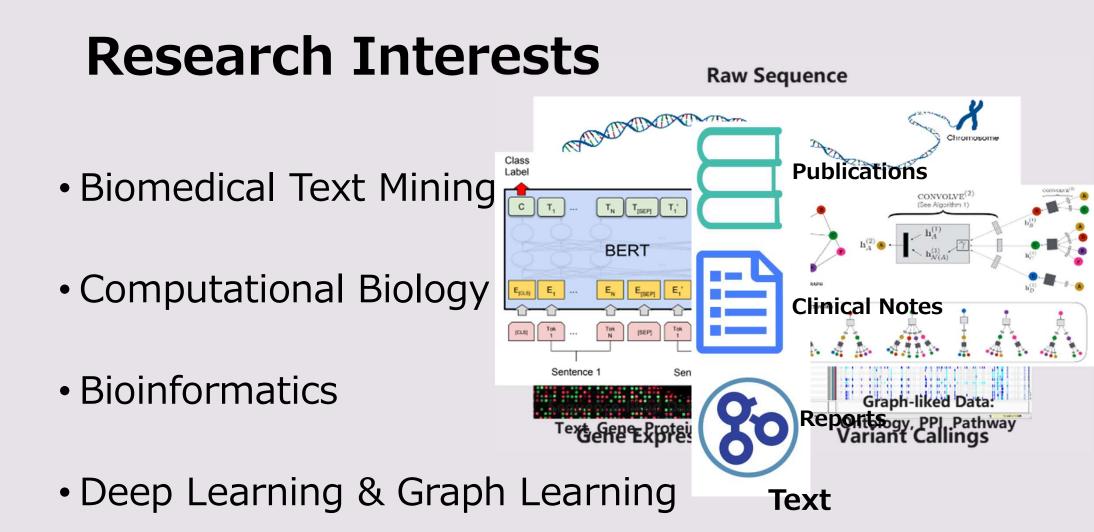
INTRODUCTION TO BIONLP

Shankai Yan (HainanU) Homepage: skyan.me

Lecture Materials:

skyan.me/lectures/online/bionlp-intro

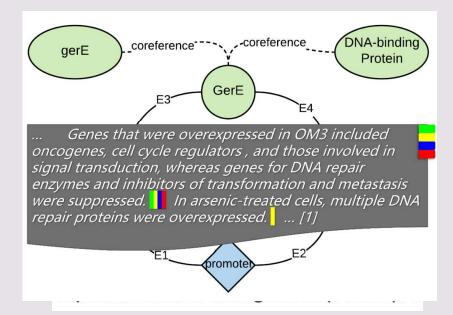


Biomedical Text Mining (BioNLP)

