Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1166 lines (985 sloc) 41.4 KB
import atexit
import binascii
import functools
import hashlib
import operator
import os
import time
import warnings
import numpy
import six
import cupy
from cupy import core
from cupy import cuda
from cupy.cuda import curand
from cupy.cuda import device
from cupy.random import _kernels
from cupy import util
class RandomState(object):
"""Portable container of a pseudo-random number generator.
An instance of this class holds the state of a random number generator. The
state is available only on the device which has been current at the
initialization of the instance.
Functions of :mod:`cupy.random` use global instances of this class.
Different instances are used for different devices. The global state for
the current device can be obtained by the
:func:`cupy.random.get_random_state` function.
Args:
seed (None or int): Seed of the random number generator. See the
:meth:`~cupy.random.RandomState.seed` method for detail.
method (int): Method of the random number generator. Following values
are available::
cupy.cuda.curand.CURAND_RNG_PSEUDO_DEFAULT
cupy.cuda.curand.CURAND_RNG_XORWOW
cupy.cuda.curand.CURAND_RNG_MRG32K3A
cupy.cuda.curand.CURAND_RNG_MTGP32
cupy.cuda.curand.CURAND_RNG_MT19937
cupy.cuda.curand.CURAND_RNG_PHILOX4_32_10
"""
def __init__(self, seed=None, method=curand.CURAND_RNG_PSEUDO_DEFAULT):
self._generator = curand.createGenerator(method)
self.seed(seed)
def __del__(self):
# When createGenerator raises an error, _generator is not initialized
if hasattr(self, '_generator'):
curand.destroyGenerator(self._generator)
def _generate_normal(self, func, size, dtype, *args):
# curand functions below don't support odd size.
# * curand.generateNormal
# * curand.generateNormalDouble
# * curand.generateLogNormal
# * curand.generateLogNormalDouble
size = core.get_size(size)
element_size = six.moves.reduce(operator.mul, size, 1)
if element_size % 2 == 0:
out = cupy.empty(size, dtype=dtype)
func(self._generator, out.data.ptr, out.size, *args)
return out
else:
out = cupy.empty((element_size + 1,), dtype=dtype)
func(self._generator, out.data.ptr, out.size, *args)
return out[:element_size].reshape(size)
# NumPy compatible functions
def beta(self, a, b, size=None, dtype=float):
"""Returns an array of samples drawn from the beta distribution.
.. seealso::
:func:`cupy.random.beta` for full documentation,
:meth:`numpy.random.RandomState.beta`
"""
a, b = cupy.asarray(a), cupy.asarray(b)
if size is None:
size = cupy.broadcast(a, b).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.beta_kernel(a, b, self.rk_seed, y)
self.rk_seed += numpy.prod(y.size, dtype=self.rk_seed.dtype)
return y
def binomial(self, n, p, size=None, dtype=int):
"""Returns an array of samples drawn from the binomial distribution.
.. seealso::
:func:`cupy.random.binomial` for full documentation,
:meth:`numpy.random.RandomState.binomial`
"""
n, p = cupy.asarray(n), cupy.asarray(p)
if size is None:
size = cupy.broadcast(n, p).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.binomial_kernel(n, p, self.rk_seed, y)
self.rk_seed += numpy.prod(y.size, dtype=self.rk_seed.dtype)
return y
def chisquare(self, df, size=None, dtype=float):
"""Returns an array of samples drawn from the chi-square distribution.
.. seealso::
:func:`cupy.random.chisquare` for full documentation,
:meth:`numpy.random.RandomState.chisquare`
"""
df = cupy.asarray(df)
if size is None:
size = df.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.chisquare_kernel(df, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def dirichlet(self, alpha, size=None, dtype=float):
"""Returns an array of samples drawn from the dirichlet distribution.
.. seealso::
:func:`cupy.random.dirichlet` for full documentation,
:meth:`numpy.random.RandomState.dirichlet`
"""
alpha = cupy.asarray(alpha)
if size is None:
size = alpha.shape
else:
size += alpha.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.standard_gamma_kernel(alpha, self.rk_seed, y)
y /= y.sum(axis=-1, keepdims=True)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def exponential(self, scale=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from a exponential distribution.
