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Odometry with real-world data

Real world is riddled with uncertainty, noise, incorrect 
feature matches, occlusions etc. This introduces a fair 
number of outliers in the data and can significantly 
affect the visual odomety accuracy.

The motion estimation block usually involves a robust 
model estimation procedure such as RANSAC that is 
used to determine the set of inliers based on which 
the final motion parameters are computed.
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Getting robust with RANSAC

To have robust visual odometry, we need to be able to deal with outliers. 

Most commonly, RANSAC (introduced in the 3D reconstruction part of the 
course) is used for this purpose. 

RANSAC is the standard method for model fitting in the presence of outliers 
(even more than 90%!).

It is non-deterministic: you get a different result every time you run it; 
however, it is not sensitive to the initial condition, and does not get stuck in 
local maxima like nonlinear optimization approaches.

It is very diverse and can be applied to all sorts of problems.
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Getting robust with RANSAC

A straighforward approach to RANSAC would try out all the possible 
combinations of points, e.g., in line fitting this would entail all possible pairs 
of points. 

If we had 1000 points, we would need to try out N(N-1)/2 combinations, i.e., 
close to 500.000, which can be computationally infeasible.

However, RANSAC1 approaches this in a probabilistic way – if we have a 
rough estimate of the percentage of inliers in our dataset, we can only check 
a subset of all combinations, i.e., perform a certain number of iterations, 
and claim results with a certain probability of success. 

Specifically, it was shown that the number of iterations amounts to 
Probability of
successRatio of

inliers

1 M. A. Fischler, R. C. Bolles (1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and 
Automated Cartography."

Number of points for 
the model
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RANSAC model fitting

General pseudocode of RANSAC applied to general model fitting would be:
1. Repeat
2. Randomly select a sample of m points
3. Fit the model using the selected m points
4. Compute the distances d of all the other points from this model
5. Construct the inlier set (points with d smaller than threshold)
6. Store these inliers
7. Until maximum number of interations k

The set with the maximum number of inliers is chosen as the solution to the 
problem. For the line fitting example, with w=0.5 and p=99% we would need 
only k=16 iterations (vs. exhaustive 500.000). Also, note that the total number 
of points does not influence k.
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Applying RANSAC to VO

For the case of applying RANSAC to visual odometry, the questions are:
1. What is our model in visual odometry?
2. What is the minimum number of required points to estimate the 

model?
3. How to compute the distances from the model, i.e., how to construct a 

metric that measures how well a point fits the model?

The beauty of RANSAC is that it can be applied to a diverse set of problems, 
thus we can use it within the 3D-3D, 3D-2D and 2D-2D motion estimation 
approaches. 
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The three VO groups and RANSAC

For the 3D-3D motion estimation we would have:
1. The motion rotation matrix and the translation vector
2. 3 non-collinear points
3. Distance to 3D correspondences

For the 3D-2D motion estimation:
1. The motion rotation matrix and the translation vector
2. 3 non-collinear points (+1 for disambiguation)
3. Reprojection error

For the 2D-2D motion estimation we would have:
1. The essential matrix
2. 5 points for Nister and 8 points for the Longuet-Higgins algorithm
3. Reprojection error, distance to epipolar lines …
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5-point RANSAC

Illustration of running RANSAC with the 5-pt algorithm.
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5-point RANSAC

Randomly select 5 points (orange).
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5-point RANSAC

Compute the model and find inliers (green) by thresholding
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5-point RANSAC

Randomly select 5 points (orange).
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5-point RANSAC

Compute the model and find inliers (green) by thresholding
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5-point RANSAC

The model with the highest number of inliers wins.

Note that the Níster’s algorithm, unlike the 8-point algorithm, can only use 5 
points to compute the essential matrix; no more, no less.
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RANSAC #iterations

The number of required iterations increases exponentially with the number 
of points needed to estimate the model.

If we assume p=99% and w=50% then:
• 8-point RANSAC

• 5-point RANSAC

• 2-point RANSAC (for line fitting, not essential matrix ☺)

Requires more iterations, can use more 
than 8 points to compute the essential
matrix,not directly in space of essential
matrices = finds the „closest” essential
matrix, but returns unique solution. 

Requires less iterations, can only use 5 
points to compute the essential matrix, 
returns up to 10 solutions (worst case) 
in the essential matrix space. 
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Introducing motion constaints

The lower the number of points necessary to estimate the model the better, 
since RANSAC will require fewer iterations to find the inlier set.

We know that a minimum of 5 points is needed to estimate the essential 
matrix, but is it be possible to use less than 5 points in certain instances?

The 5-point algorithm estimates 6DoF camera motion; however, if the 
camera cannot exhibit motion in all the DoF, e.g., if it is mounted on a 
platform that moves only in 2D, then the motion constraints can be taken 
into account to reduce the minimum number of required points.

