
MUTABILITY, ITERATORS, AND GENERATORS Meta

COMPUTER SCIENCE MENTORS 61A

March 6–March 10, 2023

Recommended Timeline

• Mutability

– Mutability Mini Lecture: 6 minutes

– What Would Python Do: 5 minutes

– Nice Ice Cream: 7 minutes

– Accumulate: 8 minutes

– There are a lot of questions and topics, so pick and choose between these problems based on
your students comfortability.

• Iterators & Generators:

– Iterators & Generators Mini Lecture: 7 minutes

– Skip Machine: 10 minutes

– Foo: 4 minutes

– In Order: 10 minutes

– All Sums: 15 minutes

As a reminder, these times do not add up to 50 minutes because no one is expected to get through all
questions in a section. This is especially true this week, because this worksheet is rather long. You should
use the worksheet as a problem bank around which you can structure your section to best accommodate
the needs of your students. Both before and during section, consider which questions would be most
instructive and how you should budget your time. I also highly recommend directly asking your students
what they would like to focus on.

In general, though, I’d recommend planning at the start of section how long you’re going to spend on each
section (say, 25 minutes on mutability review and 25 minutes on iterators and generators) and then restrict
yourself to that time budget so that you can get good coverage of different topics.

1 Mutability

Let’s imagine it’s your first year at Cal, and you have signed up for your first classes!

Created by Alyssa Smith, Esther Shen, Maya Romero, Natalie Wei, Sandhya Ganesan, Kaelyn Huang, Cecilia Aiko,
Aurelia Wang
Provided by CSM 61A contributors under CC BY 4.0/3-clause BSD.

https://github.com/csmberkeley/csm-61a/blob/main/LICENSE

>>> classes = ["CS61A", "Math 53", "R1B", "Chem 1A"]
>>> classes_ptr = classes
>>> classes_copy = classes[:]

After a few weeks, you realize that you cannot keep up with the workload and you need to drop a class.
You’ve chosen to drop Chem 1A. Based on what we know so far, to change our classes list, we would have
to create a new list with all the same elements as the original list except for Chem 1A. But that is silly, since
all we really need to do is remove the Chem 1A element from our list.

We can fix this issue with list mutation. In Python, some objects, such as lists and dictionaries, are mutable,
meaning that their contents or state can be changed over the course of program execution. Other objects,
such as numeric types, tuples, and strings are immutable, meaning they cannot be changed once they are
created. Therefore, instead of creating a new list, we can just call classes.pop(), which removes the last
element from the list.

2 CSM 61A SPRING 2023

>>> classes.pop() # pop returns whatever item it removed
"Chem 1A"

Here are a few other list methods that mutate:

• append(el): Adds el to the end of the list

• extend(lst): Extends the list by concatenating lst onto the end

• insert(i, el): Inserts el at index i (does not replace element but adds a new one)

• remove(el): Removes the first occurrence of el in the list; errors if el is not in the list

• pop(i): Removes and returns the element at index i; if no index is provided, it removes and returns
the last element of the list

In addition to these methods, there are a few other built-in ways to mutate lists:

• lst += lst (This is distinct from lst = lst + lst)

• lst[i] = x

• lst[i:j] = lst

On the other hand, the following non-mutative (non-destructive) operations do not change the original list
but create a new list instead:

• lst + lst

• lst * n

• lst[i:j]

• list(lst)

Teaching Tips

• Common Misconceptions:

– Students may be confused about the return value of mutation functions

* Try contrasting pop with remove, showing them how only pop returns the element

* Tell them to reference the list mutability table

• The objectives for students are to:

– Distinguish between mutable and non-mutable objects

– The effects and return values of mutation functions

– Become comfortable with pointers and how to copy objects

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 3

1. What would Python display? If an error occurs, write ”Error”. If a function is displayed, write ”Func-
tion”. If nothing is returned, write ”Nothing”.

>>> a = [1, 2]
>>> a.append([3, 4])
>>> a

[1, 2, [3, 4]]

>>> b = list(a)
>>> a[0] = 5
>>> a[2][0] = 6
>>> b

[1, 2, [6, 4]]

>>> a.extend([7])
>>> a += [8]
>>> a += 9

TypeError: 'int' object is not iterable

>>> a

[5, 2, [6, 4], 7, 8]

Challenge:

>>> b[2][1] = a[2:]
>>> a[2][1][0][0]

6

4 CSM 61A SPRING 2023

(credits: Mihira Patel)

• Draw a box and pointer diagram

• Discuss shallow vs. deep copying.

– Shallow copying is when you copy each element as is; i.e. elements which were pointers to
a list still point to the same list in the copy.

– Deep copying is when you copy each element within each sublist; i.e. the new elements
which are pointers point to brand-new created lists.

– In general, most operators involving Python lists perform shallow copying: i.e. slicing,
list(...), etc.

• If you have enough time, it is helpful for students to make a chart which the different operators
and identify when to mutate or create a new list.

• Remind students of the difference between a += b and a = a+b. The former is essentially
a.extend(b), while the latter creates a new list consisting of all the elements of a and b com-
bined and binds it to a.

