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VO – front-end vs. back-end

The part of visual odometry in charge of detecting and 
tracking (or matching) features and estimating the 
relative motion is called the front-end. 

The part of visual odometry in charge of refining 
motion estimation and ensuring local consistency 
over a window of past frames is called the back-end.

The motion estimation block usually involves a robust 
model estimation procedure such as RANSAC that is 
used to determine the set of inliers based on which 
the final motion parameters are computed.

Image sequence

Feature detection

Feature tracking (or
matching)

Motion estimation

2D-2D 3D-2D 3D-3D

Local optimization
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VO assumptions

To estimate the motion between two views, we need to be able to detect 
and match features of one or several subsequent frames; thus, the following 
assumptions are made:

1. Adequate illumination of the scene – if the images are over– or 
undersaturated it will be nearly impossible to detect and track 
features.

2. Dominance of static objects over the moving objects – to estimate 
ego-motion we must use features on static parts of the scene; 
otherwise, we do not know if the scene is moving and the camera is
static or vice-versa.

3. Enough texture to allow apparent motion to be estimated – moving in 
featurless environments is almost the same as moving in darkness 

4. Sufficient scene overlap between subsequent frames – otherwise, we 
do not have any features to match 
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Problem formulation

A camera is moving through an environment and taking images at discrete 
time steps k. It can be handheld or rigidly attached to a platform (such as a 
mobile robot or a vehicle).

In the case of a monocular system, we denote the set of k images as

In the case of a stereo system, at each time step we have a left and a right 
image that we denote by

In the stereo case, we can use the coordinate system of the left camera as 
the origin frame.
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Pose as a rigid body transformation

Two camera positions at subsequent time steps k-1 and k are related by the 
rigid body transformation

The set                                           contains all subsequent motions. 

The set of camera poses

contains the transformations of the camera
coordinate frame with respect to the initial 
coordinate frame at k=0.
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Concatenating rigid body transformations

The current pose of the camera      , or of the mobile robot or a vehicle, is 
computed by concatenating all the transformations from 0:k

Note that for brevity we omit the previous frame index, i.e.,                  .  
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The goal of VO

The main task of visual odometry is to compute the relative rigid body 
transformations      from images     and         and then to concatenate them 
in order to recover the full trajectory        of the camera. 

Evidently, visual odometry recovers the trajectory incrementally, pose after 
pose.

As discussed earlier, the optional step includes optimization over a local 
window of frames that aims to enforce local consistency and hopefully 
result with a more accurate estimate of the total trajectory.

Local optimization over m frames
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Motion estimation approaches

Depending whether point feature correspondence     and        are specified 
in 2D or 3D we have three groups of motion estimation approaches:

1. 2D-2D: both     and         are specified in 2D image coordinates
2. 3D-2D: point features        are specified in 3D coordinates         and   

are their corresponding 2D image reprojections on the image     .
3. 3D-3D: both     and         are specified in 3D coordinates       and         , 

respectively. For this approach, we have to triangulate 3D points and 
each time step, e.g., by using a stereo or depth camera.

In the following, we discuss each of these approaches and their minimal 
case solutions.

2D-2D 3D-2D 3D-3D
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3D-3D motion estimation

The 3D-3D approach estimates motion from 3D-to-3D point feature 
correspondences - and          - it is also called the point cloud 
registration problem.

The minimal-case solution involves 3 non-collinear correspondences.

In general, the goal is to find the aligning transformation      that minimizes 
the following distance between the two 3D features sets

where the superscript i denotes the i-th point feature.

3D-3D



13

3D-3D motion estimation

A closed-form solution for registration of 3D-3D correspondences exists and 
is based on least square fitting1.
Another class of solutions are the iterative closest points (ICP) algorithms 
that minimize point-to-point, point-to-line, or point-to-plane distances 
(sensitive to initial guess). An algorithm that joins multiple criteria in the 
minimization function is called the Generalized ICP algorithm2.
Essentially, any point cloud registration
approach discussed in earlier lectures 
can be used at this point, but keep in
mind the final application – if its
robotics or autonomous vehicles, then 
the algorithm should be executed in 
real-time, i.e., at least at the rate of 10 Hz.

1 A. S. Arun, T. S. Huang and S. D. Blostein (1987). „Least-Squares Fitting of Two 3-D Point Sets”
2A. Segal, D. Hehnel, S. Thrun (2005). „Generalized-ICP.”

3D-3D
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Aligning 3D point clouds = motion estimation

As stated earlier, to compute motion estimation from 3D-3D 
correspondences we triangulate the point features at steps k-1 and k . 
Thereafter, we align the 3D points using any available registration method.