• NER

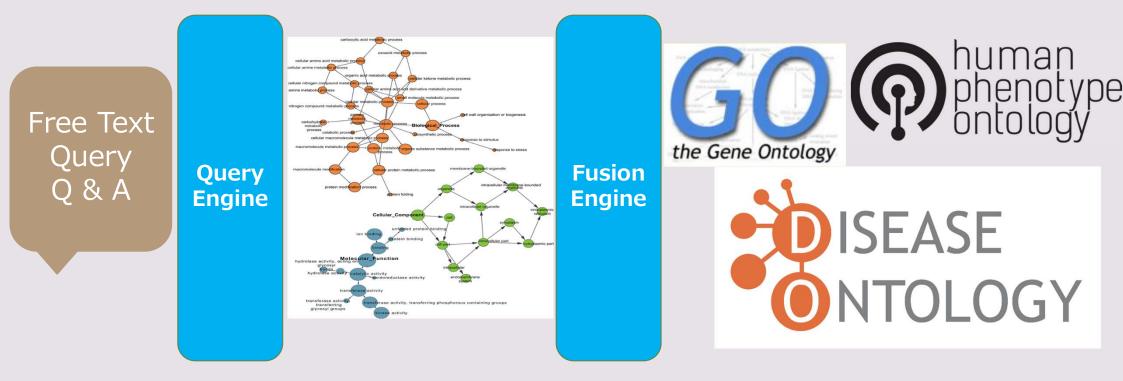
Relation Extraction

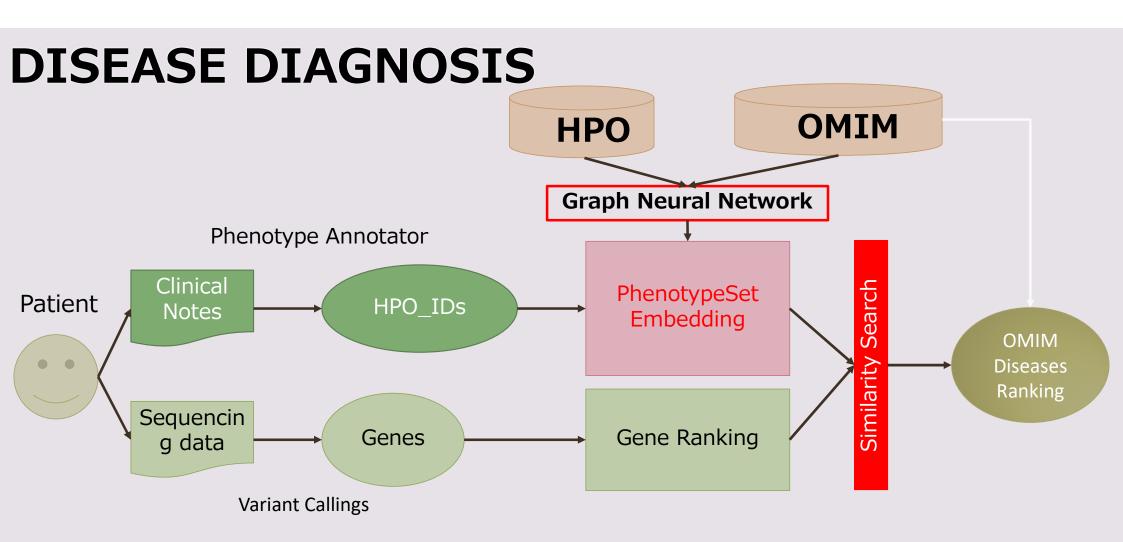
Text Classification



Shankai Yan, et. al, PhenoRerank: A re-ranking model for phenotypic concept recognition pre-trained on human phenotype L. L, SK. Y, et. Al, PhenoTagger: a hybrid method for phenotype concept recognition using human phenotype ontology. B Shankai Yan, et. Al, Context awareness and embedding for biomedical event extraction. Bioinformatics 2020 3 Shankai Yan, et. al, Elucidating high-dimensional cancer hallmark annotation via enriched ontology. JBI 2017

BIOMEDICAL GRAPH DB FUSION AND QUERY

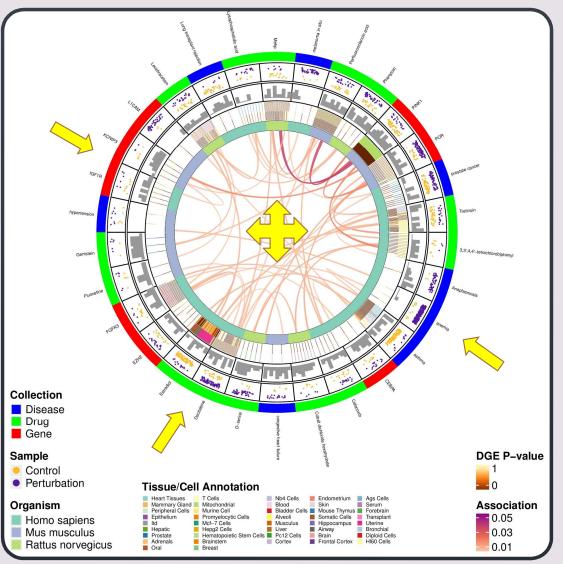




Shankai Yan, et. al, Disease-gene prioritization using graph embedding on patient phenotypic profiles. AMIA2022

GENE SIGNATURE

- Association Predication
 - Gene
 - Disease
 - Drug
 - Association
- Method
 - NER on GEO Repo
 - DGE for Gene Signatures
 - Signed Similarity among Gene Signatures



Shankai Yan, et. al, GESgnExt: Gene Expression Signature Extraction and Meta-analysis on Gene Expression Omnibus.

What is **BioNLP**

Biomedical Natural Language Processing, Biomedical Text Mining

Knowledge extraction from text in biomedical/clinical field

Objective: Facilitate understanding and decision making in computational way

Subfield of bioinformatics Common: sequence data Difference: alphabet

Data

Data is generated by human

• Biomedical Literature

Clinical Notes

 Textual Description in Knowledge Database

NLP Tasks

Basic Tasks:

- Tokenization (paragraph, sentence, words)
- POS Tagging (noun, verb, adj), Lemmatization, Stem
- Dependency Parsing

Advance Tasks:

- Name Entity Recognition (PubTator)
- □ Information Retrieval (PubMed)
- Document classification (Multi-class & Multi-label)
- Information Extraction
 - **Protein-Protein-Interaction**
 - **Gene-Gene-Interaction**
 - **Drug-Drug-Interaction**
 - **Biological Event**
- **Question Answering**

NER

Online Tools

API Calling

Write your own code

Export Annotations

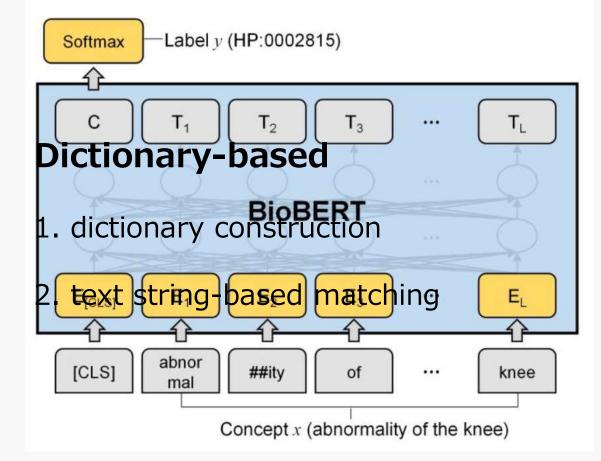
Export our annotated publications in batches of up to 100 in GET or 1000 in POST, in BioC, publication or JSON formats. To programmatically retrieve textmined results in PubTator, one can use web queries as follows:

 $https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/export/[Format]?[Type] = [Identifiers] \& concepts = [Bioconcepts] \\ \label{eq:https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/export/[Format]?[Type] = [Identifiers] & concepts = [Identifiers] \\ \label{eq:https://www.ncbi.nlm.nih.gov/research/publications/export/[Format]?[Type] = [Identifiers] & con$

Parameters

NER Methods Dictionary-based ML-based

Deep Learning Model (PhenoTagger[1])



[1] Luo, L., **Yan, S**., Lai, P. T., Veltri, D., Oler, A., Xirasagar, S., ... & Lu, Z. (2021). PhenoTagger: a hybrid method for phenotype concept recognition using human phenotype ontology. *Bioinformatics*, *37*(13), 1884-1890.

