Eilmer

CSCI 5636 Project Proposal

Kal Monroe

November 2, 2022

Eilmer is a Compressible Flow Solver for 2D and 3D Applications

- Eilmer's main application is hypersonic flows
 - Species mass, momentum, energy, vibrational energy
 - High-temperature thermochemical nonequilibrium
 - Shock-capturing and shock-fitting capabilities
 - SA, $\kappa \omega$, IDDES turbulence models
 - Coupled heat transfer

- Eilmer uses a Finite Volume Formulation to solve NS
 - Steady state jacobian-free newton-krylov solver
 - Implicit integrators for stiff systems (nonequilibrium chemistry)
 - Partitioning via Metis
 - Unstructured and structured grids
 - Highly parallel, GPU ready

Eilmer is Open Sourced GPL3 Licensed

- Primarily maintained out of University of Queensland
 - cns4u -> mb_cns -> mb_cns2 -> Elmer -> Elmer2 -> Eilmer3 -> Eilmer4
 - Eilmer4 started in 2015. Has rapidly grown in size.
 - Principle Developers: Drs. Rowan Gollan, Kyle Damm, Nick Gibbons, Peter Jacobs
 - Majority written in D (?) and Lua

- Eilmer's development community is active
 - 12 commits per week and active GitHub issue page
 - 14 contributors in the past year
 - · Automated test suites and smoke tests
 - <u>Highly documented</u> (User guides, reference manuals)

Potential Contributions

- Add additional TVD schemes for higher shock resolution
 - Van Albada and Venkatakrishnan flux limiters are currently implemented
 - Van Leer, superbee, minmod are potential options
- Implement additional turbulence models
 - Baldwin-Lomax single equation
- Introduce a new example problem
 - Cone or double cone (axisymmetric)

