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Stochastic kinetic models

A biochemical network is represented as a set of pseudo-biochemical
reactions:

u species & v reactions

Ri : p11X1 + p12X2 + · · ·+ p1uXu
ci−→ q11X1 + q12X2 + · · ·+ q1uXu

Stochastic rate constant ci .

Hazard/instantaneous rate: hi(Xt , ci) where Xt = (X1,t , . . . ,Xu,t) is the
current state of the system.

Under mass-action stochastic kinetics, the hazard function is proportional to
a product of binomial coefficients, with

hi(Xt , ci) = ci

u∏
j=1

(
Xj,t

pij

)
.



Stochastic kinetic model

Describe the SKM by a Markov jump process (MJP)

The effect of reaction Rk is to change the value of each species Xi by
qji − pji

The stoichiometry matrix S has elements sij = qji − pji

It can be shown that the time to the next reaction is

t ∼ Exp(h0(Xt , c)) where h0(Xt , c) =
v∑

i=1

hi(Xi , ci)

and the reaction is of type i with probability hi(Xt , ci)/h0(Xt , c)

The process is easily simulated using the Direct method (Gillespie
algorithm)



Example: Lotka-Volterra system

R1: Prey reproduction

X1
c1−−→ 2X1

R2: Prey death, predator reproduction

X1 + X2
c2−−→ 2X2

R3: Predator death

X2
c3−−→ ∅
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Stochastic realisations
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X(0) = (100, 100)
c = (0.5, 0.0025, 0.3)



The direct method

1 Initialisation: initial conditions, reactions constants, and random number
generators

2 Propensities update: Update each of the v hazard functions, hi(x)

3 Propensities total: Calculate the total hazard h0 =
∑v

i=1 hi(x)

4 Reaction time: τ = −ln[U(0, 1)]/h0 and t = t + τ

5 Reaction selection: A reaction is chosen proportional to it’s hazard
6 Reaction execution: Update species
7 Iteration: If the simulation time is exceeded stop, otherwise go back to

step 2

Typically there are a large number of iterates
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Approximations

Relax some assumptions (e.g. discreteness and stochasticity) in order to
make simulation faster and more scalable

Diffusion approximation / chemical Langevin equation (CLE)

Linear noise approximation (LNA) / moment closure (2MA)

ODE

Hybrid discrete-continuous models



Poisson leap

If all reactions are zeroth-order, then the model is a homogeneous
Poisson process

Hence the number of reactions in (t0, t1) follows a Poisson distribution
For a more general model, if we consider a small time interval,
(t, t + ∆t), then:

the hazard rates should be approximately constant
the number of reactions (of a given type) can be sampled from a Poisson
distribution

A balance between speed and accuracy



Poisson leap method

1 Set t = 0. Initialise the rate constants and the initial molecule numbers x
2 Calculate hi(x , ci), for i = 1, . . . , v , and simulate the v -dimensional

reaction vector r , with i th entry a Po(hi(x , ci)∆t) random quantity
3 Update the state according
4 Update t := t + ∆t
5 Output t and x . If t < Tmax return to step 2

How do you chose ∆t?
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Example: Lotka-Volterra

Suppose we are interested in
parameter inference

A possible prior could be
independent Uniform priors
over U(−8, 8) for each log(ci)

Three samples from this prior
yield very different realisations

Probability of extinction by
time t = 30, is around 0.86

Each simulation would require
a very different ∆t
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Basic τ -leap method

Suppose a temporal leap τ will result in a state change λ

Choose a value of τ that satisfies the leap condition. For each reaction,
Rj , we want

|hj(x + λ)− hj(x)|

to be small

Sample kj ∼ P(hj(x)τ)

Compute λ

Set t := t + τ and x := x + λ



Choosing τ

If the reactions don’t depend on x, the leap condition will be satisfied
exactly for any τ (and so exact)

If population numbers are large, then it would take a large number of
reactions to “noticeably” change the hazard functions

If satisfying the leap condition requires a very small value τ << 1/h0(x),
then we may as well use the exact SSA



A procedure for selecting τ (Gillespie 2001)

The expected net change in (t, t + τ) will be:

λ̄ =
v∑

j=1

[hj(x)τ ]sj = τξ(x)

So we require that the expected changes in the propensity functions in
time τ , are bounded by some fraction of all propensity functions, i.e.

|hj(x + λ)− hj(x)| < εh0(x) for j = 1, . . . , v .

Estimate the difference using a Taylor expansion:

hj(x + λ)− hj(x) '
u∑

i=1

τξi(x)
∂

∂xi
hj(x)

Defining

bji(x) ≡ ∂hj(x)

∂xi
(j = 1, . . . , v ; i = 1, . . . , u)



A procedure for selecting τ

The requirement becomes

τ

∣∣∣∣∣
u∑

i=1

ξi(x)bji(x)

∣∣∣∣∣ ≤ εh0(x) (j = 1, . . . , v)

The largest value of τ consistent with this condition (and hence optimal) is

τ = min
j∈[1,v]

{
εh0(x)∣∣∑u

i=1 ξi(x)bji(x)
∣∣
}

Typical values of ε are around 0.05
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The estimated-midpoint technique

The leap condition requires that the hazards functions do not
“appreciably” change in the course of a leap
But we want to take large leaps, so we will inevitably get computational
errors
This is similar to solving the ODE

dX(t)
dt

= f (X)

using an Euler scheme
A standard technique is to use a second-order Runge-Kutta or modified
Euler method

X(t + ∆t) = X(t) + f [X(t) + 0.5f (X(t))∆t]∆t

i.e. we use an Euler method to estimate the midpoint during [t, t + ∆t],
then calculate the increment in X by evaluating the slope function f at that
estimated midpoint



Example: Death model

The death model contains a single reaction

X µ−−→ ∅

and has hazard function h1(x , µ) = µx and state change vector s = −1.

The solution to the CME is:

Pr(X = x ; t) =

(
x0

x

)
e−µτ(x0−x)(1− e−µτ )x



Death model
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Death model: p-leap
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Method Exact Poisson−leap

If we perform a single leap of length τ , the number of executed reactions are

Pp(k ;µx0, τ) =
eµx0τ (µx0τ)k

k!
for k = 0, . . .



Death model: τ -leap + mid-point
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Method Exact Poisson−leap Mid−point

We estimate the mid-point to be:

x ′ ≡ x0 − b0.5τµx0c

so the number of reactions executed is

Pp(k ;µx0, τ) =
eµx ′τ (µx ′τ)k

k!
for k = 0, . . .



Example: Lotka-Volterra
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For these parameter values and this model, we have the approximate
relationship (obtained via simulation)

ε ' 0.556×∆t
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Summary

Similar issues arise when solving SDEs with the Euler-Maruyama
scheme

In fact, if we substitute Poisson with Gaussian random numbers in the
p-leap scheme, we get the Euler-Maruyama algorithm

Choosing a fixed ∆t for a wide range of parameter combinations doesn’t
make sense

Is it possible to these ideas when constructing bridges for SDEs?
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