Example of Document Classification Cancer Hallmark Annotation[2]

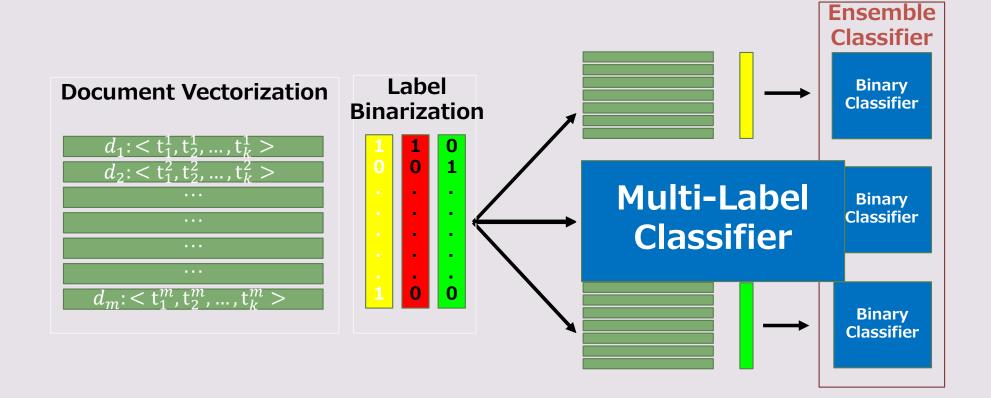
... Genes that were overexpressed in OM3 included oncogenes, cell cycle regulators, and those involved in signal transduction, whereas genes for DNA repair enzymes and inhibitors of transformation and metastasis were suppressed. In arsenic-treated cells, multiple DNA repair proteins were overexpressed. ... [3]

[2] **Yan, Shankai**, and Ka-Chun Wong. "Elucidating high-dimensional cancer hallmark annotation via enriched ontology." *Journal of biomedical informatics* 73 (2017): 84-94.

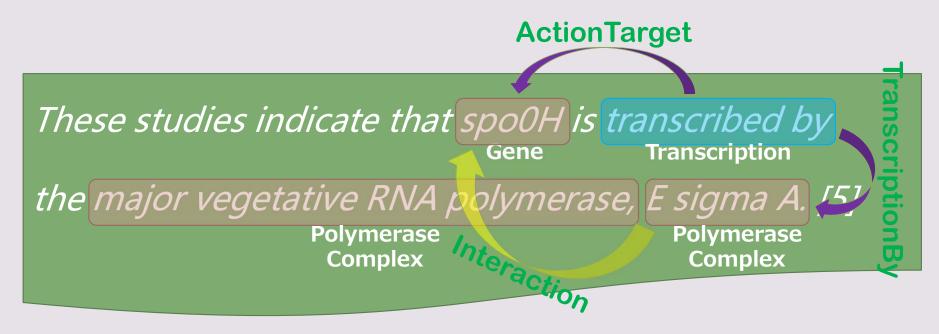
[3] Bae, Dong-Soon, et al. "Characterization of gene expression changes associated with MNNG, arsenic, or metal mixture treatment in human keratinocytes: application of cDNA microarray technology." *Environmental Health Perspectives* 110.suppl 6 (2002): 931-941.

- Activating invasion and metastasis (IM)
- Genomic instability and mutation (GI)
- Sustaining proliferative signaling (PS)
- Evading growth suppressors (GS)

Multi-label Classification

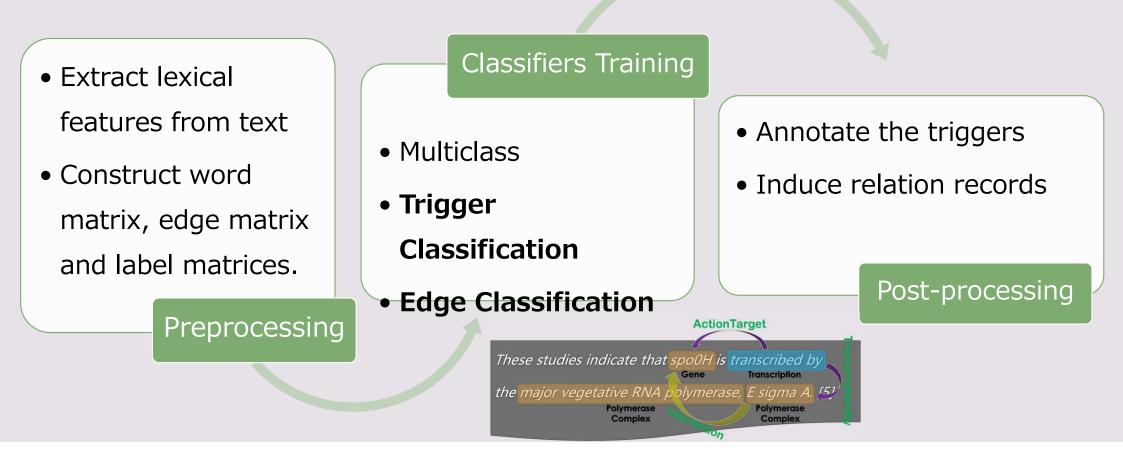


Example of IE Bacteria Gene Interaction Extraction[4]