Also, if sensor fusion is performed and another sensor is used to solve for 
some DoF, e.g., an accelerometer that can measure the gravity direction, the 
number of required points can also be reduced (e.g, to three 
correspondences)1.

1 O. Naroditsky, X. S. Zhou, S. I. Roumeliotis, K. Daniilidis (2012). „Two Efficient Solutions for Visual Odometry
Using Directional Correspondence.”
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Planar motion can be described with 3 parameters (rotation around the z 
axis and translation with zero z component)

In this case the essential matrix has only 2DoF
and only 2 correspondences are needed 
(see the Board)2

Planar motion

2 D. Ortín and J. M. M. Montiel (2001). „Indoor robot motion based on monocular images.”
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Planar motion epipolar constraint

In this case for a single correspondence the epipolar constraint amounts to

where                              .

A system of equations can be written in the form of              with unknowns 
being                                                       ; however, the elements of x are not 
independent, i.e.,                                 , thus only 2 points correspondences 
(2 quadratic equations) are needed. 

Given that, algebraically there are 4 possible solutions, out of which in 
general, two will allow for negative depths and can be discarded. 

Alternatively, a nonlinear optimization with an initial guess can be used to 
reach the final solution, e.g., Gauss-Newton.
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Planar circular motion

Can we go lower than 2 points? Yes, in case of planar circular motion.

This is not uncommon when the camera is placed on specific mobile robot 
configurations or vehicles, since their motion is locally circular.

For examples, vehicles with the Ackermann drive (only if the camera is 
placed above the rear axle; otherwise, use an approximation3) or differential 
drive mobile robots exhibit circular motion.

Instantaneous
Centre of
Curvature (ICC)

ICC

3 D. Scaramuzza (2011). „1 Point RANSAC Structure from Motion for Vehicle Mounted Cameras by Exploiting Non-Holonomic
Constraints”
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In the case of planar circular motion the camera
undergoes motion along the circle and the local 
x axis is tangent to the circle, while the y axis
points in the ICC direction, i.e., the circle’s origin.

In this case it can be shown (see the Board) that

Which means that we have only 1 DoF (    is still the
scale factor) and only a single feature
correspondence is necessary. 

This is the smallest parameterization possible
and results in the most efficient algorithm for
removing outliers3.

Planar circular motion

3 D. Scaramuzza (2011). „1 Point RANSAC Structure from Motion for Vehicle Mounted Cameras by Exploiting Non-Holonomic
Constraints”
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Planar circular motion epipolar constraint

In this case the rotation and translation evaluate to

The essential matrix then evaluates to (see the Board)

and the epipolar constraint is
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1-point RANSAC

The 1-point RANSAC randomly selects a single feature correspondence, 
computes   , and then the corresponding rotation and translation (   can be 
arbitrarily set to 1).

The motion hypothesis is carried out and the inlier set is found by 
computing some distance metric, e.g., the reprojection error. 

If we assume p=99% and w=50% then

The possibility of estimating the motion using only one feature 
correspondence allows us to implement another algorithm for outlier 
removal which is much more efficient than the 1-point RANSAC as it requires 
no iterations.
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Histogram voting

The algorithm is based on histogram voting: first,    is computed from each 
feature correspondence using (10); then, a histogram H is built where each 
bin contains the number of features which count for the same   .

When the circular motion model is well satisfied, the histogram has a very
narrow peak centered on the best motion estimate    .

We generate the motion hypothesis by substituting     and compute the 
rotation and translation, which are then used to compute the reprojection 
error and identify all the inliers.

*D. Scaramuzza (2011). „1
Point RANSAC Structure 
from Motion for Vehicle 
Mounted Cameras by 
Exploiting Non-Holonomic
Constraints”
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RANSAC comparison

Note that the 1-point algorithms (either 
RASNAC or histogram voting) are only used 
to find the set of inliers. The 6DoF motion 
is then computed using standard methods  
(5- or 8-point algorithm).

Authors report for the histogram voting an 
average of 0.2 ms with a dataset of about 
1600 points. The 1-point RANSAC finds a 
successful solution in less than 7 
iterations, requiring at most 1 ms.

Note that complexity increases
exponentially with the the fraction of
outliers.

*D. Scaramuzza (2011). „1 Point RANSAC Structure from Motion for Vehicle 
Mounted Cameras by Exploiting Non-Holonomic Constraints”
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Conclusion

When dealing with real-world data it is necessary to use robust estimation 
methods as sensor noise and environmental effects will cause quite a bit of 
incorrect correspondences (outliers).
To identify the set of inliers, commonly RANSAC is used.

For unconstrained motion RANSAC is coupled with standard 5- or 8-points 
algorithms; however, when the camera exhibits only planar motion or even 
circular planar motion, the necessary number of feature correspondences 
can be further reduced.
In the case of planar motion, only 2 points correspondences are sufficient, 
while for planar circular motion only 1 point correspondence is sufficient 
(enabling highly efficient histogram voting for inlier detection).
Finally, with the identified inlier set, standard motion estimation methods 
can then be applied.
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Trajectory evaluation dilemma

How can we evaluate and compare visual odometry algorithms? Two
subquestion arise: 

1. what should the solution be compared to?
2. on which datasets should we compare the algorithms?
3. which metric should we use?