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 5

2. Produce the environment diagram and output that result from executing the code below.

def jerry(jerry):
def jerome(alex):

alex.append(jerry[1:])
return alex

return jerome

ben = ['nice', ['ice']]
jerome = jerry(ben)
alex = jerome(['cream'])
ben[1].append(alex)
ben[1][1][1] = ben
print(ben)

https://goo.gl/uhSClr

6 CSM 61A SPRING 2023

https://goo.gl/uhSClr

3. Given some list lst of numbers, mutate lst to have the accumulated sum of all elements so far in the
list. If lst is a deep list, mutate it to similarly reflect the accumulated sum of all elements so far in the
nested list.

Hint: The isinstance function returns True for isinstance(l, list) if l is a list and False oth-
erwise.

def accumulate(lst):
"""
>>> l = [1, 5, 13, 4]
>>> accumulate(l)
23
>>> l
[1, 6, 19, 23]
>>> deep_l = [3, 7, [2, 5, 6], 9]
>>> accumulate(deep_l)
32
>>> deep_l
[3, 10, [2, 7, 13], 32]
"""
sum_so_far = 0
for __:

__

if isinstance(___________________, list):

inside = ___________________________

else:

def accumulate(lst):
sum_so_far = 0
for i in range(len(lst)):

item = lst[i]
if isinstance(item, list):

inside = accumulate(item)
sum_so_far += inside

else:
sum_so_far += item
lst[i] = sum_so_far

return sum_so_far

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 7

Teaching Tips

• To keep track of the accumulated sum we need to create a variable that we update every time we
see a new element.

• Make sure to emphasize the distinction between for item in lst and for i in
range(len(lst)).

– We need i in order to mutate the list. Why does using for item in lst not work when
mutating? (Answer: because we’re using a copy of the element, not modifying the original
list).

– Perhaps allow your students to first make the mistake of using the former, so that they may
realize this difference on their own. Granted, if they aren’t able to catch this on their own, do
nudge them in the right direction.

• Why do we need a conditional in the for loop? What do we do when we have a nested list?

1. Integers: For integers we just add the value to the ongoing sum and then mutate the current
index of the list to be the cumulative sum

2. Lists: We need to break down the list and get the values, both so that we can update them
and so that we can add it into our sum. However, we don’t know how many levels of nesting
we have in our list

– We could have something like [1, [2, [3]]], so we need a function that will sum up
the values from a potentially nested list. Do we have a function that does this?

– Emphasize the recursive leap of faith when calling accumulate on the inner list

– Remind students that they can use isinstance to check if an element is a list.

• We return the accumulated sum of the list which includes all values, even the nested ones because
of the recursive call.

8 CSM 61A SPRING 2023

2 Iterators & Generators

On a conceptual level, iterables are simply objects whose elements can be iterated over. Think of an iterable
as anything you can use in a for loop, such as ranges, lists, strings, or dictionaries.

On a technical level, iterables are a bit more complicated. An iterator is an object on which you can (re-
peatedly) call next, which will return the next element of a sequence. For example, if it is an iterator
representing the sequence 1, 2, 3, then we could do the following:

>>> next(it)
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
StopIteration

StopIteration is an exception that is raised when an iterator has no more elements to produce; it’s
how we know we’ve reached the end of an iterator. Iterators that will never produce a StopIteration
exception are called infinite.

Under this regime, an iterable is formally defined as an object that can be turned into an iterator by passing
it into the iter function. When you iterate over an iterable, Python first uses iter to create an iterator
from the iterable and then iterates over the iterator. The simple for loop syntax abstracts away this fact. f
There are a few useful functions that act on iterables that are particularly useful:

• map(f, it): Returns an iterable that produces each element of it with the function f applied to it.

• filter(pred, it): Returns an iterable that includes only the elements of it where the predicate
function pred returns true.

• reduce(f, it, init): Reduces it to a single value by repeatedly calling the two-argument func-
tion f on the elements of it: reduce(add, [1, 2, 3]) → 6. Optionally, an initializer may be
provided: reduce(add, [1], 5)→ 6.

Technically, map and filter are not functions but classes, but that is not a distinction we need to make.

Generators, which are a specific type of iterator, are created using the traditional function definition syntax
in Python (def) with the body of the function containing one or more yield statements. When a generator
function (a function that has yield in the body) is called, it returns a generator object; the body of the
function is not executed. Only when we call next on the generator object is the body executed until we hit
a yield statement. The yield statement yields the value and pauses the function. yield from is another
way to yield values. When we yield from another iterable, it yields each element from that other iterable
one at a time.

The following generators all represent the sequence 1, 2, 3:

def a():
yield 1
yield 2
yield 3

def b():
for x in range(1, 4):

yield x

def c():
yield from b()

Something to really emphasize here is the difference between regular function execution and generator
function execution. When you call a generator function, you do not begin executing the function body! You

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 9

only begin executing the function body when next is called on the generator object. You then pause when
you hit a yield statement. I like to tell my students that this is an “abuse of notation”: they’re coopting
function syntax to do something completely different from what a function normally does.