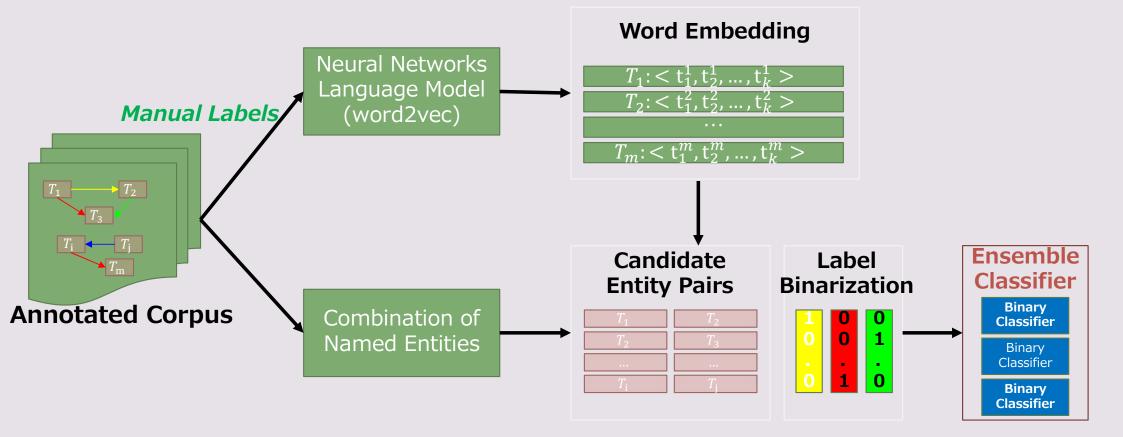


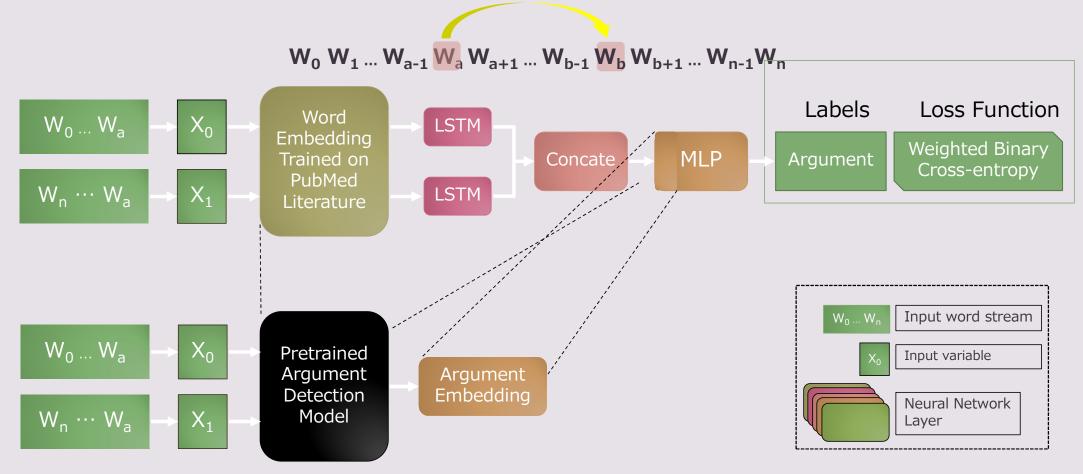
[4] Yan, Shankai, and Ka-Chun Wong. "Context awareness and embedding for biomedical event extraction." Bioinformatics 36.2 (2020): 637-643.
[5] Weir, J; Predich, M; Dubnau, E; Nair, G; Smith, I. (1991). Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J. Bacteriol. vol. 173 (2) p. 521-529

TRIGGER-BASED APPROACH



Non-Trigger Approach





[4] **Yan, Shankai**, and Ka-Chun Wong. "Context awareness and embedding for biomedical event extraction." Bioinformatics 36.2 (2020): 637-643.

Difference from

Conventional NLP Tasks

Contains Biomedical Symbols,

Punctuations, Terms

□ The writers are from the

biomedical/clinical expertise group

Different Corpus/Context

Leaderboard

[6] Wang, Alex, et al. "GLUE: A multi-task benchmark and analysis platform for natural language understanding." arXiv preprint arXiv:1804.07461 (2018).
[7] Peng, Yifan, **Shankai Yan**, and Zhiyong Lu.
"Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets." arXiv preprint arXiv:1906.05474 (2019).