.. seealso::
:func:`cupy.random.exponential` for full documentation,
:meth:`numpy.random.RandomState.exponential`
"""
scale = cupy.asarray(scale, dtype)
if (scale < 0).any():
raise ValueError('scale < 0')
if size is None:
size = scale.shape
x = self.standard_exponential(size, dtype)
x *= scale
return x
def f(self, dfnum, dfden, size=None, dtype=float):
"""Returns an array of samples drawn from the f distribution.
.. seealso::
:func:`cupy.random.f` for full documentation,
:meth:`numpy.random.RandomState.f`
"""
dfnum, dfden = cupy.asarray(dfnum), cupy.asarray(dfden)
if size is None:
size = cupy.broadcast(dfnum, dfden).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.f_kernel(dfnum, dfden, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def gamma(self, shape, scale=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from a gamma distribution.
.. seealso::
:func:`cupy.random.gamma` for full documentation,
:meth:`numpy.random.RandomState.gamma`
"""
shape, scale = cupy.asarray(shape), cupy.asarray(scale)
if size is None:
size = cupy.broadcast(shape, scale).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.standard_gamma_kernel(shape, self.rk_seed, y)
y *= scale
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def geometric(self, p, size=None, dtype=int):
"""Returns an array of samples drawn from the geometric distribution.
.. seealso::
:func:`cupy.random.geometric` for full documentation,
:meth:`numpy.random.RandomState.geometric`
"""
p = cupy.asarray(p)
if size is None:
size = p.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.geometric_kernel(p, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def hypergeometric(self, ngood, nbad, nsample, size=None, dtype=int):
"""Returns an array of samples drawn from the hypergeometric distribution.
.. seealso::
:func:`cupy.random.hypergeometric` for full documentation,
:meth:`numpy.random.RandomState.hypergeometric`
"""
ngood, nbad, nsample = \
cupy.asarray(ngood), cupy.asarray(nbad), cupy.asarray(nsample)
if size is None:
size = cupy.broadcast(ngood, nbad, nsample).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.hypergeometric_kernel(ngood, nbad, nsample, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
_laplace_kernel = core.ElementwiseKernel(
'T x, T loc, T scale', 'T y',
'y = loc + scale * ((x <= 0.5) ? log(x + x): -log(x + x - 1.0))',
'laplace_kernel')
def laplace(self, loc=0.0, scale=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from the laplace distribution.
.. seealso::
:func:`cupy.random.laplace` for full documentation,
:meth:`numpy.random.RandomState.laplace`
"""
loc = cupy.asarray(loc, dtype)
scale = cupy.asarray(scale, dtype)
if size is None:
size = cupy.broadcast(loc, scale).shape
x = self._random_sample_raw(size, dtype)
RandomState._laplace_kernel(x, loc, scale, x)
return x
def logistic(self, loc=0.0, scale=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from the logistic distribution.
.. seealso::
:func:`cupy.random.logistic` for full documentation,
:meth:`numpy.random.RandomState.logistic`
"""
loc, scale = cupy.asarray(loc), cupy.asarray(scale)
if size is None:
size = cupy.broadcast(loc, scale).shape
x = cupy.empty(shape=size, dtype=dtype)
_kernels.open_uniform_kernel(self.rk_seed, x)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
x = (1.0 - x) / x
cupy.log(x, out=x)
cupy.multiply(x, scale, out=x)
cupy.add(x, loc, out=x)
return x
def lognormal(self, mean=0.0, sigma=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from a log normal distribution.
.. seealso::
:func:`cupy.random.lognormal` for full documentation,
:meth:`numpy.random.RandomState.lognormal`
"""
dtype = _check_and_get_dtype(dtype)
if dtype.char == 'f':
func = curand.generateLogNormal
else:
func = curand.generateLogNormalDouble
return self._generate_normal(func, size, dtype, mean, sigma)
def logseries(self, p, size=None, dtype=int):
"""Returns an array of samples drawn from a log series distribution.
.. seealso::
:func:`cupy.random.logseries` for full documentation,
:meth:`numpy.random.RandomState.logseries`
"""
p = cupy.asarray(p)
if cupy.any(p <= 0):
raise ValueError('p <= 0.0')
if cupy.any(p >= 1):
raise ValueError('p >= 1.0')
if size is None:
size = p.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.logseries_kernel(p, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def multivariate_normal(self, mean, cov, size=None, check_valid='ignore',
tol=1e-8, dtype=float):
"""(experimental) Returns an array of samples drawn from the
multivariate normal distribution.
