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Abstract
Humanaction recognitionbasedon still images is oneof themost challenging computer vision
tasks. In the past decade, convolutional neural networks (CNNs) have developed rapidly and
achieved good performance in human action recognition tasks based on still images. Due
to the absence of the remote perception ability of CNNs, it is challenging to have a global
structural understanding of human behavior and the overall relationship between the behavior
and the environment. Recently, transformer-based models have been making a splash in
computer vision, even reaching SOTA in several vision tasks. We explore the transformer’s
capability in human action recognition based on still images and add a simple but effective
feature fusion module based on the Swin-Transformer model. More specifically, we propose
a new transformer-basedmodel for behavioral feature extraction that uses a pre-trained Swin-
Transformer as the backbone network. Swin-Transformer’s distinctive hierarchical structure,
combined with the feature fusion module, is used to extract and fuse multi-scale behavioral
information. Extensive experiments were conducted on five still image-based human action
recognition datasets, including the Li’s action dataset, the Stanford-40 dataset, the PPMI-24
dataset, the AUC-V1 dataset, and the AUC-V2 dataset. Results indicate that our proposed
Swin-Fusion model achieves better behavior recognition than previously improved CNN-
based models by sharing and reusing feature maps of different scales at multiple stages,
without modifying the original backbone training method and with only increasing training
resources by 1.6%. The code and models will be available at https://github.com/cts4444/
Swin-Fusion.
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1 Introduction

The automatic recognition of various human activities in varied situations is known as human
action recognition (HAR). The HAR model infers human actions such as drinking, jogging,
and riding from information in the image or video, such as objects, backdrop, and human
posture. HAR has been one of computer vision’s most critical study issues in recent years.
Understanding human actions in computer vision has been the subject ofmuch research.HAR
has tremendous application values in Human-Computer Interaction (HCI), image annotation,
recognition of specific behaviors, video retrieval, and video surveillance.

Sensor-based HAR and vision-based HAR are two HAR approaches that utilize distinct
data types. Meanwhile, sensor-based HAR can be categorized as external sensor-based HAR
and wearable sensor-based HAR. The devices are fixed in the preset points of interest in the
former. The discrimination of the action depends entirely on the range of the user-sensor
interaction, but this exposes the target individual to a high number of monitors to precisely
recognize the human action. These restrictions do not apply to the latter wearable sensors,
which can track a variety of data about the target person, including motion data (acceleration,
position), environmental data (temperature, humidity), and physiological data (heart rate,
blood pressure). Since sensor-based HAR requires the purchase of additional sensor devices
and has to consider issues such as wearing comfort and different application scenarios, a large
amount of HAR research in recent years has focused on more convenient vision-based HAR.
Vision-based HAR can be further subdivided into video-based HAR and still image-based
HAR.Notably, the video-basedHARhas been extensively investigated in recent years and has
yieldedmany excellent outcomes, including TSM [1], UniFormer [2], and Omnivore [3]. The
video consists of many frames, each of which is a still image. The frames contain information
about the object’s motion, allowing the full use of both temporal and spatial dimensions
for more effective behavior recognition than still image-based approaches. The still image-
based HAR is challenging to recognize motion trajectories and lacks temporal cues. It cannot
use Spatio-temporal features to characterize actions. In addition, unfavorable factors such
as cluttered backgrounds and postural occlusion in images make action recognition more
challenging. However, the action recognition model must fit the data well and have good
generalization ability. At the same time, a limited number of datasets are currently available
for action recognition from still images. Hence, action recognition based on still images is
more complex and challenging. However, it is possible to achieve this, as people can often
recognize the type of human action from a still image. Video is not essential. With the rapid
growth of the Internet, it is now commonplace for people to take photos on their cell phones
and upload them to the web[4]. With an increasing number of photos of human actions being
uploaded to the web and preserved in enormous image databases, behavior identification
based on still images has received much interest in recent years. Developing an efficient
behavior recognition model is crucial to comprehend still images.

Although there have been many practical advancements in still image-based action iden-
tification over the past decade, the majority of the approaches [5–8] are based on improved
CNNs. Researchers have advanced the action recognition field by continuously improving
classical CNNmodels such as ResNet and Inception. However, it is difficult to have a holistic
understanding of human behavior in a global structure with limited information from a still
image due to the fixed receiver field of CNNs’ lack of long-range perception capability [9].
During deep CNNs training, the overfitting issue typically arises because of the need for
a substantial amount of labeled still image data. In contrast, the transformer can calculate
the similarity and relationship between various pixels using the attention mechanism, giving
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more weight to regions it wishes to focus on and less to irrelevant parts. It is also capa-
ble of determining the relationship between distant pixels, which is essential for behavior
identification tasks and can aid in locating the location between significant behavior points.
Therefore, transformer structures are better appropriate for behavior recognition tasks than
CNNs. Similarly, we discovered that still image-based HAR using transformer-based models
such as VIT and Swin-Transformer had received less attention. To advance the development
of pure transformer-based models in this field, we use the Swin-Transformer, which includes
the long-range feature, to study HAR based on still images, which can effectively mitigate
the issues caused by the above CNN.