Ad 1. We need ground truth trajectory obtained using a highly accurate
sensor or fusion thereof. For example, RTK GPS fused with highly accurate
IMU, or a 3D laser range sensor SLAM trajectory, or fusion of both. 

Ad 2. Choose datasets commonly used in state of the art, possibly with
online benchmarking.

Ad 3. Lets look at few examples first.
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Trajectory evaluation dilemma

Example below shows the ground truth trajectory and two different
odometry solutions: one is underscaled and the other is overscaled. The first
frame poses have been aligned.

Which one is better?

Ground truth

VO alpha
VO beta
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Trajectory evaluation dilemma

Actually, both are equally good/bad. One is
25% underscaled, while the other is 25% 
overscaled.

We might focus on the end-point error, but this
does not take into account the whole trajectory shape.

Should we align the first, middle, or the final camera pose? Should we
compare frame-to-frame camera pose errors with exact same timestamps?

Additionally, should we approach differently evaluation of odometry that
has metric scale (e.g., stereo visual odometry or 3D laser odometry) 
compared to an up-to-scale odometry (e.g., monocular visual odometry)?

In literature two main approaches are used: absolute trajectory error (ATE) 
and relative pose error (RPE).

Ground truth
VO alpha
VO beta
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Absolute trajectory error

Absolute trajectory error (ATE) consists of two steps:
1. Align the whole estimated trajectory with the ground truth by
minimizing the sum of squared pose errors.

Note that we align the orientation and translation as well as the
trajectory scale over all the camera poses.

Ground truth

Ground truth
camera poses

Scale factor
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Absolute trajectory error

2. After alignment the root mean squared error is computed

The advantage of ATE is that it produces a single number based on which
odometries can be compared and it captures the global trajectory error
(making it a suitable metric for SfM and SLAM approaches).

However, it does not capture the relative error, i.e., the local trajectory
estimates. Should the odometry be strictly penalized if after a couple of
turns it had a few degree error but after that performed flawlessly?
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Absolute trajectory error

An example of how an open-source package evo computes and visualizes
the odometry peformance is depicted below. 

https://github.com/MichaelGrupp/evo
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Relative pose error

This is where relative pose error (RPE) steps in. The idea of RPE is to 
evaluate the odometry based on computing error statistics of sub-
trajectories of specific lengths.
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Relative pose error

This is where relative pose error (RPE) steps in. The idea of RPE is to 
evaluate the odometry based on computing error statistics of sub-
trajectories of specific lengths.
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Relative pose error

This is where relative pose error (RPE) steps in. The idea of RPE is to 
evaluate the odometry based on computing error statistics of sub-
trajectories of specific lengths.
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Relative pose error

Advantage of RPE is that it captures local trajectory errors, making it
particularly useful for evaluating odometry algorithms. Commonly, it
separately evaluates translational and rotational errors.

Drawback is that we do not end up with a single number right away but have
to decide on how to agreggate the statistics based on which algorithms can
be compared.

Commonly, the average of all sub-trajectory errors (translation and rotation
separetely) is computed, where the lenghts are either fixed beforehand or
defined in percentages of the total trajectory length.
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Relative pose error

An example of how an open-source package rpg_trajectory_evaluation
computes and visualizes the odometry peformance is depicted below. 

https://github.com/uzh-rpg/rpg_trajectory_evaluation
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Popular odometry datasets

Researchers have devoted considerable effort in creating datasets that can
be used for (visual) odometry evaluation. Many contain multiple sensor
modalities and varying degree of ground truth availability and accuracy.

Most popular datasets are Malaga Urban Dataset, Multivehicle stereo event 
camera dataset, DSEC, EuROC micro-aerial vehicle dataset, Oxford RobotCar
dataset, KITTI, KITTI-360, and TUM datasets.

Among these special mention deserve KITTI and KITTI-360 as besides the
dataset they also curate an online public benchmark where researchers can
upload and evalaute their solutions on the test sequences for which ground
truth data is not available.

https://www.mrpt.org/MalagaUrbanDataset
https://daniilidis-group.github.io/mvsec/
https://journals.sagepub.com/doi/abs/10.1177/0278364915620033
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjEm4DD6Mn8AhWVuaQKHfnmAqMQFnoECBIQAQ&url=https%3A%2F%2Frobotcar-dataset.robots.ox.ac.uk%2F&usg=AOvVaw2I4tODPsQ8N5QDNr2VrmsU
https://www.cvlibs.net/datasets/kitti/index.php
https://www.cvlibs.net/datasets/kitti-360/
https://vision.in.tum.de/data/datasets
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KITTI evaluation example
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