.. seealso::
:func:`cupy.random.multivariate_normal` for full documentation,
:meth:`numpy.random.RandomState.multivariate_normal`
"""
util.experimental('cupy.random.RandomState.multivariate_normal')
mean = cupy.asarray(mean, dtype=dtype)
cov = cupy.asarray(cov, dtype=dtype)
if size is None:
shape = ()
elif isinstance(size, cupy.util.collections_abc.Sequence):
shape = tuple(size)
else:
shape = size,
if mean.ndim != 1:
raise ValueError('mean must be 1 dimensional')
if (cov.ndim != 2) or (cov.shape[0] != cov.shape[1]):
raise ValueError('cov must be 2 dimensional and square')
if len(mean) != len(cov):
raise ValueError('mean and cov must have same length')
shape += (len(mean),)
x = self.standard_normal(size=shape, dtype=dtype)
u, s, v = cupy.linalg.svd(cov)
if check_valid != 'ignore':
if check_valid != 'warn' and check_valid != 'raise':
raise ValueError(
'check_valid must equal \'warn\', \'raise\', or '
'\'ignore\'')
a = cupy.dot(v.T * s, v)
b = cov
psd = cupy.all(cupy.abs(a-b) <= tol*(1+cupy.abs(b)))
if not psd:
if check_valid == 'warn':
warnings.warn(
'covariance is not symmetric positive-semidefinite.',
RuntimeWarning)
else:
raise ValueError(
'covariance is not symmetric positive-semidefinite.')
x = cupy.dot(x, cupy.sqrt(s)[:, None] * v)
x += mean
return x
def negative_binomial(self, n, p, size=None, dtype=int):
"""Returns an array of samples drawn from the negative binomial distribution.
.. seealso::
:func:`cupy.random.negative_binomial` for full documentation,
:meth:`numpy.random.RandomState.negative_binomial`
"""
n = cupy.asarray(n)
p = cupy.asarray(p)
if cupy.any(n <= 0):
raise ValueError('n <= 0')
if cupy.any(p < 0):
raise ValueError('p < 0')
if cupy.any(p > 1):
raise ValueError('p > 1')
y = self.gamma(n, (1-p)/p, size)
return self.poisson(y, dtype=dtype)
def normal(self, loc=0.0, scale=1.0, size=None, dtype=float):
"""Returns an array of normally distributed samples.
.. seealso::
:func:`cupy.random.normal` for full documentation,
:meth:`numpy.random.RandomState.normal`
"""
dtype = _check_and_get_dtype(dtype)
if dtype.char == 'f':
func = curand.generateNormal
else:
func = curand.generateNormalDouble
return self._generate_normal(func, size, dtype, loc, scale)
def pareto(self, a, size=None, dtype=float):
"""Returns an array of samples drawn from the pareto II distribution.
.. seealso::
:func:`cupy.random.pareto_kernel` for full documentation,
:meth:`numpy.random.RandomState.pareto`
"""
a = cupy.asarray(a)
x = self._random_sample_raw(size, dtype)
cupy.log(x, out=x)
cupy.exp(-x/a, out=x)
return x - 1
def noncentral_chisquare(self, df, nonc, size=None, dtype=float):
"""Returns an array of samples drawn from the noncentral chi-square
distribution.
.. seealso::
:func:`cupy.random.noncentral_chisquare` for full documentation,
:meth:`numpy.random.RandomState.noncentral_chisquare`
"""
df, nonc = cupy.asarray(df), cupy.asarray(nonc)
if cupy.any(df <= 0):
raise ValueError('df <= 0')
if cupy.any(nonc < 0):
raise ValueError('nonc < 0')
if size is None:
size = cupy.broadcast(df, nonc).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.noncentral_chisquare_kernel(df, nonc, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def noncentral_f(self, dfnum, dfden, nonc, size=None, dtype=float):
"""Returns an array of samples drawn from the noncentral F distribution.
.. seealso::
:func:`cupy.random.noncentral_f` for full documentation,
:meth:`numpy.random.RandomState.noncentral_f`
"""
dfnum, dfden, nonc = \
cupy.asarray(dfnum), cupy.asarray(dfden), cupy.asarray(nonc)
if cupy.any(dfnum <= 0):
raise ValueError('dfnum <= 0')
if cupy.any(dfden <= 0):
raise ValueError('dfden <= 0')
if cupy.any(nonc < 0):
raise ValueError('nonc < 0')
if size is None:
size = cupy.broadcast(dfnum, dfden, nonc).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.noncentral_f_kernel(dfnum, dfden, nonc, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def poisson(self, lam=1.0, size=None, dtype=int):
"""Returns an array of samples drawn from the poisson distribution.