In this study, we develop the Swin-Fusion, a new still image-based HAR model based
on the Swin-Transformer. Due to the self-attentive mechanism of the Swin-Transformer,
the model has a global receptive field, and the multi-head attention mechanism guarantees
that the network can focus on multiple discriminative features[10, 11]. The shifted window-
based self-attention of the Swin-Transformer enables the self-attention computation to be
limited to a non-overlapping, fixed-size zone and also permits cross-window connections,
which enhances performance with a far lower computational cost than VIT. In the case of
giving full play to the advantages of the original model, based on Swin-Transformer, we
use the unique hierarchical structure of the model itself, skillfully combine Feature Pyramid
Networks (FPN), which is widely used in target detection and segmentation, and perform
Modified tomake it general for static image basedHAR tasks. The new feature fusionmodule
does not change the training method of the original backbone. It only adds a small number
of training resources to share and reuse the features of each stage, effectively improving the
behavior recognition effect.

To demonstrate the superiority of our model, we ran exhaustive tests on five HAR datasets
based on still images. The final experimental results demonstrate that our model outperforms
advanced still image-based HAR techniques. Our primary contributions are summarized
here:

• Swin-Fusion is a novel vision-based HAR classification model that can considerably
improve the accuracy of still image-based HAR datasets. According to our survey results,
Swin-Fusion is the first still image-based HAR technique that uses Swin-Transformer as
its backbone network and simultaneously fuses multi-scale behavioral features.

• Wevalidate the effectiveness of Swin-Fusion in still image-basedHAR tasks, overcoming
the lack of global receptive field associated with CNNs.In particular, it has reduced
computing costs and pays more attention to local attention than the conventional VIT,
and the new feature fusion module delivers better behavior recognition outcomes. It is
worth noting that FPN, widely used in target detection and segmentation, can be applied
to still image-based HAR classification tasks with modifications after being modified to
improve the final results.

• We used transfer learning and fine-tuned the ImageNet-22k pre-trained network weights
to conduct extensive experiments on the Li’s action dataset, the PPMI-24 dataset, the
Stanford-40 dataset, the AUC-V1 dataset, and the AUC-V2 dataset. Swin-Fusion can
increase the accuracy of both coarse-grained and fine-grained datasets for behavior recog-
nition by conducting a simple but effective feature fusion on the output of the final three
stages in the model.
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2 RelatedWork

2.1 Action Recognition in Still Images

Early on, HAR extensively used conventional machine learning techniques, including
Bayesian networks, support vector machines, and random forests. In order to provide gen-
eralized target categorization of images, Csurka et al. [12] extracted bags of keypoints as
feature vectors and compared the outcomes on two classifiers separately. They discovered
that the action recognition outcomes on support vector machines were superior to those on
naive Bayes. Afterward, [13] used Linear Discriminant Analysis (LDA) to distinguish better
feature vectors, combined with a rectangle histogram approach to differentiate actions, and
finally, binary SVM for classification. However, the model could not work well in the case of
complex backgrounds. Yao et al. [14] used a random forest with discriminative decision trees
for action recognition. They performed classification at each tree node, searched for valuable
and differentiated image regions by training the node and its upstream nodes, concatenated
the obtained histograms, and took the intersection to form a feature representation.

Traditional machine learning algorithms performwell with small training sample sizes but
require extensive pre-processing and hand-engineering to extract useful features and cannot
handle the task of tens of thousands or millions of picture datasets in the present day. Then in
2012, AlexNet [15] emerged, which used convolutional neural networks (CNNs) to catego-
rize pictures and won first place in the ILSVRC-2012 competition by a large margin, igniting
a boom in the application of neural networks. Since then, numerous classical CNNs, such
as VGGNet [6], ResNet [16], and GoogLeNet [17], have been proposed. Researchers have
merged standard machine learning methods with CNNs for HAR to enhance the accuracy
of action recognition datasets significantly. Lavinia [6] et al. combined three CNN models,
supplied the concatenated data to random forests and support vector machines for classifi-
cation, and fine-tuned action identification better than other advanced methods. Sreela et al.
[18]employed a pre-trained residual neural network (ResNet) to extract features from still
images, then used SVM to categorize the collected features, and assessed the findings on the
PASCAL VOC2012 Action Dataset and the Stanford-40 Dataset with good results. Qi et al.
[5] used a joint learning approach to integrate encoded pose cues into CNNs. In addition,
several works [19, 20] employ selected search boxes to generate object proposals for action
recognition.

