
MUTABILITY, ITERATORS, AND GENERATORS Solutions

COMPUTER SCIENCE MENTORS 61A

March 6–March 10, 2023

1 Mutability

Let’s imagine it’s your first year at Cal, and you have signed up for your first classes!

>>> classes = ["CS61A", "Math 53", "R1B", "Chem 1A"]
>>> classes_ptr = classes
>>> classes_copy = classes[:]

After a few weeks, you realize that you cannot keep up with the workload and you need to drop a class.
You’ve chosen to drop Chem 1A. Based on what we know so far, to change our classes list, we would have
to create a new list with all the same elements as the original list except for Chem 1A. But that is silly, since
all we really need to do is remove the Chem 1A element from our list.

We can fix this issue with list mutation. In Python, some objects, such as lists and dictionaries, are mutable,
meaning that their contents or state can be changed over the course of program execution. Other objects,
such as numeric types, tuples, and strings are immutable, meaning they cannot be changed once they are
created. Therefore, instead of creating a new list, we can just call classes.pop(), which removes the last
element from the list.

Created by Alyssa Smith, Esther Shen, Maya Romero, Natalie Wei, Sandhya Ganesan, Kaelyn Huang, Cecilia Aiko,
Aurelia Wang
Provided by CSM 61A contributors under CC BY 4.0/3-clause BSD.

https://github.com/csmberkeley/csm-61a/blob/main/LICENSE

>>> classes.pop() # pop returns whatever item it removed
"Chem 1A"

Here are a few other list methods that mutate:

• append(el): Adds el to the end of the list

• extend(lst): Extends the list by concatenating lst onto the end

• insert(i, el): Inserts el at index i (does not replace element but adds a new one)

• remove(el): Removes the first occurrence of el in the list; errors if el is not in the list

• pop(i): Removes and returns the element at index i; if no index is provided, it removes and returns
the last element of the list

In addition to these methods, there are a few other built-in ways to mutate lists:

• lst += lst (This is distinct from lst = lst + lst)

• lst[i] = x

• lst[i:j] = lst

On the other hand, the following non-mutative (non-destructive) operations do not change the original list
but create a new list instead:

• lst + lst

• lst * n

• lst[i:j]

• list(lst)

1. What would Python display? If an error occurs, write ”Error”. If a function is displayed, write ”Func-
tion”. If nothing is returned, write ”Nothing”.

>>> a = [1, 2]
>>> a.append([3, 4])
>>> a

[1, 2, [3, 4]]

>>> b = list(a)
>>> a[0] = 5
>>> a[2][0] = 6
>>> b

2 CSM 61A SPRING 2023

[1, 2, [6, 4]]

>>> a.extend([7])
>>> a += [8]
>>> a += 9

TypeError: 'int' object is not iterable

>>> a

[5, 2, [6, 4], 7, 8]

Challenge:

>>> b[2][1] = a[2:]
>>> a[2][1][0][0]

6

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 3

(credits: Mihira Patel)

4 CSM 61A SPRING 2023

2. Produce the environment diagram and output that result from executing the code below.

def jerry(jerry):
def jerome(alex):

alex.append(jerry[1:])
return alex

return jerome

ben = ['nice', ['ice']]
jerome = jerry(ben)
alex = jerome(['cream'])
ben[1].append(alex)
ben[1][1][1] = ben
print(ben)

https://goo.gl/uhSClr

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 5

https://goo.gl/uhSClr

3. Given some list lst of numbers, mutate lst to have the accumulated sum of all elements so far in the
list. If lst is a deep list, mutate it to similarly reflect the accumulated sum of all elements so far in the
nested list.

Hint: The isinstance function returns True for isinstance(l, list) if l is a list and False oth-
erwise.

def accumulate(lst):
"""
>>> l = [1, 5, 13, 4]
>>> accumulate(l)
23
>>> l
[1, 6, 19, 23]
>>> deep_l = [3, 7, [2, 5, 6], 9]
>>> accumulate(deep_l)
32
>>> deep_l
[3, 10, [2, 7, 13], 32]
"""
sum_so_far = 0
for __:

__

if isinstance(___________________, list):

inside = ___________________________

else:

def accumulate(lst):
sum_so_far = 0
for i in range(len(lst)):

item = lst[i]
if isinstance(item, list):

inside = accumulate(item)
sum_so_far += inside

else:
sum_so_far += item
lst[i] = sum_so_far

return sum_so_far

6 CSM 61A SPRING 2023

2 Iterators & Generators

On a conceptual level, iterables are simply objects whose elements can be iterated over. Think of an iterable
as anything you can use in a for loop, such as ranges, lists, strings, or dictionaries.

