Skip to content
main
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

R2Gen

This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020.

Citations

If you use or extend our work, please cite our paper at EMNLP-2020.

@inproceedings{chen-emnlp-2020-r2gen,
    title = "Generating Radiology Reports via Memory-driven Transformer",
    author = "Chen, Zhihong and
      Song, Yan  and
      Chang, Tsung-Hui and
      Wan, Xiang",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2020",
}

Requirements

  • torch==1.5.1
  • torchvision==0.6.1
  • opencv-python==4.4.0.42

Download R2Gen

You can download the models we trained for each dataset from here.

Datasets

We use two datasets (IU X-Ray and MIMIC-CXR) in our paper.

For IU X-Ray, you can download the dataset from here and then put the files in data/iu_xray.

For MIMIC-CXR, you can download the dataset from here and then put the files in data/mimic_cxr.

Run on IU X-Ray

Run bash run_iu_xray.sh to train a model on the IU X-Ray data.

Run on MIMIC-CXR

Run bash run_mimic_cxr.sh to train a model on the MIMIC-CXR data.

About

No description, website, or topics provided.

Resources

Releases

No releases published

Packages

No packages published