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ALGLIB-a library of procedures that perform analytic differentiation and 
other simple symbolic manipulations -has certain advantages over existing 
and more comprehensive packages. It can be implemented in a high-level 
language of the user’s choice using a pseudocode available from the authors, 
and it is easily interfaced with the user’s programs. 

ALGlA3, A SIMPLE SW6Ol.=MAUlPUl.ATlON 
PACKAGE 
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In numerical mathematics there are many instances 
where it is necessary to differentiate a function 
fi R” + R’ one or more times (see, e.g., [13]). If a pack- 
age that performs analytical differentiation is not avail- 
able, the user must either carry out the differentiation 
by hand, a tedious and error-prone process, or compute 
a numerical approximation to the derivatives. In many 
instances both alternatives are unacceptable. 

Several packages for performing symbolic compu- 
tation are currently available, MACSYMA [Z] and 
REDUCE [6] being among the best known. However, 
these packages are to a large degree “isolated” in the 
sense that they do not readily interface with programs 
written in a language of the user’s choice. An applica- 
tion in which a FORTRAN program has been interfaced 
with REDUCE 2 is described by Watanabe in [17]. 

This paper describes a library of procedures (ALGLIB) 
that perform analytic differentiation and other simple 
symbolic manipulations. The library of procedures may 
be implemented in many high-level languages. Ideas on 
how the procedures might be embedded in a compiler 
to create a new hybrid language are described, and 
several applications of ALGLIB are presented along 
with the results obtained using S-algol [4] and Triplex 
S-algol [l, lo] implementations. 

COMPUTABLE FACTORABLE FUNCTIONS 
The ALGLIB package manipulates the set of computa- 
ble factorable functions-a subset of the set of factora- 

ble functions described by Sisser [IQ]-using the fol- 
lowing definition. 

Definition 
Let X be a given set, the elements of which may be 
represented by a computer, and on which the binary 
operations + : X X X + X, - : X X X += X, * : X X X -+ 
X, and / : X X X -+ X are defined. A function f: X” ---) X 
is a computable factorable function if and only if it can 
be represented as the last in a finite sequence of func- 
tions 1 fi) that are such that, if x = (x1, . . . , x,) E X”, 
then 

f,(X)=Xj (j=l,...,n); 0.1 

and, if j > n, then t;(x) has one of the forms 

/k(X) + fdx) (k 1 < j 1, (;!) 

fk(x) - fr(x) 6, 1 -= j I, (3) 

fk(x) * f/(x) (k, 1 < j), (‘i) 

fkWfl(4 (k, 1 < j 1, (5) 

or 

T[ h(x)] (k < i 1, (61 

where T[ .] E F = (-( .),sqrt( .),exp( .),ln( .),cos( .),sin( .), 
tan-*( .),(-)“, where m is an integer]. 0 

The set F may be extended to include any other 
function from X to X that may be evaluated in a partic- 
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tive is itself a computable factorable function. This defi- 
nition is illustrated by khe following example. 

Example 
The function f: R3 + R’ defined by 

f(x1, x2, x3) = cos(x* + x2 * x3) 

is a computable factorable function since we may write 

fl(X) = Xl, 

fdx) = x2, 

f3(x) = x3, 

f4(x) = x2 * x3 = p(x) * f3(x), 

fs(x) = Xl + x2 * x3 = fib) + f4(x), 

fb(X) = cos(x, + x2 * x3) = cos( f5(x)). 

Clearly f is equal to the last in a finite sequence of 
functions that satisfies the conditions of the defini- 
tion. q 

Owing to the nature of the differentiation operator, 
the partial derivative of a computable factorable func- 
tion with respect to any of the variables is itself a com- 
putable factorable function. Much work has been done 
on computer-generated analytic derivatives of factora- 
ble functions; see, for example, the work by Rall [12, 
131, Sisser [14-161, Pugh[ll], and McCormick [8]. 

