High-performance, mutable set implementation for TypeScript – modeled after ZFC set theory.
Supports recursive nesting, strict structural equality, and includes all classic set operations (union, intersection, difference, powerset, cartesian product). Designed for Theoretical Computer Science, Graphs, and FSMs.
- Strict Value Equality: Mathematical sets behave mathematically.
{a, b}is equal to{b, a}. - Tuples First: Includes a strongly typed
Tupleclass for ordered pairs (e.g., edges, transitions), solving JS Array reference pitfalls. - Homogeneous by Default: Generic typing (
RecursiveSet<T>) enforces clean data structures. - Recursive: Sets can contain sets (of sets...). Ideal for Power Sets and Von Neumann Ordinals.
- Copy-on-Write: O(1) cloning via structural sharing (powered by persistent Red-Black Trees).
- Lean & Mean: No implicit overhead. Cycle checking is left to the user to allow maximum performance.
This library enforces Strict ZFC Semantics, differing from native JavaScript Set:
- Extensionality: Two sets are equal if they contain the same elements.
new RecursiveSet(new RecursiveSet(1)).equals(new RecursiveSet(new RecursiveSet(1)))istrue.
- No Hidden References: Plain JavaScript Arrays and Objects are rejected to prevent reference-equality confusion.
- Use
Tuplefor ordered sequences. - Use
RecursiveSetfor collections.
- Use
- Performance: Powered by Functional Red-Black Trees.
- Insertion/Lookup: O(log n).
- Cloning: O(1).
npm install recursive-setimport { RecursiveSet, Tuple } from "recursive-set";
// 1. Sets of primitives
const states = new RecursiveSet<string>();
states.add("q0").add("q1");
// 2. Sets of Sets (Partitioning)
const partition = new RecursiveSet<RecursiveSet<string>>();
partition.add(states); // {{q0, q1}}
// 3. Tuples (Ordered Pairs / Edges)
const edge = new Tuple("q0", "q1"); // (q0, q1)
const transitions = new RecursiveSet<Tuple<[string, string]>>();
transitions.add(edge);
console.log(partition.toString()); // {{q0, q1}}
console.log(transitions.toString()); // {(q0, q1)}// T must be explicit or inferred. No default 'unknown'.
new RecursiveSet<T>(...elements: Array<T | RecursiveSet<T>>)Mutation:
add(element: T | RecursiveSet<T>): this– Add element. Throws on NaN or plain Object/Array.remove(element: T | RecursiveSet<T>): this– Remove element.clear(): this– Remove all elements.
Snapshot:
clone(): RecursiveSet<T>– Creates a shallow copy in O(1) time (Copy-on-Write).
Set Operations:
union(other: RecursiveSet<T>): RecursiveSet<T>– A ∪ Bintersection(other: RecursiveSet<T>): RecursiveSet<T>– A ∩ Bdifference(other: RecursiveSet<T>): RecursiveSet<T>– A \ BsymmetricDifference(other: RecursiveSet<T>): RecursiveSet<T>– A △ B
Advanced Operations:
powerset(): RecursiveSet<RecursiveSet<T>>– 𝒫(A)cartesianProduct<U>(other: RecursiveSet<U>): RecursiveSet<Tuple<[T, U]>>– A × B (Returns Tuples!)
Predicates:
has(element: T | RecursiveSet<T>): boolean– Check membershipisSubset(other: RecursiveSet<T>): boolean– Check if ⊆isSuperset(other: RecursiveSet<T>): boolean– Check if ⊇equals(other: RecursiveSet<T>): boolean– Structural equalityisEmpty(): boolean– Check if set is empty
Properties:
size: number– Cardinality |A|toString(): string– Pretty print with ∅ and {}
Helper for structural value equality of sequences.
const t1 = new Tuple(1, 2);
const t2 = new Tuple(1, 2);
// In JS: [1,2] !== [1,2]
// In RecursiveSet: t1 equals t2 (Structural Equality)const s1 = new RecursiveSet(1, 2, 3);
const s2 = new RecursiveSet(2, 3, 4);
console.log(s1.union(s2)); // {1, 2, 3, 4}
console.log(s1.intersection(s2)); // {2, 3}
console.log(s1.difference(s2)); // {1}const state = new RecursiveSet("init");
// ... perform some operations ...
// Create a checkpoint (O(1))
const checkpoint = state.clone();
state.add("newState");
// If this path fails, simply revert:
// state = checkpoint; (conceptually)const set = new RecursiveSet(1, 2);
const power = set.powerset();
console.log(power.toString()); // {∅, {1}, {2}, {1, 2}}const A = new RecursiveSet(1, 2);
const B = new RecursiveSet("x", "y");
// A × B = {(1, x), (1, y), (2, x), (2, y)}
const product = A.cartesianProduct(B);
// Result contains strongly typed Tuples
for (const tuple of product) {
console.log(tuple.get(0), tuple.get(1)); // 1 "x"
}const s = new RecursiveSet<number>();
// ❌ Error: Plain Arrays not supported (Reference Ambiguity)
// s.add([1, 2]);
// ✅ Correct: Use Tuple
s.add(new Tuple(1, 2));
// ❌ Error: NaN is not supported
// s.add(NaN);- Finite State Machine (FSM): States as Sets, Transitions as Tuples.
- Graph Theory: Edges as Tuples
(u, v), Nodes as Sets. - Formal Languages: Alphabets, Grammars, Power Sets.
Contributions are welcome!
git clone https://github.com/cstrerath/recursive-set.git
npm install
npm run build
npx tsx test.tsMIT License
© 2025 Christian Strerath
See LICENSE for details.
Inspired by:
- Zermelo-Fraenkel set theory (ZFC)
- Formal Language Theory requirements
- Powered by functional-red-black-tree