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Overview

@ Stochastic kinetic models
@ Issues with the Direct method
@ 7-leap method (Gillespie, 2001)

e Leap conditions
o Mid-point estimation

@ Examples

Source code (R and IATEX of these slides):
https://github.com/csgillespie/talks/


https://github.com/csgillespie/talks/

Stochastic kinetic models

A biochemical network is represented as a set of pseudo-biochemical
reactions:

u species & v reactions

Ri: P11y + prako + -+ prudy = gy + qraXe + - + qruXy

Stochastic rate constant ¢;.

Hazard/instantaneous rate: hj(X:, ¢;) where X; = (X, ..., Xut) is the
current state of the system.

Under mass-action stochastic kinetics, the hazard function is proportional to
a product of binomial coefficients, with

hi(X, ci) = c,-f[ <Xj’t>.

=1 \Pi



Stochastic kinetic model

@ Describe the SKM by a Markov jump process (MJP)

@ The effect of reaction Ry is to change the value of each species X; by
Qi — Pji

@ The stoichiometry matrix S has elements s; = g; — pji

@ It can be shown that the time to the next reaction is

t ~ Exp(ho(Xt,c)) where ho(X;,c) Zh Xi, ci)
and the reaction is of type i with probability h;(X;, ¢;)/ho(X:, ©)

@ The process is easily simulated using the Direct method (Gillespie
algorithm)



Example: Lotka-Volterra system

Stochastic realisations
500

Predator

@ Ry: Prey reproduction

Population

X1 C—1> 2X1 100

Pre!

@ R,: Prey death, predator reproduction

Xy + Xo 0—2) 2X,

Population

@ Rj: Predator death

Time

X 250

X(0) = (100, 100)
¢ = (0.5,0.0025,0.3)



The direct method

@ Initialisation: initial conditions, reactions constants, and random number
generators

@ Propensities update: Update each of the v hazard functions, h;(x)

@ Propensities total: Calculate the total hazard hy = >/, hi(x)

@ Reaction time: 7 = —In[U(0,1)]/hpand t =t + T

@ Reaction selection: A reaction is chosen proportional to it's hazard

© Reaction execution: Update species

@ lteration: If the simulation time is exceeded stop, otherwise go back to
step 2

Typically there are a large number of iterates
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Approximations

Relax some assumptions (e.g. discreteness and stochasticity) in order to
make simulation faster and more scalable

@ Diffusion approximation / chemical Langevin equation (CLE)
@ Linear noise approximation (LNA) / moment closure (2MA)
e ODE

@ Hybrid discrete-continuous models



Poisson leap

@ If all reactions are zeroth-order, then the model is a homogeneous
Poisson process
@ Hence the number of reactions in (fy, t;) follows a Poisson distribution

@ For a more general model, if we consider a small time interval,
(t,t+ At), then:
o the hazard rates should be approximately constant
e the number of reactions (of a given type) can be sampled from a Poisson
distribution

@ A balance between speed and accuracy



Poisson leap method

@ Sett = 0. Initialise the rate constants and the initial molecule numbers x

@ Calculate hi(x,¢;), fori=1,..., v, and simulate the v-dimensional
reaction vector r, with i entry a Po(h;(x, ¢;)/At) random quantity

© Update the state according
© Update t := t + At
© Output t and x. If t < Tpay return to step 2



Poisson leap method

@ Sett = 0. Initialise the rate constants and the initial molecule numbers x

@ Calculate hi(x,¢;), fori=1,..., v, and simulate the v-dimensional
reaction vector r, with i entry a Po(h;(x, ¢;)/At) random quantity

© Update the state according
© Update t := t + At
© Output t and x. If t < Tpay return to step 2

How do you chose At?



Example: Lotka-Volterra

Gillespie simulations
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@ Suppose we are interested in
parameter inference
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@ A possible prior could be o
independent Uniform priors
over U(—8, 8) for each log(c;)

@ Three samples from this prior
yield very different realisations
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o Probability of extinction by o - - -
time t = 30, is around 0.86
@ Each simulation would require L0000

a very different At
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Basic 7-leap method

@ Suppose a temporal leap 7 will result in a state change A
@ Choose a value of 7 that satisfies the leap condition. For each reaction,
R;, we want
[hj(x 4+ A) — hi(x)]
to be small
@ Sample kj ~ P(hj(x)7)
@ Compute A
@ Sett:=t+7andx:=x+ A



@ If the reactions don’t depend on x, the leap condition will be satisfied
exactly for any 7 (and so exact)

@ If population numbers are large, then it would take a large number of
reactions to “noticeably” change the hazard functions

o If satisfying the leap condition requires a very small value 7 << 1/hy(x),
then we may as well use the exact SSA



A procedure for selecting 7 (Gillespie 2001)

@ The expected net change in (¢, t + 7) will be:
v
A=) [m(x)7ls; = ré(x)
j=1

@ So we require that the expected changes in the propensity functions in
time 7, are bounded by some fraction of all propensity functions, i.e.

|hi(x + A) — hj(x)| < ehg(x) forj=1,...,v.

@ Estimate the difference using a Taylor expansion:

- )
hi(x+ A) = By(x) = > 7E (%) 5 hi(x)
i=1 0xi
@ Defining .
8hj X
6x,-

bj,'(X)E (j:1,...,V;i:1,...,U)



A procedure for selecting 7

@ The requirement becomes

- <ehy(x) (j=1,...,v)

Z &i(x)bji(x)

@ The largest value of T consistent with this condition (and hence optimal) is

T = min { ho(x) }
jelim | |20 &(x)bi(x)]

Typical values of € are around 0.05
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The estimated-midpoint technique

@ The leap condition requires that the hazards functions do not
“appreciably” change in the course of a leap
@ But we want to take large leaps, so we will inevitably get computational

errors
@ This is similar to solving the ODE
ax(t
X _ gy
at

using an Euler scheme
@ A standard technique is to use a second-order Runge-Kutta or modified
Euler method
X(t+ At) = X(t) + f[X(t) + 0.5((X(t))At]At

i.e. we use an Euler method to estimate the midpoint during [t, t + At],
then calculate the increment in X by evaluating the slope function f at that
estimated midpoint



Example: Death model

@ The death model contains a single reaction
x50

and has hazard function hy(x, 1) = pux and state change vector s = —1.
@ The solution to the CME is:

PF(X = X, t) = (f?) e—HT(Xo—X)(-I _ e—,uT)x



Death model

Method —— Exact
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Death model: p-leap

Method —— Exact — Poisson-leap
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If we perform a single leap of length 7, the number of executed reactions are

e (uxoT )X

Po(k; X0, 7) = T

fork =0,...



Death model: 7-leap + mid-point

Method —— Exact —— Poisson-leap —— Mid-point
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We estimate the mid-point to be:
x' = xo — |0.57uxo]
so the number of reactions executed is

eux’T (/LX/T)k

fork=0,...
k!

Po(k; pixo, 7) =



Example: Lotka-Volterra
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For these parameter values and this model, we have the approximate
relationship (obtained via simulation)

€ ~ 0.556 x At
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@ Similar issues arise when solving SDEs with the Euler-Maruyama
scheme

o In fact, if we substitute Poisson with Gaussian random numbers in the
p-leap scheme, we get the Euler-Maruyama algorithm

@ Choosing a fixed At for a wide range of parameter combinations doesn’t
make sense

@ Is it possible to these ideas when constructing bridges for SDEs?
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