No description, website, or topics provided.
Python
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
treasuryio
.gitignore
LICENCE
MANIFEST.in
README.rst
requirements.txt
setup.py

README.rst

pytreasuryio

Access .. _treasury.io: http://treasury.io from Python.

This is a package consisting of a single, simple function for submitting SQL queries to .. _treasury.io: http://treasury.io from python. While you could simply copy-and-paste the function from script-to-script, this makes it quicker and easier to get up and running!

It also has some helpers to make a Twitter bot from the treasury.io data.

Installation

Install with pip.:

pip install treasuryio

Example

Basic query

Send an SQL query and receive a pandas data frame.:

# Operating cash balances for May 22, 2013
import treasuryio
sql = 'SELECT * FROM "t1" WHERE "date" = \'2013-05-22\';'
treasuryio.query(sql)

Twitter bot

Write a ~/.twitter.yml file.:

consumer_key: oeshaoduhsaousaoeuhts
consumer_secret: b233tsao-enuhsaoehsunoesudtuhoelaouhs2uo
access_token: 2349081293-astoehusatoehusaoeustahoeuhh2AOEUTAouhc
access_token_secret: 9023uonshesuaHONETuoeuoeouo0eOHNEuhOuoeu

Define a function that produces the text of the tweet, and decorate it with the @treasurio.tweet decorator.:

import treasuryio
import humanize
import math

MIL = 1e6

# Helpers to humanize numbers / dates
def human_number(num):
    return humanize.intword(int(math.ceil(num))).lower()

def human_date(date):
    return humanize.naturalday(date).title()

@treasuryio.tweet
def total_debt_tweet():
    df = treasuryio.query('SELECT date, close_today FROM t3c WHERE (item LIKE \'%subject to limit%\' AND year = 2013 AND month >=1) ORDER BY date DESC')

    # determine length of DataFrame
    end = len(df)-1

    # extract current amount and amount at the beginning of the year
    current_amt = df['close_today'][0]*MIL
    previous_amt = df['close_today'][end]*MIL

    # calculate change
    delta = abs(current_amt - previous_amt)

    # generate word to represnet the direction of change
    if current_amt > previous_amt:
        change = "increased"
    elif current_amt < previous_amt:
        change = "decreased"

    # humanize values
    # Notice the included ``human_date`` and ``human_number`` functions which simplify these values for you
    current_date = human_date(df['date'][0])
    amt = human_number(current_amt)
    delta = human_number(delta)
    previous_date = human_date(df['date'][end])

    # generate tweet
    vals = (current_date, amt, change, previous_date, 'http://treasury.io')
    return "As of %s, the US Gov is $%s in debt. This amount has %s since %s - %s" % vals

Then just run it.:

total_debt_tweet()

You can get fancy by switching the functions that you use.:

import treasuryio
import random

@treasurio.tweet
def tweet_a():
    # ...

@treasurio.tweet
def tweet_b():
    # ...

@treasurio.tweet
def tweet_c():
    # ...

random.choice([tweet_a, tweet_b, tweet_c])()