3D-3D
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Aligning 3D point clouds = motion estimation

As stated earlier, to compute motion estimation from 3D-3D 
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3D-3D
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Aligning 3D point clouds = motion estimation
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3D-3D
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Aligning 3D point clouds = motion estimation

As stated earlier, to compute motion estimation from 3D-3D 
correspondences we triangulate the point features at steps k-1 and k . 
Thereafter, we align the 3D points using any available registration method.

3D-3D
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3D-3D VO pipeline

The pipeline of a 3D-3D odometry might have the following structure:

1. Capture two stereo image pairs                     and             .

2. Detect and match features between        and          .

3. Match and triangulate matched features for each stereo pair

4. Compute the relative transformation      from triangulated 3D point 
feature sets          and      .

5. Concatenate camera transformation by computing                      .   

3D-3D
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3D-2D motion estimation

The 3D-2D approach estimates motion from 3D-to-2D point feature 
correspondences - and     - the reprojections of the 3D point features 
to the image     - it is also called the perspective from n points (PnP).

The minimal-case solution involves 3 non-collinear points (+1 for 
disambiguation).

In general, the goal is to find the transformation      that minimizes the 
image reprojection error

where the superscript i denotes the i-th point feature and         is the 
projection function that projects a 3D point to image frame    . 

3D-2D
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Feature depth uncertainty

The 3D-2D approach has been found to yield more accurate results than 3D-
3D3 correspondences because it minimizes the image reprojection error 
instead of the 3D-3D feature position error.

The reason behind this lies in the fact that the
uncertainty of feature 3D positions is highly
anisotropic and the depth uncertainty increases
the larger the ratio of object’s distance with
respect to cameras baseline.

The uncertainty of reprojections, on the
other hand, is highly isotropic and it is less
error sensitive to minimize the image reprojection
error than alignment of triangulated 3D-3D
point feature sets4.

3D-2D

3 Nister, D., Naroditsky, O., and Bergen, J. (2004). „Visual odometry.”
4 Badino, H., Yamamoto, A., and Kanade, T. (2013). „Visual odometry by multi-frame feature integration.”



23

PnP problem

Perspective from n points (PnP) is actually a 
camera localization problem, where we aim 
to estimate the 6DoF pose of the camera 
with respect to the world frame from a set 
of 3D-2D point feature correspondences. 

Minimal-case solution:
1. 1 point – infinite solutions
2. 2 points – infinitely many solution but 

on a circular arc
3. 3 points (non-collinear) – up to 4 

possible solutions
4. 4 points – unique solution.

World 
frame

3D-2D
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1 point and 2 points analysis

1 point – infinetly many solutions 2 points – bounded on a circular arc
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P3P method

P3P problem was first introduced and solved in 1841. It was discovered that 
this problem typically does not lead to a unique mathematical solution, but 
rather may yield up to four distinct solutions, any of which could be the 
pose of the camera5.

There are multiple methods for solving the P3P
analytically and most are a two-step process:

1. Determine the length of projection rays
2. Estimate the camera pose.

We will explore the approach that systematically
analyzes all the possible solutions and takes
into account constraints that correspond to
geometrically nondegenerate solutions6.

5 J. A. Grunert (1841). „Das Pothenotische Problem in erweiterter Gestalt nebst Über seine Anwendungen in der Geodäsie.”

World 
frame

6 Gao, Hou, Tang, Cheng (2003). „Complete Solution Classification for the Perspective-Three-Point Problem.”

3D-2D
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P3P method

Simply put, the goal of P3P is to 
find the coordinates of points              

in the camera coordinate 
frame

Note that positions of the points 
are known in the world frame 
and we assume to detect  the 
point reprojections in the image.
Early approaches solved for 
positions of             in the 
camera frame and then used a 
3D point cloud registration 
method for the camera pose. 

W

C

3D-2D
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P3P method

Direct approaches aim at solving 
the geometry of tetrahedron and 
start with the law of cosines to 
obtain set of polynomial eqs:

Note that                   represent 
unknowns - angles determined 
from the image points (the 
camera is calibrated) and 
triangle sides are known from 
the world frame 3D coordinates.

C

W

3D-2D
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P3P method

With some algebra we can reduce the problem to a set of two polynomial 
equation of the 2nd order

where                                                                         .
For a system of n polynomial equations in n variables, the number of 
solutions is equal to the product of the equation degrees7. 
In our case, all unknowns are either linear or quadratic, thus we have 4 
possible solutions, i.e., 4 possible combinations of                   that satisfy 
the equations - to disambiguate the solution a 4th point is usually used. 

.  
7 C. B. Garcia, T. Y. Li (1980). „On the Number of Solutions to Polynomial Systems of Equations.”

3D-2D
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P3P ambiguity

For example, assume that
triangle sides and and
projection ray angles are 
equal. 