.. seealso::
:func:`cupy.random.poisson` for full documentation,
:meth:`numpy.random.RandomState.poisson`
"""
lam = cupy.asarray(lam)
if size is None:
size = lam.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.poisson_kernel(lam, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def power(self, a, size=None, dtype=float):
"""Returns an array of samples drawn from the power distribution.
.. seealso::
:func:`cupy.random.power` for full documentation,
:meth:`numpy.random.RandomState.power`
"""
a = cupy.asarray(a)
if cupy.any(a < 0):
raise ValueError('a < 0')
if size is None:
size = a.shape
x = self.standard_exponential(size=size, dtype=dtype)
cupy.exp(-x, out=x)
cupy.add(1, -x, out=x)
cupy.power(x, 1./a, out=x)
return x
def rand(self, *size, **kwarg):
"""Returns uniform random values over the interval ``[0, 1)``.
.. seealso::
:func:`cupy.random.rand` for full documentation,
:meth:`numpy.random.RandomState.rand`
"""
dtype = kwarg.pop('dtype', float)
if kwarg:
raise TypeError('rand() got unexpected keyword arguments %s'
% ', '.join(kwarg.keys()))
return self.random_sample(size=size, dtype=dtype)
def randn(self, *size, **kwarg):
"""Returns an array of standard normal random values.
.. seealso::
:func:`cupy.random.randn` for full documentation,
:meth:`numpy.random.RandomState.randn`
"""
dtype = kwarg.pop('dtype', float)
if kwarg:
raise TypeError('randn() got unexpected keyword arguments %s'
% ', '.join(kwarg.keys()))
return self.normal(size=size, dtype=dtype)
_mod1_kernel = core.ElementwiseKernel(
'', 'T x', 'x = (x == (T)1) ? 0 : x', 'cupy_random_x_mod_1')
def _random_sample_raw(self, size, dtype):
dtype = _check_and_get_dtype(dtype)
out = cupy.empty(size, dtype=dtype)
if dtype.char == 'f':
func = curand.generateUniform
else:
func = curand.generateUniformDouble
func(self._generator, out.data.ptr, out.size)
return out
def random_sample(self, size=None, dtype=float):
"""Returns an array of random values over the interval ``[0, 1)``.
.. seealso::
:func:`cupy.random.random_sample` for full documentation,
:meth:`numpy.random.RandomState.random_sample`
"""
out = self._random_sample_raw(size, dtype)
RandomState._mod1_kernel(out)
return out
def rayleigh(self, scale=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from a rayleigh distribution.
.. seealso::
:func:`cupy.random.rayleigh` for full documentation,
:meth:`numpy.random.RandomState.rayleigh`
"""
scale = cupy.asarray(scale)
if size is None:
size = scale.shape
if cupy.any(scale < 0):
raise ValueError('scale < 0')
x = self._random_sample_raw(size, dtype)
x = cupy.log(x, out=x)
x = cupy.multiply(x, -2., out=x)
x = cupy.sqrt(x, out=x)
x = cupy.multiply(x, scale, out=x)
return x
def _interval(self, mx, size):
"""Generate multiple integers independently sampled uniformly from ``[0, mx]``.
Args:
mx (int): Upper bound of the interval
size (None or int or tuple): Shape of the array or the scalar
returned.
Returns:
int or cupy.ndarray: If ``None``, an :class:`cupy.ndarray` with
shape ``()`` is returned.
If ``int``, 1-D array of length size is returned.
If ``tuple``, multi-dimensional array with shape
``size`` is returned.
Currently, only 32 bit integers can be sampled.
If 0 :math:`\\leq` ``mx`` :math:`\\leq` 0x7fffffff,
a ``numpy.int32`` array is returned.
If 0x80000000 :math:`\\leq` ``mx`` :math:`\\leq` 0xffffffff,
a ``numpy.uint32`` array is returned.