Another thing I like to emphasize is that it is impossible to go “backward” with iterators and generators.
After all, we only have a next, not a prev!

You might find it advantageous to go over some of the examples more in depth.

You may or may not find it useful to present students with an example of how iteration works behind the
scene:

for x in "Hello":
print(x)

it = iter("Hello")
while True:

try:
x = next(it)
print(x)

except StopIteration:
pass

It’s possible this may confuse some students, so be cautious if you attempt to use this or a similar example.
In particular, students may be confused by the infinite looping and the try and except blocks. While error
handling isn’t something super important in CS 61A, they should be able to use it specifically for dealing
with iterators, so it might be a good idea to go over this a bit with your students.

1. What Would Python Display?

class SkipMachine:
skip = 1
def __init__(self, n=2):

self.skip = n + SkipMachine.skip

def generate(self):
current = SkipMachine.skip
while True:

yield current
current += self.skip
SkipMachine.skip += 1

p = SkipMachine()
twos = p.generate()
SkipMachine.skip += 1
twos2 = p.generate()
threes = SkipMachine(3).generate()

(a) next(twos)

2

(b) next(threes)

2

(c) next(twos)

10 CSM 61A SPRING 2023

5

(d) next(twos)

8

(e) next(threes)

7

(f) next(twos2)

5

2. Given the following code block, what is output by the lines that follow?

def foo():
a = 0
if a == 0:

print("Hello")
yield a
print("World")

>>> foo()

<generator object>

>>> foo_gen = foo()
>>> next(foo_gen)

Hello
0

>>> next(foo_gen)

World
StopIteration

>>> for i in foo():
... print(i)

Hello
0
World

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 11

>>> a = iter(filter(lambda x: x \% 2, map(lambda x: x - 1, range(10))))
>>> next(a)

-1

>>> reduce(lambda x, y: x + y, a)

16

Teaching Tips

• Emphasize heavily the fact that when generators are called, they return a generator object. They
do NOT start executing their function body until after next is called! (So what does that first line
return? A generator object!)

• Remind students that generator objects are independent from one another; if you create a new
one from calling the same function again, it starts from the beginning again. Each generator on
its own, however, remembers where it stopped after the previous next call, so that it can resume
the next time you call next.

• What happens when there are no more yield statements, like in the second call on foo gen?
The generator has reached the end of all possible values to iterate over, and so it returns a StopIt-
eration error.

• If you stick a generator object inside a for loop (or a list, for that matter), it will go all the way
through from start to finish, outputting each yield value after another.

– Careful, however: ‘start’ doesn’t necessarily mean the very first lines of the function or the
first yield call; if you feed in a generator on which you’ve already called next, its ”start” will
be where it last left off.

3. Define a generator function in_order, which takes in a tree t; assume that t and each of its subtrees
have either 0 or 2 branches only. Fill in in_order to yield the labels of t “in order”; that is, for each
node, the labels of the left branch should precede the parent label, which should precede the labels of
the right branch.

def in_order(t):
"""
>>> t = tree(0, [tree(1), tree(2, [tree(3), tree(4)])])
>>> list(in_order(t))
[1, 0, 3, 2, 4]
"""

def in_order(t):
if is_leaf(t):

yield label(t)
else:

yield from in_order(branches(t)[0])
yield label(t)
yield from in_order(branches(t)[1])

12 CSM 61A SPRING 2023

Teaching Tips

• Trees are meant to be implemented recursively, and this should be emphasized to students.

• What is the base case of the problem? With trees it is typically the leaf, and it works out in this
case, where there is only one item to yield.

• Draw out an example of a tree (maybe the doctest). What do we expect the recursive call on each
of the branches to return (note that trees either have 0 or 2 branches)?

• After seeing what the recursive calls do, figure out how you combine the label, the left tree recur-
sive call, and the right tree recursive call to get the desired result. Yielding the left recursive call’s
values, then the label, and then the right recursive call will give the in-order traversal.

4. Define all_sums, a generator that iterates through all the possible sums of elements from lst. (Repeat
sums are permitted.)

def all_sums(lst):
"""
>>> list(all_sums([]))
[0]
>>> list(all_sums([1, 2]))
[3, 2, 1, 0]
>>> list(all_sums([1, 2, 3]))
[6, 5, 4, 3, 3, 2, 1, 0]
>>> list(all_sums([1, 2, 7]))
[10, 9, 8, 7, 3, 2, 1, 0]
"""

if len(lst) == 0:
yield 0

else:
for sum_rest in all_sums(lst[1:]):

yield sum_rest + lst[0]
yield sum_rest

Teaching Tips

• This is a classic tree recursion problem but now in generator form!

• A tree diagram of how the list splits is a good visualization to draw

• Students may have trouble with this because the order in which they’re dealing with the recursive
case is a bit different than usual.

• If students are struggling to understand the problem, start from the base case of an empty list and
work your way up with the sums of a length-1 list, length-2, etc.

• As always, the recursive leap of faith is helpful in understanding what all_sums(lst[1:])
returns.

• Even though this is a generator problem, we iterate over the call in a for loop so we can treat the
function like it returns a list!

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 13