In recent years, the Transformer model in NLP has been used to image classification tasks
and achieved better results than CNNs. Consequently, many CNNs are being integrated with
the Transformer model’s attention mechanism and applied to still image-based HAR tasks.
By computing similarity and weights, the attention mechanisms enable the model to focus
more on the higher-weight context. Mohammadi et al. [8] used transfer learning and added
the attention mechanisms to CNN to extract useful features to improve the model’s action
classification ability. et al. Hirooka et al. [7] also utilized the transfer learning approach,
connecting features generated by four CNN branches, in conjunction with multichannel
attention, to extract more useful contextual information in the feature map, achieving better
results than [8], with an accuracy of 93.76%on the Stanford-40 dataset. Due to the complexity
of still image-based HAR tasks, there currently needs to be more research work compared
to video-based HAR. Although the CNN mentioned above approaches or CNN methods
paired with attention mechanisms have achieved better results and increased the accuracy of
HAR datasets based on still images, they limit the capacity of models to capture and utilize
long-term pixel dependencies.
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The long-range feature of our Swin-Fusion model can effectively solve the issues above,
whether in the shallow or deep feature map, by utilizing adequate global information to
extract behavioral features and having an overall understanding of the various behavioral
details of the human body.

2.2 Swin-Transformer

Vision Transformer (VIT) [21] combines Computer Vision (CV) and Natural Language
Processing (NLP) domain expertise, allowing researchers to achieve or surpass SOTA per-
formance on a variety of tasks without using CNN structures. Unlike previous convolutional
methods, VIT is a pure transformer model, which flattens the split image into a sequence and
feeds it to the encoder part of the transformer. VIT will finally classify the images through
fully connected layers. VIT can achieve superior results with fewer training resources than
SOTA’s CNN. However, the computational overhead of VIT is still high. VIT requires pre-
training on a sufficiently large dataset (ImageNet-21k or JFT-300M) and migration to a
task with fewer data to achieve excellent results. Numerous subsequent works [22–24] have
enhanced VIT and produced SOTA results in various vision tasks.

Swin-Transformer, a recently developed transformer byLiu et al. [25] for vision tasks,won
the best paper award at ICCV2021 and demonstrated superior performance to traditional VIT
in image classification, target detection, and segmentation. Swin-Transformer, unlike VIT,
is a hierarchical structure similar to CNN in which the number of patches decreases rather
than remains constant as the network depth increases. Furthermore, Swin-Transformer’s
shifted window-based self-attention restricts the attention computation to the window while
maintaining the connection between windows, thereby reducing the computation overhead
compared to VIT. Our model uses Swin-Transformer as the network backbone to extract
behavioral characteristics.

2.3 Multi-stage Feature Extraction and Fusion

The original image pyramids were derived from traditional Gaussian pyramid structures such
as Scale Invariant Feature Transform (SIFT) [26] and later Histogram of Oriented Gradient
(HOG) [27]. Gaussian pyramids can get richer feature information than a single scale by
mimicking the property that when a person looks at something, the scale size of the object
viewed will vary according to the viewing distance. The feature information obtained will
also vary. However, if this Gaussian pyramid is directly applied to CNN, it demands signifi-
cant computation and memory. As a result, much research has been devoted to extracting and
fusing features using different CNN layers. Long et al. [28] created a more accurate segmen-
tation result by combining deep semantic information with shallow appearance information.
Hariharan et al.[29] flattened and concatenated the different levels of feature maps generated
by pyramid pooling and fed them into a fully connected layer for classification. Ghiasi et al.
[30] used the multi-level laplacian pyramid reconstruction structure to efficiently integrate
the underlying location information with the higher-level semantic information. Later, Lin et
al. [31] proposed a newFeature PyramidNetwork (FPN) that utilizes featuremaps at different
scales in CNNs as different levels in the feature pyramid, fusing multiple layers of feature
information. FPN can effectively handle the problem of multi-scale variation during object
detection and obtain more robust semantic information, striking a good balance between
precision and speed. They added FPN to the fundamental Faster R-CNN algorithm and used
the COCO dataset, outperforming all single-model detection methods at the time.
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Fig. 1 The architecture of Swin-Fusion

According to previous studies, it is possible to extract and fuse the features of each layer
in a hierarchical structure like CNNs. After that, we attempted to add the above conventional
FPN structure to the hierarchical Swin-Transformer, but the result could have been better.
Later, following our enhancement, the enhanced FPN is introduced to the Swin-Transformer
feature fusion module. Through extensive experiments and continual modifications, the fea-
ture fusion module was made generalizable to different still image-based HAR datasets,
further demonstrating the effectiveness of our feature fusion module in classification tasks.

3 Method

We propose a Swin-Fusion model that integrates the Swin-Transformer and Feature Pyramid
architectures. Figure1 depicts the model architecture, and we use Swin-Large (Swin-L) as
the backbone network. The Swin-Transformer module can extract crucial information from
images and remote dependencies betweenhumankeypoints.During the training, theH×W×3
RGB images inputted into the model are partitioned into patches and undergo four stages.
Throughout this process, each stage generates feature maps at different scales. We employ a
feature fusion module to extract and merge multi-scale behavioral features, taking the output
of each Patch Merging in the final three stages and the output of Stage 4 as inputs for the
feature fusionmodule. The feature fusionmodule enhances the ultimate recognition accuracy
by employing simple yet effective upsampling, downsampling, and concatenation methods
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Fig. 2 Two successive Swin-transformer blocks

on the four inputs from the Swin-TransformerModule. Finally, the output is obtained through
a Layer Norm layer, global pooling layer, and fully connected layer to produce the ultimate
output.