""" # NOQA
if size is None:
return self._interval(mx, 1).reshape(())
elif size == 0:
return cupy.array(())
elif isinstance(size, int):
size = (size, )
if mx == 0:
return cupy.zeros(size, dtype=numpy.int32)
if mx < 0:
raise ValueError(
'mx must be non-negative (actual: {})'.format(mx))
elif mx <= 0x7fffffff:
dtype = numpy.int32
elif mx <= 0xffffffff:
dtype = numpy.uint32
else:
raise ValueError(
'mx must be within uint32 range (actual: {})'.format(mx))
mask = (1 << mx.bit_length()) - 1
mask = cupy.array(mask, dtype=dtype)
n = functools.reduce(operator.mul, size, 1)
sample = cupy.empty((n,), dtype=dtype)
n_rem = n # The number of remaining elements to sample
ret = None
while n_rem > 0:
curand.generate(
self._generator, sample.data.ptr, sample.size)
# Drop the samples that exceed the upper limit
sample &= mask
success = sample <= mx
if ret is None:
# If the sampling has finished in the first iteration,
# just return the sample.
if success.all():
n_rem = 0
ret = sample
break
# Allocate the return array.
ret = cupy.empty((n,), dtype=dtype)
n_succ = min(n_rem, int(success.sum()))
ret[n - n_rem:n - n_rem + n_succ] = sample[success][:n_succ]
n_rem -= n_succ
assert n_rem == 0
return ret.reshape(size)
def seed(self, seed=None):
"""Resets the state of the random number generator with a seed.
.. seealso::
:func:`cupy.random.seed` for full documentation,
:meth:`numpy.random.RandomState.seed`
"""
if seed is None:
try:
seed_str = binascii.hexlify(os.urandom(8))
seed = numpy.uint64(int(seed_str, 16))
except NotImplementedError:
seed = numpy.uint64(time.clock() * 1000000)
else:
if isinstance(seed, numpy.ndarray):
seed = int(hashlib.md5(seed).hexdigest()[:16], 16)
seed = numpy.asarray(seed).astype(numpy.uint64, casting='safe')
curand.setPseudoRandomGeneratorSeed(self._generator, seed)
curand.setGeneratorOffset(self._generator, 0)
self.rk_seed = numpy.uint64(seed)
def standard_cauchy(self, size=None, dtype=float):
"""Returns an array of samples drawn from the standard cauchy distribution.
.. seealso::
:func:`cupy.random.standard_cauchy` for full documentation,
:meth:`numpy.random.RandomState.standard_cauchy`
"""
x = self.uniform(size=size, dtype=dtype)
return cupy.tan(cupy.pi * (x - 0.5))
def standard_exponential(self, size=None, dtype=float):
"""Returns an array of samples drawn from the standard exp distribution.
.. seealso::
:func:`cupy.random.standard_exponential` for full documentation,
:meth:`numpy.random.RandomState.standard_exponential`
"""
x = self._random_sample_raw(size, dtype)
return -cupy.log(x, out=x)
def standard_gamma(self, shape, size=None, dtype=float):
"""Returns an array of samples drawn from a standard gamma distribution.
.. seealso::
:func:`cupy.random.standard_gamma` for full documentation,
:meth:`numpy.random.RandomState.standard_gamma`
"""
shape = cupy.asarray(shape)
if size is None:
size = shape.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.standard_gamma_kernel(shape, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def standard_normal(self, size=None, dtype=float):
"""Returns samples drawn from the standard normal distribution.
.. seealso::
:func:`cupy.random.standard_normal` for full documentation,
:meth:`numpy.random.RandomState.standard_normal`
"""
return self.normal(size=size, dtype=dtype)
def standard_t(self, df, size=None, dtype=float):
"""Returns an array of samples drawn from the standard t distribution.
.. seealso::
:func:`cupy.random.standard_t` for full documentation,
:meth:`numpy.random.RandomState.standard_t`
"""
df = cupy.asarray(df)
if size is None:
size = df.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.standard_t_kernel(df, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def tomaxint(self, size=None):
"""Draws integers between 0 and max integer inclusive.
Args:
size (int or tuple of ints): Output shape.
Returns:
cupy.ndarray: Drawn samples.
.. seealso::
:meth:`numpy.random.RandomState.tomaxint`
"""
if size is None:
size = ()
sample = cupy.empty(size, dtype=cupy.int_)
# cupy.random only uses int32 random generator
size_in_int = sample.dtype.itemsize // 4
curand.generate(
self._generator, sample.data.ptr, sample.size * size_in_int)
# Disable sign bit
sample &= cupy.iinfo(cupy.int_).max
return sample
_triangular_kernel = core.ElementwiseKernel(
'L left, M mode, R right', 'T x',
"""
T base, leftbase, ratio, leftprod, rightprod;
base = right - left;
leftbase = mode - left;
ratio = leftbase / base;
leftprod = leftbase*base;
rightprod = (right - mode)*base;
if (x <= ratio)
{
x = left + sqrt(x*leftprod);
} else
{
x = right - sqrt((1.0 - x) * rightprod);
}
""",
'triangular_kernel'
)
def triangular(self, left, mode, right, size=None, dtype=float):
"""Returns an array of samples drawn from the triangular distribution.
