Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tree: 0bba26466f
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 331 lines (271 sloc) 11.143 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * fdct BlackFin
 *
 * Copyright (C) 2007 Marc Hoffman <marc.hoffman@analog.com>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */
/*
  void ff_bfin_fdct (DCTELEM *buf);

  This implementation works only for 8x8 input. The range of input
  must be -256 to 255 i.e. 8bit input represented in a 16bit data
  word. The original data must be sign extended into the 16bit data
  words.


   Chen factorization of

           8
   X(m) = sum (x(n) * cos ((2n+1)*m*pi/16))
          n=0

                                             C4
 0 --*-------------*0+7---*-----*0+3-------*-*-------------------> 0
       \ / \ / X S4,S4
 1 --*-\---------/-*1+6---*-\-/-*1+2-------*-*-------------------> 4
         \ / \ -C4 C3
 2 --*---\-----/---*2+5---*-/-\-*1-2---------------*-*-----------> 2
           \ / / \ X S3,-S3
 3 --*-----\-/-----*3+4---*-----*0-3---------------*-*-----------> 6
             / C7 C3
 4 --*-----/-\-----*3-4------------*-*4+5--*-----*---------------> 1
           / \ -C4 X \ /S7 C3
 5 --*---/-----\---*2-5---*-*------*=*4-5----\-/------*-*--------> 5
         / \ X S4,S4 / X S3,-S3
 6 --*-/---------\-*1-6---*-*------*=*7-6----/-\------*-*--------> 3
       / \ C4 X / \-S7 C3
    --*-------------*0-7------------*-*7+6--*-----*---------------> 7
                                                C7

Notation
        Cn = cos(n*pi/8) used throughout the code.


  Registers used:
        R0, R1, R2, R3, R4, R5, R6,R7, P0, P1, P2, P3, P4, P5, A0, A1.
  Other registers used:
        I0, I1, I2, I3, B0, B2, B3, M0, M1, L3 registers and LC0.

  Input - r0 - pointer to start of DCTELEM *block

  Output - The DCT output coefficients in the DCTELEM *block

  Register constraint:
               This code is called from jpeg_encode.
               R6, R5, R4 if modified should be stored and restored.


  Performance: (Timer version 0.6.33)
               Code Size : 240 Bytes.
               Memory Required :
               Input Matrix : 8 * 8 * 2 Bytes.
               Coefficients : 16 Bytes
               Temporary matrix: 8 * 8 * 2 Bytes.
               Cycle Count :26+{18+8*(14+2S)}*2 where S -> Stalls
                            (7.45 c/pel)
        -----------------------------------------
        | Size | Forward DCT | Inverse DCT |
        -----------------------------------------
        | 8x8 | 284 Cycles | 311 Cycles |
        -----------------------------------------

Ck = int16(cos(k/16*pi)*32767+.5)/2
#define C4 23170
#define C3 13623
#define C6 6270
#define C7 3196

Sk = int16(sin(k/16*pi)*32767+.5)/2
#define S4 11585
#define S3 9102
#define S6 15137
#define S7 16069

the coefficients are ordered as follows:
short dct_coef[]
  C4,S4,
  C6,S6,
  C7,S7,
  S3,C3,

-----------------------------------------------------------
Libav conformance testing results
-----------------------------------------------------------
dct-test: modified with the following
            dct_error("BFINfdct", 0, ff_bfin_fdct, fdct, test);
produces the following output:

libavcodec> ./dct-test
Libav DCT/IDCT test

    2 -131 -6 -48 -36 33 -83 24
   34 52 -24 -15 5 92 57 143
  -67 -43 -1 74 -16 5 -71 32
  -78 106 92 -34 -38 81 20 -18
    7 -62 40 2 -15 90 -62 -83
  -83 1 -104 -13 43 -19 7 11
  -63 31 12 -29 83 72 21 10
  -17 -63 -15 73 50 -91 159 -14
DCT BFINfdct: err_inf=2 err2=0.16425938 syserr=0.00795000 maxout=2098 blockSumErr=27
DCT BFINfdct: 92.1 kdct/s
*/