3.1 Swin-Transformer Module

The Swin-Transformer module in the upper half of Fig. 1 shows the structure of the Swin-
Large. First, the RGB image of H×W×3 is input into the Patch Partition module and divided
into non-overlapping patch sets, one patch for every 4×4 adjacent pixels, and then flattened
in the direction of the channel. Since each patch has 4×4 = 16 pixels and each pixel has three
values for R, G, and B, after flattening, each patch’s feature dimension is 48. The image’s
shape changes from [H, W, 3] to [H/4, W/4, 48] following Patch Partition. Then, the Linear
Embedding layer in stage 1 linearly transforms the channel data of each pixel, and the number
of channels is changed from 48 to C. The image’s shape is changed from [H/4, W/4, 48] to
[H/4, W/4, C]. After that, Patch Merging in stage 2 can combine each 2×2 patches, then the
shape of the image in stage 2 becomes [H/8, W/8, 2C]. Patch Merging in stages 3–4 also
accomplishes the same. Each Patch Merging operation will divide the H andW of the output
feature map in the last stage by two and multiply C by 2. A detailed description of the Patch
Merging process is presented in Sect. 3.4.

Except for Stage 1, which passes through a Linear Embedding layer, the following
three stages pass through a Patch Merging layer and then repeatedly stack several Swin-
Transformer blocks. Depending on the version of the Swin-Transformer model, the number
of blocks varies. We employ Swin-L, and the number of blocks in stages 1–4 is [2,2,18,2].
As illustrated in Fig. 2, there are two successive blocks here. Because these two blocks are
utilized in pairs, a W-MSA block is used first, followed by an SW-MSA block.

The number of blocks stacked here is even. Each MSA, SW-MSA, and MLP is preceded
by a LayerNorm (LN) layer, and each module is connected through a residual connection.
The following are the equations for each portion of the figure:

x̂l = W−MSA(LN (xl−1)) + xl−1 (1)

xl = MLP(LN (x̂l)) + x̂l (2)

x̂l+1 = SW−MSA(LN (xl)) + xl (3)

xl+1 = MLP(LN (x̂l+1
)) + x̂l+1 (4)

x̂l denotes the output features of theW-MSAmodule, and x̂l+1 denotes the output features of
the SW-MSAmodule. xl and xl+1 denote the output features of theMLPmodule. Section3.3
presents a comprehensive introduction to the W-MSA and SW-MSA.

The Swin-Transformer module generates feature maps of varying sizes through four
Stages, creating a pyramid-shaped feature set. Finally, the outputs of Patch Merging in the
last three stages and the final output of stage 4 are inputs to the feature fusion module.
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1×1 Conv

2× UpSampling

Bottom-up pathway

Top-down pathway
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Predict

Fig. 3 The overall process of feature fusion module

3.2 Feature FusionModule

The feature fusion module presented in this research is founded on simplicity and efficacy,
allowing it to achieve maximum improvement in numerous still image-based action detec-
tion datasets with only a modest increase in training resources. We have built six distinct
feature fusion modules for this purpose, and Experiment 4.4.1 compares their structure and
performance. The module with the most significant enhancement effect was chosen as the
feature fusion module for Swin-Fusion. To prevent Swin-Fusion from overfitting to a specific
scale and decreasing the model’s capacity to generalize, we utilize a lateral connection and
top-down strategy to combine feature maps of multiple resolutions and channel counts. As
shown in Fig. 3, the bottom-up pathway on the far left of the figure represents the forward
propagation portion of Swin-Fusion. Each stage, beginning with the bottom input image, can
generate feature maps of varying scales for four feature maps. In the lower stages, high image
resolution and few feature channels enable learning fine-grained behavioral information. Low
spatial resolution and many feature channels are more useful for modeling coarse-grained
behavioral information in the higher stages.

The features generated by the three preceding stages are connected laterally to the Feature
Fusion module. It should be noticed that, among the four lateral connections, the top con-
nection is the stage 4 feature map after the transformer block. However, the remaining three
connections are the stage 2-4 feature maps after Patch Merging but not after Transformer
Blocks. In the top-down pathway on the right side of the figure, two feature maps of the
same size are concatenated at a time. Contrary to the black down arrow, the red down arrow
indicates that the number of channels in the previous layer’s feature map will be changed
by 1×1 convolution. In order to concatenate the feature map horizontally from the left, it is
necessary to apply bilinear upsampling twice while maintaining the number of channels. As
a result, a top-down feature pyramid structure is built. Then, the feature map obtained via
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the top-down pathway is merged, the feature maps of the bottom two layers are upsampled
to the size of the top feature map, and the three feature maps of equal size are concatenated.