DATA STRUCTURES 
Given an expression that defines a computable factora- 
ble function, ALGLIB generates the sequence of func- 
tions ( h ] that make up its factorable form and then 
stores this sequence efficiently. The function, once 
stored in this way, may then be differentiated, evalu- 
ated, output as a string, or composed or combined with 
other functions that are similarly stored. This section 
describes the data structures used to store the finite 
sequence {f,(x)]. Any term in the sequence is one of 
the following: 

(11 a constant; 

(4 a variable (i.e., of the form (1)); 

(3) a binary term (i.e., of one of the forms (2)-(5)); 

(4) a unary term (i.e., of the form (6)). 

To store a constant or a variable, we need only store 
the name of the constant or the variable and its current 
value. Storing unary and binary terms is slightly more 
complicated. A unary term contains an argument and 
an operator, where the argument is another’term in the 
sequence. We could therefore store a unary term in a 
data structure consisting of a string and a pointer; the 
string represents the unary operator, and the pointer 
points to the argument. Similarly, a binary term could 
be stored in a structure composed of the operator, in a 
string, and pointers to each of the subterms. This gives 
rise to a binary tree (or more correctly, an acyclic 

graph) where each node represents a term in the se- 
quence { f, 1 and each leaf node is a constant or a vari- 
able. The head of the tree represents the last term in 
the sequence { f, ]. The function of the Example is rep- 
resented by the tree structure shown in Figure I. 

To avoid storing several representations of the same 
object, which may occur as a result of generating sev- 
eral trees that contain the same term, we require a 
simple and efficient method for checking a new node 
against those that have already been created. 

One approach is to link the constants together in one 
ordered linked list, the unary !erms together in a sec- 
ond list, and the binary nodes in a third. Thus, when a 
new node representing a constant is about to be cre- 
ated, the constant is checked against the constants in 
the linked list. If a duplicate is found, the new node is 
not created, and a pointer to the old representation is 
used; otherwise the new node is created and is added to 
the linked list so as to preserve the ordering. A similar 
process is used for unary and binary terms. Although it 
is clear that approaches using a more efficient search 
procedure would be desirable, the alternatives tend to 
complicate the other processes of the package and will 
not be dealt with here. In order to maintain the linked 
lists, a linking field must be introduced into the data 
structures for constants, unary terms, and binary terms. 
An index field would also be included in these data 
structures; as would a data structure for variables to 
facilitate the ordering of the lists. Since structures to 
represent all the variables are created when the vari- 
ables are defined, we should never require a new node 
to represent a variable. 

To keep the linked lists and the variables accessible, 
we create an information block that is associated with 
each set of variables. This information block contains a 
vector of pointers to each of the variables, a pointer to 
the list of constants, a pointer to the list of unary terms, 
and a pointer to the list of binary terms. We introduce a 

FIGURE 1. Tree Structure Representation 
of the Function of the Example 
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pointer into each structure definition that will be used 
to point to the information block corresponding to the 
variables on which the term corresponding to the struc- 
ture is definecl. 

The preceding structures are adequate, but the pack- 
age should be able to store the value of a term so that it 
may be reused automatically if the value of this term at 
the same point is required later. This involves introduc- 
ing into the structure definitions for unary and binary 
terms a field to store the value of a term, and a flag to 
mark whether this value is up-to-date or not. 

Similarly, if we create a tree structure to represent 
the derivative of a term with respect to one of the 
variables, it is then desirable to keep a pointer to this 

type 

tree to avoid its being recomputed later. This involves 
introducing a vector of pointers into the structures for 
unary and binary terms. Each component of the vector 
points to the partial derivative of the term with respect 
to one of the variables. A nil pointer denotes that the 
derivative of this term with respect to this variable has 
not been computed. 

The type declarations necessary in a Pascal imple- 
mentation of the package for real-valued functions are 
given in Figure 2. In the type declarations presented in 
Figure 2, it is assumed that no more than 100 variables 
will be used and that all variable or constant names 
will be 20 characters or less. This, of course, could be 
altered to meet specific requirements. 

string=array [l..ZOJ of char ; 
vecstring=array Il..lOOt of string i 
termpointer=Tterm; n 
vec~ermpointer=arraj~1..1001 oftermpointer i 
mat-termpointersarray [1..100,1..1001 Oftermpointer; 
vecreal = array [l..lOOj Of real i 

matrealsarray [l.,lOU,l..lOOI of real; 

blockpointer= Tinformationblock ; 
termclasses=(constant,variable,unary,binary) ; 
rootpointer= troot ; 
term= 

record 
index : integer j 
value : real i 
block : blockpointer i 
caseclass : termclassesof 

constant : 
( constantname : string ; 

constantlink : termpointer) ; 
variable : 