#include "config.h"
#include "config_bfin.h"

#if defined(__FDPIC__) && CONFIG_SRAM
.section .l1.data.B,"aw",@progbits
#else
.data
#endif
.align 4;
dct_coeff:
.short 0x5a82, 0x2d41, 0x187e, 0x3b21, 0x0c7c, 0x3ec5, 0x238e, 0x3537;

#if defined(__FDPIC__) && CONFIG_SRAM
.section .l1.data.A,"aw",@progbits
#endif
.align 4
vtmp: .space 128

.text
DEFUN(fdct,mL1,
        (DCTELEM *block)):
    [--SP] = (R7:4, P5:3); // Push the registers onto the stack.

    b0 = r0;
    RELOC(r0, P3, dct_coeff);
    b3 = r0;
    RELOC(r0, P3, vtmp);
    b2 = r0;

    L3 = 16; // L3 is set to 16 to make the coefficient
                                    // array Circular.


//----------------------------------------------------------------------------

/*
 * I0, I1, and I2 registers are used to read the input data. I3 register is used
 * to read the coefficients. P0 and P1 registers are used for writing the output
 * data.
 */
    M0 = 12 (X); // All these initializations are used in the
    M1 = 16 (X); // modification of address offsets.

    M2 = 128 (X);

    P2 = 16;
    P3 = 32 (X);
    P4 = -110 (X);
    P5 = -62 (X);
    P0 = 2(X);


    // Prescale the input to get the correct precision.
    i0=b0;
    i1=b0;

    lsetup (.0, .1) LC0 = P3;
    r0=[i0++];
.0: r1=r0<<3 (v) || r0=[i0++] ;
.1: [i1++]=r1;

        /*
         * B0 points to the "in" buffer.
         * B2 points to "temp" buffer in the first iteration.
         */

    lsetup (.2, .3) LC0 = P0;
.2:
        I0 = B0; // I0 points to Input Element (0, 0).
        I1 = B0; // Element 1 and 0 is read in R0.
        I1 += M0 || R0 = [I0++]; // I1 points to Input Element (0, 6).
        I2 = I1; // Element 6 is read into R3.H.
        I2 -= 4 || R3.H = W[I1++]; // I2 points to Input Element (0, 4).

        I3 = B3; // I3 points to Coefficients.
        P0 = B2; // P0 points to temporary array Element
                                        // (0, 0).
        P1 = B2; // P1 points to temporary array.
        R7 = [P1++P2] || R2 = [I2++]; // P1 points to temporary array
                                        // Element (1, 0).
                                        // R7 is a dummy read. X4,X5
                                        // are read into R2.
        R3.L = W[I1--]; // X7 is read into R3.L.
        R1.H = W[I0++]; // X2 is read into R1.H.


        /*
         * X0 = (X0 + X7) / 2.
         * X1 = (X1 + X6) / 2.
         * X6 = (X1 - X6) / 2.
         * X7 = (X0 - X7) / 2.
         * It reads the data 3 in R1.L.
         */

        R0 = R0 +|+ R3, R3 = R0 -|- R3 || R1.L = W[I0++] || NOP;

        /*
         * X2 = (X2 + X5) / 2.
         * X3 = (X3 + X4) / 2.
         * X4 = (X3 - X4) / 2.
         * X5 = (X2 - X5) / 2.
         * R7 = C4 = cos(4*pi/16)
         */

        R1 = R1 +|+ R2, R2 = R1 -|- R2 (CO) || NOP || R7 = [I3++];

        /*
         * At the end of stage 1 R0 has (1,0), R1 has (2,3), R2 has (4, 5) and
         * R3 has (6,7).
         * Where the notation (x, y) represents uper/lower half pairs.
         */

        /*
         * X0 = X0 + X3.
         * X1 = X1 + X2.
         * X2 = X1 - X2.
         * X3 = X0 - X3.
         */
        R0 = R0 +|+ R1, R1 = R0 -|- R1;

        lsetup (.row0, .row1) LC1 = P2 >> 1; // 1d dct, loops 8x
.row0:

        /*
         * This is part 2 computation continued.....
         * A1 = X6 * cos(pi/4)
         * A0 = X6 * cos(pi/4)
         * A1 = A1 - X5 * cos(pi/4)
         * A0 = A0 + X5 * cos(pi/4).
         * The instruction W[I0] = R3.L is used for packing it to R2.L.
         */

        A1=R3.H*R7.l, A0=R3.H*R7.l || I1+=M1 || W[I0] = R3.L;
        R4.H=(A1-=R2.L*R7.l), R4.L=(A0+=R2.L*R7.l) || I2+=M0 || NOP;

        /* R0 = (X1,X0) R1 = (X2,X3) R4 = (X5, X6). */

        /*
         * A1 = X0 * cos(pi/4)
         * A0 = X0 * cos(pi/4)
         * A1 = A1 - X1 * cos(pi/4)
         * A0 = A0 + X1 * cos(pi/4)
         * R7 = (C2,C6)
         */
        A1=R0.L*R7.h, A0=R0.L*R7.h || NOP || R3.H=W[I1++];
        R5.H=(A1-=R0.H*R7.h),R5.L=(A0+=R0.H*R7.h) || R7=[I3++] || NOP;

        /*
         * A1 = X2 * cos(3pi/8)
         * A0 = X3 * cos(3pi/8)
         * A1 = A1 + X3 * cos(pi/8)
         * A0 = A0 - X2 * cos(pi/8)
         * R3 = cos(pi/4)
         * R7 = (cos(7pi/8),cos(pi/8))
         * X4 = X4 + X5.
         * X5 = X4 - X5.
         * X6 = X7 - X6.
         * X7 = X7 + X6.
         */
        A1=R1.H*R7.L, A0=R1.L*R7.L || W[P0++P3]=R5.L || R2.L=W[I0];
        R2=R2+|+R4, R4=R2-|-R4 || I0+=4 || R3.L=W[I1--];
        R6.H=(A1+=R1.L*R7.H),R6.L=(A0 -= R1.H * R7.H) || I0+=4 || R7=[I3++];

        /* R2 = (X4, X7) R4 = (X5,X6) R5 = (X1, X0) R6 = (X2,X3). */

        /*
         * A1 = X4 * cos(7pi/16)
         * A0 = X7 * cos(7pi/16)
         * A1 = A1 + X7 * cos(pi/16)
         * A0 = A0 - X4 * cos(pi/16)
         */

        A1=R2.H*R7.L, A0=R2.L*R7.L || W[P0++P3]=R6.H || R0=[I0++];
        R2.H=(A1+=R2.L*R7.H),R2.L=(A0-=R2.H*R7.H) || W[P0++P3]=R5.H || R7=[I3++];

        /*
         * A1 = X5 * cos(3pi/16)
         * A0 = X6 * cos(3pi/16)
         * A1 = A1 + X6 * cos(5pi/16)
         * A0 = A0 - X5 * cos(5pi/16)
         * The output values are written.
         */

        A1=R4.H*R7.H, A0=R4.L*R7.H || W[P0++P2]=R6.L || R1.H=W[I0++];
        R4.H=(A1+=R4.L*R7.L),R4.L=(A0-=R4.H*R7.L) || W[P0++P4]=R2.L || R1.L=W[I0++];


        /* Beginning of next stage, **pipelined** + drain and store the
           rest of the column store. */

        R0=R0+|+R3,R3=R0-|-R3 || W[P1++P3]=R2.H || R2=[I2++];
        R1=R1+|+R2,R2=R1-|-R2 (CO) || W[P1++P3]=R4.L || R7=[I3++];
.row1: R0=R0+|+R1,R1=R0-|-R1 || W[P1++P5]=R4.H || NOP;

        // Exchange input with output.
        B1 = B0;
        B0 = B2;
.3: B2 = B1;

        L3=0;
        (r7:4,p5:3) = [sp++];
        RTS;
DEFUN_END(fdct)
Something went wrong with that request. Please try again.