The aforementioned process can be mathematically represented as follows. For concise-
ness, the feature pyramids constructed starting from stage 2 are sequentially referred to as
ffm0, ffm1, and ffm2 (ffm1 and ffm2 have the same size). In the feature pyramid of the Swin-
Transformer module, the multi-scale features are denoted as P1, P2, P3, and P4, arranged in
descending order of resolution (with downsampling multiple of 23, 24, 25, and 25 relative
to the input image, respectively). Within the feature fusion module, the multi-scale features,
namely K1, K2, and K3, are organized in descending order of resolution. In ffm0, the low-
level features (high resolution) are located in the shallow layers of the backbone network,
possessing smaller receptive fields and less semantic information. In contrast, the high-level
features (low resolution) are found in the deep layers of the backbone network, exhibiting
larger receptive fields and richer semantic information. However, while high-level features
capture global context and semantic information, they need more detailed local information.
To address this, the FFM network utilizes the high-level features from ffm0 for upsampling
to supplement semantic information. In contrast, the low-level features are provided through
lateral connections to preserve local details. The network structure can be mathematically
expressed as follows:

Kl
i = f (Kl+1

i+1 , P
l
i ) (5)

Here, i (1,2,3)represents the level of the feature. l (0,1,2) represents the level of the feature
pyramid. f denotes the method for fusing multi-scale features. After scaling them to the
same size, the FFM network adopts the concatenation of features. The mathematical descrip-
tion above outlines the fusion approach, while the fusion method represented by f includes
upsampling, downsampling, and concatenation, as explained in Sect. 4.4.1. The above is the
whole process of the feature fusion module.

Through the lateral connection and top-down strategy described above, the model can
share and reuse different-size feature maps of different stages and combine the features of
each layer to accomplish more sophisticated behavior recognition. It maximizes the accuracy
of behavior identification without changing the original backbone training method and with
only a little increase in training resources.

3.3 W-MSA and SW-MSA

In VIT, the model directly performs Multi-head Self-Attention (MSA) on the global feature
map. However, Swin-Transformer divides the original feature map into multiple disjoint
regions. Multi-head Self-Attention is performed only within their respective windows by
proposing the concept of Windows Multi-head Self-Attention (W-MSA). W-MSA can save
much computation compared to VIT’s MSA, especially when the shallow feature map is
large. In most vision tasks, distinct parts of the same object or different objects with similar
semantics are adjacent in the image. Self-attention in a limited window after segmentation is
logical and global computation in VIT would be computationally wasteful.

The left side of Fig. 4 is the MSA module in VIT. Each patch in the feature map needs
to do the self-attention calculation with all the patches. The W-MSA module on the right
side of the figure first divides the feature map into four small windows according to the size
of M×M (M=2 in this case) and then performs self-attention on the inside of each small
window individually. The formulas for computing MSA and W-MSA are provided below:

�(MSA) = 4hwC2 + 2(hw)2C
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Multi-Head Self-Attention Windows Multi-head Self-Attention

Fig. 4 MSA and W-MSA

�(W−MSA) = (h/M)(w/M)(4M2C2 + 2M4C) (6)

= 4hwC2 + 2hwM2C (7)

Where h is the height of the feature map, w is the width, C is the depth of the feature
map, and M is the size of each window. After obtaining (h/M)×(w/M) windows for W-
MSA, the MSA module will be utilized in each window. The number of the window patches
is substantially lower than the number of image patches, and the image size has a linear
relationship with the computation complexity of W-MSA. In comparison, VIT’s MSA does
a self-attention calculation on the entire map, and the computation is significantly greater
than Swin-Transformer. Assuming the h and w of the feature map are 112, M = 7, and C =
128, the W-MSA module saves 40,124,743,680 FLOPs compared to the MSA module.

However, the W-MSA mentioned above has the disadvantage of isolating information
transfer across separate windows. Hence, Liu et al. introduced Shifted Windows Multi-Head
Self-Attention (SW-MSA), which facilitates information transfer between nearby windows
via shifted windows. As shown in Fig. 5, the left side employs W-MSA (assumed to be
layer L) by relocating the W-MSA windows to the right and below by a distance of �M/2�
patches, as indicated in b. The 2×4 window at position two on the L+1st floor in c permits
the exchange of information between windows 1 and 2 on the Lth floor. The 4×4 window
located at position five on the L+1st level permits the transmission of information with four
windows 1 through 4 on the Lth floor. SW-MSA solves the problem that information cannot
be transmitted between various windows.

When SW-MSA is adjusted from four to nine windows, the model introduces an efficient
batch computation for shifting configuration to solve the increment in computation caused by
the increasing number of windows. By rearranging the windows in Fig. 6, number 5 becomes
a separate window, 6 and 4 become a single window, 8 and 2 become a single window.9, 7,
3, and 1 become a single window. Currently, there are four 4×4 windows, and the amount
of calculation is the same as it was previously.