Task	Metrics	SOTA*	ELMo	BioBERT	Our BERT			
					Base (P)	Base (P+M)	Large (P)	Large (P+M)
MedSTS	Pearson	83.6	68.6	84.5	84.5	84.8	84.6	83.2
BIOSSES	Pearson	84.8	60.2	82.7	89.3	91.6	86.3	75.1
BC5CDR-disease	F	84.1	83.9	85.9	86.6	85.4	82.9	83.8
BC5CDR-chemical	F	93.3	91.5	93.0	93.5	92.4	91.7	91.1
ShARe/CLEFE	F	70.0	75.6	72.8	75.4	77.1	72.7	74.4
DDI	F	72.9	78.9	78.8	78.1	79.4	79.9	76.3
ChemProt	F	64.1	66.6	71.3	72.5	69.2	74.4	65.1
i2b2	F	73.7	71.2	72.2	74.4	76.4	73.3	73.9
HoC	F	81.5	80.0	82.9	85.3	83.1	87.3	85.3
MedNLI	acc	73.5	71.4	80.5	82.2	84.0	81.5	83.8
Total			78.8	80.5	82.2	82.3	81.5	79.2

Methods

Feature Extraction:

Tokenization, Bag-of-Words, Normalization Tokenization, Word Embeddings, Language Model

Classification/Regression/ Model:

SVM/RandomForest

Language Model/Encoder:

LSTM/CNN/BERT

Traditional Machine Learning Methods

Handcrafted Features

Tokens

Part-of-speech

Entity type

Grammatical function tag

Distance in the parse tree

Classifical ML models

Support Vector Machine (SVM)

Bayesian Classifier

Multi-layer Perception (MLP)

Ensemble Classifiers (Random

Forest, Extra Trees, etc.)

SOTA Deep Learning Methods

Word Embedding / Language Model (Pre-trained)

Sequence to Vector

Encoder:

- Bag of Embedding
- RNN/LSTM/GRU
- -CNN

Classifier:

- Linear
- MLP

Packages

NLTK: simple text processing

SpaCy: Pipeline

Stanza: Pipeline

Gensim: Word/Doc Embedding

Hugging Face (Transformers): SOTA Model

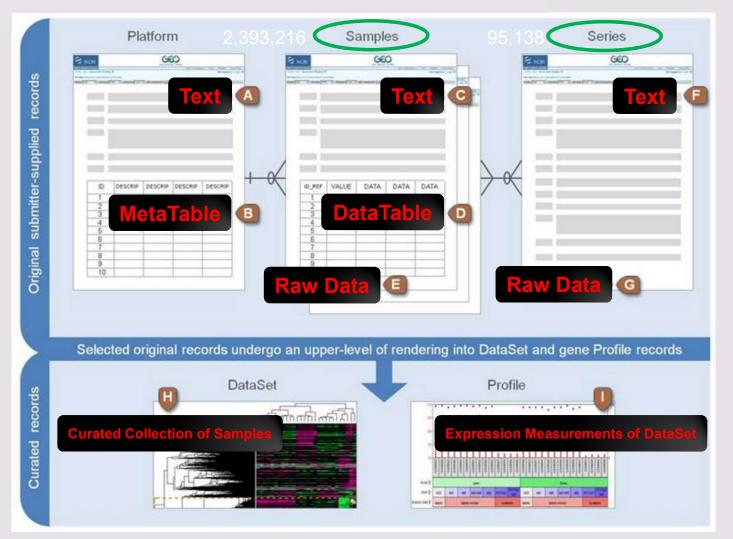
Text Mining on Knowledge Databases

Experiment Repositories: GEO/DECIPHER

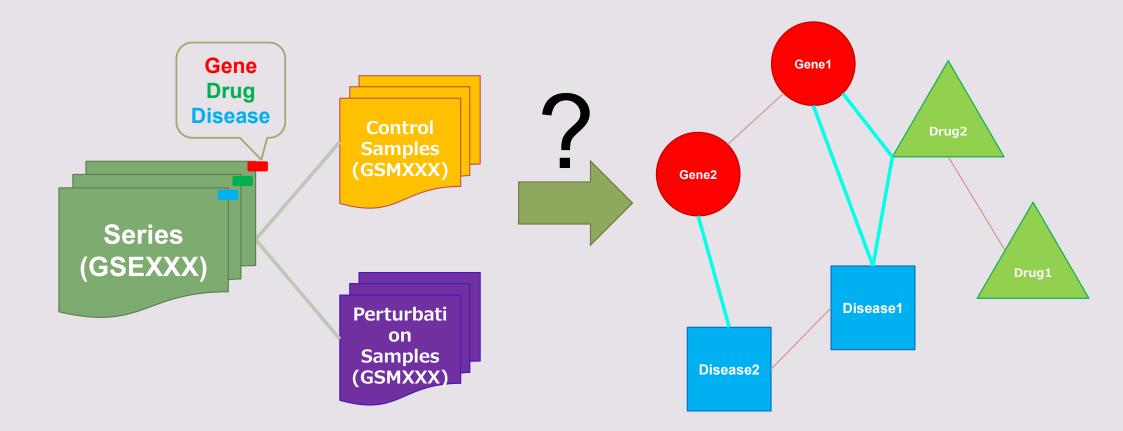
Ontology:

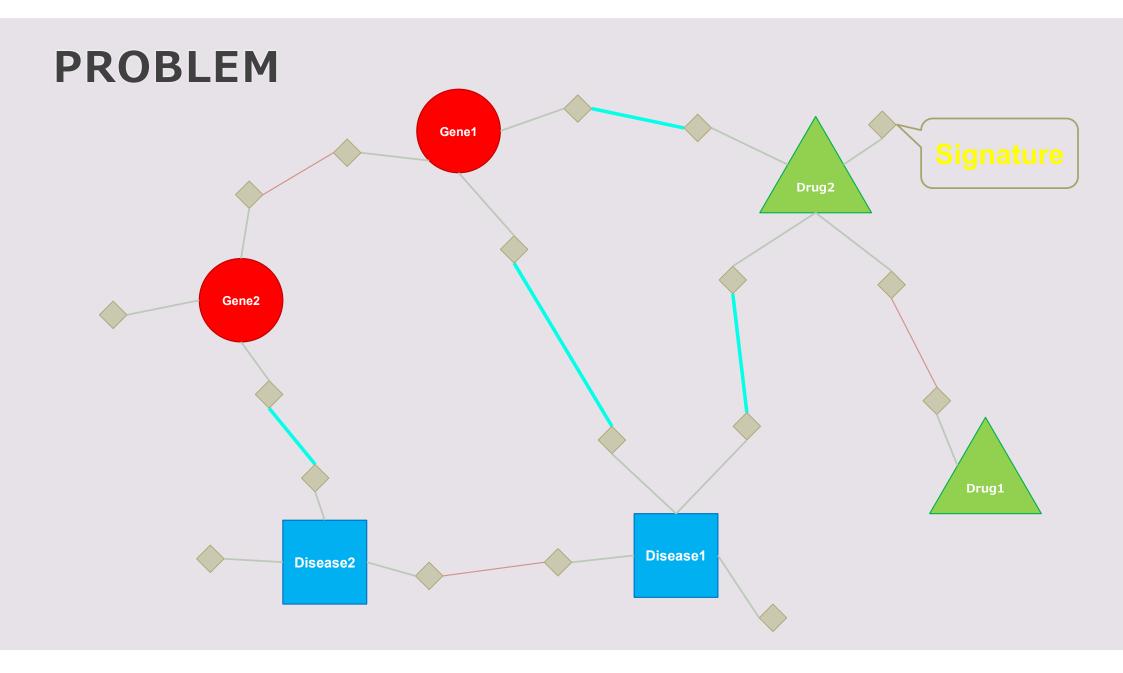
GO/HPO

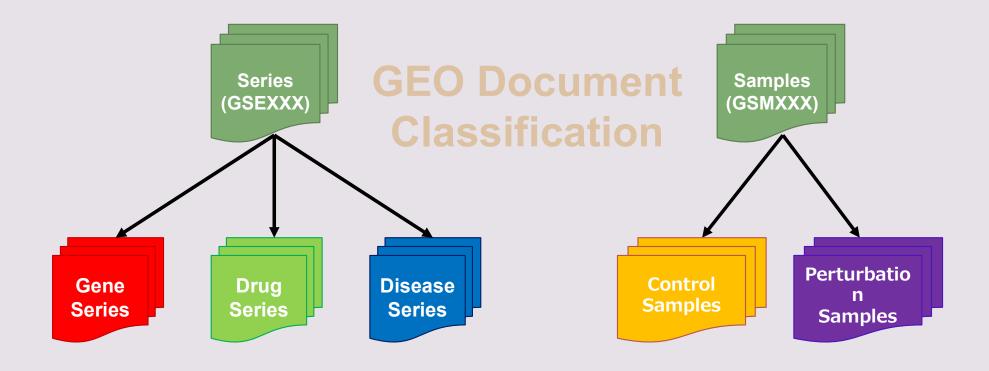
DATA DESCRIPTION IN GEO

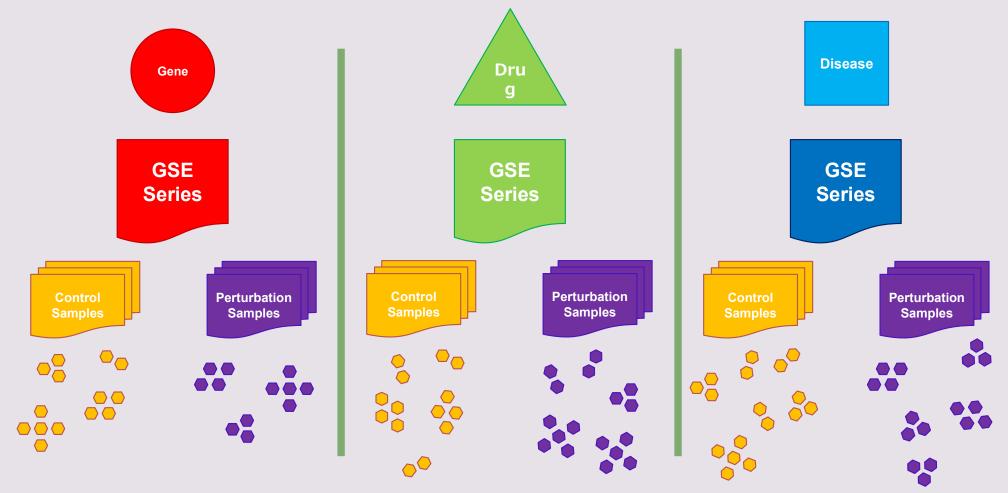


OBJECTIVE

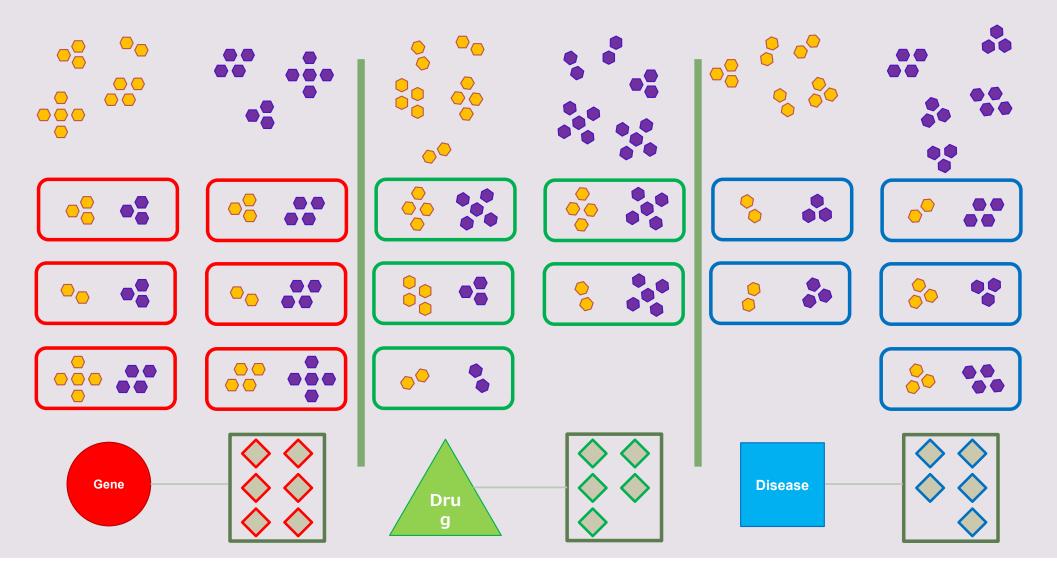


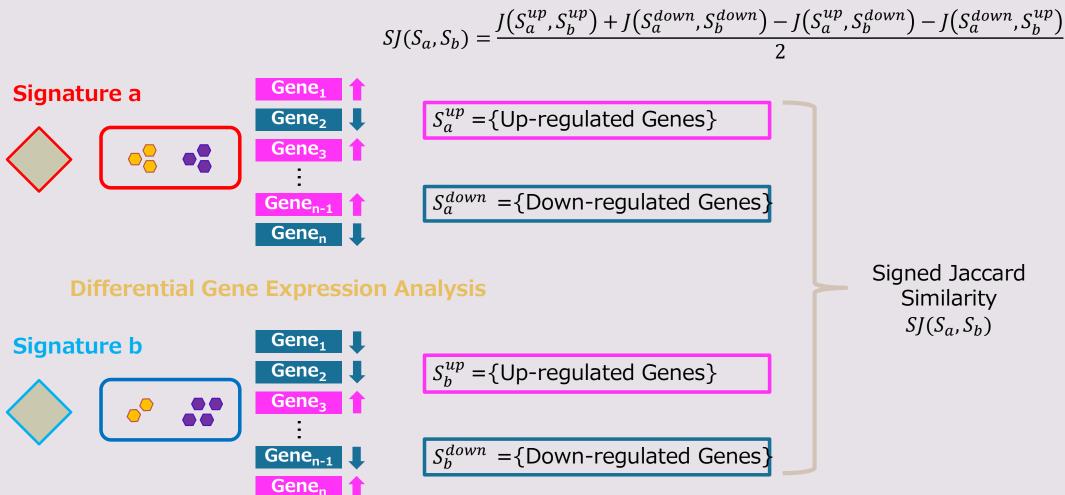




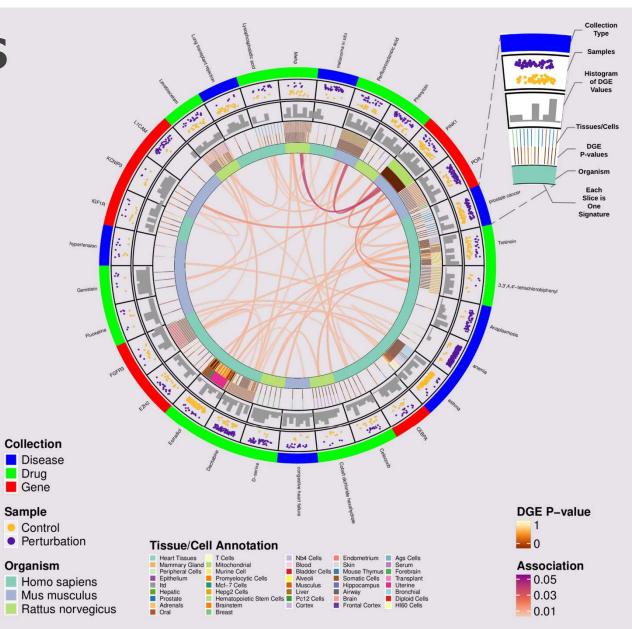


Sample Clustering

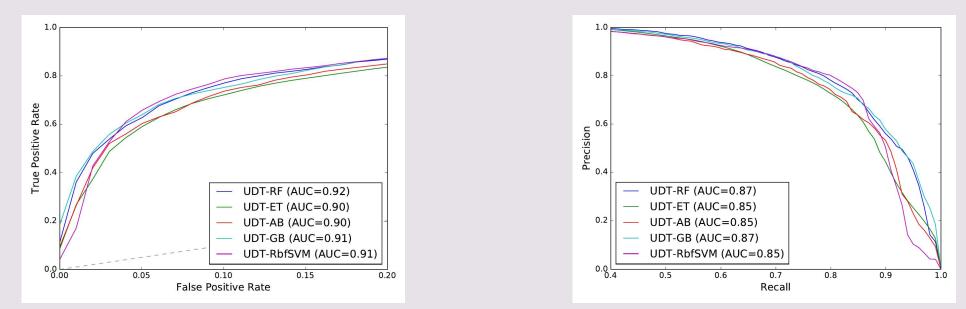




RESULTS



GSE CLASSIFICATION RESULT



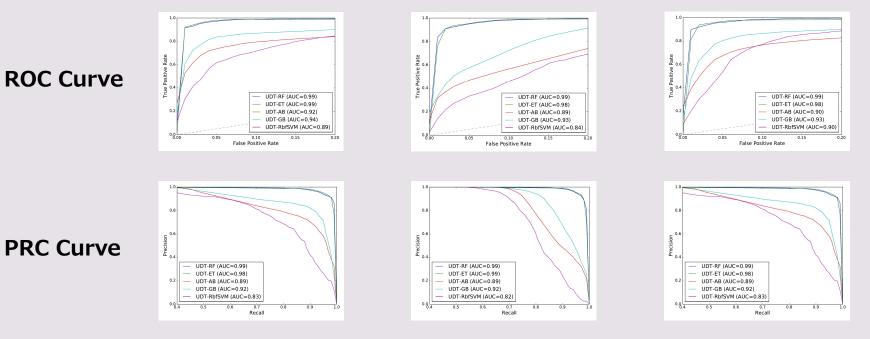
ROC Curve

PRC Curve

	UDT-RF ^[2]	UDT-ET	UDT-AB	UDT-GB	UDT- RbfSVM