.. seealso::
:func:`cupy.random.triangular` for full documentation,
:meth:`numpy.random.RandomState.triangular`
"""
left, mode, right = \
cupy.asarray(left), cupy.asarray(mode), cupy.asarray(right)
if cupy.any(left > mode):
raise ValueError('left > mode')
if cupy.any(mode > right):
raise ValueError('mode > right')
if cupy.any(left == right):
raise ValueError('left == right')
if size is None:
size = cupy.broadcast(left, mode, right).shape
x = self.random_sample(size=size, dtype=dtype)
return RandomState._triangular_kernel(left, mode, right, x)
_scale_kernel = core.ElementwiseKernel(
'T low, T high', 'T x',
'x = T(low) + x * T(high - low)',
'cupy_scale')
def uniform(self, low=0.0, high=1.0, size=None, dtype=float):
"""Returns an array of uniformly-distributed samples over an interval.
.. seealso::
:func:`cupy.random.uniform` for full documentation,
:meth:`numpy.random.RandomState.uniform`
"""
dtype = numpy.dtype(dtype)
rand = self.random_sample(size=size, dtype=dtype)
if not numpy.isscalar(low):
low = cupy.asarray(low, dtype)
if not numpy.isscalar(high):
high = cupy.asarray(high, dtype)
return RandomState._scale_kernel(low, high, rand)
def vonmises(self, mu, kappa, size=None, dtype=float):
"""Returns an array of samples drawn from the von Mises distribution.
.. seealso::
:func:`cupy.random.vonmises` for full documentation,
:meth:`numpy.random.RandomState.vonmises`
"""
mu, kappa = cupy.asarray(mu), cupy.asarray(kappa)
if size is None:
size = cupy.broadcast(mu, kappa).shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.vonmises_kernel(mu, kappa, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
_wald_kernel = core.ElementwiseKernel(
'T mean, T scale, T U', 'T X',
"""
T mu_2l;
T Y;
mu_2l = mean / (2*scale);
Y = mean*X*X;
X = mean + mu_2l*(Y - sqrt(4*scale*Y + Y*Y));
if (U > mean/(mean+X))
{
X = mean*mean/X;
}
""",
'wald_scale')
def wald(self, mean, scale, size=None, dtype=float):
"""Returns an array of samples drawn from the Wald distribution.
.. seealso::
:func:`cupy.random.wald` for full documentation,
:meth:`numpy.random.RandomState.wald`
"""
mean, scale = \
cupy.asarray(mean, dtype=dtype), cupy.asarray(scale, dtype=dtype)
if size is None:
size = cupy.broadcast(mean, scale).shape
x = self.normal(size=size, dtype=dtype)
u = self.random_sample(size=size, dtype=dtype)
return RandomState._wald_kernel(mean, scale, u, x)
def weibull(self, a, size=None, dtype=float):
"""Returns an array of samples drawn from the weibull distribution.
.. seealso::
:func:`cupy.random.weibull` for full documentation,
:meth:`numpy.random.RandomState.weibull`
"""
a = cupy.asarray(a)
if cupy.any(a < 0):
raise ValueError('a < 0')
x = self.standard_exponential(size, dtype)
cupy.power(x, 1./a, out=x)
return x
def zipf(self, a, size=None, dtype=int):
"""Returns an array of samples drawn from the Zipf distribution.
.. seealso::
:func:`cupy.random.zipf` for full documentation,
:meth:`numpy.random.RandomState.zipf`
"""
a = cupy.asarray(a)
if cupy.any(a <= 1.0):
raise ValueError('\'a\' must be a valid float > 1.0')
if size is None:
size = a.shape
y = cupy.empty(shape=size, dtype=dtype)
_kernels.zipf_kernel(a, self.rk_seed, y)
self.rk_seed += numpy.prod(size, dtype=self.rk_seed.dtype)
return y
def choice(self, a, size=None, replace=True, p=None):
"""Returns an array of random values from a given 1-D array.