3.4 Patch Merging

APatchMerging layer first downsamples the remaining three stages, except for stage 1. Patch
Merging operates similarly to pooling, but instead of taking the maximum or average values
within small windows, Patch Merging extracts the values at the same positions within each
small window, concatenates them to form new patches, and then concatenates all the patches
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Fig. 5 The process from W-MSA to SW-MSA
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Concat

LayerNorm

Linear

Fig. 7 The detailed process of patch merging

together. As a result, Patch Merging is more complex than pooling operations. Furthermore,
pooling can result in information loss, whereas Patch Merging does not. The purpose of this
module is downsampling, reducing resolution, adjusting channel numbers, and forming a
hierarchical design.

Furthermore, in the Swin Transformer, self-attention is performed within small windows.
These windows, composed of patches, differ from those used in Vision Transformers (ViT)
and are relatively independent. For example, in a 4x downsampling scenario, the feature map
is divided into multiple disjointed window regions, and Multi-Head Self-Attention is only
applied within each window patch. Since the windows are disjointed, there arises the chal-
lenge of how to transmit information and learn multi-scale information, which necessitates
the use of patch merging. In simple terms, patch merging combines small window patches
into larger ones to increase receptive field size, as illustrated in Fig. 7.

Assuming that the input Patch Merging is a single channel feature map of 4×4 size, Patch
Merging will divide each 2×2 nearby pixel into a patch and then combine the same position
(same color) pixels in each patch to produce four feature maps of half the length and width.
The four feature maps are then concatenated along the depth dimension and normalized using
a LayerNorm layer. Lastly, the number of channels in the feature map is halved by making
a linear change in the depth direction of the feature map via a fully connected layer. After
each Patch Merging process, the feature map’s height and breadth will be halved, while the
number of channels will be doubled.

4 Experiments

4.1 Datasets

We test the effectiveness of Swin-Fusion using five distinct datasets containing diverse daily
activities (drinking, jumping), fine-grained human behaviors (driver activity), and human-
object interactions (playing a musical instrument). Suppose the official dataset does not
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Table 1 Statistics for the five
datasets used in our experiments

Dataset Class Train/test Total

Li-6 6 240/120 360

PPMI-24 24 2400/2400 4800

Stanford-40 40 7640/1892 9532

AUC-V1 10 12,977/4331 17308

AUC-V2 10 12,555/1923 14478

contain a training set and test set. In that case, we randomly partition the dataset in a ratio of
8:2. these datasets vary in size from small 360, medium 9k, to large 17k, as shown in Table
1.

4.1.1 Li’s Action(Li-6)

This small still image dataset has six action categories: playing guitar, riding a horse, shooting,
phoning, riding a bicycle, and jogging. There are 60 images for each action category, for a
total of 360 images. For each action category, 40 images are randomly picked for training
and 20 for testing. Each category’s images are meticulously cropped and the same size.

4.1.2 People Playing Musical Instruments (PPMI-24)

PPMI-24 is a challenging dataset with 24 distinct behavior classes and 4800 images. We
follow the official divisions for training and testing, with 2400 images for training and 2400
images for testing. These 24 distinct behavior classes correlate to 12 musical instruments,
each of which includes holding and playing the instrument. Backgrounds and occlusions in
the PPMI-24 dataset are more intricate than those in the Stanford-40 dataset.

4.1.3 Stanford-40 Action(Stanford-40)

The dataset comprises 9532 still images depicting 40 distinct human actions, including jump-
ing, drinking, and fishing. Since there is no defined training and testing set for this dataset,
we randomly selected 80% of the photos as the training set, totaling 7640, and 20% as the
testing set, totaling 1892. The action images in the Stanford-40 dataset were collected from
various aspects of life, with the behavioral individuals located predominantly in the center
of the images and with good image quality.

4.1.4 Distracted Driver V1 (AUC-V1)

AUC-V1 is a fine-grained behavior recognition dataset with a total of 17308 pictures, of
which 12977 were used for training and 4331 were used for testing. The AUC-V1 dataset
consists of 31 individuals from seven nations, including the United States, Palestine, and
Egypt. Ten driving activities included: conversing with passengers, driving safely, answering
the phone on the left side, and drinking.
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4.1.5 Distracted Driver V2 (AUC-V2)

AUC-V2 is an upgraded version of the preceding dataset, containing 14,478 photos and
ten driving activity categories. The images also depict 44 drivers (29 men and 15 women)
from seven different countries. Additionally, we followed the initial training and testing
divisions, which included 12,555 training images from 38 drivers and 1923 test images from
the remaining six drivers.

