
HIGHER-ORDER ENVIRONMENTS, CURRYING,
AND FUNCTION SCOPE Solutions

COMPUTER SCIENCE MENTORS 61A

February 6–February 10, 2023

Created by Alyssa Smith, Esther Shen, Maya Romero, Natalie Wei, Sandhya Ganesan, Kaelyn Huang, Cecilia Aiko,
Aurelia Wang
Provided by CSM 61A contributors under CC BY 4.0/3-clause BSD.

https://github.com/csmberkeley/csm-61a/blob/main/LICENSE


1 Higher-Order Functions cont.

1. Draw the environment diagram that results from running the code.

def dream1(f):
kick = lambda x: mind()
def dream2(secret):

mind = f(secret)
kick(2)

return dream2

inception = lambda secret: lambda: secret
real = dream1(inception)(42)

Output: 3

https://goo.gl/q84uf4

2 CSM 61A SPRING 2023

https://goo.gl/q84uf4


2. Draw the environment diagram that results from running the code.

def a(y):
d = 1
b = lambda x: y(x)
e = lambda x: x(3)
return e(b)

d = 5
a(lambda x: 4 - x + d)

https://goo.gl/9vxEwv

WEEK 4: HIGHER-ORDER ENVIRONMENTS, CURRYING, AND FUNCTION SCOPE 3

https://goo.gl/9vxEwv


3. Implement compound, which takes in a single-argument function base func and
returns a two-argument compounder function g. The function g takes in an integer x
and positive integer n.

Each call to g will print the result of calling f repeatedly 0,1,.., n-1 times on x. That
is, g(x, 2) prints x, then f(x). Then, g will return the next two-argument com-
pounder function.

def compound(base_func, prev_compound=lambda x: x):
"""
>>> add_one = lambda x: x + 1
>>> adder = compound(adder)
>>> adder = adder(3, 2)
3 # 3
4 # f(3)
>>> adder = adder(4, 4)
6 # f(f(4))
7 # f(f(f(4)))
8 # f(f(f(f(4))))
9 # f(f(f(f(f(4)))))
"""
def g(x, n):
new_comp = ____________________________
while n > 0:

print(____________________________)
new_comp = (lambda save_comp: \

_______________________)(____________)
___________________________________________________

return ______________________________________________
return ___________________________________

def compound(base_func, prev_compound=lambda x : x):
def g(x, n):

new_comp = prev_compound
while n > 0:

print(new_comp(x))
new_comp = (lambda save_comp: \

lambda x: base_func(save_comp(x)))(new_comp)
n -= 1

return compound(base_func, new_comp)
return g

4 CSM 61A SPRING 2023



4. Write a function partial_summer, which takes in a list of integers lst and returns
a function. The returned function takes in a non-negative integer n. It prints a sum
derived from the first n elements of lst: if element X is even, divide X by 2 before
adding it to the sum, and if X is odd. add 1 to X before adding it to the sum. If
n > len(lst), then sum as many elements of lst as you can. After printing the
sum, the returned function returns another function, that when called, will perform
the same procedure on the remaining len(lst)- n elements of lst.

def partial_summer(lst):
"""
>>> lst = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> f = partial_summer(lst)(3)
7 # 7 = (1+1) + (2/2) + (3+1)
>>> g = f(4)
19 # 19 = (4/2) + (5+1) + (6/2) + (7+1)
>>> h = g(3)
14 # 14 = (8/2) + (9+1)
>>> i = h(1)
0
"""
def helper(n):

total, i = ________, ________

while ________________ and ___________________:

if _______________________:

total += ____________________________
else:

total += lst[i] + 1

_________________________________________
print(total)

return ______________________________________
return helper

WEEK 4: HIGHER-ORDER ENVIRONMENTS, CURRYING, AND FUNCTION SCOPE 5



def partial_summer(lst):
def helper(n):

total, i = 0, 0
while i < n and i < len(lst):

if lst[i] % 2 == 0:
total += lst[i] // 2

else:
total += lst[i] + 1

i += 1
print(total)
return partial_summer(lst[n:])

return helper

6 CSM 61A SPRING 2023



2 Recursion

There are three steps to writing a recursive function:

1. Create base case(s)

2. Reduce your problem to a smaller subproblem and call your function recursively
to solve the smaller subproblem(s)

3. Use the subproblems’ solutions as pieces to construct a larger problem’s solution
(This can happen in many layers!)

Real World Analogy for Recursion

Imagine that you’re in line for boba, but the line is really long, so you want to know
what position you’re in. You decide to ask the person in front of you how many
people are in front of them. That way, you can take their response and add 1 to it to
find your place. Now, the person in front of you is faced with the same problem that
you were trying to solve, with one less person in front of them than you. They decide
to take the same approach that you did by asking the person in front of them. This
continues until the very first person in line is asked. At this point, the person at the
front knows that there are 0 people in front of them, so they can tell the person behind
them that there are 0 people in front. Now, the second person can figure out that there
is 1 person in front of them, and can relay that back to the person behind them, and
so on, until the answer reaches you.

Looking at this example, we see that we have broken down the problem of ”how
many people are there in front of me?” to 1 + ”how many people are there in front of
the person in front of me”? This problem will terminate with the person at the front
of the line (with 0 people in front of them). Putting this into more formal terms, we
are breaking down the problem into a recurrence relationship, and the termination
case (when the question gets to the very first person in line) is called the base case.

5. What is wrong with the following function? How can we fix it?

def factorial(n):
return n * factorial(n)

There is no base case and the recursive call is made on the same n.

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

WEEK 4: HIGHER-ORDER ENVIRONMENTS, CURRYING, AND FUNCTION SCOPE 7



6. Complete the definition for all_true, which takes in a list lst and returns True
if there are no False-y values in the list and False otherwise. Make sure that your
implementation is recursive.

def all_true(lst):
"""
>>> all_true([True, 1, "True"])
True
>>> all_true([1, 0, 1])
False
>>> all_true([])
True
"""

if not lst:
return True

elif not lst[0]:
return False

else:
return all_true(lst[1:])

8 CSM 61A SPRING 2023