( variablename : string ) i 
unary : 

( unaryarg : termpointer i 
unaryop : string i 
unarygrad : vectermpointer i 
unaryknown : boolean; 
unarylink : termpointer ) ; 

binary : 
( binaryleft : termpointer i 

binaryright : termpointer; 
binaryop :char : 
binarygrad :vectermpointer ; 
binaryknown : boolean ; 
binarylink : termpointer) 

end ; 

informationblack= I 
record 

constantterms : termpointer i 
unaryterms ,: tern\pointer j 

binaryterms : termpointer j 

variableterms :vectermpointer ; 
end ; 

< 

FIGURE 2. Type Declarations Necessary in a Pascal Implementation 
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THE ALGLIB PACKAGE 
The procedures that make up the ALGLIB package are 
described in this section. The procedure headings and 
an example call for each procedure are given for a 
pseudo-Pascal implementation involving real-valued 
functions. The type declarations given in the preceding 
section, and the appropriate type declarations for any 
variables, are assumed. It is also assumed that the fac- 
torable functions upon which ALGLIB operates map 
from R” to R, but that R may be replaced with any 
other data type that has the properties of X in the Defi- 
nition (p. 820). For example, R may be replaced with 
Z(R), the set of real intervals, if the implementation sf 
Pascal supports interval arithmetic, as does Matrix Pas- 
cal [3]. 

created, it may be evaluated by the procedure evalu - 
ate, which has a heading of the form 

procedure evaluate(factorable: 
termpointer; point: vecreal) : real; 

This procedure takes as input a pointer to the tree and 
the point at which the function is to be evaluated. The 
value of the function at the given point is returned. For 
example, if the vector of reals, point, contains the 
point at which the function f defined above is to be 
evaluated, then the statement 

fofpoint := evaluate(f, point); 

could be used. 

The procedure def inevariables, which has a 
heading of the form 

The procedure partial, which has a heading of the 
form 

procedure definevariables(variablenames: 
vecstring) : vectermpointer; 

procedure partial(factorable, variable: 
termpointer) : termpointer; 

takes the vector of strings that are intended to make up 
the variable names, creates a structure of type variable 
corresponding to each of these names, and returns a 
vector of pointers, each of whose components points to 
one of these structures. The names are checked for 
uniqueness and validity. To define a set of variables 
whose names are stored in the vector of strings, names, 
the statement 

takes a pointer to a function’s tree representation and a 
pointer to a variable. It creates a tree representation of 
the derivative of the function with respect to the vari- 
able and returns a pointer to it. Thus the statement 

dfbydxl := partial(f, x[l]); 

would create the tree structure representing af/axI and 
return a pointer to it. 

variables := definevariables(names); 
The procedure f unctionopf unction, which has a 

heading of the form 

is used, where variables has been defined as type procedure functionopfunction(a, b: 
vectermpointer. termpointer; op: string) : termpointer; 

The procedure stringtofunction, which has a 
heading of the form 

procedure stringtofunction 
(variables : vectermpointer; expression 
: string) : termpointer; 

takes as input the set of variables on which we wish to 
define the function, and a string representation of the 
function. The tree representation of the function is cre- 
ated, and a pointer to it is returned. Assuming we have 
defined a set of variables with names xl, x2, x3, as 
described above, and that the variable expression of 
type string contains the character string cos (xl + x2 
* x3 ), the statement 

creates the tree representation of the two functions, a 
and b, combined by the given binary operator. Thus, if 
functions f and g had been created as described above, 
and the variable operator of type string contained 
the operator +, then the statement 

h := functionopfunction(f, q, operator); 

would create a tree representation of the function h( .) 