4.2 Experimental Settings

The Swin-Transformer comes in four sizes: Swin Tiny (Swin-T), Swin Small (Swin-S),
Swin Base (Swin-B), and Swin Large (Swin-L). We select Swin-L as the model’s backbone
network and utilize the pre-trained weights on the ImageNet-22K dataset, which consists
of 22K categories and 14.2 million images. In Swin-L, the input image size is 384×384,
the window size is set to 12, the number of channels in the feature map of the first stage
is 192, and the number of Swin-Transformer blocks in each stage and the number of heads
in the multi-head attention module are respectively set to [2,2,18,2] and [6,12,24,48]. Four
NVIDIA 1080 GPUs, each with 8GB of video memory, are utilized. We employ the AdamW
optimizer with a weight decay of 5e-2, an epoch number of 40, a batch size of 16, an initial
learning rate of 1e-5, and the Trivial Augment data enhancement method.

4.3 Experimental Results

To better assess the effectiveness of Swin-Fusion, we tested on a total of five still image-
based HAR datasets and compared the test results with the models since 2018. Most of these
methods are based on improved CNNs, and no transformer-based method exists. Table 2
displays the results.

Because the Li-6 dataset contains only 360 images, few publications have utilized this
behavior recognition dataset in recent years, and only oneDELVS3with amaximumaccuracy
of 99.17% was discovered. The other four datasets have been utilized more frequently in
recent years, and four are listed below. We also list the results of Swin-Transformer without
the feature fusion module, and it should be noted that Swin-L is the backbone network of
Swin-Transformer. Swin-Transformer and Swin-Fusion have achieved 100% accuracy on a
tiny dataset, such as Li-6, as shown in the table. In the actual test, 100%accuracywas achieved
in only three epochs, demonstrating the superiority of the Swin-Transformer network with
pre-trained weights. On the AUC-V2 dataset, Swin-Fusion with the feature fusion module
can improve accuracy by up to 1.33% compared to Swin-Transformer. According to the final
experimental results, Swin-Fusion’s transformer-based model can achieve more excellent
performance in the still image-based HAR challenge.

Figure8 depicts the heatmaps generatedwithGrad-CAM[43] to determine if Swin-Fusion
focuses on the critical feature information. We present four sorts of behavior: applauding,
waving hands, riding a horse, and using a computer. The graphs demonstrate that Swin-Fusion
identifies well between behavioral acts and other irrelevant content and captures crucial
behavioral characteristics. As demonstrated by Grad-CAM, Swin-Fusion is successful for
behavior recognition based on still images.
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Fig. 8 Grad-CAM effect on still images

+++

FFM_0

Feature Fusion Module

Up Sampling

Element-wise Sum

Down Sampling

+Concatenation

FFM_1

+++

+

FFM_0*

Feature Fusion Module

FFM_1*

Feature Fusion Module

+++

Fig. 9 Four feature fusion models using different fusion methods. (* denotes FFM using element-wise sum)

4.4 Ablation Study

4.4.1 Feature Fusion Module

Different Fusion Methods
Figure9 shows that we have constructed four feature fusion modules, with FFM_1 having
the most excellent enhancement effect. Two primary tactics were employed in the design:
element-wise sum and concatenation. The element-wise sum is the superposition of pixels,
in which the quantity of information in a single feature map rises. At the same time, the
number of channels in the image remains constant. The FFM using element-wise sum will
be marked with * at the end of the name. Concatenation increases the number of channels in
an image but does not enhance the amount of information in a single feature map.

Thus, concatenation retains more feature information, but the element-wise sum is some-
what less expensive to compute. According to these two strategies, we extract and fuse the
featuremaps of the last three stages of the Swin-Lmodel. By designingmultiple feature fusion
methods and conducting many experiments to make them applicable to multiple datasets, we
apply FFM_1, the method with the best performance, to Swin-Fusion.

Table 3 illustrates the results of the four feature fusion modules on each dataset when
we modify the feature fusion module without modifying the original Swin-L model’s other
parameter settings. It is worth noting that, for example, in FFM_0*, to ensure that the final
number of channels is 1536, the number of channels will be increased through convolution
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Table 3 The enhancement effect of four feature fusion modules using different fusion methods

Method Params GFLOPs PPMI-24 Stanford-40 AUC-V1 AUC-V2

FFM_0 2.069M 1.452G + 0.20 + 0.27 +0.25 + 0.68

FFM_0* 8.256M 3.49G + 0.06 + 0.16 +0.19 + 0.17

FFM_1 3.25M 1.622G + 0.57 + 0.48 + 0.42 + 1.33

FFM_1* 9.066M 3.745G + 0.26 + 0.33 + 0.31 + 0.72

The bold data indicate the FFM with the best improvement effect * denotes FFM using element-wise sum

