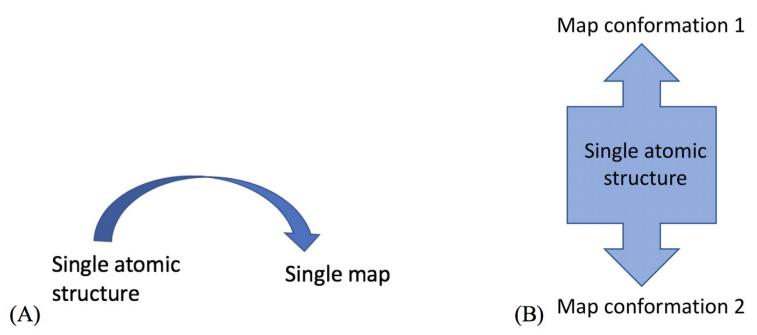


Python-based **H**ierarchical **EN**vironment for **I**ntegrated **X**tallography

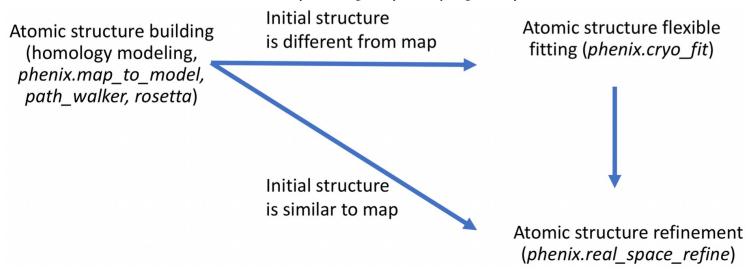
CryoFit2: Fitting to a Cryo-EM Map using Phenix Dynamics

Contents

- Overview
- <u>Theory</u>
- <u>Traditional "static" fitting (A) versus "dynamic" fitting (B)</u>
- Cryo fit 1 & 2 are recommended when the initial structure is different from map
- How to Run Cryo fit2
- Limitation
- Author


Overview

Unlike <u>Cryo fit1</u> that uses gromacs, CryoFit2 runs within phenix suite. Therefore, it doesn't require gromacs installation and is faster to execute. It suits the need not only traditional "static" fitting but also "dynamic" fitting.


Theory

This program uses phenix dynamics written by Pavel.

Traditional "static" fitting (A) versus "dynamic" fitting (B)

<u>Cryo fit 1 & 2 are recommended when the initial structure is different from map</u>

How to Run Cryo_fit2

See the tutorial notes for cryo fit2

Limitation

If wx is too small like 5, it may break starting secondary structure. When wx is 100, it kept starting helix structure. If wx is too big, angle change for each step maybe too big (\sim 30 degree), so pdb validation later (like molprobity) may raise a red flag.

We will add real_space_refine style wx, wc auto-optimization module soon.

Author

Pavel Afonine, Doo Nam Kim