By rotating the triangle 
along one of its sides the
opposite vertice will at one 
point intersect the
projection and an
equilateral triangle will be
formed again.

An equivavlent effect can
be also obtained my
moving the camera’s
coordinate system.

The 4th point can be used
to solve another P3P and
see which of the 8 
solutions overlap.

3D-2D
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Robust P3P

With the unique solution for                    coordinates in the camera frame, 
we can now compute the rigid body transformation between the camera and 
world frame, i.e., localize the camera, by using any of the existing 3D point 
cloud registration algorithms, e.g., the closed-form least squares fitting.
In reality, we usually have much more than 3 points available and the 
correspondences that are not perfect. To obtain a robust solution in 
practice, we couple the P3P method with RANSAC:

1. Select 3 points randomly
2. Estimate the camera pose using P3P
3. Count the points that support this hypothesis (by comparing their 

reprojections from 3D position and detected points in the image)

4. Select the best solution as the final solution.

Re
pe

at

3D-2D
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One-stage solvers

The above-described method is a two-stage method: it first determines the 
lengths of projection rays and then obtains the rotation and translation via 
point alignment method.

The second stage usually involves matrix decomposition which is time-
consuming and highly sensitive to the distances obtained from the first step, 
thus reducing the efficiency and accuracy of the final solutions.

There exists approaches that directly solve for the rotation and translation 
parameters and are called one-stage solvers. They do not experience 
alignment issues, achieve higher speed and accuracy. They are usually 
based on clever parametrization and change of coordinate frames8. 

8 L. Kneip, D. Scaramuzza, R. Siegwart (2011). “A novel parametrization of the perspective-three-point problem for a direct computation of 
absolute camera position and orientation.”

3D-2D
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Using more than 3 points

All the aforementioned approaches are 3-point methods. Note that the 
RANSAC approach only enables us to find the set of inliers, but in the end,
we still have only methods that return solutions based only on three points.

To estimate the camera pose from       points, e.g., the inlier set returned 
by RANSAC, we can use the EPnP algorithm9. The idea is to express the n 3D 
points as a weighted sum of 4 virtual control points. The problem then 
reduces to estimating the coordinates of these control points in the camera 
frame, which can be done in O(n).

The EPnP method expresses these coordinates as weighted sum of the 
eigenvectors of a 12 x 12 matrix and solves a small constant number of 
quadratic equations to pick the right weights.

9 V. Lepetit, F. Moreno-Noguer, P. Fua (2009). „EPnP: An Accurate O(n) Solution to the PnP Problem.”

3D-2D
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Refinement via nonlinear optimization

Finally, note that the optimization problem that we were solving had the 
following form

and all the PnP variants that we presented were closed-form methods for 
minimizing the reprojection error. 
Another way to utilize more than 3 points, would be to minimize directly the 
above cost function using a non-linear optimization approach such as 
Gauss-Newton or Levenberg-Marquardt. 
Under the assumption that errors are zero-mean Gaussian random vector, 
these solvers return the optimal solution to this non-linear least squares 
problem. However, they are sensitive to initial conditions and usually 
solution obtained by P3P or EPnP is used as the initial guess.

3D-2D
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VO and PnP

How is this approach relevant for visual odometry? The stereo images from 
k-1 are used to reconstruct the 3D points in the camera frame          that acts 
as the world frame from the previous slides. Correspondences are then 
found in the image        or        and the camera frame      is aligned to         
using a PnP method to obtain the final transformation     .

3D-2D
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Stereo 3D-2D odometry

The pipeline of a 3D-2D odometry might have the following structure:

1. Capture two stereo image pairs                     and             .

2. Detect and match features between        and          .

3. Match and triangulate matched features in 

4. Compute the relative transformation      using 3D-2D method, e.g., P3P 
from the triangulated 3D point features         and their reprojections   

5. Concatenate camera transformation by computing                      .   

This pipeline models stereo 3D-2D odometry, the monocular case is  
discussed in the next slide.

3D-2D
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Monocular 3D-2D odometry

The pipeline of a 3D-2D odometry might have the following structure:

1. Do only once:
1. Capture two image frames                  .

2. Detect and match features between them.

3. Triangulate matched features from                  . 

2. Do at each iteration:
1. Capture new frame     .

2. Extract and match with previous frame         .

3. Compute camera pose (PnP) from 3D-2D matches       . 

4. Triangulate new feature matches between               . 

5. Concatenate transformation by computing                         . 

3D-2D
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2D-2D motion estimation

The 2D-2D approach estimates motion from 2D-to-2D image point feature 
correspondences - and     .

The minimal-case solution involves 5 points.