=f(.) +g(.). 
The procedure opf unction, which has a heading of 

the form 

f := stringtofunction 
(variables, expression); 

would create the tree representation of the Example 
(p. 821) and return a pointer to it. 

procedure opfunction(arg: termpointer; 
op: string) : termpointer; 

creates the tree representation of the function that is 
obtained when the given operator acts on the given 
function. If the variable operator of type string 
contains the character string cos, then the statement 

The procedure f unctionf ormat, which has a 
heading of the form 

procedure functionformat 
(factorable: termpointer) : string; 

reverses the process of stringtofunction and con- 
verts a function, held in its tree representation and 
pointed at by factorable, into a string ready for out- 
put. Extensive bracketing is used to avoid ambiguity. 

9 := opfunction( f, operator) ; 

would create the tree representation of the function 

gt.1 = cos(f(.)). 
The procedure compose, which has a heading of the 

form 

Once the tree representation of a function has been 

procedure compose(a: termpointer; 6: 
vectermpointer) : termpointer; 

takes as input a pointer to the tree representation of a 
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function from R” to R’ and a vector of pointers, each of 
whose components points to the tree representation of 
one of the components of a function from R” to R”. A 
tree representation of the function is obtained when the 
first function composed with the second is returned. 
For example, the statement 

h := compclse(f, g); 

would create the tree representation of the function h: 
R”+ R’, where h(.) = f(g(.)). 

The ALGLLB package also contains procedures that 
act on functions from R” to R” and on functions from R” 
to M(R”), where M(R”) is the set of real matrices of 
order II. 

IMPLEMENTAQTION 
The ALCLIB package has been written in a pseudocode 
whose meaning should be clear to a programmer of 
most high-level languages. An annotated listing of the 
pseudocode may be obtained from the authors. 

The package has been implemented for real-valued 
functions in Salgol [4] and for interval-valued func- 
tions in Triplex S-algol [l, lo], which is an extension of 
S-algol that supports interval arithmetic. Work on a 
Pascal implementation for real-valued functions is in 
progress. Full liistings of the S-algol and Triplex S-algol 
implementations, together with a comprehensive man- 
ual describing the package, art! available on request 
from the authors. 

Instead of implementing the ALGLIB package as a 
library of procedures, the procedures could be embed- 
ded in a compiler, and a new clata type, representing 
the tree form of a function, could be introduced. This 
would allow the incorporation of combination, compo- 
sition, and evaluation of functions as integral parts of 
the language. 

APPLICATIONS 
The ALGLIB package is currently being used at the 
University of St. Andrews in research on the solution of 
systems of nonlinear algebraic equations and on uncon- 
strained optimization. A standard by which new algo- 
rithms may be compared is provided by the packages 
for unconstrained optimization and nonlinear algebraic 
equations that have been given in pseudocode form by 
Dennis and Schnabel [ 51. These packages have been 
implemented in S-algol, and the implementation has 
been interfaced with ALGLIB in such a way that the 
user, in addition to the options for function, gradient, 
and Jacobian and Hessian evaluation provided by 
Dennis and Schnabel, may also use ALGLIB. A listing of 
the code is obtainable from the authors. 

Test Problems 
Dennis and Schnabel [5] have given a set of test prob- 
lems for use with their packages. The first three of 
these are used here to illustrate the S-algol implemen- 
tation, with and without the use of ALGLIB. 

Execution Times for the Packages of Dennis 
and Schnabel with and without ALGLIB 
If ALGLIB is used, the data structures corresponding to 
the function and to the gradient and Hessian (or to the 
Jacobian] must be set up before numerical computation 
can begin. Let the CPU time that is required to set up 
the required data structures be t, seconds. Let the CPU 
time that is required for the subsequent numerical 
computation be t, seconds. Let the CPU time that is 
required for the computation of a solution using analyt- 
ical expressions for the function, and for the Jacobian 
(or for the gradient and Hessian), be T seconds. 

Nonlinear Algebraic Equations and 
Unconstrained Optimization 
Table I contains results that are obtained from the 
package for solving systems of nonlinear algebraic 
equations. The column with heading T corresponds to 
Newton’s method with analytical Jacobian. 

Table II contains results that are obtained from the 
package for unconstrained optimization. The column 
with the heading T corresponds to the use of Newton’s 
method with analytical gradient and Hessian. 

