
SCHEME LISTS Solutions

COMPUTER SCIENCE MENTORS 61A

April 24–May 5, 2023

1 Scheme Review

1. Define sixty-ones. Return the number of times that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))
1
> (sixty-ones '(1 6 1 4 6 1 6 0 1))
2
> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))
3

(define (sixty-ones lst)
(cond ((or (null? lst) (null? (cdr lst))) 0)

((and (= 6 (car lst)) (= 1 (cadr lst))) (+ 1 (sixty-ones (cddr
lst))))

(else (sixty-ones (cdr lst)))))

Created by Alyssa Smith, Esther Shen, Maya Romero, Natalie Wei, Sandhya Ganesan, Kaelyn Huang, Cecilia Aiko,
Aurelia Wang
Provided by CSM 61A contributors under CC BY 4.0/3-clause BSD.

https://github.com/csmberkeley/csm-61a/blob/main/LICENSE


2. Define apply-multiple which takes in a single argument function f, a nonnegative integer n, and a
value x and returns the result of applying f to x a total of n times.

;doctests
scm> (apply-multiple (lambda (x) (* x x)) 3 2)
256
scm> (apply-multiple (lambda (x) (+ x 1)) 10 1)
11
scm> (apply-multiple (lambda (x) (* 1000 x)) 0 5)
5

(define (apply-multiple f n x)

)

(define (apply-multiple f n x)
(if (= n 0)

x
(f (apply-multiple f (- n 1) x))))

Alternate solution:

(define (apply-multiple f n x)
(if (= n 0)

x
(apply-multiple f (- n 1) (f x))))

2 Scheme Lists

Unlike Python, all Scheme lists are linked lists. Recall that, in Python, a linked list is made up of Links that
each have a first and a rest, where the rest is another Link. Similarly, each Scheme list is a “pair”

2 CSM 61A SPRING 2023



where the first element of the pair is the first element of the list, and the second element of the pair is the
rest of the list (also a pair).

We use the cons procedure to construct Scheme lists, and nil to represent empty lists. The sequence 1, 2, 3
may then be represented as follows:

scm> (cons 1 (cons 2 (cons 3 nil)))
(1 2 3)

The car and cdr procedures are used to access the elements of a Scheme list. car gets the first element of
a list, while cdr gets the rest of the list:

scm> (define lst (cons 1 (cons 2 (cons 3 nil))))
lst
scm> (car lst)
1
scm> (cdr lst)
(2 3)

You can make the following analogy between linked lists in Python and Scheme:

Link(1, Link.empty) (cons 1 nil)
a = Link(1, Link(2, Link.empty)) (define a (cons 1 (cons 2 nil)))
a.first (car a)
a.rest (cdr a)

The list procedure and quotation give us additional convenient ways to construct lists:

scm> (list 1 2 3)
(1 2 3)
scm> '(1 2 3)
(1 2 3)
scm> (list 1 (+ 1 1) 3)
(1 2 3)
scm> '(1 (+ 1 1) 3)
(1 (+ 1 1) 3)

Note that quotation will prevent any of the list items from being evaluated, which can occasionally be
inconvenient.

2.1 Useful procedures

In addition to the procedures mentioned above, the following procedures are often useful when dealing
with Scheme lists:

• (null? s): returns true if s is nil.

• (length s): returns the length of s.

• (append s1 ... sn): returns the result of concatenating lists s1, ..., sn.

• (map f s): returns the result of applying the procedure f to each element of s.

• (filter pred s): returns a list containing the elements of s for which the single-argument proce-
dure pred returns true.

• (reduce comb s): combines the elements of s into a single value using the two-argument proce-
dure comb.

WEEK 14: SCHEME LISTS 3



2.2 Equality testing

Equality testing in Scheme is a bit confusing as it is handled by three separate procedures:

• (= a b): returns true if a equals b. Both must be numbers.

• (eq? a b): returns true if a and b are equivalent primitive values. For two objects, eq? returns true
if both refer to the exactly same object in memory (like is in Python).

• (equal? a b): returns true if a and b are equivalent. Two lists are equivalent if their elements are
equivalent.

4 CSM 61A SPRING 2023



1. What will Scheme output? Draw box-and-pointer diagrams to help determine this. (Ask your mentor
if you’re unsure what’s going on. You aren’t expected to understand this completely on your own.)

scm> (cons 1 (cons 2 nil))

(1 2)

scm> (cons 1 '(2 3 4 5))

(1 2 3 4 5)

When we use the quote before the list, we are saying that we should put the literal list (2 3 4 5) in the
cdr of this list. So in this case we create a list where the first element (car) is 1, and the cdr is the list (2 3

4 5).

scm> (cons 1 '(2 (cons 3 nil)))

(1 2 (cons 3 ()))

Since we also used a quote here, we do not evaluate the (cons 3 nil). We keep everything inside
the quotes the same so the cdr of this list is the list (2 (cons 3 nil)). That means that we add the

element 2, and then the nested list (cons 3 nil).

scm> (cons 1 (2 (cons 3 nil)))

eval: bad function in : (2 (cons 3 nil))

While evaluating the operands, Scheme will try to evaluate the expression (2 (cons 3 nil)). Since
2 is not a valid operator, this expression Errors.

scm> (cons 3 (cons (cons 4 nil) nil))

(3 (4))

scm> (define a '(1 2 3))

WEEK 14: SCHEME LISTS 5



a

Defines a list of elements of (1 2 3) and binds the list to the variable a. Recall that define returns the
name of the symbol.

scm> a

(1 2 3)

scm> (car a)

1

scm> (cdr a)

(2 3)

scm> (car (cdr a))

2

From above, we know that (cdr a) is (2 3). From that, we can evaluate (car (cdr a)) to 2.