On a technical level, iterables are a bit more complicated. An iterator is an object on which you can (re-
peatedly) call next, which will return the next element of a sequence. For example, if it is an iterator
representing the sequence 1, 2, 3, then we could do the following:

>>> next(it)
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
StopIteration

StopIteration is an exception that is raised when an iterator has no more elements to produce; it’s
how we know we’ve reached the end of an iterator. Iterators that will never produce a StopIteration
exception are called infinite.

Under this regime, an iterable is formally defined as an object that can be turned into an iterator by passing
it into the iter function. When you iterate over an iterable, Python first uses iter to create an iterator
from the iterable and then iterates over the iterator. The simple for loop syntax abstracts away this fact. f
There are a few useful functions that act on iterables that are particularly useful:

• map(f, it): Returns an iterable that produces each element of it with the function f applied to it.

• filter(pred, it): Returns an iterable that includes only the elements of it where the predicate
function pred returns true.

• reduce(f, it, init): Reduces it to a single value by repeatedly calling the two-argument func-
tion f on the elements of it: reduce(add, [1, 2, 3]) → 6. Optionally, an initializer may be
provided: reduce(add, [1], 5)→ 6.

Generators, which are a specific type of iterator, are created using the traditional function definition syntax
in Python (def) with the body of the function containing one or more yield statements. When a generator
function (a function that has yield in the body) is called, it returns a generator object; the body of the
function is not executed. Only when we call next on the generator object is the body executed until we hit
a yield statement. The yield statement yields the value and pauses the function. yield from is another
way to yield values. When we yield from another iterable, it yields each element from that other iterable
one at a time.

The following generators all represent the sequence 1, 2, 3:

def a():
yield 1
yield 2
yield 3

def b():
for x in range(1, 4):

yield x

def c():
yield from b()

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 7

1. What Would Python Display?

class SkipMachine:
skip = 1
def __init__(self, n=2):

self.skip = n + SkipMachine.skip

def generate(self):
current = SkipMachine.skip
while True:

yield current
current += self.skip
SkipMachine.skip += 1

p = SkipMachine()
twos = p.generate()
SkipMachine.skip += 1
twos2 = p.generate()
threes = SkipMachine(3).generate()

(a) next(twos)

2

(b) next(threes)

2

(c) next(twos)

5

(d) next(twos)

8

(e) next(threes)

7

(f) next(twos2)

5

2. Given the following code block, what is output by the lines that follow?

def foo():
a = 0
if a == 0:

print("Hello")
yield a
print("World")

>>> foo()

<generator object>

8 CSM 61A SPRING 2023

>>> foo_gen = foo()
>>> next(foo_gen)

Hello
0

>>> next(foo_gen)

World
StopIteration

>>> for i in foo():
... print(i)

Hello
0
World

>>> a = iter(filter(lambda x: x \% 2, map(lambda x: x - 1, range(10))))
>>> next(a)

-1

>>> reduce(lambda x, y: x + y, a)

16

WEEK 8: MUTABILITY, ITERATORS, AND GENERATORS 9

3. Define a generator function in_order, which takes in a tree t; assume that t and each of its subtrees
have either 0 or 2 branches only. Fill in in_order to yield the labels of t “in order”; that is, for each
node, the labels of the left branch should precede the parent label, which should precede the labels of
the right branch.

def in_order(t):
"""
>>> t = tree(0, [tree(1), tree(2, [tree(3), tree(4)])])
>>> list(in_order(t))
[1, 0, 3, 2, 4]
"""

def in_order(t):
if is_leaf(t):

yield label(t)
else:

yield from in_order(branches(t)[0])
yield label(t)
yield from in_order(branches(t)[1])

4. Define all_sums, a generator that iterates through all the possible sums of elements from lst. (Repeat
sums are permitted.)

def all_sums(lst):
"""
>>> list(all_sums([]))
[0]
>>> list(all_sums([1, 2]))
[3, 2, 1, 0]
>>> list(all_sums([1, 2, 3]))
[6, 5, 4, 3, 3, 2, 1, 0]
>>> list(all_sums([1, 2, 7]))
[10, 9, 8, 7, 3, 2, 1, 0]
"""

if len(lst) == 0:
yield 0

else:
for sum_rest in all_sums(lst[1:]):

yield sum_rest + lst[0]
yield sum_rest

10 CSM 61A SPRING 2023