In Tables 1 and II, the total CPU time required to 
solve a given problem is the sum oft, and f, if ALGLIB 
is used; this sum should be compared with the CPU 
time T, which is required if analytical expressions for 
partial derivatives are required. As may be expected, 
more CPU time is required if ALGLIB is used. One 
should, however, take into account the considerable, 
sometimes prohibitive, time required to calculate ana- 

TABLE I. Solution of Nonlinear Algebraic Equations 

Exam* n j f# 2 t 7 

1 2 0.93 0.45 0.22 
2 4 4.26 6.29 3.66 
3 4 15.93 4.72 1.18 

Description of Examples 1,2, and 3: Corresponding to each test prob- 
!emisasetofmapp4ngsf,:R”-+R’(i=l....,n).Atestproblemfor 
the unconstrained optimization package of Dennis and Schnabel con- 
sists of minimizing f: R” -+ R’ defined by 

f(x) = i lMx)12, 
J-1 

and a test probfem for the package for solving systems of nonlinear 
algebraic equations consists of solving F(x) = 0, where F: R” -+ R” is 
defined by 

F,(x) = f(x) (i=l,...,n). 

For each test problem, an initial estimate of the solution is provided. 
Explicit formulas for the f,, together with the initial estimates of the 
solutions, are given in 15, Appendix B]. 

TABLE II. Unconstrained Optimization 

Example * 

1 2 
2 4 
3 4 

.‘&’ : lc T 

2.03 5.40 2.13 
11.85 7.15 4.87 
77.36 22.72 2.91 

Gee legend for Table I. 
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lytical expressions for partial derivatives and to correct 
the algebraic mistakes, which nearly always arise. 

Sisser’s Minimization Algorithm 
Sisser [14] has described how the Hessian of a twice 
differentiable factorable function f: R” + R’ may be 
expressed in the form 

H(X) = D(X) + i$l [ui(X)ci(X)Vi(X)T + ~i(X)ci(X)ui(X)T] (7) 

where m and the functions Ci: R” + R’, Ui: R” + R”, and 
Ui: R” + R” (i = 1, . . , m) depend on the function being 
considered: he has used eq. (7) in a modification of 
Newton’s method for minimizing factorable functions 

[161. 
ALGLIB has been used to generate the tree represen- 

tations of the functions ci, Ui, and Vi (i = 1, . . , m) and 
the integer m for several factorable functions, thereby 
making possible an S-algol implementation of 
Sisser’s minimization algorithm. 

Interval Arithmetic 
Moore and Jones [9] and Jones [i’] have described a 
search procedure for bounding isolate zeros of a func- 
tion fi R” --, R” using interval analysis, where the solu- 
tions lie in a given initial box. The Triplex S-algol im- 
plementation of ALGLIB has been interfaced with a 
Moore and Jones search procedure in such a way that 
either ALGLIB or analytic expressions for the function 
and Jacobian can be used. 

The function fi R” + R” defined by 

f(x) = Ax + Td(x) + c, 

where A E M(R”) is tridiagonal with diagonal elements 
equal to 2 and the leading off-diagonal elements equal 
to -1, T E M(R”) is tridiagonal with diagonal elements 
equal to fi and leading off-diagonal elements equal to 
A. d: R” + R” is continuous diagonal and isotone with 

1 
d;(x) = (n + l)2 exp(&) (i = 1 3 . ( n), 

and c E R” is given by 

I 
h(l/ln + 1)2) (i = 1) 

Ci=. 0 

I 
(i = 2, . . , n - 1) 

hu/bJ + 117 (i = n). 

has a unique zero. The search procedure of Moore and 
Jones has been used in a Triplex S-algol implementation 
to search for the unique zero off in an n-cube centered 
at the origin of radius 10 with n = 3, both with and 
without ALGLIB. ALGLIB requires 11.24 seconds to set 
up its internal representations of the function and its 
F-derivative: and 20 bisections, 81 function evaluations, 
and 34 Jacobian evaluations are required both using 
and not using ALGLIB. The search requires 153 seconds 
of CPU time to isolate the zero in a box x* such that 

when ALGLIB is used. When ALGLIB is not used, 147 

seconds of CPU time are required. The slight difference 
in CPU time is more than offset by the convenience 
and reliability of using the ALGLIB package. 
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