How can we get the 3 out of a?

(car (cdr (cdr a)))

To get to the pair that contains 3, we need to call (cdr (cdr a)). To get the element 3, we need the
car of (cdr (cdr a)).

6 CSM 61A SPRING 2023



2. You are creating a computer from scratch. In their rawest form, computers use 0s and 1s to compose
commands and data. Fill in a function that takes a list of boolean values representing an unsigned
binary number and returns its decimal representation. Each #t in the list represents a 1 and each #f
represents a 0, with the first element in the list being the rightmost (smallest) binary digit and the last
element being the leftmost (largest) binary digit.

;Doctests
scm> (binary (list #f #t)) ; 10
2
scm> (binary (list #t #f #t #t)) ; 1101
13
scm> (binary (list #t #t #f #f #t)) ; 10011
19
scm> (binary (list #f)) ; 0
0

(define (binary bin-list)
(cond
((null? ____________)

__________________
)
((__________________)

__________________________________
)
(else

__________________________________
)

)
)

(define (binary bin-list)
(cond
((null? bin-list)

0
)
((car bin-list)

(+ 1 (* 2 (binary (cdr bin-list))))
)
(else

(* 2 (binary (cdr bin-list)))
)

)
)

WEEK 14: SCHEME LISTS 7



3. Now, write the binary to decimal function, but in tail recursive form. Note that the expt function takes
in a base and an exponent. For example, (expt 2 3) raises 2 to the third power, returning 8.

;Doctests
scm> (binary-tail (list #f #t)) ; 10
2
scm> (binary-tail (list #t #f #t #t)) ; 1101
13
scm> (binary-tail (list #t #t #f #f #t)) ; 10011
19
scm> (binary-tail (list #f)) ; 0
0

(define (binary-tail bin-list)
(define (helper bin-list i sum)

(cond
((null? ____________)

__________________
)
((__________________)

______________________________________________
)
(else

______________________________________________
)

)
)
(helper ________________)

)

8 CSM 61A SPRING 2023



(define (binary-tail bin-list)
(define (helper bin-list i sum)

(cond
((null? bin-list)

sum
)
((car bin-list)

(helper
(cdr bin-list) (+ 1 i) (+ sum (expt 2 i))

)
)
(else

(helper
(cdr bin-list) (+ 1 i) sum

)
)

)
)
(helper bin-list 0 0)

)

WEEK 14: SCHEME LISTS 9



4. Define is-prefix, which takes in a list p and a list lst and determines if p is a prefix of lst. That is,
it determines if lst starts with all the elements in p.

; Doctests:
scm> (is-prefix '() '())
#t
scm> (is-prefix '() '(1 2))
#t
scm> (is-prefix '(1) '(1 2))
#t
scm> (is-prefix '(2) '(1 2))
#f
; Note here p is longer than lst
scm> (is-prefix '(1 2) '(1))
#f

(define (is-prefix p lst)

)

10 CSM 61A SPRING 2023



; is-prefix with nested if statements
(define (is-prefix p lst)

(if (null? p)
#t
(if (null? lst)

#f
(and

(= (car p) (car lst))
(is-prefix (cdr p) (cdr lst))))))

; is-prefix with a cond statement
(define (is-prefix p lst)

(cond
((null? p) #t)
((null? lst) #f)
(else (and (= (car p) (car lst))

(is-prefix (cdr p) (cdr lst))))))

5. Implement argmax, a function that takes in a list, lst, and returns the index of the largest element in
lst. If there are two or more elements that are the largest element, return the index of the one that
appears first in lst.

You can assume all elements of lst are non-negative integers, and lst has at least 1 element and no
nested lists.

(define (argmax lst)
(define (max-helper lst max-so-far max-index curr-index)

(cond

((__________________) _________________________)

((__________________) ________________________

________________________________)

(else _________________________________________)
)

)

(max-helper _______________________)
)

(define (argmax lst)
(define (max-helper lst max-so-far max-index curr-index)

(cond
((null? lst) max-index)
((> (car lst) max-so-far)

(max-helper (cdr lst) (car lst) curr-index (+ curr-index
1)))

WEEK 14: SCHEME LISTS 11



(else
(max-helper (cdr lst) max-so-far max-index (+ curr-index

1)))
)

)
(max-helper lst 0 0 0)

)

12 CSM 61A SPRING 2023