In general, the goal is to estimate the essential matrix from 2D point 
correspondences

Where         is the skew-symmetric matrix representation of the translation 
vector and symbol     means that the equivalence is valid up to a 
multiplicative scalar. 

In other words, we can determine translation only up to scale, i.e., we have a 
unit length translation vector pointing in the direction of motion.

2D-2D



39

Essential matrix via 5 points

The main property of 2D-2D motion 
estimation methods is the epipolar
constraint, which determines the line 
on which the corresponding feature 
point     lies in the other image.

The minimal case solution involves five 
2D-2D correspondences and an 
efficient implementation is called the 
Nister’s algorithm10. 

It has become the standard for 2D-2D 
motion estimation in the presence of 
outliers.

10 D. Nister (2003). „An efficient solution to the five-point relative pose problem”

2D-2D
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Essential matrix via 8 points

A simple and straightforward solution 
for          noncoplanar points is the 
Longuet-Higgins’ eight-point algorithm11

that we covered in the multiple view 
geometry part of the course. 

Eight-point algorithm - degenerate 
when the 3D points are coplanar, works 
for both calibrated and uncalibrated 
cameras.

Five-point algorithm - works also for 
coplanar points but assumes that the 
camera is calibrated.

11 H. Longuet-Higgins (1981). “A computer algorithm for reconstructing a scene from two projections”

2D-2D
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Relative scale of the translation

Once we have obtained the essential matrix, we can obtain the relative 
rotation and translation          . To recover the trajectory of an image 
sequence, recall that the different transformations        have to be 
concatenated.
Since translation is a unit vector, by using this approach frame-by-fame we 
would obtain a camera trajectory where all the relative translation vectors 
would be of unit length.

However, not all translations are of the same magnitude, which begs the 
question if it is possible to take this into account within a 2D-2D framework?

2D-2D
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Relative scale of the translation

This brings us to the notion of the relative scale.

Common approach to determinig the relative scale is to triangulate 3D 
points            and           from two subsequent image pairs and the relative 
distances between any combination of two 3D points can be computed.

The proper scale can then be determined from the distance ratio r between 
a point pair in             and a pair in      

For robustness, the scale ratios for many point pairs are computed and the 
mean is used. The translation vector is then scaled with this distance ratio -
requires features to be matched over multiple frames (at least three).

2D-2D
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Relative scale of the translation

We bootstrap the monocular odometry 
by computing the relative 
transformation between the first two 
views via essential matrix 
decomposition (translation norm is 
unit). Then, we triangulate points from 
the first two views, and as the third 
image is captured, we triangulate from 
the second and third view. 

The ratio of distance norms between 
image pairs gets us the relative scale 
w.r.t to the first pair etc.

2D-2D
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2D-2D odometry pipeline

The pipeline of a 2D-2D odometry might have the following structure:

1. Capture new frame     .

2. Detect and match features between      and        .

3. Compute essential matrix for image pair 

4. Decompose essential matrix into            and form     .   

5. Compute relative scale and rescale    accordingly . 

6. Concatenate transformation by computing                      . 

Mmotion estimation based on cannot handle pure rotation, 
there must exists at least some translational component in the overall 
motion (to handle this homography estimation is classically used). 

2D-2D
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Feature matches – camera shift with frontoparallel scene
feature matches depending on the

camera displacement

translation to the right rotation to the right

move forward rotation around the optical 
axis

2D-2D



46

Outline

• Problem formulation

• 3D-3D motion estimation

• 3D-2D motion estimation

• Perspective from n points (PnP)

• Stereo and mono odometry using PnP

• 2D-2D motion estimation

• Estimating the essential matrix

• Relative scale

• Keyframe selection



47

Keyframe selection

Some of the previous motion estimation methods require triangulation of 
3D points.

Triangulated 3D points are determined by intersecting backprojected
rays from 2D image correspondences of at least two image frames.

In reality, more than 2 lines never intersect in a single point due to:
• image noise
• camera model and calibration errors
• and feature matching uncertainty.

The point at minimal distance from all intersecting
rays can be taken as an estimate of the 3D point
position or a least squares solution can be found.
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Keyframe selection

When frames are taken at relatively close positions with respect to scene 
depth (i.e., baseline is much smaller than the feature depth), 3D triangulated 
points will exhibit large depth uncertainty. 
This can affect motion estimation accuracy and in general features should 
be triangulated at good baseline to depth ratios.
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Keyframe selection

One way to avoid this consists of skipping frames until the average 
uncertainty of the 3D points decreases below a certain threshold. The 
selected frames are called keyframes.
Keyframe selection is a very important
step in VO and should always be done
before updating the motion.
Rule of the thumb: add a keyframe
when the following threshold
is met (e.g., 10-20%)
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Questions?
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