections, 81 function evaluations,
and 34 Jacobian evaluations are required both using
and not using ALGLIB. The search requires 153 seconds
of CPU time to isolate the zero in a box x* such that

when ALGLIB is used. When ALGLIB is not used, 147

seconds of CPU time are required. The slight difference
in CPU time is more than offset by the convenience
and reliability of using the ALGLIB package.

Acknowledgment. The authors are grateful to
M. Monsi for obtaining the results that are given in
Tables I and II.

REFERENCES
1. Bailey. P.J., Cole, A.].. and Morrison, R. Triplex user manual.

CS/82/5. Dept. of Computational Science, Univ. of St. Andrew.
N. Haugh, St. Andrew, Fife, Scotland. 1982.

2. Bogen. R.A., et al. MACSYMA reference manual. Version 6. Labora-
tory for Computer Science, M.I.T.. Cambridge, Mass., 1977.

3. Bohlender. G., et al. Matrix Pascal. Res. Rep. RC9577 (42297). IBM
Research Division, Yorktown Heights, N.Y.. 1982.

4. Cole. A.J.. and Morrison, R. An Introduction to Programming with
S-algal. Cambridge University Press, New York, 1982.

5. Dennis. I.E.. and Schnabel. R.B. Numerical Methods for Unconstrained

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Opfimizdtiorl and Nonlinear Equations. Prentice-Hall,’ En&wood
Cliffs. N.J., 1983.
Hearn. A. REDUCE 2 user’s manual. Univ. of Utah, Salt Lake City.
1973.
Jones. ST. Searching for solutions of finite nonlinear systems-An
interval approach. Ph.D. dissertation. Computer Science Dept., Univ.
of Wisconsin-Madison, Madison, 1978.
McCormick, G.P. Nonlinear Programming-Theory, Algorithms, and
Applications. Wiley, New York, 1983.
Moore, R.E.. and Jones, ST. Safe starting regions for iterative meth-
ods. SIAM \. Numer. Anal. 14.6 [Dec. 1977), 1051-1065.
Morrison, R., Cole, A.J.. Bailey, P.J., Wolfe, M.A.. and Shearer, J.M.
Experience in using a high level language which supports interval
arithmetic. In Proceedings of ARITH6, the 6th Symposium on Computer
Arithmetic (Aarhus. Denmark, June 20-22). IEEE Computer Society
Technical Committee on Computer Architecture. 1983, pp. 74-78.
Pugh, R.E. A language for nonlinear programming problems. Math.
Progran?. 2 (1972). 176-206.
Rail, L.B. CompuWional Solution of Nonlinear Opernror Equations.
Wiley, New York, 1969.
Rail. L.B. Applications of software for automatic differentiation in
numerical computation. Computing Suppl. 2 (1980), 141-156.
Sisser. F.S. Computer-generated interval extensions of factorable
functions and their derivatives. Int. \. Compuf. Math. 10 (1982),
327-336.
Sisser. F.S. Inverting an interval Hessian of a factorable function.
Computing 29 (1982). 63-72.
Sisser. F.S. A modified Newton’s method for minimizing factorable
functions. 1. Optim. Theory Appl. 38, 4 (Dec. 1962), 461-482.
Watanabe, S. Hybrid manipulations for the solution of systems of
nonlinear algebraic equations. RIMS, Kyoto University 19 (1983).
367-395.

CR Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Tools and Techniques-softwore libraries; E.2 [Data Storage Repre-
sentations]: composik sfructures: 1.1.1 [Algebraic Manipulation]: Expres-
sions and their Representation

General Terms: Algorithms, Human Factors, Languages, Perfor-
mances, Reliability

Additional Key Words and Phrases: computable factorable function,
data structures. interval arithmetic. partial differentiation, symbolic
computation

Authors’ Present Address: J.M. Shearer and M.A. Wolfe, Dept. of Ap-
plied Mathematics, University of St. Andrew, St. Andrew. Fife,
KY16 9%. Scotland.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

August 1985 Volume 28 Number 8 Communications of the ACM 825