.. seealso::
:func:`cupy.random.choice` for full document,
:func:`numpy.random.choice`
"""
if a is None:
raise ValueError('a must be 1-dimensional or an integer')
if isinstance(a, cupy.ndarray) and a.ndim == 0:
raise NotImplementedError
if isinstance(a, six.integer_types):
a_size = a
if a_size <= 0:
raise ValueError('a must be greater than 0')
else:
a = cupy.array(a, copy=False)
if a.ndim != 1:
raise ValueError('a must be 1-dimensional or an integer')
else:
a_size = len(a)
if a_size == 0:
raise ValueError('a must be non-empty')
if p is not None:
p = cupy.array(p)
if p.ndim != 1:
raise ValueError('p must be 1-dimensional')
if len(p) != a_size:
raise ValueError('a and p must have same size')
if not (p >= 0).all():
raise ValueError('probabilities are not non-negative')
p_sum = cupy.sum(p).get()
if not numpy.allclose(p_sum, 1):
raise ValueError('probabilities do not sum to 1')
if size is None:
raise NotImplementedError
shape = size
size = numpy.prod(shape)
if not replace and p is None:
if a_size < size:
raise ValueError(
'Cannot take a larger sample than population when '
'\'replace=False\'')
if isinstance(a, six.integer_types):
indices = cupy.arange(a, dtype='l')
else:
indices = a.copy()
self.shuffle(indices)
return indices[:size].reshape(shape)
if not replace:
raise NotImplementedError
if p is not None:
p = cupy.broadcast_to(p, (size, a_size))
index = cupy.argmax(cupy.log(p) +
self.gumbel(size=(size, a_size)),
axis=1)
if not isinstance(shape, six.integer_types):
index = cupy.reshape(index, shape)
else:
index = self.randint(0, a_size, size=shape)
# Align the dtype with NumPy
index = index.astype(cupy.int64, copy=False)
if isinstance(a, six.integer_types):
return index
if index.ndim == 0:
return cupy.array(a[index], dtype=a.dtype)
return a[index]
def shuffle(self, a):
"""Returns a shuffled array.
.. seealso::
:func:`cupy.random.shuffle` for full document,
:func:`numpy.random.shuffle`
"""
if not isinstance(a, cupy.ndarray):
raise TypeError('The array must be cupy.ndarray')
if a.ndim == 0:
raise TypeError('An array whose ndim is 0 is not supported')
a[:] = a[self.permutation(len(a))]
def permutation(self, num):
"""Returns a permuted range."""
if not isinstance(num, six.integer_types):
raise TypeError('The data type of argument "num" must be integer')
sample = cupy.empty((num), dtype=numpy.int32)
curand.generate(self._generator, sample.data.ptr, num)
if 128 < num <= 32 * 1024 * 1024:
array = cupy.arange(num, dtype=numpy.int32)
# apply sort of cache blocking
block_size = 1 * 1024 * 1024
# The block size above is a value determined from the L2 cache size
# of GP100 (L2 cache size / size of int = 4MB / 4B = 1M). It may be
# better to change the value base on the L2 cache size of the GPU
# you use.
# When num > block_size, cupy kernel: _cupy_permutation is to be
# launched multiple times. However, it is observed that performance
# will be degraded if the launch count is too many. Therefore,
# the block size is adjusted so that launch count will not exceed
# twelve Note that this twelve is the value determined from
# measurement on GP100.
while num // block_size > 12:
block_size *= 2
for j_start in range(0, num, block_size):
j_end = j_start + block_size
_cupy_permutation()(sample, j_start, j_end, array, size=num)
else:
# When num > 32M, argsort is used, because it is faster than
# custom kernel. See https://github.com/cupy/cupy/pull/603.
array = cupy.argsort(sample)
return array
_gumbel_kernel = core.ElementwiseKernel(
'T x, T loc, T scale', 'T y',
'y = T(loc) - log(-log(x)) * T(scale)',
'gumbel_kernel')
def gumbel(self, loc=0.0, scale=1.0, size=None, dtype=float):
"""Returns an array of samples drawn from a Gumbel distribution.
.. seealso::
:func:`cupy.random.gumbel` for full documentation,
:meth:`numpy.random.RandomState.gumbel`
"""
x = self._random_sample_raw(size=size, dtype=dtype)
if not numpy.isscalar(loc):
loc = cupy.asarray(loc, dtype)
if not numpy.isscalar(scale):
scale = cupy.asarray(scale, dtype)
RandomState._gumbel_kernel(x, loc, scale, x)
return x
def randint(self, low, high=None, size=None, dtype='l'):
"""Returns a scalar or an array of integer values over ``[low, high)``.
