Skip to content

cstrerath/recursive-set

Repository files navigation

RecursiveSet

High-performance, mutable set implementation for TypeScript – modeled after ZFC set theory.

Supports recursive nesting, strict structural equality, and includes all classic set operations (union, intersection, difference, powerset, cartesian product). Designed for Theoretical Computer Science, Graphs, and FSMs.

MIT License npm version


Features

  • Strict Value Equality: Mathematical sets behave mathematically. {a, b} is equal to {b, a}.
  • Tuples First: Includes a strongly typed Tuple class for ordered pairs (e.g., edges, transitions), solving JS Array reference pitfalls.
  • Homogeneous by Default: Generic typing (RecursiveSet<T>) enforces clean data structures.
  • Recursive: Sets can contain sets (of sets...). Ideal for Power Sets and Von Neumann Ordinals.
  • Copy-on-Write: O(1) cloning via structural sharing (powered by persistent Red-Black Trees).
  • Lean & Mean: No implicit overhead. Cycle checking is left to the user to allow maximum performance.

Implementation Details

This library enforces Strict ZFC Semantics, differing from native JavaScript Set:

  • Extensionality: Two sets are equal if they contain the same elements.
    • new RecursiveSet(new RecursiveSet(1)).equals(new RecursiveSet(new RecursiveSet(1))) is true.
  • No Hidden References: Plain JavaScript Arrays and Objects are rejected to prevent reference-equality confusion.
    • Use Tuple for ordered sequences.
    • Use RecursiveSet for collections.
  • Performance: Powered by Functional Red-Black Trees.
    • Insertion/Lookup: O(log n).
    • Cloning: O(1).

Installation

npm install recursive-set

Quickstart

import { RecursiveSet, Tuple } from "recursive-set";

// 1. Sets of primitives
const states = new RecursiveSet<string>();
states.add("q0").add("q1");

// 2. Sets of Sets (Partitioning)
const partition = new RecursiveSet<RecursiveSet<string>>();
partition.add(states); // {{q0, q1}}

// 3. Tuples (Ordered Pairs / Edges)
const edge = new Tuple("q0", "q1"); // (q0, q1)
const transitions = new RecursiveSet<Tuple<[string, string]>>();
transitions.add(edge);

console.log(partition.toString());    // {{q0, q1}}
console.log(transitions.toString());  // {(q0, q1)}

API Reference

Constructor

// T must be explicit or inferred. No default 'unknown'.
new RecursiveSet<T>(...elements: Array<T | RecursiveSet<T>>)

Methods

Mutation:

  • add(element: T | RecursiveSet<T>): this – Add element. Throws on NaN or plain Object/Array.
  • remove(element: T | RecursiveSet<T>): this – Remove element.
  • clear(): this – Remove all elements.

Snapshot:

  • clone(): RecursiveSet<T> – Creates a shallow copy in O(1) time (Copy-on-Write).

Set Operations:

  • union(other: RecursiveSet<T>): RecursiveSet<T> – A ∪ B
  • intersection(other: RecursiveSet<T>): RecursiveSet<T> – A ∩ B
  • difference(other: RecursiveSet<T>): RecursiveSet<T> – A \ B
  • symmetricDifference(other: RecursiveSet<T>): RecursiveSet<T> – A △ B

Advanced Operations:

  • powerset(): RecursiveSet<RecursiveSet<T>> – 𝒫(A)
  • cartesianProduct<U>(other: RecursiveSet<U>): RecursiveSet<Tuple<[T, U]>> – A × B (Returns Tuples!)

Predicates:

  • has(element: T | RecursiveSet<T>): boolean – Check membership
  • isSubset(other: RecursiveSet<T>): boolean – Check if ⊆
  • isSuperset(other: RecursiveSet<T>): boolean – Check if ⊇
  • equals(other: RecursiveSet<T>): boolean – Structural equality
  • isEmpty(): boolean – Check if set is empty

Properties:

  • size: number – Cardinality |A|
  • toString(): string – Pretty print with ∅ and {}

Tuple Class

Helper for structural value equality of sequences.

const t1 = new Tuple(1, 2);
const t2 = new Tuple(1, 2);
// In JS: [1,2] !== [1,2]
// In RecursiveSet: t1 equals t2 (Structural Equality)

Examples

Basic Usage

const s1 = new RecursiveSet(1, 2, 3);
const s2 = new RecursiveSet(2, 3, 4);

console.log(s1.union(s2));        // {1, 2, 3, 4}
console.log(s1.intersection(s2)); // {2, 3}
console.log(s1.difference(s2));   // {1}

Backtracking with O(1) Clone

const state = new RecursiveSet("init");
// ... perform some operations ...

// Create a checkpoint (O(1))
const checkpoint = state.clone();

state.add("newState");
// If this path fails, simply revert:
// state = checkpoint; (conceptually)

Power Set

const set = new RecursiveSet(1, 2);
const power = set.powerset();

console.log(power.toString()); // {∅, {1}, {2}, {1, 2}}

Cartesian Product & Tuples

const A = new RecursiveSet(1, 2);
const B = new RecursiveSet("x", "y");

// A × B = {(1, x), (1, y), (2, x), (2, y)}
const product = A.cartesianProduct(B);

// Result contains strongly typed Tuples
for (const tuple of product) {
    console.log(tuple.get(0), tuple.get(1)); // 1 "x"
}

Strictness (Breaking Changes in V3)

const s = new RecursiveSet<number>();

// ❌ Error: Plain Arrays not supported (Reference Ambiguity)
// s.add([1, 2]); 

// ✅ Correct: Use Tuple
s.add(new Tuple(1, 2));

// ❌ Error: NaN is not supported
// s.add(NaN);

Use Cases

  • Finite State Machine (FSM): States as Sets, Transitions as Tuples.
  • Graph Theory: Edges as Tuples (u, v), Nodes as Sets.
  • Formal Languages: Alphabets, Grammars, Power Sets.

Contributing

Contributions are welcome!

git clone https://github.com/cstrerath/recursive-set.git
npm install
npm run build
npx tsx test.ts

License

MIT License
© 2025 Christian Strerath

See LICENSE for details.


Acknowledgments

Inspired by:

About

RecursiveSet with ZFC axioms

Resources

License

Stars

Watchers

Forks

Packages

No packages published