Table 4 The enhancement effect of four feature fusion modules

Method Params GFLOPs PPMI-24 Stanford-40 AUC-V1 AUC-V2

FFM_0 2.069M 1.452G + 0.20 + 0.27 +0.25 +0.68

FFM_1 3.25M 1.622G + 0.57 + 0.48 + 0.42 + 1.33

FFM_2 8.265M 4.17G + 0.13 + 0.21 + 0.29 + 0.62

FFM_3 7.673M 4.085G −0.11 + 0.09 −0.12 + 0.21

The bold data indicate the FFM with the best improvement effect

kernel convolution, which is why the parameter amount of FFM_0* is so large. The table
results show that FFM utilizing concatenation performs better than FFM using element-wise
sum. Although the element-wise sum approach can enhance the amount of information in
each feature map, it also introduces interference, rendering the feature fusion inefficient. In
contrast, the concatenation method concats the channels to preserve all the information. In
the case of FFM_0* and FFM_0, the results of FFM_0 using the concatenation approach will
be superior to those of FFM_0* using the element-wise sum method, proving the preceding
statement. Using the concatenation method, we fuse the features derived from FFM_0 to get
FFM_1 with the best lifting effect. FFM_1 utilizes low-level features with high resolution
and high-level features with high semantic information. In addition, it does not rely solely
on the last layer of features for prediction by FFM_1 but combines the features at various
scales of these three stages to create the optimal fusion effect.
Different Fusion Positions

As shown in Fig. 10, we tried different combinations based on FFM_1, such as FFM_2
and FFM_3. Nevertheless, the result is unsatisfactory, as shown in Table 4, indicating that
only fusing the characteristics of the last three stages is the most effective.

It is beneficial to obtain more accurate features when adjacent features are fused. At the
same time, too much reuse of features can lead to a decrease in accuracy on some datasets.
By comparing these 6 FFMs, we use the best FFM_1 for Swin-Fusion.

Figure11 reflects the relationship between Params, FLOPS, and increased accuracy of six
feature fusion modules on four action recognition datasets through scatter plots. The figure
shows that the accuracy is not directly proportional to the number of parameters or FLOPS.
Therefore, how to design the feature fusion model is very important. In the design process,
the number of channels should be considered. If the number of channels is forced to increase
in the end, the accuracy will decrease, and the number of parameters will increase.

4.4.2 Shifted Windows Multi-head Self-attention (SW-MSA)

Table 5shows the ablation experiments of SW-MSA, an essential module in the model. In
the table, "w/o shifting" refers to the non-shifted self-attention module. Swin-Fusion with
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Fig. 10 Four feature fusion modules using different fusion positions

Table 5 Ablation experiments on the SW-MSA module were conducted using Swin-Fusion on five different
datasets

PPMI-24 Stanford-40 AUC-V1 AUC-V2

W/o shifting 97.33 95.85 94.01 92.63

Shifted windows 98.26 96.72 94.83 93.66

Swin-L as the base model and an input size of 384×384 was compared on four different
datasets. The results show that utilizing the SW-MSA module leads to an approximate 1%
improvement in accuracy, indicating the effectiveness of using shifted windows.

4.4.3 Input Resolution andModel Size

We tested the effects of various input resolutions and model sizes on the experimental out-
comes of the Swin-Fusion model, with the input image resolution set to 224×224 and
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Fig. 11 The relationship between Params, FLOPS, and improved accuracy of the six feature fusion modules
on four still image-based human action recognition datasets

Table 6 Results of different input resolution and model size

Backbone Input size Params GFLOPs PPMI-24 Stanford-40 AUC-V1 AUC-V2

Swin-B 224×224 90.133M 15.685G 96.75 95.45 93.77 92.15

Swin-B 384×384 90.133M 46.174G 97.54 95.91 94.32 93.04

Swin-L 224×224 202.635M 35.242G 97.31 95.88 94.09 92.92

Swin-L 384×384 202.635M 103.688G 98.26 96.72 94.83 93.66

384×384, the model size Swin-B and Swin-L, respectively. As shown in Table 6, except for
the Li-6 dataset, the larger the input resolution of the image, the higher the final classification
accuracy can be improved by 0.74% on average for the same model size.

Moreover, as the size of the Swin-Fusion model increases, the final output improves by
an average of 0.6% with the same image input resolution. The performance improvement is
insignificant, even though the number of parameters in Swin-L is more than twice that of
Swin-B.While Swin-L performs the best at a resolution of 384×384, the increase inGFLOPS
is very apparent. Swin-B with a higher resolution should be used if computation cost is a
higher priority.

5 Conclusion

CNNs have been frequently used to recognize human action from still images. In this study,
we investigate the performance of the Swin-Transformer in recognizing human actions from
still images. Without modifying the original Swin-Transformer model’s backbone, a simple
but effective feature fusion module is introduced, enabling the model to accomplish more
effective action recognization by adopting a lateral connection and top-down pathway to
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merge features from various stages. Swin-Fusion was evaluated using pre-trained weights
on five still image-based action recognition datasets, including the Li’s action dataset, the
Stanford-40 dataset, the PPMI-24 dataset, the AUC-V1 dataset, and the AUC-V2 dataset. Our
model delivers competitive performance compared to improved CNNs approaches developed
in the last five years. Although our model performs better than prior methods, the Swin-
L version of Swin-Fusion is still enormous, and additional study is required to lower its
computing cost. We plan to use other lightweight transformer models combined with the
optimized feature fusion module to explore more possibilities for human action recognition
based on still images.
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