.. seealso::
:func:`cupy.random.randint` for full documentation,
:meth:`numpy.random.RandomState.randint`
"""
if high is None:
lo = 0
hi = low
else:
lo = low
hi = high
if lo >= hi:
raise ValueError('low >= high')
if lo < cupy.iinfo(dtype).min:
raise ValueError(
'low is out of bounds for {}'.format(cupy.dtype(dtype).name))
if hi > cupy.iinfo(dtype).max + 1:
raise ValueError(
'high is out of bounds for {}'.format(cupy.dtype(dtype).name))
diff = hi - lo - 1
if diff > cupy.iinfo(cupy.int32).max - cupy.iinfo(cupy.int32).min + 1:
raise NotImplementedError(
'Sampling from a range whose extent is larger than int32 '
'range is currently not supported')
x = self._interval(diff, size).astype(dtype, copy=False)
cupy.add(x, lo, out=x)
return x
def _cupy_permutation():
return core.ElementwiseKernel(
'raw int32 sample, int32 j_start, int32 _j_end',
'raw int32 array',
'''
const int invalid = -1;
const int num = _ind.size();
int j = (sample[i] & 0x7fffffff) % num;
int j_end = _j_end;
if (j_end > num) j_end = num;
if (j == i || j < j_start || j >= j_end) continue;
// If a thread fails to do data swaping once, it changes j
// value using j_offset below and try data swaping again.
// This process is repeated until data swapping is succeeded.
// The j_offset is determined from the initial j
// (random number assigned to each thread) and the initial
// offset between j and i (ID of each thread).
// If a given number sequence in sample is really random,
// this j-update would not be necessary. This is work-around
// mainly to avoid potential eternal conflict when sample has
// rather synthetic number sequence.
int j_offset = ((2*j - i + num) % (num - 1)) + 1;
// A thread gives up to do data swapping if loop count exceed
// a threathod determined below. This is kind of safety
// mechanism to escape the eternal race condition, though I
// believe it never happens.
int loops = 256;
bool do_next = true;
while (do_next && loops > 0) {
// try to swap the contents of array[i] and array[j]
if (i != j) {
int val_j = atomicExch(&array[j], invalid);
if (val_j != invalid) {
int val_i = atomicExch(&array[i], invalid);
if (val_i != invalid) {
array[i] = val_j;
array[j] = val_i;
do_next = false;
// done
}
else {
// restore array[j]
array[j] = val_j;
}
}
}
j = (j + j_offset) % num;
loops--;
}
''',
'cupy_permutation',
)
def seed(seed=None):
"""Resets the state of the random number generator with a seed.
This function resets the state of the global random number generator for
the current device. Be careful that generators for other devices are not
affected.
Args:
seed (None or int): Seed for the random number generator. If ``None``,
it uses :func:`os.urandom` if available or :func:`time.clock`
otherwise. Note that this function does not support seeding by an
integer array.
"""
get_random_state().seed(seed)
# CuPy specific functions
_random_states = {}
@atexit.register
def reset_states():
global _random_states
_random_states = {}
def get_random_state():
"""Gets the state of the random number generator for the current device.
If the state for the current device is not created yet, this function
creates a new one, initializes it, and stores it as the state for the
current device.
Returns:
RandomState: The state of the random number generator for the
device.
"""
dev = cuda.Device()
rs = _random_states.get(dev.id, None)
if rs is None:
seed = os.getenv('CUPY_SEED')
if seed is None:
seed = os.getenv('CHAINER_SEED')
if seed is not None:
seed = numpy.uint64(int(seed))
rs = RandomState(seed)
rs = _random_states.setdefault(dev.id, rs)
return rs
def set_random_state(rs):
"""Sets the state of the random number generator for the current device.
Args:
state(RandomState): Random state to set for the current device.
"""
if not isinstance(rs, RandomState):
raise TypeError(
'Random state must be an instance of RandomState. '
'Actual: {}'.format(type(rs)))
_random_states[device.get_device_id()] = rs
def _check_and_get_dtype(dtype):
dtype = numpy.dtype(dtype)
if dtype.char not in ('f', 'd'):
raise TypeError('cupy.random only supports float32 and float64')
return dtype
You can’t perform that action at this time.