Accuracy	0.68	0.63	0.65	0.68	0.56
Precision	0.81	0.83	0.79	0.82	0.62
Recall	0.77	0.69	0.75	0.75	0.58
F score	0.79	0.75	0.77	0.78	0.60

[2] Yan, S. and Wong, K.-C. (2017). Elucidating high-dimensional cancer hallmark annotation via enriched ontology. Journal of Biomedical Informatics, 73, 84–94

GSM CLASSIFICATION RESULT

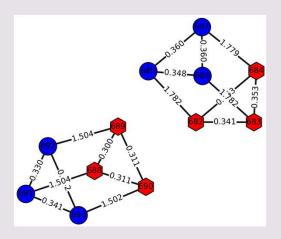


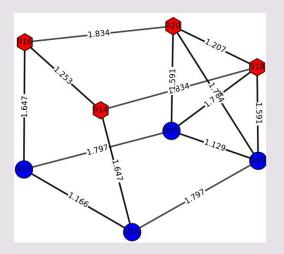
	UDT-RF ^[1]	UDT-ET	UDT-AB	UDT-GB	UDT- RbfSVM
Accuracy	0.96	0.96	0.85	0.87	0.66
Precision	0.95	0.96	0.85	0.89	0.51
Recall	0.94	0.94	0.75	0.76	0.37
F score	0.94	0.95	0.79	0.80	0.30

[2] Yan, S. and Wong, K.-C. (2017). Elucidating high-dimensional cancer hallmark annotation via enriched ontology. Journal of Biomedical Informatics, 73, 84–94

CLUSTERING RESULT

Euclidean Distance

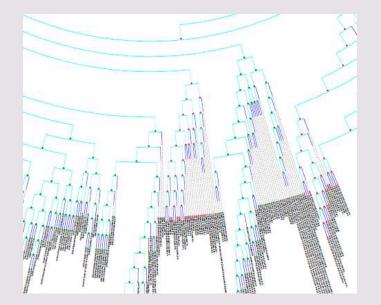


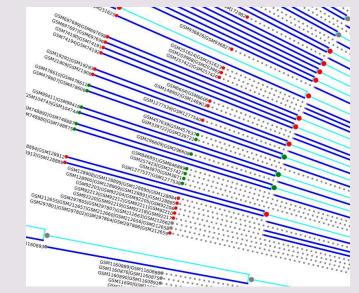


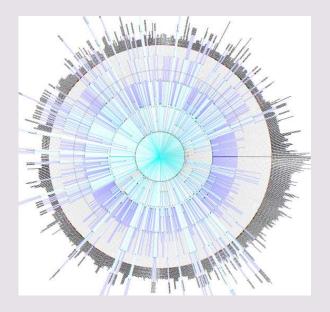
KNN Graph Minimum Spanning Tree

Our Distance Metric

CLUSTERING RESULT







Thank You